1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 #include "qemu/osdep.h" 9 #include "qemu/units.h" 10 #include "target/arm/idau.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "exec/gdbstub.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/host-utils.h" 17 #include "sysemu/sysemu.h" 18 #include "qemu/bitops.h" 19 #include "qemu/crc32c.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/exec-all.h" 22 #include <zlib.h> /* For crc32 */ 23 #include "hw/irq.h" 24 #include "hw/semihosting/semihost.h" 25 #include "sysemu/cpus.h" 26 #include "sysemu/kvm.h" 27 #include "qemu/range.h" 28 #include "qapi/qapi-commands-machine-target.h" 29 #include "qapi/error.h" 30 #include "qemu/guest-random.h" 31 #ifdef CONFIG_TCG 32 #include "arm_ldst.h" 33 #include "exec/cpu_ldst.h" 34 #endif 35 36 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 37 38 #ifndef CONFIG_USER_ONLY 39 40 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 41 MMUAccessType access_type, ARMMMUIdx mmu_idx, 42 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 43 target_ulong *page_size_ptr, 44 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 45 #endif 46 47 static void switch_mode(CPUARMState *env, int mode); 48 49 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 50 { 51 int nregs; 52 53 /* VFP data registers are always little-endian. */ 54 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 55 if (reg < nregs) { 56 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 57 return 8; 58 } 59 if (arm_feature(env, ARM_FEATURE_NEON)) { 60 /* Aliases for Q regs. */ 61 nregs += 16; 62 if (reg < nregs) { 63 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 64 stq_le_p(buf, q[0]); 65 stq_le_p(buf + 8, q[1]); 66 return 16; 67 } 68 } 69 switch (reg - nregs) { 70 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 71 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4; 72 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 73 } 74 return 0; 75 } 76 77 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 78 { 79 int nregs; 80 81 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 82 if (reg < nregs) { 83 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 84 return 8; 85 } 86 if (arm_feature(env, ARM_FEATURE_NEON)) { 87 nregs += 16; 88 if (reg < nregs) { 89 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 90 q[0] = ldq_le_p(buf); 91 q[1] = ldq_le_p(buf + 8); 92 return 16; 93 } 94 } 95 switch (reg - nregs) { 96 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 97 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 98 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 99 } 100 return 0; 101 } 102 103 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 104 { 105 switch (reg) { 106 case 0 ... 31: 107 /* 128 bit FP register */ 108 { 109 uint64_t *q = aa64_vfp_qreg(env, reg); 110 stq_le_p(buf, q[0]); 111 stq_le_p(buf + 8, q[1]); 112 return 16; 113 } 114 case 32: 115 /* FPSR */ 116 stl_p(buf, vfp_get_fpsr(env)); 117 return 4; 118 case 33: 119 /* FPCR */ 120 stl_p(buf, vfp_get_fpcr(env)); 121 return 4; 122 default: 123 return 0; 124 } 125 } 126 127 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 128 { 129 switch (reg) { 130 case 0 ... 31: 131 /* 128 bit FP register */ 132 { 133 uint64_t *q = aa64_vfp_qreg(env, reg); 134 q[0] = ldq_le_p(buf); 135 q[1] = ldq_le_p(buf + 8); 136 return 16; 137 } 138 case 32: 139 /* FPSR */ 140 vfp_set_fpsr(env, ldl_p(buf)); 141 return 4; 142 case 33: 143 /* FPCR */ 144 vfp_set_fpcr(env, ldl_p(buf)); 145 return 4; 146 default: 147 return 0; 148 } 149 } 150 151 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 152 { 153 assert(ri->fieldoffset); 154 if (cpreg_field_is_64bit(ri)) { 155 return CPREG_FIELD64(env, ri); 156 } else { 157 return CPREG_FIELD32(env, ri); 158 } 159 } 160 161 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 162 uint64_t value) 163 { 164 assert(ri->fieldoffset); 165 if (cpreg_field_is_64bit(ri)) { 166 CPREG_FIELD64(env, ri) = value; 167 } else { 168 CPREG_FIELD32(env, ri) = value; 169 } 170 } 171 172 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 173 { 174 return (char *)env + ri->fieldoffset; 175 } 176 177 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 178 { 179 /* Raw read of a coprocessor register (as needed for migration, etc). */ 180 if (ri->type & ARM_CP_CONST) { 181 return ri->resetvalue; 182 } else if (ri->raw_readfn) { 183 return ri->raw_readfn(env, ri); 184 } else if (ri->readfn) { 185 return ri->readfn(env, ri); 186 } else { 187 return raw_read(env, ri); 188 } 189 } 190 191 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 192 uint64_t v) 193 { 194 /* Raw write of a coprocessor register (as needed for migration, etc). 195 * Note that constant registers are treated as write-ignored; the 196 * caller should check for success by whether a readback gives the 197 * value written. 198 */ 199 if (ri->type & ARM_CP_CONST) { 200 return; 201 } else if (ri->raw_writefn) { 202 ri->raw_writefn(env, ri, v); 203 } else if (ri->writefn) { 204 ri->writefn(env, ri, v); 205 } else { 206 raw_write(env, ri, v); 207 } 208 } 209 210 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 211 { 212 ARMCPU *cpu = env_archcpu(env); 213 const ARMCPRegInfo *ri; 214 uint32_t key; 215 216 key = cpu->dyn_xml.cpregs_keys[reg]; 217 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 218 if (ri) { 219 if (cpreg_field_is_64bit(ri)) { 220 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 221 } else { 222 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 223 } 224 } 225 return 0; 226 } 227 228 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 229 { 230 return 0; 231 } 232 233 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 234 { 235 /* Return true if the regdef would cause an assertion if you called 236 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 237 * program bug for it not to have the NO_RAW flag). 238 * NB that returning false here doesn't necessarily mean that calling 239 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 240 * read/write access functions which are safe for raw use" from "has 241 * read/write access functions which have side effects but has forgotten 242 * to provide raw access functions". 243 * The tests here line up with the conditions in read/write_raw_cp_reg() 244 * and assertions in raw_read()/raw_write(). 245 */ 246 if ((ri->type & ARM_CP_CONST) || 247 ri->fieldoffset || 248 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 249 return false; 250 } 251 return true; 252 } 253 254 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 255 { 256 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 257 int i; 258 bool ok = true; 259 260 for (i = 0; i < cpu->cpreg_array_len; i++) { 261 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 262 const ARMCPRegInfo *ri; 263 uint64_t newval; 264 265 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 266 if (!ri) { 267 ok = false; 268 continue; 269 } 270 if (ri->type & ARM_CP_NO_RAW) { 271 continue; 272 } 273 274 newval = read_raw_cp_reg(&cpu->env, ri); 275 if (kvm_sync) { 276 /* 277 * Only sync if the previous list->cpustate sync succeeded. 278 * Rather than tracking the success/failure state for every 279 * item in the list, we just recheck "does the raw write we must 280 * have made in write_list_to_cpustate() read back OK" here. 281 */ 282 uint64_t oldval = cpu->cpreg_values[i]; 283 284 if (oldval == newval) { 285 continue; 286 } 287 288 write_raw_cp_reg(&cpu->env, ri, oldval); 289 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 290 continue; 291 } 292 293 write_raw_cp_reg(&cpu->env, ri, newval); 294 } 295 cpu->cpreg_values[i] = newval; 296 } 297 return ok; 298 } 299 300 bool write_list_to_cpustate(ARMCPU *cpu) 301 { 302 int i; 303 bool ok = true; 304 305 for (i = 0; i < cpu->cpreg_array_len; i++) { 306 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 307 uint64_t v = cpu->cpreg_values[i]; 308 const ARMCPRegInfo *ri; 309 310 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 311 if (!ri) { 312 ok = false; 313 continue; 314 } 315 if (ri->type & ARM_CP_NO_RAW) { 316 continue; 317 } 318 /* Write value and confirm it reads back as written 319 * (to catch read-only registers and partially read-only 320 * registers where the incoming migration value doesn't match) 321 */ 322 write_raw_cp_reg(&cpu->env, ri, v); 323 if (read_raw_cp_reg(&cpu->env, ri) != v) { 324 ok = false; 325 } 326 } 327 return ok; 328 } 329 330 static void add_cpreg_to_list(gpointer key, gpointer opaque) 331 { 332 ARMCPU *cpu = opaque; 333 uint64_t regidx; 334 const ARMCPRegInfo *ri; 335 336 regidx = *(uint32_t *)key; 337 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 338 339 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 340 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 341 /* The value array need not be initialized at this point */ 342 cpu->cpreg_array_len++; 343 } 344 } 345 346 static void count_cpreg(gpointer key, gpointer opaque) 347 { 348 ARMCPU *cpu = opaque; 349 uint64_t regidx; 350 const ARMCPRegInfo *ri; 351 352 regidx = *(uint32_t *)key; 353 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 354 355 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 356 cpu->cpreg_array_len++; 357 } 358 } 359 360 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 361 { 362 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 363 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 364 365 if (aidx > bidx) { 366 return 1; 367 } 368 if (aidx < bidx) { 369 return -1; 370 } 371 return 0; 372 } 373 374 void init_cpreg_list(ARMCPU *cpu) 375 { 376 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 377 * Note that we require cpreg_tuples[] to be sorted by key ID. 378 */ 379 GList *keys; 380 int arraylen; 381 382 keys = g_hash_table_get_keys(cpu->cp_regs); 383 keys = g_list_sort(keys, cpreg_key_compare); 384 385 cpu->cpreg_array_len = 0; 386 387 g_list_foreach(keys, count_cpreg, cpu); 388 389 arraylen = cpu->cpreg_array_len; 390 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 391 cpu->cpreg_values = g_new(uint64_t, arraylen); 392 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 393 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 394 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 395 cpu->cpreg_array_len = 0; 396 397 g_list_foreach(keys, add_cpreg_to_list, cpu); 398 399 assert(cpu->cpreg_array_len == arraylen); 400 401 g_list_free(keys); 402 } 403 404 /* 405 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 406 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 407 * 408 * access_el3_aa32ns: Used to check AArch32 register views. 409 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 410 */ 411 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 412 const ARMCPRegInfo *ri, 413 bool isread) 414 { 415 bool secure = arm_is_secure_below_el3(env); 416 417 assert(!arm_el_is_aa64(env, 3)); 418 if (secure) { 419 return CP_ACCESS_TRAP_UNCATEGORIZED; 420 } 421 return CP_ACCESS_OK; 422 } 423 424 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 425 const ARMCPRegInfo *ri, 426 bool isread) 427 { 428 if (!arm_el_is_aa64(env, 3)) { 429 return access_el3_aa32ns(env, ri, isread); 430 } 431 return CP_ACCESS_OK; 432 } 433 434 /* Some secure-only AArch32 registers trap to EL3 if used from 435 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 436 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 437 * We assume that the .access field is set to PL1_RW. 438 */ 439 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 440 const ARMCPRegInfo *ri, 441 bool isread) 442 { 443 if (arm_current_el(env) == 3) { 444 return CP_ACCESS_OK; 445 } 446 if (arm_is_secure_below_el3(env)) { 447 return CP_ACCESS_TRAP_EL3; 448 } 449 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 450 return CP_ACCESS_TRAP_UNCATEGORIZED; 451 } 452 453 /* Check for traps to "powerdown debug" registers, which are controlled 454 * by MDCR.TDOSA 455 */ 456 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 457 bool isread) 458 { 459 int el = arm_current_el(env); 460 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 461 (env->cp15.mdcr_el2 & MDCR_TDE) || 462 (arm_hcr_el2_eff(env) & HCR_TGE); 463 464 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 465 return CP_ACCESS_TRAP_EL2; 466 } 467 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 468 return CP_ACCESS_TRAP_EL3; 469 } 470 return CP_ACCESS_OK; 471 } 472 473 /* Check for traps to "debug ROM" registers, which are controlled 474 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 475 */ 476 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 477 bool isread) 478 { 479 int el = arm_current_el(env); 480 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 481 (env->cp15.mdcr_el2 & MDCR_TDE) || 482 (arm_hcr_el2_eff(env) & HCR_TGE); 483 484 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 485 return CP_ACCESS_TRAP_EL2; 486 } 487 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 488 return CP_ACCESS_TRAP_EL3; 489 } 490 return CP_ACCESS_OK; 491 } 492 493 /* Check for traps to general debug registers, which are controlled 494 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 495 */ 496 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 497 bool isread) 498 { 499 int el = arm_current_el(env); 500 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 501 (env->cp15.mdcr_el2 & MDCR_TDE) || 502 (arm_hcr_el2_eff(env) & HCR_TGE); 503 504 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 505 return CP_ACCESS_TRAP_EL2; 506 } 507 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 508 return CP_ACCESS_TRAP_EL3; 509 } 510 return CP_ACCESS_OK; 511 } 512 513 /* Check for traps to performance monitor registers, which are controlled 514 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 515 */ 516 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 517 bool isread) 518 { 519 int el = arm_current_el(env); 520 521 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 522 && !arm_is_secure_below_el3(env)) { 523 return CP_ACCESS_TRAP_EL2; 524 } 525 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 526 return CP_ACCESS_TRAP_EL3; 527 } 528 return CP_ACCESS_OK; 529 } 530 531 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 532 { 533 ARMCPU *cpu = env_archcpu(env); 534 535 raw_write(env, ri, value); 536 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 537 } 538 539 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 540 { 541 ARMCPU *cpu = env_archcpu(env); 542 543 if (raw_read(env, ri) != value) { 544 /* Unlike real hardware the qemu TLB uses virtual addresses, 545 * not modified virtual addresses, so this causes a TLB flush. 546 */ 547 tlb_flush(CPU(cpu)); 548 raw_write(env, ri, value); 549 } 550 } 551 552 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 553 uint64_t value) 554 { 555 ARMCPU *cpu = env_archcpu(env); 556 557 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 558 && !extended_addresses_enabled(env)) { 559 /* For VMSA (when not using the LPAE long descriptor page table 560 * format) this register includes the ASID, so do a TLB flush. 561 * For PMSA it is purely a process ID and no action is needed. 562 */ 563 tlb_flush(CPU(cpu)); 564 } 565 raw_write(env, ri, value); 566 } 567 568 /* IS variants of TLB operations must affect all cores */ 569 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 570 uint64_t value) 571 { 572 CPUState *cs = env_cpu(env); 573 574 tlb_flush_all_cpus_synced(cs); 575 } 576 577 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 578 uint64_t value) 579 { 580 CPUState *cs = env_cpu(env); 581 582 tlb_flush_all_cpus_synced(cs); 583 } 584 585 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 586 uint64_t value) 587 { 588 CPUState *cs = env_cpu(env); 589 590 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 591 } 592 593 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 594 uint64_t value) 595 { 596 CPUState *cs = env_cpu(env); 597 598 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 599 } 600 601 /* 602 * Non-IS variants of TLB operations are upgraded to 603 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 604 * force broadcast of these operations. 605 */ 606 static bool tlb_force_broadcast(CPUARMState *env) 607 { 608 return (env->cp15.hcr_el2 & HCR_FB) && 609 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 610 } 611 612 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 613 uint64_t value) 614 { 615 /* Invalidate all (TLBIALL) */ 616 ARMCPU *cpu = env_archcpu(env); 617 618 if (tlb_force_broadcast(env)) { 619 tlbiall_is_write(env, NULL, value); 620 return; 621 } 622 623 tlb_flush(CPU(cpu)); 624 } 625 626 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 627 uint64_t value) 628 { 629 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 630 ARMCPU *cpu = env_archcpu(env); 631 632 if (tlb_force_broadcast(env)) { 633 tlbimva_is_write(env, NULL, value); 634 return; 635 } 636 637 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 638 } 639 640 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 641 uint64_t value) 642 { 643 /* Invalidate by ASID (TLBIASID) */ 644 ARMCPU *cpu = env_archcpu(env); 645 646 if (tlb_force_broadcast(env)) { 647 tlbiasid_is_write(env, NULL, value); 648 return; 649 } 650 651 tlb_flush(CPU(cpu)); 652 } 653 654 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 655 uint64_t value) 656 { 657 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 658 ARMCPU *cpu = env_archcpu(env); 659 660 if (tlb_force_broadcast(env)) { 661 tlbimvaa_is_write(env, NULL, value); 662 return; 663 } 664 665 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 666 } 667 668 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 669 uint64_t value) 670 { 671 CPUState *cs = env_cpu(env); 672 673 tlb_flush_by_mmuidx(cs, 674 ARMMMUIdxBit_S12NSE1 | 675 ARMMMUIdxBit_S12NSE0 | 676 ARMMMUIdxBit_S2NS); 677 } 678 679 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 680 uint64_t value) 681 { 682 CPUState *cs = env_cpu(env); 683 684 tlb_flush_by_mmuidx_all_cpus_synced(cs, 685 ARMMMUIdxBit_S12NSE1 | 686 ARMMMUIdxBit_S12NSE0 | 687 ARMMMUIdxBit_S2NS); 688 } 689 690 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 691 uint64_t value) 692 { 693 /* Invalidate by IPA. This has to invalidate any structures that 694 * contain only stage 2 translation information, but does not need 695 * to apply to structures that contain combined stage 1 and stage 2 696 * translation information. 697 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 698 */ 699 CPUState *cs = env_cpu(env); 700 uint64_t pageaddr; 701 702 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 703 return; 704 } 705 706 pageaddr = sextract64(value << 12, 0, 40); 707 708 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 709 } 710 711 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 712 uint64_t value) 713 { 714 CPUState *cs = env_cpu(env); 715 uint64_t pageaddr; 716 717 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 718 return; 719 } 720 721 pageaddr = sextract64(value << 12, 0, 40); 722 723 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 724 ARMMMUIdxBit_S2NS); 725 } 726 727 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 728 uint64_t value) 729 { 730 CPUState *cs = env_cpu(env); 731 732 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 733 } 734 735 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 736 uint64_t value) 737 { 738 CPUState *cs = env_cpu(env); 739 740 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 741 } 742 743 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 744 uint64_t value) 745 { 746 CPUState *cs = env_cpu(env); 747 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 748 749 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 750 } 751 752 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 753 uint64_t value) 754 { 755 CPUState *cs = env_cpu(env); 756 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 757 758 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 759 ARMMMUIdxBit_S1E2); 760 } 761 762 static const ARMCPRegInfo cp_reginfo[] = { 763 /* Define the secure and non-secure FCSE identifier CP registers 764 * separately because there is no secure bank in V8 (no _EL3). This allows 765 * the secure register to be properly reset and migrated. There is also no 766 * v8 EL1 version of the register so the non-secure instance stands alone. 767 */ 768 { .name = "FCSEIDR", 769 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 770 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 771 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 772 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 773 { .name = "FCSEIDR_S", 774 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 775 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 776 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 777 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 778 /* Define the secure and non-secure context identifier CP registers 779 * separately because there is no secure bank in V8 (no _EL3). This allows 780 * the secure register to be properly reset and migrated. In the 781 * non-secure case, the 32-bit register will have reset and migration 782 * disabled during registration as it is handled by the 64-bit instance. 783 */ 784 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 785 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 786 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 787 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 788 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 789 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 790 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 791 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 792 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 793 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 794 REGINFO_SENTINEL 795 }; 796 797 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 798 /* NB: Some of these registers exist in v8 but with more precise 799 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 800 */ 801 /* MMU Domain access control / MPU write buffer control */ 802 { .name = "DACR", 803 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 804 .access = PL1_RW, .resetvalue = 0, 805 .writefn = dacr_write, .raw_writefn = raw_write, 806 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 807 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 808 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 809 * For v6 and v5, these mappings are overly broad. 