1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/host-utils.h" 17 #include "qemu/main-loop.h" 18 #include "qemu/timer.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "qemu/range.h" 30 #include "qapi/qapi-commands-machine-target.h" 31 #include "qapi/error.h" 32 #include "qemu/guest-random.h" 33 #ifdef CONFIG_TCG 34 #include "arm_ldst.h" 35 #include "exec/cpu_ldst.h" 36 #include "semihosting/common-semi.h" 37 #endif 38 #include "cpregs.h" 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 42 static void switch_mode(CPUARMState *env, int mode); 43 44 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 45 { 46 assert(ri->fieldoffset); 47 if (cpreg_field_is_64bit(ri)) { 48 return CPREG_FIELD64(env, ri); 49 } else { 50 return CPREG_FIELD32(env, ri); 51 } 52 } 53 54 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 55 { 56 assert(ri->fieldoffset); 57 if (cpreg_field_is_64bit(ri)) { 58 CPREG_FIELD64(env, ri) = value; 59 } else { 60 CPREG_FIELD32(env, ri) = value; 61 } 62 } 63 64 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 65 { 66 return (char *)env + ri->fieldoffset; 67 } 68 69 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 70 { 71 /* Raw read of a coprocessor register (as needed for migration, etc). */ 72 if (ri->type & ARM_CP_CONST) { 73 return ri->resetvalue; 74 } else if (ri->raw_readfn) { 75 return ri->raw_readfn(env, ri); 76 } else if (ri->readfn) { 77 return ri->readfn(env, ri); 78 } else { 79 return raw_read(env, ri); 80 } 81 } 82 83 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 84 uint64_t v) 85 { 86 /* Raw write of a coprocessor register (as needed for migration, etc). 87 * Note that constant registers are treated as write-ignored; the 88 * caller should check for success by whether a readback gives the 89 * value written. 90 */ 91 if (ri->type & ARM_CP_CONST) { 92 return; 93 } else if (ri->raw_writefn) { 94 ri->raw_writefn(env, ri, v); 95 } else if (ri->writefn) { 96 ri->writefn(env, ri, v); 97 } else { 98 raw_write(env, ri, v); 99 } 100 } 101 102 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 103 { 104 /* Return true if the regdef would cause an assertion if you called 105 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 106 * program bug for it not to have the NO_RAW flag). 107 * NB that returning false here doesn't necessarily mean that calling 108 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 109 * read/write access functions which are safe for raw use" from "has 110 * read/write access functions which have side effects but has forgotten 111 * to provide raw access functions". 112 * The tests here line up with the conditions in read/write_raw_cp_reg() 113 * and assertions in raw_read()/raw_write(). 114 */ 115 if ((ri->type & ARM_CP_CONST) || 116 ri->fieldoffset || 117 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 118 return false; 119 } 120 return true; 121 } 122 123 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 124 { 125 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 126 int i; 127 bool ok = true; 128 129 for (i = 0; i < cpu->cpreg_array_len; i++) { 130 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 131 const ARMCPRegInfo *ri; 132 uint64_t newval; 133 134 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 135 if (!ri) { 136 ok = false; 137 continue; 138 } 139 if (ri->type & ARM_CP_NO_RAW) { 140 continue; 141 } 142 143 newval = read_raw_cp_reg(&cpu->env, ri); 144 if (kvm_sync) { 145 /* 146 * Only sync if the previous list->cpustate sync succeeded. 147 * Rather than tracking the success/failure state for every 148 * item in the list, we just recheck "does the raw write we must 149 * have made in write_list_to_cpustate() read back OK" here. 150 */ 151 uint64_t oldval = cpu->cpreg_values[i]; 152 153 if (oldval == newval) { 154 continue; 155 } 156 157 write_raw_cp_reg(&cpu->env, ri, oldval); 158 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 159 continue; 160 } 161 162 write_raw_cp_reg(&cpu->env, ri, newval); 163 } 164 cpu->cpreg_values[i] = newval; 165 } 166 return ok; 167 } 168 169 bool write_list_to_cpustate(ARMCPU *cpu) 170 { 171 int i; 172 bool ok = true; 173 174 for (i = 0; i < cpu->cpreg_array_len; i++) { 175 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 176 uint64_t v = cpu->cpreg_values[i]; 177 const ARMCPRegInfo *ri; 178 179 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 180 if (!ri) { 181 ok = false; 182 continue; 183 } 184 if (ri->type & ARM_CP_NO_RAW) { 185 continue; 186 } 187 /* Write value and confirm it reads back as written 188 * (to catch read-only registers and partially read-only 189 * registers where the incoming migration value doesn't match) 190 */ 191 write_raw_cp_reg(&cpu->env, ri, v); 192 if (read_raw_cp_reg(&cpu->env, ri) != v) { 193 ok = false; 194 } 195 } 196 return ok; 197 } 198 199 static void add_cpreg_to_list(gpointer key, gpointer opaque) 200 { 201 ARMCPU *cpu = opaque; 202 uint32_t regidx = (uintptr_t)key; 203 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 204 205 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 206 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 207 /* The value array need not be initialized at this point */ 208 cpu->cpreg_array_len++; 209 } 210 } 211 212 static void count_cpreg(gpointer key, gpointer opaque) 213 { 214 ARMCPU *cpu = opaque; 215 const ARMCPRegInfo *ri; 216 217 ri = g_hash_table_lookup(cpu->cp_regs, key); 218 219 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 220 cpu->cpreg_array_len++; 221 } 222 } 223 224 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 225 { 226 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 227 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 228 229 if (aidx > bidx) { 230 return 1; 231 } 232 if (aidx < bidx) { 233 return -1; 234 } 235 return 0; 236 } 237 238 void init_cpreg_list(ARMCPU *cpu) 239 { 240 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 241 * Note that we require cpreg_tuples[] to be sorted by key ID. 242 */ 243 GList *keys; 244 int arraylen; 245 246 keys = g_hash_table_get_keys(cpu->cp_regs); 247 keys = g_list_sort(keys, cpreg_key_compare); 248 249 cpu->cpreg_array_len = 0; 250 251 g_list_foreach(keys, count_cpreg, cpu); 252 253 arraylen = cpu->cpreg_array_len; 254 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 255 cpu->cpreg_values = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 258 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 259 cpu->cpreg_array_len = 0; 260 261 g_list_foreach(keys, add_cpreg_to_list, cpu); 262 263 assert(cpu->cpreg_array_len == arraylen); 264 265 g_list_free(keys); 266 } 267 268 /* 269 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 270 */ 271 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 272 const ARMCPRegInfo *ri, 273 bool isread) 274 { 275 if (!is_a64(env) && arm_current_el(env) == 3 && 276 arm_is_secure_below_el3(env)) { 277 return CP_ACCESS_TRAP_UNCATEGORIZED; 278 } 279 return CP_ACCESS_OK; 280 } 281 282 /* Some secure-only AArch32 registers trap to EL3 if used from 283 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 284 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 285 * We assume that the .access field is set to PL1_RW. 286 */ 287 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 288 const ARMCPRegInfo *ri, 289 bool isread) 290 { 291 if (arm_current_el(env) == 3) { 292 return CP_ACCESS_OK; 293 } 294 if (arm_is_secure_below_el3(env)) { 295 if (env->cp15.scr_el3 & SCR_EEL2) { 296 return CP_ACCESS_TRAP_EL2; 297 } 298 return CP_ACCESS_TRAP_EL3; 299 } 300 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 301 return CP_ACCESS_TRAP_UNCATEGORIZED; 302 } 303 304 /* Check for traps to performance monitor registers, which are controlled 305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 306 */ 307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 308 bool isread) 309 { 310 int el = arm_current_el(env); 311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 312 313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 314 return CP_ACCESS_TRAP_EL2; 315 } 316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 317 return CP_ACCESS_TRAP_EL3; 318 } 319 return CP_ACCESS_OK; 320 } 321 322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 323 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 324 bool isread) 325 { 326 if (arm_current_el(env) == 1) { 327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 328 if (arm_hcr_el2_eff(env) & trap) { 329 return CP_ACCESS_TRAP_EL2; 330 } 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 340 return CP_ACCESS_TRAP_EL2; 341 } 342 return CP_ACCESS_OK; 343 } 344 345 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 347 bool isread) 348 { 349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 350 return CP_ACCESS_TRAP_EL2; 351 } 352 return CP_ACCESS_OK; 353 } 354 355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 357 bool isread) 358 { 359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 360 return CP_ACCESS_TRAP_EL2; 361 } 362 return CP_ACCESS_OK; 363 } 364 365 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 366 { 367 ARMCPU *cpu = env_archcpu(env); 368 369 raw_write(env, ri, value); 370 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 371 } 372 373 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 374 { 375 ARMCPU *cpu = env_archcpu(env); 376 377 if (raw_read(env, ri) != value) { 378 /* Unlike real hardware the qemu TLB uses virtual addresses, 379 * not modified virtual addresses, so this causes a TLB flush. 380 */ 381 tlb_flush(CPU(cpu)); 382 raw_write(env, ri, value); 383 } 384 } 385 386 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 387 uint64_t value) 388 { 389 ARMCPU *cpu = env_archcpu(env); 390 391 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 392 && !extended_addresses_enabled(env)) { 393 /* For VMSA (when not using the LPAE long descriptor page table 394 * format) this register includes the ASID, so do a TLB flush. 395 * For PMSA it is purely a process ID and no action is needed. 396 */ 397 tlb_flush(CPU(cpu)); 398 } 399 raw_write(env, ri, value); 400 } 401 402 /* IS variants of TLB operations must affect all cores */ 403 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 404 uint64_t value) 405 { 406 CPUState *cs = env_cpu(env); 407 408 tlb_flush_all_cpus_synced(cs); 409 } 410 411 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 412 uint64_t value) 413 { 414 CPUState *cs = env_cpu(env); 415 416 tlb_flush_all_cpus_synced(cs); 417 } 418 419 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 420 uint64_t value) 421 { 422 CPUState *cs = env_cpu(env); 423 424 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 425 } 426 427 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 428 uint64_t value) 429 { 430 CPUState *cs = env_cpu(env); 431 432 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 433 } 434 435 /* 436 * Non-IS variants of TLB operations are upgraded to 437 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 438 * force broadcast of these operations. 439 */ 440 static bool tlb_force_broadcast(CPUARMState *env) 441 { 442 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 443 } 444 445 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 446 uint64_t value) 447 { 448 /* Invalidate all (TLBIALL) */ 449 CPUState *cs = env_cpu(env); 450 451 if (tlb_force_broadcast(env)) { 452 tlb_flush_all_cpus_synced(cs); 453 } else { 454 tlb_flush(cs); 455 } 456 } 457 458 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 459 uint64_t value) 460 { 461 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 462 CPUState *cs = env_cpu(env); 463 464 value &= TARGET_PAGE_MASK; 465 if (tlb_force_broadcast(env)) { 466 tlb_flush_page_all_cpus_synced(cs, value); 467 } else { 468 tlb_flush_page(cs, value); 469 } 470 } 471 472 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 473 uint64_t value) 474 { 475 /* Invalidate by ASID (TLBIASID) */ 476 CPUState *cs = env_cpu(env); 477 478 if (tlb_force_broadcast(env)) { 479 tlb_flush_all_cpus_synced(cs); 480 } else { 481 tlb_flush(cs); 482 } 483 } 484 485 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 486 uint64_t value) 487 { 488 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 489 CPUState *cs = env_cpu(env); 490 491 value &= TARGET_PAGE_MASK; 492 if (tlb_force_broadcast(env)) { 493 tlb_flush_page_all_cpus_synced(cs, value); 494 } else { 495 tlb_flush_page(cs, value); 496 } 497 } 498 499 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 CPUState *cs = env_cpu(env); 503 504 tlb_flush_by_mmuidx(cs, 505 ARMMMUIdxBit_E10_1 | 506 ARMMMUIdxBit_E10_1_PAN | 507 ARMMMUIdxBit_E10_0); 508 } 509 510 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 511 uint64_t value) 512 { 513 CPUState *cs = env_cpu(env); 514 515 tlb_flush_by_mmuidx_all_cpus_synced(cs, 516 ARMMMUIdxBit_E10_1 | 517 ARMMMUIdxBit_E10_1_PAN | 518 ARMMMUIdxBit_E10_0); 519 } 520 521 522 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 523 uint64_t value) 524 { 525 CPUState *cs = env_cpu(env); 526 527 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 528 } 529 530 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 531 uint64_t value) 532 { 533 CPUState *cs = env_cpu(env); 534 535 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 536 } 537 538 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 539 uint64_t value) 540 { 541 CPUState *cs = env_cpu(env); 542 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 543 544 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 545 } 546 547 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 548 uint64_t value) 549 { 550 CPUState *cs = env_cpu(env); 551 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 552 553 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 554 ARMMMUIdxBit_E2); 555 } 556 557 static const ARMCPRegInfo cp_reginfo[] = { 558 /* Define the secure and non-secure FCSE identifier CP registers 559 * separately because there is no secure bank in V8 (no _EL3). This allows 560 * the secure register to be properly reset and migrated. There is also no 561 * v8 EL1 version of the register so the non-secure instance stands alone. 562 */ 563 { .name = "FCSEIDR", 564 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 565 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 566 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 567 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 568 { .name = "FCSEIDR_S", 569 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 570 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 571 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 572 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 573 /* Define the secure and non-secure context identifier CP registers 574 * separately because there is no secure bank in V8 (no _EL3). This allows 575 * the secure register to be properly reset and migrated. In the 576 * non-secure case, the 32-bit register will have reset and migration 577 * disabled during registration as it is handled by the 64-bit instance. 578 */ 579 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 580 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 581 .access = PL1_RW, .accessfn = access_tvm_trvm, 582 .secure = ARM_CP_SECSTATE_NS, 583 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 584 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 585 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 586 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 587 .access = PL1_RW, .accessfn = access_tvm_trvm, 588 .secure = ARM_CP_SECSTATE_S, 589 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 590 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 591 }; 592 593 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 594 /* NB: Some of these registers exist in v8 but with more precise 595 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 596 */ 597 /* MMU Domain access control / MPU write buffer control */ 598 { .name = "DACR", 599 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 600 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 601 .writefn = dacr_write, .raw_writefn = raw_write, 602 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 603 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 604 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 605 * For v6 and v5, these mappings are overly broad. 606 */ 607 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 608 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 609 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 610 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 611 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 612 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 613 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 614 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 615 /* Cache maintenance ops; some of this space may be overridden later. */ 616 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 617 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 618 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 619 }; 620 621 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 622 /* Not all pre-v6 cores implemented this WFI, so this is slightly 623 * over-broad. 624 */ 625 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 626 .access = PL1_W, .type = ARM_CP_WFI }, 627 }; 628 629 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 630 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 631 * is UNPREDICTABLE; we choose to NOP as most implementations do). 632 */ 633 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 634 .access = PL1_W, .type = ARM_CP_WFI }, 635 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 636 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 637 * OMAPCP will override this space. 638 */ 639 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 640 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 641 .resetvalue = 0 }, 642 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 643 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 644 .resetvalue = 0 }, 645 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 646 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 647 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 648 .resetvalue = 0 }, 649 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 650 * implementing it as RAZ means the "debug architecture version" bits 651 * will read as a reserved value, which should cause Linux to not try 652 * to use the debug hardware. 653 */ 654 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 655 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 656 /* MMU TLB control. Note that the wildcarding means we cover not just 657 * the unified TLB ops but also the dside/iside/inner-shareable variants. 658 */ 659 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 660 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 661 .type = ARM_CP_NO_RAW }, 662 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 663 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 664 .type = ARM_CP_NO_RAW }, 665 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 666 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 667 .type = ARM_CP_NO_RAW }, 668 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 669 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 670 .type = ARM_CP_NO_RAW }, 671 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 672 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 673 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 674 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 675 }; 676 677 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 678 uint64_t value) 679 { 680 uint32_t mask = 0; 681 682 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 683 if (!arm_feature(env, ARM_FEATURE_V8)) { 684 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 685 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 686 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 687 */ 688 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 689 /* VFP coprocessor: cp10 & cp11 [23:20] */ 690 mask |= R_CPACR_ASEDIS_MASK | 691 R_CPACR_D32DIS_MASK | 692 R_CPACR_CP11_MASK | 693 R_CPACR_CP10_MASK; 694 695 if (!arm_feature(env, ARM_FEATURE_NEON)) { 696 /* ASEDIS [31] bit is RAO/WI */ 697 value |= R_CPACR_ASEDIS_MASK; 698 } 699 700 /* VFPv3 and upwards with NEON implement 32 double precision 701 * registers (D0-D31). 702 */ 703 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 704 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 705 value |= R_CPACR_D32DIS_MASK; 706 } 707 } 708 value &= mask; 709 } 710 711 /* 712 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 713 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 714 */ 715 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 716 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 717 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 718 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 719 } 720 721 env->cp15.cpacr_el1 = value; 722 } 723 724 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 725 { 726 /* 727 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 728 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 729 */ 730 uint64_t value = env->cp15.cpacr_el1; 731 732 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 733 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 734 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 735 } 736 return value; 737 } 738 739 740 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 741 { 742 /* Call cpacr_write() so that we reset with the correct RAO bits set 743 * for our CPU features. 744 */ 745 cpacr_write(env, ri, 0); 746 } 747 748 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 749 bool isread) 750 { 751 if (arm_feature(env, ARM_FEATURE_V8)) { 752 /* Check if CPACR accesses are to be trapped to EL2 */ 753 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 754 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 755 return CP_ACCESS_TRAP_EL2; 756 /* Check if CPACR accesses are to be trapped to EL3 */ 757 } else if (arm_current_el(env) < 3 && 758 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 759 return CP_ACCESS_TRAP_EL3; 760 } 761 } 762 763 return CP_ACCESS_OK; 764 } 765 766 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 767 bool isread) 768 { 769 /* Check if CPTR accesses are set to trap to EL3 */ 770 if (arm_current_el(env) == 2 && 771 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 772 return CP_ACCESS_TRAP_EL3; 773 } 774 775 return CP_ACCESS_OK; 776 } 777 778 static const ARMCPRegInfo v6_cp_reginfo[] = { 779 /* prefetch by MVA in v6, NOP in v7 */ 780 { .name = "MVA_prefetch", 781 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 782 .access = PL1_W, .type = ARM_CP_NOP }, 783 /* We need to break the TB after ISB to execute self-modifying code 784 * correctly and also to take any pending interrupts immediately. 785 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 786 */ 787 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 788 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 789 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 790 .access = PL0_W, .type = ARM_CP_NOP }, 791 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 792 .access = PL0_W, .type = ARM_CP_NOP }, 793 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 794 .access = PL1_RW, .accessfn = access_tvm_trvm, 795 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 796 offsetof(CPUARMState, cp15.ifar_ns) }, 797 .resetvalue = 0, }, 798 /* Watchpoint Fault Address Register : should actually only be present 799 * for 1136, 1176, 11MPCore. 800 */ 801 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 802 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 803 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 804 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 805 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 806 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 807 }; 808 809 typedef struct pm_event { 810 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 811 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 812 bool (*supported)(CPUARMState *); 813 /* 814 * Retrieve the current count of the underlying event. The programmed 815 * counters hold a difference from the return value from this function 816 */ 817 uint64_t (*get_count)(CPUARMState *); 818 /* 819 * Return how many nanoseconds it will take (at a minimum) for count events 820 * to occur. A negative value indicates the counter will never overflow, or 821 * that the counter has otherwise arranged for the overflow bit to be set 822 * and the PMU interrupt to be raised on overflow. 823 */ 824 int64_t (*ns_per_count)(uint64_t); 825 } pm_event; 826 827 static bool event_always_supported(CPUARMState *env) 828 { 829 return true; 830 } 831 832 static uint64_t swinc_get_count(CPUARMState *env) 833 { 834 /* 835 * SW_INCR events are written directly to the pmevcntr's by writes to 836 * PMSWINC, so there is no underlying count maintained by the PMU itself 837 */ 838 return 0; 839 } 840 841 static int64_t swinc_ns_per(uint64_t ignored) 842 { 843 return -1; 844 } 845 846 /* 847 * Return the underlying cycle count for the PMU cycle counters. If we're in 848 * usermode, simply return 0. 849 */ 850 static uint64_t cycles_get_count(CPUARMState *env) 851 { 852 #ifndef CONFIG_USER_ONLY 853 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 854 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 855 #else 856 return cpu_get_host_ticks(); 857 #endif 858 } 859 860 #ifndef CONFIG_USER_ONLY 861 static int64_t cycles_ns_per(uint64_t cycles) 862 { 863 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 864 } 865 866 static bool instructions_supported(CPUARMState *env) 867 { 868 return icount_enabled() == 1; /* Precise instruction counting */ 869 } 870 871 static uint64_t instructions_get_count(CPUARMState *env) 872 { 873 return (uint64_t)icount_get_raw(); 874 } 875 876 static int64_t instructions_ns_per(uint64_t icount) 877 { 878 return icount_to_ns((int64_t)icount); 879 } 880 #endif 881 882 static bool pmuv3p1_events_supported(CPUARMState *env) 883 { 884 /* For events which are supported in any v8.1 PMU */ 885 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 886 } 887 888 static bool pmuv3p4_events_supported(CPUARMState *env) 889 { 890 /* For events which are supported in any v8.1 PMU */ 891 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 892 } 893 894 static uint64_t zero_event_get_count(CPUARMState *env) 895 { 896 /* For events which on QEMU never fire, so their count is always zero */ 897 return 0; 898 } 899 900 static int64_t zero_event_ns_per(uint64_t cycles) 901 { 902 /* An event which never fires can never overflow */ 903 return -1; 904 } 905 906 static const pm_event pm_events[] = { 907 { .number = 0x000, /* SW_INCR */ 908 .supported = event_always_supported, 909 .get_count = swinc_get_count, 910 .ns_per_count = swinc_ns_per, 911 }, 912 #ifndef CONFIG_USER_ONLY 913 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 914 .supported = instructions_supported, 915 .get_count = instructions_get_count, 916 .ns_per_count = instructions_ns_per, 917 }, 918 { .number = 0x011, /* CPU_CYCLES, Cycle */ 919 .supported = event_always_supported, 920 .get_count = cycles_get_count, 921 .ns_per_count = cycles_ns_per, 922 }, 923 #endif 924 { .number = 0x023, /* STALL_FRONTEND */ 925 .supported = pmuv3p1_events_supported, 926 .get_count = zero_event_get_count, 927 .ns_per_count = zero_event_ns_per, 928 }, 929 { .number = 0x024, /* STALL_BACKEND */ 930 .supported = pmuv3p1_events_supported, 931 .get_count = zero_event_get_count, 932 .ns_per_count = zero_event_ns_per, 933 }, 934 { .number = 0x03c, /* STALL */ 935 .supported = pmuv3p4_events_supported, 936 .get_count = zero_event_get_count, 937 .ns_per_count = zero_event_ns_per, 938 }, 939 }; 940 941 /* 942 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 943 * events (i.e. the statistical profiling extension), this implementation 944 * should first be updated to something sparse instead of the current 945 * supported_event_map[] array. 946 */ 947 #define MAX_EVENT_ID 0x3c 948 #define UNSUPPORTED_EVENT UINT16_MAX 949 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 950 951 /* 952 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 953 * of ARM event numbers to indices in our pm_events array. 954 * 955 * Note: Events in the 0x40XX range are not currently supported. 956 */ 957 void pmu_init(ARMCPU *cpu) 958 { 959 unsigned int i; 960 961 /* 962 * Empty supported_event_map and cpu->pmceid[01] before adding supported 963 * events to them 964 */ 965 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 966 supported_event_map[i] = UNSUPPORTED_EVENT; 967 } 968 cpu->pmceid0 = 0; 969 cpu->pmceid1 = 0; 970 971 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 972 const pm_event *cnt = &pm_events[i]; 973 assert(cnt->number <= MAX_EVENT_ID); 974 /* We do not currently support events in the 0x40xx range */ 975 assert(cnt->number <= 0x3f); 976 977 if (cnt->supported(&cpu->env)) { 978 supported_event_map[cnt->number] = i; 979 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 980 if (cnt->number & 0x20) { 981 cpu->pmceid1 |= event_mask; 982 } else { 983 cpu->pmceid0 |= event_mask; 984 } 985 } 986 } 987 } 988 989 /* 990 * Check at runtime whether a PMU event is supported for the current machine 991 */ 992 static bool event_supported(uint16_t number) 993 { 994 if (number > MAX_EVENT_ID) { 995 return false; 996 } 997 return supported_event_map[number] != UNSUPPORTED_EVENT; 998 } 999 1000 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1001 bool isread) 1002 { 1003 /* Performance monitor registers user accessibility is controlled 1004 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1005 * trapping to EL2 or EL3 for other accesses. 1006 */ 1007 int el = arm_current_el(env); 1008 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1009 1010 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1011 return CP_ACCESS_TRAP; 1012 } 1013 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1014 return CP_ACCESS_TRAP_EL2; 1015 } 1016 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1017 return CP_ACCESS_TRAP_EL3; 1018 } 1019 1020 return CP_ACCESS_OK; 1021 } 1022 1023 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1024 const ARMCPRegInfo *ri, 1025 bool isread) 1026 { 1027 /* ER: event counter read trap control */ 1028 if (arm_feature(env, ARM_FEATURE_V8) 1029 && arm_current_el(env) == 0 1030 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1031 && isread) { 1032 return CP_ACCESS_OK; 1033 } 1034 1035 return pmreg_access(env, ri, isread); 1036 } 1037 1038 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1039 const ARMCPRegInfo *ri, 1040 bool isread) 1041 { 1042 /* SW: software increment write trap control */ 1043 if (arm_feature(env, ARM_FEATURE_V8) 1044 && arm_current_el(env) == 0 1045 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1046 && !isread) { 1047 return CP_ACCESS_OK; 1048 } 1049 1050 return pmreg_access(env, ri, isread); 1051 } 1052 1053 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1054 const ARMCPRegInfo *ri, 1055 bool isread) 1056 { 1057 /* ER: event counter read trap control */ 1058 if (arm_feature(env, ARM_FEATURE_V8) 1059 && arm_current_el(env) == 0 1060 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1061 return CP_ACCESS_OK; 1062 } 1063 1064 return pmreg_access(env, ri, isread); 1065 } 1066 1067 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1068 const ARMCPRegInfo *ri, 1069 bool isread) 1070 { 1071 /* CR: cycle counter read trap control */ 1072 if (arm_feature(env, ARM_FEATURE_V8) 1073 && arm_current_el(env) == 0 1074 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1075 && isread) { 1076 return CP_ACCESS_OK; 1077 } 1078 1079 return pmreg_access(env, ri, isread); 1080 } 1081 1082 /* 1083 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1084 * We use these to decide whether we need to wrap a write to MDCR_EL2 1085 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1086 */ 1087 #define MDCR_EL2_PMU_ENABLE_BITS \ 1088 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1089 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1090 1091 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1092 * the current EL, security state, and register configuration. 1093 */ 1094 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1095 { 1096 uint64_t filter; 1097 bool e, p, u, nsk, nsu, nsh, m; 1098 bool enabled, prohibited = false, filtered; 1099 bool secure = arm_is_secure(env); 1100 int el = arm_current_el(env); 1101 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1102 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1103 1104 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1105 return false; 1106 } 1107 1108 if (!arm_feature(env, ARM_FEATURE_EL2) || 1109 (counter < hpmn || counter == 31)) { 1110 e = env->cp15.c9_pmcr & PMCRE; 1111 } else { 1112 e = mdcr_el2 & MDCR_HPME; 1113 } 1114 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1115 1116 /* Is event counting prohibited? */ 1117 if (el == 2 && (counter < hpmn || counter == 31)) { 1118 prohibited = mdcr_el2 & MDCR_HPMD; 1119 } 1120 if (secure) { 1121 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1122 } 1123 1124 if (counter == 31) { 1125 /* 1126 * The cycle counter defaults to running. PMCR.DP says "disable 1127 * the cycle counter when event counting is prohibited". 1128 * Some MDCR bits disable the cycle counter specifically. 1129 */ 1130 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1131 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1132 if (secure) { 1133 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1134 } 1135 if (el == 2) { 1136 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1137 } 1138 } 1139 } 1140 1141 if (counter == 31) { 1142 filter = env->cp15.pmccfiltr_el0; 1143 } else { 1144 filter = env->cp15.c14_pmevtyper[counter]; 1145 } 1146 1147 p = filter & PMXEVTYPER_P; 1148 u = filter & PMXEVTYPER_U; 1149 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1150 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1151 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1152 m = arm_el_is_aa64(env, 1) && 1153 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1154 1155 if (el == 0) { 1156 filtered = secure ? u : u != nsu; 1157 } else if (el == 1) { 1158 filtered = secure ? p : p != nsk; 1159 } else if (el == 2) { 1160 filtered = !nsh; 1161 } else { /* EL3 */ 1162 filtered = m != p; 1163 } 1164 1165 if (counter != 31) { 1166 /* 1167 * If not checking PMCCNTR, ensure the counter is setup to an event we 1168 * support 1169 */ 1170 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1171 if (!event_supported(event)) { 1172 return false; 1173 } 1174 } 1175 1176 return enabled && !prohibited && !filtered; 1177 } 1178 1179 static void pmu_update_irq(CPUARMState *env) 1180 { 1181 ARMCPU *cpu = env_archcpu(env); 1182 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1183 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1184 } 1185 1186 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1187 { 1188 /* 1189 * Return true if the clock divider is enabled and the cycle counter 1190 * is supposed to tick only once every 64 clock cycles. This is 1191 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1192 * (64-bit) cycle counter PMCR.D has no effect. 1193 */ 1194 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1195 } 1196 1197 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1198 { 1199 /* Return true if the specified event counter is configured to be 64 bit */ 1200 1201 /* This isn't intended to be used with the cycle counter */ 1202 assert(counter < 31); 1203 1204 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1205 return false; 1206 } 1207 1208 if (arm_feature(env, ARM_FEATURE_EL2)) { 1209 /* 1210 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1211 * current security state, so we don't use arm_mdcr_el2_eff() here. 1212 */ 1213 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1214 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1215 1216 if (hpmn != 0 && counter >= hpmn) { 1217 return hlp; 1218 } 1219 } 1220 return env->cp15.c9_pmcr & PMCRLP; 1221 } 1222 1223 /* 1224 * Ensure c15_ccnt is the guest-visible count so that operations such as 1225 * enabling/disabling the counter or filtering, modifying the count itself, 1226 * etc. can be done logically. This is essentially a no-op if the counter is 1227 * not enabled at the time of the call. 1228 */ 1229 static void pmccntr_op_start(CPUARMState *env) 1230 { 1231 uint64_t cycles = cycles_get_count(env); 1232 1233 if (pmu_counter_enabled(env, 31)) { 1234 uint64_t eff_cycles = cycles; 1235 if (pmccntr_clockdiv_enabled(env)) { 1236 eff_cycles /= 64; 1237 } 1238 1239 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1240 1241 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1242 1ull << 63 : 1ull << 31; 1243 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1244 env->cp15.c9_pmovsr |= (1ULL << 31); 1245 pmu_update_irq(env); 1246 } 1247 1248 env->cp15.c15_ccnt = new_pmccntr; 1249 } 1250 env->cp15.c15_ccnt_delta = cycles; 1251 } 1252 1253 /* 1254 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1255 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1256 * pmccntr_op_start. 1257 */ 1258 static void pmccntr_op_finish(CPUARMState *env) 1259 { 1260 if (pmu_counter_enabled(env, 31)) { 1261 #ifndef CONFIG_USER_ONLY 1262 /* Calculate when the counter will next overflow */ 1263 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1264 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1265 remaining_cycles = (uint32_t)remaining_cycles; 1266 } 1267 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1268 1269 if (overflow_in > 0) { 1270 int64_t overflow_at; 1271 1272 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1273 overflow_in, &overflow_at)) { 1274 ARMCPU *cpu = env_archcpu(env); 1275 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1276 } 1277 } 1278 #endif 1279 1280 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1281 if (pmccntr_clockdiv_enabled(env)) { 1282 prev_cycles /= 64; 1283 } 1284 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1285 } 1286 } 1287 1288 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1289 { 1290 1291 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1292 uint64_t count = 0; 1293 if (event_supported(event)) { 1294 uint16_t event_idx = supported_event_map[event]; 1295 count = pm_events[event_idx].get_count(env); 1296 } 1297 1298 if (pmu_counter_enabled(env, counter)) { 1299 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1300 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1301 1ULL << 63 : 1ULL << 31; 1302 1303 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1304 env->cp15.c9_pmovsr |= (1 << counter); 1305 pmu_update_irq(env); 1306 } 1307 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1308 } 1309 env->cp15.c14_pmevcntr_delta[counter] = count; 1310 } 1311 1312 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1313 { 1314 if (pmu_counter_enabled(env, counter)) { 1315 #ifndef CONFIG_USER_ONLY 1316 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1317 uint16_t event_idx = supported_event_map[event]; 1318 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1319 int64_t overflow_in; 1320 1321 if (!pmevcntr_is_64_bit(env, counter)) { 1322 delta = (uint32_t)delta; 1323 } 1324 overflow_in = pm_events[event_idx].ns_per_count(delta); 1325 1326 if (overflow_in > 0) { 1327 int64_t overflow_at; 1328 1329 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1330 overflow_in, &overflow_at)) { 1331 ARMCPU *cpu = env_archcpu(env); 1332 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1333 } 1334 } 1335 #endif 1336 1337 env->cp15.c14_pmevcntr_delta[counter] -= 1338 env->cp15.c14_pmevcntr[counter]; 1339 } 1340 } 1341 1342 void pmu_op_start(CPUARMState *env) 1343 { 1344 unsigned int i; 1345 pmccntr_op_start(env); 1346 for (i = 0; i < pmu_num_counters(env); i++) { 1347 pmevcntr_op_start(env, i); 1348 } 1349 } 1350 1351 void pmu_op_finish(CPUARMState *env) 1352 { 1353 unsigned int i; 1354 pmccntr_op_finish(env); 1355 for (i = 0; i < pmu_num_counters(env); i++) { 1356 pmevcntr_op_finish(env, i); 1357 } 1358 } 1359 1360 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1361 { 1362 pmu_op_start(&cpu->env); 1363 } 1364 1365 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1366 { 1367 pmu_op_finish(&cpu->env); 1368 } 1369 1370 void arm_pmu_timer_cb(void *opaque) 1371 { 1372 ARMCPU *cpu = opaque; 1373 1374 /* 1375 * Update all the counter values based on the current underlying counts, 1376 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1377 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1378 * counter may expire. 1379 */ 1380 pmu_op_start(&cpu->env); 1381 pmu_op_finish(&cpu->env); 1382 } 1383 1384 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1385 uint64_t value) 1386 { 1387 pmu_op_start(env); 1388 1389 if (value & PMCRC) { 1390 /* The counter has been reset */ 1391 env->cp15.c15_ccnt = 0; 1392 } 1393 1394 if (value & PMCRP) { 1395 unsigned int i; 1396 for (i = 0; i < pmu_num_counters(env); i++) { 1397 env->cp15.c14_pmevcntr[i] = 0; 1398 } 1399 } 1400 1401 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1402 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1403 1404 pmu_op_finish(env); 1405 } 1406 1407 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1408 uint64_t value) 1409 { 1410 unsigned int i; 1411 uint64_t overflow_mask, new_pmswinc; 1412 1413 for (i = 0; i < pmu_num_counters(env); i++) { 1414 /* Increment a counter's count iff: */ 1415 if ((value & (1 << i)) && /* counter's bit is set */ 1416 /* counter is enabled and not filtered */ 1417 pmu_counter_enabled(env, i) && 1418 /* counter is SW_INCR */ 1419 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1420 pmevcntr_op_start(env, i); 1421 1422 /* 1423 * Detect if this write causes an overflow since we can't predict 1424 * PMSWINC overflows like we can for other events 1425 */ 1426 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1427 1428 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1429 1ULL << 63 : 1ULL << 31; 1430 1431 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1432 env->cp15.c9_pmovsr |= (1 << i); 1433 pmu_update_irq(env); 1434 } 1435 1436 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1437 1438 pmevcntr_op_finish(env, i); 1439 } 1440 } 1441 } 1442 1443 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1444 { 1445 uint64_t ret; 1446 pmccntr_op_start(env); 1447 ret = env->cp15.c15_ccnt; 1448 pmccntr_op_finish(env); 1449 return ret; 1450 } 1451 1452 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1453 uint64_t value) 1454 { 1455 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1456 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1457 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1458 * accessed. 1459 */ 1460 env->cp15.c9_pmselr = value & 0x1f; 1461 } 1462 1463 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1464 uint64_t value) 1465 { 1466 pmccntr_op_start(env); 1467 env->cp15.c15_ccnt = value; 1468 pmccntr_op_finish(env); 1469 } 1470 1471 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1472 uint64_t value) 1473 { 1474 uint64_t cur_val = pmccntr_read(env, NULL); 1475 1476 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1477 } 1478 1479 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1480 uint64_t value) 1481 { 1482 pmccntr_op_start(env); 1483 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1484 pmccntr_op_finish(env); 1485 } 1486 1487 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1488 uint64_t value) 1489 { 1490 pmccntr_op_start(env); 1491 /* M is not accessible from AArch32 */ 1492 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1493 (value & PMCCFILTR); 1494 pmccntr_op_finish(env); 1495 } 1496 1497 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1498 { 1499 /* M is not visible in AArch32 */ 1500 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1501 } 1502 1503 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1504 uint64_t value) 1505 { 1506 pmu_op_start(env); 1507 value &= pmu_counter_mask(env); 1508 env->cp15.c9_pmcnten |= value; 1509 pmu_op_finish(env); 1510 } 1511 1512 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1513 uint64_t value) 1514 { 1515 pmu_op_start(env); 1516 value &= pmu_counter_mask(env); 1517 env->cp15.c9_pmcnten &= ~value; 1518 pmu_op_finish(env); 1519 } 1520 1521 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1522 uint64_t value) 1523 { 1524 value &= pmu_counter_mask(env); 1525 env->cp15.c9_pmovsr &= ~value; 1526 pmu_update_irq(env); 1527 } 1528 1529 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1530 uint64_t value) 1531 { 1532 value &= pmu_counter_mask(env); 1533 env->cp15.c9_pmovsr |= value; 1534 pmu_update_irq(env); 1535 } 1536 1537 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1538 uint64_t value, const uint8_t counter) 1539 { 1540 if (counter == 31) { 1541 pmccfiltr_write(env, ri, value); 1542 } else if (counter < pmu_num_counters(env)) { 1543 pmevcntr_op_start(env, counter); 1544 1545 /* 1546 * If this counter's event type is changing, store the current 1547 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1548 * pmevcntr_op_finish has the correct baseline when it converts back to 1549 * a delta. 1550 */ 1551 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1552 PMXEVTYPER_EVTCOUNT; 1553 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1554 if (old_event != new_event) { 1555 uint64_t count = 0; 1556 if (event_supported(new_event)) { 1557 uint16_t event_idx = supported_event_map[new_event]; 1558 count = pm_events[event_idx].get_count(env); 1559 } 1560 env->cp15.c14_pmevcntr_delta[counter] = count; 1561 } 1562 1563 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1564 pmevcntr_op_finish(env, counter); 1565 } 1566 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1567 * PMSELR value is equal to or greater than the number of implemented 1568 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1569 */ 1570 } 1571 1572 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1573 const uint8_t counter) 1574 { 1575 if (counter == 31) { 1576 return env->cp15.pmccfiltr_el0; 1577 } else if (counter < pmu_num_counters(env)) { 1578 return env->cp15.c14_pmevtyper[counter]; 1579 } else { 1580 /* 1581 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1582 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1583 */ 1584 return 0; 1585 } 1586 } 1587 1588 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1589 uint64_t value) 1590 { 1591 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1592 pmevtyper_write(env, ri, value, counter); 1593 } 1594 1595 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1596 uint64_t value) 1597 { 1598 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1599 env->cp15.c14_pmevtyper[counter] = value; 1600 1601 /* 1602 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1603 * pmu_op_finish calls when loading saved state for a migration. Because 1604 * we're potentially updating the type of event here, the value written to 1605 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1606 * different counter type. Therefore, we need to set this value to the 1607 * current count for the counter type we're writing so that pmu_op_finish 1608 * has the correct count for its calculation. 1609 */ 1610 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1611 if (event_supported(event)) { 1612 uint16_t event_idx = supported_event_map[event]; 1613 env->cp15.c14_pmevcntr_delta[counter] = 1614 pm_events[event_idx].get_count(env); 1615 } 1616 } 1617 1618 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1619 { 1620 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1621 return pmevtyper_read(env, ri, counter); 1622 } 1623 1624 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1625 uint64_t value) 1626 { 1627 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1628 } 1629 1630 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1631 { 1632 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1633 } 1634 1635 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value, uint8_t counter) 1637 { 1638 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1639 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1640 value &= MAKE_64BIT_MASK(0, 32); 1641 } 1642 if (counter < pmu_num_counters(env)) { 1643 pmevcntr_op_start(env, counter); 1644 env->cp15.c14_pmevcntr[counter] = value; 1645 pmevcntr_op_finish(env, counter); 1646 } 1647 /* 1648 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1649 * are CONSTRAINED UNPREDICTABLE. 