810 */ 811 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 812 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 813 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 814 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 815 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 816 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 817 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 818 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 819 /* Cache maintenance ops; some of this space may be overridden later. */ 820 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 821 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 822 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 823 REGINFO_SENTINEL 824 }; 825 826 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 827 /* Not all pre-v6 cores implemented this WFI, so this is slightly 828 * over-broad. 829 */ 830 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 831 .access = PL1_W, .type = ARM_CP_WFI }, 832 REGINFO_SENTINEL 833 }; 834 835 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 836 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 837 * is UNPREDICTABLE; we choose to NOP as most implementations do). 838 */ 839 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 840 .access = PL1_W, .type = ARM_CP_WFI }, 841 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 842 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 843 * OMAPCP will override this space. 844 */ 845 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 846 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 847 .resetvalue = 0 }, 848 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 849 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 850 .resetvalue = 0 }, 851 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 852 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 853 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 854 .resetvalue = 0 }, 855 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 856 * implementing it as RAZ means the "debug architecture version" bits 857 * will read as a reserved value, which should cause Linux to not try 858 * to use the debug hardware. 859 */ 860 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 861 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 862 /* MMU TLB control. Note that the wildcarding means we cover not just 863 * the unified TLB ops but also the dside/iside/inner-shareable variants. 864 */ 865 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 866 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 867 .type = ARM_CP_NO_RAW }, 868 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 869 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 870 .type = ARM_CP_NO_RAW }, 871 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 872 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 873 .type = ARM_CP_NO_RAW }, 874 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 875 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 876 .type = ARM_CP_NO_RAW }, 877 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 878 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 879 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 880 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 881 REGINFO_SENTINEL 882 }; 883 884 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 885 uint64_t value) 886 { 887 uint32_t mask = 0; 888 889 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 890 if (!arm_feature(env, ARM_FEATURE_V8)) { 891 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 892 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 893 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 894 */ 895 if (arm_feature(env, ARM_FEATURE_VFP)) { 896 /* VFP coprocessor: cp10 & cp11 [23:20] */ 897 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 898 899 if (!arm_feature(env, ARM_FEATURE_NEON)) { 900 /* ASEDIS [31] bit is RAO/WI */ 901 value |= (1 << 31); 902 } 903 904 /* VFPv3 and upwards with NEON implement 32 double precision 905 * registers (D0-D31). 906 */ 907 if (!arm_feature(env, ARM_FEATURE_NEON) || 908 !arm_feature(env, ARM_FEATURE_VFP3)) { 909 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 910 value |= (1 << 30); 911 } 912 } 913 value &= mask; 914 } 915 916 /* 917 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 918 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 919 */ 920 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 921 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 922 value &= ~(0xf << 20); 923 value |= env->cp15.cpacr_el1 & (0xf << 20); 924 } 925 926 env->cp15.cpacr_el1 = value; 927 } 928 929 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 930 { 931 /* 932 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 933 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 934 */ 935 uint64_t value = env->cp15.cpacr_el1; 936 937 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 938 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 939 value &= ~(0xf << 20); 940 } 941 return value; 942 } 943 944 945 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 946 { 947 /* Call cpacr_write() so that we reset with the correct RAO bits set 948 * for our CPU features. 949 */ 950 cpacr_write(env, ri, 0); 951 } 952 953 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 954 bool isread) 955 { 956 if (arm_feature(env, ARM_FEATURE_V8)) { 957 /* Check if CPACR accesses are to be trapped to EL2 */ 958 if (arm_current_el(env) == 1 && 959 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 960 return CP_ACCESS_TRAP_EL2; 961 /* Check if CPACR accesses are to be trapped to EL3 */ 962 } else if (arm_current_el(env) < 3 && 963 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 964 return CP_ACCESS_TRAP_EL3; 965 } 966 } 967 968 return CP_ACCESS_OK; 969 } 970 971 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 972 bool isread) 973 { 974 /* Check if CPTR accesses are set to trap to EL3 */ 975 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 976 return CP_ACCESS_TRAP_EL3; 977 } 978 979 return CP_ACCESS_OK; 980 } 981 982 static const ARMCPRegInfo v6_cp_reginfo[] = { 983 /* prefetch by MVA in v6, NOP in v7 */ 984 { .name = "MVA_prefetch", 985 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 986 .access = PL1_W, .type = ARM_CP_NOP }, 987 /* We need to break the TB after ISB to execute self-modifying code 988 * correctly and also to take any pending interrupts immediately. 989 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 990 */ 991 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 992 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 993 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 994 .access = PL0_W, .type = ARM_CP_NOP }, 995 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 996 .access = PL0_W, .type = ARM_CP_NOP }, 997 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 998 .access = PL1_RW, 999 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1000 offsetof(CPUARMState, cp15.ifar_ns) }, 1001 .resetvalue = 0, }, 1002 /* Watchpoint Fault Address Register : should actually only be present 1003 * for 1136, 1176, 11MPCore. 1004 */ 1005 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1006 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1007 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1008 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1009 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1010 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1011 REGINFO_SENTINEL 1012 }; 1013 1014 /* Definitions for the PMU registers */ 1015 #define PMCRN_MASK 0xf800 1016 #define PMCRN_SHIFT 11 1017 #define PMCRLC 0x40 1018 #define PMCRDP 0x10 1019 #define PMCRD 0x8 1020 #define PMCRC 0x4 1021 #define PMCRP 0x2 1022 #define PMCRE 0x1 1023 1024 #define PMXEVTYPER_P 0x80000000 1025 #define PMXEVTYPER_U 0x40000000 1026 #define PMXEVTYPER_NSK 0x20000000 1027 #define PMXEVTYPER_NSU 0x10000000 1028 #define PMXEVTYPER_NSH 0x08000000 1029 #define PMXEVTYPER_M 0x04000000 1030 #define PMXEVTYPER_MT 0x02000000 1031 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1032 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1033 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1034 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1035 PMXEVTYPER_EVTCOUNT) 1036 1037 #define PMCCFILTR 0xf8000000 1038 #define PMCCFILTR_M PMXEVTYPER_M 1039 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1040 1041 static inline uint32_t pmu_num_counters(CPUARMState *env) 1042 { 1043 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1044 } 1045 1046 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1047 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1048 { 1049 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1050 } 1051 1052 typedef struct pm_event { 1053 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1054 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1055 bool (*supported)(CPUARMState *); 1056 /* 1057 * Retrieve the current count of the underlying event. The programmed 1058 * counters hold a difference from the return value from this function 1059 */ 1060 uint64_t (*get_count)(CPUARMState *); 1061 /* 1062 * Return how many nanoseconds it will take (at a minimum) for count events 1063 * to occur. A negative value indicates the counter will never overflow, or 1064 * that the counter has otherwise arranged for the overflow bit to be set 1065 * and the PMU interrupt to be raised on overflow. 1066 */ 1067 int64_t (*ns_per_count)(uint64_t); 1068 } pm_event; 1069 1070 static bool event_always_supported(CPUARMState *env) 1071 { 1072 return true; 1073 } 1074 1075 static uint64_t swinc_get_count(CPUARMState *env) 1076 { 1077 /* 1078 * SW_INCR events are written directly to the pmevcntr's by writes to 1079 * PMSWINC, so there is no underlying count maintained by the PMU itself 1080 */ 1081 return 0; 1082 } 1083 1084 static int64_t swinc_ns_per(uint64_t ignored) 1085 { 1086 return -1; 1087 } 1088 1089 /* 1090 * Return the underlying cycle count for the PMU cycle counters. If we're in 1091 * usermode, simply return 0. 1092 */ 1093 static uint64_t cycles_get_count(CPUARMState *env) 1094 { 1095 #ifndef CONFIG_USER_ONLY 1096 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1097 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1098 #else 1099 return cpu_get_host_ticks(); 1100 #endif 1101 } 1102 1103 #ifndef CONFIG_USER_ONLY 1104 static int64_t cycles_ns_per(uint64_t cycles) 1105 { 1106 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1107 } 1108 1109 static bool instructions_supported(CPUARMState *env) 1110 { 1111 return use_icount == 1 /* Precise instruction counting */; 1112 } 1113 1114 static uint64_t instructions_get_count(CPUARMState *env) 1115 { 1116 return (uint64_t)cpu_get_icount_raw(); 1117 } 1118 1119 static int64_t instructions_ns_per(uint64_t icount) 1120 { 1121 return cpu_icount_to_ns((int64_t)icount); 1122 } 1123 #endif 1124 1125 static const pm_event pm_events[] = { 1126 { .number = 0x000, /* SW_INCR */ 1127 .supported = event_always_supported, 1128 .get_count = swinc_get_count, 1129 .ns_per_count = swinc_ns_per, 1130 }, 1131 #ifndef CONFIG_USER_ONLY 1132 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1133 .supported = instructions_supported, 1134 .get_count = instructions_get_count, 1135 .ns_per_count = instructions_ns_per, 1136 }, 1137 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1138 .supported = event_always_supported, 1139 .get_count = cycles_get_count, 1140 .ns_per_count = cycles_ns_per, 1141 } 1142 #endif 1143 }; 1144 1145 /* 1146 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1147 * events (i.e. the statistical profiling extension), this implementation 1148 * should first be updated to something sparse instead of the current 1149 * supported_event_map[] array. 1150 */ 1151 #define MAX_EVENT_ID 0x11 1152 #define UNSUPPORTED_EVENT UINT16_MAX 1153 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1154 1155 /* 1156 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1157 * of ARM event numbers to indices in our pm_events array. 1158 * 1159 * Note: Events in the 0x40XX range are not currently supported. 1160 */ 1161 void pmu_init(ARMCPU *cpu) 1162 { 1163 unsigned int i; 1164 1165 /* 1166 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1167 * events to them 1168 */ 1169 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1170 supported_event_map[i] = UNSUPPORTED_EVENT; 1171 } 1172 cpu->pmceid0 = 0; 1173 cpu->pmceid1 = 0; 1174 1175 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1176 const pm_event *cnt = &pm_events[i]; 1177 assert(cnt->number <= MAX_EVENT_ID); 1178 /* We do not currently support events in the 0x40xx range */ 1179 assert(cnt->number <= 0x3f); 1180 1181 if (cnt->supported(&cpu->env)) { 1182 supported_event_map[cnt->number] = i; 1183 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1184 if (cnt->number & 0x20) { 1185 cpu->pmceid1 |= event_mask; 1186 } else { 1187 cpu->pmceid0 |= event_mask; 1188 } 1189 } 1190 } 1191 } 1192 1193 /* 1194 * Check at runtime whether a PMU event is supported for the current machine 1195 */ 1196 static bool event_supported(uint16_t number) 1197 { 1198 if (number > MAX_EVENT_ID) { 1199 return false; 1200 } 1201 return supported_event_map[number] != UNSUPPORTED_EVENT; 1202 } 1203 1204 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1205 bool isread) 1206 { 1207 /* Performance monitor registers user accessibility is controlled 1208 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1209 * trapping to EL2 or EL3 for other accesses. 1210 */ 1211 int el = arm_current_el(env); 1212 1213 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1214 return CP_ACCESS_TRAP; 1215 } 1216 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1217 && !arm_is_secure_below_el3(env)) { 1218 return CP_ACCESS_TRAP_EL2; 1219 } 1220 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1221 return CP_ACCESS_TRAP_EL3; 1222 } 1223 1224 return CP_ACCESS_OK; 1225 } 1226 1227 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1228 const ARMCPRegInfo *ri, 1229 bool isread) 1230 { 1231 /* ER: event counter read trap control */ 1232 if (arm_feature(env, ARM_FEATURE_V8) 1233 && arm_current_el(env) == 0 1234 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1235 && isread) { 1236 return CP_ACCESS_OK; 1237 } 1238 1239 return pmreg_access(env, ri, isread); 1240 } 1241 1242 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1243 const ARMCPRegInfo *ri, 1244 bool isread) 1245 { 1246 /* SW: software increment write trap control */ 1247 if (arm_feature(env, ARM_FEATURE_V8) 1248 && arm_current_el(env) == 0 1249 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1250 && !isread) { 1251 return CP_ACCESS_OK; 1252 } 1253 1254 return pmreg_access(env, ri, isread); 1255 } 1256 1257 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1258 const ARMCPRegInfo *ri, 1259 bool isread) 1260 { 1261 /* ER: event counter read trap control */ 1262 if (arm_feature(env, ARM_FEATURE_V8) 1263 && arm_current_el(env) == 0 1264 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1265 return CP_ACCESS_OK; 1266 } 1267 1268 return pmreg_access(env, ri, isread); 1269 } 1270 1271 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1272 const ARMCPRegInfo *ri, 1273 bool isread) 1274 { 1275 /* CR: cycle counter read trap control */ 1276 if (arm_feature(env, ARM_FEATURE_V8) 1277 && arm_current_el(env) == 0 1278 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1279 && isread) { 1280 return CP_ACCESS_OK; 1281 } 1282 1283 return pmreg_access(env, ri, isread); 1284 } 1285 1286 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1287 * the current EL, security state, and register configuration. 1288 */ 1289 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1290 { 1291 uint64_t filter; 1292 bool e, p, u, nsk, nsu, nsh, m; 1293 bool enabled, prohibited, filtered; 1294 bool secure = arm_is_secure(env); 1295 int el = arm_current_el(env); 1296 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1297 1298 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1299 return false; 1300 } 1301 1302 if (!arm_feature(env, ARM_FEATURE_EL2) || 1303 (counter < hpmn || counter == 31)) { 1304 e = env->cp15.c9_pmcr & PMCRE; 1305 } else { 1306 e = env->cp15.mdcr_el2 & MDCR_HPME; 1307 } 1308 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1309 1310 if (!secure) { 1311 if (el == 2 && (counter < hpmn || counter == 31)) { 1312 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1313 } else { 1314 prohibited = false; 1315 } 1316 } else { 1317 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1318 (env->cp15.mdcr_el3 & MDCR_SPME); 1319 } 1320 1321 if (prohibited && counter == 31) { 1322 prohibited = env->cp15.c9_pmcr & PMCRDP; 1323 } 1324 1325 if (counter == 31) { 1326 filter = env->cp15.pmccfiltr_el0; 1327 } else { 1328 filter = env->cp15.c14_pmevtyper[counter]; 1329 } 1330 1331 p = filter & PMXEVTYPER_P; 1332 u = filter & PMXEVTYPER_U; 1333 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1334 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1335 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1336 m = arm_el_is_aa64(env, 1) && 1337 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1338 1339 if (el == 0) { 1340 filtered = secure ? u : u != nsu; 1341 } else if (el == 1) { 1342 filtered = secure ? p : p != nsk; 1343 } else if (el == 2) { 1344 filtered = !nsh; 1345 } else { /* EL3 */ 1346 filtered = m != p; 1347 } 1348 1349 if (counter != 31) { 1350 /* 1351 * If not checking PMCCNTR, ensure the counter is setup to an event we 1352 * support 1353 */ 1354 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1355 if (!event_supported(event)) { 1356 return false; 1357 } 1358 } 1359 1360 return enabled && !prohibited && !filtered; 1361 } 1362 1363 static void pmu_update_irq(CPUARMState *env) 1364 { 1365 ARMCPU *cpu = env_archcpu(env); 1366 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1367 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1368 } 1369 1370 /* 1371 * Ensure c15_ccnt is the guest-visible count so that operations such as 1372 * enabling/disabling the counter or filtering, modifying the count itself, 1373 * etc. can be done logically. This is essentially a no-op if the counter is 1374 * not enabled at the time of the call. 1375 */ 1376 static void pmccntr_op_start(CPUARMState *env) 1377 { 1378 uint64_t cycles = cycles_get_count(env); 1379 1380 if (pmu_counter_enabled(env, 31)) { 1381 uint64_t eff_cycles = cycles; 1382 if (env->cp15.c9_pmcr & PMCRD) { 1383 /* Increment once every 64 processor clock cycles */ 1384 eff_cycles /= 64; 1385 } 1386 1387 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1388 1389 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1390 1ull << 63 : 1ull << 31; 1391 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1392 env->cp15.c9_pmovsr |= (1 << 31); 1393 pmu_update_irq(env); 1394 } 1395 1396 env->cp15.c15_ccnt = new_pmccntr; 1397 } 1398 env->cp15.c15_ccnt_delta = cycles; 1399 } 1400 1401 /* 1402 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1403 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1404 * pmccntr_op_start. 1405 */ 1406 static void pmccntr_op_finish(CPUARMState *env) 1407 { 1408 if (pmu_counter_enabled(env, 31)) { 1409 #ifndef CONFIG_USER_ONLY 1410 /* Calculate when the counter will next overflow */ 1411 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1412 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1413 remaining_cycles = (uint32_t)remaining_cycles; 1414 } 1415 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1416 1417 if (overflow_in > 0) { 1418 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1419 overflow_in; 1420 ARMCPU *cpu = env_archcpu(env); 1421 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1422 } 1423 #endif 1424 1425 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1426 if (env->cp15.c9_pmcr & PMCRD) { 1427 /* Increment once every 64 processor clock cycles */ 1428 prev_cycles /= 64; 1429 } 1430 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1431 } 1432 } 1433 1434 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1435 { 1436 1437 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1438 uint64_t count = 0; 1439 if (event_supported(event)) { 1440 uint16_t event_idx = supported_event_map[event]; 1441 count = pm_events[event_idx].get_count(env); 1442 } 1443 1444 if (pmu_counter_enabled(env, counter)) { 1445 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1446 1447 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1448 env->cp15.c9_pmovsr |= (1 << counter); 1449 pmu_update_irq(env); 1450 } 1451 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1452 } 1453 env->cp15.c14_pmevcntr_delta[counter] = count; 1454 } 1455 1456 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1457 { 1458 if (pmu_counter_enabled(env, counter)) { 1459 #ifndef CONFIG_USER_ONLY 1460 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1461 uint16_t event_idx = supported_event_map[event]; 1462 uint64_t delta = UINT32_MAX - 1463 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1464 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1465 1466 if (overflow_in > 0) { 1467 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1468 overflow_in; 1469 ARMCPU *cpu = env_archcpu(env); 1470 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1471 } 1472 #endif 1473 1474 env->cp15.c14_pmevcntr_delta[counter] -= 1475 env->cp15.c14_pmevcntr[counter]; 1476 } 1477 } 1478 1479 void pmu_op_start(CPUARMState *env) 1480 { 1481 unsigned int i; 1482 pmccntr_op_start(env); 1483 for (i = 0; i < pmu_num_counters(env); i++) { 1484 pmevcntr_op_start(env, i); 1485 } 1486 } 1487 1488 void pmu_op_finish(CPUARMState *env) 1489 { 1490 unsigned int i; 1491 pmccntr_op_finish(env); 1492 for (i = 0; i < pmu_num_counters(env); i++) { 1493 pmevcntr_op_finish(env, i); 1494 } 1495 } 1496 1497 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1498 { 1499 pmu_op_start(&cpu->env); 1500 } 1501 1502 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1503 { 1504 pmu_op_finish(&cpu->env); 1505 } 1506 1507 void arm_pmu_timer_cb(void *opaque) 1508 { 1509 ARMCPU *cpu = opaque; 1510 1511 /* 1512 * Update all the counter values based on the current underlying counts, 1513 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1514 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1515 * counter may expire. 