1650 */ 1651 } 1652 1653 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1654 uint8_t counter) 1655 { 1656 if (counter < pmu_num_counters(env)) { 1657 uint64_t ret; 1658 pmevcntr_op_start(env, counter); 1659 ret = env->cp15.c14_pmevcntr[counter]; 1660 pmevcntr_op_finish(env, counter); 1661 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1662 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1663 ret &= MAKE_64BIT_MASK(0, 32); 1664 } 1665 return ret; 1666 } else { 1667 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1668 * are CONSTRAINED UNPREDICTABLE. */ 1669 return 0; 1670 } 1671 } 1672 1673 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1674 uint64_t value) 1675 { 1676 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1677 pmevcntr_write(env, ri, value, counter); 1678 } 1679 1680 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1681 { 1682 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1683 return pmevcntr_read(env, ri, counter); 1684 } 1685 1686 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1687 uint64_t value) 1688 { 1689 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1690 assert(counter < pmu_num_counters(env)); 1691 env->cp15.c14_pmevcntr[counter] = value; 1692 pmevcntr_write(env, ri, value, counter); 1693 } 1694 1695 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1696 { 1697 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1698 assert(counter < pmu_num_counters(env)); 1699 return env->cp15.c14_pmevcntr[counter]; 1700 } 1701 1702 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1703 uint64_t value) 1704 { 1705 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1706 } 1707 1708 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1709 { 1710 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1711 } 1712 1713 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1714 uint64_t value) 1715 { 1716 if (arm_feature(env, ARM_FEATURE_V8)) { 1717 env->cp15.c9_pmuserenr = value & 0xf; 1718 } else { 1719 env->cp15.c9_pmuserenr = value & 1; 1720 } 1721 } 1722 1723 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1724 uint64_t value) 1725 { 1726 /* We have no event counters so only the C bit can be changed */ 1727 value &= pmu_counter_mask(env); 1728 env->cp15.c9_pminten |= value; 1729 pmu_update_irq(env); 1730 } 1731 1732 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1733 uint64_t value) 1734 { 1735 value &= pmu_counter_mask(env); 1736 env->cp15.c9_pminten &= ~value; 1737 pmu_update_irq(env); 1738 } 1739 1740 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1741 uint64_t value) 1742 { 1743 /* Note that even though the AArch64 view of this register has bits 1744 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1745 * architectural requirements for bits which are RES0 only in some 1746 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1747 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1748 */ 1749 raw_write(env, ri, value & ~0x1FULL); 1750 } 1751 1752 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1753 { 1754 /* Begin with base v8.0 state. */ 1755 uint64_t valid_mask = 0x3fff; 1756 ARMCPU *cpu = env_archcpu(env); 1757 uint64_t changed; 1758 1759 /* 1760 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1761 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1762 * Instead, choose the format based on the mode of EL3. 1763 */ 1764 if (arm_el_is_aa64(env, 3)) { 1765 value |= SCR_FW | SCR_AW; /* RES1 */ 1766 valid_mask &= ~SCR_NET; /* RES0 */ 1767 1768 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1769 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1770 value |= SCR_RW; /* RAO/WI */ 1771 } 1772 if (cpu_isar_feature(aa64_ras, cpu)) { 1773 valid_mask |= SCR_TERR; 1774 } 1775 if (cpu_isar_feature(aa64_lor, cpu)) { 1776 valid_mask |= SCR_TLOR; 1777 } 1778 if (cpu_isar_feature(aa64_pauth, cpu)) { 1779 valid_mask |= SCR_API | SCR_APK; 1780 } 1781 if (cpu_isar_feature(aa64_sel2, cpu)) { 1782 valid_mask |= SCR_EEL2; 1783 } 1784 if (cpu_isar_feature(aa64_mte, cpu)) { 1785 valid_mask |= SCR_ATA; 1786 } 1787 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1788 valid_mask |= SCR_ENSCXT; 1789 } 1790 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1791 valid_mask |= SCR_EASE | SCR_NMEA; 1792 } 1793 if (cpu_isar_feature(aa64_sme, cpu)) { 1794 valid_mask |= SCR_ENTP2; 1795 } 1796 } else { 1797 valid_mask &= ~(SCR_RW | SCR_ST); 1798 if (cpu_isar_feature(aa32_ras, cpu)) { 1799 valid_mask |= SCR_TERR; 1800 } 1801 } 1802 1803 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1804 valid_mask &= ~SCR_HCE; 1805 1806 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1807 * supported if EL2 exists. The bit is UNK/SBZP when 1808 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1809 * when EL2 is unavailable. 1810 * On ARMv8, this bit is always available. 1811 */ 1812 if (arm_feature(env, ARM_FEATURE_V7) && 1813 !arm_feature(env, ARM_FEATURE_V8)) { 1814 valid_mask &= ~SCR_SMD; 1815 } 1816 } 1817 1818 /* Clear all-context RES0 bits. */ 1819 value &= valid_mask; 1820 changed = env->cp15.scr_el3 ^ value; 1821 env->cp15.scr_el3 = value; 1822 1823 /* 1824 * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then 1825 * we must invalidate all TLBs below EL3. 1826 */ 1827 if (changed & SCR_NS) { 1828 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1829 ARMMMUIdxBit_E20_0 | 1830 ARMMMUIdxBit_E10_1 | 1831 ARMMMUIdxBit_E20_2 | 1832 ARMMMUIdxBit_E10_1_PAN | 1833 ARMMMUIdxBit_E20_2_PAN | 1834 ARMMMUIdxBit_E2)); 1835 } 1836 } 1837 1838 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1839 { 1840 /* 1841 * scr_write will set the RES1 bits on an AArch64-only CPU. 1842 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1843 */ 1844 scr_write(env, ri, 0); 1845 } 1846 1847 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1848 const ARMCPRegInfo *ri, 1849 bool isread) 1850 { 1851 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1852 return CP_ACCESS_TRAP_EL2; 1853 } 1854 1855 return CP_ACCESS_OK; 1856 } 1857 1858 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1859 { 1860 ARMCPU *cpu = env_archcpu(env); 1861 1862 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1863 * bank 1864 */ 1865 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1866 ri->secure & ARM_CP_SECSTATE_S); 1867 1868 return cpu->ccsidr[index]; 1869 } 1870 1871 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1872 uint64_t value) 1873 { 1874 raw_write(env, ri, value & 0xf); 1875 } 1876 1877 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1878 { 1879 CPUState *cs = env_cpu(env); 1880 bool el1 = arm_current_el(env) == 1; 1881 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1882 uint64_t ret = 0; 1883 1884 if (hcr_el2 & HCR_IMO) { 1885 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1886 ret |= CPSR_I; 1887 } 1888 } else { 1889 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1890 ret |= CPSR_I; 1891 } 1892 } 1893 1894 if (hcr_el2 & HCR_FMO) { 1895 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1896 ret |= CPSR_F; 1897 } 1898 } else { 1899 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1900 ret |= CPSR_F; 1901 } 1902 } 1903 1904 if (hcr_el2 & HCR_AMO) { 1905 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1906 ret |= CPSR_A; 1907 } 1908 } 1909 1910 return ret; 1911 } 1912 1913 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1914 bool isread) 1915 { 1916 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1917 return CP_ACCESS_TRAP_EL2; 1918 } 1919 1920 return CP_ACCESS_OK; 1921 } 1922 1923 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1924 bool isread) 1925 { 1926 if (arm_feature(env, ARM_FEATURE_V8)) { 1927 return access_aa64_tid1(env, ri, isread); 1928 } 1929 1930 return CP_ACCESS_OK; 1931 } 1932 1933 static const ARMCPRegInfo v7_cp_reginfo[] = { 1934 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1935 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1936 .access = PL1_W, .type = ARM_CP_NOP }, 1937 /* Performance monitors are implementation defined in v7, 1938 * but with an ARM recommended set of registers, which we 1939 * follow. 1940 * 1941 * Performance registers fall into three categories: 1942 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1943 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1944 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1945 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1946 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1947 */ 1948 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1949 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 1950 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1951 .writefn = pmcntenset_write, 1952 .accessfn = pmreg_access, 1953 .raw_writefn = raw_write }, 1954 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 1955 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1956 .access = PL0_RW, .accessfn = pmreg_access, 1957 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1958 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1959 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1960 .access = PL0_RW, 1961 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1962 .accessfn = pmreg_access, 1963 .writefn = pmcntenclr_write, 1964 .type = ARM_CP_ALIAS | ARM_CP_IO }, 1965 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1966 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1967 .access = PL0_RW, .accessfn = pmreg_access, 1968 .type = ARM_CP_ALIAS | ARM_CP_IO, 1969 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1970 .writefn = pmcntenclr_write }, 1971 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1972 .access = PL0_RW, .type = ARM_CP_IO, 1973 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1974 .accessfn = pmreg_access, 1975 .writefn = pmovsr_write, 1976 .raw_writefn = raw_write }, 1977 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1978 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1979 .access = PL0_RW, .accessfn = pmreg_access, 1980 .type = ARM_CP_ALIAS | ARM_CP_IO, 1981 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1982 .writefn = pmovsr_write, 1983 .raw_writefn = raw_write }, 1984 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1985 .access = PL0_W, .accessfn = pmreg_access_swinc, 1986 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1987 .writefn = pmswinc_write }, 1988 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1989 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1990 .access = PL0_W, .accessfn = pmreg_access_swinc, 1991 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1992 .writefn = pmswinc_write }, 1993 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1994 .access = PL0_RW, .type = ARM_CP_ALIAS, 1995 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1996 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1997 .raw_writefn = raw_write}, 1998 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1999 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2000 .access = PL0_RW, .accessfn = pmreg_access_selr, 2001 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2002 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2003 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2004 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2005 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2006 .accessfn = pmreg_access_ccntr }, 2007 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2008 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2009 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2010 .type = ARM_CP_IO, 2011 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2012 .readfn = pmccntr_read, .writefn = pmccntr_write, 2013 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2014 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2015 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2016 .access = PL0_RW, .accessfn = pmreg_access, 2017 .type = ARM_CP_ALIAS | ARM_CP_IO, 2018 .resetvalue = 0, }, 2019 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2020 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2021 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2022 .access = PL0_RW, .accessfn = pmreg_access, 2023 .type = ARM_CP_IO, 2024 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2025 .resetvalue = 0, }, 2026 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2027 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2028 .accessfn = pmreg_access, 2029 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2030 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2031 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2032 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2033 .accessfn = pmreg_access, 2034 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2035 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2036 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2037 .accessfn = pmreg_access_xevcntr, 2038 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2039 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2040 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2041 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2042 .accessfn = pmreg_access_xevcntr, 2043 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2044 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2045 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2046 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2047 .resetvalue = 0, 2048 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2049 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2050 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2051 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2052 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2053 .resetvalue = 0, 2054 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2055 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2056 .access = PL1_RW, .accessfn = access_tpm, 2057 .type = ARM_CP_ALIAS | ARM_CP_IO, 2058 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2059 .resetvalue = 0, 2060 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2061 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2062 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2063 .access = PL1_RW, .accessfn = access_tpm, 2064 .type = ARM_CP_IO, 2065 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2066 .writefn = pmintenset_write, .raw_writefn = raw_write, 2067 .resetvalue = 0x0 }, 2068 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2069 .access = PL1_RW, .accessfn = access_tpm, 2070 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2071 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2072 .writefn = pmintenclr_write, }, 2073 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2074 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2075 .access = PL1_RW, .accessfn = access_tpm, 2076 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2077 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2078 .writefn = pmintenclr_write }, 2079 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2080 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2081 .access = PL1_R, 2082 .accessfn = access_aa64_tid2, 2083 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2084 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2085 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2086 .access = PL1_RW, 2087 .accessfn = access_aa64_tid2, 2088 .writefn = csselr_write, .resetvalue = 0, 2089 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2090 offsetof(CPUARMState, cp15.csselr_ns) } }, 2091 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2092 * just RAZ for all cores: 2093 */ 2094 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2095 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2096 .access = PL1_R, .type = ARM_CP_CONST, 2097 .accessfn = access_aa64_tid1, 2098 .resetvalue = 0 }, 2099 /* Auxiliary fault status registers: these also are IMPDEF, and we 2100 * choose to RAZ/WI for all cores. 2101 */ 2102 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2103 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2104 .access = PL1_RW, .accessfn = access_tvm_trvm, 2105 .type = ARM_CP_CONST, .resetvalue = 0 }, 2106 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2107 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2108 .access = PL1_RW, .accessfn = access_tvm_trvm, 2109 .type = ARM_CP_CONST, .resetvalue = 0 }, 2110 /* MAIR can just read-as-written because we don't implement caches 2111 * and so don't need to care about memory attributes. 2112 */ 2113 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2114 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2115 .access = PL1_RW, .accessfn = access_tvm_trvm, 2116 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2117 .resetvalue = 0 }, 2118 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2119 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2120 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2121 .resetvalue = 0 }, 2122 /* For non-long-descriptor page tables these are PRRR and NMRR; 2123 * regardless they still act as reads-as-written for QEMU. 2124 */ 2125 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2126 * allows them to assign the correct fieldoffset based on the endianness 2127 * handled in the field definitions. 2128 */ 2129 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2130 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2131 .access = PL1_RW, .accessfn = access_tvm_trvm, 2132 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2133 offsetof(CPUARMState, cp15.mair0_ns) }, 2134 .resetfn = arm_cp_reset_ignore }, 2135 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2136 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2137 .access = PL1_RW, .accessfn = access_tvm_trvm, 2138 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2139 offsetof(CPUARMState, cp15.mair1_ns) }, 2140 .resetfn = arm_cp_reset_ignore }, 2141 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2142 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2143 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2144 /* 32 bit ITLB invalidates */ 2145 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2146 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2147 .writefn = tlbiall_write }, 2148 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2149 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2150 .writefn = tlbimva_write }, 2151 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2152 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2153 .writefn = tlbiasid_write }, 2154 /* 32 bit DTLB invalidates */ 2155 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2156 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2157 .writefn = tlbiall_write }, 2158 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2159 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2160 .writefn = tlbimva_write }, 2161 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2162 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2163 .writefn = tlbiasid_write }, 2164 /* 32 bit TLB invalidates */ 2165 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2166 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2167 .writefn = tlbiall_write }, 2168 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2169 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2170 .writefn = tlbimva_write }, 2171 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2172 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2173 .writefn = tlbiasid_write }, 2174 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2175 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2176 .writefn = tlbimvaa_write }, 2177 }; 2178 2179 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2180 /* 32 bit TLB invalidates, Inner Shareable */ 2181 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2182 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2183 .writefn = tlbiall_is_write }, 2184 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2185 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2186 .writefn = tlbimva_is_write }, 2187 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2188 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2189 .writefn = tlbiasid_is_write }, 2190 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2191 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2192 .writefn = tlbimvaa_is_write }, 2193 }; 2194 2195 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2196 /* PMOVSSET is not implemented in v7 before v7ve */ 2197 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2198 .access = PL0_RW, .accessfn = pmreg_access, 2199 .type = ARM_CP_ALIAS | ARM_CP_IO, 2200 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2201 .writefn = pmovsset_write, 2202 .raw_writefn = raw_write }, 2203 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2204 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2205 .access = PL0_RW, .accessfn = pmreg_access, 2206 .type = ARM_CP_ALIAS | ARM_CP_IO, 2207 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2208 .writefn = pmovsset_write, 2209 .raw_writefn = raw_write }, 2210 }; 2211 2212 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2213 uint64_t value) 2214 { 2215 value &= 1; 2216 env->teecr = value; 2217 } 2218 2219 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2220 bool isread) 2221 { 2222 /* 2223 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2224 * at all, so we don't need to check whether we're v8A. 2225 */ 2226 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2227 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2228 return CP_ACCESS_TRAP_EL2; 2229 } 2230 return CP_ACCESS_OK; 2231 } 2232 2233 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2234 bool isread) 2235 { 2236 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2237 return CP_ACCESS_TRAP; 2238 } 2239 return teecr_access(env, ri, isread); 2240 } 2241 2242 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2243 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2244 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2245 .resetvalue = 0, 2246 .writefn = teecr_write, .accessfn = teecr_access }, 2247 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2248 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2249 .accessfn = teehbr_access, .resetvalue = 0 }, 2250 }; 2251 2252 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2253 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2254 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2255 .access = PL0_RW, 2256 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2257 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2258 .access = PL0_RW, 2259 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2260 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2261 .resetfn = arm_cp_reset_ignore }, 2262 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2263 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2264 .access = PL0_R|PL1_W, 2265 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2266 .resetvalue = 0}, 2267 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2268 .access = PL0_R|PL1_W, 2269 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2270 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2271 .resetfn = arm_cp_reset_ignore }, 2272 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2273 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2274 .access = PL1_RW, 2275 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2276 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2277 .access = PL1_RW, 2278 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2279 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2280 .resetvalue = 0 }, 2281 }; 2282 2283 #ifndef CONFIG_USER_ONLY 2284 2285 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2286 bool isread) 2287 { 2288 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2289 * Writable only at the highest implemented exception level. 2290 */ 2291 int el = arm_current_el(env); 2292 uint64_t hcr; 2293 uint32_t cntkctl; 2294 2295 switch (el) { 2296 case 0: 2297 hcr = arm_hcr_el2_eff(env); 2298 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2299 cntkctl = env->cp15.cnthctl_el2; 2300 } else { 2301 cntkctl = env->cp15.c14_cntkctl; 2302 } 2303 if (!extract32(cntkctl, 0, 2)) { 2304 return CP_ACCESS_TRAP; 2305 } 2306 break; 2307 case 1: 2308 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2309 arm_is_secure_below_el3(env)) { 2310 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2311 return CP_ACCESS_TRAP_UNCATEGORIZED; 2312 } 2313 break; 2314 case 2: 2315 case 3: 2316 break; 2317 } 2318 2319 if (!isread && el < arm_highest_el(env)) { 2320 return CP_ACCESS_TRAP_UNCATEGORIZED; 2321 } 2322 2323 return CP_ACCESS_OK; 2324 } 2325 2326 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2327 bool isread) 2328 { 2329 unsigned int cur_el = arm_current_el(env); 2330 bool has_el2 = arm_is_el2_enabled(env); 2331 uint64_t hcr = arm_hcr_el2_eff(env); 2332 2333 switch (cur_el) { 2334 case 0: 2335 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2336 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2337 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2338 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2339 } 2340 2341 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2342 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2343 return CP_ACCESS_TRAP; 2344 } 2345 2346 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2347 if (hcr & HCR_E2H) { 2348 if (timeridx == GTIMER_PHYS && 2349 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2350 return CP_ACCESS_TRAP_EL2; 2351 } 2352 } else { 2353 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2354 if (has_el2 && timeridx == GTIMER_PHYS && 2355 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2356 return CP_ACCESS_TRAP_EL2; 2357 } 2358 } 2359 break; 2360 2361 case 1: 2362 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2363 if (has_el2 && timeridx == GTIMER_PHYS && 2364 (hcr & HCR_E2H 2365 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2366 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2367 return CP_ACCESS_TRAP_EL2; 2368 } 2369 break; 2370 } 2371 return CP_ACCESS_OK; 2372 } 2373 2374 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2375 bool isread) 2376 { 2377 unsigned int cur_el = arm_current_el(env); 2378 bool has_el2 = arm_is_el2_enabled(env); 2379 uint64_t hcr = arm_hcr_el2_eff(env); 2380 2381 switch (cur_el) { 2382 case 0: 2383 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2384 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2385 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2386 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2387 } 2388 2389 /* 2390 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2391 * EL0 if EL0[PV]TEN is zero. 2392 */ 2393 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2394 return CP_ACCESS_TRAP; 2395 } 2396 /* fall through */ 2397 2398 case 1: 2399 if (has_el2 && timeridx == GTIMER_PHYS) { 2400 if (hcr & HCR_E2H) { 2401 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2402 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2403 return CP_ACCESS_TRAP_EL2; 2404 } 2405 } else { 2406 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2407 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2408 return CP_ACCESS_TRAP_EL2; 2409 } 2410 } 2411 } 2412 break; 2413 } 2414 return CP_ACCESS_OK; 2415 } 2416 2417 static CPAccessResult gt_pct_access(CPUARMState *env, 2418 const ARMCPRegInfo *ri, 2419 bool isread) 2420 { 2421 return gt_counter_access(env, GTIMER_PHYS, isread); 2422 } 2423 2424 static CPAccessResult gt_vct_access(CPUARMState *env, 2425 const ARMCPRegInfo *ri, 2426 bool isread) 2427 { 2428 return gt_counter_access(env, GTIMER_VIRT, isread); 2429 } 2430 2431 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2432 bool isread) 2433 { 2434 return gt_timer_access(env, GTIMER_PHYS, isread); 2435 } 2436 2437 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2438 bool isread) 2439 { 2440 return gt_timer_access(env, GTIMER_VIRT, isread); 2441 } 2442 2443 static CPAccessResult gt_stimer_access(CPUARMState *env, 2444 const ARMCPRegInfo *ri, 2445 bool isread) 2446 { 2447 /* The AArch64 register view of the secure physical timer is 2448 * always accessible from EL3, and configurably accessible from 2449 * Secure EL1. 2450 */ 2451 switch (arm_current_el(env)) { 2452 case 1: 2453 if (!arm_is_secure(env)) { 2454 return CP_ACCESS_TRAP; 2455 } 2456 if (!(env->cp15.scr_el3 & SCR_ST)) { 2457 return CP_ACCESS_TRAP_EL3; 2458 } 2459 return CP_ACCESS_OK; 2460 case 0: 2461 case 2: 2462 return CP_ACCESS_TRAP; 2463 case 3: 2464 return CP_ACCESS_OK; 2465 default: 2466 g_assert_not_reached(); 2467 } 2468 } 2469 2470 static uint64_t gt_get_countervalue(CPUARMState *env) 2471 { 2472 ARMCPU *cpu = env_archcpu(env); 2473 2474 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2475 } 2476 2477 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2478 { 2479 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2480 2481 if (gt->ctl & 1) { 2482 /* Timer enabled: calculate and set current ISTATUS, irq, and 2483 * reset timer to when ISTATUS next has to change 2484 */ 2485 uint64_t offset = timeridx == GTIMER_VIRT ? 2486 cpu->env.cp15.cntvoff_el2 : 0; 2487 uint64_t count = gt_get_countervalue(&cpu->env); 2488 /* Note that this must be unsigned 64 bit arithmetic: */ 2489 int istatus = count - offset >= gt->cval; 2490 uint64_t nexttick; 2491 int irqstate; 2492 2493 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2494 2495 irqstate = (istatus && !(gt->ctl & 2)); 2496 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2497 2498 if (istatus) { 2499 /* Next transition is when count rolls back over to zero */ 2500 nexttick = UINT64_MAX; 2501 } else { 2502 /* Next transition is when we hit cval */ 2503 nexttick = gt->cval + offset; 2504 } 2505 /* Note that the desired next expiry time might be beyond the 2506 * signed-64-bit range of a QEMUTimer -- in this case we just 2507 * set the timer for as far in the future as possible. When the 2508 * timer expires we will reset the timer for any remaining period. 2509 */ 2510 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2511 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2512 } else { 2513 timer_mod(cpu->gt_timer[timeridx], nexttick); 2514 } 2515 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2516 } else { 2517 /* Timer disabled: ISTATUS and timer output always clear */ 2518 gt->ctl &= ~4; 2519 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2520 timer_del(cpu->gt_timer[timeridx]); 2521 trace_arm_gt_recalc_disabled(timeridx); 2522 } 2523 } 2524 2525 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2526 int timeridx) 2527 { 2528 ARMCPU *cpu = env_archcpu(env); 2529 2530 timer_del(cpu->gt_timer[timeridx]); 2531 } 2532 2533 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2534 { 2535 return gt_get_countervalue(env); 2536 } 2537 2538 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2539 { 2540 uint64_t hcr; 2541 2542 switch (arm_current_el(env)) { 2543 case 2: 2544 hcr = arm_hcr_el2_eff(env); 2545 if (hcr & HCR_E2H) { 2546 return 0; 2547 } 2548 break; 2549 case 0: 2550 hcr = arm_hcr_el2_eff(env); 2551 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2552 return 0; 2553 } 2554 break; 2555 } 2556 2557 return env->cp15.cntvoff_el2; 2558 } 2559 2560 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2561 { 2562 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2563 } 2564 2565 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2566 int timeridx, 2567 uint64_t value) 2568 { 2569 trace_arm_gt_cval_write(timeridx, value); 2570 env->cp15.c14_timer[timeridx].cval = value; 2571 gt_recalc_timer(env_archcpu(env), timeridx); 2572 } 2573 2574 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2575 int timeridx) 2576 { 2577 uint64_t offset = 0; 2578 2579 switch (timeridx) { 2580 case GTIMER_VIRT: 2581 case GTIMER_HYPVIRT: 2582 offset = gt_virt_cnt_offset(env); 2583 break; 2584 } 2585 2586 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2587 (gt_get_countervalue(env) - offset)); 2588 } 2589 2590 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2591 int timeridx, 2592 uint64_t value) 2593 { 2594 uint64_t offset = 0; 2595 2596 switch (timeridx) { 2597 case GTIMER_VIRT: 2598 case GTIMER_HYPVIRT: 2599 offset = gt_virt_cnt_offset(env); 2600 break; 2601 } 2602 2603 trace_arm_gt_tval_write(timeridx, value); 2604 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2605 sextract64(value, 0, 32); 2606 gt_recalc_timer(env_archcpu(env), timeridx); 2607 } 2608 2609 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2610 int timeridx, 2611 uint64_t value) 2612 { 2613 ARMCPU *cpu = env_archcpu(env); 2614 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2615 2616 trace_arm_gt_ctl_write(timeridx, value); 2617 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2618 if ((oldval ^ value) & 1) { 2619 /* Enable toggled */ 2620 gt_recalc_timer(cpu, timeridx); 2621 } else if ((oldval ^ value) & 2) { 2622 /* IMASK toggled: don't need to recalculate, 2623 * just set the interrupt line based on ISTATUS 2624 */ 2625 int irqstate = (oldval & 4) && !(value & 2); 2626 2627 trace_arm_gt_imask_toggle(timeridx, irqstate); 2628 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2629 } 2630 } 2631 2632 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2633 { 2634 gt_timer_reset(env, ri, GTIMER_PHYS); 2635 } 2636 2637 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2638 uint64_t value) 2639 { 2640 gt_cval_write(env, ri, GTIMER_PHYS, value); 2641 } 2642 2643 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2644 { 2645 return gt_tval_read(env, ri, GTIMER_PHYS); 2646 } 2647 2648 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2649 uint64_t value) 2650 { 2651 gt_tval_write(env, ri, GTIMER_PHYS, value); 2652 } 2653 2654 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2655 uint64_t value) 2656 { 2657 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2658 } 2659 2660 static int gt_phys_redir_timeridx(CPUARMState *env) 2661 { 2662 switch (arm_mmu_idx(env)) { 2663 case ARMMMUIdx_E20_0: 2664 case ARMMMUIdx_E20_2: 2665 case ARMMMUIdx_E20_2_PAN: 2666 return GTIMER_HYP; 2667 default: 2668 return GTIMER_PHYS; 2669 } 2670 } 2671 2672 static int gt_virt_redir_timeridx(CPUARMState *env) 2673 { 2674 switch (arm_mmu_idx(env)) { 2675 case ARMMMUIdx_E20_0: 2676 case ARMMMUIdx_E20_2: 2677 case ARMMMUIdx_E20_2_PAN: 2678 return GTIMER_HYPVIRT; 2679 default: 2680 return GTIMER_VIRT; 2681 } 2682 } 2683 2684 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2685 const ARMCPRegInfo *ri) 2686 { 2687 int timeridx = gt_phys_redir_timeridx(env); 2688 return env->cp15.c14_timer[timeridx].cval; 2689 } 2690 2691 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2692 uint64_t value) 2693 { 2694 int timeridx = gt_phys_redir_timeridx(env); 2695 gt_cval_write(env, ri, timeridx, value); 2696 } 2697 2698 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2699 const ARMCPRegInfo *ri) 2700 { 2701 int timeridx = gt_phys_redir_timeridx(env); 2702 return gt_tval_read(env, ri, timeridx); 2703 } 2704 2705 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2706 uint64_t value) 2707 { 2708 int timeridx = gt_phys_redir_timeridx(env); 2709 gt_tval_write(env, ri, timeridx, value); 2710 } 2711 2712 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2713 const ARMCPRegInfo *ri) 2714 { 2715 int timeridx = gt_phys_redir_timeridx(env); 2716 return env->cp15.c14_timer[timeridx].ctl; 2717 } 2718 2719 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2720 uint64_t value) 2721 { 2722 int timeridx = gt_phys_redir_timeridx(env); 2723 gt_ctl_write(env, ri, timeridx, value); 2724 } 2725 2726 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2727 { 2728 gt_timer_reset(env, ri, GTIMER_VIRT); 2729 } 2730 2731 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2732 uint64_t value) 2733 { 2734 gt_cval_write(env, ri, GTIMER_VIRT, value); 2735 } 2736 2737 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2738 { 2739 return gt_tval_read(env, ri, GTIMER_VIRT); 2740 } 2741 2742 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2743 uint64_t value) 2744 { 2745 gt_tval_write(env, ri, GTIMER_VIRT, value); 2746 } 2747 2748 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2749 uint64_t value) 2750 { 2751 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2752 } 2753 2754 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2755 uint64_t value) 2756 { 2757 ARMCPU *cpu = env_archcpu(env); 2758 2759 trace_arm_gt_cntvoff_write(value); 2760 raw_write(env, ri, value); 2761 gt_recalc_timer(cpu, GTIMER_VIRT); 2762 } 2763 2764 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2765 const ARMCPRegInfo *ri) 2766 { 2767 int timeridx = gt_virt_redir_timeridx(env); 2768 return env->cp15.c14_timer[timeridx].cval; 2769 } 2770 2771 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2772 uint64_t value) 2773 { 2774 int timeridx = gt_virt_redir_timeridx(env); 2775 gt_cval_write(env, ri, timeridx, value); 2776 } 2777 2778 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2779 const ARMCPRegInfo *ri) 2780 { 2781 int timeridx = gt_virt_redir_timeridx(env); 2782 return gt_tval_read(env, ri, timeridx); 2783 } 2784 2785 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2786 uint64_t value) 2787 { 2788 int timeridx = gt_virt_redir_timeridx(env); 2789 gt_tval_write(env, ri, timeridx, value); 2790 } 2791 2792 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2793 const ARMCPRegInfo *ri) 2794 { 2795 int timeridx = gt_virt_redir_timeridx(env); 2796 return env->cp15.c14_timer[timeridx].ctl; 2797 } 2798 2799 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2800 uint64_t value) 2801 { 2802 int timeridx = gt_virt_redir_timeridx(env); 2803 gt_ctl_write(env, ri, timeridx, value); 2804 } 2805 2806 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2807 { 2808 gt_timer_reset(env, ri, GTIMER_HYP); 2809 } 2810 2811 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2812 uint64_t value) 2813 { 2814 gt_cval_write(env, ri, GTIMER_HYP, value); 2815 } 2816 2817 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2818 { 2819 return gt_tval_read(env, ri, GTIMER_HYP); 2820 } 2821 2822 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2823 uint64_t value) 2824 { 2825 gt_tval_write(env, ri, GTIMER_HYP, value); 2826 } 2827 2828 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2829 uint64_t value) 2830 { 2831 gt_ctl_write(env, ri, GTIMER_HYP, value); 2832 } 2833 2834 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2835 { 2836 gt_timer_reset(env, ri, GTIMER_SEC); 2837 } 2838 2839 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2840 uint64_t value) 2841 { 2842 gt_cval_write(env, ri, GTIMER_SEC, value); 2843 } 2844 2845 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2846 { 2847 return gt_tval_read(env, ri, GTIMER_SEC); 2848 } 2849 2850 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2851 uint64_t value) 2852 { 2853 gt_tval_write(env, ri, GTIMER_SEC, value); 2854 } 2855 2856 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2857 uint64_t value) 2858 { 2859 gt_ctl_write(env, ri, GTIMER_SEC, value); 2860 } 2861 2862 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2863 { 2864 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2865 } 2866 2867 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2868 uint64_t value) 2869 { 2870 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2871 } 2872 2873 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2874 { 2875 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2876 } 2877 2878 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2879 uint64_t value) 2880 { 2881 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2882 } 2883 2884 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2885 uint64_t value) 2886 { 2887 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2888 } 2889 2890 void arm_gt_ptimer_cb(void *opaque) 2891 { 2892 ARMCPU *cpu = opaque; 2893 2894 gt_recalc_timer(cpu, GTIMER_PHYS); 2895 } 2896 2897 void arm_gt_vtimer_cb(void *opaque) 2898 { 2899 ARMCPU *cpu = opaque; 2900 2901 gt_recalc_timer(cpu, GTIMER_VIRT); 2902 } 2903 2904 void arm_gt_htimer_cb(void *opaque) 2905 { 2906 ARMCPU *cpu = opaque; 2907 2908 gt_recalc_timer(cpu, GTIMER_HYP); 2909 } 2910 2911 void arm_gt_stimer_cb(void *opaque) 2912 { 2913 ARMCPU *cpu = opaque; 2914 2915 gt_recalc_timer(cpu, GTIMER_SEC); 2916 } 2917 2918 void arm_gt_hvtimer_cb(void *opaque) 2919 { 2920 ARMCPU *cpu = opaque; 2921 2922 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2923 } 2924 2925 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2926 { 2927 ARMCPU *cpu = env_archcpu(env); 2928 2929 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2930 } 2931 2932 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2933 /* Note that CNTFRQ is purely reads-as-written for the benefit 2934 * of software; writing it doesn't actually change the timer frequency. 2935 * Our reset value matches the fixed frequency we implement the timer at. 2936 */ 2937 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2938 .type = ARM_CP_ALIAS, 2939 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2940 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2941 }, 2942 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2943 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2944 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2945 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2946 .resetfn = arm_gt_cntfrq_reset, 2947 }, 2948 /* overall control: mostly access permissions */ 2949 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2950 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2951 .access = PL1_RW, 2952 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2953 .resetvalue = 0, 2954 }, 2955 /* per-timer control */ 2956 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2957 .secure = ARM_CP_SECSTATE_NS, 2958 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2959 .accessfn = gt_ptimer_access, 2960 .fieldoffset = offsetoflow32(CPUARMState, 2961 cp15.c14_timer[GTIMER_PHYS].ctl), 2962 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2963 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2964 }, 2965 { .name = "CNTP_CTL_S", 2966 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2967 .secure = ARM_CP_SECSTATE_S, 2968 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2969 .accessfn = gt_ptimer_access, 2970 .fieldoffset = offsetoflow32(CPUARMState, 2971 cp15.c14_timer[GTIMER_SEC].ctl), 2972 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2973 }, 2974 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2975 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2976 .type = ARM_CP_IO, .access = PL0_RW, 2977 .accessfn = gt_ptimer_access, 2978 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2979 .resetvalue = 0, 2980 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2981 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2982 }, 2983 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2984 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2985 .accessfn = gt_vtimer_access, 2986 .fieldoffset = offsetoflow32(CPUARMState, 2987 cp15.c14_timer[GTIMER_VIRT].ctl), 2988 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2989 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2990 }, 2991 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2992 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2993 .type = ARM_CP_IO, .access = PL0_RW, 2994 .accessfn = gt_vtimer_access, 2995 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2996 .resetvalue = 0, 2997 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2998 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2999 }, 3000 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3001 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3002 .secure = ARM_CP_SECSTATE_NS, 3003 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3004 .accessfn = gt_ptimer_access, 3005 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3006 }, 3007 { .name = "CNTP_TVAL_S", 3008 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3009 .secure = ARM_CP_SECSTATE_S, 3010 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3011 .accessfn = gt_ptimer_access, 3012 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3013 }, 3014 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3015 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3016 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3017 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3018 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3019 }, 3020 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3021 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3022 .accessfn = gt_vtimer_access, 3023 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3024 }, 3025 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3026 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3027 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3028 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3029 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3030 }, 3031 /* The counter itself */ 3032 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3033 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3034 .accessfn = gt_pct_access, 3035 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3036 }, 3037 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3038 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3039 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3040 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3041 }, 3042 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3043 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3044 .accessfn = gt_vct_access, 3045 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3046 }, 3047 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3048 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3049 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3050 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3051 }, 3052 /* Comparison value, indicating when the timer goes off */ 3053 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3054 .secure = ARM_CP_SECSTATE_NS, 3055 .access = PL0_RW, 3056 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3057 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3058 .accessfn = gt_ptimer_access, 3059 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3060 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3061 }, 3062 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3063 .secure = ARM_CP_SECSTATE_S, 3064 .access = PL0_RW, 3065 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3066 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3067 .accessfn = gt_ptimer_access, 3068 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3069 }, 3070 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3071 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3072 .access = PL0_RW, 3073 .type = ARM_CP_IO, 3074 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3075 .resetvalue = 0, .accessfn = gt_ptimer_access, 3076 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3077 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3078 }, 3079 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3080 .access = PL0_RW, 3081 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3082 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3083 .accessfn = gt_vtimer_access, 3084 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3085 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3086 }, 3087 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3088 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3089 .access = PL0_RW, 3090 .type = ARM_CP_IO, 3091 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3092 .resetvalue = 0, .accessfn = gt_vtimer_access, 3093 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3094 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3095 }, 3096 /* Secure timer -- this is actually restricted to only EL3 3097 * and configurably Secure-EL1 via the accessfn. 