1516 */ 1517 pmu_op_start(&cpu->env); 1518 pmu_op_finish(&cpu->env); 1519 } 1520 1521 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1522 uint64_t value) 1523 { 1524 pmu_op_start(env); 1525 1526 if (value & PMCRC) { 1527 /* The counter has been reset */ 1528 env->cp15.c15_ccnt = 0; 1529 } 1530 1531 if (value & PMCRP) { 1532 unsigned int i; 1533 for (i = 0; i < pmu_num_counters(env); i++) { 1534 env->cp15.c14_pmevcntr[i] = 0; 1535 } 1536 } 1537 1538 /* only the DP, X, D and E bits are writable */ 1539 env->cp15.c9_pmcr &= ~0x39; 1540 env->cp15.c9_pmcr |= (value & 0x39); 1541 1542 pmu_op_finish(env); 1543 } 1544 1545 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1546 uint64_t value) 1547 { 1548 unsigned int i; 1549 for (i = 0; i < pmu_num_counters(env); i++) { 1550 /* Increment a counter's count iff: */ 1551 if ((value & (1 << i)) && /* counter's bit is set */ 1552 /* counter is enabled and not filtered */ 1553 pmu_counter_enabled(env, i) && 1554 /* counter is SW_INCR */ 1555 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1556 pmevcntr_op_start(env, i); 1557 1558 /* 1559 * Detect if this write causes an overflow since we can't predict 1560 * PMSWINC overflows like we can for other events 1561 */ 1562 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1563 1564 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1565 env->cp15.c9_pmovsr |= (1 << i); 1566 pmu_update_irq(env); 1567 } 1568 1569 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1570 1571 pmevcntr_op_finish(env, i); 1572 } 1573 } 1574 } 1575 1576 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1577 { 1578 uint64_t ret; 1579 pmccntr_op_start(env); 1580 ret = env->cp15.c15_ccnt; 1581 pmccntr_op_finish(env); 1582 return ret; 1583 } 1584 1585 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1586 uint64_t value) 1587 { 1588 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1589 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1590 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1591 * accessed. 1592 */ 1593 env->cp15.c9_pmselr = value & 0x1f; 1594 } 1595 1596 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1597 uint64_t value) 1598 { 1599 pmccntr_op_start(env); 1600 env->cp15.c15_ccnt = value; 1601 pmccntr_op_finish(env); 1602 } 1603 1604 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1605 uint64_t value) 1606 { 1607 uint64_t cur_val = pmccntr_read(env, NULL); 1608 1609 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1610 } 1611 1612 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1613 uint64_t value) 1614 { 1615 pmccntr_op_start(env); 1616 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1617 pmccntr_op_finish(env); 1618 } 1619 1620 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1621 uint64_t value) 1622 { 1623 pmccntr_op_start(env); 1624 /* M is not accessible from AArch32 */ 1625 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1626 (value & PMCCFILTR); 1627 pmccntr_op_finish(env); 1628 } 1629 1630 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1631 { 1632 /* M is not visible in AArch32 */ 1633 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1634 } 1635 1636 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1637 uint64_t value) 1638 { 1639 value &= pmu_counter_mask(env); 1640 env->cp15.c9_pmcnten |= value; 1641 } 1642 1643 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1644 uint64_t value) 1645 { 1646 value &= pmu_counter_mask(env); 1647 env->cp15.c9_pmcnten &= ~value; 1648 } 1649 1650 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1651 uint64_t value) 1652 { 1653 value &= pmu_counter_mask(env); 1654 env->cp15.c9_pmovsr &= ~value; 1655 pmu_update_irq(env); 1656 } 1657 1658 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1659 uint64_t value) 1660 { 1661 value &= pmu_counter_mask(env); 1662 env->cp15.c9_pmovsr |= value; 1663 pmu_update_irq(env); 1664 } 1665 1666 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1667 uint64_t value, const uint8_t counter) 1668 { 1669 if (counter == 31) { 1670 pmccfiltr_write(env, ri, value); 1671 } else if (counter < pmu_num_counters(env)) { 1672 pmevcntr_op_start(env, counter); 1673 1674 /* 1675 * If this counter's event type is changing, store the current 1676 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1677 * pmevcntr_op_finish has the correct baseline when it converts back to 1678 * a delta. 1679 */ 1680 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1681 PMXEVTYPER_EVTCOUNT; 1682 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1683 if (old_event != new_event) { 1684 uint64_t count = 0; 1685 if (event_supported(new_event)) { 1686 uint16_t event_idx = supported_event_map[new_event]; 1687 count = pm_events[event_idx].get_count(env); 1688 } 1689 env->cp15.c14_pmevcntr_delta[counter] = count; 1690 } 1691 1692 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1693 pmevcntr_op_finish(env, counter); 1694 } 1695 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1696 * PMSELR value is equal to or greater than the number of implemented 1697 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1698 */ 1699 } 1700 1701 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1702 const uint8_t counter) 1703 { 1704 if (counter == 31) { 1705 return env->cp15.pmccfiltr_el0; 1706 } else if (counter < pmu_num_counters(env)) { 1707 return env->cp15.c14_pmevtyper[counter]; 1708 } else { 1709 /* 1710 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1711 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1712 */ 1713 return 0; 1714 } 1715 } 1716 1717 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1718 uint64_t value) 1719 { 1720 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1721 pmevtyper_write(env, ri, value, counter); 1722 } 1723 1724 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1725 uint64_t value) 1726 { 1727 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1728 env->cp15.c14_pmevtyper[counter] = value; 1729 1730 /* 1731 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1732 * pmu_op_finish calls when loading saved state for a migration. Because 1733 * we're potentially updating the type of event here, the value written to 1734 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1735 * different counter type. Therefore, we need to set this value to the 1736 * current count for the counter type we're writing so that pmu_op_finish 1737 * has the correct count for its calculation. 1738 */ 1739 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1740 if (event_supported(event)) { 1741 uint16_t event_idx = supported_event_map[event]; 1742 env->cp15.c14_pmevcntr_delta[counter] = 1743 pm_events[event_idx].get_count(env); 1744 } 1745 } 1746 1747 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1748 { 1749 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1750 return pmevtyper_read(env, ri, counter); 1751 } 1752 1753 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1754 uint64_t value) 1755 { 1756 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1757 } 1758 1759 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1760 { 1761 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1762 } 1763 1764 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1765 uint64_t value, uint8_t counter) 1766 { 1767 if (counter < pmu_num_counters(env)) { 1768 pmevcntr_op_start(env, counter); 1769 env->cp15.c14_pmevcntr[counter] = value; 1770 pmevcntr_op_finish(env, counter); 1771 } 1772 /* 1773 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1774 * are CONSTRAINED UNPREDICTABLE. 1775 */ 1776 } 1777 1778 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1779 uint8_t counter) 1780 { 1781 if (counter < pmu_num_counters(env)) { 1782 uint64_t ret; 1783 pmevcntr_op_start(env, counter); 1784 ret = env->cp15.c14_pmevcntr[counter]; 1785 pmevcntr_op_finish(env, counter); 1786 return ret; 1787 } else { 1788 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1789 * are CONSTRAINED UNPREDICTABLE. */ 1790 return 0; 1791 } 1792 } 1793 1794 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1795 uint64_t value) 1796 { 1797 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1798 pmevcntr_write(env, ri, value, counter); 1799 } 1800 1801 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1802 { 1803 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1804 return pmevcntr_read(env, ri, counter); 1805 } 1806 1807 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1808 uint64_t value) 1809 { 1810 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1811 assert(counter < pmu_num_counters(env)); 1812 env->cp15.c14_pmevcntr[counter] = value; 1813 pmevcntr_write(env, ri, value, counter); 1814 } 1815 1816 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1817 { 1818 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1819 assert(counter < pmu_num_counters(env)); 1820 return env->cp15.c14_pmevcntr[counter]; 1821 } 1822 1823 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1824 uint64_t value) 1825 { 1826 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1827 } 1828 1829 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1830 { 1831 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1832 } 1833 1834 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1835 uint64_t value) 1836 { 1837 if (arm_feature(env, ARM_FEATURE_V8)) { 1838 env->cp15.c9_pmuserenr = value & 0xf; 1839 } else { 1840 env->cp15.c9_pmuserenr = value & 1; 1841 } 1842 } 1843 1844 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1845 uint64_t value) 1846 { 1847 /* We have no event counters so only the C bit can be changed */ 1848 value &= pmu_counter_mask(env); 1849 env->cp15.c9_pminten |= value; 1850 pmu_update_irq(env); 1851 } 1852 1853 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1854 uint64_t value) 1855 { 1856 value &= pmu_counter_mask(env); 1857 env->cp15.c9_pminten &= ~value; 1858 pmu_update_irq(env); 1859 } 1860 1861 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1862 uint64_t value) 1863 { 1864 /* Note that even though the AArch64 view of this register has bits 1865 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1866 * architectural requirements for bits which are RES0 only in some 1867 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1868 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1869 */ 1870 raw_write(env, ri, value & ~0x1FULL); 1871 } 1872 1873 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1874 { 1875 /* Begin with base v8.0 state. */ 1876 uint32_t valid_mask = 0x3fff; 1877 ARMCPU *cpu = env_archcpu(env); 1878 1879 if (arm_el_is_aa64(env, 3)) { 1880 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1881 valid_mask &= ~SCR_NET; 1882 } else { 1883 valid_mask &= ~(SCR_RW | SCR_ST); 1884 } 1885 1886 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1887 valid_mask &= ~SCR_HCE; 1888 1889 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1890 * supported if EL2 exists. The bit is UNK/SBZP when 1891 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1892 * when EL2 is unavailable. 1893 * On ARMv8, this bit is always available. 1894 */ 1895 if (arm_feature(env, ARM_FEATURE_V7) && 1896 !arm_feature(env, ARM_FEATURE_V8)) { 1897 valid_mask &= ~SCR_SMD; 1898 } 1899 } 1900 if (cpu_isar_feature(aa64_lor, cpu)) { 1901 valid_mask |= SCR_TLOR; 1902 } 1903 if (cpu_isar_feature(aa64_pauth, cpu)) { 1904 valid_mask |= SCR_API | SCR_APK; 1905 } 1906 1907 /* Clear all-context RES0 bits. */ 1908 value &= valid_mask; 1909 raw_write(env, ri, value); 1910 } 1911 1912 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1913 { 1914 ARMCPU *cpu = env_archcpu(env); 1915 1916 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1917 * bank 1918 */ 1919 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1920 ri->secure & ARM_CP_SECSTATE_S); 1921 1922 return cpu->ccsidr[index]; 1923 } 1924 1925 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1926 uint64_t value) 1927 { 1928 raw_write(env, ri, value & 0xf); 1929 } 1930 1931 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1932 { 1933 CPUState *cs = env_cpu(env); 1934 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1935 uint64_t ret = 0; 1936 1937 if (hcr_el2 & HCR_IMO) { 1938 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1939 ret |= CPSR_I; 1940 } 1941 } else { 1942 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1943 ret |= CPSR_I; 1944 } 1945 } 1946 1947 if (hcr_el2 & HCR_FMO) { 1948 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1949 ret |= CPSR_F; 1950 } 1951 } else { 1952 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1953 ret |= CPSR_F; 1954 } 1955 } 1956 1957 /* External aborts are not possible in QEMU so A bit is always clear */ 1958 return ret; 1959 } 1960 1961 static const ARMCPRegInfo v7_cp_reginfo[] = { 1962 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1963 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1964 .access = PL1_W, .type = ARM_CP_NOP }, 1965 /* Performance monitors are implementation defined in v7, 1966 * but with an ARM recommended set of registers, which we 1967 * follow. 1968 * 1969 * Performance registers fall into three categories: 1970 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1971 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1972 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1973 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1974 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1975 */ 1976 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1977 .access = PL0_RW, .type = ARM_CP_ALIAS, 1978 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1979 .writefn = pmcntenset_write, 1980 .accessfn = pmreg_access, 1981 .raw_writefn = raw_write }, 1982 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1983 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1984 .access = PL0_RW, .accessfn = pmreg_access, 1985 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1986 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1987 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1988 .access = PL0_RW, 1989 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1990 .accessfn = pmreg_access, 1991 .writefn = pmcntenclr_write, 1992 .type = ARM_CP_ALIAS }, 1993 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1994 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1995 .access = PL0_RW, .accessfn = pmreg_access, 1996 .type = ARM_CP_ALIAS, 1997 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1998 .writefn = pmcntenclr_write }, 1999 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2000 .access = PL0_RW, .type = ARM_CP_IO, 2001 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2002 .accessfn = pmreg_access, 2003 .writefn = pmovsr_write, 2004 .raw_writefn = raw_write }, 2005 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2006 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2007 .access = PL0_RW, .accessfn = pmreg_access, 2008 .type = ARM_CP_ALIAS | ARM_CP_IO, 2009 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2010 .writefn = pmovsr_write, 2011 .raw_writefn = raw_write }, 2012 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2013 .access = PL0_W, .accessfn = pmreg_access_swinc, 2014 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2015 .writefn = pmswinc_write }, 2016 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2017 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2018 .access = PL0_W, .accessfn = pmreg_access_swinc, 2019 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2020 .writefn = pmswinc_write }, 2021 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2022 .access = PL0_RW, .type = ARM_CP_ALIAS, 2023 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2024 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2025 .raw_writefn = raw_write}, 2026 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2027 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2028 .access = PL0_RW, .accessfn = pmreg_access_selr, 2029 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2030 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2031 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2032 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2033 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2034 .accessfn = pmreg_access_ccntr }, 2035 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2036 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2037 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2038 .type = ARM_CP_IO, 2039 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2040 .readfn = pmccntr_read, .writefn = pmccntr_write, 2041 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2042 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2043 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2044 .access = PL0_RW, .accessfn = pmreg_access, 2045 .type = ARM_CP_ALIAS | ARM_CP_IO, 2046 .resetvalue = 0, }, 2047 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2048 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2049 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2050 .access = PL0_RW, .accessfn = pmreg_access, 2051 .type = ARM_CP_IO, 2052 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2053 .resetvalue = 0, }, 2054 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2055 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2056 .accessfn = pmreg_access, 2057 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2058 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2059 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2060 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2061 .accessfn = pmreg_access, 2062 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2063 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2064 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2065 .accessfn = pmreg_access_xevcntr, 2066 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2067 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2068 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2069 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2070 .accessfn = pmreg_access_xevcntr, 2071 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2072 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2073 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2074 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2075 .resetvalue = 0, 2076 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2077 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2078 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2079 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2080 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2081 .resetvalue = 0, 2082 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2083 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2084 .access = PL1_RW, .accessfn = access_tpm, 2085 .type = ARM_CP_ALIAS | ARM_CP_IO, 2086 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2087 .resetvalue = 0, 2088 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2089 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2090 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2091 .access = PL1_RW, .accessfn = access_tpm, 2092 .type = ARM_CP_IO, 2093 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2094 .writefn = pmintenset_write, .raw_writefn = raw_write, 2095 .resetvalue = 0x0 }, 2096 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2097 .access = PL1_RW, .accessfn = access_tpm, 2098 .type = ARM_CP_ALIAS | ARM_CP_IO, 2099 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2100 .writefn = pmintenclr_write, }, 2101 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2102 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2103 .access = PL1_RW, .accessfn = access_tpm, 2104 .type = ARM_CP_ALIAS | ARM_CP_IO, 2105 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2106 .writefn = pmintenclr_write }, 2107 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2108 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2109 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2110 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2111 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2112 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 2113 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2114 offsetof(CPUARMState, cp15.csselr_ns) } }, 2115 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2116 * just RAZ for all cores: 2117 */ 2118 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2119 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2120 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 2121 /* Auxiliary fault status registers: these also are IMPDEF, and we 2122 * choose to RAZ/WI for all cores. 2123 */ 2124 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2125 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2126 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2127 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2128 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2129 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2130 /* MAIR can just read-as-written because we don't implement caches 2131 * and so don't need to care about memory attributes. 2132 */ 2133 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2134 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2135 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2136 .resetvalue = 0 }, 2137 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2138 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2139 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2140 .resetvalue = 0 }, 2141 /* For non-long-descriptor page tables these are PRRR and NMRR; 2142 * regardless they still act as reads-as-written for QEMU. 2143 */ 2144 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2145 * allows them to assign the correct fieldoffset based on the endianness 2146 * handled in the field definitions. 2147 */ 2148 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2149 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 2150 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2151 offsetof(CPUARMState, cp15.mair0_ns) }, 2152 .resetfn = arm_cp_reset_ignore }, 2153 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2154 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 2155 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2156 offsetof(CPUARMState, cp15.mair1_ns) }, 2157 .resetfn = arm_cp_reset_ignore }, 2158 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2159 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2160 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2161 /* 32 bit ITLB invalidates */ 2162 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2163 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2164 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2165 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2166 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2167 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2168 /* 32 bit DTLB invalidates */ 2169 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2170 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2171 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2172 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2173 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2174 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2175 /* 32 bit TLB invalidates */ 2176 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2177 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2178 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2179 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2180 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2181 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2182 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2183 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 2184 REGINFO_SENTINEL 2185 }; 2186 2187 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2188 /* 32 bit TLB invalidates, Inner Shareable */ 2189 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2190 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 2191 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2192 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 2193 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2194 .type = ARM_CP_NO_RAW, .access = PL1_W, 2195 .writefn = tlbiasid_is_write }, 2196 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2197 .type = ARM_CP_NO_RAW, .access = PL1_W, 2198 .writefn = tlbimvaa_is_write }, 2199 REGINFO_SENTINEL 2200 }; 2201 2202 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2203 /* PMOVSSET is not implemented in v7 before v7ve */ 2204 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2205 .access = PL0_RW, .accessfn = pmreg_access, 2206 .type = ARM_CP_ALIAS | ARM_CP_IO, 2207 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2208 .writefn = pmovsset_write, 2209 .raw_writefn = raw_write }, 2210 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2211 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2212 .access = PL0_RW, .accessfn = pmreg_access, 2213 .type = ARM_CP_ALIAS | ARM_CP_IO, 2214 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2215 .writefn = pmovsset_write, 2216 .raw_writefn = raw_write }, 2217 REGINFO_SENTINEL 2218 }; 2219 2220 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2221 uint64_t value) 2222 { 2223 value &= 1; 2224 env->teecr = value; 2225 } 2226 2227 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2228 bool isread) 2229 { 2230 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2231 return CP_ACCESS_TRAP; 2232 } 2233 return CP_ACCESS_OK; 2234 } 2235 2236 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2237 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2238 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2239 .resetvalue = 0, 2240 .writefn = teecr_write }, 2241 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2242 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2243 .accessfn = teehbr_access, .resetvalue = 0 }, 2244 REGINFO_SENTINEL 2245 }; 2246 2247 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2248 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2249 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2250 .access = PL0_RW, 2251 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2252 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2253 .access = PL0_RW, 2254 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2255 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2256 .resetfn = arm_cp_reset_ignore }, 2257 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2258 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2259 .access = PL0_R|PL1_W, 2260 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2261 .resetvalue = 0}, 2262 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2263 .access = PL0_R|PL1_W, 2264 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2265 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2266 .resetfn = arm_cp_reset_ignore }, 2267 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2268 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2269 .access = PL1_RW, 2270 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2271 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2272 .access = PL1_RW, 2273 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2274 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2275 .resetvalue = 0 }, 2276 REGINFO_SENTINEL 2277 }; 2278 2279 #ifndef CONFIG_USER_ONLY 2280 2281 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2282 bool isread) 2283 { 2284 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2285 * Writable only at the highest implemented exception level. 2286 */ 2287 int el = arm_current_el(env); 2288 2289 switch (el) { 2290 case 0: 2291 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 2292 return CP_ACCESS_TRAP; 2293 } 2294 break; 2295 case 1: 2296 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2297 arm_is_secure_below_el3(env)) { 2298 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2299 return CP_ACCESS_TRAP_UNCATEGORIZED; 2300 } 2301 break; 2302 case 2: 2303 case 3: 2304 break; 2305 } 2306 2307 if (!isread && el < arm_highest_el(env)) { 2308 return CP_ACCESS_TRAP_UNCATEGORIZED; 2309 } 2310 2311 return CP_ACCESS_OK; 2312 } 2313 2314 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2315 bool isread) 2316 { 2317 unsigned int cur_el = arm_current_el(env); 2318 bool secure = arm_is_secure(env); 2319 2320 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 2321 if (cur_el == 0 && 2322 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2323 return CP_ACCESS_TRAP; 2324 } 2325 2326 if (arm_feature(env, ARM_FEATURE_EL2) && 2327 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2328 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 2329 return CP_ACCESS_TRAP_EL2; 2330 } 2331 return CP_ACCESS_OK; 2332 } 2333 2334 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2335 bool isread) 2336 { 2337 unsigned int cur_el = arm_current_el(env); 2338 bool secure = arm_is_secure(env); 2339 2340 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 2341 * EL0[PV]TEN is zero. 2342 */ 2343 if (cur_el == 0 && 2344 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2345 return CP_ACCESS_TRAP; 2346 } 2347 2348 if (arm_feature(env, ARM_FEATURE_EL2) && 2349 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2350 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2351 return CP_ACCESS_TRAP_EL2; 2352 } 2353 return CP_ACCESS_OK; 2354 } 2355 2356 static CPAccessResult gt_pct_access(CPUARMState *env, 2357 const ARMCPRegInfo *ri, 2358 bool isread) 2359 { 2360 return gt_counter_access(env, GTIMER_PHYS, isread); 2361 } 2362 2363 static CPAccessResult gt_vct_access(CPUARMState *env, 2364 const ARMCPRegInfo *ri, 2365 bool isread) 2366 { 2367 return gt_counter_access(env, GTIMER_VIRT, isread); 2368 } 2369 2370 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2371 bool isread) 2372 { 2373 return gt_timer_access(env, GTIMER_PHYS, isread); 2374 } 2375 2376 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2377 bool isread) 2378 { 2379 return gt_timer_access(env, GTIMER_VIRT, isread); 2380 } 2381 2382 static CPAccessResult gt_stimer_access(CPUARMState *env, 2383 const ARMCPRegInfo *ri, 2384 bool isread) 2385 { 2386 /* The AArch64 register view of the secure physical timer is 2387 * always accessible from EL3, and configurably accessible from 2388 * Secure EL1. 2389 */ 2390 switch (arm_current_el(env)) { 2391 case 1: 2392 if (!arm_is_secure(env)) { 2393 return CP_ACCESS_TRAP; 2394 } 2395 if (!(env->cp15.scr_el3 & SCR_ST)) { 2396 return CP_ACCESS_TRAP_EL3; 2397 } 2398 return CP_ACCESS_OK; 2399 case 0: 2400 case 2: 2401 return CP_ACCESS_TRAP; 2402 case 3: 2403 return CP_ACCESS_OK; 2404 default: 2405 g_assert_not_reached(); 2406 } 2407 } 2408 2409 static uint64_t gt_get_countervalue(CPUARMState *env) 2410 { 2411 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 2412 } 2413 2414 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2415 { 2416 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2417 2418 if (gt->ctl & 1) { 2419 /* Timer enabled: calculate and set current ISTATUS, irq, and 2420 * reset timer to when ISTATUS next has to change 2421 */ 2422 uint64_t offset = timeridx == GTIMER_VIRT ? 2423 cpu->env.cp15.cntvoff_el2 : 0; 2424 uint64_t count = gt_get_countervalue(&cpu->env); 2425 /* Note that this must be unsigned 64 bit arithmetic: */ 2426 int istatus = count - offset >= gt->cval; 2427 uint64_t nexttick; 2428 int irqstate; 2429 2430 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2431 2432 irqstate = (istatus && !(gt->ctl & 2)); 2433 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2434 2435 if (istatus) { 2436 /* Next transition is when count rolls back over to zero */ 2437 nexttick = UINT64_MAX; 2438 } else { 2439 /* Next transition is when we hit cval */ 2440 nexttick = gt->cval + offset; 2441 } 2442 /* Note that the desired next expiry time might be beyond the 2443 * signed-64-bit range of a QEMUTimer -- in this case we just 2444 * set the timer for as far in the future as possible. When the 2445 * timer expires we will reset the timer for any remaining period. 2446 */ 2447 if (nexttick > INT64_MAX / GTIMER_SCALE) { 2448 nexttick = INT64_MAX / GTIMER_SCALE; 2449 } 2450 timer_mod(cpu->gt_timer[timeridx], nexttick); 2451 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2452 } else { 2453 /* Timer disabled: ISTATUS and timer output always clear */ 2454 gt->ctl &= ~4; 2455 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2456 timer_del(cpu->gt_timer[timeridx]); 2457 trace_arm_gt_recalc_disabled(timeridx); 2458 } 2459 } 2460 2461 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2462 int timeridx) 2463 { 2464 ARMCPU *cpu = env_archcpu(env); 2465 2466 timer_del(cpu->gt_timer[timeridx]); 2467 } 2468 2469 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2470 { 2471 return gt_get_countervalue(env); 2472 } 2473 2474 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2475 { 2476 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 2477 } 2478 2479 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2480 int timeridx, 2481 uint64_t value) 2482 { 2483 trace_arm_gt_cval_write(timeridx, value); 2484 env->cp15.c14_timer[timeridx].cval = value; 2485 gt_recalc_timer(env_archcpu(env), timeridx); 2486 } 2487 2488 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2489 int timeridx) 2490 { 2491 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2492 2493 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2494 (gt_get_countervalue(env) - offset)); 2495 } 2496 2497 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2498 int timeridx, 2499 uint64_t value) 2500 { 2501 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2502 2503 trace_arm_gt_tval_write(timeridx, value); 2504 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2505 sextract64(value, 0, 32); 2506 gt_recalc_timer(env_archcpu(env), timeridx); 2507 } 2508 2509 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2510 int timeridx, 2511 uint64_t value) 2512 { 2513 ARMCPU *cpu = env_archcpu(env); 2514 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2515 2516 trace_arm_gt_ctl_write(timeridx, value); 2517 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2518 if ((oldval ^ value) & 1) { 2519 /* Enable toggled */ 2520 gt_recalc_timer(cpu, timeridx); 2521 } else if ((oldval ^ value) & 2) { 2522 /* IMASK toggled: don't need to recalculate, 2523 * just set the interrupt line based on ISTATUS 2524 */ 2525 int irqstate = (oldval & 4) && !(value & 2); 2526 2527 trace_arm_gt_imask_toggle(timeridx, irqstate); 2528 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2529 } 2530 } 2531 2532 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2533 { 2534 gt_timer_reset(env, ri, GTIMER_PHYS); 2535 } 2536 2537 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2538 uint64_t value) 2539 { 2540 gt_cval_write(env, ri, GTIMER_PHYS, value); 2541 } 2542 2543 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2544 { 2545 return gt_tval_read(env, ri, GTIMER_PHYS); 2546 } 2547 2548 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2549 uint64_t value) 2550 { 2551 gt_tval_write(env, ri, GTIMER_PHYS, value); 2552 } 2553 2554 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2555 uint64_t value) 2556 { 2557 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2558 } 2559 2560 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2561 { 2562 gt_timer_reset(env, ri, GTIMER_VIRT); 2563 } 2564 2565 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2566 uint64_t value) 2567 { 2568 gt_cval_write(env, ri, GTIMER_VIRT, value); 2569 } 2570 2571 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2572 { 2573 return gt_tval_read(env, ri, GTIMER_VIRT); 2574 } 2575 2576 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2577 uint64_t value) 2578 { 2579 gt_tval_write(env, ri, GTIMER_VIRT, value); 2580 } 2581 2582 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2583 uint64_t value) 2584 { 2585 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2586 } 2587 2588 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2589 uint64_t value) 2590 { 2591 ARMCPU *cpu = env_archcpu(env); 2592 2593 trace_arm_gt_cntvoff_write(value); 2594 raw_write(env, ri, value); 2595 gt_recalc_timer(cpu, GTIMER_VIRT); 2596 } 2597 2598 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2599 { 2600 gt_timer_reset(env, ri, GTIMER_HYP); 2601 } 2602 2603 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2604 uint64_t value) 2605 { 2606 gt_cval_write(env, ri, GTIMER_HYP, value); 2607 } 2608 2609 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2610 { 2611 return gt_tval_read(env, ri, GTIMER_HYP); 2612 } 2613 2614 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2615 uint64_t value) 2616 { 2617 gt_tval_write(env, ri, GTIMER_HYP, value); 2618 } 2619 2620 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2621 uint64_t value) 2622 { 2623 gt_ctl_write(env, ri, GTIMER_HYP, value); 2624 } 2625 2626 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2627 { 2628 gt_timer_reset(env, ri, GTIMER_SEC); 2629 } 2630 2631 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2632 uint64_t value) 2633 { 2634 gt_cval_write(env, ri, GTIMER_SEC, value); 2635 } 2636 2637 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2638 { 2639 return gt_tval_read(env, ri, GTIMER_SEC); 2640 } 2641 2642 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2643 uint64_t value) 2644 { 2645 gt_tval_write(env, ri, GTIMER_SEC, value); 2646 } 2647 2648 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2649 uint64_t value) 2650 { 2651 gt_ctl_write(env, ri, GTIMER_SEC, value); 2652 } 2653 2654 void arm_gt_ptimer_cb(void *opaque) 2655 { 2656 ARMCPU *cpu = opaque; 2657 2658 gt_recalc_timer(cpu, GTIMER_PHYS); 2659 } 2660 2661 void arm_gt_vtimer_cb(void *opaque) 2662 { 2663 ARMCPU *cpu = opaque; 2664 2665 gt_recalc_timer(cpu, GTIMER_VIRT); 2666 } 2667 2668 void arm_gt_htimer_cb(void *opaque) 2669 { 2670 ARMCPU *cpu = opaque; 2671 2672 gt_recalc_timer(cpu, GTIMER_HYP); 2673 } 2674 2675 void arm_gt_stimer_cb(void *opaque) 2676 { 2677 ARMCPU *cpu = opaque; 2678 2679 gt_recalc_timer(cpu, GTIMER_SEC); 2680 } 2681 2682 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2683 /* Note that CNTFRQ is purely reads-as-written for the benefit 2684 * of software; writing it doesn't actually change the timer frequency. 2685 * Our reset value matches the fixed frequency we implement the timer at. 2686 */ 2687 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2688 .type = ARM_CP_ALIAS, 2689 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2690 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2691 }, 2692 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2693 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2694 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2695 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2696 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 2697 }, 2698 /* overall control: mostly access permissions */ 2699 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2700 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2701 .access = PL1_RW, 2702 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2703 .resetvalue = 0, 2704 }, 2705 /* per-timer control */ 2706 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2707 .secure = ARM_CP_SECSTATE_NS, 2708 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2709 .accessfn = gt_ptimer_access, 2710 .fieldoffset = offsetoflow32(CPUARMState, 2711 cp15.c14_timer[GTIMER_PHYS].ctl), 2712 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2713 }, 2714 { .name = "CNTP_CTL_S", 2715 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2716 .secure = ARM_CP_SECSTATE_S, 2717 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2718 .accessfn = gt_ptimer_access, 2719 .fieldoffset = offsetoflow32(CPUARMState, 2720 cp15.c14_timer[GTIMER_SEC].ctl), 2721 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2722 }, 2723 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2724 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2725 .type = ARM_CP_IO, .access = PL0_RW, 2726 .accessfn = gt_ptimer_access, 2727 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2728 .resetvalue = 0, 2729 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2730 }, 2731 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2732 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2733 .accessfn = gt_vtimer_access, 2734 .fieldoffset = offsetoflow32(CPUARMState, 2735 cp15.c14_timer[GTIMER_VIRT].ctl), 2736 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2737 }, 2738 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2739 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2740 .type = ARM_CP_IO, .access = PL0_RW, 2741 .accessfn = gt_vtimer_access, 2742 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2743 .resetvalue = 0, 2744 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2745 }, 2746 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2747 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2748 .secure = ARM_CP_SECSTATE_NS, 2749 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2750 .accessfn = gt_ptimer_access, 2751 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2752 }, 2753 { .name = "CNTP_TVAL_S", 2754 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2755 .secure = ARM_CP_SECSTATE_S, 2756 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2757 .accessfn = gt_ptimer_access, 2758 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2759 }, 2760 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2761 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2762 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2763 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2764 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2765 }, 2766 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2767 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2768 .accessfn = gt_vtimer_access, 2769 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2770 }, 2771 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2772 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2773 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2774 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2775 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2776 }, 2777 /* The counter itself */ 2778 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2779 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2780 .accessfn = gt_pct_access, 2781 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2782 }, 2783 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2784 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2785 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2786 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2787 }, 2788 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2789 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2790 .accessfn = gt_vct_access, 2791 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2792 }, 2793 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2794 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2795 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2796 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2797 }, 2798 /* Comparison value, indicating when the timer goes off */ 2799 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2800 .secure = ARM_CP_SECSTATE_NS, 2801 .access = PL0_RW, 2802 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2803 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2804 .accessfn = gt_ptimer_access, 2805 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2806 }, 2807 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 2808 .secure = ARM_CP_SECSTATE_S, 2809 .access = PL0_RW, 2810 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2811 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2812 .accessfn = gt_ptimer_access, 2813 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2814 }, 2815 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2816 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2817 .access = PL0_RW, 2818 .type = ARM_CP_IO, 2819 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2820 .resetvalue = 0, .accessfn = gt_ptimer_access, 2821 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2822 }, 2823 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2824 .access = PL0_RW, 2825 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2826 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2827 .accessfn = gt_vtimer_access, 2828 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2829 }, 2830 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2831 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2832 .access = PL0_RW, 2833 .type = ARM_CP_IO, 2834 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2835 .resetvalue = 0, .accessfn = gt_vtimer_access, 2836 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2837 }, 2838 /* Secure timer -- this is actually restricted to only EL3 2839 * and configurably Secure-EL1 via the accessfn. 