3098 */ 3099 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3100 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3101 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3102 .accessfn = gt_stimer_access, 3103 .readfn = gt_sec_tval_read, 3104 .writefn = gt_sec_tval_write, 3105 .resetfn = gt_sec_timer_reset, 3106 }, 3107 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3108 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3109 .type = ARM_CP_IO, .access = PL1_RW, 3110 .accessfn = gt_stimer_access, 3111 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3112 .resetvalue = 0, 3113 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3114 }, 3115 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3116 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3117 .type = ARM_CP_IO, .access = PL1_RW, 3118 .accessfn = gt_stimer_access, 3119 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3120 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3121 }, 3122 }; 3123 3124 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3125 bool isread) 3126 { 3127 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3128 return CP_ACCESS_TRAP; 3129 } 3130 return CP_ACCESS_OK; 3131 } 3132 3133 #else 3134 3135 /* In user-mode most of the generic timer registers are inaccessible 3136 * however modern kernels (4.12+) allow access to cntvct_el0 3137 */ 3138 3139 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3140 { 3141 ARMCPU *cpu = env_archcpu(env); 3142 3143 /* Currently we have no support for QEMUTimer in linux-user so we 3144 * can't call gt_get_countervalue(env), instead we directly 3145 * call the lower level functions. 3146 */ 3147 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3148 } 3149 3150 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3151 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3152 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3153 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3154 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3155 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3156 }, 3157 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3158 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3159 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3160 .readfn = gt_virt_cnt_read, 3161 }, 3162 }; 3163 3164 #endif 3165 3166 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3167 { 3168 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3169 raw_write(env, ri, value); 3170 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3171 raw_write(env, ri, value & 0xfffff6ff); 3172 } else { 3173 raw_write(env, ri, value & 0xfffff1ff); 3174 } 3175 } 3176 3177 #ifndef CONFIG_USER_ONLY 3178 /* get_phys_addr() isn't present for user-mode-only targets */ 3179 3180 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3181 bool isread) 3182 { 3183 if (ri->opc2 & 4) { 3184 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3185 * Secure EL1 (which can only happen if EL3 is AArch64). 3186 * They are simply UNDEF if executed from NS EL1. 3187 * They function normally from EL2 or EL3. 3188 */ 3189 if (arm_current_el(env) == 1) { 3190 if (arm_is_secure_below_el3(env)) { 3191 if (env->cp15.scr_el3 & SCR_EEL2) { 3192 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3193 } 3194 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3195 } 3196 return CP_ACCESS_TRAP_UNCATEGORIZED; 3197 } 3198 } 3199 return CP_ACCESS_OK; 3200 } 3201 3202 #ifdef CONFIG_TCG 3203 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3204 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3205 bool is_secure) 3206 { 3207 bool ret; 3208 uint64_t par64; 3209 bool format64 = false; 3210 ARMMMUFaultInfo fi = {}; 3211 GetPhysAddrResult res = {}; 3212 3213 ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx, 3214 is_secure, &res, &fi); 3215 3216 /* 3217 * ATS operations only do S1 or S1+S2 translations, so we never 3218 * have to deal with the ARMCacheAttrs format for S2 only. 3219 */ 3220 assert(!res.cacheattrs.is_s2_format); 3221 3222 if (ret) { 3223 /* 3224 * Some kinds of translation fault must cause exceptions rather 3225 * than being reported in the PAR. 3226 */ 3227 int current_el = arm_current_el(env); 3228 int target_el; 3229 uint32_t syn, fsr, fsc; 3230 bool take_exc = false; 3231 3232 if (fi.s1ptw && current_el == 1 3233 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3234 /* 3235 * Synchronous stage 2 fault on an access made as part of the 3236 * translation table walk for AT S1E0* or AT S1E1* insn 3237 * executed from NS EL1. If this is a synchronous external abort 3238 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3239 * to EL3. Otherwise the fault is taken as an exception to EL2, 3240 * and HPFAR_EL2 holds the faulting IPA. 3241 */ 3242 if (fi.type == ARMFault_SyncExternalOnWalk && 3243 (env->cp15.scr_el3 & SCR_EA)) { 3244 target_el = 3; 3245 } else { 3246 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3247 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3248 env->cp15.hpfar_el2 |= HPFAR_NS; 3249 } 3250 target_el = 2; 3251 } 3252 take_exc = true; 3253 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3254 /* 3255 * Synchronous external aborts during a translation table walk 3256 * are taken as Data Abort exceptions. 3257 */ 3258 if (fi.stage2) { 3259 if (current_el == 3) { 3260 target_el = 3; 3261 } else { 3262 target_el = 2; 3263 } 3264 } else { 3265 target_el = exception_target_el(env); 3266 } 3267 take_exc = true; 3268 } 3269 3270 if (take_exc) { 3271 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3272 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3273 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3274 fsr = arm_fi_to_lfsc(&fi); 3275 fsc = extract32(fsr, 0, 6); 3276 } else { 3277 fsr = arm_fi_to_sfsc(&fi); 3278 fsc = 0x3f; 3279 } 3280 /* 3281 * Report exception with ESR indicating a fault due to a 3282 * translation table walk for a cache maintenance instruction. 3283 */ 3284 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3285 fi.ea, 1, fi.s1ptw, 1, fsc); 3286 env->exception.vaddress = value; 3287 env->exception.fsr = fsr; 3288 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3289 } 3290 } 3291 3292 if (is_a64(env)) { 3293 format64 = true; 3294 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3295 /* 3296 * ATS1Cxx: 3297 * * TTBCR.EAE determines whether the result is returned using the 3298 * 32-bit or the 64-bit PAR format 3299 * * Instructions executed in Hyp mode always use the 64bit format 3300 * 3301 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3302 * * The Non-secure TTBCR.EAE bit is set to 1 3303 * * The implementation includes EL2, and the value of HCR.VM is 1 3304 * 3305 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3306 * 3307 * ATS1Hx always uses the 64bit format. 3308 */ 3309 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3310 3311 if (arm_feature(env, ARM_FEATURE_EL2)) { 3312 if (mmu_idx == ARMMMUIdx_E10_0 || 3313 mmu_idx == ARMMMUIdx_E10_1 || 3314 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3315 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3316 } else { 3317 format64 |= arm_current_el(env) == 2; 3318 } 3319 } 3320 } 3321 3322 if (format64) { 3323 /* Create a 64-bit PAR */ 3324 par64 = (1 << 11); /* LPAE bit always set */ 3325 if (!ret) { 3326 par64 |= res.f.phys_addr & ~0xfffULL; 3327 if (!res.f.attrs.secure) { 3328 par64 |= (1 << 9); /* NS */ 3329 } 3330 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3331 par64 |= res.cacheattrs.shareability << 7; /* SH */ 3332 } else { 3333 uint32_t fsr = arm_fi_to_lfsc(&fi); 3334 3335 par64 |= 1; /* F */ 3336 par64 |= (fsr & 0x3f) << 1; /* FS */ 3337 if (fi.stage2) { 3338 par64 |= (1 << 9); /* S */ 3339 } 3340 if (fi.s1ptw) { 3341 par64 |= (1 << 8); /* PTW */ 3342 } 3343 } 3344 } else { 3345 /* fsr is a DFSR/IFSR value for the short descriptor 3346 * translation table format (with WnR always clear). 3347 * Convert it to a 32-bit PAR. 3348 */ 3349 if (!ret) { 3350 /* We do not set any attribute bits in the PAR */ 3351 if (res.f.lg_page_size == 24 3352 && arm_feature(env, ARM_FEATURE_V7)) { 3353 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3354 } else { 3355 par64 = res.f.phys_addr & 0xfffff000; 3356 } 3357 if (!res.f.attrs.secure) { 3358 par64 |= (1 << 9); /* NS */ 3359 } 3360 } else { 3361 uint32_t fsr = arm_fi_to_sfsc(&fi); 3362 3363 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3364 ((fsr & 0xf) << 1) | 1; 3365 } 3366 } 3367 return par64; 3368 } 3369 #endif /* CONFIG_TCG */ 3370 3371 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3372 { 3373 #ifdef CONFIG_TCG 3374 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3375 uint64_t par64; 3376 ARMMMUIdx mmu_idx; 3377 int el = arm_current_el(env); 3378 bool secure = arm_is_secure_below_el3(env); 3379 3380 switch (ri->opc2 & 6) { 3381 case 0: 3382 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3383 switch (el) { 3384 case 3: 3385 mmu_idx = ARMMMUIdx_E3; 3386 secure = true; 3387 break; 3388 case 2: 3389 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3390 /* fall through */ 3391 case 1: 3392 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3393 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3394 } else { 3395 mmu_idx = ARMMMUIdx_Stage1_E1; 3396 } 3397 break; 3398 default: 3399 g_assert_not_reached(); 3400 } 3401 break; 3402 case 2: 3403 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3404 switch (el) { 3405 case 3: 3406 mmu_idx = ARMMMUIdx_E10_0; 3407 secure = true; 3408 break; 3409 case 2: 3410 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3411 mmu_idx = ARMMMUIdx_Stage1_E0; 3412 break; 3413 case 1: 3414 mmu_idx = ARMMMUIdx_Stage1_E0; 3415 break; 3416 default: 3417 g_assert_not_reached(); 3418 } 3419 break; 3420 case 4: 3421 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3422 mmu_idx = ARMMMUIdx_E10_1; 3423 secure = false; 3424 break; 3425 case 6: 3426 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3427 mmu_idx = ARMMMUIdx_E10_0; 3428 secure = false; 3429 break; 3430 default: 3431 g_assert_not_reached(); 3432 } 3433 3434 par64 = do_ats_write(env, value, access_type, mmu_idx, secure); 3435 3436 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3437 #else 3438 /* Handled by hardware accelerator. */ 3439 g_assert_not_reached(); 3440 #endif /* CONFIG_TCG */ 3441 } 3442 3443 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3444 uint64_t value) 3445 { 3446 #ifdef CONFIG_TCG 3447 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3448 uint64_t par64; 3449 3450 /* There is no SecureEL2 for AArch32. */ 3451 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false); 3452 3453 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3454 #else 3455 /* Handled by hardware accelerator. */ 3456 g_assert_not_reached(); 3457 #endif /* CONFIG_TCG */ 3458 } 3459 3460 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3461 bool isread) 3462 { 3463 if (arm_current_el(env) == 3 && 3464 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3465 return CP_ACCESS_TRAP; 3466 } 3467 return CP_ACCESS_OK; 3468 } 3469 3470 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3471 uint64_t value) 3472 { 3473 #ifdef CONFIG_TCG 3474 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3475 ARMMMUIdx mmu_idx; 3476 int secure = arm_is_secure_below_el3(env); 3477 3478 switch (ri->opc2 & 6) { 3479 case 0: 3480 switch (ri->opc1) { 3481 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3482 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3483 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3484 } else { 3485 mmu_idx = ARMMMUIdx_Stage1_E1; 3486 } 3487 break; 3488 case 4: /* AT S1E2R, AT S1E2W */ 3489 mmu_idx = ARMMMUIdx_E2; 3490 break; 3491 case 6: /* AT S1E3R, AT S1E3W */ 3492 mmu_idx = ARMMMUIdx_E3; 3493 secure = true; 3494 break; 3495 default: 3496 g_assert_not_reached(); 3497 } 3498 break; 3499 case 2: /* AT S1E0R, AT S1E0W */ 3500 mmu_idx = ARMMMUIdx_Stage1_E0; 3501 break; 3502 case 4: /* AT S12E1R, AT S12E1W */ 3503 mmu_idx = ARMMMUIdx_E10_1; 3504 break; 3505 case 6: /* AT S12E0R, AT S12E0W */ 3506 mmu_idx = ARMMMUIdx_E10_0; 3507 break; 3508 default: 3509 g_assert_not_reached(); 3510 } 3511 3512 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3513 mmu_idx, secure); 3514 #else 3515 /* Handled by hardware accelerator. */ 3516 g_assert_not_reached(); 3517 #endif /* CONFIG_TCG */ 3518 } 3519 #endif 3520 3521 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3522 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3523 .access = PL1_RW, .resetvalue = 0, 3524 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3525 offsetoflow32(CPUARMState, cp15.par_ns) }, 3526 .writefn = par_write }, 3527 #ifndef CONFIG_USER_ONLY 3528 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3529 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3530 .access = PL1_W, .accessfn = ats_access, 3531 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3532 #endif 3533 }; 3534 3535 /* Return basic MPU access permission bits. */ 3536 static uint32_t simple_mpu_ap_bits(uint32_t val) 3537 { 3538 uint32_t ret; 3539 uint32_t mask; 3540 int i; 3541 ret = 0; 3542 mask = 3; 3543 for (i = 0; i < 16; i += 2) { 3544 ret |= (val >> i) & mask; 3545 mask <<= 2; 3546 } 3547 return ret; 3548 } 3549 3550 /* Pad basic MPU access permission bits to extended format. */ 3551 static uint32_t extended_mpu_ap_bits(uint32_t val) 3552 { 3553 uint32_t ret; 3554 uint32_t mask; 3555 int i; 3556 ret = 0; 3557 mask = 3; 3558 for (i = 0; i < 16; i += 2) { 3559 ret |= (val & mask) << i; 3560 mask <<= 2; 3561 } 3562 return ret; 3563 } 3564 3565 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3566 uint64_t value) 3567 { 3568 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3569 } 3570 3571 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3572 { 3573 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3574 } 3575 3576 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3577 uint64_t value) 3578 { 3579 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3580 } 3581 3582 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3583 { 3584 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3585 } 3586 3587 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3588 { 3589 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3590 3591 if (!u32p) { 3592 return 0; 3593 } 3594 3595 u32p += env->pmsav7.rnr[M_REG_NS]; 3596 return *u32p; 3597 } 3598 3599 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3600 uint64_t value) 3601 { 3602 ARMCPU *cpu = env_archcpu(env); 3603 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3604 3605 if (!u32p) { 3606 return; 3607 } 3608 3609 u32p += env->pmsav7.rnr[M_REG_NS]; 3610 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3611 *u32p = value; 3612 } 3613 3614 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3615 uint64_t value) 3616 { 3617 ARMCPU *cpu = env_archcpu(env); 3618 uint32_t nrgs = cpu->pmsav7_dregion; 3619 3620 if (value >= nrgs) { 3621 qemu_log_mask(LOG_GUEST_ERROR, 3622 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3623 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3624 return; 3625 } 3626 3627 raw_write(env, ri, value); 3628 } 3629 3630 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3631 /* Reset for all these registers is handled in arm_cpu_reset(), 3632 * because the PMSAv7 is also used by M-profile CPUs, which do 3633 * not register cpregs but still need the state to be reset. 3634 */ 3635 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3636 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3637 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3638 .readfn = pmsav7_read, .writefn = pmsav7_write, 3639 .resetfn = arm_cp_reset_ignore }, 3640 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3641 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3642 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3643 .readfn = pmsav7_read, .writefn = pmsav7_write, 3644 .resetfn = arm_cp_reset_ignore }, 3645 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3646 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3647 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3648 .readfn = pmsav7_read, .writefn = pmsav7_write, 3649 .resetfn = arm_cp_reset_ignore }, 3650 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3651 .access = PL1_RW, 3652 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3653 .writefn = pmsav7_rgnr_write, 3654 .resetfn = arm_cp_reset_ignore }, 3655 }; 3656 3657 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3658 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3659 .access = PL1_RW, .type = ARM_CP_ALIAS, 3660 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3661 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3662 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3663 .access = PL1_RW, .type = ARM_CP_ALIAS, 3664 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3665 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3666 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3667 .access = PL1_RW, 3668 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3669 .resetvalue = 0, }, 3670 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3671 .access = PL1_RW, 3672 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3673 .resetvalue = 0, }, 3674 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3675 .access = PL1_RW, 3676 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3677 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3678 .access = PL1_RW, 3679 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3680 /* Protection region base and size registers */ 3681 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3682 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3683 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3684 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3685 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3686 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3687 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3688 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3689 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3690 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3691 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3692 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3693 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3694 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3695 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3696 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3697 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3698 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3699 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3700 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3701 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3702 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3703 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3704 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3705 }; 3706 3707 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3708 uint64_t value) 3709 { 3710 ARMCPU *cpu = env_archcpu(env); 3711 3712 if (!arm_feature(env, ARM_FEATURE_V8)) { 3713 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3714 /* 3715 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3716 * using Long-descriptor translation table format 3717 */ 3718 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3719 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3720 /* 3721 * In an implementation that includes the Security Extensions 3722 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3723 * Short-descriptor translation table format. 3724 */ 3725 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3726 } else { 3727 value &= TTBCR_N; 3728 } 3729 } 3730 3731 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3732 /* With LPAE the TTBCR could result in a change of ASID 3733 * via the TTBCR.A1 bit, so do a TLB flush. 3734 */ 3735 tlb_flush(CPU(cpu)); 3736 } 3737 raw_write(env, ri, value); 3738 } 3739 3740 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3741 uint64_t value) 3742 { 3743 ARMCPU *cpu = env_archcpu(env); 3744 3745 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3746 tlb_flush(CPU(cpu)); 3747 raw_write(env, ri, value); 3748 } 3749 3750 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3751 uint64_t value) 3752 { 3753 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3754 if (cpreg_field_is_64bit(ri) && 3755 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3756 ARMCPU *cpu = env_archcpu(env); 3757 tlb_flush(CPU(cpu)); 3758 } 3759 raw_write(env, ri, value); 3760 } 3761 3762 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3763 uint64_t value) 3764 { 3765 /* 3766 * If we are running with E2&0 regime, then an ASID is active. 3767 * Flush if that might be changing. Note we're not checking 3768 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3769 * holds the active ASID, only checking the field that might. 3770 */ 3771 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3772 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3773 uint16_t mask = ARMMMUIdxBit_E20_2 | 3774 ARMMMUIdxBit_E20_2_PAN | 3775 ARMMMUIdxBit_E20_0; 3776 tlb_flush_by_mmuidx(env_cpu(env), mask); 3777 } 3778 raw_write(env, ri, value); 3779 } 3780 3781 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3782 uint64_t value) 3783 { 3784 ARMCPU *cpu = env_archcpu(env); 3785 CPUState *cs = CPU(cpu); 3786 3787 /* 3788 * A change in VMID to the stage2 page table (Stage2) invalidates 3789 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3790 */ 3791 if (raw_read(env, ri) != value) { 3792 uint16_t mask = ARMMMUIdxBit_E10_1 | 3793 ARMMMUIdxBit_E10_1_PAN | 3794 ARMMMUIdxBit_E10_0; 3795 tlb_flush_by_mmuidx(cs, mask); 3796 raw_write(env, ri, value); 3797 } 3798 } 3799 3800 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3801 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3802 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3803 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3804 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3805 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3806 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3807 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3808 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3809 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3810 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3811 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3812 offsetof(CPUARMState, cp15.dfar_ns) } }, 3813 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3814 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3815 .access = PL1_RW, .accessfn = access_tvm_trvm, 3816 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3817 .resetvalue = 0, }, 3818 }; 3819 3820 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3821 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3822 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3823 .access = PL1_RW, .accessfn = access_tvm_trvm, 3824 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3825 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3826 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3827 .access = PL1_RW, .accessfn = access_tvm_trvm, 3828 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3829 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3830 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3831 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3832 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3833 .access = PL1_RW, .accessfn = access_tvm_trvm, 3834 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3835 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3836 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3837 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3838 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3839 .access = PL1_RW, .accessfn = access_tvm_trvm, 3840 .writefn = vmsa_tcr_el12_write, 3841 .raw_writefn = raw_write, 3842 .resetvalue = 0, 3843 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3844 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3845 .access = PL1_RW, .accessfn = access_tvm_trvm, 3846 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3847 .raw_writefn = raw_write, 3848 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3849 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3850 }; 3851 3852 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3853 * qemu tlbs nor adjusting cached masks. 3854 */ 3855 static const ARMCPRegInfo ttbcr2_reginfo = { 3856 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3857 .access = PL1_RW, .accessfn = access_tvm_trvm, 3858 .type = ARM_CP_ALIAS, 3859 .bank_fieldoffsets = { 3860 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3861 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 3862 }, 3863 }; 3864 3865 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3866 uint64_t value) 3867 { 3868 env->cp15.c15_ticonfig = value & 0xe7; 3869 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3870 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3871 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3872 } 3873 3874 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3875 uint64_t value) 3876 { 3877 env->cp15.c15_threadid = value & 0xffff; 3878 } 3879 3880 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3881 uint64_t value) 3882 { 3883 /* Wait-for-interrupt (deprecated) */ 3884 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3885 } 3886 3887 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3888 uint64_t value) 3889 { 3890 /* On OMAP there are registers indicating the max/min index of dcache lines 3891 * containing a dirty line; cache flush operations have to reset these. 3892 */ 3893 env->cp15.c15_i_max = 0x000; 3894 env->cp15.c15_i_min = 0xff0; 3895 } 3896 3897 static const ARMCPRegInfo omap_cp_reginfo[] = { 3898 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3899 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3900 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3901 .resetvalue = 0, }, 3902 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3903 .access = PL1_RW, .type = ARM_CP_NOP }, 3904 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3905 .access = PL1_RW, 3906 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3907 .writefn = omap_ticonfig_write }, 3908 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3909 .access = PL1_RW, 3910 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3911 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3912 .access = PL1_RW, .resetvalue = 0xff0, 3913 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3914 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3915 .access = PL1_RW, 3916 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3917 .writefn = omap_threadid_write }, 3918 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3919 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3920 .type = ARM_CP_NO_RAW, 3921 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3922 /* TODO: Peripheral port remap register: 3923 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3924 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3925 * when MMU is off. 3926 */ 3927 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3928 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3929 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3930 .writefn = omap_cachemaint_write }, 3931 { .name = "C9", .cp = 15, .crn = 9, 3932 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3933 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3934 }; 3935 3936 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3937 uint64_t value) 3938 { 3939 env->cp15.c15_cpar = value & 0x3fff; 3940 } 3941 3942 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3943 { .name = "XSCALE_CPAR", 3944 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3945 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3946 .writefn = xscale_cpar_write, }, 3947 { .name = "XSCALE_AUXCR", 3948 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3949 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3950 .resetvalue = 0, }, 3951 /* XScale specific cache-lockdown: since we have no cache we NOP these 3952 * and hope the guest does not really rely on cache behaviour. 3953 */ 3954 { .name = "XSCALE_LOCK_ICACHE_LINE", 3955 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3956 .access = PL1_W, .type = ARM_CP_NOP }, 3957 { .name = "XSCALE_UNLOCK_ICACHE", 3958 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3959 .access = PL1_W, .type = ARM_CP_NOP }, 3960 { .name = "XSCALE_DCACHE_LOCK", 3961 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3962 .access = PL1_RW, .type = ARM_CP_NOP }, 3963 { .name = "XSCALE_UNLOCK_DCACHE", 3964 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3965 .access = PL1_W, .type = ARM_CP_NOP }, 3966 }; 3967 3968 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3969 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3970 * implementation of this implementation-defined space. 3971 * Ideally this should eventually disappear in favour of actually 3972 * implementing the correct behaviour for all cores. 3973 */ 3974 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3975 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3976 .access = PL1_RW, 3977 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3978 .resetvalue = 0 }, 3979 }; 3980 3981 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3982 /* Cache status: RAZ because we have no cache so it's always clean */ 3983 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3984 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3985 .resetvalue = 0 }, 3986 }; 3987 3988 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3989 /* We never have a block transfer operation in progress */ 3990 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3991 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3992 .resetvalue = 0 }, 3993 /* The cache ops themselves: these all NOP for QEMU */ 3994 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3995 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3996 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3997 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3998 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 3999 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4000 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4001 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4002 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4003 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4004 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4005 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4006 }; 4007 4008 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4009 /* The cache test-and-clean instructions always return (1 << 30) 4010 * to indicate that there are no dirty cache lines. 4011 */ 4012 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4013 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4014 .resetvalue = (1 << 30) }, 4015 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4016 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4017 .resetvalue = (1 << 30) }, 4018 }; 4019 4020 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4021 /* Ignore ReadBuffer accesses */ 4022 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4023 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4024 .access = PL1_RW, .resetvalue = 0, 4025 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4026 }; 4027 4028 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4029 { 4030 unsigned int cur_el = arm_current_el(env); 4031 4032 if (arm_is_el2_enabled(env) && cur_el == 1) { 4033 return env->cp15.vpidr_el2; 4034 } 4035 return raw_read(env, ri); 4036 } 4037 4038 static uint64_t mpidr_read_val(CPUARMState *env) 4039 { 4040 ARMCPU *cpu = env_archcpu(env); 4041 uint64_t mpidr = cpu->mp_affinity; 4042 4043 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4044 mpidr |= (1U << 31); 4045 /* Cores which are uniprocessor (non-coherent) 4046 * but still implement the MP extensions set 4047 * bit 30. (For instance, Cortex-R5). 4048 */ 4049 if (cpu->mp_is_up) { 4050 mpidr |= (1u << 30); 4051 } 4052 } 4053 return mpidr; 4054 } 4055 4056 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4057 { 4058 unsigned int cur_el = arm_current_el(env); 4059 4060 if (arm_is_el2_enabled(env) && cur_el == 1) { 4061 return env->cp15.vmpidr_el2; 4062 } 4063 return mpidr_read_val(env); 4064 } 4065 4066 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4067 /* NOP AMAIR0/1 */ 4068 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4069 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4070 .access = PL1_RW, .accessfn = access_tvm_trvm, 4071 .type = ARM_CP_CONST, .resetvalue = 0 }, 4072 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4073 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4074 .access = PL1_RW, .accessfn = access_tvm_trvm, 4075 .type = ARM_CP_CONST, .resetvalue = 0 }, 4076 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4077 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4078 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4079 offsetof(CPUARMState, cp15.par_ns)} }, 4080 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4081 .access = PL1_RW, .accessfn = access_tvm_trvm, 4082 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4083 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4084 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4085 .writefn = vmsa_ttbr_write, }, 4086 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4087 .access = PL1_RW, .accessfn = access_tvm_trvm, 4088 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4089 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4090 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4091 .writefn = vmsa_ttbr_write, }, 4092 }; 4093 4094 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4095 { 4096 return vfp_get_fpcr(env); 4097 } 4098 4099 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4100 uint64_t value) 4101 { 4102 vfp_set_fpcr(env, value); 4103 } 4104 4105 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4106 { 4107 return vfp_get_fpsr(env); 4108 } 4109 4110 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4111 uint64_t value) 4112 { 4113 vfp_set_fpsr(env, value); 4114 } 4115 4116 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4117 bool isread) 4118 { 4119 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4120 return CP_ACCESS_TRAP; 4121 } 4122 return CP_ACCESS_OK; 4123 } 4124 4125 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4126 uint64_t value) 4127 { 4128 env->daif = value & PSTATE_DAIF; 4129 } 4130 4131 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4132 { 4133 return env->pstate & PSTATE_PAN; 4134 } 4135 4136 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4137 uint64_t value) 4138 { 4139 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4140 } 4141 4142 static const ARMCPRegInfo pan_reginfo = { 4143 .name = "PAN", .state = ARM_CP_STATE_AA64, 4144 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4145 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4146 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4147 }; 4148 4149 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4150 { 4151 return env->pstate & PSTATE_UAO; 4152 } 4153 4154 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4155 uint64_t value) 4156 { 4157 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4158 } 4159 4160 static const ARMCPRegInfo uao_reginfo = { 4161 .name = "UAO", .state = ARM_CP_STATE_AA64, 4162 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4163 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4164 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4165 }; 4166 4167 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4168 { 4169 return env->pstate & PSTATE_DIT; 4170 } 4171 4172 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4173 uint64_t value) 4174 { 4175 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4176 } 4177 4178 static const ARMCPRegInfo dit_reginfo = { 4179 .name = "DIT", .state = ARM_CP_STATE_AA64, 4180 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4181 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4182 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4183 }; 4184 4185 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4186 { 4187 return env->pstate & PSTATE_SSBS; 4188 } 4189 4190 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4191 uint64_t value) 4192 { 4193 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4194 } 4195 4196 static const ARMCPRegInfo ssbs_reginfo = { 4197 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4198 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4199 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4200 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4201 }; 4202 4203 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4204 const ARMCPRegInfo *ri, 4205 bool isread) 4206 { 4207 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4208 switch (arm_current_el(env)) { 4209 case 0: 4210 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4211 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4212 return CP_ACCESS_TRAP; 4213 } 4214 /* fall through */ 4215 case 1: 4216 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4217 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4218 return CP_ACCESS_TRAP_EL2; 4219 } 4220 break; 4221 } 4222 return CP_ACCESS_OK; 4223 } 4224 4225 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4226 const ARMCPRegInfo *ri, 4227 bool isread) 4228 { 4229 /* Cache invalidate/clean to Point of Unification... */ 4230 switch (arm_current_el(env)) { 4231 case 0: 4232 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4233 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4234 return CP_ACCESS_TRAP; 4235 } 4236 /* fall through */ 4237 case 1: 4238 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4239 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4240 return CP_ACCESS_TRAP_EL2; 4241 } 4242 break; 4243 } 4244 return CP_ACCESS_OK; 4245 } 4246 4247 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4248 * Page D4-1736 (DDI0487A.b) 4249 */ 4250 4251 static int vae1_tlbmask(CPUARMState *env) 4252 { 4253 uint64_t hcr = arm_hcr_el2_eff(env); 4254 uint16_t mask; 4255 4256 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4257 mask = ARMMMUIdxBit_E20_2 | 4258 ARMMMUIdxBit_E20_2_PAN | 4259 ARMMMUIdxBit_E20_0; 4260 } else { 4261 mask = ARMMMUIdxBit_E10_1 | 4262 ARMMMUIdxBit_E10_1_PAN | 4263 ARMMMUIdxBit_E10_0; 4264 } 4265 return mask; 4266 } 4267 4268 /* Return 56 if TBI is enabled, 64 otherwise. */ 4269 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4270 uint64_t addr) 4271 { 4272 uint64_t tcr = regime_tcr(env, mmu_idx); 4273 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4274 int select = extract64(addr, 55, 1); 4275 4276 return (tbi >> select) & 1 ? 56 : 64; 4277 } 4278 4279 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4280 { 4281 uint64_t hcr = arm_hcr_el2_eff(env); 4282 ARMMMUIdx mmu_idx; 4283 4284 /* Only the regime of the mmu_idx below is significant. */ 4285 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4286 mmu_idx = ARMMMUIdx_E20_0; 4287 } else { 4288 mmu_idx = ARMMMUIdx_E10_0; 4289 } 4290 4291 return tlbbits_for_regime(env, mmu_idx, addr); 4292 } 4293 4294 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4295 uint64_t value) 4296 { 4297 CPUState *cs = env_cpu(env); 4298 int mask = vae1_tlbmask(env); 4299 4300 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4301 } 4302 4303 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4304 uint64_t value) 4305 { 4306 CPUState *cs = env_cpu(env); 4307 int mask = vae1_tlbmask(env); 4308 4309 if (tlb_force_broadcast(env)) { 4310 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4311 } else { 4312 tlb_flush_by_mmuidx(cs, mask); 4313 } 4314 } 4315 4316 static int alle1_tlbmask(CPUARMState *env) 4317 { 4318 /* 4319 * Note that the 'ALL' scope must invalidate both stage 1 and 4320 * stage 2 translations, whereas most other scopes only invalidate 4321 * stage 1 translations. 4322 */ 4323 return (ARMMMUIdxBit_E10_1 | 4324 ARMMMUIdxBit_E10_1_PAN | 4325 ARMMMUIdxBit_E10_0); 4326 } 4327 4328 static int e2_tlbmask(CPUARMState *env) 4329 { 4330 return (ARMMMUIdxBit_E20_0 | 4331 ARMMMUIdxBit_E20_2 | 4332 ARMMMUIdxBit_E20_2_PAN | 4333 ARMMMUIdxBit_E2); 4334 } 4335 4336 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4337 uint64_t value) 4338 { 4339 CPUState *cs = env_cpu(env); 4340 int mask = alle1_tlbmask(env); 4341 4342 tlb_flush_by_mmuidx(cs, mask); 4343 } 4344 4345 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4346 uint64_t value) 4347 { 4348 CPUState *cs = env_cpu(env); 4349 int mask = e2_tlbmask(env); 4350 4351 tlb_flush_by_mmuidx(cs, mask); 4352 } 4353 4354 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4355 uint64_t value) 4356 { 4357 ARMCPU *cpu = env_archcpu(env); 4358 CPUState *cs = CPU(cpu); 4359 4360 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4361 } 4362 4363 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4364 uint64_t value) 4365 { 4366 CPUState *cs = env_cpu(env); 4367 int mask = alle1_tlbmask(env); 4368 4369 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4370 } 4371 4372 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4373 uint64_t value) 4374 { 4375 CPUState *cs = env_cpu(env); 4376 int mask = e2_tlbmask(env); 4377 4378 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4379 } 4380 4381 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4382 uint64_t value) 4383 { 4384 CPUState *cs = env_cpu(env); 4385 4386 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4387 } 4388 4389 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4390 uint64_t value) 4391 { 4392 /* Invalidate by VA, EL2 4393 * Currently handles both VAE2 and VALE2, since we don't support 4394 * flush-last-level-only. 4395 */ 4396 CPUState *cs = env_cpu(env); 4397 int mask = e2_tlbmask(env); 4398 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4399 4400 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4401 } 4402 4403 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4404 uint64_t value) 4405 { 4406 /* Invalidate by VA, EL3 4407 * Currently handles both VAE3 and VALE3, since we don't support 4408 * flush-last-level-only. 4409 */ 4410 ARMCPU *cpu = env_archcpu(env); 4411 CPUState *cs = CPU(cpu); 4412 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4413 4414 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4415 } 4416 4417 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4418 uint64_t value) 4419 { 4420 CPUState *cs = env_cpu(env); 4421 int mask = vae1_tlbmask(env); 4422 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4423 int bits = vae1_tlbbits(env, pageaddr); 4424 4425 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4426 } 4427 4428 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4429 uint64_t value) 4430 { 4431 /* Invalidate by VA, EL1&0 (AArch64 version). 4432 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4433 * since we don't support flush-for-specific-ASID-only or 4434 * flush-last-level-only. 4435 */ 4436 CPUState *cs = env_cpu(env); 4437 int mask = vae1_tlbmask(env); 4438 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4439 int bits = vae1_tlbbits(env, pageaddr); 4440 4441 if (tlb_force_broadcast(env)) { 4442 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4443 } else { 4444 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4445 } 4446 } 4447 4448 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4449 uint64_t value) 4450 { 4451 CPUState *cs = env_cpu(env); 4452 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4453 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr); 4454 4455 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4456 ARMMMUIdxBit_E2, bits); 4457 } 4458 4459 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4460 uint64_t value) 4461 { 4462 CPUState *cs = env_cpu(env); 4463 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4464 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4465 4466 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4467 ARMMMUIdxBit_E3, bits); 4468 } 4469 4470 #ifdef TARGET_AARCH64 4471 typedef struct { 4472 uint64_t base; 4473 uint64_t length; 4474 } TLBIRange; 4475 4476 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4477 { 4478 /* 4479 * Note that the TLBI range TG field encoding differs from both 4480 * TG0 and TG1 encodings. 4481 */ 4482 switch (tg) { 4483 case 1: 4484 return Gran4K; 4485 case 2: 4486 return Gran16K; 4487 case 3: 4488 return Gran64K; 4489 default: 4490 return GranInvalid; 4491 } 4492 } 4493 4494 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4495 uint64_t value) 4496 { 4497 unsigned int page_size_granule, page_shift, num, scale, exponent; 4498 /* Extract one bit to represent the va selector in use. */ 4499 uint64_t select = sextract64(value, 36, 1); 4500 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4501 TLBIRange ret = { }; 4502 ARMGranuleSize gran; 4503 4504 page_size_granule = extract64(value, 46, 2); 4505 gran = tlbi_range_tg_to_gran_size(page_size_granule); 4506 4507 /* The granule encoded in value must match the granule in use. */ 4508 if (gran != param.gran) { 4509 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4510 page_size_granule); 4511 return ret; 4512 } 4513 4514 page_shift = arm_granule_bits(gran); 4515 num = extract64(value, 39, 5); 4516 scale = extract64(value, 44, 2); 4517 exponent = (5 * scale) + 1; 4518 4519 ret.length = (num + 1) << (exponent + page_shift); 4520 4521 if (param.select) { 4522 ret.base = sextract64(value, 0, 37); 4523 } else { 4524 ret.base = extract64(value, 0, 37); 4525 } 4526 if (param.ds) { 4527 /* 4528 * With DS=1, BaseADDR is always shifted 16 so that it is able 4529 * to address all 52 va bits. The input address is perforce 4530 * aligned on a 64k boundary regardless of translation granule. 4531 */ 4532 page_shift = 16; 4533 } 4534 ret.base <<= page_shift; 4535 4536 return ret; 4537 } 4538 4539 static void do_rvae_write(CPUARMState *env, uint64_t value, 4540 int idxmap, bool synced) 4541 { 4542 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4543 TLBIRange range; 4544 int bits; 4545 4546 range = tlbi_aa64_get_range(env, one_idx, value); 4547 bits = tlbbits_for_regime(env, one_idx, range.base); 4548 4549 if (synced) { 4550 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4551 range.base, 4552 range.length, 4553 idxmap, 4554 bits); 4555 } else { 4556 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4557 range.length, idxmap, bits); 4558 } 4559 } 4560 4561 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4562 const ARMCPRegInfo *ri, 4563 uint64_t value) 4564 { 4565 /* 4566 * Invalidate by VA range, EL1&0. 4567 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4568 * since we don't support flush-for-specific-ASID-only or 4569 * flush-last-level-only. 4570 */ 4571 4572 do_rvae_write(env, value, vae1_tlbmask(env), 4573 tlb_force_broadcast(env)); 4574 } 4575 4576 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4577 const ARMCPRegInfo *ri, 4578 uint64_t value) 4579 { 4580 /* 4581 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4582 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4583 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4584 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4585 * shareable specific flushes. 4586 */ 4587 4588 do_rvae_write(env, value, vae1_tlbmask(env), true); 4589 } 4590 4591 static int vae2_tlbmask(CPUARMState *env) 4592 { 4593 return ARMMMUIdxBit_E2; 4594 } 4595 4596 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4597 const ARMCPRegInfo *ri, 4598 uint64_t value) 4599 { 4600 /* 4601 * Invalidate by VA range, EL2. 4602 * Currently handles all of RVAE2 and RVALE2, 4603 * since we don't support flush-for-specific-ASID-only or 4604 * flush-last-level-only. 4605 */ 4606 4607 do_rvae_write(env, value, vae2_tlbmask(env), 4608 tlb_force_broadcast(env)); 4609 4610 4611 } 4612 4613 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4614 const ARMCPRegInfo *ri, 4615 uint64_t value) 4616 { 4617 /* 4618 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4619 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4620 * since we don't support flush-for-specific-ASID-only, 4621 * flush-last-level-only or inner/outer shareable specific flushes. 4622 */ 4623 4624 do_rvae_write(env, value, vae2_tlbmask(env), true); 4625 4626 } 4627 4628 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4629 const ARMCPRegInfo *ri, 4630 uint64_t value) 4631 { 4632 /* 4633 * Invalidate by VA range, EL3. 