2840 */ 2841 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2842 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2843 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2844 .accessfn = gt_stimer_access, 2845 .readfn = gt_sec_tval_read, 2846 .writefn = gt_sec_tval_write, 2847 .resetfn = gt_sec_timer_reset, 2848 }, 2849 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2850 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2851 .type = ARM_CP_IO, .access = PL1_RW, 2852 .accessfn = gt_stimer_access, 2853 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2854 .resetvalue = 0, 2855 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2856 }, 2857 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2858 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2859 .type = ARM_CP_IO, .access = PL1_RW, 2860 .accessfn = gt_stimer_access, 2861 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2862 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2863 }, 2864 REGINFO_SENTINEL 2865 }; 2866 2867 #else 2868 2869 /* In user-mode most of the generic timer registers are inaccessible 2870 * however modern kernels (4.12+) allow access to cntvct_el0 2871 */ 2872 2873 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2874 { 2875 /* Currently we have no support for QEMUTimer in linux-user so we 2876 * can't call gt_get_countervalue(env), instead we directly 2877 * call the lower level functions. 2878 */ 2879 return cpu_get_clock() / GTIMER_SCALE; 2880 } 2881 2882 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2883 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2884 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2885 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 2886 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2887 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 2888 }, 2889 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2890 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2891 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2892 .readfn = gt_virt_cnt_read, 2893 }, 2894 REGINFO_SENTINEL 2895 }; 2896 2897 #endif 2898 2899 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2900 { 2901 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2902 raw_write(env, ri, value); 2903 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2904 raw_write(env, ri, value & 0xfffff6ff); 2905 } else { 2906 raw_write(env, ri, value & 0xfffff1ff); 2907 } 2908 } 2909 2910 #ifndef CONFIG_USER_ONLY 2911 /* get_phys_addr() isn't present for user-mode-only targets */ 2912 2913 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2914 bool isread) 2915 { 2916 if (ri->opc2 & 4) { 2917 /* The ATS12NSO* operations must trap to EL3 if executed in 2918 * Secure EL1 (which can only happen if EL3 is AArch64). 2919 * They are simply UNDEF if executed from NS EL1. 2920 * They function normally from EL2 or EL3. 2921 */ 2922 if (arm_current_el(env) == 1) { 2923 if (arm_is_secure_below_el3(env)) { 2924 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2925 } 2926 return CP_ACCESS_TRAP_UNCATEGORIZED; 2927 } 2928 } 2929 return CP_ACCESS_OK; 2930 } 2931 2932 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2933 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2934 { 2935 hwaddr phys_addr; 2936 target_ulong page_size; 2937 int prot; 2938 bool ret; 2939 uint64_t par64; 2940 bool format64 = false; 2941 MemTxAttrs attrs = {}; 2942 ARMMMUFaultInfo fi = {}; 2943 ARMCacheAttrs cacheattrs = {}; 2944 2945 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2946 &prot, &page_size, &fi, &cacheattrs); 2947 2948 if (is_a64(env)) { 2949 format64 = true; 2950 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 2951 /* 2952 * ATS1Cxx: 2953 * * TTBCR.EAE determines whether the result is returned using the 2954 * 32-bit or the 64-bit PAR format 2955 * * Instructions executed in Hyp mode always use the 64bit format 2956 * 2957 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 2958 * * The Non-secure TTBCR.EAE bit is set to 1 2959 * * The implementation includes EL2, and the value of HCR.VM is 1 2960 * 2961 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 2962 * 2963 * ATS1Hx always uses the 64bit format. 2964 */ 2965 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 2966 2967 if (arm_feature(env, ARM_FEATURE_EL2)) { 2968 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 2969 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 2970 } else { 2971 format64 |= arm_current_el(env) == 2; 2972 } 2973 } 2974 } 2975 2976 if (format64) { 2977 /* Create a 64-bit PAR */ 2978 par64 = (1 << 11); /* LPAE bit always set */ 2979 if (!ret) { 2980 par64 |= phys_addr & ~0xfffULL; 2981 if (!attrs.secure) { 2982 par64 |= (1 << 9); /* NS */ 2983 } 2984 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2985 par64 |= cacheattrs.shareability << 7; /* SH */ 2986 } else { 2987 uint32_t fsr = arm_fi_to_lfsc(&fi); 2988 2989 par64 |= 1; /* F */ 2990 par64 |= (fsr & 0x3f) << 1; /* FS */ 2991 if (fi.stage2) { 2992 par64 |= (1 << 9); /* S */ 2993 } 2994 if (fi.s1ptw) { 2995 par64 |= (1 << 8); /* PTW */ 2996 } 2997 } 2998 } else { 2999 /* fsr is a DFSR/IFSR value for the short descriptor 3000 * translation table format (with WnR always clear). 3001 * Convert it to a 32-bit PAR. 3002 */ 3003 if (!ret) { 3004 /* We do not set any attribute bits in the PAR */ 3005 if (page_size == (1 << 24) 3006 && arm_feature(env, ARM_FEATURE_V7)) { 3007 par64 = (phys_addr & 0xff000000) | (1 << 1); 3008 } else { 3009 par64 = phys_addr & 0xfffff000; 3010 } 3011 if (!attrs.secure) { 3012 par64 |= (1 << 9); /* NS */ 3013 } 3014 } else { 3015 uint32_t fsr = arm_fi_to_sfsc(&fi); 3016 3017 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3018 ((fsr & 0xf) << 1) | 1; 3019 } 3020 } 3021 return par64; 3022 } 3023 3024 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3025 { 3026 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3027 uint64_t par64; 3028 ARMMMUIdx mmu_idx; 3029 int el = arm_current_el(env); 3030 bool secure = arm_is_secure_below_el3(env); 3031 3032 switch (ri->opc2 & 6) { 3033 case 0: 3034 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 3035 switch (el) { 3036 case 3: 3037 mmu_idx = ARMMMUIdx_S1E3; 3038 break; 3039 case 2: 3040 mmu_idx = ARMMMUIdx_S1NSE1; 3041 break; 3042 case 1: 3043 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3044 break; 3045 default: 3046 g_assert_not_reached(); 3047 } 3048 break; 3049 case 2: 3050 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3051 switch (el) { 3052 case 3: 3053 mmu_idx = ARMMMUIdx_S1SE0; 3054 break; 3055 case 2: 3056 mmu_idx = ARMMMUIdx_S1NSE0; 3057 break; 3058 case 1: 3059 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3060 break; 3061 default: 3062 g_assert_not_reached(); 3063 } 3064 break; 3065 case 4: 3066 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3067 mmu_idx = ARMMMUIdx_S12NSE1; 3068 break; 3069 case 6: 3070 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3071 mmu_idx = ARMMMUIdx_S12NSE0; 3072 break; 3073 default: 3074 g_assert_not_reached(); 3075 } 3076 3077 par64 = do_ats_write(env, value, access_type, mmu_idx); 3078 3079 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3080 } 3081 3082 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3083 uint64_t value) 3084 { 3085 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3086 uint64_t par64; 3087 3088 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2); 3089 3090 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3091 } 3092 3093 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3094 bool isread) 3095 { 3096 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3097 return CP_ACCESS_TRAP; 3098 } 3099 return CP_ACCESS_OK; 3100 } 3101 3102 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3103 uint64_t value) 3104 { 3105 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3106 ARMMMUIdx mmu_idx; 3107 int secure = arm_is_secure_below_el3(env); 3108 3109 switch (ri->opc2 & 6) { 3110 case 0: 3111 switch (ri->opc1) { 3112 case 0: /* AT S1E1R, AT S1E1W */ 3113 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3114 break; 3115 case 4: /* AT S1E2R, AT S1E2W */ 3116 mmu_idx = ARMMMUIdx_S1E2; 3117 break; 3118 case 6: /* AT S1E3R, AT S1E3W */ 3119 mmu_idx = ARMMMUIdx_S1E3; 3120 break; 3121 default: 3122 g_assert_not_reached(); 3123 } 3124 break; 3125 case 2: /* AT S1E0R, AT S1E0W */ 3126 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3127 break; 3128 case 4: /* AT S12E1R, AT S12E1W */ 3129 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 3130 break; 3131 case 6: /* AT S12E0R, AT S12E0W */ 3132 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 3133 break; 3134 default: 3135 g_assert_not_reached(); 3136 } 3137 3138 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3139 } 3140 #endif 3141 3142 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3143 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3144 .access = PL1_RW, .resetvalue = 0, 3145 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3146 offsetoflow32(CPUARMState, cp15.par_ns) }, 3147 .writefn = par_write }, 3148 #ifndef CONFIG_USER_ONLY 3149 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3150 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3151 .access = PL1_W, .accessfn = ats_access, 3152 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 3153 #endif 3154 REGINFO_SENTINEL 3155 }; 3156 3157 /* Return basic MPU access permission bits. */ 3158 static uint32_t simple_mpu_ap_bits(uint32_t val) 3159 { 3160 uint32_t ret; 3161 uint32_t mask; 3162 int i; 3163 ret = 0; 3164 mask = 3; 3165 for (i = 0; i < 16; i += 2) { 3166 ret |= (val >> i) & mask; 3167 mask <<= 2; 3168 } 3169 return ret; 3170 } 3171 3172 /* Pad basic MPU access permission bits to extended format. */ 3173 static uint32_t extended_mpu_ap_bits(uint32_t val) 3174 { 3175 uint32_t ret; 3176 uint32_t mask; 3177 int i; 3178 ret = 0; 3179 mask = 3; 3180 for (i = 0; i < 16; i += 2) { 3181 ret |= (val & mask) << i; 3182 mask <<= 2; 3183 } 3184 return ret; 3185 } 3186 3187 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3188 uint64_t value) 3189 { 3190 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3191 } 3192 3193 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3194 { 3195 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3196 } 3197 3198 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3199 uint64_t value) 3200 { 3201 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3202 } 3203 3204 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3205 { 3206 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3207 } 3208 3209 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3210 { 3211 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3212 3213 if (!u32p) { 3214 return 0; 3215 } 3216 3217 u32p += env->pmsav7.rnr[M_REG_NS]; 3218 return *u32p; 3219 } 3220 3221 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3222 uint64_t value) 3223 { 3224 ARMCPU *cpu = env_archcpu(env); 3225 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3226 3227 if (!u32p) { 3228 return; 3229 } 3230 3231 u32p += env->pmsav7.rnr[M_REG_NS]; 3232 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3233 *u32p = value; 3234 } 3235 3236 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3237 uint64_t value) 3238 { 3239 ARMCPU *cpu = env_archcpu(env); 3240 uint32_t nrgs = cpu->pmsav7_dregion; 3241 3242 if (value >= nrgs) { 3243 qemu_log_mask(LOG_GUEST_ERROR, 3244 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3245 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3246 return; 3247 } 3248 3249 raw_write(env, ri, value); 3250 } 3251 3252 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3253 /* Reset for all these registers is handled in arm_cpu_reset(), 3254 * because the PMSAv7 is also used by M-profile CPUs, which do 3255 * not register cpregs but still need the state to be reset. 3256 */ 3257 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3258 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3259 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3260 .readfn = pmsav7_read, .writefn = pmsav7_write, 3261 .resetfn = arm_cp_reset_ignore }, 3262 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3263 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3264 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3265 .readfn = pmsav7_read, .writefn = pmsav7_write, 3266 .resetfn = arm_cp_reset_ignore }, 3267 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3268 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3269 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3270 .readfn = pmsav7_read, .writefn = pmsav7_write, 3271 .resetfn = arm_cp_reset_ignore }, 3272 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3273 .access = PL1_RW, 3274 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3275 .writefn = pmsav7_rgnr_write, 3276 .resetfn = arm_cp_reset_ignore }, 3277 REGINFO_SENTINEL 3278 }; 3279 3280 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3281 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3282 .access = PL1_RW, .type = ARM_CP_ALIAS, 3283 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3284 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3285 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3286 .access = PL1_RW, .type = ARM_CP_ALIAS, 3287 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3288 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3289 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3290 .access = PL1_RW, 3291 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3292 .resetvalue = 0, }, 3293 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3294 .access = PL1_RW, 3295 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3296 .resetvalue = 0, }, 3297 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3298 .access = PL1_RW, 3299 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3300 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3301 .access = PL1_RW, 3302 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3303 /* Protection region base and size registers */ 3304 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3305 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3306 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3307 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3308 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3309 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3310 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3311 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3312 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3313 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3314 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3315 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3316 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3317 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3318 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3319 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3320 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3321 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3322 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3323 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3324 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3325 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3326 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3327 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3328 REGINFO_SENTINEL 3329 }; 3330 3331 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3332 uint64_t value) 3333 { 3334 TCR *tcr = raw_ptr(env, ri); 3335 int maskshift = extract32(value, 0, 3); 3336 3337 if (!arm_feature(env, ARM_FEATURE_V8)) { 3338 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3339 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3340 * using Long-desciptor translation table format */ 3341 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3342 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3343 /* In an implementation that includes the Security Extensions 3344 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3345 * Short-descriptor translation table format. 3346 */ 3347 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3348 } else { 3349 value &= TTBCR_N; 3350 } 3351 } 3352 3353 /* Update the masks corresponding to the TCR bank being written 3354 * Note that we always calculate mask and base_mask, but 3355 * they are only used for short-descriptor tables (ie if EAE is 0); 3356 * for long-descriptor tables the TCR fields are used differently 3357 * and the mask and base_mask values are meaningless. 3358 */ 3359 tcr->raw_tcr = value; 3360 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3361 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3362 } 3363 3364 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3365 uint64_t value) 3366 { 3367 ARMCPU *cpu = env_archcpu(env); 3368 TCR *tcr = raw_ptr(env, ri); 3369 3370 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3371 /* With LPAE the TTBCR could result in a change of ASID 3372 * via the TTBCR.A1 bit, so do a TLB flush. 3373 */ 3374 tlb_flush(CPU(cpu)); 3375 } 3376 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3377 value = deposit64(tcr->raw_tcr, 0, 32, value); 3378 vmsa_ttbcr_raw_write(env, ri, value); 3379 } 3380 3381 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3382 { 3383 TCR *tcr = raw_ptr(env, ri); 3384 3385 /* Reset both the TCR as well as the masks corresponding to the bank of 3386 * the TCR being reset. 3387 */ 3388 tcr->raw_tcr = 0; 3389 tcr->mask = 0; 3390 tcr->base_mask = 0xffffc000u; 3391 } 3392 3393 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3394 uint64_t value) 3395 { 3396 ARMCPU *cpu = env_archcpu(env); 3397 TCR *tcr = raw_ptr(env, ri); 3398 3399 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3400 tlb_flush(CPU(cpu)); 3401 tcr->raw_tcr = value; 3402 } 3403 3404 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3405 uint64_t value) 3406 { 3407 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3408 if (cpreg_field_is_64bit(ri) && 3409 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3410 ARMCPU *cpu = env_archcpu(env); 3411 tlb_flush(CPU(cpu)); 3412 } 3413 raw_write(env, ri, value); 3414 } 3415 3416 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3417 uint64_t value) 3418 { 3419 ARMCPU *cpu = env_archcpu(env); 3420 CPUState *cs = CPU(cpu); 3421 3422 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 3423 if (raw_read(env, ri) != value) { 3424 tlb_flush_by_mmuidx(cs, 3425 ARMMMUIdxBit_S12NSE1 | 3426 ARMMMUIdxBit_S12NSE0 | 3427 ARMMMUIdxBit_S2NS); 3428 raw_write(env, ri, value); 3429 } 3430 } 3431 3432 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3433 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3434 .access = PL1_RW, .type = ARM_CP_ALIAS, 3435 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3436 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3437 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3438 .access = PL1_RW, .resetvalue = 0, 3439 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3440 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3441 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3442 .access = PL1_RW, .resetvalue = 0, 3443 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3444 offsetof(CPUARMState, cp15.dfar_ns) } }, 3445 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3446 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3447 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3448 .resetvalue = 0, }, 3449 REGINFO_SENTINEL 3450 }; 3451 3452 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3453 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3454 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3455 .access = PL1_RW, 3456 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3457 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3458 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3459 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3460 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3461 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3462 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3463 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3464 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3465 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3466 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3467 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3468 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3469 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 3470 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3471 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3472 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3473 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3474 .raw_writefn = vmsa_ttbcr_raw_write, 3475 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3476 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3477 REGINFO_SENTINEL 3478 }; 3479 3480 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3481 * qemu tlbs nor adjusting cached masks. 