4634 * Currently handles all of RVAE3 and RVALE3, 4635 * since we don't support flush-for-specific-ASID-only or 4636 * flush-last-level-only. 4637 */ 4638 4639 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 4640 } 4641 4642 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4643 const ARMCPRegInfo *ri, 4644 uint64_t value) 4645 { 4646 /* 4647 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4648 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4649 * since we don't support flush-for-specific-ASID-only, 4650 * flush-last-level-only or inner/outer specific flushes. 4651 */ 4652 4653 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 4654 } 4655 #endif 4656 4657 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4658 bool isread) 4659 { 4660 int cur_el = arm_current_el(env); 4661 4662 if (cur_el < 2) { 4663 uint64_t hcr = arm_hcr_el2_eff(env); 4664 4665 if (cur_el == 0) { 4666 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4667 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4668 return CP_ACCESS_TRAP_EL2; 4669 } 4670 } else { 4671 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4672 return CP_ACCESS_TRAP; 4673 } 4674 if (hcr & HCR_TDZ) { 4675 return CP_ACCESS_TRAP_EL2; 4676 } 4677 } 4678 } else if (hcr & HCR_TDZ) { 4679 return CP_ACCESS_TRAP_EL2; 4680 } 4681 } 4682 return CP_ACCESS_OK; 4683 } 4684 4685 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4686 { 4687 ARMCPU *cpu = env_archcpu(env); 4688 int dzp_bit = 1 << 4; 4689 4690 /* DZP indicates whether DC ZVA access is allowed */ 4691 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4692 dzp_bit = 0; 4693 } 4694 return cpu->dcz_blocksize | dzp_bit; 4695 } 4696 4697 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4698 bool isread) 4699 { 4700 if (!(env->pstate & PSTATE_SP)) { 4701 /* Access to SP_EL0 is undefined if it's being used as 4702 * the stack pointer. 4703 */ 4704 return CP_ACCESS_TRAP_UNCATEGORIZED; 4705 } 4706 return CP_ACCESS_OK; 4707 } 4708 4709 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4710 { 4711 return env->pstate & PSTATE_SP; 4712 } 4713 4714 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4715 { 4716 update_spsel(env, val); 4717 } 4718 4719 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4720 uint64_t value) 4721 { 4722 ARMCPU *cpu = env_archcpu(env); 4723 4724 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4725 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4726 value &= ~SCTLR_M; 4727 } 4728 4729 /* ??? Lots of these bits are not implemented. */ 4730 4731 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4732 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4733 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4734 } else { 4735 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4736 SCTLR_ATA0 | SCTLR_ATA); 4737 } 4738 } 4739 4740 if (raw_read(env, ri) == value) { 4741 /* Skip the TLB flush if nothing actually changed; Linux likes 4742 * to do a lot of pointless SCTLR writes. 4743 */ 4744 return; 4745 } 4746 4747 raw_write(env, ri, value); 4748 4749 /* This may enable/disable the MMU, so do a TLB flush. */ 4750 tlb_flush(CPU(cpu)); 4751 4752 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4753 /* 4754 * Normally we would always end the TB on an SCTLR write; see the 4755 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4756 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4757 * of hflags from the translator, so do it here. 4758 */ 4759 arm_rebuild_hflags(env); 4760 } 4761 } 4762 4763 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4764 uint64_t value) 4765 { 4766 /* 4767 * Some MDCR_EL3 bits affect whether PMU counters are running: 4768 * if we are trying to change any of those then we must 4769 * bracket this update with PMU start/finish calls. 4770 */ 4771 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 4772 4773 if (pmu_op) { 4774 pmu_op_start(env); 4775 } 4776 env->cp15.mdcr_el3 = value; 4777 if (pmu_op) { 4778 pmu_op_finish(env); 4779 } 4780 } 4781 4782 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4783 uint64_t value) 4784 { 4785 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 4786 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 4787 } 4788 4789 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4790 uint64_t value) 4791 { 4792 /* 4793 * Some MDCR_EL2 bits affect whether PMU counters are running: 4794 * if we are trying to change any of those then we must 4795 * bracket this update with PMU start/finish calls. 4796 */ 4797 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 4798 4799 if (pmu_op) { 4800 pmu_op_start(env); 4801 } 4802 env->cp15.mdcr_el2 = value; 4803 if (pmu_op) { 4804 pmu_op_finish(env); 4805 } 4806 } 4807 4808 static const ARMCPRegInfo v8_cp_reginfo[] = { 4809 /* Minimal set of EL0-visible registers. This will need to be expanded 4810 * significantly for system emulation of AArch64 CPUs. 4811 */ 4812 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4813 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4814 .access = PL0_RW, .type = ARM_CP_NZCV }, 4815 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4816 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4817 .type = ARM_CP_NO_RAW, 4818 .access = PL0_RW, .accessfn = aa64_daif_access, 4819 .fieldoffset = offsetof(CPUARMState, daif), 4820 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4821 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4822 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4823 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4824 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4825 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4826 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4827 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4828 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4829 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4830 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4831 .access = PL0_R, .type = ARM_CP_NO_RAW, 4832 .readfn = aa64_dczid_read }, 4833 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4834 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4835 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4836 #ifndef CONFIG_USER_ONLY 4837 /* Avoid overhead of an access check that always passes in user-mode */ 4838 .accessfn = aa64_zva_access, 4839 #endif 4840 }, 4841 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4842 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4843 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4844 /* Cache ops: all NOPs since we don't emulate caches */ 4845 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4846 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4847 .access = PL1_W, .type = ARM_CP_NOP, 4848 .accessfn = aa64_cacheop_pou_access }, 4849 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4850 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4851 .access = PL1_W, .type = ARM_CP_NOP, 4852 .accessfn = aa64_cacheop_pou_access }, 4853 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4854 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4855 .access = PL0_W, .type = ARM_CP_NOP, 4856 .accessfn = aa64_cacheop_pou_access }, 4857 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4858 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4859 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4860 .type = ARM_CP_NOP }, 4861 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4862 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4863 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4864 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4865 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4866 .access = PL0_W, .type = ARM_CP_NOP, 4867 .accessfn = aa64_cacheop_poc_access }, 4868 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4869 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4870 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4871 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4872 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4873 .access = PL0_W, .type = ARM_CP_NOP, 4874 .accessfn = aa64_cacheop_pou_access }, 4875 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4876 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4877 .access = PL0_W, .type = ARM_CP_NOP, 4878 .accessfn = aa64_cacheop_poc_access }, 4879 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4880 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4881 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4882 /* TLBI operations */ 4883 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4884 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4885 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4886 .writefn = tlbi_aa64_vmalle1is_write }, 4887 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4888 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4889 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4890 .writefn = tlbi_aa64_vae1is_write }, 4891 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4892 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4893 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4894 .writefn = tlbi_aa64_vmalle1is_write }, 4895 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4896 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4897 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4898 .writefn = tlbi_aa64_vae1is_write }, 4899 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4900 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4901 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4902 .writefn = tlbi_aa64_vae1is_write }, 4903 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4904 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4905 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4906 .writefn = tlbi_aa64_vae1is_write }, 4907 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4908 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4909 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4910 .writefn = tlbi_aa64_vmalle1_write }, 4911 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4912 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4913 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4914 .writefn = tlbi_aa64_vae1_write }, 4915 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4916 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4917 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4918 .writefn = tlbi_aa64_vmalle1_write }, 4919 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4920 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4921 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4922 .writefn = tlbi_aa64_vae1_write }, 4923 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4924 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4925 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4926 .writefn = tlbi_aa64_vae1_write }, 4927 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4929 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4930 .writefn = tlbi_aa64_vae1_write }, 4931 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4933 .access = PL2_W, .type = ARM_CP_NOP }, 4934 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4936 .access = PL2_W, .type = ARM_CP_NOP }, 4937 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4938 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4939 .access = PL2_W, .type = ARM_CP_NO_RAW, 4940 .writefn = tlbi_aa64_alle1is_write }, 4941 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4942 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4943 .access = PL2_W, .type = ARM_CP_NO_RAW, 4944 .writefn = tlbi_aa64_alle1is_write }, 4945 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4946 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4947 .access = PL2_W, .type = ARM_CP_NOP }, 4948 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4949 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4950 .access = PL2_W, .type = ARM_CP_NOP }, 4951 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4952 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4953 .access = PL2_W, .type = ARM_CP_NO_RAW, 4954 .writefn = tlbi_aa64_alle1_write }, 4955 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4956 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4957 .access = PL2_W, .type = ARM_CP_NO_RAW, 4958 .writefn = tlbi_aa64_alle1is_write }, 4959 #ifndef CONFIG_USER_ONLY 4960 /* 64 bit address translation operations */ 4961 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4962 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4963 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4964 .writefn = ats_write64 }, 4965 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4966 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4967 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4968 .writefn = ats_write64 }, 4969 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4970 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4971 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4972 .writefn = ats_write64 }, 4973 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4974 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4975 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4976 .writefn = ats_write64 }, 4977 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4978 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4979 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4980 .writefn = ats_write64 }, 4981 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4982 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4983 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4984 .writefn = ats_write64 }, 4985 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4986 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4987 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4988 .writefn = ats_write64 }, 4989 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4990 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4991 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4992 .writefn = ats_write64 }, 4993 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4994 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4995 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4996 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4997 .writefn = ats_write64 }, 4998 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4999 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5000 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5001 .writefn = ats_write64 }, 5002 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5003 .type = ARM_CP_ALIAS, 5004 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5005 .access = PL1_RW, .resetvalue = 0, 5006 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5007 .writefn = par_write }, 5008 #endif 5009 /* TLB invalidate last level of translation table walk */ 5010 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5011 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5012 .writefn = tlbimva_is_write }, 5013 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5014 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5015 .writefn = tlbimvaa_is_write }, 5016 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5017 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5018 .writefn = tlbimva_write }, 5019 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5020 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5021 .writefn = tlbimvaa_write }, 5022 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5023 .type = ARM_CP_NO_RAW, .access = PL2_W, 5024 .writefn = tlbimva_hyp_write }, 5025 { .name = "TLBIMVALHIS", 5026 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5027 .type = ARM_CP_NO_RAW, .access = PL2_W, 5028 .writefn = tlbimva_hyp_is_write }, 5029 { .name = "TLBIIPAS2", 5030 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5031 .type = ARM_CP_NOP, .access = PL2_W }, 5032 { .name = "TLBIIPAS2IS", 5033 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5034 .type = ARM_CP_NOP, .access = PL2_W }, 5035 { .name = "TLBIIPAS2L", 5036 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5037 .type = ARM_CP_NOP, .access = PL2_W }, 5038 { .name = "TLBIIPAS2LIS", 5039 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5040 .type = ARM_CP_NOP, .access = PL2_W }, 5041 /* 32 bit cache operations */ 5042 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5043 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5044 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5045 .type = ARM_CP_NOP, .access = PL1_W }, 5046 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5047 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5048 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5049 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5050 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5051 .type = ARM_CP_NOP, .access = PL1_W }, 5052 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5053 .type = ARM_CP_NOP, .access = PL1_W }, 5054 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5055 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5056 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5057 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5058 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5059 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5060 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5061 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5062 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5063 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5064 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5065 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5066 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5067 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5068 /* MMU Domain access control / MPU write buffer control */ 5069 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5070 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5071 .writefn = dacr_write, .raw_writefn = raw_write, 5072 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5073 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5074 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5075 .type = ARM_CP_ALIAS, 5076 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5077 .access = PL1_RW, 5078 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5079 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5080 .type = ARM_CP_ALIAS, 5081 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5082 .access = PL1_RW, 5083 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5084 /* We rely on the access checks not allowing the guest to write to the 5085 * state field when SPSel indicates that it's being used as the stack 5086 * pointer. 5087 */ 5088 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5089 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5090 .access = PL1_RW, .accessfn = sp_el0_access, 5091 .type = ARM_CP_ALIAS, 5092 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5093 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5094 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5095 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5096 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5097 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5098 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5099 .type = ARM_CP_NO_RAW, 5100 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5101 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5102 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5103 .access = PL2_RW, 5104 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5105 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5106 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5107 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5108 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5109 .writefn = dacr_write, .raw_writefn = raw_write, 5110 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5111 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5112 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5113 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5114 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5115 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5116 .type = ARM_CP_ALIAS, 5117 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5118 .access = PL2_RW, 5119 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5120 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5121 .type = ARM_CP_ALIAS, 5122 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5123 .access = PL2_RW, 5124 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5125 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5126 .type = ARM_CP_ALIAS, 5127 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5128 .access = PL2_RW, 5129 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5130 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5131 .type = ARM_CP_ALIAS, 5132 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5133 .access = PL2_RW, 5134 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5135 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5136 .type = ARM_CP_IO, 5137 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5138 .resetvalue = 0, 5139 .access = PL3_RW, 5140 .writefn = mdcr_el3_write, 5141 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5142 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5143 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5144 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5145 .writefn = sdcr_write, 5146 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5147 }; 5148 5149 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5150 { 5151 ARMCPU *cpu = env_archcpu(env); 5152 5153 if (arm_feature(env, ARM_FEATURE_V8)) { 5154 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5155 } else { 5156 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5157 } 5158 5159 if (arm_feature(env, ARM_FEATURE_EL3)) { 5160 valid_mask &= ~HCR_HCD; 5161 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5162 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5163 * However, if we're using the SMC PSCI conduit then QEMU is 5164 * effectively acting like EL3 firmware and so the guest at 5165 * EL2 should retain the ability to prevent EL1 from being 5166 * able to make SMC calls into the ersatz firmware, so in 5167 * that case HCR.TSC should be read/write. 5168 */ 5169 valid_mask &= ~HCR_TSC; 5170 } 5171 5172 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5173 if (cpu_isar_feature(aa64_vh, cpu)) { 5174 valid_mask |= HCR_E2H; 5175 } 5176 if (cpu_isar_feature(aa64_ras, cpu)) { 5177 valid_mask |= HCR_TERR | HCR_TEA; 5178 } 5179 if (cpu_isar_feature(aa64_lor, cpu)) { 5180 valid_mask |= HCR_TLOR; 5181 } 5182 if (cpu_isar_feature(aa64_pauth, cpu)) { 5183 valid_mask |= HCR_API | HCR_APK; 5184 } 5185 if (cpu_isar_feature(aa64_mte, cpu)) { 5186 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5187 } 5188 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5189 valid_mask |= HCR_ENSCXT; 5190 } 5191 if (cpu_isar_feature(aa64_fwb, cpu)) { 5192 valid_mask |= HCR_FWB; 5193 } 5194 } 5195 5196 /* Clear RES0 bits. */ 5197 value &= valid_mask; 5198 5199 /* 5200 * These bits change the MMU setup: 5201 * HCR_VM enables stage 2 translation 5202 * HCR_PTW forbids certain page-table setups 5203 * HCR_DC disables stage1 and enables stage2 translation 5204 * HCR_DCT enables tagging on (disabled) stage1 translation 5205 * HCR_FWB changes the interpretation of stage2 descriptor bits 5206 */ 5207 if ((env->cp15.hcr_el2 ^ value) & 5208 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5209 tlb_flush(CPU(cpu)); 5210 } 5211 env->cp15.hcr_el2 = value; 5212 5213 /* 5214 * Updates to VI and VF require us to update the status of 5215 * virtual interrupts, which are the logical OR of these bits 5216 * and the state of the input lines from the GIC. (This requires 5217 * that we have the iothread lock, which is done by marking the 5218 * reginfo structs as ARM_CP_IO.) 5219 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5220 * possible for it to be taken immediately, because VIRQ and 5221 * VFIQ are masked unless running at EL0 or EL1, and HCR 5222 * can only be written at EL2. 5223 */ 5224 g_assert(qemu_mutex_iothread_locked()); 5225 arm_cpu_update_virq(cpu); 5226 arm_cpu_update_vfiq(cpu); 5227 arm_cpu_update_vserr(cpu); 5228 } 5229 5230 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5231 { 5232 do_hcr_write(env, value, 0); 5233 } 5234 5235 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5236 uint64_t value) 5237 { 5238 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5239 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5240 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5241 } 5242 5243 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5244 uint64_t value) 5245 { 5246 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5247 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5248 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5249 } 5250 5251 /* 5252 * Return the effective value of HCR_EL2, at the given security state. 5253 * Bits that are not included here: 5254 * RW (read from SCR_EL3.RW as needed) 5255 */ 5256 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure) 5257 { 5258 uint64_t ret = env->cp15.hcr_el2; 5259 5260 if (!arm_is_el2_enabled_secstate(env, secure)) { 5261 /* 5262 * "This register has no effect if EL2 is not enabled in the 5263 * current Security state". This is ARMv8.4-SecEL2 speak for 5264 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5265 * 5266 * Prior to that, the language was "In an implementation that 5267 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5268 * as if this field is 0 for all purposes other than a direct 5269 * read or write access of HCR_EL2". With lots of enumeration 5270 * on a per-field basis. In current QEMU, this is condition 5271 * is arm_is_secure_below_el3. 5272 * 5273 * Since the v8.4 language applies to the entire register, and 5274 * appears to be backward compatible, use that. 5275 */ 5276 return 0; 5277 } 5278 5279 /* 5280 * For a cpu that supports both aarch64 and aarch32, we can set bits 5281 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5282 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5283 */ 5284 if (!arm_el_is_aa64(env, 2)) { 5285 uint64_t aa32_valid; 5286 5287 /* 5288 * These bits are up-to-date as of ARMv8.6. 5289 * For HCR, it's easiest to list just the 2 bits that are invalid. 5290 * For HCR2, list those that are valid. 5291 */ 5292 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5293 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5294 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5295 ret &= aa32_valid; 5296 } 5297 5298 if (ret & HCR_TGE) { 5299 /* These bits are up-to-date as of ARMv8.6. */ 5300 if (ret & HCR_E2H) { 5301 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5302 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5303 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5304 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5305 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5306 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5307 } else { 5308 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5309 } 5310 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5311 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5312 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5313 HCR_TLOR); 5314 } 5315 5316 return ret; 5317 } 5318 5319 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5320 { 5321 return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env)); 5322 } 5323 5324 /* 5325 * Corresponds to ARM pseudocode function ELIsInHost(). 5326 */ 5327 bool el_is_in_host(CPUARMState *env, int el) 5328 { 5329 uint64_t mask; 5330 5331 /* 5332 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5333 * Perform the simplest bit tests first, and validate EL2 afterward. 5334 */ 5335 if (el & 1) { 5336 return false; /* EL1 or EL3 */ 5337 } 5338 5339 /* 5340 * Note that hcr_write() checks isar_feature_aa64_vh(), 5341 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5342 */ 5343 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5344 if ((env->cp15.hcr_el2 & mask) != mask) { 5345 return false; 5346 } 5347 5348 /* TGE and/or E2H set: double check those bits are currently legal. */ 5349 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5350 } 5351 5352 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5353 uint64_t value) 5354 { 5355 uint64_t valid_mask = 0; 5356 5357 /* No features adding bits to HCRX are implemented. */ 5358 5359 /* Clear RES0 bits. */ 5360 env->cp15.hcrx_el2 = value & valid_mask; 5361 } 5362 5363 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5364 bool isread) 5365 { 5366 if (arm_current_el(env) < 3 5367 && arm_feature(env, ARM_FEATURE_EL3) 5368 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5369 return CP_ACCESS_TRAP_EL3; 5370 } 5371 return CP_ACCESS_OK; 5372 } 5373 5374 static const ARMCPRegInfo hcrx_el2_reginfo = { 5375 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5376 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5377 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5378 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5379 }; 5380 5381 /* Return the effective value of HCRX_EL2. */ 5382 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5383 { 5384 /* 5385 * The bits in this register behave as 0 for all purposes other than 5386 * direct reads of the register if: 5387 * - EL2 is not enabled in the current security state, 5388 * - SCR_EL3.HXEn is 0. 5389 */ 5390 if (!arm_is_el2_enabled(env) 5391 || (arm_feature(env, ARM_FEATURE_EL3) 5392 && !(env->cp15.scr_el3 & SCR_HXEN))) { 5393 return 0; 5394 } 5395 return env->cp15.hcrx_el2; 5396 } 5397 5398 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5399 uint64_t value) 5400 { 5401 /* 5402 * For A-profile AArch32 EL3, if NSACR.CP10 5403 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5404 */ 5405 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5406 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5407 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5408 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5409 } 5410 env->cp15.cptr_el[2] = value; 5411 } 5412 5413 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5414 { 5415 /* 5416 * For A-profile AArch32 EL3, if NSACR.CP10 5417 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5418 */ 5419 uint64_t value = env->cp15.cptr_el[2]; 5420 5421 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5422 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5423 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5424 } 5425 return value; 5426 } 5427 5428 static const ARMCPRegInfo el2_cp_reginfo[] = { 5429 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5430 .type = ARM_CP_IO, 5431 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5432 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5433 .writefn = hcr_write }, 5434 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5435 .type = ARM_CP_ALIAS | ARM_CP_IO, 5436 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5437 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5438 .writefn = hcr_writelow }, 5439 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5440 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5441 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5442 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5443 .type = ARM_CP_ALIAS, 5444 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5445 .access = PL2_RW, 5446 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5447 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5448 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5449 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5450 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5451 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5452 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5453 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5454 .type = ARM_CP_ALIAS, 5455 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5456 .access = PL2_RW, 5457 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5458 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5459 .type = ARM_CP_ALIAS, 5460 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5461 .access = PL2_RW, 5462 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5463 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5464 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5465 .access = PL2_RW, .writefn = vbar_write, 5466 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5467 .resetvalue = 0 }, 5468 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5469 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5470 .access = PL3_RW, .type = ARM_CP_ALIAS, 5471 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5472 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5473 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5474 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5475 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5476 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5477 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5478 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5479 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5480 .resetvalue = 0 }, 5481 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5482 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5483 .access = PL2_RW, .type = ARM_CP_ALIAS, 5484 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5485 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5486 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5487 .access = PL2_RW, .type = ARM_CP_CONST, 5488 .resetvalue = 0 }, 5489 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5490 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5491 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5492 .access = PL2_RW, .type = ARM_CP_CONST, 5493 .resetvalue = 0 }, 5494 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5495 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5496 .access = PL2_RW, .type = ARM_CP_CONST, 5497 .resetvalue = 0 }, 5498 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5499 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5500 .access = PL2_RW, .type = ARM_CP_CONST, 5501 .resetvalue = 0 }, 5502 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5503 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5504 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5505 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5506 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5507 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5508 .type = ARM_CP_ALIAS, 5509 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5510 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5511 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5512 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5513 .access = PL2_RW, 5514 /* no .writefn needed as this can't cause an ASID change */ 5515 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5516 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5517 .cp = 15, .opc1 = 6, .crm = 2, 5518 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5519 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5520 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5521 .writefn = vttbr_write }, 5522 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5523 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5524 .access = PL2_RW, .writefn = vttbr_write, 5525 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5526 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5527 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5528 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5529 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5530 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5531 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5532 .access = PL2_RW, .resetvalue = 0, 5533 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5534 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5535 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5536 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5537 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5538 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5539 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5540 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5541 { .name = "TLBIALLNSNH", 5542 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5543 .type = ARM_CP_NO_RAW, .access = PL2_W, 5544 .writefn = tlbiall_nsnh_write }, 5545 { .name = "TLBIALLNSNHIS", 5546 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5547 .type = ARM_CP_NO_RAW, .access = PL2_W, 5548 .writefn = tlbiall_nsnh_is_write }, 5549 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5550 .type = ARM_CP_NO_RAW, .access = PL2_W, 5551 .writefn = tlbiall_hyp_write }, 5552 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5553 .type = ARM_CP_NO_RAW, .access = PL2_W, 5554 .writefn = tlbiall_hyp_is_write }, 5555 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5556 .type = ARM_CP_NO_RAW, .access = PL2_W, 5557 .writefn = tlbimva_hyp_write }, 5558 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5559 .type = ARM_CP_NO_RAW, .access = PL2_W, 5560 .writefn = tlbimva_hyp_is_write }, 5561 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5562 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5563 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5564 .writefn = tlbi_aa64_alle2_write }, 5565 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5566 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5567 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5568 .writefn = tlbi_aa64_vae2_write }, 5569 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5570 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5571 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5572 .writefn = tlbi_aa64_vae2_write }, 5573 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5574 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5575 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5576 .writefn = tlbi_aa64_alle2is_write }, 5577 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5578 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5579 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5580 .writefn = tlbi_aa64_vae2is_write }, 5581 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5582 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5583 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5584 .writefn = tlbi_aa64_vae2is_write }, 5585 #ifndef CONFIG_USER_ONLY 5586 /* Unlike the other EL2-related AT operations, these must 5587 * UNDEF from EL3 if EL2 is not implemented, which is why we 5588 * define them here rather than with the rest of the AT ops. 5589 */ 5590 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5591 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5592 .access = PL2_W, .accessfn = at_s1e2_access, 5593 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5594 .writefn = ats_write64 }, 5595 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5596 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5597 .access = PL2_W, .accessfn = at_s1e2_access, 5598 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5599 .writefn = ats_write64 }, 5600 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5601 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5602 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5603 * to behave as if SCR.NS was 1. 5604 */ 5605 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5606 .access = PL2_W, 5607 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5608 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5609 .access = PL2_W, 5610 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5611 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5612 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5613 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5614 * reset values as IMPDEF. We choose to reset to 3 to comply with 5615 * both ARMv7 and ARMv8. 5616 */ 5617 .access = PL2_RW, .resetvalue = 3, 5618 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5619 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5620 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5621 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5622 .writefn = gt_cntvoff_write, 5623 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5624 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5625 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5626 .writefn = gt_cntvoff_write, 5627 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5628 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5629 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5630 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5631 .type = ARM_CP_IO, .access = PL2_RW, 5632 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5633 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5634 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5635 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5636 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5637 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5638 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5639 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5640 .resetfn = gt_hyp_timer_reset, 5641 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5642 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5643 .type = ARM_CP_IO, 5644 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5645 .access = PL2_RW, 5646 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5647 .resetvalue = 0, 5648 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5649 #endif 5650 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5651 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5652 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5653 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5654 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5655 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5656 .access = PL2_RW, 5657 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5658 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5659 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5660 .access = PL2_RW, 5661 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5662 }; 5663 5664 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5665 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5666 .type = ARM_CP_ALIAS | ARM_CP_IO, 5667 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5668 .access = PL2_RW, 5669 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5670 .writefn = hcr_writehigh }, 5671 }; 5672 5673 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5674 bool isread) 5675 { 5676 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5677 return CP_ACCESS_OK; 5678 } 5679 return CP_ACCESS_TRAP_UNCATEGORIZED; 5680 } 5681 5682 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5683 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5684 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5685 .access = PL2_RW, .accessfn = sel2_access, 5686 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5687 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5688 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5689 .access = PL2_RW, .accessfn = sel2_access, 5690 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5691 }; 5692 5693 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5694 bool isread) 5695 { 5696 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5697 * At Secure EL1 it traps to EL3 or EL2. 5698 */ 5699 if (arm_current_el(env) == 3) { 5700 return CP_ACCESS_OK; 5701 } 5702 if (arm_is_secure_below_el3(env)) { 5703 if (env->cp15.scr_el3 & SCR_EEL2) { 5704 return CP_ACCESS_TRAP_EL2; 5705 } 5706 return CP_ACCESS_TRAP_EL3; 5707 } 5708 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5709 if (isread) { 5710 return CP_ACCESS_OK; 5711 } 5712 return CP_ACCESS_TRAP_UNCATEGORIZED; 5713 } 5714 5715 static const ARMCPRegInfo el3_cp_reginfo[] = { 5716 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5717 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5718 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5719 .resetfn = scr_reset, .writefn = scr_write }, 5720 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5721 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5722 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5723 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5724 .writefn = scr_write }, 5725 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5726 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5727 .access = PL3_RW, .resetvalue = 0, 5728 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5729 { .name = "SDER", 5730 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5731 .access = PL3_RW, .resetvalue = 0, 5732 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5733 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5734 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5735 .writefn = vbar_write, .resetvalue = 0, 5736 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5737 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5738 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5739 .access = PL3_RW, .resetvalue = 0, 5740 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5741 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5742 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5743 .access = PL3_RW, 5744 /* no .writefn needed as this can't cause an ASID change */ 5745 .resetvalue = 0, 5746 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5747 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5748 .type = ARM_CP_ALIAS, 5749 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5750 .access = PL3_RW, 5751 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5752 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5753 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5754 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5755 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5756 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5757 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5758 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5759 .type = ARM_CP_ALIAS, 5760 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5761 .access = PL3_RW, 5762 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5763 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5764 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5765 .access = PL3_RW, .writefn = vbar_write, 5766 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5767 .resetvalue = 0 }, 5768 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5769 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5770 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5771 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5772 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5773 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5774 .access = PL3_RW, .resetvalue = 0, 5775 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5776 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5777 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5778 .access = PL3_RW, .type = ARM_CP_CONST, 5779 .resetvalue = 0 }, 5780 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5781 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5782 .access = PL3_RW, .type = ARM_CP_CONST, 5783 .resetvalue = 0 }, 5784 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5785 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5786 .access = PL3_RW, .type = ARM_CP_CONST, 5787 .resetvalue = 0 }, 5788 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5789 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5790 .access = PL3_W, .type = ARM_CP_NO_RAW, 5791 .writefn = tlbi_aa64_alle3is_write }, 5792 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5793 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5794 .access = PL3_W, .type = ARM_CP_NO_RAW, 5795 .writefn = tlbi_aa64_vae3is_write }, 5796 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5797 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5798 .access = PL3_W, .type = ARM_CP_NO_RAW, 5799 .writefn = tlbi_aa64_vae3is_write }, 5800 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5801 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5802 .access = PL3_W, .type = ARM_CP_NO_RAW, 5803 .writefn = tlbi_aa64_alle3_write }, 5804 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5805 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5806 .access = PL3_W, .type = ARM_CP_NO_RAW, 5807 .writefn = tlbi_aa64_vae3_write }, 5808 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5809 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5810 .access = PL3_W, .type = ARM_CP_NO_RAW, 5811 .writefn = tlbi_aa64_vae3_write }, 5812 }; 5813 5814 #ifndef CONFIG_USER_ONLY 5815 /* Test if system register redirection is to occur in the current state. */ 5816 static bool redirect_for_e2h(CPUARMState *env) 5817 { 5818 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5819 } 5820 5821 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5822 { 5823 CPReadFn *readfn; 5824 5825 if (redirect_for_e2h(env)) { 5826 /* Switch to the saved EL2 version of the register. */ 5827 ri = ri->opaque; 5828 readfn = ri->readfn; 5829 } else { 5830 readfn = ri->orig_readfn; 5831 } 5832 if (readfn == NULL) { 5833 readfn = raw_read; 5834 } 5835 return readfn(env, ri); 5836 } 5837 5838 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5839 uint64_t value) 5840 { 5841 CPWriteFn *writefn; 5842 5843 if (redirect_for_e2h(env)) { 5844 /* Switch to the saved EL2 version of the register. */ 5845 ri = ri->opaque; 5846 writefn = ri->writefn; 5847 } else { 5848 writefn = ri->orig_writefn; 5849 } 5850 if (writefn == NULL) { 5851 writefn = raw_write; 5852 } 5853 writefn(env, ri, value); 5854 } 5855 5856 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5857 { 5858 struct E2HAlias { 5859 uint32_t src_key, dst_key, new_key; 5860 const char *src_name, *dst_name, *new_name; 5861 bool (*feature)(const ARMISARegisters *id); 5862 }; 5863 5864 #define K(op0, op1, crn, crm, op2) \ 5865 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5866 5867 static const struct E2HAlias aliases[] = { 5868 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5869 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5870 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5871 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5872 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5873 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5874 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5875 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5876 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5877 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5878 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5879 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5880 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5881 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5882 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5883 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5884 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5885 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5886 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5887 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5888 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5889 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5890 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5891 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5892 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5893 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5894 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5895 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5896 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5897 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5898 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5899 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5900 5901 /* 5902 * Note that redirection of ZCR is mentioned in the description 5903 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5904 * not in the summary table. 