3482 */ 3483 static const ARMCPRegInfo ttbcr2_reginfo = { 3484 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3485 .access = PL1_RW, .type = ARM_CP_ALIAS, 3486 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3487 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 3488 }; 3489 3490 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3491 uint64_t value) 3492 { 3493 env->cp15.c15_ticonfig = value & 0xe7; 3494 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3495 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3496 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3497 } 3498 3499 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3500 uint64_t value) 3501 { 3502 env->cp15.c15_threadid = value & 0xffff; 3503 } 3504 3505 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3506 uint64_t value) 3507 { 3508 /* Wait-for-interrupt (deprecated) */ 3509 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3510 } 3511 3512 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3513 uint64_t value) 3514 { 3515 /* On OMAP there are registers indicating the max/min index of dcache lines 3516 * containing a dirty line; cache flush operations have to reset these. 3517 */ 3518 env->cp15.c15_i_max = 0x000; 3519 env->cp15.c15_i_min = 0xff0; 3520 } 3521 3522 static const ARMCPRegInfo omap_cp_reginfo[] = { 3523 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3524 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3525 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3526 .resetvalue = 0, }, 3527 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3528 .access = PL1_RW, .type = ARM_CP_NOP }, 3529 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3530 .access = PL1_RW, 3531 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3532 .writefn = omap_ticonfig_write }, 3533 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3534 .access = PL1_RW, 3535 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3536 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3537 .access = PL1_RW, .resetvalue = 0xff0, 3538 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3539 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3540 .access = PL1_RW, 3541 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3542 .writefn = omap_threadid_write }, 3543 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3544 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3545 .type = ARM_CP_NO_RAW, 3546 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3547 /* TODO: Peripheral port remap register: 3548 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3549 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3550 * when MMU is off. 3551 */ 3552 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3553 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3554 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3555 .writefn = omap_cachemaint_write }, 3556 { .name = "C9", .cp = 15, .crn = 9, 3557 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3558 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3559 REGINFO_SENTINEL 3560 }; 3561 3562 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3563 uint64_t value) 3564 { 3565 env->cp15.c15_cpar = value & 0x3fff; 3566 } 3567 3568 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3569 { .name = "XSCALE_CPAR", 3570 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3571 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3572 .writefn = xscale_cpar_write, }, 3573 { .name = "XSCALE_AUXCR", 3574 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3575 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3576 .resetvalue = 0, }, 3577 /* XScale specific cache-lockdown: since we have no cache we NOP these 3578 * and hope the guest does not really rely on cache behaviour. 3579 */ 3580 { .name = "XSCALE_LOCK_ICACHE_LINE", 3581 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3582 .access = PL1_W, .type = ARM_CP_NOP }, 3583 { .name = "XSCALE_UNLOCK_ICACHE", 3584 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3585 .access = PL1_W, .type = ARM_CP_NOP }, 3586 { .name = "XSCALE_DCACHE_LOCK", 3587 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3588 .access = PL1_RW, .type = ARM_CP_NOP }, 3589 { .name = "XSCALE_UNLOCK_DCACHE", 3590 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3591 .access = PL1_W, .type = ARM_CP_NOP }, 3592 REGINFO_SENTINEL 3593 }; 3594 3595 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3596 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3597 * implementation of this implementation-defined space. 3598 * Ideally this should eventually disappear in favour of actually 3599 * implementing the correct behaviour for all cores. 3600 */ 3601 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3602 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3603 .access = PL1_RW, 3604 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3605 .resetvalue = 0 }, 3606 REGINFO_SENTINEL 3607 }; 3608 3609 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3610 /* Cache status: RAZ because we have no cache so it's always clean */ 3611 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3612 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3613 .resetvalue = 0 }, 3614 REGINFO_SENTINEL 3615 }; 3616 3617 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3618 /* We never have a a block transfer operation in progress */ 3619 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3620 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3621 .resetvalue = 0 }, 3622 /* The cache ops themselves: these all NOP for QEMU */ 3623 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3624 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3625 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3626 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3627 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 3628 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3629 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 3630 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3631 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 3632 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3633 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 3634 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3635 REGINFO_SENTINEL 3636 }; 3637 3638 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 3639 /* The cache test-and-clean instructions always return (1 << 30) 3640 * to indicate that there are no dirty cache lines. 3641 */ 3642 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 3643 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3644 .resetvalue = (1 << 30) }, 3645 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 3646 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3647 .resetvalue = (1 << 30) }, 3648 REGINFO_SENTINEL 3649 }; 3650 3651 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 3652 /* Ignore ReadBuffer accesses */ 3653 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 3654 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3655 .access = PL1_RW, .resetvalue = 0, 3656 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 3657 REGINFO_SENTINEL 3658 }; 3659 3660 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3661 { 3662 ARMCPU *cpu = env_archcpu(env); 3663 unsigned int cur_el = arm_current_el(env); 3664 bool secure = arm_is_secure(env); 3665 3666 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3667 return env->cp15.vpidr_el2; 3668 } 3669 return raw_read(env, ri); 3670 } 3671 3672 static uint64_t mpidr_read_val(CPUARMState *env) 3673 { 3674 ARMCPU *cpu = env_archcpu(env); 3675 uint64_t mpidr = cpu->mp_affinity; 3676 3677 if (arm_feature(env, ARM_FEATURE_V7MP)) { 3678 mpidr |= (1U << 31); 3679 /* Cores which are uniprocessor (non-coherent) 3680 * but still implement the MP extensions set 3681 * bit 30. (For instance, Cortex-R5). 3682 */ 3683 if (cpu->mp_is_up) { 3684 mpidr |= (1u << 30); 3685 } 3686 } 3687 return mpidr; 3688 } 3689 3690 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3691 { 3692 unsigned int cur_el = arm_current_el(env); 3693 bool secure = arm_is_secure(env); 3694 3695 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3696 return env->cp15.vmpidr_el2; 3697 } 3698 return mpidr_read_val(env); 3699 } 3700 3701 static const ARMCPRegInfo lpae_cp_reginfo[] = { 3702 /* NOP AMAIR0/1 */ 3703 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 3704 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 3705 .access = PL1_RW, .type = ARM_CP_CONST, 3706 .resetvalue = 0 }, 3707 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 3708 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 3709 .access = PL1_RW, .type = ARM_CP_CONST, 3710 .resetvalue = 0 }, 3711 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 3712 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 3713 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 3714 offsetof(CPUARMState, cp15.par_ns)} }, 3715 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 3716 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3717 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3718 offsetof(CPUARMState, cp15.ttbr0_ns) }, 3719 .writefn = vmsa_ttbr_write, }, 3720 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 3721 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3722 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3723 offsetof(CPUARMState, cp15.ttbr1_ns) }, 3724 .writefn = vmsa_ttbr_write, }, 3725 REGINFO_SENTINEL 3726 }; 3727 3728 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3729 { 3730 return vfp_get_fpcr(env); 3731 } 3732 3733 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3734 uint64_t value) 3735 { 3736 vfp_set_fpcr(env, value); 3737 } 3738 3739 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3740 { 3741 return vfp_get_fpsr(env); 3742 } 3743 3744 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3745 uint64_t value) 3746 { 3747 vfp_set_fpsr(env, value); 3748 } 3749 3750 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 3751 bool isread) 3752 { 3753 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 3754 return CP_ACCESS_TRAP; 3755 } 3756 return CP_ACCESS_OK; 3757 } 3758 3759 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3760 uint64_t value) 3761 { 3762 env->daif = value & PSTATE_DAIF; 3763 } 3764 3765 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3766 const ARMCPRegInfo *ri, 3767 bool isread) 3768 { 3769 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3770 * SCTLR_EL1.UCI is set. 3771 */ 3772 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3773 return CP_ACCESS_TRAP; 3774 } 3775 return CP_ACCESS_OK; 3776 } 3777 3778 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3779 * Page D4-1736 (DDI0487A.b) 3780 */ 3781 3782 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3783 uint64_t value) 3784 { 3785 CPUState *cs = env_cpu(env); 3786 bool sec = arm_is_secure_below_el3(env); 3787 3788 if (sec) { 3789 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3790 ARMMMUIdxBit_S1SE1 | 3791 ARMMMUIdxBit_S1SE0); 3792 } else { 3793 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3794 ARMMMUIdxBit_S12NSE1 | 3795 ARMMMUIdxBit_S12NSE0); 3796 } 3797 } 3798 3799 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3800 uint64_t value) 3801 { 3802 CPUState *cs = env_cpu(env); 3803 3804 if (tlb_force_broadcast(env)) { 3805 tlbi_aa64_vmalle1is_write(env, NULL, value); 3806 return; 3807 } 3808 3809 if (arm_is_secure_below_el3(env)) { 3810 tlb_flush_by_mmuidx(cs, 3811 ARMMMUIdxBit_S1SE1 | 3812 ARMMMUIdxBit_S1SE0); 3813 } else { 3814 tlb_flush_by_mmuidx(cs, 3815 ARMMMUIdxBit_S12NSE1 | 3816 ARMMMUIdxBit_S12NSE0); 3817 } 3818 } 3819 3820 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3821 uint64_t value) 3822 { 3823 /* Note that the 'ALL' scope must invalidate both stage 1 and 3824 * stage 2 translations, whereas most other scopes only invalidate 3825 * stage 1 translations. 3826 */ 3827 ARMCPU *cpu = env_archcpu(env); 3828 CPUState *cs = CPU(cpu); 3829 3830 if (arm_is_secure_below_el3(env)) { 3831 tlb_flush_by_mmuidx(cs, 3832 ARMMMUIdxBit_S1SE1 | 3833 ARMMMUIdxBit_S1SE0); 3834 } else { 3835 if (arm_feature(env, ARM_FEATURE_EL2)) { 3836 tlb_flush_by_mmuidx(cs, 3837 ARMMMUIdxBit_S12NSE1 | 3838 ARMMMUIdxBit_S12NSE0 | 3839 ARMMMUIdxBit_S2NS); 3840 } else { 3841 tlb_flush_by_mmuidx(cs, 3842 ARMMMUIdxBit_S12NSE1 | 3843 ARMMMUIdxBit_S12NSE0); 3844 } 3845 } 3846 } 3847 3848 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3849 uint64_t value) 3850 { 3851 ARMCPU *cpu = env_archcpu(env); 3852 CPUState *cs = CPU(cpu); 3853 3854 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3855 } 3856 3857 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3858 uint64_t value) 3859 { 3860 ARMCPU *cpu = env_archcpu(env); 3861 CPUState *cs = CPU(cpu); 3862 3863 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3864 } 3865 3866 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3867 uint64_t value) 3868 { 3869 /* Note that the 'ALL' scope must invalidate both stage 1 and 3870 * stage 2 translations, whereas most other scopes only invalidate 3871 * stage 1 translations. 3872 */ 3873 CPUState *cs = env_cpu(env); 3874 bool sec = arm_is_secure_below_el3(env); 3875 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3876 3877 if (sec) { 3878 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3879 ARMMMUIdxBit_S1SE1 | 3880 ARMMMUIdxBit_S1SE0); 3881 } else if (has_el2) { 3882 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3883 ARMMMUIdxBit_S12NSE1 | 3884 ARMMMUIdxBit_S12NSE0 | 3885 ARMMMUIdxBit_S2NS); 3886 } else { 3887 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3888 ARMMMUIdxBit_S12NSE1 | 3889 ARMMMUIdxBit_S12NSE0); 3890 } 3891 } 3892 3893 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3894 uint64_t value) 3895 { 3896 CPUState *cs = env_cpu(env); 3897 3898 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3899 } 3900 3901 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3902 uint64_t value) 3903 { 3904 CPUState *cs = env_cpu(env); 3905 3906 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3907 } 3908 3909 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3910 uint64_t value) 3911 { 3912 /* Invalidate by VA, EL2 3913 * Currently handles both VAE2 and VALE2, since we don't support 3914 * flush-last-level-only. 3915 */ 3916 ARMCPU *cpu = env_archcpu(env); 3917 CPUState *cs = CPU(cpu); 3918 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3919 3920 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3921 } 3922 3923 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3924 uint64_t value) 3925 { 3926 /* Invalidate by VA, EL3 3927 * Currently handles both VAE3 and VALE3, since we don't support 3928 * flush-last-level-only. 3929 */ 3930 ARMCPU *cpu = env_archcpu(env); 3931 CPUState *cs = CPU(cpu); 3932 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3933 3934 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3935 } 3936 3937 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3938 uint64_t value) 3939 { 3940 ARMCPU *cpu = env_archcpu(env); 3941 CPUState *cs = CPU(cpu); 3942 bool sec = arm_is_secure_below_el3(env); 3943 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3944 3945 if (sec) { 3946 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3947 ARMMMUIdxBit_S1SE1 | 3948 ARMMMUIdxBit_S1SE0); 3949 } else { 3950 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3951 ARMMMUIdxBit_S12NSE1 | 3952 ARMMMUIdxBit_S12NSE0); 3953 } 3954 } 3955 3956 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3957 uint64_t value) 3958 { 3959 /* Invalidate by VA, EL1&0 (AArch64 version). 3960 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3961 * since we don't support flush-for-specific-ASID-only or 3962 * flush-last-level-only. 3963 */ 3964 ARMCPU *cpu = env_archcpu(env); 3965 CPUState *cs = CPU(cpu); 3966 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3967 3968 if (tlb_force_broadcast(env)) { 3969 tlbi_aa64_vae1is_write(env, NULL, value); 3970 return; 3971 } 3972 3973 if (arm_is_secure_below_el3(env)) { 3974 tlb_flush_page_by_mmuidx(cs, pageaddr, 3975 ARMMMUIdxBit_S1SE1 | 3976 ARMMMUIdxBit_S1SE0); 3977 } else { 3978 tlb_flush_page_by_mmuidx(cs, pageaddr, 3979 ARMMMUIdxBit_S12NSE1 | 3980 ARMMMUIdxBit_S12NSE0); 3981 } 3982 } 3983 3984 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3985 uint64_t value) 3986 { 3987 CPUState *cs = env_cpu(env); 3988 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3989 3990 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3991 ARMMMUIdxBit_S1E2); 3992 } 3993 3994 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3995 uint64_t value) 3996 { 3997 CPUState *cs = env_cpu(env); 3998 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3999 4000 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4001 ARMMMUIdxBit_S1E3); 4002 } 4003 4004 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4005 uint64_t value) 4006 { 4007 /* Invalidate by IPA. This has to invalidate any structures that 4008 * contain only stage 2 translation information, but does not need 4009 * to apply to structures that contain combined stage 1 and stage 2 4010 * translation information. 4011 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 4012 */ 4013 ARMCPU *cpu = env_archcpu(env); 4014 CPUState *cs = CPU(cpu); 4015 uint64_t pageaddr; 4016 4017 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4018 return; 4019 } 4020 4021 pageaddr = sextract64(value << 12, 0, 48); 4022 4023 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 4024 } 4025 4026 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4027 uint64_t value) 4028 { 4029 CPUState *cs = env_cpu(env); 4030 uint64_t pageaddr; 4031 4032 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4033 return; 4034 } 4035 4036 pageaddr = sextract64(value << 12, 0, 48); 4037 4038 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4039 ARMMMUIdxBit_S2NS); 4040 } 4041 4042 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4043 bool isread) 4044 { 4045 /* We don't implement EL2, so the only control on DC ZVA is the 4046 * bit in the SCTLR which can prohibit access for EL0. 4047 */ 4048 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4049 return CP_ACCESS_TRAP; 4050 } 4051 return CP_ACCESS_OK; 4052 } 4053 4054 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4055 { 4056 ARMCPU *cpu = env_archcpu(env); 4057 int dzp_bit = 1 << 4; 4058 4059 /* DZP indicates whether DC ZVA access is allowed */ 4060 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4061 dzp_bit = 0; 4062 } 4063 return cpu->dcz_blocksize | dzp_bit; 4064 } 4065 4066 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4067 bool isread) 4068 { 4069 if (!(env->pstate & PSTATE_SP)) { 4070 /* Access to SP_EL0 is undefined if it's being used as 4071 * the stack pointer. 4072 */ 4073 return CP_ACCESS_TRAP_UNCATEGORIZED; 4074 } 4075 return CP_ACCESS_OK; 4076 } 4077 4078 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4079 { 4080 return env->pstate & PSTATE_SP; 4081 } 4082 4083 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4084 { 4085 update_spsel(env, val); 4086 } 4087 4088 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4089 uint64_t value) 4090 { 4091 ARMCPU *cpu = env_archcpu(env); 4092 4093 if (raw_read(env, ri) == value) { 4094 /* Skip the TLB flush if nothing actually changed; Linux likes 4095 * to do a lot of pointless SCTLR writes. 4096 */ 4097 return; 4098 } 4099 4100 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4101 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4102 value &= ~SCTLR_M; 4103 } 4104 4105 raw_write(env, ri, value); 4106 /* ??? Lots of these bits are not implemented. */ 4107 /* This may enable/disable the MMU, so do a TLB flush. */ 4108 tlb_flush(CPU(cpu)); 4109 } 4110 4111 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4112 bool isread) 4113 { 4114 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4115 return CP_ACCESS_TRAP_FP_EL2; 4116 } 4117 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4118 return CP_ACCESS_TRAP_FP_EL3; 4119 } 4120 return CP_ACCESS_OK; 4121 } 4122 4123 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4124 uint64_t value) 4125 { 4126 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4127 } 4128 4129 static const ARMCPRegInfo v8_cp_reginfo[] = { 4130 /* Minimal set of EL0-visible registers. This will need to be expanded 4131 * significantly for system emulation of AArch64 CPUs. 4132 */ 4133 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4134 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4135 .access = PL0_RW, .type = ARM_CP_NZCV }, 4136 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4137 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4138 .type = ARM_CP_NO_RAW, 4139 .access = PL0_RW, .accessfn = aa64_daif_access, 4140 .fieldoffset = offsetof(CPUARMState, daif), 4141 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4142 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4143 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4144 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4145 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4146 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4147 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4148 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4149 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4150 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4151 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4152 .access = PL0_R, .type = ARM_CP_NO_RAW, 4153 .readfn = aa64_dczid_read }, 4154 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4155 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4156 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4157 #ifndef CONFIG_USER_ONLY 4158 /* Avoid overhead of an access check that always passes in user-mode */ 4159 .accessfn = aa64_zva_access, 4160 #endif 4161 }, 4162 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4163 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4164 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4165 /* Cache ops: all NOPs since we don't emulate caches */ 4166 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4167 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4168 .access = PL1_W, .type = ARM_CP_NOP }, 4169 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4170 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4171 .access = PL1_W, .type = ARM_CP_NOP }, 4172 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4173 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4174 .access = PL0_W, .type = ARM_CP_NOP, 4175 .accessfn = aa64_cacheop_access }, 4176 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4177 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4178 .access = PL1_W, .type = ARM_CP_NOP }, 4179 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4180 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4181 .access = PL1_W, .type = ARM_CP_NOP }, 4182 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4183 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4184 .access = PL0_W, .type = ARM_CP_NOP, 4185 .accessfn = aa64_cacheop_access }, 4186 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4187 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4188 .access = PL1_W, .type = ARM_CP_NOP }, 4189 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4190 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4191 .access = PL0_W, .type = ARM_CP_NOP, 4192 .accessfn = aa64_cacheop_access }, 4193 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4194 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4195 .access = PL0_W, .type = ARM_CP_NOP, 4196 .accessfn = aa64_cacheop_access }, 4197 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4198 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4199 .access = PL1_W, .type = ARM_CP_NOP }, 4200 /* TLBI operations */ 4201 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4202 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4203 .access = PL1_W, .type = ARM_CP_NO_RAW, 4204 .writefn = tlbi_aa64_vmalle1is_write }, 4205 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4206 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4207 .access = PL1_W, .type = ARM_CP_NO_RAW, 4208 .writefn = tlbi_aa64_vae1is_write }, 4209 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4210 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4211 .access = PL1_W, .type = ARM_CP_NO_RAW, 4212 .writefn = tlbi_aa64_vmalle1is_write }, 4213 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4214 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4215 .access = PL1_W, .type = ARM_CP_NO_RAW, 4216 .writefn = tlbi_aa64_vae1is_write }, 4217 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4218 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4219 .access = PL1_W, .type = ARM_CP_NO_RAW, 4220 .writefn = tlbi_aa64_vae1is_write }, 4221 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4222 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4223 .access = PL1_W, .type = ARM_CP_NO_RAW, 4224 .writefn = tlbi_aa64_vae1is_write }, 4225 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4226 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4227 .access = PL1_W, .type = ARM_CP_NO_RAW, 4228 .writefn = tlbi_aa64_vmalle1_write }, 4229 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4230 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4231 .access = PL1_W, .type = ARM_CP_NO_RAW, 4232 .writefn = tlbi_aa64_vae1_write }, 4233 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4234 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4235 .access = PL1_W, .type = ARM_CP_NO_RAW, 4236 .writefn = tlbi_aa64_vmalle1_write }, 4237 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4238 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4239 .access = PL1_W, .type = ARM_CP_NO_RAW, 4240 .writefn = tlbi_aa64_vae1_write }, 4241 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4242 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4243 .access = PL1_W, .type = ARM_CP_NO_RAW, 4244 .writefn = tlbi_aa64_vae1_write }, 4245 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4246 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4247 .access = PL1_W, .type = ARM_CP_NO_RAW, 4248 .writefn = tlbi_aa64_vae1_write }, 4249 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4250 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4251 .access = PL2_W, .type = ARM_CP_NO_RAW, 4252 .writefn = tlbi_aa64_ipas2e1is_write }, 4253 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4254 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4255 .access = PL2_W, .type = ARM_CP_NO_RAW, 4256 .writefn = tlbi_aa64_ipas2e1is_write }, 4257 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4258 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4259 .access = PL2_W, .type = ARM_CP_NO_RAW, 4260 .writefn = tlbi_aa64_alle1is_write }, 4261 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4262 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4263 .access = PL2_W, .type = ARM_CP_NO_RAW, 4264 .writefn = tlbi_aa64_alle1is_write }, 4265 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4266 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4267 .access = PL2_W, .type = ARM_CP_NO_RAW, 4268 .writefn = tlbi_aa64_ipas2e1_write }, 4269 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4270 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4271 .access = PL2_W, .type = ARM_CP_NO_RAW, 4272 .writefn = tlbi_aa64_ipas2e1_write }, 4273 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4274 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4275 .access = PL2_W, .type = ARM_CP_NO_RAW, 4276 .writefn = tlbi_aa64_alle1_write }, 4277 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4278 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4279 .access = PL2_W, .type = ARM_CP_NO_RAW, 4280 .writefn = tlbi_aa64_alle1is_write }, 4281 #ifndef CONFIG_USER_ONLY 4282 /* 64 bit address translation operations */ 4283 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4284 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4285 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4286 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4287 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4288 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4289 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4290 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4291 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4292 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4293 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4294 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4295 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4296 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4297 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4298 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4299 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4300 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4301 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4302 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4303 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4304 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4305 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4306 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4307 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4308 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4309 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4310 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4311 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4312 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4313 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4314 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4315 .type = ARM_CP_ALIAS, 4316 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4317 .access = PL1_RW, .resetvalue = 0, 4318 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4319 .writefn = par_write }, 4320 #endif 4321 /* TLB invalidate last level of translation table walk */ 4322 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4323 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 4324 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4325 .type = ARM_CP_NO_RAW, .access = PL1_W, 4326 .writefn = tlbimvaa_is_write }, 4327 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4328 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 4329 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4330 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 4331 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4332 .type = ARM_CP_NO_RAW, .access = PL2_W, 4333 .writefn = tlbimva_hyp_write }, 4334 { .name = "TLBIMVALHIS", 4335 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4336 .type = ARM_CP_NO_RAW, .access = PL2_W, 4337 .writefn = tlbimva_hyp_is_write }, 4338 { .name = "TLBIIPAS2", 4339 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4340 .type = ARM_CP_NO_RAW, .access = PL2_W, 4341 .writefn = tlbiipas2_write }, 4342 { .name = "TLBIIPAS2IS", 4343 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4344 .type = ARM_CP_NO_RAW, .access = PL2_W, 4345 .writefn = tlbiipas2_is_write }, 4346 { .name = "TLBIIPAS2L", 4347 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4348 .type = ARM_CP_NO_RAW, .access = PL2_W, 4349 .writefn = tlbiipas2_write }, 4350 { .name = "TLBIIPAS2LIS", 4351 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4352 .type = ARM_CP_NO_RAW, .access = PL2_W, 4353 .writefn = tlbiipas2_is_write }, 4354 /* 32 bit cache operations */ 4355 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4356 .type = ARM_CP_NOP, .access = PL1_W }, 4357 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4358 .type = ARM_CP_NOP, .access = PL1_W }, 4359 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4360 .type = ARM_CP_NOP, .access = PL1_W }, 4361 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 4362 .type = ARM_CP_NOP, .access = PL1_W }, 4363 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 4364 .type = ARM_CP_NOP, .access = PL1_W }, 4365 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 4366 .type = ARM_CP_NOP, .access = PL1_W }, 4367 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4368 .type = ARM_CP_NOP, .access = PL1_W }, 4369 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4370 .type = ARM_CP_NOP, .access = PL1_W }, 4371 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 4372 .type = ARM_CP_NOP, .access = PL1_W }, 4373 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4374 .type = ARM_CP_NOP, .access = PL1_W }, 4375 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 4376 .type = ARM_CP_NOP, .access = PL1_W }, 4377 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 4378 .type = ARM_CP_NOP, .access = PL1_W }, 4379 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4380 .type = ARM_CP_NOP, .access = PL1_W }, 4381 /* MMU Domain access control / MPU write buffer control */ 4382 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 4383 .access = PL1_RW, .resetvalue = 0, 4384 .writefn = dacr_write, .raw_writefn = raw_write, 4385 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 4386 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 4387 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 4388 .type = ARM_CP_ALIAS, 4389 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 4390 .access = PL1_RW, 4391 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 4392 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 4393 .type = ARM_CP_ALIAS, 4394 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 4395 .access = PL1_RW, 4396 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 4397 /* We rely on the access checks not allowing the guest to write to the 4398 * state field when SPSel indicates that it's being used as the stack 4399 * pointer. 4400 */ 4401 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 4402 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 4403 .access = PL1_RW, .accessfn = sp_el0_access, 4404 .type = ARM_CP_ALIAS, 4405 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 4406 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 4407 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 4408 .access = PL2_RW, .type = ARM_CP_ALIAS, 4409 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 4410 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 4411 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 4412 .type = ARM_CP_NO_RAW, 4413 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 4414 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 4415 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 4416 .type = ARM_CP_ALIAS, 4417 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 4418 .access = PL2_RW, .accessfn = fpexc32_access }, 4419 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 4420 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 4421 .access = PL2_RW, .resetvalue = 0, 4422 .writefn = dacr_write, .raw_writefn = raw_write, 4423 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 4424 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 4425 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 4426 .access = PL2_RW, .resetvalue = 0, 4427 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 4428 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 4429 .type = ARM_CP_ALIAS, 4430 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 4431 .access = PL2_RW, 4432 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 4433 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 4434 .type = ARM_CP_ALIAS, 4435 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 4436 .access = PL2_RW, 4437 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 4438 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 4439 .type = ARM_CP_ALIAS, 4440 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 4441 .access = PL2_RW, 4442 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 4443 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 4444 .type = ARM_CP_ALIAS, 4445 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 4446 .access = PL2_RW, 4447 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 4448 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 4449 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 4450 .resetvalue = 0, 4451 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 4452 { .name = "SDCR", .type = ARM_CP_ALIAS, 4453 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 4454 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4455 .writefn = sdcr_write, 4456 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 4457 REGINFO_SENTINEL 4458 }; 4459 4460 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 4461 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 4462 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4463 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4464 .access = PL2_RW, 4465 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 4466 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 4467 .type = ARM_CP_NO_RAW, 4468 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4469 .access = PL2_RW, 4470 .type = ARM_CP_CONST, .resetvalue = 0 }, 4471 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4472 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4473 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4474 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4475 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4476 .access = PL2_RW, 4477 .type = ARM_CP_CONST, .resetvalue = 0 }, 4478 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4479 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4480 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4481 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4482 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4483 .access = PL2_RW, .type = ARM_CP_CONST, 4484 .resetvalue = 0 }, 4485 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4486 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4487 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4488 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4489 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4490 .access = PL2_RW, .type = ARM_CP_CONST, 4491 .resetvalue = 0 }, 4492 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4493 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4494 .access = PL2_RW, .type = ARM_CP_CONST, 4495 .resetvalue = 0 }, 4496 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4497 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4498 .access = PL2_RW, .type = ARM_CP_CONST, 4499 .resetvalue = 0 }, 4500 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4501 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4502 .access = PL2_RW, .type = ARM_CP_CONST, 4503 .resetvalue = 0 }, 4504 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4505 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4506 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4507 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 4508 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4509 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4510 .type = ARM_CP_CONST, .resetvalue = 0 }, 4511 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4512 .cp = 15, .opc1 = 6, .crm = 2, 4513 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4514 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 4515 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4516 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4517 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4518 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4519 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4520 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4521 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4522 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4523 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4524 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4525 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4526 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4527 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4528 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4529 .resetvalue = 0 }, 4530 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4531 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4532 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4533 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4534 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4535 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4536 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4537 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4538 .resetvalue = 0 }, 4539 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4540 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4541 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4542 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4543 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4544 .resetvalue = 0 }, 4545 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4546 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4547 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4548 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4549 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4550 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4551 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4552 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4553 .access = PL2_RW, .accessfn = access_tda, 4554 .type = ARM_CP_CONST, .resetvalue = 0 }, 4555 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 4556 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4557 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4558 .type = ARM_CP_CONST, .resetvalue = 0 }, 4559 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4560 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4561 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4562 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4563 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4564 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4565 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4566 .type = ARM_CP_CONST, 4567 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4568 .access = PL2_RW, .resetvalue = 0 }, 4569 REGINFO_SENTINEL 4570 }; 4571 4572 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 4573 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 4574 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4575 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4576 .access = PL2_RW, 4577 .type = ARM_CP_CONST, .resetvalue = 0 }, 4578 REGINFO_SENTINEL 4579 }; 4580 4581 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 4582 { 4583 ARMCPU *cpu = env_archcpu(env); 4584 uint64_t valid_mask = HCR_MASK; 4585 4586 if (arm_feature(env, ARM_FEATURE_EL3)) { 4587 valid_mask &= ~HCR_HCD; 4588 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 4589 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 4590 * However, if we're using the SMC PSCI conduit then QEMU is 4591 * effectively acting like EL3 firmware and so the guest at 4592 * EL2 should retain the ability to prevent EL1 from being 4593 * able to make SMC calls into the ersatz firmware, so in 4594 * that case HCR.TSC should be read/write. 