5905 */ 5906 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5907 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5908 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 5909 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 5910 5911 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5912 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5913 5914 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 5915 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 5916 isar_feature_aa64_scxtnum }, 5917 5918 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5919 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5920 }; 5921 #undef K 5922 5923 size_t i; 5924 5925 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5926 const struct E2HAlias *a = &aliases[i]; 5927 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 5928 bool ok; 5929 5930 if (a->feature && !a->feature(&cpu->isar)) { 5931 continue; 5932 } 5933 5934 src_reg = g_hash_table_lookup(cpu->cp_regs, 5935 (gpointer)(uintptr_t)a->src_key); 5936 dst_reg = g_hash_table_lookup(cpu->cp_regs, 5937 (gpointer)(uintptr_t)a->dst_key); 5938 g_assert(src_reg != NULL); 5939 g_assert(dst_reg != NULL); 5940 5941 /* Cross-compare names to detect typos in the keys. */ 5942 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5943 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5944 5945 /* None of the core system registers use opaque; we will. */ 5946 g_assert(src_reg->opaque == NULL); 5947 5948 /* Create alias before redirection so we dup the right data. */ 5949 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5950 5951 new_reg->name = a->new_name; 5952 new_reg->type |= ARM_CP_ALIAS; 5953 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5954 new_reg->access &= PL2_RW | PL3_RW; 5955 5956 ok = g_hash_table_insert(cpu->cp_regs, 5957 (gpointer)(uintptr_t)a->new_key, new_reg); 5958 g_assert(ok); 5959 5960 src_reg->opaque = dst_reg; 5961 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5962 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5963 if (!src_reg->raw_readfn) { 5964 src_reg->raw_readfn = raw_read; 5965 } 5966 if (!src_reg->raw_writefn) { 5967 src_reg->raw_writefn = raw_write; 5968 } 5969 src_reg->readfn = el2_e2h_read; 5970 src_reg->writefn = el2_e2h_write; 5971 } 5972 } 5973 #endif 5974 5975 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5976 bool isread) 5977 { 5978 int cur_el = arm_current_el(env); 5979 5980 if (cur_el < 2) { 5981 uint64_t hcr = arm_hcr_el2_eff(env); 5982 5983 if (cur_el == 0) { 5984 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5985 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5986 return CP_ACCESS_TRAP_EL2; 5987 } 5988 } else { 5989 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5990 return CP_ACCESS_TRAP; 5991 } 5992 if (hcr & HCR_TID2) { 5993 return CP_ACCESS_TRAP_EL2; 5994 } 5995 } 5996 } else if (hcr & HCR_TID2) { 5997 return CP_ACCESS_TRAP_EL2; 5998 } 5999 } 6000 6001 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6002 return CP_ACCESS_TRAP_EL2; 6003 } 6004 6005 return CP_ACCESS_OK; 6006 } 6007 6008 /* 6009 * Check for traps to RAS registers, which are controlled 6010 * by HCR_EL2.TERR and SCR_EL3.TERR. 6011 */ 6012 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6013 bool isread) 6014 { 6015 int el = arm_current_el(env); 6016 6017 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6018 return CP_ACCESS_TRAP_EL2; 6019 } 6020 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6021 return CP_ACCESS_TRAP_EL3; 6022 } 6023 return CP_ACCESS_OK; 6024 } 6025 6026 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6027 { 6028 int el = arm_current_el(env); 6029 6030 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6031 return env->cp15.vdisr_el2; 6032 } 6033 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6034 return 0; /* RAZ/WI */ 6035 } 6036 return env->cp15.disr_el1; 6037 } 6038 6039 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6040 { 6041 int el = arm_current_el(env); 6042 6043 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6044 env->cp15.vdisr_el2 = val; 6045 return; 6046 } 6047 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6048 return; /* RAZ/WI */ 6049 } 6050 env->cp15.disr_el1 = val; 6051 } 6052 6053 /* 6054 * Minimal RAS implementation with no Error Records. 6055 * Which means that all of the Error Record registers: 6056 * ERXADDR_EL1 6057 * ERXCTLR_EL1 6058 * ERXFR_EL1 6059 * ERXMISC0_EL1 6060 * ERXMISC1_EL1 6061 * ERXMISC2_EL1 6062 * ERXMISC3_EL1 6063 * ERXPFGCDN_EL1 (RASv1p1) 6064 * ERXPFGCTL_EL1 (RASv1p1) 6065 * ERXPFGF_EL1 (RASv1p1) 6066 * ERXSTATUS_EL1 6067 * and 6068 * ERRSELR_EL1 6069 * may generate UNDEFINED, which is the effect we get by not 6070 * listing them at all. 6071 */ 6072 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6073 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6074 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6075 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6076 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6077 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6078 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6079 .access = PL1_R, .accessfn = access_terr, 6080 .type = ARM_CP_CONST, .resetvalue = 0 }, 6081 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6082 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6083 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6084 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6085 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6086 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6087 }; 6088 6089 /* 6090 * Return the exception level to which exceptions should be taken 6091 * via SVEAccessTrap. This excludes the check for whether the exception 6092 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6093 * be found by testing 0 < fp_exception_el < sve_exception_el. 6094 * 6095 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6096 * pseudocode does *not* separate out the FP trap checks, but has them 6097 * all in one function. 6098 */ 6099 int sve_exception_el(CPUARMState *env, int el) 6100 { 6101 #ifndef CONFIG_USER_ONLY 6102 if (el <= 1 && !el_is_in_host(env, el)) { 6103 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6104 case 1: 6105 if (el != 0) { 6106 break; 6107 } 6108 /* fall through */ 6109 case 0: 6110 case 2: 6111 return 1; 6112 } 6113 } 6114 6115 if (el <= 2 && arm_is_el2_enabled(env)) { 6116 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6117 if (env->cp15.hcr_el2 & HCR_E2H) { 6118 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6119 case 1: 6120 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6121 break; 6122 } 6123 /* fall through */ 6124 case 0: 6125 case 2: 6126 return 2; 6127 } 6128 } else { 6129 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6130 return 2; 6131 } 6132 } 6133 } 6134 6135 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6136 if (arm_feature(env, ARM_FEATURE_EL3) 6137 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6138 return 3; 6139 } 6140 #endif 6141 return 0; 6142 } 6143 6144 /* 6145 * Return the exception level to which exceptions should be taken for SME. 6146 * C.f. the ARM pseudocode function CheckSMEAccess. 6147 */ 6148 int sme_exception_el(CPUARMState *env, int el) 6149 { 6150 #ifndef CONFIG_USER_ONLY 6151 if (el <= 1 && !el_is_in_host(env, el)) { 6152 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6153 case 1: 6154 if (el != 0) { 6155 break; 6156 } 6157 /* fall through */ 6158 case 0: 6159 case 2: 6160 return 1; 6161 } 6162 } 6163 6164 if (el <= 2 && arm_is_el2_enabled(env)) { 6165 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6166 if (env->cp15.hcr_el2 & HCR_E2H) { 6167 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6168 case 1: 6169 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6170 break; 6171 } 6172 /* fall through */ 6173 case 0: 6174 case 2: 6175 return 2; 6176 } 6177 } else { 6178 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6179 return 2; 6180 } 6181 } 6182 } 6183 6184 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6185 if (arm_feature(env, ARM_FEATURE_EL3) 6186 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6187 return 3; 6188 } 6189 #endif 6190 return 0; 6191 } 6192 6193 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */ 6194 static bool sme_fa64(CPUARMState *env, int el) 6195 { 6196 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) { 6197 return false; 6198 } 6199 6200 if (el <= 1 && !el_is_in_host(env, el)) { 6201 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) { 6202 return false; 6203 } 6204 } 6205 if (el <= 2 && arm_is_el2_enabled(env)) { 6206 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) { 6207 return false; 6208 } 6209 } 6210 if (arm_feature(env, ARM_FEATURE_EL3)) { 6211 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) { 6212 return false; 6213 } 6214 } 6215 6216 return true; 6217 } 6218 6219 /* 6220 * Given that SVE is enabled, return the vector length for EL. 6221 */ 6222 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6223 { 6224 ARMCPU *cpu = env_archcpu(env); 6225 uint64_t *cr = env->vfp.zcr_el; 6226 uint32_t map = cpu->sve_vq.map; 6227 uint32_t len = ARM_MAX_VQ - 1; 6228 6229 if (sm) { 6230 cr = env->vfp.smcr_el; 6231 map = cpu->sme_vq.map; 6232 } 6233 6234 if (el <= 1 && !el_is_in_host(env, el)) { 6235 len = MIN(len, 0xf & (uint32_t)cr[1]); 6236 } 6237 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6238 len = MIN(len, 0xf & (uint32_t)cr[2]); 6239 } 6240 if (arm_feature(env, ARM_FEATURE_EL3)) { 6241 len = MIN(len, 0xf & (uint32_t)cr[3]); 6242 } 6243 6244 map &= MAKE_64BIT_MASK(0, len + 1); 6245 if (map != 0) { 6246 return 31 - clz32(map); 6247 } 6248 6249 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6250 assert(sm); 6251 return ctz32(cpu->sme_vq.map); 6252 } 6253 6254 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6255 { 6256 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6257 } 6258 6259 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6260 uint64_t value) 6261 { 6262 int cur_el = arm_current_el(env); 6263 int old_len = sve_vqm1_for_el(env, cur_el); 6264 int new_len; 6265 6266 /* Bits other than [3:0] are RAZ/WI. */ 6267 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6268 raw_write(env, ri, value & 0xf); 6269 6270 /* 6271 * Because we arrived here, we know both FP and SVE are enabled; 6272 * otherwise we would have trapped access to the ZCR_ELn register. 6273 */ 6274 new_len = sve_vqm1_for_el(env, cur_el); 6275 if (new_len < old_len) { 6276 aarch64_sve_narrow_vq(env, new_len + 1); 6277 } 6278 } 6279 6280 static const ARMCPRegInfo zcr_reginfo[] = { 6281 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6282 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6283 .access = PL1_RW, .type = ARM_CP_SVE, 6284 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6285 .writefn = zcr_write, .raw_writefn = raw_write }, 6286 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6287 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6288 .access = PL2_RW, .type = ARM_CP_SVE, 6289 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6290 .writefn = zcr_write, .raw_writefn = raw_write }, 6291 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6292 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6293 .access = PL3_RW, .type = ARM_CP_SVE, 6294 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6295 .writefn = zcr_write, .raw_writefn = raw_write }, 6296 }; 6297 6298 #ifdef TARGET_AARCH64 6299 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6300 bool isread) 6301 { 6302 int el = arm_current_el(env); 6303 6304 if (el == 0) { 6305 uint64_t sctlr = arm_sctlr(env, el); 6306 if (!(sctlr & SCTLR_EnTP2)) { 6307 return CP_ACCESS_TRAP; 6308 } 6309 } 6310 /* TODO: FEAT_FGT */ 6311 if (el < 3 6312 && arm_feature(env, ARM_FEATURE_EL3) 6313 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6314 return CP_ACCESS_TRAP_EL3; 6315 } 6316 return CP_ACCESS_OK; 6317 } 6318 6319 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6320 bool isread) 6321 { 6322 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6323 if (arm_current_el(env) < 3 6324 && arm_feature(env, ARM_FEATURE_EL3) 6325 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6326 return CP_ACCESS_TRAP_EL3; 6327 } 6328 return CP_ACCESS_OK; 6329 } 6330 6331 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6332 uint64_t value) 6333 { 6334 helper_set_pstate_sm(env, FIELD_EX64(value, SVCR, SM)); 6335 helper_set_pstate_za(env, FIELD_EX64(value, SVCR, ZA)); 6336 arm_rebuild_hflags(env); 6337 } 6338 6339 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6340 uint64_t value) 6341 { 6342 int cur_el = arm_current_el(env); 6343 int old_len = sve_vqm1_for_el(env, cur_el); 6344 int new_len; 6345 6346 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6347 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6348 raw_write(env, ri, value); 6349 6350 /* 6351 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6352 * when SVL is widened (old values kept, or zeros). Choose to keep the 6353 * current values for simplicity. But for QEMU internals, we must still 6354 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6355 * above aarch64_sve_narrow_vq. 6356 */ 6357 new_len = sve_vqm1_for_el(env, cur_el); 6358 if (new_len < old_len) { 6359 aarch64_sve_narrow_vq(env, new_len + 1); 6360 } 6361 } 6362 6363 static const ARMCPRegInfo sme_reginfo[] = { 6364 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6365 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6366 .access = PL0_RW, .accessfn = access_tpidr2, 6367 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6368 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6369 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6370 .access = PL0_RW, .type = ARM_CP_SME, 6371 .fieldoffset = offsetof(CPUARMState, svcr), 6372 .writefn = svcr_write, .raw_writefn = raw_write }, 6373 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6374 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6375 .access = PL1_RW, .type = ARM_CP_SME, 6376 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6377 .writefn = smcr_write, .raw_writefn = raw_write }, 6378 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6379 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6380 .access = PL2_RW, .type = ARM_CP_SME, 6381 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6382 .writefn = smcr_write, .raw_writefn = raw_write }, 6383 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6384 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6385 .access = PL3_RW, .type = ARM_CP_SME, 6386 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6387 .writefn = smcr_write, .raw_writefn = raw_write }, 6388 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6389 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6390 .access = PL1_R, .accessfn = access_aa64_tid1, 6391 /* 6392 * IMPLEMENTOR = 0 (software) 6393 * REVISION = 0 (implementation defined) 6394 * SMPS = 0 (no streaming execution priority in QEMU) 6395 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6396 */ 6397 .type = ARM_CP_CONST, .resetvalue = 0, }, 6398 /* 6399 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6400 */ 6401 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6402 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6403 .access = PL1_RW, .accessfn = access_esm, 6404 .type = ARM_CP_CONST, .resetvalue = 0 }, 6405 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6406 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6407 .access = PL2_RW, .accessfn = access_esm, 6408 .type = ARM_CP_CONST, .resetvalue = 0 }, 6409 }; 6410 #endif /* TARGET_AARCH64 */ 6411 6412 static void define_pmu_regs(ARMCPU *cpu) 6413 { 6414 /* 6415 * v7 performance monitor control register: same implementor 6416 * field as main ID register, and we implement four counters in 6417 * addition to the cycle count register. 6418 */ 6419 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6420 ARMCPRegInfo pmcr = { 6421 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6422 .access = PL0_RW, 6423 .type = ARM_CP_IO | ARM_CP_ALIAS, 6424 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6425 .accessfn = pmreg_access, .writefn = pmcr_write, 6426 .raw_writefn = raw_write, 6427 }; 6428 ARMCPRegInfo pmcr64 = { 6429 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6430 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6431 .access = PL0_RW, .accessfn = pmreg_access, 6432 .type = ARM_CP_IO, 6433 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6434 .resetvalue = cpu->isar.reset_pmcr_el0, 6435 .writefn = pmcr_write, .raw_writefn = raw_write, 6436 }; 6437 6438 define_one_arm_cp_reg(cpu, &pmcr); 6439 define_one_arm_cp_reg(cpu, &pmcr64); 6440 for (i = 0; i < pmcrn; i++) { 6441 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6442 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6443 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6444 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6445 ARMCPRegInfo pmev_regs[] = { 6446 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6447 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6448 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6449 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6450 .accessfn = pmreg_access_xevcntr }, 6451 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6452 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6453 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6454 .type = ARM_CP_IO, 6455 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6456 .raw_readfn = pmevcntr_rawread, 6457 .raw_writefn = pmevcntr_rawwrite }, 6458 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6459 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6460 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6461 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6462 .accessfn = pmreg_access }, 6463 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6464 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6465 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6466 .type = ARM_CP_IO, 6467 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6468 .raw_writefn = pmevtyper_rawwrite }, 6469 }; 6470 define_arm_cp_regs(cpu, pmev_regs); 6471 g_free(pmevcntr_name); 6472 g_free(pmevcntr_el0_name); 6473 g_free(pmevtyper_name); 6474 g_free(pmevtyper_el0_name); 6475 } 6476 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 6477 ARMCPRegInfo v81_pmu_regs[] = { 6478 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6479 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6480 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6481 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6482 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6483 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6484 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6485 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6486 }; 6487 define_arm_cp_regs(cpu, v81_pmu_regs); 6488 } 6489 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 6490 static const ARMCPRegInfo v84_pmmir = { 6491 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6492 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6493 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6494 .resetvalue = 0 6495 }; 6496 define_one_arm_cp_reg(cpu, &v84_pmmir); 6497 } 6498 } 6499 6500 /* We don't know until after realize whether there's a GICv3 6501 * attached, and that is what registers the gicv3 sysregs. 6502 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6503 * at runtime. 6504 */ 6505 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6506 { 6507 ARMCPU *cpu = env_archcpu(env); 6508 uint64_t pfr1 = cpu->isar.id_pfr1; 6509 6510 if (env->gicv3state) { 6511 pfr1 |= 1 << 28; 6512 } 6513 return pfr1; 6514 } 6515 6516 #ifndef CONFIG_USER_ONLY 6517 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6518 { 6519 ARMCPU *cpu = env_archcpu(env); 6520 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6521 6522 if (env->gicv3state) { 6523 pfr0 |= 1 << 24; 6524 } 6525 return pfr0; 6526 } 6527 #endif 6528 6529 /* Shared logic between LORID and the rest of the LOR* registers. 6530 * Secure state exclusion has already been dealt with. 6531 */ 6532 static CPAccessResult access_lor_ns(CPUARMState *env, 6533 const ARMCPRegInfo *ri, bool isread) 6534 { 6535 int el = arm_current_el(env); 6536 6537 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6538 return CP_ACCESS_TRAP_EL2; 6539 } 6540 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6541 return CP_ACCESS_TRAP_EL3; 6542 } 6543 return CP_ACCESS_OK; 6544 } 6545 6546 static CPAccessResult access_lor_other(CPUARMState *env, 6547 const ARMCPRegInfo *ri, bool isread) 6548 { 6549 if (arm_is_secure_below_el3(env)) { 6550 /* Access denied in secure mode. */ 6551 return CP_ACCESS_TRAP; 6552 } 6553 return access_lor_ns(env, ri, isread); 6554 } 6555 6556 /* 6557 * A trivial implementation of ARMv8.1-LOR leaves all of these 6558 * registers fixed at 0, which indicates that there are zero 6559 * supported Limited Ordering regions. 6560 */ 6561 static const ARMCPRegInfo lor_reginfo[] = { 6562 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6563 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6564 .access = PL1_RW, .accessfn = access_lor_other, 6565 .type = ARM_CP_CONST, .resetvalue = 0 }, 6566 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6567 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6568 .access = PL1_RW, .accessfn = access_lor_other, 6569 .type = ARM_CP_CONST, .resetvalue = 0 }, 6570 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6571 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6572 .access = PL1_RW, .accessfn = access_lor_other, 6573 .type = ARM_CP_CONST, .resetvalue = 0 }, 6574 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6575 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6576 .access = PL1_RW, .accessfn = access_lor_other, 6577 .type = ARM_CP_CONST, .resetvalue = 0 }, 6578 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6579 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6580 .access = PL1_R, .accessfn = access_lor_ns, 6581 .type = ARM_CP_CONST, .resetvalue = 0 }, 6582 }; 6583 6584 #ifdef TARGET_AARCH64 6585 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6586 bool isread) 6587 { 6588 int el = arm_current_el(env); 6589 6590 if (el < 2 && 6591 arm_is_el2_enabled(env) && 6592 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6593 return CP_ACCESS_TRAP_EL2; 6594 } 6595 if (el < 3 && 6596 arm_feature(env, ARM_FEATURE_EL3) && 6597 !(env->cp15.scr_el3 & SCR_APK)) { 6598 return CP_ACCESS_TRAP_EL3; 6599 } 6600 return CP_ACCESS_OK; 6601 } 6602 6603 static const ARMCPRegInfo pauth_reginfo[] = { 6604 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6605 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6606 .access = PL1_RW, .accessfn = access_pauth, 6607 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6608 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6609 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6610 .access = PL1_RW, .accessfn = access_pauth, 6611 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6612 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6613 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6614 .access = PL1_RW, .accessfn = access_pauth, 6615 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6616 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6617 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6618 .access = PL1_RW, .accessfn = access_pauth, 6619 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6620 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6621 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6622 .access = PL1_RW, .accessfn = access_pauth, 6623 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6624 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6625 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6626 .access = PL1_RW, .accessfn = access_pauth, 6627 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6628 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6629 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6630 .access = PL1_RW, .accessfn = access_pauth, 6631 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6632 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6633 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6634 .access = PL1_RW, .accessfn = access_pauth, 6635 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6636 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6637 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6638 .access = PL1_RW, .accessfn = access_pauth, 6639 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6640 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6641 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6642 .access = PL1_RW, .accessfn = access_pauth, 6643 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6644 }; 6645 6646 static const ARMCPRegInfo tlbirange_reginfo[] = { 6647 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6648 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6649 .access = PL1_W, .type = ARM_CP_NO_RAW, 6650 .writefn = tlbi_aa64_rvae1is_write }, 6651 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6652 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6653 .access = PL1_W, .type = ARM_CP_NO_RAW, 6654 .writefn = tlbi_aa64_rvae1is_write }, 6655 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6656 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6657 .access = PL1_W, .type = ARM_CP_NO_RAW, 6658 .writefn = tlbi_aa64_rvae1is_write }, 6659 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6660 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6661 .access = PL1_W, .type = ARM_CP_NO_RAW, 6662 .writefn = tlbi_aa64_rvae1is_write }, 6663 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6664 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6665 .access = PL1_W, .type = ARM_CP_NO_RAW, 6666 .writefn = tlbi_aa64_rvae1is_write }, 6667 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6668 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6669 .access = PL1_W, .type = ARM_CP_NO_RAW, 6670 .writefn = tlbi_aa64_rvae1is_write }, 6671 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6672 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6673 .access = PL1_W, .type = ARM_CP_NO_RAW, 6674 .writefn = tlbi_aa64_rvae1is_write }, 6675 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6676 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6677 .access = PL1_W, .type = ARM_CP_NO_RAW, 6678 .writefn = tlbi_aa64_rvae1is_write }, 6679 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6680 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6681 .access = PL1_W, .type = ARM_CP_NO_RAW, 6682 .writefn = tlbi_aa64_rvae1_write }, 6683 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6684 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6685 .access = PL1_W, .type = ARM_CP_NO_RAW, 6686 .writefn = tlbi_aa64_rvae1_write }, 6687 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6688 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6689 .access = PL1_W, .type = ARM_CP_NO_RAW, 6690 .writefn = tlbi_aa64_rvae1_write }, 6691 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6692 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6693 .access = PL1_W, .type = ARM_CP_NO_RAW, 6694 .writefn = tlbi_aa64_rvae1_write }, 6695 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6696 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6697 .access = PL2_W, .type = ARM_CP_NOP }, 6698 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6699 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6700 .access = PL2_W, .type = ARM_CP_NOP }, 6701 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6702 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6703 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6704 .writefn = tlbi_aa64_rvae2is_write }, 6705 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6706 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6707 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6708 .writefn = tlbi_aa64_rvae2is_write }, 6709 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6710 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6711 .access = PL2_W, .type = ARM_CP_NOP }, 6712 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6713 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6714 .access = PL2_W, .type = ARM_CP_NOP }, 6715 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6716 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6717 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6718 .writefn = tlbi_aa64_rvae2is_write }, 6719 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6720 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6721 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6722 .writefn = tlbi_aa64_rvae2is_write }, 6723 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6724 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6725 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6726 .writefn = tlbi_aa64_rvae2_write }, 6727 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6728 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6729 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6730 .writefn = tlbi_aa64_rvae2_write }, 6731 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6732 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6733 .access = PL3_W, .type = ARM_CP_NO_RAW, 6734 .writefn = tlbi_aa64_rvae3is_write }, 6735 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6736 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6737 .access = PL3_W, .type = ARM_CP_NO_RAW, 6738 .writefn = tlbi_aa64_rvae3is_write }, 6739 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6740 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6741 .access = PL3_W, .type = ARM_CP_NO_RAW, 6742 .writefn = tlbi_aa64_rvae3is_write }, 6743 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6744 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6745 .access = PL3_W, .type = ARM_CP_NO_RAW, 6746 .writefn = tlbi_aa64_rvae3is_write }, 6747 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6748 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6749 .access = PL3_W, .type = ARM_CP_NO_RAW, 6750 .writefn = tlbi_aa64_rvae3_write }, 6751 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6752 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6753 .access = PL3_W, .type = ARM_CP_NO_RAW, 6754 .writefn = tlbi_aa64_rvae3_write }, 6755 }; 6756 6757 static const ARMCPRegInfo tlbios_reginfo[] = { 6758 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6759 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6760 .access = PL1_W, .type = ARM_CP_NO_RAW, 6761 .writefn = tlbi_aa64_vmalle1is_write }, 6762 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6763 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6764 .access = PL1_W, .type = ARM_CP_NO_RAW, 6765 .writefn = tlbi_aa64_vae1is_write }, 6766 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6767 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6768 .access = PL1_W, .type = ARM_CP_NO_RAW, 6769 .writefn = tlbi_aa64_vmalle1is_write }, 6770 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 6771 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 6772 .access = PL1_W, .type = ARM_CP_NO_RAW, 6773 .writefn = tlbi_aa64_vae1is_write }, 6774 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 6775 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 6776 .access = PL1_W, .type = ARM_CP_NO_RAW, 6777 .writefn = tlbi_aa64_vae1is_write }, 6778 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 6779 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 6780 .access = PL1_W, .type = ARM_CP_NO_RAW, 6781 .writefn = tlbi_aa64_vae1is_write }, 6782 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 6783 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 6784 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6785 .writefn = tlbi_aa64_alle2is_write }, 6786 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 6787 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 6788 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6789 .writefn = tlbi_aa64_vae2is_write }, 6790 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 6791 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 6792 .access = PL2_W, .type = ARM_CP_NO_RAW, 6793 .writefn = tlbi_aa64_alle1is_write }, 6794 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 6795 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 6796 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6797 .writefn = tlbi_aa64_vae2is_write }, 6798 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 6799 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 6800 .access = PL2_W, .type = ARM_CP_NO_RAW, 6801 .writefn = tlbi_aa64_alle1is_write }, 6802 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 6803 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 6804 .access = PL2_W, .type = ARM_CP_NOP }, 6805 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 6806 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 6807 .access = PL2_W, .type = ARM_CP_NOP }, 6808 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6809 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 6810 .access = PL2_W, .type = ARM_CP_NOP }, 6811 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6812 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 6813 .access = PL2_W, .type = ARM_CP_NOP }, 6814 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 6815 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 6816 .access = PL3_W, .type = ARM_CP_NO_RAW, 6817 .writefn = tlbi_aa64_alle3is_write }, 6818 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 6819 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 6820 .access = PL3_W, .type = ARM_CP_NO_RAW, 6821 .writefn = tlbi_aa64_vae3is_write }, 6822 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 6823 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 6824 .access = PL3_W, .type = ARM_CP_NO_RAW, 6825 .writefn = tlbi_aa64_vae3is_write }, 6826 }; 6827 6828 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6829 { 6830 Error *err = NULL; 6831 uint64_t ret; 6832 6833 /* Success sets NZCV = 0000. */ 6834 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6835 6836 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6837 /* 6838 * ??? Failed, for unknown reasons in the crypto subsystem. 6839 * The best we can do is log the reason and return the 6840 * timed-out indication to the guest. There is no reason 6841 * we know to expect this failure to be transitory, so the 6842 * guest may well hang retrying the operation. 6843 */ 6844 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6845 ri->name, error_get_pretty(err)); 6846 error_free(err); 6847 6848 env->ZF = 0; /* NZCF = 0100 */ 6849 return 0; 6850 } 6851 return ret; 6852 } 6853 6854 /* We do not support re-seeding, so the two registers operate the same. */ 6855 static const ARMCPRegInfo rndr_reginfo[] = { 6856 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6857 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6858 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6859 .access = PL0_R, .readfn = rndr_readfn }, 6860 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6861 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6862 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6863 .access = PL0_R, .readfn = rndr_readfn }, 6864 }; 6865 6866 #ifndef CONFIG_USER_ONLY 6867 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6868 uint64_t value) 6869 { 6870 ARMCPU *cpu = env_archcpu(env); 6871 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6872 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6873 uint64_t vaddr_in = (uint64_t) value; 6874 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6875 void *haddr; 6876 int mem_idx = cpu_mmu_index(env, false); 6877 6878 /* This won't be crossing page boundaries */ 6879 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6880 if (haddr) { 6881 6882 ram_addr_t offset; 6883 MemoryRegion *mr; 6884 6885 /* RCU lock is already being held */ 6886 mr = memory_region_from_host(haddr, &offset); 6887 6888 if (mr) { 6889 memory_region_writeback(mr, offset, dline_size); 6890 } 6891 } 6892 } 6893 6894 static const ARMCPRegInfo dcpop_reg[] = { 6895 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6896 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6897 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6898 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6899 }; 6900 6901 static const ARMCPRegInfo dcpodp_reg[] = { 6902 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6903 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6904 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6905 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6906 }; 6907 #endif /*CONFIG_USER_ONLY*/ 6908 6909 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 6910 bool isread) 6911 { 6912 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 6913 return CP_ACCESS_TRAP_EL2; 6914 } 6915 6916 return CP_ACCESS_OK; 6917 } 6918 6919 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 6920 bool isread) 6921 { 6922 int el = arm_current_el(env); 6923 6924 if (el < 2 && arm_is_el2_enabled(env)) { 6925 uint64_t hcr = arm_hcr_el2_eff(env); 6926 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 6927 return CP_ACCESS_TRAP_EL2; 6928 } 6929 } 6930 if (el < 3 && 6931 arm_feature(env, ARM_FEATURE_EL3) && 6932 !(env->cp15.scr_el3 & SCR_ATA)) { 6933 return CP_ACCESS_TRAP_EL3; 6934 } 6935 return CP_ACCESS_OK; 6936 } 6937 6938 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 6939 { 6940 return env->pstate & PSTATE_TCO; 6941 } 6942 6943 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6944 { 6945 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 6946 } 6947 6948 static const ARMCPRegInfo mte_reginfo[] = { 6949 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 6950 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 6951 .access = PL1_RW, .accessfn = access_mte, 6952 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 6953 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 6954 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 6955 .access = PL1_RW, .accessfn = access_mte, 6956 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 6957 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 6958 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 6959 .access = PL2_RW, .accessfn = access_mte, 6960 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 6961 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 6962 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 6963 .access = PL3_RW, 6964 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 6965 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 6966 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 6967 .access = PL1_RW, .accessfn = access_mte, 6968 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 6969 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 6970 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 6971 .access = PL1_RW, .accessfn = access_mte, 6972 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 6973 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 6974 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 6975 .access = PL1_R, .accessfn = access_aa64_tid5, 6976 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 6977 { .name = "TCO", .state = ARM_CP_STATE_AA64, 6978 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 6979 .type = ARM_CP_NO_RAW, 6980 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 6981 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 6982 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 6983 .type = ARM_CP_NOP, .access = PL1_W, 6984 .accessfn = aa64_cacheop_poc_access }, 6985 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 6986 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 6987 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6988 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 6989 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 6990 .type = ARM_CP_NOP, .access = PL1_W, 6991 .accessfn = aa64_cacheop_poc_access }, 6992 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 6993 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 6994 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6995 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 6996 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 6997 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6998 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 6999 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7000 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7001 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7002 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7003 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7004 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7005 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7006 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7007 }; 7008 7009 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7010 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7011 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7012 .type = ARM_CP_CONST, .access = PL0_RW, }, 7013 }; 7014 7015 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7016 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7017 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7018 .type = ARM_CP_NOP, .access = PL0_W, 7019 .accessfn = aa64_cacheop_poc_access }, 7020 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7021 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7022 .type = ARM_CP_NOP, .access = PL0_W, 7023 .accessfn = aa64_cacheop_poc_access }, 7024 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7025 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7026 .type = ARM_CP_NOP, .access = PL0_W, 7027 .accessfn = aa64_cacheop_poc_access }, 7028 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7029 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7030 .type = ARM_CP_NOP, .access = PL0_W, 7031 .accessfn = aa64_cacheop_poc_access }, 7032 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7033 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7034 .type = ARM_CP_NOP, .access = PL0_W, 7035 .accessfn = aa64_cacheop_poc_access }, 7036 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7037 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7038 .type = ARM_CP_NOP, .access = PL0_W, 7039 .accessfn = aa64_cacheop_poc_access }, 7040 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7041 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7042 .type = ARM_CP_NOP, .access = PL0_W, 7043 .accessfn = aa64_cacheop_poc_access }, 7044 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7045 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7046 .type = ARM_CP_NOP, .access = PL0_W, 7047 .accessfn = aa64_cacheop_poc_access }, 7048 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7049 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7050 .access = PL0_W, .type = ARM_CP_DC_GVA, 7051 #ifndef CONFIG_USER_ONLY 7052 /* Avoid overhead of an access check that always passes in user-mode */ 7053 .accessfn = aa64_zva_access, 7054 #endif 7055 }, 7056 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7057 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7058 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7059 #ifndef CONFIG_USER_ONLY 7060 /* Avoid overhead of an access check that always passes in user-mode */ 7061 .accessfn = aa64_zva_access, 7062 #endif 7063 }, 7064 }; 7065 7066 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7067 bool isread) 7068 { 7069 uint64_t hcr = arm_hcr_el2_eff(env); 7070 int el = arm_current_el(env); 7071 7072 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7073 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7074 if (hcr & HCR_TGE) { 7075 return CP_ACCESS_TRAP_EL2; 7076 } 7077 return CP_ACCESS_TRAP; 7078 } 7079 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7080 return CP_ACCESS_TRAP_EL2; 7081 } 7082 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7083 return CP_ACCESS_TRAP_EL2; 7084 } 7085 if (el < 3 7086 && arm_feature(env, ARM_FEATURE_EL3) 7087 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7088 return CP_ACCESS_TRAP_EL3; 7089 } 7090 return CP_ACCESS_OK; 7091 } 7092 7093 static const ARMCPRegInfo scxtnum_reginfo[] = { 7094 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7095 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7096 .access = PL0_RW, .accessfn = access_scxtnum, 7097 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7098 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7099 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7100 .access = PL1_RW, .accessfn = access_scxtnum, 7101 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7102 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7103 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7104 .access = PL2_RW, .accessfn = access_scxtnum, 7105 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7106 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7107 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7108 .access = PL3_RW, 7109 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7110 }; 7111 #endif /* TARGET_AARCH64 */ 7112 7113 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7114 bool isread) 7115 { 7116 int el = arm_current_el(env); 7117 7118 if (el == 0) { 7119 uint64_t sctlr = arm_sctlr(env, el); 7120 if (!(sctlr & SCTLR_EnRCTX)) { 7121 return CP_ACCESS_TRAP; 7122 } 7123 } else if (el == 1) { 7124 uint64_t hcr = arm_hcr_el2_eff(env); 7125 if (hcr & HCR_NV) { 7126 return CP_ACCESS_TRAP_EL2; 7127 } 7128 } 7129 return CP_ACCESS_OK; 7130 } 7131 7132 static const ARMCPRegInfo predinv_reginfo[] = { 7133 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7134 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7135 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7136 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7137 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7138 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7139 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7140 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7141 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7142 /* 7143 * Note the AArch32 opcodes have a different OPC1. 7144 */ 7145 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7146 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7147 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7148 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7149 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7150 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7151 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7152 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7153 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7154 }; 7155 7156 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7157 { 7158 /* Read the high 32 bits of the current CCSIDR */ 7159 return extract64(ccsidr_read(env, ri), 32, 32); 7160 } 7161 7162 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7163 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7164 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7165 .access = PL1_R, 7166 .accessfn = access_aa64_tid2, 7167 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7168 }; 7169 7170 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7171 bool isread) 7172 { 7173 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7174 return CP_ACCESS_TRAP_EL2; 7175 } 7176 7177 return CP_ACCESS_OK; 7178 } 7179 7180 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7181 bool isread) 7182 { 7183 if (arm_feature(env, ARM_FEATURE_V8)) { 7184 return access_aa64_tid3(env, ri, isread); 7185 } 7186 7187 return CP_ACCESS_OK; 7188 } 7189 7190 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7191 bool isread) 7192 { 7193 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7194 return CP_ACCESS_TRAP_EL2; 7195 } 7196 7197 return CP_ACCESS_OK; 7198 } 7199 7200 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7201 const ARMCPRegInfo *ri, bool isread) 7202 { 7203 /* 7204 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7205 * in v7A, not in v8A. 7206 */ 7207 if (!arm_feature(env, ARM_FEATURE_V8) && 7208 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7209 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7210 return CP_ACCESS_TRAP_EL2; 7211 } 7212 return CP_ACCESS_OK; 7213 } 7214 7215 static const ARMCPRegInfo jazelle_regs[] = { 7216 { .name = "JIDR", 7217 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7218 .access = PL1_R, .accessfn = access_jazelle, 7219 .type = ARM_CP_CONST, .resetvalue = 0 }, 7220 { .name = "JOSCR", 7221 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7222 .accessfn = access_joscr_jmcr, 7223 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7224 { .name = "JMCR", 7225 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7226 .accessfn = access_joscr_jmcr, 7227 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7228 }; 7229 7230 static const ARMCPRegInfo contextidr_el2 = { 7231 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7232 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7233 .access = PL2_RW, 7234 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7235 }; 7236 7237 static const ARMCPRegInfo vhe_reginfo[] = { 7238 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7239 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7240 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7241 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7242 #ifndef CONFIG_USER_ONLY 7243 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7244 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7245 .fieldoffset = 7246 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7247 .type = ARM_CP_IO, .access = PL2_RW, 7248 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7249 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7250 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7251 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7252 .resetfn = gt_hv_timer_reset, 7253 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7254 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7255 .type = ARM_CP_IO, 7256 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7257 .access = PL2_RW, 7258 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7259 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7260 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7261 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7262 .type = ARM_CP_IO | ARM_CP_ALIAS, 7263 .access = PL2_RW, .accessfn = e2h_access, 7264 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7265 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7266 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7267 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7268 .type = ARM_CP_IO | ARM_CP_ALIAS, 7269 .access = PL2_RW, .accessfn = e2h_access, 7270 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7271 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7272 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7273 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7274 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7275 .access = PL2_RW, .accessfn = e2h_access, 7276 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7277 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7278 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7279 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7280 .access = PL2_RW, .accessfn = e2h_access, 7281 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7282 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7283 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7284 .type = ARM_CP_IO | ARM_CP_ALIAS, 7285 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7286 .access = PL2_RW, .accessfn = e2h_access, 7287 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7288 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7289 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7290 .type = ARM_CP_IO | ARM_CP_ALIAS, 7291 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7292 .access = PL2_RW, .accessfn = e2h_access, 7293 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7294 #endif 7295 }; 7296 7297 #ifndef CONFIG_USER_ONLY 7298 static const ARMCPRegInfo ats1e1_reginfo[] = { 7299 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7300 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7301 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7302 .writefn = ats_write64 }, 7303 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7304 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7305 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7306 .writefn = ats_write64 }, 7307 }; 7308 7309 static const ARMCPRegInfo ats1cp_reginfo[] = { 7310 { .name = "ATS1CPRP", 7311 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7312 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7313 .writefn = ats_write }, 7314 { .name = "ATS1CPWP", 7315 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7316 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7317 .writefn = ats_write }, 7318 }; 7319 #endif 7320 7321 /* 7322 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7323 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7324 * is non-zero, which is never for ARMv7, optionally in ARMv8 7325 * and mandatorily for ARMv8.2 and up. 7326 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7327 * implementation is RAZ/WI we can ignore this detail, as we 7328 * do for ACTLR. 7329 */ 7330 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7331 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7332 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7333 .access = PL1_RW, .accessfn = access_tacr, 7334 .type = ARM_CP_CONST, .resetvalue = 0 }, 7335 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7336 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7337 .access = PL2_RW, .type = ARM_CP_CONST, 7338 .resetvalue = 0 }, 7339 }; 7340 7341 void register_cp_regs_for_features(ARMCPU *cpu) 7342 { 7343 /* Register all the coprocessor registers based on feature bits */ 7344 CPUARMState *env = &cpu->env; 7345 if (arm_feature(env, ARM_FEATURE_M)) { 7346 /* M profile has no coprocessor registers */ 7347 return; 7348 } 7349 7350 define_arm_cp_regs(cpu, cp_reginfo); 7351 if (!arm_feature(env, ARM_FEATURE_V8)) { 7352 /* Must go early as it is full of wildcards that may be 7353 * overridden by later definitions. 7354 */ 7355 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7356 } 7357 7358 if (arm_feature(env, ARM_FEATURE_V6)) { 7359 /* The ID registers all have impdef reset values */ 7360 ARMCPRegInfo v6_idregs[] = { 7361 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7362 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7363 .access = PL1_R, .type = ARM_CP_CONST, 7364 .accessfn = access_aa32_tid3, 7365 .resetvalue = cpu->isar.id_pfr0 }, 7366 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7367 * the value of the GIC field until after we define these regs. 7368 */ 7369 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7370 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7371 .access = PL1_R, .type = ARM_CP_NO_RAW, 7372 .accessfn = access_aa32_tid3, 7373 .readfn = id_pfr1_read, 7374 .writefn = arm_cp_write_ignore }, 7375 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7376 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7377 .access = PL1_R, .type = ARM_CP_CONST, 7378 .accessfn = access_aa32_tid3, 7379 .resetvalue = cpu->isar.id_dfr0 }, 7380 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7381 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7382 .access = PL1_R, .type = ARM_CP_CONST, 7383 .accessfn = access_aa32_tid3, 7384 .resetvalue = cpu->id_afr0 }, 7385 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7386 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7387 .access = PL1_R, .type = ARM_CP_CONST, 7388 .accessfn = access_aa32_tid3, 7389 .resetvalue = cpu->isar.id_mmfr0 }, 7390 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7391 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7392 .access = PL1_R, .type = ARM_CP_CONST, 7393 .accessfn = access_aa32_tid3, 7394 .resetvalue = cpu->isar.id_mmfr1 }, 7395 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7396 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7397 .access = PL1_R, .type = ARM_CP_CONST, 7398 .accessfn = access_aa32_tid3, 7399 .resetvalue = cpu->isar.id_mmfr2 }, 7400 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7401 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7402 .access = PL1_R, .type = ARM_CP_CONST, 7403 .accessfn = access_aa32_tid3, 7404 .resetvalue = cpu->isar.id_mmfr3 }, 7405 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7406 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7407 .access = PL1_R, .type = ARM_CP_CONST, 7408 .accessfn = access_aa32_tid3, 7409 .resetvalue = cpu->isar.id_isar0 }, 7410 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7411 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7412 .access = PL1_R, .type = ARM_CP_CONST, 7413 .accessfn = access_aa32_tid3, 7414 .resetvalue = cpu->isar.id_isar1 }, 7415 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7416 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7417 .access = PL1_R, .type = ARM_CP_CONST, 7418 .accessfn = access_aa32_tid3, 7419 .resetvalue = cpu->isar.id_isar2 }, 7420 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7421 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7422 .access = PL1_R, .type = ARM_CP_CONST, 7423 .accessfn = access_aa32_tid3, 7424 .resetvalue = cpu->isar.id_isar3 }, 7425 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7426 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7427 .access = PL1_R, .type = ARM_CP_CONST, 7428 .accessfn = access_aa32_tid3, 7429 .resetvalue = cpu->isar.id_isar4 }, 7430 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7431 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7432 .access = PL1_R, .type = ARM_CP_CONST, 7433 .accessfn = access_aa32_tid3, 7434 .resetvalue = cpu->isar.id_isar5 }, 7435 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7436 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7437 .access = PL1_R, .type = ARM_CP_CONST, 7438 .accessfn = access_aa32_tid3, 7439 .resetvalue = cpu->isar.id_mmfr4 }, 7440 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7441 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7442 .access = PL1_R, .type = ARM_CP_CONST, 7443 .accessfn = access_aa32_tid3, 7444 .resetvalue = cpu->isar.id_isar6 }, 7445 }; 7446 define_arm_cp_regs(cpu, v6_idregs); 7447 define_arm_cp_regs(cpu, v6_cp_reginfo); 7448 } else { 7449 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7450 } 7451 if (arm_feature(env, ARM_FEATURE_V6K)) { 7452 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7453 } 7454 if (arm_feature(env, ARM_FEATURE_V7MP) && 7455 !arm_feature(env, ARM_FEATURE_PMSA)) { 7456 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7457 } 7458 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7459 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7460 } 7461 if (arm_feature(env, ARM_FEATURE_V7)) { 7462 ARMCPRegInfo clidr = { 7463 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7464 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7465 .access = PL1_R, .type = ARM_CP_CONST, 7466 .accessfn = access_aa64_tid2, 7467 .resetvalue = cpu->clidr 7468 }; 7469 define_one_arm_cp_reg(cpu, &clidr); 7470 define_arm_cp_regs(cpu, v7_cp_reginfo); 7471 define_debug_regs(cpu); 7472 define_pmu_regs(cpu); 7473 } else { 7474 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7475 } 7476 if (arm_feature(env, ARM_FEATURE_V8)) { 7477 /* 7478 * v8 ID registers, which all have impdef reset values. 7479 * Note that within the ID register ranges the unused slots 7480 * must all RAZ, not UNDEF; future architecture versions may 7481 * define new registers here. 7482 * ID registers which are AArch64 views of the AArch32 ID registers 7483 * which already existed in v6 and v7 are handled elsewhere, 7484 * in v6_idregs[]. 7485 */ 7486 int i; 7487 ARMCPRegInfo v8_idregs[] = { 7488 /* 7489 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7490 * emulation because we don't know the right value for the 7491 * GIC field until after we define these regs. 7492 */ 7493 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7494 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7495 .access = PL1_R, 7496 #ifdef CONFIG_USER_ONLY 7497 .type = ARM_CP_CONST, 7498 .resetvalue = cpu->isar.id_aa64pfr0 7499 #else 7500 .type = ARM_CP_NO_RAW, 7501 .accessfn = access_aa64_tid3, 7502 .readfn = id_aa64pfr0_read, 7503 .writefn = arm_cp_write_ignore 7504 #endif 7505 }, 7506 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7507 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7508 .access = PL1_R, .type = ARM_CP_CONST, 7509 .accessfn = access_aa64_tid3, 7510 .resetvalue = cpu->isar.id_aa64pfr1}, 7511 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7512 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7513 .access = PL1_R, .type = ARM_CP_CONST, 7514 .accessfn = access_aa64_tid3, 7515 .resetvalue = 0 }, 7516 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7517 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7518 .access = PL1_R, .type = ARM_CP_CONST, 7519 .accessfn = access_aa64_tid3, 7520 .resetvalue = 0 }, 7521 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7522 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7523 .access = PL1_R, .type = ARM_CP_CONST, 7524 .accessfn = access_aa64_tid3, 7525 .resetvalue = cpu->isar.id_aa64zfr0 }, 7526 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 7527 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7528 .access = PL1_R, .type = ARM_CP_CONST, 7529 .accessfn = access_aa64_tid3, 7530 .resetvalue = cpu->isar.id_aa64smfr0 }, 7531 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7532 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7533 .access = PL1_R, .type = ARM_CP_CONST, 7534 .accessfn = access_aa64_tid3, 7535 .resetvalue = 0 }, 7536 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7537 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7538 .access = PL1_R, .type = ARM_CP_CONST, 7539 .accessfn = access_aa64_tid3, 7540 .resetvalue = 0 }, 7541 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7542 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7543 .access = PL1_R, .type = ARM_CP_CONST, 7544 .accessfn = access_aa64_tid3, 7545 .resetvalue = cpu->isar.id_aa64dfr0 }, 7546 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7547 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7548 .access = PL1_R, .type = ARM_CP_CONST, 7549 .accessfn = access_aa64_tid3, 7550 .resetvalue = cpu->isar.id_aa64dfr1 }, 7551 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7552 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7553 .access = PL1_R, .type = ARM_CP_CONST, 7554 .accessfn = access_aa64_tid3, 7555 .resetvalue = 0 }, 7556 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7557 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7558 .access = PL1_R, .type = ARM_CP_CONST, 7559 .accessfn = access_aa64_tid3, 7560 .resetvalue = 0 }, 7561 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7562 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7563 .access = PL1_R, .type = ARM_CP_CONST, 7564 .accessfn = access_aa64_tid3, 7565 .resetvalue = cpu->id_aa64afr0 }, 7566 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7567 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7568 .access = PL1_R, .type = ARM_CP_CONST, 7569 .accessfn = access_aa64_tid3, 7570 .resetvalue = cpu->id_aa64afr1 }, 7571 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7572 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7573 .access = PL1_R, .type = ARM_CP_CONST, 7574 .accessfn = access_aa64_tid3, 7575 .resetvalue = 0 }, 7576 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7577 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7578 .access = PL1_R, .type = ARM_CP_CONST, 7579 .accessfn = access_aa64_tid3, 7580 .resetvalue = 0 }, 7581 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7582 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7583 .access = PL1_R, .type = ARM_CP_CONST, 7584 .accessfn = access_aa64_tid3, 7585 .resetvalue = cpu->isar.id_aa64isar0 }, 7586 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7588 .access = PL1_R, .type = ARM_CP_CONST, 7589 .accessfn = access_aa64_tid3, 7590 .resetvalue = cpu->isar.id_aa64isar1 }, 7591 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7592 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7593 .access = PL1_R, .type = ARM_CP_CONST, 7594 .accessfn = access_aa64_tid3, 7595 .resetvalue = 0 }, 7596 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7597 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7598 .access = PL1_R, .type = ARM_CP_CONST, 7599 .accessfn = access_aa64_tid3, 7600 .resetvalue = 0 }, 7601 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7602 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7603 .access = PL1_R, .type = ARM_CP_CONST, 7604 .accessfn = access_aa64_tid3, 7605 .resetvalue = 0 }, 7606 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7608 .access = PL1_R, .type = ARM_CP_CONST, 7609 .accessfn = access_aa64_tid3, 7610 .resetvalue = 0 }, 7611 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7612 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7613 .access = PL1_R, .type = ARM_CP_CONST, 7614 .accessfn = access_aa64_tid3, 7615 .resetvalue = 0 }, 7616 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7617 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7618 .access = PL1_R, .type = ARM_CP_CONST, 7619 .accessfn = access_aa64_tid3, 7620 .resetvalue = 0 }, 7621 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7622 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7623 .access = PL1_R, .type = ARM_CP_CONST, 7624 .accessfn = access_aa64_tid3, 7625 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7626 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7627 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7628 .access = PL1_R, .type = ARM_CP_CONST, 7629 .accessfn = access_aa64_tid3, 7630 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7631 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7632 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7633 .access = PL1_R, .type = ARM_CP_CONST, 7634 .accessfn = access_aa64_tid3, 7635 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7636 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7637 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7638 .access = PL1_R, .type = ARM_CP_CONST, 7639 .accessfn = access_aa64_tid3, 7640 .resetvalue = 0 }, 7641 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7642 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7643 .access = PL1_R, .type = ARM_CP_CONST, 7644 .accessfn = access_aa64_tid3, 7645 .resetvalue = 0 }, 7646 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7648 .access = PL1_R, .type = ARM_CP_CONST, 7649 .accessfn = access_aa64_tid3, 7650 .resetvalue = 0 }, 7651 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7653 .access = PL1_R, .type = ARM_CP_CONST, 7654 .accessfn = access_aa64_tid3, 7655 .resetvalue = 0 }, 7656 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7657 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7658 .access = PL1_R, .type = ARM_CP_CONST, 7659 .accessfn = access_aa64_tid3, 7660 .resetvalue = 0 }, 7661 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7662 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7663 .access = PL1_R, .type = ARM_CP_CONST, 7664 .accessfn = access_aa64_tid3, 7665 .resetvalue = cpu->isar.mvfr0 }, 7666 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7667 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7668 .access = PL1_R, .type = ARM_CP_CONST, 7669 .accessfn = access_aa64_tid3, 7670 .resetvalue = cpu->isar.mvfr1 }, 7671 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7672 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7673 .access = PL1_R, .type = ARM_CP_CONST, 7674 .accessfn = access_aa64_tid3, 7675 .resetvalue = cpu->isar.mvfr2 }, 7676 /* 7677 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 7678 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 7679 * as RAZ, since it is in the "reserved for future ID 7680 * registers, RAZ" part of the AArch32 encoding space. 7681 */ 7682 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 7683 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7684 .access = PL1_R, .type = ARM_CP_CONST, 7685 .accessfn = access_aa64_tid3, 7686 .resetvalue = 0 }, 7687 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 7688 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7689 .access = PL1_R, .type = ARM_CP_CONST, 7690 .accessfn = access_aa64_tid3, 7691 .resetvalue = 0 }, 7692 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 7693 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7694 .access = PL1_R, .type = ARM_CP_CONST, 7695 .accessfn = access_aa64_tid3, 7696 .resetvalue = 0 }, 7697 /* 7698 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 7699 * they're also RAZ for AArch64, and in v8 are gradually 7700 * being filled with AArch64-view-of-AArch32-ID-register 7701 * for new ID registers. 7702 */ 7703 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 7704 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7705 .access = PL1_R, .type = ARM_CP_CONST, 7706 .accessfn = access_aa64_tid3, 7707 .resetvalue = 0 }, 7708 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7709 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7710 .access = PL1_R, .type = ARM_CP_CONST, 7711 .accessfn = access_aa64_tid3, 7712 .resetvalue = cpu->isar.id_pfr2 }, 7713 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 7714 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7715 .access = PL1_R, .type = ARM_CP_CONST, 7716 .accessfn = access_aa64_tid3, 7717 .resetvalue = cpu->isar.id_dfr1 }, 7718 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 7719 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7720 .access = PL1_R, .type = ARM_CP_CONST, 7721 .accessfn = access_aa64_tid3, 7722 .resetvalue = cpu->isar.id_mmfr5 }, 7723 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 7724 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7725 .access = PL1_R, .type = ARM_CP_CONST, 7726 .accessfn = access_aa64_tid3, 7727 .resetvalue = 0 }, 7728 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7729 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7730 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7731 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7732 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7733 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7734 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7735 .resetvalue = cpu->pmceid0 }, 7736 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7737 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7738 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7739 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7740 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7741 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7742 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7743 .resetvalue = cpu->pmceid1 }, 7744 }; 7745 #ifdef CONFIG_USER_ONLY 7746 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7747 { .name = "ID_AA64PFR0_EL1", 7748 .exported_bits = 0x000f000f00ff0000, 7749 .fixed_bits = 0x0000000000000011 }, 7750 { .name = "ID_AA64PFR1_EL1", 7751 .exported_bits = 0x00000000000000f0 }, 7752 { .name = "ID_AA64PFR*_EL1_RESERVED", 7753 .is_glob = true }, 7754 { .name = "ID_AA64ZFR0_EL1" }, 7755 { .name = "ID_AA64MMFR0_EL1", 7756 .fixed_bits = 0x00000000ff000000 }, 7757 { .name = "ID_AA64MMFR1_EL1" }, 7758 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7759 .is_glob = true }, 7760 { .name = "ID_AA64DFR0_EL1", 7761 .fixed_bits = 0x0000000000000006 }, 7762 { .name = "ID_AA64DFR1_EL1" }, 7763 { .name = "ID_AA64DFR*_EL1_RESERVED", 7764 .is_glob = true }, 7765 { .name = "ID_AA64AFR*", 7766 .is_glob = true }, 7767 { .name = "ID_AA64ISAR0_EL1", 7768 .exported_bits = 0x00fffffff0fffff0 }, 7769 { .name = "ID_AA64ISAR1_EL1", 7770 .exported_bits = 0x000000f0ffffffff }, 7771 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7772 .is_glob = true }, 7773 }; 7774 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7775 #endif 7776 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7777 if (!arm_feature(env, ARM_FEATURE_EL3) && 7778 !arm_feature(env, ARM_FEATURE_EL2)) { 7779 ARMCPRegInfo rvbar = { 7780 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7781 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7782 .access = PL1_R, 7783 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7784 }; 7785 define_one_arm_cp_reg(cpu, &rvbar); 7786 } 7787 define_arm_cp_regs(cpu, v8_idregs); 7788 define_arm_cp_regs(cpu, v8_cp_reginfo); 7789 7790 for (i = 4; i < 16; i++) { 7791 /* 7792 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 7793 * For pre-v8 cores there are RAZ patterns for these in 7794 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 7795 * v8 extends the "must RAZ" part of the ID register space 7796 * to also cover c0, 0, c{8-15}, {0-7}. 7797 * These are STATE_AA32 because in the AArch64 sysreg space 7798 * c4-c7 is where the AArch64 ID registers live (and we've 7799 * already defined those in v8_idregs[]), and c8-c15 are not 7800 * "must RAZ" for AArch64. 7801 */ 7802 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 7803 ARMCPRegInfo v8_aa32_raz_idregs = { 7804 .name = name, 7805 .state = ARM_CP_STATE_AA32, 7806 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 7807 .access = PL1_R, .type = ARM_CP_CONST, 7808 .accessfn = access_aa64_tid3, 7809 .resetvalue = 0 }; 7810 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 7811 } 7812 } 7813 7814 /* 7815 * Register the base EL2 cpregs. 7816 * Pre v8, these registers are implemented only as part of the 7817 * Virtualization Extensions (EL2 present). Beginning with v8, 7818 * if EL2 is missing but EL3 is enabled, mostly these become 7819 * RES0 from EL3, with some specific exceptions. 7820 */ 7821 if (arm_feature(env, ARM_FEATURE_EL2) 7822 || (arm_feature(env, ARM_FEATURE_EL3) 7823 && arm_feature(env, ARM_FEATURE_V8))) { 7824 uint64_t vmpidr_def = mpidr_read_val(env); 7825 ARMCPRegInfo vpidr_regs[] = { 7826 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7827 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7828 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7829 .resetvalue = cpu->midr, 7830 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7831 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7832 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7833 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7834 .access = PL2_RW, .resetvalue = cpu->midr, 7835 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7836 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7837 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7838 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7839 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7840 .resetvalue = vmpidr_def, 7841 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7842 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7843 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7844 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7845 .access = PL2_RW, .resetvalue = vmpidr_def, 7846 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7847 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7848 }; 7849 /* 7850 * The only field of MDCR_EL2 that has a defined architectural reset 7851 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 7852 */ 7853 ARMCPRegInfo mdcr_el2 = { 7854 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 7855 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 7856 .writefn = mdcr_el2_write, 7857 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 7858 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 7859 }; 7860 define_one_arm_cp_reg(cpu, &mdcr_el2); 7861 define_arm_cp_regs(cpu, vpidr_regs); 7862 define_arm_cp_regs(cpu, el2_cp_reginfo); 7863 if (arm_feature(env, ARM_FEATURE_V8)) { 7864 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7865 } 7866 if (cpu_isar_feature(aa64_sel2, cpu)) { 7867 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7868 } 7869 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7870 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7871 ARMCPRegInfo rvbar = { 7872 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7873 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7874 .access = PL2_R, 7875 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7876 }; 7877 define_one_arm_cp_reg(cpu, &rvbar); 7878 } 7879 } 7880 7881 /* Register the base EL3 cpregs. */ 7882 if (arm_feature(env, ARM_FEATURE_EL3)) { 7883 define_arm_cp_regs(cpu, el3_cp_reginfo); 7884 ARMCPRegInfo el3_regs[] = { 7885 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7886 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7887 .access = PL3_R, 7888 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7889 }, 7890 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7891 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7892 .access = PL3_RW, 7893 .raw_writefn = raw_write, .writefn = sctlr_write, 7894 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7895 .resetvalue = cpu->reset_sctlr }, 7896 }; 7897 7898 define_arm_cp_regs(cpu, el3_regs); 7899 } 7900 /* The behaviour of NSACR is sufficiently various that we don't 7901 * try to describe it in a single reginfo: 7902 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7903 * reads as constant 0xc00 from NS EL1 and NS EL2 7904 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7905 * if v7 without EL3, register doesn't exist 7906 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7907 */ 7908 if (arm_feature(env, ARM_FEATURE_EL3)) { 7909 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7910 static const ARMCPRegInfo nsacr = { 7911 .name = "NSACR", .type = ARM_CP_CONST, 7912 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7913 .access = PL1_RW, .accessfn = nsacr_access, 7914 .resetvalue = 0xc00 7915 }; 7916 define_one_arm_cp_reg(cpu, &nsacr); 7917 } else { 7918 static const ARMCPRegInfo nsacr = { 7919 .name = "NSACR", 7920 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7921 .access = PL3_RW | PL1_R, 7922 .resetvalue = 0, 7923 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7924 }; 7925 define_one_arm_cp_reg(cpu, &nsacr); 7926 } 7927 } else { 7928 if (arm_feature(env, ARM_FEATURE_V8)) { 7929 static const ARMCPRegInfo nsacr = { 7930 .name = "NSACR", .type = ARM_CP_CONST, 7931 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7932 .access = PL1_R, 7933 .resetvalue = 0xc00 7934 }; 7935 define_one_arm_cp_reg(cpu, &nsacr); 7936 } 7937 } 7938 7939 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7940 if (arm_feature(env, ARM_FEATURE_V6)) { 7941 /* PMSAv6 not implemented */ 7942 assert(arm_feature(env, ARM_FEATURE_V7)); 7943 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7944 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7945 } else { 7946 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7947 } 7948 } else { 7949 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7950 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7951 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7952 if (cpu_isar_feature(aa32_hpd, cpu)) { 7953 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7954 } 7955 } 7956 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7957 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7958 } 7959 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7960 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7961 } 7962 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7963 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7964 } 7965 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7966 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7967 } 7968 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7969 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7970 } 7971 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7972 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7973 } 7974 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7975 define_arm_cp_regs(cpu, omap_cp_reginfo); 7976 } 7977 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7978 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7979 } 7980 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7981 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7982 } 7983 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7984 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7985 } 7986 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7987 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7988 } 7989 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7990 define_arm_cp_regs(cpu, jazelle_regs); 7991 } 7992 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7993 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7994 * be read-only (ie write causes UNDEF exception). 7995 */ 7996 { 7997 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7998 /* Pre-v8 MIDR space. 7999 * Note that the MIDR isn't a simple constant register because 8000 * of the TI925 behaviour where writes to another register can 8001 * cause the MIDR value to change. 8002 * 8003 * Unimplemented registers in the c15 0 0 0 space default to 8004 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8005 * and friends override accordingly. 8006 */ 8007 { .name = "MIDR", 8008 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8009 .access = PL1_R, .resetvalue = cpu->midr, 8010 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8011 .readfn = midr_read, 8012 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8013 .type = ARM_CP_OVERRIDE }, 8014 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8015 { .name = "DUMMY", 8016 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8017 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8018 { .name = "DUMMY", 8019 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8020 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8021 { .name = "DUMMY", 8022 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8023 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8024 { .name = "DUMMY", 8025 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8026 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8027 { .name = "DUMMY", 8028 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8029 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8030 }; 8031 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8032 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8033 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8034 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8035 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8036 .readfn = midr_read }, 8037 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8038 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8039 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8040 .access = PL1_R, .resetvalue = cpu->midr }, 8041 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8042 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8043 .access = PL1_R, .resetvalue = cpu->midr }, 8044 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8045 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8046 .access = PL1_R, 8047 .accessfn = access_aa64_tid1, 8048 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8049 }; 8050 ARMCPRegInfo id_cp_reginfo[] = { 8051 /* These are common to v8 and pre-v8 */ 8052 { .name = "CTR", 8053 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8054 .access = PL1_R, .accessfn = ctr_el0_access, 8055 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8056 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8057 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8058 .access = PL0_R, .accessfn = ctr_el0_access, 8059 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8060 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8061 { .name = "TCMTR", 8062 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8063 .access = PL1_R, 8064 .accessfn = access_aa32_tid1, 8065 .type = ARM_CP_CONST, .resetvalue = 0 }, 8066 }; 8067 /* TLBTR is specific to VMSA */ 8068 ARMCPRegInfo id_tlbtr_reginfo = { 8069 .name = "TLBTR", 8070 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8071 .access = PL1_R, 8072 .accessfn = access_aa32_tid1, 8073 .type = ARM_CP_CONST, .resetvalue = 0, 8074 }; 8075 /* MPUIR is specific to PMSA V6+ */ 8076 ARMCPRegInfo id_mpuir_reginfo = { 8077 .name = "MPUIR", 8078 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8079 .access = PL1_R, .type = ARM_CP_CONST, 8080 .resetvalue = cpu->pmsav7_dregion << 8 8081 }; 8082 static const ARMCPRegInfo crn0_wi_reginfo = { 8083 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8084 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8085 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8086 }; 8087 #ifdef CONFIG_USER_ONLY 8088 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8089 { .name = "MIDR_EL1", 8090 .exported_bits = 0x00000000ffffffff }, 8091 { .name = "REVIDR_EL1" }, 8092 }; 8093 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8094 #endif 8095 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8096 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8097 size_t i; 8098 /* Register the blanket "writes ignored" value first to cover the 8099 * whole space. Then update the specific ID registers to allow write 8100 * access, so that they ignore writes rather than causing them to 8101 * UNDEF. 8102 */ 8103 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8104 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8105 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8106 } 8107 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8108 id_cp_reginfo[i].access = PL1_RW; 8109 } 8110 id_mpuir_reginfo.access = PL1_RW; 8111 id_tlbtr_reginfo.access = PL1_RW; 8112 } 8113 if (arm_feature(env, ARM_FEATURE_V8)) { 8114 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8115 } else { 8116 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8117 } 8118 define_arm_cp_regs(cpu, id_cp_reginfo); 8119 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8120 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8121 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8122 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8123 } 8124 } 8125 8126 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8127 ARMCPRegInfo mpidr_cp_reginfo[] = { 8128 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8129 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8130 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8131 }; 8132 #ifdef CONFIG_USER_ONLY 8133 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8134 { .name = "MPIDR_EL1", 8135 .fixed_bits = 0x0000000080000000 }, 8136 }; 8137 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8138 #endif 8139 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8140 } 8141 8142 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8143 ARMCPRegInfo auxcr_reginfo[] = { 8144 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8145 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8146 .access = PL1_RW, .accessfn = access_tacr, 8147 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8148 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8149 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8150 .access = PL2_RW, .type = ARM_CP_CONST, 8151 .resetvalue = 0 }, 8152 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8153 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8154 .access = PL3_RW, .type = ARM_CP_CONST, 8155 .resetvalue = 0 }, 8156 }; 8157 define_arm_cp_regs(cpu, auxcr_reginfo); 8158 if (cpu_isar_feature(aa32_ac2, cpu)) { 8159 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8160 } 8161 } 8162 8163 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8164 /* 8165 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8166 * There are two flavours: 8167 * (1) older 32-bit only cores have a simple 32-bit CBAR 8168 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8169 * 32-bit register visible to AArch32 at a different encoding 8170 * to the "flavour 1" register and with the bits rearranged to 8171 * be able to squash a 64-bit address into the 32-bit view. 8172 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8173 * in future if we support AArch32-only configs of some of the 8174 * AArch64 cores we might need to add a specific feature flag 8175 * to indicate cores with "flavour 2" CBAR. 8176 */ 8177 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8178 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8179 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8180 | extract64(cpu->reset_cbar, 32, 12); 8181 ARMCPRegInfo cbar_reginfo[] = { 8182 { .name = "CBAR", 8183 .type = ARM_CP_CONST, 8184 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8185 .access = PL1_R, .resetvalue = cbar32 }, 8186 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8187 .type = ARM_CP_CONST, 8188 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8189 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8190 }; 8191 /* We don't implement a r/w 64 bit CBAR currently */ 8192 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8193 define_arm_cp_regs(cpu, cbar_reginfo); 8194 } else { 8195 ARMCPRegInfo cbar = { 8196 .name = "CBAR", 8197 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8198 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8199 .fieldoffset = offsetof(CPUARMState, 8200 cp15.c15_config_base_address) 8201 }; 8202 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8203 cbar.access = PL1_R; 8204 cbar.fieldoffset = 0; 8205 cbar.type = ARM_CP_CONST; 8206 } 8207 define_one_arm_cp_reg(cpu, &cbar); 8208 } 8209 } 8210 8211 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8212 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8213 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8214 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8215 .access = PL1_RW, .writefn = vbar_write, 8216 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8217 offsetof(CPUARMState, cp15.vbar_ns) }, 8218 .resetvalue = 0 }, 8219 }; 8220 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8221 } 8222 8223 /* Generic registers whose values depend on the implementation */ 8224 { 8225 ARMCPRegInfo sctlr = { 8226 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8227 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8228 .access = PL1_RW, .accessfn = access_tvm_trvm, 8229 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8230 offsetof(CPUARMState, cp15.sctlr_ns) }, 8231 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8232 .raw_writefn = raw_write, 8233 }; 8234 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8235 /* Normally we would always end the TB on an SCTLR write, but Linux 8236 * arch/arm/mach-pxa/sleep.S expects two instructions following 8237 * an MMU enable to execute from cache. Imitate this behaviour. 8238 */ 8239 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8240 } 8241 define_one_arm_cp_reg(cpu, &sctlr); 8242 } 8243 8244 if (cpu_isar_feature(aa64_lor, cpu)) { 8245 define_arm_cp_regs(cpu, lor_reginfo); 8246 } 8247 if (cpu_isar_feature(aa64_pan, cpu)) { 8248 define_one_arm_cp_reg(cpu, &pan_reginfo); 8249 } 8250 #ifndef CONFIG_USER_ONLY 8251 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8252 define_arm_cp_regs(cpu, ats1e1_reginfo); 8253 } 8254 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8255 define_arm_cp_regs(cpu, ats1cp_reginfo); 8256 } 8257 #endif 8258 if (cpu_isar_feature(aa64_uao, cpu)) { 8259 define_one_arm_cp_reg(cpu, &uao_reginfo); 8260 } 8261 8262 if (cpu_isar_feature(aa64_dit, cpu)) { 8263 define_one_arm_cp_reg(cpu, &dit_reginfo); 8264 } 8265 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8266 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8267 } 8268 if (cpu_isar_feature(any_ras, cpu)) { 8269 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8270 } 8271 8272 if (cpu_isar_feature(aa64_vh, cpu) || 8273 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8274 define_one_arm_cp_reg(cpu, &contextidr_el2); 8275 } 8276 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8277 define_arm_cp_regs(cpu, vhe_reginfo); 8278 } 8279 8280 if (cpu_isar_feature(aa64_sve, cpu)) { 8281 define_arm_cp_regs(cpu, zcr_reginfo); 8282 } 8283 8284 if (cpu_isar_feature(aa64_hcx, cpu)) { 8285 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 8286 } 8287 8288 #ifdef TARGET_AARCH64 8289 if (cpu_isar_feature(aa64_sme, cpu)) { 8290 define_arm_cp_regs(cpu, sme_reginfo); 8291 } 8292 if (cpu_isar_feature(aa64_pauth, cpu)) { 8293 define_arm_cp_regs(cpu, pauth_reginfo); 8294 } 8295 if (cpu_isar_feature(aa64_rndr, cpu)) { 8296 define_arm_cp_regs(cpu, rndr_reginfo); 8297 } 8298 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8299 define_arm_cp_regs(cpu, tlbirange_reginfo); 8300 } 8301 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8302 define_arm_cp_regs(cpu, tlbios_reginfo); 8303 } 8304 #ifndef CONFIG_USER_ONLY 8305 /* Data Cache clean instructions up to PoP */ 8306 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8307 define_one_arm_cp_reg(cpu, dcpop_reg); 8308 8309 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8310 define_one_arm_cp_reg(cpu, dcpodp_reg); 8311 } 8312 } 8313 #endif /*CONFIG_USER_ONLY*/ 8314 8315 /* 8316 * If full MTE is enabled, add all of the system registers. 8317 * If only "instructions available at EL0" are enabled, 8318 * then define only a RAZ/WI version of PSTATE.TCO. 8319 */ 8320 if (cpu_isar_feature(aa64_mte, cpu)) { 8321 define_arm_cp_regs(cpu, mte_reginfo); 8322 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8323 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8324 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8325 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8326 } 8327 8328 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8329 define_arm_cp_regs(cpu, scxtnum_reginfo); 8330 } 8331 #endif 8332 8333 if (cpu_isar_feature(any_predinv, cpu)) { 8334 define_arm_cp_regs(cpu, predinv_reginfo); 8335 } 8336 8337 if (cpu_isar_feature(any_ccidx, cpu)) { 8338 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8339 } 8340 8341 #ifndef CONFIG_USER_ONLY 8342 /* 8343 * Register redirections and aliases must be done last, 8344 * after the registers from the other extensions have been defined. 8345 */ 8346 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8347 define_arm_vh_e2h_redirects_aliases(cpu); 8348 } 8349 #endif 8350 } 8351 8352 /* Sort alphabetically by type name, except for "any". */ 8353 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8354 { 8355 ObjectClass *class_a = (ObjectClass *)a; 8356 ObjectClass *class_b = (ObjectClass *)b; 8357 const char *name_a, *name_b; 8358 8359 name_a = object_class_get_name(class_a); 8360 name_b = object_class_get_name(class_b); 8361 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8362 return 1; 8363 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8364 return -1; 8365 } else { 8366 return strcmp(name_a, name_b); 8367 } 8368 } 8369 8370 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8371 { 8372 ObjectClass *oc = data; 8373 CPUClass *cc = CPU_CLASS(oc); 8374 const char *typename; 8375 char *name; 8376 8377 typename = object_class_get_name(oc); 8378 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8379 if (cc->deprecation_note) { 8380 qemu_printf(" %s (deprecated)\n", name); 8381 } else { 8382 qemu_printf(" %s\n", name); 8383 } 8384 g_free(name); 8385 } 8386 8387 void arm_cpu_list(void) 8388 { 8389 GSList *list; 8390 8391 list = object_class_get_list(TYPE_ARM_CPU, false); 8392 list = g_slist_sort(list, arm_cpu_list_compare); 8393 qemu_printf("Available CPUs:\n"); 8394 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8395 g_slist_free(list); 8396 } 8397 8398 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8399 { 8400 ObjectClass *oc = data; 8401 CpuDefinitionInfoList **cpu_list = user_data; 8402 CpuDefinitionInfo *info; 8403 const char *typename; 8404 8405 typename = object_class_get_name(oc); 8406 info = g_malloc0(sizeof(*info)); 8407 info->name = g_strndup(typename, 8408 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8409 info->q_typename = g_strdup(typename); 8410 8411 QAPI_LIST_PREPEND(*cpu_list, info); 8412 } 8413 8414 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8415 { 8416 CpuDefinitionInfoList *cpu_list = NULL; 8417 GSList *list; 8418 8419 list = object_class_get_list(TYPE_ARM_CPU, false); 8420 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8421 g_slist_free(list); 8422 8423 return cpu_list; 8424 } 8425 8426 /* 8427 * Private utility function for define_one_arm_cp_reg_with_opaque(): 8428 * add a single reginfo struct to the hash table. 8429 */ 8430 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8431 void *opaque, CPState state, 8432 CPSecureState secstate, 8433 int crm, int opc1, int opc2, 8434 const char *name) 8435 { 8436 CPUARMState *env = &cpu->env; 8437 uint32_t key; 8438 ARMCPRegInfo *r2; 8439 bool is64 = r->type & ARM_CP_64BIT; 8440 bool ns = secstate & ARM_CP_SECSTATE_NS; 8441 int cp = r->cp; 8442 size_t name_len; 8443 bool make_const; 8444 8445 switch (state) { 8446 case ARM_CP_STATE_AA32: 8447 /* We assume it is a cp15 register if the .cp field is left unset. */ 8448 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 8449 cp = 15; 8450 } 8451 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 8452 break; 8453 case ARM_CP_STATE_AA64: 8454 /* 8455 * To allow abbreviation of ARMCPRegInfo definitions, we treat 8456 * cp == 0 as equivalent to the value for "standard guest-visible 8457 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 8458 * in their AArch64 view (the .cp value may be non-zero for the 8459 * benefit of the AArch32 view). 8460 */ 8461 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8462 cp = CP_REG_ARM64_SYSREG_CP; 8463 } 8464 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 8465 break; 8466 default: 8467 g_assert_not_reached(); 8468 } 8469 8470 /* Overriding of an existing definition must be explicitly requested. */ 8471 if (!(r->type & ARM_CP_OVERRIDE)) { 8472 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 8473 if (oldreg) { 8474 assert(oldreg->type & ARM_CP_OVERRIDE); 8475 } 8476 } 8477 8478 /* 8479 * Eliminate registers that are not present because the EL is missing. 8480 * Doing this here makes it easier to put all registers for a given 8481 * feature into the same ARMCPRegInfo array and define them all at once. 8482 */ 8483 make_const = false; 8484 if (arm_feature(env, ARM_FEATURE_EL3)) { 8485 /* 8486 * An EL2 register without EL2 but with EL3 is (usually) RES0. 8487 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 8488 */ 8489 int min_el = ctz32(r->access) / 2; 8490 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 8491 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 8492 return; 8493 } 8494 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 8495 } 8496 } else { 8497 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 8498 ? PL2_RW : PL1_RW); 8499 if ((r->access & max_el) == 0) { 8500 return; 8501 } 8502 } 8503 8504 /* Combine cpreg and name into one allocation. */ 8505 name_len = strlen(name) + 1; 8506 r2 = g_malloc(sizeof(*r2) + name_len); 8507 *r2 = *r; 8508 r2->name = memcpy(r2 + 1, name, name_len); 8509 8510 /* 8511 * Update fields to match the instantiation, overwiting wildcards 8512 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 8513 */ 8514 r2->cp = cp; 8515 r2->crm = crm; 8516 r2->opc1 = opc1; 8517 r2->opc2 = opc2; 8518 r2->state = state; 8519 r2->secure = secstate; 8520 if (opaque) { 8521 r2->opaque = opaque; 8522 } 8523 8524 if (make_const) { 8525 /* This should not have been a very special register to begin. */ 8526 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 8527 assert(old_special == 0 || old_special == ARM_CP_NOP); 8528 /* 8529 * Set the special function to CONST, retaining the other flags. 8530 * This is important for e.g. ARM_CP_SVE so that we still 8531 * take the SVE trap if CPTR_EL3.EZ == 0. 8532 */ 8533 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 8534 /* 8535 * Usually, these registers become RES0, but there are a few 8536 * special cases like VPIDR_EL2 which have a constant non-zero 8537 * value with writes ignored. 8538 */ 8539 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 8540 r2->resetvalue = 0; 8541 } 8542 /* 8543 * ARM_CP_CONST has precedence, so removing the callbacks and 8544 * offsets are not strictly necessary, but it is potentially 8545 * less confusing to debug later. 8546 */ 8547 r2->readfn = NULL; 8548 r2->writefn = NULL; 8549 r2->raw_readfn = NULL; 8550 r2->raw_writefn = NULL; 8551 r2->resetfn = NULL; 8552 r2->fieldoffset = 0; 8553 r2->bank_fieldoffsets[0] = 0; 8554 r2->bank_fieldoffsets[1] = 0; 8555 } else { 8556 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 8557 8558 if (isbanked) { 8559 /* 8560 * Register is banked (using both entries in array). 8561 * Overwriting fieldoffset as the array is only used to define 8562 * banked registers but later only fieldoffset is used. 8563 */ 8564 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8565 } 8566 if (state == ARM_CP_STATE_AA32) { 8567 if (isbanked) { 8568 /* 8569 * If the register is banked then we don't need to migrate or 8570 * reset the 32-bit instance in certain cases: 8571 * 8572 * 1) If the register has both 32-bit and 64-bit instances 8573 * then we can count on the 64-bit instance taking care 8574 * of the non-secure bank. 8575 * 2) If ARMv8 is enabled then we can count on a 64-bit 8576 * version taking care of the secure bank. This requires 8577 * that separate 32 and 64-bit definitions are provided. 8578 */ 8579 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8580 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 8581 r2->type |= ARM_CP_ALIAS; 8582 } 8583 } else if ((secstate != r->secure) && !ns) { 8584 /* 8585 * The register is not banked so we only want to allow 8586 * migration of the non-secure instance. 8587 */ 8588 r2->type |= ARM_CP_ALIAS; 8589 } 8590 8591 if (HOST_BIG_ENDIAN && 8592 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 8593 r2->fieldoffset += sizeof(uint32_t); 8594 } 8595 } 8596 } 8597 8598 /* 8599 * By convention, for wildcarded registers only the first 8600 * entry is used for migration; the others are marked as 8601 * ALIAS so we don't try to transfer the register 8602 * multiple times. Special registers (ie NOP/WFI) are 8603 * never migratable and not even raw-accessible. 8604 */ 8605 if (r2->type & ARM_CP_SPECIAL_MASK) { 8606 r2->type |= ARM_CP_NO_RAW; 8607 } 8608 if (((r->crm == CP_ANY) && crm != 0) || 8609 ((r->opc1 == CP_ANY) && opc1 != 0) || 8610 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8611 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8612 } 8613 8614 /* 8615 * Check that raw accesses are either forbidden or handled. Note that 8616 * we can't assert this earlier because the setup of fieldoffset for 8617 * banked registers has to be done first. 8618 */ 8619 if (!(r2->type & ARM_CP_NO_RAW)) { 8620 assert(!raw_accessors_invalid(r2)); 8621 } 8622 8623 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 8624 } 8625 8626 8627 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8628 const ARMCPRegInfo *r, void *opaque) 8629 { 8630 /* Define implementations of coprocessor registers. 8631 * We store these in a hashtable because typically 8632 * there are less than 150 registers in a space which 8633 * is 16*16*16*8*8 = 262144 in size. 8634 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8635 * If a register is defined twice then the second definition is 8636 * used, so this can be used to define some generic registers and 8637 * then override them with implementation specific variations. 8638 * At least one of the original and the second definition should 8639 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8640 * against accidental use. 8641 * 8642 * The state field defines whether the register is to be 8643 * visible in the AArch32 or AArch64 execution state. If the 8644 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8645 * reginfo structure for the AArch32 view, which sees the lower 8646 * 32 bits of the 64 bit register. 8647 * 8648 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8649 * be wildcarded. AArch64 registers are always considered to be 64 8650 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8651 * the register, if any. 8652 */ 8653 int crm, opc1, opc2; 8654 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8655 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8656 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8657 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8658 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8659 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8660 CPState state; 8661 8662 /* 64 bit registers have only CRm and Opc1 fields */ 8663 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8664 /* op0 only exists in the AArch64 encodings */ 8665 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8666 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8667 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8668 /* 8669 * This API is only for Arm's system coprocessors (14 and 15) or 8670 * (M-profile or v7A-and-earlier only) for implementation defined 8671 * coprocessors in the range 0..7. Our decode assumes this, since 8672 * 8..13 can be used for other insns including VFP and Neon. See 8673 * valid_cp() in translate.c. Assert here that we haven't tried 8674 * to use an invalid coprocessor number. 8675 */ 8676 switch (r->state) { 8677 case ARM_CP_STATE_BOTH: 8678 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8679 if (r->cp == 0) { 8680 break; 8681 } 8682 /* fall through */ 8683 case ARM_CP_STATE_AA32: 8684 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8685 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8686 assert(r->cp >= 14 && r->cp <= 15); 8687 } else { 8688 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8689 } 8690 break; 8691 case ARM_CP_STATE_AA64: 8692 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8693 break; 8694 default: 8695 g_assert_not_reached(); 8696 } 8697 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8698 * encodes a minimum access level for the register. We roll this 8699 * runtime check into our general permission check code, so check 8700 * here that the reginfo's specified permissions are strict enough 8701 * to encompass the generic architectural permission check. 8702 */ 8703 if (r->state != ARM_CP_STATE_AA32) { 8704 CPAccessRights mask; 8705 switch (r->opc1) { 8706 case 0: 8707 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8708 mask = PL0U_R | PL1_RW; 8709 break; 8710 case 1: case 2: 8711 /* min_EL EL1 */ 8712 mask = PL1_RW; 8713 break; 8714 case 3: 8715 /* min_EL EL0 */ 8716 mask = PL0_RW; 8717 break; 8718 case 4: 8719 case 5: 8720 /* min_EL EL2 */ 8721 mask = PL2_RW; 8722 break; 8723 case 6: 8724 /* min_EL EL3 */ 8725 mask = PL3_RW; 8726 break; 8727 case 7: 8728 /* min_EL EL1, secure mode only (we don't check the latter) */ 8729 mask = PL1_RW; 8730 break; 8731 default: 8732 /* broken reginfo with out-of-range opc1 */ 8733 g_assert_not_reached(); 8734 } 8735 /* assert our permissions are not too lax (stricter is fine) */ 8736 assert((r->access & ~mask) == 0); 8737 } 8738 8739 /* Check that the register definition has enough info to handle 8740 * reads and writes if they are permitted. 8741 */ 8742 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 8743 if (r->access & PL3_R) { 8744 assert((r->fieldoffset || 8745 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8746 r->readfn); 8747 } 8748 if (r->access & PL3_W) { 8749 assert((r->fieldoffset || 8750 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8751 r->writefn); 8752 } 8753 } 8754 8755 for (crm = crmmin; crm <= crmmax; crm++) { 8756 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8757 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8758 for (state = ARM_CP_STATE_AA32; 8759 state <= ARM_CP_STATE_AA64; state++) { 8760 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8761 continue; 8762 } 8763 if (state == ARM_CP_STATE_AA32) { 8764 /* Under AArch32 CP registers can be common 8765 * (same for secure and non-secure world) or banked. 8766 */ 8767 char *name; 8768 8769 switch (r->secure) { 8770 case ARM_CP_SECSTATE_S: 8771 case ARM_CP_SECSTATE_NS: 8772 add_cpreg_to_hashtable(cpu, r, opaque, state, 8773 r->secure, crm, opc1, opc2, 8774 r->name); 8775 break; 8776 case ARM_CP_SECSTATE_BOTH: 8777 name = g_strdup_printf("%s_S", r->name); 8778 add_cpreg_to_hashtable(cpu, r, opaque, state, 8779 ARM_CP_SECSTATE_S, 8780 crm, opc1, opc2, name); 8781 g_free(name); 8782 add_cpreg_to_hashtable(cpu, r, opaque, state, 8783 ARM_CP_SECSTATE_NS, 8784 crm, opc1, opc2, r->name); 8785 break; 8786 default: 8787 g_assert_not_reached(); 8788 } 8789 } else { 8790 /* AArch64 registers get mapped to non-secure instance 8791 * of AArch32 */ 8792 add_cpreg_to_hashtable(cpu, r, opaque, state, 8793 ARM_CP_SECSTATE_NS, 8794 crm, opc1, opc2, r->name); 8795 } 8796 } 8797 } 8798 } 8799 } 8800 } 8801 8802 /* Define a whole list of registers */ 8803 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 8804 void *opaque, size_t len) 8805 { 8806 size_t i; 8807 for (i = 0; i < len; ++i) { 8808 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 8809 } 8810 } 8811 8812 /* 8813 * Modify ARMCPRegInfo for access from userspace. 8814 * 8815 * This is a data driven modification directed by 8816 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8817 * user-space cannot alter any values and dynamic values pertaining to 8818 * execution state are hidden from user space view anyway. 8819 */ 8820 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 8821 const ARMCPRegUserSpaceInfo *mods, 8822 size_t mods_len) 8823 { 8824 for (size_t mi = 0; mi < mods_len; ++mi) { 8825 const ARMCPRegUserSpaceInfo *m = mods + mi; 8826 GPatternSpec *pat = NULL; 8827 8828 if (m->is_glob) { 8829 pat = g_pattern_spec_new(m->name); 8830 } 8831 for (size_t ri = 0; ri < regs_len; ++ri) { 8832 ARMCPRegInfo *r = regs + ri; 8833 8834 if (pat && g_pattern_match_string(pat, r->name)) { 8835 r->type = ARM_CP_CONST; 8836 r->access = PL0U_R; 8837 r->resetvalue = 0; 8838 /* continue */ 8839 } else if (strcmp(r->name, m->name) == 0) { 8840 r->type = ARM_CP_CONST; 8841 r->access = PL0U_R; 8842 r->resetvalue &= m->exported_bits; 8843 r->resetvalue |= m->fixed_bits; 8844 break; 8845 } 8846 } 8847 if (pat) { 8848 g_pattern_spec_free(pat); 8849 } 8850 } 8851 } 8852 8853 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8854 { 8855 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 8856 } 8857 8858 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8859 uint64_t value) 8860 { 8861 /* Helper coprocessor write function for write-ignore registers */ 8862 } 8863 8864 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8865 { 8866 /* Helper coprocessor write function for read-as-zero registers */ 8867 return 0; 8868 } 8869 8870 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8871 { 8872 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8873 } 8874 8875 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8876 { 8877 /* Return true if it is not valid for us to switch to 8878 * this CPU mode (ie all the UNPREDICTABLE cases in 8879 * the ARM ARM CPSRWriteByInstr pseudocode). 8880 */ 8881 8882 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8883 if (write_type == CPSRWriteByInstr && 8884 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8885 mode == ARM_CPU_MODE_HYP)) { 8886 return 1; 8887 } 8888 8889 switch (mode) { 8890 case ARM_CPU_MODE_USR: 8891 return 0; 8892 case ARM_CPU_MODE_SYS: 8893 case ARM_CPU_MODE_SVC: 8894 case ARM_CPU_MODE_ABT: 8895 case ARM_CPU_MODE_UND: 8896 case ARM_CPU_MODE_IRQ: 8897 case ARM_CPU_MODE_FIQ: 8898 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8899 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8900 */ 8901 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8902 * and CPS are treated as illegal mode changes. 8903 */ 8904 if (write_type == CPSRWriteByInstr && 8905 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8906 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8907 return 1; 8908 } 8909 return 0; 8910 case ARM_CPU_MODE_HYP: 8911 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8912 case ARM_CPU_MODE_MON: 8913 return arm_current_el(env) < 3; 8914 default: 8915 return 1; 8916 } 8917 } 8918 8919 uint32_t cpsr_read(CPUARMState *env) 8920 { 8921 int ZF; 8922 ZF = (env->ZF == 0); 8923 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8924 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8925 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8926 | ((env->condexec_bits & 0xfc) << 8) 8927 | (env->GE << 16) | (env->daif & CPSR_AIF); 8928 } 8929 8930 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8931 CPSRWriteType write_type) 8932 { 8933 uint32_t changed_daif; 8934 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 8935 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 8936 8937 if (mask & CPSR_NZCV) { 8938 env->ZF = (~val) & CPSR_Z; 8939 env->NF = val; 8940 env->CF = (val >> 29) & 1; 8941 env->VF = (val << 3) & 0x80000000; 8942 } 8943 if (mask & CPSR_Q) 8944 env->QF = ((val & CPSR_Q) != 0); 8945 if (mask & CPSR_T) 8946 env->thumb = ((val & CPSR_T) != 0); 8947 if (mask & CPSR_IT_0_1) { 8948 env->condexec_bits &= ~3; 8949 env->condexec_bits |= (val >> 25) & 3; 8950 } 8951 if (mask & CPSR_IT_2_7) { 8952 env->condexec_bits &= 3; 8953 env->condexec_bits |= (val >> 8) & 0xfc; 8954 } 8955 if (mask & CPSR_GE) { 8956 env->GE = (val >> 16) & 0xf; 8957 } 8958 8959 /* In a V7 implementation that includes the security extensions but does 8960 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8961 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8962 * bits respectively. 8963 * 8964 * In a V8 implementation, it is permitted for privileged software to 8965 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8966 */ 8967 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8968 arm_feature(env, ARM_FEATURE_EL3) && 8969 !arm_feature(env, ARM_FEATURE_EL2) && 8970 !arm_is_secure(env)) { 8971 8972 changed_daif = (env->daif ^ val) & mask; 8973 8974 if (changed_daif & CPSR_A) { 8975 /* Check to see if we are allowed to change the masking of async 8976 * abort exceptions from a non-secure state. 8977 */ 8978 if (!(env->cp15.scr_el3 & SCR_AW)) { 8979 qemu_log_mask(LOG_GUEST_ERROR, 8980 "Ignoring attempt to switch CPSR_A flag from " 8981 "non-secure world with SCR.AW bit clear\n"); 8982 mask &= ~CPSR_A; 8983 } 8984 } 8985 8986 if (changed_daif & CPSR_F) { 8987 /* Check to see if we are allowed to change the masking of FIQ 8988 * exceptions from a non-secure state. 8989 */ 8990 if (!(env->cp15.scr_el3 & SCR_FW)) { 8991 qemu_log_mask(LOG_GUEST_ERROR, 8992 "Ignoring attempt to switch CPSR_F flag from " 8993 "non-secure world with SCR.FW bit clear\n"); 8994 mask &= ~CPSR_F; 8995 } 8996 8997 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8998 * If this bit is set software is not allowed to mask 8999 * FIQs, but is allowed to set CPSR_F to 0. 9000 */ 9001 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9002 (val & CPSR_F)) { 9003 qemu_log_mask(LOG_GUEST_ERROR, 9004 "Ignoring attempt to enable CPSR_F flag " 9005 "(non-maskable FIQ [NMFI] support enabled)\n"); 9006 mask &= ~CPSR_F; 9007 } 9008 } 9009 } 9010 9011 env->daif &= ~(CPSR_AIF & mask); 9012 env->daif |= val & CPSR_AIF & mask; 9013 9014 if (write_type != CPSRWriteRaw && 9015 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9016 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9017 /* Note that we can only get here in USR mode if this is a 9018 * gdb stub write; for this case we follow the architectural 9019 * behaviour for guest writes in USR mode of ignoring an attempt 9020 * to switch mode. (Those are caught by translate.c for writes 9021 * triggered by guest instructions.) 9022 */ 9023 mask &= ~CPSR_M; 9024 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9025 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9026 * v7, and has defined behaviour in v8: 9027 * + leave CPSR.M untouched 9028 * + allow changes to the other CPSR fields 9029 * + set PSTATE.IL 9030 * For user changes via the GDB stub, we don't set PSTATE.IL, 9031 * as this would be unnecessarily harsh for a user error. 9032 */ 9033 mask &= ~CPSR_M; 9034 if (write_type != CPSRWriteByGDBStub && 9035 arm_feature(env, ARM_FEATURE_V8)) { 9036 mask |= CPSR_IL; 9037 val |= CPSR_IL; 9038 } 9039 qemu_log_mask(LOG_GUEST_ERROR, 9040 "Illegal AArch32 mode switch attempt from %s to %s\n", 9041 aarch32_mode_name(env->uncached_cpsr), 9042 aarch32_mode_name(val)); 9043 } else { 9044 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9045 write_type == CPSRWriteExceptionReturn ? 9046 "Exception return from AArch32" : 9047 "AArch32 mode switch from", 9048 aarch32_mode_name(env->uncached_cpsr), 9049 aarch32_mode_name(val), env->regs[15]); 9050 switch_mode(env, val & CPSR_M); 9051 } 9052 } 9053 mask &= ~CACHED_CPSR_BITS; 9054 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9055 if (rebuild_hflags) { 9056 arm_rebuild_hflags(env); 9057 } 9058 } 9059 9060 /* Sign/zero extend */ 9061 uint32_t HELPER(sxtb16)(uint32_t x) 9062 { 9063 uint32_t res; 9064 res = (uint16_t)(int8_t)x; 9065 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9066 return res; 9067 } 9068 9069 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9070 { 9071 /* 9072 * Take a division-by-zero exception if necessary; otherwise return 9073 * to get the usual non-trapping division behaviour (result of 0) 9074 */ 9075 if (arm_feature(env, ARM_FEATURE_M) 9076 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9077 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9078 } 9079 } 9080 9081 uint32_t HELPER(uxtb16)(uint32_t x) 9082 { 9083 uint32_t res; 9084 res = (uint16_t)(uint8_t)x; 9085 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9086 return res; 9087 } 9088 9089 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9090 { 9091 if (den == 0) { 9092 handle_possible_div0_trap(env, GETPC()); 9093 return 0; 9094 } 9095 if (num == INT_MIN && den == -1) { 9096 return INT_MIN; 9097 } 9098 return num / den; 9099 } 9100 9101 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9102 { 9103 if (den == 0) { 9104 handle_possible_div0_trap(env, GETPC()); 9105 return 0; 9106 } 9107 return num / den; 9108 } 9109 9110 uint32_t HELPER(rbit)(uint32_t x) 9111 { 9112 return revbit32(x); 9113 } 9114 9115 #ifdef CONFIG_USER_ONLY 9116 9117 static void switch_mode(CPUARMState *env, int mode) 9118 { 9119 ARMCPU *cpu = env_archcpu(env); 9120 9121 if (mode != ARM_CPU_MODE_USR) { 9122 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9123 } 9124 } 9125 9126 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9127 uint32_t cur_el, bool secure) 9128 { 9129 return 1; 9130 } 9131 9132 void aarch64_sync_64_to_32(CPUARMState *env) 9133 { 9134 g_assert_not_reached(); 9135 } 9136 9137 #else 9138 9139 static void switch_mode(CPUARMState *env, int mode) 9140 { 9141 int old_mode; 9142 int i; 9143 9144 old_mode = env->uncached_cpsr & CPSR_M; 9145 if (mode == old_mode) 9146 return; 9147 9148 if (old_mode == ARM_CPU_MODE_FIQ) { 9149 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9150 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9151 } else if (mode == ARM_CPU_MODE_FIQ) { 9152 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9153 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9154 } 9155 9156 i = bank_number(old_mode); 9157 env->banked_r13[i] = env->regs[13]; 9158 env->banked_spsr[i] = env->spsr; 9159 9160 i = bank_number(mode); 9161 env->regs[13] = env->banked_r13[i]; 9162 env->spsr = env->banked_spsr[i]; 9163 9164 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9165 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9166 } 9167 9168 /* Physical Interrupt Target EL Lookup Table 9169 * 9170 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9171 * 9172 * The below multi-dimensional table is used for looking up the target 9173 * exception level given numerous condition criteria. Specifically, the 9174 * target EL is based on SCR and HCR routing controls as well as the 9175 * currently executing EL and secure state. 9176 * 9177 * Dimensions: 9178 * target_el_table[2][2][2][2][2][4] 9179 * | | | | | +--- Current EL 9180 * | | | | +------ Non-secure(0)/Secure(1) 9181 * | | | +--------- HCR mask override 9182 * | | +------------ SCR exec state control 9183 * | +--------------- SCR mask override 9184 * +------------------ 32-bit(0)/64-bit(1) EL3 9185 * 9186 * The table values are as such: 9187 * 0-3 = EL0-EL3 9188 * -1 = Cannot occur 9189 * 9190 * The ARM ARM target EL table includes entries indicating that an "exception 9191 * is not taken". The two cases where this is applicable are: 9192 * 1) An exception is taken from EL3 but the SCR does not have the exception 9193 * routed to EL3. 9194 * 2) An exception is taken from EL2 but the HCR does not have the exception 9195 * routed to EL2. 9196 * In these two cases, the below table contain a target of EL1. This value is 9197 * returned as it is expected that the consumer of the table data will check 9198 * for "target EL >= current EL" to ensure the exception is not taken. 9199 * 9200 * SCR HCR 9201 * 64 EA AMO From 9202 * BIT IRQ IMO Non-secure Secure 9203 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9204 */ 9205 static const int8_t target_el_table[2][2][2][2][2][4] = { 9206 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9207 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9208 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9209 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9210 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9211 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9212 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9213 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9214 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9215 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9216 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9217 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9218 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9219 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9220 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9221 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9222 }; 9223 9224 /* 9225 * Determine the target EL for physical exceptions 9226 */ 9227 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9228 uint32_t cur_el, bool secure) 9229 { 9230 CPUARMState *env = cs->env_ptr; 9231 bool rw; 9232 bool scr; 9233 bool hcr; 9234 int target_el; 9235 /* Is the highest EL AArch64? */ 9236 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9237 uint64_t hcr_el2; 9238 9239 if (arm_feature(env, ARM_FEATURE_EL3)) { 9240 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9241 } else { 9242 /* Either EL2 is the highest EL (and so the EL2 register width 9243 * is given by is64); or there is no EL2 or EL3, in which case 9244 * the value of 'rw' does not affect the table lookup anyway. 9245 */ 9246 rw = is64; 9247 } 9248 9249 hcr_el2 = arm_hcr_el2_eff(env); 9250 switch (excp_idx) { 9251 case EXCP_IRQ: 9252 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9253 hcr = hcr_el2 & HCR_IMO; 9254 break; 9255 case EXCP_FIQ: 9256 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9257 hcr = hcr_el2 & HCR_FMO; 9258 break; 9259 default: 9260 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9261 hcr = hcr_el2 & HCR_AMO; 9262 break; 9263 }; 9264 9265 /* 9266 * For these purposes, TGE and AMO/IMO/FMO both force the 9267 * interrupt to EL2. Fold TGE into the bit extracted above. 9268 */ 9269 hcr |= (hcr_el2 & HCR_TGE) != 0; 9270 9271 /* Perform a table-lookup for the target EL given the current state */ 9272 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9273 9274 assert(target_el > 0); 9275 9276 return target_el; 9277 } 9278 9279 void arm_log_exception(CPUState *cs) 9280 { 9281 int idx = cs->exception_index; 9282 9283 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9284 const char *exc = NULL; 9285 static const char * const excnames[] = { 9286 [EXCP_UDEF] = "Undefined Instruction", 9287 [EXCP_SWI] = "SVC", 9288 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9289 [EXCP_DATA_ABORT] = "Data Abort", 9290 [EXCP_IRQ] = "IRQ", 9291 [EXCP_FIQ] = "FIQ", 9292 [EXCP_BKPT] = "Breakpoint", 9293 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9294 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9295 [EXCP_HVC] = "Hypervisor Call", 9296 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9297 [EXCP_SMC] = "Secure Monitor Call", 9298 [EXCP_VIRQ] = "Virtual IRQ", 9299 [EXCP_VFIQ] = "Virtual FIQ", 9300 [EXCP_SEMIHOST] = "Semihosting call", 9301 [EXCP_NOCP] = "v7M NOCP UsageFault", 9302 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9303 [EXCP_STKOF] = "v8M STKOF UsageFault", 9304 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9305 [EXCP_LSERR] = "v8M LSERR UsageFault", 9306 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9307 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9308 [EXCP_VSERR] = "Virtual SERR", 9309 }; 9310 9311 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9312 exc = excnames[idx]; 9313 } 9314 if (!exc) { 9315 exc = "unknown"; 9316 } 9317 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9318 idx, exc, cs->cpu_index); 9319 } 9320 } 9321 9322 /* 9323 * Function used to synchronize QEMU's AArch64 register set with AArch32 9324 * register set. This is necessary when switching between AArch32 and AArch64 9325 * execution state. 9326 */ 9327 void aarch64_sync_32_to_64(CPUARMState *env) 9328 { 9329 int i; 9330 uint32_t mode = env->uncached_cpsr & CPSR_M; 9331 9332 /* We can blanket copy R[0:7] to X[0:7] */ 9333 for (i = 0; i < 8; i++) { 9334 env->xregs[i] = env->regs[i]; 9335 } 9336 9337 /* 9338 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9339 * Otherwise, they come from the banked user regs. 9340 */ 9341 if (mode == ARM_CPU_MODE_FIQ) { 9342 for (i = 8; i < 13; i++) { 9343 env->xregs[i] = env->usr_regs[i - 8]; 9344 } 9345 } else { 9346 for (i = 8; i < 13; i++) { 9347 env->xregs[i] = env->regs[i]; 9348 } 9349 } 9350 9351 /* 9352 * Registers x13-x23 are the various mode SP and FP registers. Registers 9353 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9354 * from the mode banked register. 9355 */ 9356 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9357 env->xregs[13] = env->regs[13]; 9358 env->xregs[14] = env->regs[14]; 9359 } else { 9360 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9361 /* HYP is an exception in that it is copied from r14 */ 9362 if (mode == ARM_CPU_MODE_HYP) { 9363 env->xregs[14] = env->regs[14]; 9364 } else { 9365 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9366 } 9367 } 9368 9369 if (mode == ARM_CPU_MODE_HYP) { 9370 env->xregs[15] = env->regs[13]; 9371 } else { 9372 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9373 } 9374 9375 if (mode == ARM_CPU_MODE_IRQ) { 9376 env->xregs[16] = env->regs[14]; 9377 env->xregs[17] = env->regs[13]; 9378 } else { 9379 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9380 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9381 } 9382 9383 if (mode == ARM_CPU_MODE_SVC) { 9384 env->xregs[18] = env->regs[14]; 9385 env->xregs[19] = env->regs[13]; 9386 } else { 9387 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9388 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9389 } 9390 9391 if (mode == ARM_CPU_MODE_ABT) { 9392 env->xregs[20] = env->regs[14]; 9393 env->xregs[21] = env->regs[13]; 9394 } else { 9395 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9396 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9397 } 9398 9399 if (mode == ARM_CPU_MODE_UND) { 9400 env->xregs[22] = env->regs[14]; 9401 env->xregs[23] = env->regs[13]; 9402 } else { 9403 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9404 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9405 } 9406 9407 /* 9408 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9409 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9410 * FIQ bank for r8-r14. 9411 */ 9412 if (mode == ARM_CPU_MODE_FIQ) { 9413 for (i = 24; i < 31; i++) { 9414 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9415 } 9416 } else { 9417 for (i = 24; i < 29; i++) { 9418 env->xregs[i] = env->fiq_regs[i - 24]; 9419 } 9420 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9421 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9422 } 9423 9424 env->pc = env->regs[15]; 9425 } 9426 9427 /* 9428 * Function used to synchronize QEMU's AArch32 register set with AArch64 9429 * register set. This is necessary when switching between AArch32 and AArch64 9430 * execution state. 9431 */ 9432 void aarch64_sync_64_to_32(CPUARMState *env) 9433 { 9434 int i; 9435 uint32_t mode = env->uncached_cpsr & CPSR_M; 9436 9437 /* We can blanket copy X[0:7] to R[0:7] */ 9438 for (i = 0; i < 8; i++) { 9439 env->regs[i] = env->xregs[i]; 9440 } 9441 9442 /* 9443 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9444 * Otherwise, we copy x8-x12 into the banked user regs. 9445 */ 9446 if (mode == ARM_CPU_MODE_FIQ) { 9447 for (i = 8; i < 13; i++) { 9448 env->usr_regs[i - 8] = env->xregs[i]; 9449 } 9450 } else { 9451 for (i = 8; i < 13; i++) { 9452 env->regs[i] = env->xregs[i]; 9453 } 9454 } 9455 9456 /* 9457 * Registers r13 & r14 depend on the current mode. 9458 * If we are in a given mode, we copy the corresponding x registers to r13 9459 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9460 * for the mode. 9461 */ 9462 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9463 env->regs[13] = env->xregs[13]; 9464 env->regs[14] = env->xregs[14]; 9465 } else { 9466 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9467 9468 /* 9469 * HYP is an exception in that it does not have its own banked r14 but 9470 * shares the USR r14 9471 */ 9472 if (mode == ARM_CPU_MODE_HYP) { 9473 env->regs[14] = env->xregs[14]; 9474 } else { 9475 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9476 } 9477 } 9478 9479 if (mode == ARM_CPU_MODE_HYP) { 9480 env->regs[13] = env->xregs[15]; 9481 } else { 9482 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9483 } 9484 9485 if (mode == ARM_CPU_MODE_IRQ) { 9486 env->regs[14] = env->xregs[16]; 9487 env->regs[13] = env->xregs[17]; 9488 } else { 9489 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9490 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9491 } 9492 9493 if (mode == ARM_CPU_MODE_SVC) { 9494 env->regs[14] = env->xregs[18]; 9495 env->regs[13] = env->xregs[19]; 9496 } else { 9497 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9498 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9499 } 9500 9501 if (mode == ARM_CPU_MODE_ABT) { 9502 env->regs[14] = env->xregs[20]; 9503 env->regs[13] = env->xregs[21]; 9504 } else { 9505 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9506 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9507 } 9508 9509 if (mode == ARM_CPU_MODE_UND) { 9510 env->regs[14] = env->xregs[22]; 9511 env->regs[13] = env->xregs[23]; 9512 } else { 9513 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9514 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9515 } 9516 9517 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9518 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9519 * FIQ bank for r8-r14. 9520 */ 9521 if (mode == ARM_CPU_MODE_FIQ) { 9522 for (i = 24; i < 31; i++) { 9523 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9524 } 9525 } else { 9526 for (i = 24; i < 29; i++) { 9527 env->fiq_regs[i - 24] = env->xregs[i]; 9528 } 9529 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9530 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9531 } 9532 9533 env->regs[15] = env->pc; 9534 } 9535 9536 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9537 uint32_t mask, uint32_t offset, 9538 uint32_t newpc) 9539 { 9540 int new_el; 9541 9542 /* Change the CPU state so as to actually take the exception. */ 9543 switch_mode(env, new_mode); 9544 9545 /* 9546 * For exceptions taken to AArch32 we must clear the SS bit in both 9547 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9548 */ 9549 env->pstate &= ~PSTATE_SS; 9550 env->spsr = cpsr_read(env); 9551 /* Clear IT bits. */ 9552 env->condexec_bits = 0; 9553 /* Switch to the new mode, and to the correct instruction set. */ 9554 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9555 9556 /* This must be after mode switching. */ 9557 new_el = arm_current_el(env); 9558 9559 /* Set new mode endianness */ 9560 env->uncached_cpsr &= ~CPSR_E; 9561 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9562 env->uncached_cpsr |= CPSR_E; 9563 } 9564 /* J and IL must always be cleared for exception entry */ 9565 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9566 env->daif |= mask; 9567 9568 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9569 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9570 env->uncached_cpsr |= CPSR_SSBS; 9571 } else { 9572 env->uncached_cpsr &= ~CPSR_SSBS; 9573 } 9574 } 9575 9576 if (new_mode == ARM_CPU_MODE_HYP) { 9577 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9578 env->elr_el[2] = env->regs[15]; 9579 } else { 9580 /* CPSR.PAN is normally preserved preserved unless... */ 9581 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9582 switch (new_el) { 9583 case 3: 9584 if (!arm_is_secure_below_el3(env)) { 9585 /* ... the target is EL3, from non-secure state. */ 9586 env->uncached_cpsr &= ~CPSR_PAN; 9587 break; 9588 } 9589 /* ... the target is EL3, from secure state ... */ 9590 /* fall through */ 9591 case 1: 9592 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9593 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9594 env->uncached_cpsr |= CPSR_PAN; 9595 } 9596 break; 9597 } 9598 } 9599 /* 9600 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9601 * and we should just guard the thumb mode on V4 9602 */ 9603 if (arm_feature(env, ARM_FEATURE_V4T)) { 9604 env->thumb = 9605 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9606 } 9607 env->regs[14] = env->regs[15] + offset; 9608 } 9609 env->regs[15] = newpc; 9610 arm_rebuild_hflags(env); 9611 } 9612 9613 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9614 { 9615 /* 9616 * Handle exception entry to Hyp mode; this is sufficiently 9617 * different to entry to other AArch32 modes that we handle it 9618 * separately here. 9619 * 9620 * The vector table entry used is always the 0x14 Hyp mode entry point, 9621 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9622 * The offset applied to the preferred return address is always zero 9623 * (see DDI0487C.a section G1.12.3). 9624 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9625 */ 9626 uint32_t addr, mask; 9627 ARMCPU *cpu = ARM_CPU(cs); 9628 CPUARMState *env = &cpu->env; 9629 9630 switch (cs->exception_index) { 9631 case EXCP_UDEF: 9632 addr = 0x04; 9633 break; 9634 case EXCP_SWI: 9635 addr = 0x08; 9636 break; 9637 case EXCP_BKPT: 9638 /* Fall through to prefetch abort. */ 9639 case EXCP_PREFETCH_ABORT: 9640 env->cp15.ifar_s = env->exception.vaddress; 9641 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9642 (uint32_t)env->exception.vaddress); 9643 addr = 0x0c; 9644 break; 9645 case EXCP_DATA_ABORT: 9646 env->cp15.dfar_s = env->exception.vaddress; 9647 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9648 (uint32_t)env->exception.vaddress); 9649 addr = 0x10; 9650 break; 9651 case EXCP_IRQ: 9652 addr = 0x18; 9653 break; 9654 case EXCP_FIQ: 9655 addr = 0x1c; 9656 break; 9657 case EXCP_HVC: 9658 addr = 0x08; 9659 break; 9660 case EXCP_HYP_TRAP: 9661 addr = 0x14; 9662 break; 9663 default: 9664 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9665 } 9666 9667 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9668 if (!arm_feature(env, ARM_FEATURE_V8)) { 9669 /* 9670 * QEMU syndrome values are v8-style. v7 has the IL bit 9671 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9672 * If this is a v7 CPU, squash the IL bit in those cases. 9673 */ 9674 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9675 (cs->exception_index == EXCP_DATA_ABORT && 9676 !(env->exception.syndrome & ARM_EL_ISV)) || 9677 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9678 env->exception.syndrome &= ~ARM_EL_IL; 9679 } 9680 } 9681 env->cp15.esr_el[2] = env->exception.syndrome; 9682 } 9683 9684 if (arm_current_el(env) != 2 && addr < 0x14) { 9685 addr = 0x14; 9686 } 9687 9688 mask = 0; 9689 if (!(env->cp15.scr_el3 & SCR_EA)) { 9690 mask |= CPSR_A; 9691 } 9692 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9693 mask |= CPSR_I; 9694 } 9695 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9696 mask |= CPSR_F; 9697 } 9698 9699 addr += env->cp15.hvbar; 9700 9701 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9702 } 9703 9704 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9705 { 9706 ARMCPU *cpu = ARM_CPU(cs); 9707 CPUARMState *env = &cpu->env; 9708 uint32_t addr; 9709 uint32_t mask; 9710 int new_mode; 9711 uint32_t offset; 9712 uint32_t moe; 9713 9714 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9715 switch (syn_get_ec(env->exception.syndrome)) { 9716 case EC_BREAKPOINT: 9717 case EC_BREAKPOINT_SAME_EL: 9718 moe = 1; 9719 break; 9720 case EC_WATCHPOINT: 9721 case EC_WATCHPOINT_SAME_EL: 9722 moe = 10; 9723 break; 9724 case EC_AA32_BKPT: 9725 moe = 3; 9726 break; 9727 case EC_VECTORCATCH: 9728 moe = 5; 9729 break; 9730 default: 9731 moe = 0; 9732 break; 9733 } 9734 9735 if (moe) { 9736 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9737 } 9738 9739 if (env->exception.target_el == 2) { 9740 arm_cpu_do_interrupt_aarch32_hyp(cs); 9741 return; 9742 } 9743 9744 switch (cs->exception_index) { 9745 case EXCP_UDEF: 9746 new_mode = ARM_CPU_MODE_UND; 9747 addr = 0x04; 9748 mask = CPSR_I; 9749 if (env->thumb) 9750 offset = 2; 9751 else 9752 offset = 4; 9753 break; 9754 case EXCP_SWI: 9755 new_mode = ARM_CPU_MODE_SVC; 9756 addr = 0x08; 9757 mask = CPSR_I; 9758 /* The PC already points to the next instruction. */ 9759 offset = 0; 9760 break; 9761 case EXCP_BKPT: 9762 /* Fall through to prefetch abort. */ 9763 case EXCP_PREFETCH_ABORT: 9764 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9765 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9766 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9767 env->exception.fsr, (uint32_t)env->exception.vaddress); 9768 new_mode = ARM_CPU_MODE_ABT; 9769 addr = 0x0c; 9770 mask = CPSR_A | CPSR_I; 9771 offset = 4; 9772 break; 9773 case EXCP_DATA_ABORT: 9774 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9775 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9776 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9777 env->exception.fsr, 9778 (uint32_t)env->exception.vaddress); 9779 new_mode = ARM_CPU_MODE_ABT; 9780 addr = 0x10; 9781 mask = CPSR_A | CPSR_I; 9782 offset = 8; 9783 break; 9784 case EXCP_IRQ: 9785 new_mode = ARM_CPU_MODE_IRQ; 9786 addr = 0x18; 9787 /* Disable IRQ and imprecise data aborts. */ 9788 mask = CPSR_A | CPSR_I; 9789 offset = 4; 9790 if (env->cp15.scr_el3 & SCR_IRQ) { 9791 /* IRQ routed to monitor mode */ 9792 new_mode = ARM_CPU_MODE_MON; 9793 mask |= CPSR_F; 9794 } 9795 break; 9796 case EXCP_FIQ: 9797 new_mode = ARM_CPU_MODE_FIQ; 9798 addr = 0x1c; 9799 /* Disable FIQ, IRQ and imprecise data aborts. */ 9800 mask = CPSR_A | CPSR_I | CPSR_F; 9801 if (env->cp15.scr_el3 & SCR_FIQ) { 9802 /* FIQ routed to monitor mode */ 9803 new_mode = ARM_CPU_MODE_MON; 9804 } 9805 offset = 4; 9806 break; 9807 case EXCP_VIRQ: 9808 new_mode = ARM_CPU_MODE_IRQ; 9809 addr = 0x18; 9810 /* Disable IRQ and imprecise data aborts. */ 9811 mask = CPSR_A | CPSR_I; 9812 offset = 4; 9813 break; 9814 case EXCP_VFIQ: 9815 new_mode = ARM_CPU_MODE_FIQ; 9816 addr = 0x1c; 9817 /* Disable FIQ, IRQ and imprecise data aborts. */ 9818 mask = CPSR_A | CPSR_I | CPSR_F; 9819 offset = 4; 9820 break; 9821 case EXCP_VSERR: 9822 { 9823 /* 9824 * Note that this is reported as a data abort, but the DFAR 9825 * has an UNKNOWN value. Construct the SError syndrome from 9826 * AET and ExT fields. 9827 */ 9828 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 9829 9830 if (extended_addresses_enabled(env)) { 9831 env->exception.fsr = arm_fi_to_lfsc(&fi); 9832 } else { 9833 env->exception.fsr = arm_fi_to_sfsc(&fi); 9834 } 9835 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 9836 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9837 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 9838 env->exception.fsr); 9839 9840 new_mode = ARM_CPU_MODE_ABT; 9841 addr = 0x10; 9842 mask = CPSR_A | CPSR_I; 9843 offset = 8; 9844 } 9845 break; 9846 case EXCP_SMC: 9847 new_mode = ARM_CPU_MODE_MON; 9848 addr = 0x08; 9849 mask = CPSR_A | CPSR_I | CPSR_F; 9850 offset = 0; 9851 break; 9852 default: 9853 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9854 return; /* Never happens. Keep compiler happy. */ 9855 } 9856 9857 if (new_mode == ARM_CPU_MODE_MON) { 9858 addr += env->cp15.mvbar; 9859 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9860 /* High vectors. When enabled, base address cannot be remapped. */ 9861 addr += 0xffff0000; 9862 } else { 9863 /* ARM v7 architectures provide a vector base address register to remap 9864 * the interrupt vector table. 9865 * This register is only followed in non-monitor mode, and is banked. 9866 * Note: only bits 31:5 are valid. 9867 */ 9868 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9869 } 9870 9871 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9872 env->cp15.scr_el3 &= ~SCR_NS; 9873 } 9874 9875 take_aarch32_exception(env, new_mode, mask, offset, addr); 9876 } 9877 9878 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9879 { 9880 /* 9881 * Return the register number of the AArch64 view of the AArch32 9882 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9883 * be that of the AArch32 mode the exception came from. 9884 */ 9885 int mode = env->uncached_cpsr & CPSR_M; 9886 9887 switch (aarch32_reg) { 9888 case 0 ... 7: 9889 return aarch32_reg; 9890 case 8 ... 12: 9891 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9892 case 13: 9893 switch (mode) { 9894 case ARM_CPU_MODE_USR: 9895 case ARM_CPU_MODE_SYS: 9896 return 13; 9897 case ARM_CPU_MODE_HYP: 9898 return 15; 9899 case ARM_CPU_MODE_IRQ: 9900 return 17; 9901 case ARM_CPU_MODE_SVC: 9902 return 19; 9903 case ARM_CPU_MODE_ABT: 9904 return 21; 9905 case ARM_CPU_MODE_UND: 9906 return 23; 9907 case ARM_CPU_MODE_FIQ: 9908 return 29; 9909 default: 9910 g_assert_not_reached(); 9911 } 9912 case 14: 9913 switch (mode) { 9914 case ARM_CPU_MODE_USR: 9915 case ARM_CPU_MODE_SYS: 9916 case ARM_CPU_MODE_HYP: 9917 return 14; 9918 case ARM_CPU_MODE_IRQ: 9919 return 16; 9920 case ARM_CPU_MODE_SVC: 9921 return 18; 9922 case ARM_CPU_MODE_ABT: 9923 return 20; 9924 case ARM_CPU_MODE_UND: 9925 return 22; 9926 case ARM_CPU_MODE_FIQ: 9927 return 30; 9928 default: 9929 g_assert_not_reached(); 9930 } 9931 case 15: 9932 return 31; 9933 default: 9934 g_assert_not_reached(); 9935 } 9936 } 9937 9938 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 9939 { 9940 uint32_t ret = cpsr_read(env); 9941 9942 /* Move DIT to the correct location for SPSR_ELx */ 9943 if (ret & CPSR_DIT) { 9944 ret &= ~CPSR_DIT; 9945 ret |= PSTATE_DIT; 9946 } 9947 /* Merge PSTATE.SS into SPSR_ELx */ 9948 ret |= env->pstate & PSTATE_SS; 9949 9950 return ret; 9951 } 9952 9953 static bool syndrome_is_sync_extabt(uint32_t syndrome) 9954 { 9955 /* Return true if this syndrome value is a synchronous external abort */ 9956 switch (syn_get_ec(syndrome)) { 9957 case EC_INSNABORT: 9958 case EC_INSNABORT_SAME_EL: 9959 case EC_DATAABORT: 9960 case EC_DATAABORT_SAME_EL: 9961 /* Look at fault status code for all the synchronous ext abort cases */ 9962 switch (syndrome & 0x3f) { 9963 case 0x10: 9964 case 0x13: 9965 case 0x14: 9966 case 0x15: 9967 case 0x16: 9968 case 0x17: 9969 return true; 9970 default: 9971 return false; 9972 } 9973 default: 9974 return false; 9975 } 9976 } 9977 9978 /* Handle exception entry to a target EL which is using AArch64 */ 9979 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9980 { 9981 ARMCPU *cpu = ARM_CPU(cs); 9982 CPUARMState *env = &cpu->env; 9983 unsigned int new_el = env->exception.target_el; 9984 target_ulong addr = env->cp15.vbar_el[new_el]; 9985 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9986 unsigned int old_mode; 9987 unsigned int cur_el = arm_current_el(env); 9988 int rt; 9989 9990 /* 9991 * Note that new_el can never be 0. If cur_el is 0, then 9992 * el0_a64 is is_a64(), else el0_a64 is ignored. 9993 */ 9994 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9995 9996 if (cur_el < new_el) { 9997 /* Entry vector offset depends on whether the implemented EL 9998 * immediately lower than the target level is using AArch32 or AArch64 9999 */ 10000 bool is_aa64; 10001 uint64_t hcr; 10002 10003 switch (new_el) { 10004 case 3: 10005 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10006 break; 10007 case 2: 10008 hcr = arm_hcr_el2_eff(env); 10009 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10010 is_aa64 = (hcr & HCR_RW) != 0; 10011 break; 10012 } 10013 /* fall through */ 10014 case 1: 10015 is_aa64 = is_a64(env); 10016 break; 10017 default: 10018 g_assert_not_reached(); 10019 } 10020 10021 if (is_aa64) { 10022 addr += 0x400; 10023 } else { 10024 addr += 0x600; 10025 } 10026 } else if (pstate_read(env) & PSTATE_SP) { 10027 addr += 0x200; 10028 } 10029 10030 switch (cs->exception_index) { 10031 case EXCP_PREFETCH_ABORT: 10032 case EXCP_DATA_ABORT: 10033 /* 10034 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10035 * to be taken to the SError vector entrypoint. 10036 */ 10037 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10038 syndrome_is_sync_extabt(env->exception.syndrome)) { 10039 addr += 0x180; 10040 } 10041 env->cp15.far_el[new_el] = env->exception.vaddress; 10042 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10043 env->cp15.far_el[new_el]); 10044 /* fall through */ 10045 case EXCP_BKPT: 10046 case EXCP_UDEF: 10047 case EXCP_SWI: 10048 case EXCP_HVC: 10049 case EXCP_HYP_TRAP: 10050 case EXCP_SMC: 10051 switch (syn_get_ec(env->exception.syndrome)) { 10052 case EC_ADVSIMDFPACCESSTRAP: 10053 /* 10054 * QEMU internal FP/SIMD syndromes from AArch32 include the 10055 * TA and coproc fields which are only exposed if the exception 10056 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10057 * AArch64 format syndrome. 10058 */ 10059 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10060 break; 10061 case EC_CP14RTTRAP: 10062 case EC_CP15RTTRAP: 10063 case EC_CP14DTTRAP: 10064 /* 10065 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10066 * the raw register field from the insn; when taking this to 10067 * AArch64 we must convert it to the AArch64 view of the register 10068 * number. Notice that we read a 4-bit AArch32 register number and 10069 * write back a 5-bit AArch64 one. 10070 */ 10071 rt = extract32(env->exception.syndrome, 5, 4); 10072 rt = aarch64_regnum(env, rt); 10073 env->exception.syndrome = deposit32(env->exception.syndrome, 10074 5, 5, rt); 10075 break; 10076 case EC_CP15RRTTRAP: 10077 case EC_CP14RRTTRAP: 10078 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10079 rt = extract32(env->exception.syndrome, 5, 4); 10080 rt = aarch64_regnum(env, rt); 10081 env->exception.syndrome = deposit32(env->exception.syndrome, 10082 5, 5, rt); 10083 rt = extract32(env->exception.syndrome, 10, 4); 10084 rt = aarch64_regnum(env, rt); 10085 env->exception.syndrome = deposit32(env->exception.syndrome, 10086 10, 5, rt); 10087 break; 10088 } 10089 env->cp15.esr_el[new_el] = env->exception.syndrome; 10090 break; 10091 case EXCP_IRQ: 10092 case EXCP_VIRQ: 10093 addr += 0x80; 10094 break; 10095 case EXCP_FIQ: 10096 case EXCP_VFIQ: 10097 addr += 0x100; 10098 break; 10099 case EXCP_VSERR: 10100 addr += 0x180; 10101 /* Construct the SError syndrome from IDS and ISS fields. */ 10102 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10103 env->cp15.esr_el[new_el] = env->exception.syndrome; 10104 break; 10105 default: 10106 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10107 } 10108 10109 if (is_a64(env)) { 10110 old_mode = pstate_read(env); 10111 aarch64_save_sp(env, arm_current_el(env)); 10112 env->elr_el[new_el] = env->pc; 10113 } else { 10114 old_mode = cpsr_read_for_spsr_elx(env); 10115 env->elr_el[new_el] = env->regs[15]; 10116 10117 aarch64_sync_32_to_64(env); 10118 10119 env->condexec_bits = 0; 10120 } 10121 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10122 10123 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10124 env->elr_el[new_el]); 10125 10126 if (cpu_isar_feature(aa64_pan, cpu)) { 10127 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10128 new_mode |= old_mode & PSTATE_PAN; 10129 switch (new_el) { 10130 case 2: 10131 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10132 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10133 != (HCR_E2H | HCR_TGE)) { 10134 break; 10135 } 10136 /* fall through */ 10137 case 1: 10138 /* ... the target is EL1 ... */ 10139 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10140 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10141 new_mode |= PSTATE_PAN; 10142 } 10143 break; 10144 } 10145 } 10146 if (cpu_isar_feature(aa64_mte, cpu)) { 10147 new_mode |= PSTATE_TCO; 10148 } 10149 10150 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10151 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10152 new_mode |= PSTATE_SSBS; 10153 } else { 10154 new_mode &= ~PSTATE_SSBS; 10155 } 10156 } 10157 10158 pstate_write(env, PSTATE_DAIF | new_mode); 10159 env->aarch64 = true; 10160 aarch64_restore_sp(env, new_el); 10161 helper_rebuild_hflags_a64(env, new_el); 10162 10163 env->pc = addr; 10164 10165 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10166 new_el, env->pc, pstate_read(env)); 10167 } 10168 10169 /* 10170 * Do semihosting call and set the appropriate return value. All the 10171 * permission and validity checks have been done at translate time. 10172 * 10173 * We only see semihosting exceptions in TCG only as they are not 10174 * trapped to the hypervisor in KVM. 10175 */ 10176 #ifdef CONFIG_TCG 10177 static void handle_semihosting(CPUState *cs) 10178 { 10179 ARMCPU *cpu = ARM_CPU(cs); 10180 CPUARMState *env = &cpu->env; 10181 10182 if (is_a64(env)) { 10183 qemu_log_mask(CPU_LOG_INT, 10184 "...handling as semihosting call 0x%" PRIx64 "\n", 10185 env->xregs[0]); 10186 do_common_semihosting(cs); 10187 env->pc += 4; 10188 } else { 10189 qemu_log_mask(CPU_LOG_INT, 10190 "...handling as semihosting call 0x%x\n", 10191 env->regs[0]); 10192 do_common_semihosting(cs); 10193 env->regs[15] += env->thumb ? 2 : 4; 10194 } 10195 } 10196 #endif 10197 10198 /* Handle a CPU exception for A and R profile CPUs. 10199 * Do any appropriate logging, handle PSCI calls, and then hand off 10200 * to the AArch64-entry or AArch32-entry function depending on the 10201 * target exception level's register width. 10202 * 10203 * Note: this is used for both TCG (as the do_interrupt tcg op), 10204 * and KVM to re-inject guest debug exceptions, and to 10205 * inject a Synchronous-External-Abort. 10206 */ 10207 void arm_cpu_do_interrupt(CPUState *cs) 10208 { 10209 ARMCPU *cpu = ARM_CPU(cs); 10210 CPUARMState *env = &cpu->env; 10211 unsigned int new_el = env->exception.target_el; 10212 10213 assert(!arm_feature(env, ARM_FEATURE_M)); 10214 10215 arm_log_exception(cs); 10216 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10217 new_el); 10218 if (qemu_loglevel_mask(CPU_LOG_INT) 10219 && !excp_is_internal(cs->exception_index)) { 10220 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10221 syn_get_ec(env->exception.syndrome), 10222 env->exception.syndrome); 10223 } 10224 10225 if (arm_is_psci_call(cpu, cs->exception_index)) { 10226 arm_handle_psci_call(cpu); 10227 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10228 return; 10229 } 10230 10231 /* 10232 * Semihosting semantics depend on the register width of the code 10233 * that caused the exception, not the target exception level, so 10234 * must be handled here. 10235 */ 10236 #ifdef CONFIG_TCG 10237 if (cs->exception_index == EXCP_SEMIHOST) { 10238 handle_semihosting(cs); 10239 return; 10240 } 10241 #endif 10242 10243 /* Hooks may change global state so BQL should be held, also the 10244 * BQL needs to be held for any modification of 10245 * cs->interrupt_request. 10246 */ 10247 g_assert(qemu_mutex_iothread_locked()); 10248 10249 arm_call_pre_el_change_hook(cpu); 10250 10251 assert(!excp_is_internal(cs->exception_index)); 10252 if (arm_el_is_aa64(env, new_el)) { 10253 arm_cpu_do_interrupt_aarch64(cs); 10254 } else { 10255 arm_cpu_do_interrupt_aarch32(cs); 10256 } 10257 10258 arm_call_el_change_hook(cpu); 10259 10260 if (!kvm_enabled()) { 10261 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10262 } 10263 } 10264 #endif /* !CONFIG_USER_ONLY */ 10265 10266 uint64_t arm_sctlr(CPUARMState *env, int el) 10267 { 10268 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10269 if (el == 0) { 10270 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10271 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 10272 } 10273 return env->cp15.sctlr_el[el]; 10274 } 10275 10276 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10277 { 10278 if (regime_has_2_ranges(mmu_idx)) { 10279 return extract64(tcr, 37, 2); 10280 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10281 return 0; /* VTCR_EL2 */ 10282 } else { 10283 /* Replicate the single TBI bit so we always have 2 bits. */ 10284 return extract32(tcr, 20, 1) * 3; 10285 } 10286 } 10287 10288 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10289 { 10290 if (regime_has_2_ranges(mmu_idx)) { 10291 return extract64(tcr, 51, 2); 10292 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10293 return 0; /* VTCR_EL2 */ 10294 } else { 10295 /* Replicate the single TBID bit so we always have 2 bits. */ 10296 return extract32(tcr, 29, 1) * 3; 10297 } 10298 } 10299 10300 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10301 { 10302 if (regime_has_2_ranges(mmu_idx)) { 10303 return extract64(tcr, 57, 2); 10304 } else { 10305 /* Replicate the single TCMA bit so we always have 2 bits. */ 10306 return extract32(tcr, 30, 1) * 3; 10307 } 10308 } 10309 10310 static ARMGranuleSize tg0_to_gran_size(int tg) 10311 { 10312 switch (tg) { 10313 case 0: 10314 return Gran4K; 10315 case 1: 10316 return Gran64K; 10317 case 2: 10318 return Gran16K; 10319 default: 10320 return GranInvalid; 10321 } 10322 } 10323 10324 static ARMGranuleSize tg1_to_gran_size(int tg) 10325 { 10326 switch (tg) { 10327 case 1: 10328 return Gran16K; 10329 case 2: 10330 return Gran4K; 10331 case 3: 10332 return Gran64K; 10333 default: 10334 return GranInvalid; 10335 } 10336 } 10337 10338 static inline bool have4k(ARMCPU *cpu, bool stage2) 10339 { 10340 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 10341 : cpu_isar_feature(aa64_tgran4, cpu); 10342 } 10343 10344 static inline bool have16k(ARMCPU *cpu, bool stage2) 10345 { 10346 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 10347 : cpu_isar_feature(aa64_tgran16, cpu); 10348 } 10349 10350 static inline bool have64k(ARMCPU *cpu, bool stage2) 10351 { 10352 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 10353 : cpu_isar_feature(aa64_tgran64, cpu); 10354 } 10355 10356 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 10357 bool stage2) 10358 { 10359 switch (gran) { 10360 case Gran4K: 10361 if (have4k(cpu, stage2)) { 10362 return gran; 10363 } 10364 break; 10365 case Gran16K: 10366 if (have16k(cpu, stage2)) { 10367 return gran; 10368 } 10369 break; 10370 case Gran64K: 10371 if (have64k(cpu, stage2)) { 10372 return gran; 10373 } 10374 break; 10375 case GranInvalid: 10376 break; 10377 } 10378 /* 10379 * If the guest selects a granule size that isn't implemented, 10380 * the architecture requires that we behave as if it selected one 10381 * that is (with an IMPDEF choice of which one to pick). We choose 10382 * to implement the smallest supported granule size. 10383 */ 10384 if (have4k(cpu, stage2)) { 10385 return Gran4K; 10386 } 10387 if (have16k(cpu, stage2)) { 10388 return Gran16K; 10389 } 10390 assert(have64k(cpu, stage2)); 10391 return Gran64K; 10392 } 10393 10394 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10395 ARMMMUIdx mmu_idx, bool data) 10396 { 10397 uint64_t tcr = regime_tcr(env, mmu_idx); 10398 bool epd, hpd, tsz_oob, ds; 10399 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 10400 ARMGranuleSize gran; 10401 ARMCPU *cpu = env_archcpu(env); 10402 bool stage2 = mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S; 10403 10404 if (!regime_has_2_ranges(mmu_idx)) { 10405 select = 0; 10406 tsz = extract32(tcr, 0, 6); 10407 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 10408 if (stage2) { 10409 /* VTCR_EL2 */ 10410 hpd = false; 10411 } else { 10412 hpd = extract32(tcr, 24, 1); 10413 } 10414 epd = false; 10415 sh = extract32(tcr, 12, 2); 10416 ps = extract32(tcr, 16, 3); 10417 ds = extract64(tcr, 32, 1); 10418 } else { 10419 /* 10420 * Bit 55 is always between the two regions, and is canonical for 10421 * determining if address tagging is enabled. 10422 */ 10423 select = extract64(va, 55, 1); 10424 if (!select) { 10425 tsz = extract32(tcr, 0, 6); 10426 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 10427 epd = extract32(tcr, 7, 1); 10428 sh = extract32(tcr, 12, 2); 10429 hpd = extract64(tcr, 41, 1); 10430 } else { 10431 tsz = extract32(tcr, 16, 6); 10432 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 10433 epd = extract32(tcr, 23, 1); 10434 sh = extract32(tcr, 28, 2); 10435 hpd = extract64(tcr, 42, 1); 10436 } 10437 ps = extract64(tcr, 32, 3); 10438 ds = extract64(tcr, 59, 1); 10439 } 10440 10441 gran = sanitize_gran_size(cpu, gran, stage2); 10442 10443 if (cpu_isar_feature(aa64_st, cpu)) { 10444 max_tsz = 48 - (gran == Gran64K); 10445 } else { 10446 max_tsz = 39; 10447 } 10448 10449 /* 10450 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 10451 * adjust the effective value of DS, as documented. 10452 */ 10453 min_tsz = 16; 10454 if (gran == Gran64K) { 10455 if (cpu_isar_feature(aa64_lva, cpu)) { 10456 min_tsz = 12; 10457 } 10458 ds = false; 10459 } else if (ds) { 10460 switch (mmu_idx) { 10461 case ARMMMUIdx_Stage2: 10462 case ARMMMUIdx_Stage2_S: 10463 if (gran == Gran16K) { 10464 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 10465 } else { 10466 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 10467 } 10468 break; 10469 default: 10470 if (gran == Gran16K) { 10471 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 10472 } else { 10473 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 10474 } 10475 break; 10476 } 10477 if (ds) { 10478 min_tsz = 12; 10479 } 10480 } 10481 10482 if (tsz > max_tsz) { 10483 tsz = max_tsz; 10484 tsz_oob = true; 10485 } else if (tsz < min_tsz) { 10486 tsz = min_tsz; 10487 tsz_oob = true; 10488 } else { 10489 tsz_oob = false; 10490 } 10491 10492 /* Present TBI as a composite with TBID. */ 10493 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10494 if (!data) { 10495 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10496 } 10497 tbi = (tbi >> select) & 1; 10498 10499 return (ARMVAParameters) { 10500 .tsz = tsz, 10501 .ps = ps, 10502 .sh = sh, 10503 .select = select, 10504 .tbi = tbi, 10505 .epd = epd, 10506 .hpd = hpd, 10507 .tsz_oob = tsz_oob, 10508 .ds = ds, 10509 .gran = gran, 10510 }; 10511 } 10512 10513 /* Note that signed overflow is undefined in C. The following routines are 10514 careful to use unsigned types where modulo arithmetic is required. 10515 Failure to do so _will_ break on newer gcc. */ 10516 10517 /* Signed saturating arithmetic. */ 10518 10519 /* Perform 16-bit signed saturating addition. */ 10520 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10521 { 10522 uint16_t res; 10523 10524 res = a + b; 10525 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10526 if (a & 0x8000) 10527 res = 0x8000; 10528 else 10529 res = 0x7fff; 10530 } 10531 return res; 10532 } 10533 10534 /* Perform 8-bit signed saturating addition. */ 10535 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10536 { 10537 uint8_t res; 10538 10539 res = a + b; 10540 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10541 if (a & 0x80) 10542 res = 0x80; 10543 else 10544 res = 0x7f; 10545 } 10546 return res; 10547 } 10548 10549 /* Perform 16-bit signed saturating subtraction. */ 10550 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10551 { 10552 uint16_t res; 10553 10554 res = a - b; 10555 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10556 if (a & 0x8000) 10557 res = 0x8000; 10558 else 10559 res = 0x7fff; 10560 } 10561 return res; 10562 } 10563 10564 /* Perform 8-bit signed saturating subtraction. */ 10565 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10566 { 10567 uint8_t res; 10568 10569 res = a - b; 10570 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10571 if (a & 0x80) 10572 res = 0x80; 10573 else 10574 res = 0x7f; 10575 } 10576 return res; 10577 } 10578 10579 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10580 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10581 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10582 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10583 #define PFX q 10584 10585 #include "op_addsub.h" 10586 10587 /* Unsigned saturating arithmetic. */ 10588 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10589 { 10590 uint16_t res; 10591 res = a + b; 10592 if (res < a) 10593 res = 0xffff; 10594 return res; 10595 } 10596 10597 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10598 { 10599 if (a > b) 10600 return a - b; 10601 else 10602 return 0; 10603 } 10604 10605 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10606 { 10607 uint8_t res; 10608 res = a + b; 10609 if (res < a) 10610 res = 0xff; 10611 return res; 10612 } 10613 10614 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10615 { 10616 if (a > b) 10617 return a - b; 10618 else 10619 return 0; 10620 } 10621 10622 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10623 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10624 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10625 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10626 #define PFX uq 10627 10628 #include "op_addsub.h" 10629 10630 /* Signed modulo arithmetic. */ 10631 #define SARITH16(a, b, n, op) do { \ 10632 int32_t sum; \ 10633 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10634 RESULT(sum, n, 16); \ 10635 if (sum >= 0) \ 10636 ge |= 3 << (n * 2); \ 10637 } while(0) 10638 10639 #define SARITH8(a, b, n, op) do { \ 10640 int32_t sum; \ 10641 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10642 RESULT(sum, n, 8); \ 10643 if (sum >= 0) \ 10644 ge |= 1 << n; \ 10645 } while(0) 10646 10647 10648 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10649 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10650 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10651 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10652 #define PFX s 10653 #define ARITH_GE 10654 10655 #include "op_addsub.h" 10656 10657 /* Unsigned modulo arithmetic. */ 10658 #define ADD16(a, b, n) do { \ 10659 uint32_t sum; \ 10660 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10661 RESULT(sum, n, 16); \ 10662 if ((sum >> 16) == 1) \ 10663 ge |= 3 << (n * 2); \ 10664 } while(0) 10665 10666 #define ADD8(a, b, n) do { \ 10667 uint32_t sum; \ 10668 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10669 RESULT(sum, n, 8); \ 10670 if ((sum >> 8) == 1) \ 10671 ge |= 1 << n; \ 10672 } while(0) 10673 10674 #define SUB16(a, b, n) do { \ 10675 uint32_t sum; \ 10676 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10677 RESULT(sum, n, 16); \ 10678 if ((sum >> 16) == 0) \ 10679 ge |= 3 << (n * 2); \ 10680 } while(0) 10681 10682 #define SUB8(a, b, n) do { \ 10683 uint32_t sum; \ 10684 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10685 RESULT(sum, n, 8); \ 10686 if ((sum >> 8) == 0) \ 10687 ge |= 1 << n; \ 10688 } while(0) 10689 10690 #define PFX u 10691 #define ARITH_GE 10692 10693 #include "op_addsub.h" 10694 10695 /* Halved signed arithmetic. */ 10696 #define ADD16(a, b, n) \ 10697 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10698 #define SUB16(a, b, n) \ 10699 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10700 #define ADD8(a, b, n) \ 10701 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10702 #define SUB8(a, b, n) \ 10703 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10704 #define PFX sh 10705 10706 #include "op_addsub.h" 10707 10708 /* Halved unsigned arithmetic. */ 10709 #define ADD16(a, b, n) \ 10710 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10711 #define SUB16(a, b, n) \ 10712 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10713 #define ADD8(a, b, n) \ 10714 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10715 #define SUB8(a, b, n) \ 10716 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10717 #define PFX uh 10718 10719 #include "op_addsub.h" 10720 10721 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10722 { 10723 if (a > b) 10724 return a - b; 10725 else 10726 return b - a; 10727 } 10728 10729 /* Unsigned sum of absolute byte differences. */ 10730 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10731 { 10732 uint32_t sum; 10733 sum = do_usad(a, b); 10734 sum += do_usad(a >> 8, b >> 8); 10735 sum += do_usad(a >> 16, b >> 16); 10736 sum += do_usad(a >> 24, b >> 24); 10737 return sum; 10738 } 10739 10740 /* For ARMv6 SEL instruction. */ 10741 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10742 { 10743 uint32_t mask; 10744 10745 mask = 0; 10746 if (flags & 1) 10747 mask |= 0xff; 10748 if (flags & 2) 10749 mask |= 0xff00; 10750 if (flags & 4) 10751 mask |= 0xff0000; 10752 if (flags & 8) 10753 mask |= 0xff000000; 10754 return (a & mask) | (b & ~mask); 10755 } 10756 10757 /* CRC helpers. 10758 * The upper bytes of val (above the number specified by 'bytes') must have 10759 * been zeroed out by the caller. 10760 */ 10761 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 10762 { 10763 uint8_t buf[4]; 10764 10765 stl_le_p(buf, val); 10766 10767 /* zlib crc32 converts the accumulator and output to one's complement. */ 10768 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 10769 } 10770 10771 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 10772 { 10773 uint8_t buf[4]; 10774 10775 stl_le_p(buf, val); 10776 10777 /* Linux crc32c converts the output to one's complement. */ 10778 return crc32c(acc, buf, bytes) ^ 0xffffffff; 10779 } 10780 10781 /* Return the exception level to which FP-disabled exceptions should 10782 * be taken, or 0 if FP is enabled. 10783 */ 10784 int fp_exception_el(CPUARMState *env, int cur_el) 10785 { 10786 #ifndef CONFIG_USER_ONLY 10787 uint64_t hcr_el2; 10788 10789 /* CPACR and the CPTR registers don't exist before v6, so FP is 10790 * always accessible 10791 */ 10792 if (!arm_feature(env, ARM_FEATURE_V6)) { 10793 return 0; 10794 } 10795 10796 if (arm_feature(env, ARM_FEATURE_M)) { 10797 /* CPACR can cause a NOCP UsageFault taken to current security state */ 10798 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 10799 return 1; 10800 } 10801 10802 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 10803 if (!extract32(env->v7m.nsacr, 10, 1)) { 10804 /* FP insns cause a NOCP UsageFault taken to Secure */ 10805 return 3; 10806 } 10807 } 10808 10809 return 0; 10810 } 10811 10812 hcr_el2 = arm_hcr_el2_eff(env); 10813 10814 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 10815 * 0, 2 : trap EL0 and EL1/PL1 accesses 10816 * 1 : trap only EL0 accesses 10817 * 3 : trap no accesses 10818 * This register is ignored if E2H+TGE are both set. 10819 */ 10820 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10821 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 10822 10823 switch (fpen) { 10824 case 1: 10825 if (cur_el != 0) { 10826 break; 10827 } 10828 /* fall through */ 10829 case 0: 10830 case 2: 10831 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 10832 if (!arm_el_is_aa64(env, 3) 10833 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 10834 return 3; 10835 } 10836 if (cur_el <= 1) { 10837 return 1; 10838 } 10839 break; 10840 } 10841 } 10842 10843 /* 10844 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 10845 * to control non-secure access to the FPU. It doesn't have any 10846 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 10847 */ 10848 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 10849 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 10850 if (!extract32(env->cp15.nsacr, 10, 1)) { 10851 /* FP insns act as UNDEF */ 10852 return cur_el == 2 ? 2 : 1; 10853 } 10854 } 10855 10856 /* 10857 * CPTR_EL2 is present in v7VE or v8, and changes format 10858 * with HCR_EL2.E2H (regardless of TGE). 10859 */ 10860 if (cur_el <= 2) { 10861 if (hcr_el2 & HCR_E2H) { 10862 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 10863 case 1: 10864 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 10865 break; 10866 } 10867 /* fall through */ 10868 case 0: 10869 case 2: 10870 return 2; 10871 } 10872 } else if (arm_is_el2_enabled(env)) { 10873 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 10874 return 2; 10875 } 10876 } 10877 } 10878 10879 /* CPTR_EL3 : present in v8 */ 10880 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 10881 /* Trap all FP ops to EL3 */ 10882 return 3; 10883 } 10884 #endif 10885 return 0; 10886 } 10887 10888 /* Return the exception level we're running at if this is our mmu_idx */ 10889 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 10890 { 10891 if (mmu_idx & ARM_MMU_IDX_M) { 10892 return mmu_idx & ARM_MMU_IDX_M_PRIV; 10893 } 10894 10895 switch (mmu_idx) { 10896 case ARMMMUIdx_E10_0: 10897 case ARMMMUIdx_E20_0: 10898 return 0; 10899 case ARMMMUIdx_E10_1: 10900 case ARMMMUIdx_E10_1_PAN: 10901 return 1; 10902 case ARMMMUIdx_E2: 10903 case ARMMMUIdx_E20_2: 10904 case ARMMMUIdx_E20_2_PAN: 10905 return 2; 10906 case ARMMMUIdx_E3: 10907 return 3; 10908 default: 10909 g_assert_not_reached(); 10910 } 10911 } 10912 10913 #ifndef CONFIG_TCG 10914 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 10915 { 10916 g_assert_not_reached(); 10917 } 10918 #endif 10919 10920 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 10921 { 10922 ARMMMUIdx idx; 10923 uint64_t hcr; 10924 10925 if (arm_feature(env, ARM_FEATURE_M)) { 10926 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 10927 } 10928 10929 /* See ARM pseudo-function ELIsInHost. */ 10930 switch (el) { 10931 case 0: 10932 hcr = arm_hcr_el2_eff(env); 10933 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 10934 idx = ARMMMUIdx_E20_0; 10935 } else { 10936 idx = ARMMMUIdx_E10_0; 10937 } 10938 break; 10939 case 1: 10940 if (env->pstate & PSTATE_PAN) { 10941 idx = ARMMMUIdx_E10_1_PAN; 10942 } else { 10943 idx = ARMMMUIdx_E10_1; 10944 } 10945 break; 10946 case 2: 10947 /* Note that TGE does not apply at EL2. */ 10948 if (arm_hcr_el2_eff(env) & HCR_E2H) { 10949 if (env->pstate & PSTATE_PAN) { 10950 idx = ARMMMUIdx_E20_2_PAN; 10951 } else { 10952 idx = ARMMMUIdx_E20_2; 10953 } 10954 } else { 10955 idx = ARMMMUIdx_E2; 10956 } 10957 break; 10958 case 3: 10959 return ARMMMUIdx_E3; 10960 default: 10961 g_assert_not_reached(); 10962 } 10963 10964 return idx; 10965 } 10966 10967 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 10968 { 10969 return arm_mmu_idx_el(env, arm_current_el(env)); 10970 } 10971 10972 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 10973 ARMMMUIdx mmu_idx, 10974 CPUARMTBFlags flags) 10975 { 10976 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 10977 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 10978 10979 if (arm_singlestep_active(env)) { 10980 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 10981 } 10982 return flags; 10983 } 10984 10985 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 10986 ARMMMUIdx mmu_idx, 10987 CPUARMTBFlags flags) 10988 { 10989 bool sctlr_b = arm_sctlr_b(env); 10990 10991 if (sctlr_b) { 10992 DP_TBFLAG_A32(flags, SCTLR__B, 1); 10993 } 10994 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 10995 DP_TBFLAG_ANY(flags, BE_DATA, 1); 10996 } 10997 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 10998 10999 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11000 } 11001 11002 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 11003 ARMMMUIdx mmu_idx) 11004 { 11005 CPUARMTBFlags flags = {}; 11006 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 11007 11008 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 11009 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 11010 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11011 } 11012 11013 if (arm_v7m_is_handler_mode(env)) { 11014 DP_TBFLAG_M32(flags, HANDLER, 1); 11015 } 11016 11017 /* 11018 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 11019 * is suppressing them because the requested execution priority 11020 * is less than 0. 11021 */ 11022 if (arm_feature(env, ARM_FEATURE_V8) && 11023 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 11024 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 11025 DP_TBFLAG_M32(flags, STACKCHECK, 1); 11026 } 11027 11028 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) { 11029 DP_TBFLAG_M32(flags, SECURE, 1); 11030 } 11031 11032 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11033 } 11034 11035 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 11036 ARMMMUIdx mmu_idx) 11037 { 11038 CPUARMTBFlags flags = {}; 11039 int el = arm_current_el(env); 11040 11041 if (arm_sctlr(env, el) & SCTLR_A) { 11042 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11043 } 11044 11045 if (arm_el_is_aa64(env, 1)) { 11046 DP_TBFLAG_A32(flags, VFPEN, 1); 11047 } 11048 11049 if (el < 2 && env->cp15.hstr_el2 && 11050 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11051 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 11052 } 11053 11054 if (env->uncached_cpsr & CPSR_IL) { 11055 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11056 } 11057 11058 /* 11059 * The SME exception we are testing for is raised via 11060 * AArch64.CheckFPAdvSIMDEnabled(), as called from 11061 * AArch32.CheckAdvSIMDOrFPEnabled(). 11062 */ 11063 if (el == 0 11064 && FIELD_EX64(env->svcr, SVCR, SM) 11065 && (!arm_is_el2_enabled(env) 11066 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE))) 11067 && arm_el_is_aa64(env, 1) 11068 && !sme_fa64(env, el)) { 11069 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1); 11070 } 11071 11072 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11073 } 11074 11075 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 11076 ARMMMUIdx mmu_idx) 11077 { 11078 CPUARMTBFlags flags = {}; 11079 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 11080 uint64_t tcr = regime_tcr(env, mmu_idx); 11081 uint64_t sctlr; 11082 int tbii, tbid; 11083 11084 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 11085 11086 /* Get control bits for tagged addresses. */ 11087 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 11088 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 11089 11090 DP_TBFLAG_A64(flags, TBII, tbii); 11091 DP_TBFLAG_A64(flags, TBID, tbid); 11092 11093 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 11094 int sve_el = sve_exception_el(env, el); 11095 11096 /* 11097 * If either FP or SVE are disabled, translator does not need len. 11098 * If SVE EL > FP EL, FP exception has precedence, and translator 11099 * does not need SVE EL. Save potential re-translations by forcing 11100 * the unneeded data to zero. 11101 */ 11102 if (fp_el != 0) { 11103 if (sve_el > fp_el) { 11104 sve_el = 0; 11105 } 11106 } else if (sve_el == 0) { 11107 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el)); 11108 } 11109 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 11110 } 11111 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) { 11112 int sme_el = sme_exception_el(env, el); 11113 bool sm = FIELD_EX64(env->svcr, SVCR, SM); 11114 11115 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el); 11116 if (sme_el == 0) { 11117 /* Similarly, do not compute SVL if SME is disabled. */ 11118 int svl = sve_vqm1_for_el_sm(env, el, true); 11119 DP_TBFLAG_A64(flags, SVL, svl); 11120 if (sm) { 11121 /* If SVE is disabled, we will not have set VL above. */ 11122 DP_TBFLAG_A64(flags, VL, svl); 11123 } 11124 } 11125 if (sm) { 11126 DP_TBFLAG_A64(flags, PSTATE_SM, 1); 11127 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el)); 11128 } 11129 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA)); 11130 } 11131 11132 sctlr = regime_sctlr(env, stage1); 11133 11134 if (sctlr & SCTLR_A) { 11135 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11136 } 11137 11138 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 11139 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11140 } 11141 11142 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 11143 /* 11144 * In order to save space in flags, we record only whether 11145 * pauth is "inactive", meaning all insns are implemented as 11146 * a nop, or "active" when some action must be performed. 11147 * The decision of which action to take is left to a helper. 11148 */ 11149 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 11150 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 11151 } 11152 } 11153 11154 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11155 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 11156 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 11157 DP_TBFLAG_A64(flags, BT, 1); 11158 } 11159 } 11160 11161 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 11162 if (!(env->pstate & PSTATE_UAO)) { 11163 switch (mmu_idx) { 11164 case ARMMMUIdx_E10_1: 11165 case ARMMMUIdx_E10_1_PAN: 11166 /* TODO: ARMv8.3-NV */ 11167 DP_TBFLAG_A64(flags, UNPRIV, 1); 11168 break; 11169 case ARMMMUIdx_E20_2: 11170 case ARMMMUIdx_E20_2_PAN: 11171 /* 11172 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 11173 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 11174 */ 11175 if (env->cp15.hcr_el2 & HCR_TGE) { 11176 DP_TBFLAG_A64(flags, UNPRIV, 1); 11177 } 11178 break; 11179 default: 11180 break; 11181 } 11182 } 11183 11184 if (env->pstate & PSTATE_IL) { 11185 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11186 } 11187 11188 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 11189 /* 11190 * Set MTE_ACTIVE if any access may be Checked, and leave clear 11191 * if all accesses must be Unchecked: 11192 * 1) If no TBI, then there are no tags in the address to check, 11193 * 2) If Tag Check Override, then all accesses are Unchecked, 11194 * 3) If Tag Check Fail == 0, then Checked access have no effect, 11195 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 11196 */ 11197 if (allocation_tag_access_enabled(env, el, sctlr)) { 11198 DP_TBFLAG_A64(flags, ATA, 1); 11199 if (tbid 11200 && !(env->pstate & PSTATE_TCO) 11201 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 11202 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 11203 } 11204 } 11205 /* And again for unprivileged accesses, if required. */ 11206 if (EX_TBFLAG_A64(flags, UNPRIV) 11207 && tbid 11208 && !(env->pstate & PSTATE_TCO) 11209 && (sctlr & SCTLR_TCF0) 11210 && allocation_tag_access_enabled(env, 0, sctlr)) { 11211 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 11212 } 11213 /* Cache TCMA as well as TBI. */ 11214 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 11215 } 11216 11217 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11218 } 11219 11220 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 11221 { 11222 int el = arm_current_el(env); 11223 int fp_el = fp_exception_el(env, el); 11224 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11225 11226 if (is_a64(env)) { 11227 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11228 } else if (arm_feature(env, ARM_FEATURE_M)) { 11229 return rebuild_hflags_m32(env, fp_el, mmu_idx); 11230 } else { 11231 return rebuild_hflags_a32(env, fp_el, mmu_idx); 11232 } 11233 } 11234 11235 void arm_rebuild_hflags(CPUARMState *env) 11236 { 11237 env->hflags = rebuild_hflags_internal(env); 11238 } 11239 11240 /* 11241 * If we have triggered a EL state change we can't rely on the 11242 * translator having passed it to us, we need to recompute. 11243 */ 11244 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 11245 { 11246 int el = arm_current_el(env); 11247 int fp_el = fp_exception_el(env, el); 11248 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11249 11250 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11251 } 11252 11253 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 11254 { 11255 int fp_el = fp_exception_el(env, el); 11256 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11257 11258 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11259 } 11260 11261 /* 11262 * If we have triggered a EL state change we can't rely on the 11263 * translator having passed it to us, we need to recompute. 11264 */ 11265 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 11266 { 11267 int el = arm_current_el(env); 11268 int fp_el = fp_exception_el(env, el); 11269 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11270 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11271 } 11272 11273 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 11274 { 11275 int fp_el = fp_exception_el(env, el); 11276 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11277 11278 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11279 } 11280 11281 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 11282 { 11283 int fp_el = fp_exception_el(env, el); 11284 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11285 11286 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11287 } 11288 11289 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 11290 { 11291 #ifdef CONFIG_DEBUG_TCG 11292 CPUARMTBFlags c = env->hflags; 11293 CPUARMTBFlags r = rebuild_hflags_internal(env); 11294 11295 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 11296 fprintf(stderr, "TCG hflags mismatch " 11297 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 11298 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 11299 c.flags, c.flags2, r.flags, r.flags2); 11300 abort(); 11301 } 11302 #endif 11303 } 11304 11305 static bool mve_no_pred(CPUARMState *env) 11306 { 11307 /* 11308 * Return true if there is definitely no predication of MVE 11309 * instructions by VPR or LTPSIZE. (Returning false even if there 11310 * isn't any predication is OK; generated code will just be 11311 * a little worse.) 11312 * If the CPU does not implement MVE then this TB flag is always 0. 11313 * 11314 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11315 * logic in gen_update_fp_context() needs to be updated to match. 11316 * 11317 * We do not include the effect of the ECI bits here -- they are 11318 * tracked in other TB flags. This simplifies the logic for 11319 * "when did we emit code that changes the MVE_NO_PRED TB flag 11320 * and thus need to end the TB?". 11321 */ 11322 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11323 return false; 11324 } 11325 if (env->v7m.vpr) { 11326 return false; 11327 } 11328 if (env->v7m.ltpsize < 4) { 11329 return false; 11330 } 11331 return true; 11332 } 11333 11334 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11335 target_ulong *cs_base, uint32_t *pflags) 11336 { 11337 CPUARMTBFlags flags; 11338 11339 assert_hflags_rebuild_correctly(env); 11340 flags = env->hflags; 11341 11342 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11343 *pc = env->pc; 11344 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11345 DP_TBFLAG_A64(flags, BTYPE, env->btype); 11346 } 11347 } else { 11348 *pc = env->regs[15]; 11349 11350 if (arm_feature(env, ARM_FEATURE_M)) { 11351 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11352 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11353 != env->v7m.secure) { 11354 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 11355 } 11356 11357 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11358 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11359 (env->v7m.secure && 11360 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11361 /* 11362 * ASPEN is set, but FPCA/SFPA indicate that there is no 11363 * active FP context; we must create a new FP context before 11364 * executing any FP insn. 11365 */ 11366 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 11367 } 11368 11369 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11370 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11371 DP_TBFLAG_M32(flags, LSPACT, 1); 11372 } 11373 11374 if (mve_no_pred(env)) { 11375 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 11376 } 11377 } else { 11378 /* 11379 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11380 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11381 */ 11382 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11383 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 11384 } else { 11385 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 11386 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 11387 } 11388 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11389 DP_TBFLAG_A32(flags, VFPEN, 1); 11390 } 11391 } 11392 11393 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 11394 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 11395 } 11396 11397 /* 11398 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11399 * states defined in the ARM ARM for software singlestep: 11400 * SS_ACTIVE PSTATE.SS State 11401 * 0 x Inactive (the TB flag for SS is always 0) 11402 * 1 0 Active-pending 11403 * 1 1 Active-not-pending 11404 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 11405 */ 11406 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 11407 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 11408 } 11409 11410 *pflags = flags.flags; 11411 *cs_base = flags.flags2; 11412 } 11413 11414 #ifdef TARGET_AARCH64 11415 /* 11416 * The manual says that when SVE is enabled and VQ is widened the 11417 * implementation is allowed to zero the previously inaccessible 11418 * portion of the registers. The corollary to that is that when 11419 * SVE is enabled and VQ is narrowed we are also allowed to zero 11420 * the now inaccessible portion of the registers. 11421 * 11422 * The intent of this is that no predicate bit beyond VQ is ever set. 11423 * Which means that some operations on predicate registers themselves 11424 * may operate on full uint64_t or even unrolled across the maximum 11425 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11426 * may well be cheaper than conditionals to restrict the operation 11427 * to the relevant portion of a uint16_t[16]. 11428 */ 11429 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11430 { 11431 int i, j; 11432 uint64_t pmask; 11433 11434 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11435 assert(vq <= env_archcpu(env)->sve_max_vq); 11436 11437 /* Zap the high bits of the zregs. */ 11438 for (i = 0; i < 32; i++) { 11439 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11440 } 11441 11442 /* Zap the high bits of the pregs and ffr. */ 11443 pmask = 0; 11444 if (vq & 3) { 11445 pmask = ~(-1ULL << (16 * (vq & 3))); 11446 } 11447 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11448 for (i = 0; i < 17; ++i) { 11449 env->vfp.pregs[i].p[j] &= pmask; 11450 } 11451 pmask = 0; 11452 } 11453 } 11454 11455 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 11456 { 11457 int exc_el; 11458 11459 if (sm) { 11460 exc_el = sme_exception_el(env, el); 11461 } else { 11462 exc_el = sve_exception_el(env, el); 11463 } 11464 if (exc_el) { 11465 return 0; /* disabled */ 11466 } 11467 return sve_vqm1_for_el_sm(env, el, sm); 11468 } 11469 11470 /* 11471 * Notice a change in SVE vector size when changing EL. 11472 */ 11473 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11474 int new_el, bool el0_a64) 11475 { 11476 ARMCPU *cpu = env_archcpu(env); 11477 int old_len, new_len; 11478 bool old_a64, new_a64, sm; 11479 11480 /* Nothing to do if no SVE. */ 11481 if (!cpu_isar_feature(aa64_sve, cpu)) { 11482 return; 11483 } 11484 11485 /* Nothing to do if FP is disabled in either EL. */ 11486 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11487 return; 11488 } 11489 11490 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11491 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11492 11493 /* 11494 * Both AArch64.TakeException and AArch64.ExceptionReturn 11495 * invoke ResetSVEState when taking an exception from, or 11496 * returning to, AArch32 state when PSTATE.SM is enabled. 11497 */ 11498 sm = FIELD_EX64(env->svcr, SVCR, SM); 11499 if (old_a64 != new_a64 && sm) { 11500 arm_reset_sve_state(env); 11501 return; 11502 } 11503 11504 /* 11505 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11506 * at ELx, or not available because the EL is in AArch32 state, then 11507 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11508 * has an effective value of 0". 11509 * 11510 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11511 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11512 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11513 * we already have the correct register contents when encountering the 11514 * vq0->vq0 transition between EL0->EL1. 11515 */ 11516 old_len = new_len = 0; 11517 if (old_a64) { 11518 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 11519 } 11520 if (new_a64) { 11521 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 11522 } 11523 11524 /* When changing vector length, clear inaccessible state. */ 11525 if (new_len < old_len) { 11526 aarch64_sve_narrow_vq(env, new_len + 1); 11527 } 11528 } 11529 #endif 11530