4595 */ 4596 valid_mask &= ~HCR_TSC; 4597 } 4598 if (cpu_isar_feature(aa64_lor, cpu)) { 4599 valid_mask |= HCR_TLOR; 4600 } 4601 if (cpu_isar_feature(aa64_pauth, cpu)) { 4602 valid_mask |= HCR_API | HCR_APK; 4603 } 4604 4605 /* Clear RES0 bits. */ 4606 value &= valid_mask; 4607 4608 /* These bits change the MMU setup: 4609 * HCR_VM enables stage 2 translation 4610 * HCR_PTW forbids certain page-table setups 4611 * HCR_DC Disables stage1 and enables stage2 translation 4612 */ 4613 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 4614 tlb_flush(CPU(cpu)); 4615 } 4616 env->cp15.hcr_el2 = value; 4617 4618 /* 4619 * Updates to VI and VF require us to update the status of 4620 * virtual interrupts, which are the logical OR of these bits 4621 * and the state of the input lines from the GIC. (This requires 4622 * that we have the iothread lock, which is done by marking the 4623 * reginfo structs as ARM_CP_IO.) 4624 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 4625 * possible for it to be taken immediately, because VIRQ and 4626 * VFIQ are masked unless running at EL0 or EL1, and HCR 4627 * can only be written at EL2. 4628 */ 4629 g_assert(qemu_mutex_iothread_locked()); 4630 arm_cpu_update_virq(cpu); 4631 arm_cpu_update_vfiq(cpu); 4632 } 4633 4634 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 4635 uint64_t value) 4636 { 4637 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 4638 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 4639 hcr_write(env, NULL, value); 4640 } 4641 4642 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 4643 uint64_t value) 4644 { 4645 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 4646 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 4647 hcr_write(env, NULL, value); 4648 } 4649 4650 /* 4651 * Return the effective value of HCR_EL2. 4652 * Bits that are not included here: 4653 * RW (read from SCR_EL3.RW as needed) 4654 */ 4655 uint64_t arm_hcr_el2_eff(CPUARMState *env) 4656 { 4657 uint64_t ret = env->cp15.hcr_el2; 4658 4659 if (arm_is_secure_below_el3(env)) { 4660 /* 4661 * "This register has no effect if EL2 is not enabled in the 4662 * current Security state". This is ARMv8.4-SecEL2 speak for 4663 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 4664 * 4665 * Prior to that, the language was "In an implementation that 4666 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 4667 * as if this field is 0 for all purposes other than a direct 4668 * read or write access of HCR_EL2". With lots of enumeration 4669 * on a per-field basis. In current QEMU, this is condition 4670 * is arm_is_secure_below_el3. 4671 * 4672 * Since the v8.4 language applies to the entire register, and 4673 * appears to be backward compatible, use that. 4674 */ 4675 ret = 0; 4676 } else if (ret & HCR_TGE) { 4677 /* These bits are up-to-date as of ARMv8.4. */ 4678 if (ret & HCR_E2H) { 4679 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 4680 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 4681 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 4682 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE); 4683 } else { 4684 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 4685 } 4686 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 4687 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 4688 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 4689 HCR_TLOR); 4690 } 4691 4692 return ret; 4693 } 4694 4695 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4696 uint64_t value) 4697 { 4698 /* 4699 * For A-profile AArch32 EL3, if NSACR.CP10 4700 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 4701 */ 4702 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 4703 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 4704 value &= ~(0x3 << 10); 4705 value |= env->cp15.cptr_el[2] & (0x3 << 10); 4706 } 4707 env->cp15.cptr_el[2] = value; 4708 } 4709 4710 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 4711 { 4712 /* 4713 * For A-profile AArch32 EL3, if NSACR.CP10 4714 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 4715 */ 4716 uint64_t value = env->cp15.cptr_el[2]; 4717 4718 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 4719 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 4720 value |= 0x3 << 10; 4721 } 4722 return value; 4723 } 4724 4725 static const ARMCPRegInfo el2_cp_reginfo[] = { 4726 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 4727 .type = ARM_CP_IO, 4728 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4729 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4730 .writefn = hcr_write }, 4731 { .name = "HCR", .state = ARM_CP_STATE_AA32, 4732 .type = ARM_CP_ALIAS | ARM_CP_IO, 4733 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4734 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4735 .writefn = hcr_writelow }, 4736 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4737 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4738 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4739 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 4740 .type = ARM_CP_ALIAS, 4741 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 4742 .access = PL2_RW, 4743 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 4744 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4745 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4746 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 4747 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4748 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4749 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 4750 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4751 .type = ARM_CP_ALIAS, 4752 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4753 .access = PL2_RW, 4754 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 4755 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 4756 .type = ARM_CP_ALIAS, 4757 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 4758 .access = PL2_RW, 4759 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 4760 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4761 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4762 .access = PL2_RW, .writefn = vbar_write, 4763 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 4764 .resetvalue = 0 }, 4765 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 4766 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 4767 .access = PL3_RW, .type = ARM_CP_ALIAS, 4768 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 4769 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4770 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4771 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 4772 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 4773 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 4774 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4775 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4776 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 4777 .resetvalue = 0 }, 4778 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4779 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4780 .access = PL2_RW, .type = ARM_CP_ALIAS, 4781 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 4782 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4783 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4784 .access = PL2_RW, .type = ARM_CP_CONST, 4785 .resetvalue = 0 }, 4786 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 4787 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4788 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4789 .access = PL2_RW, .type = ARM_CP_CONST, 4790 .resetvalue = 0 }, 4791 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4792 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4793 .access = PL2_RW, .type = ARM_CP_CONST, 4794 .resetvalue = 0 }, 4795 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4796 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4797 .access = PL2_RW, .type = ARM_CP_CONST, 4798 .resetvalue = 0 }, 4799 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4800 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4801 .access = PL2_RW, 4802 /* no .writefn needed as this can't cause an ASID change; 4803 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4804 */ 4805 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 4806 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 4807 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4808 .type = ARM_CP_ALIAS, 4809 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4810 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4811 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 4812 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4813 .access = PL2_RW, 4814 /* no .writefn needed as this can't cause an ASID change; 4815 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4816 */ 4817 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4818 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4819 .cp = 15, .opc1 = 6, .crm = 2, 4820 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4821 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4822 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 4823 .writefn = vttbr_write }, 4824 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4825 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4826 .access = PL2_RW, .writefn = vttbr_write, 4827 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 4828 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4829 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4830 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 4831 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 4832 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4833 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4834 .access = PL2_RW, .resetvalue = 0, 4835 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 4836 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4837 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4838 .access = PL2_RW, .resetvalue = 0, 4839 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4840 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4841 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4842 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4843 { .name = "TLBIALLNSNH", 4844 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4845 .type = ARM_CP_NO_RAW, .access = PL2_W, 4846 .writefn = tlbiall_nsnh_write }, 4847 { .name = "TLBIALLNSNHIS", 4848 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4849 .type = ARM_CP_NO_RAW, .access = PL2_W, 4850 .writefn = tlbiall_nsnh_is_write }, 4851 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4852 .type = ARM_CP_NO_RAW, .access = PL2_W, 4853 .writefn = tlbiall_hyp_write }, 4854 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4855 .type = ARM_CP_NO_RAW, .access = PL2_W, 4856 .writefn = tlbiall_hyp_is_write }, 4857 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4858 .type = ARM_CP_NO_RAW, .access = PL2_W, 4859 .writefn = tlbimva_hyp_write }, 4860 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4861 .type = ARM_CP_NO_RAW, .access = PL2_W, 4862 .writefn = tlbimva_hyp_is_write }, 4863 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 4864 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4865 .type = ARM_CP_NO_RAW, .access = PL2_W, 4866 .writefn = tlbi_aa64_alle2_write }, 4867 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 4868 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4869 .type = ARM_CP_NO_RAW, .access = PL2_W, 4870 .writefn = tlbi_aa64_vae2_write }, 4871 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 4872 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4873 .access = PL2_W, .type = ARM_CP_NO_RAW, 4874 .writefn = tlbi_aa64_vae2_write }, 4875 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 4876 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4877 .access = PL2_W, .type = ARM_CP_NO_RAW, 4878 .writefn = tlbi_aa64_alle2is_write }, 4879 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 4880 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4881 .type = ARM_CP_NO_RAW, .access = PL2_W, 4882 .writefn = tlbi_aa64_vae2is_write }, 4883 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 4884 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4885 .access = PL2_W, .type = ARM_CP_NO_RAW, 4886 .writefn = tlbi_aa64_vae2is_write }, 4887 #ifndef CONFIG_USER_ONLY 4888 /* Unlike the other EL2-related AT operations, these must 4889 * UNDEF from EL3 if EL2 is not implemented, which is why we 4890 * define them here rather than with the rest of the AT ops. 4891 */ 4892 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 4893 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4894 .access = PL2_W, .accessfn = at_s1e2_access, 4895 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4896 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 4897 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4898 .access = PL2_W, .accessfn = at_s1e2_access, 4899 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4900 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 4901 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 4902 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 4903 * to behave as if SCR.NS was 1. 4904 */ 4905 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4906 .access = PL2_W, 4907 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4908 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4909 .access = PL2_W, 4910 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4911 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4912 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4913 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 4914 * reset values as IMPDEF. We choose to reset to 3 to comply with 4915 * both ARMv7 and ARMv8. 4916 */ 4917 .access = PL2_RW, .resetvalue = 3, 4918 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 4919 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4920 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4921 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 4922 .writefn = gt_cntvoff_write, 4923 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4924 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4925 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 4926 .writefn = gt_cntvoff_write, 4927 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4928 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4929 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4930 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4931 .type = ARM_CP_IO, .access = PL2_RW, 4932 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4933 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4934 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4935 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 4936 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4937 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4938 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4939 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 4940 .resetfn = gt_hyp_timer_reset, 4941 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 4942 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4943 .type = ARM_CP_IO, 4944 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4945 .access = PL2_RW, 4946 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 4947 .resetvalue = 0, 4948 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 4949 #endif 4950 /* The only field of MDCR_EL2 that has a defined architectural reset value 4951 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 4952 * don't implement any PMU event counters, so using zero as a reset 4953 * value for MDCR_EL2 is okay 4954 */ 4955 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4956 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4957 .access = PL2_RW, .resetvalue = 0, 4958 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 4959 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 4960 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4961 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4962 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4963 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 4964 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4965 .access = PL2_RW, 4966 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4967 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4968 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4969 .access = PL2_RW, 4970 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 4971 REGINFO_SENTINEL 4972 }; 4973 4974 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 4975 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4976 .type = ARM_CP_ALIAS | ARM_CP_IO, 4977 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4978 .access = PL2_RW, 4979 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 4980 .writefn = hcr_writehigh }, 4981 REGINFO_SENTINEL 4982 }; 4983 4984 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4985 bool isread) 4986 { 4987 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4988 * At Secure EL1 it traps to EL3. 4989 */ 4990 if (arm_current_el(env) == 3) { 4991 return CP_ACCESS_OK; 4992 } 4993 if (arm_is_secure_below_el3(env)) { 4994 return CP_ACCESS_TRAP_EL3; 4995 } 4996 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4997 if (isread) { 4998 return CP_ACCESS_OK; 4999 } 5000 return CP_ACCESS_TRAP_UNCATEGORIZED; 5001 } 5002 5003 static const ARMCPRegInfo el3_cp_reginfo[] = { 5004 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5005 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5006 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5007 .resetvalue = 0, .writefn = scr_write }, 5008 { .name = "SCR", .type = ARM_CP_ALIAS, 5009 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5010 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5011 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5012 .writefn = scr_write }, 5013 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5014 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5015 .access = PL3_RW, .resetvalue = 0, 5016 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5017 { .name = "SDER", 5018 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5019 .access = PL3_RW, .resetvalue = 0, 5020 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5021 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5022 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5023 .writefn = vbar_write, .resetvalue = 0, 5024 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5025 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5026 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5027 .access = PL3_RW, .resetvalue = 0, 5028 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5029 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5030 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5031 .access = PL3_RW, 5032 /* no .writefn needed as this can't cause an ASID change; 5033 * we must provide a .raw_writefn and .resetfn because we handle 5034 * reset and migration for the AArch32 TTBCR(S), which might be 5035 * using mask and base_mask. 5036 */ 5037 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5038 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5039 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5040 .type = ARM_CP_ALIAS, 5041 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5042 .access = PL3_RW, 5043 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5044 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5045 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5046 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5047 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5048 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5049 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5050 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5051 .type = ARM_CP_ALIAS, 5052 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5053 .access = PL3_RW, 5054 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5055 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5056 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5057 .access = PL3_RW, .writefn = vbar_write, 5058 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5059 .resetvalue = 0 }, 5060 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5061 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5062 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5063 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5064 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5065 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5066 .access = PL3_RW, .resetvalue = 0, 5067 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5068 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5069 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5070 .access = PL3_RW, .type = ARM_CP_CONST, 5071 .resetvalue = 0 }, 5072 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5073 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5074 .access = PL3_RW, .type = ARM_CP_CONST, 5075 .resetvalue = 0 }, 5076 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5077 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5078 .access = PL3_RW, .type = ARM_CP_CONST, 5079 .resetvalue = 0 }, 5080 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5081 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5082 .access = PL3_W, .type = ARM_CP_NO_RAW, 5083 .writefn = tlbi_aa64_alle3is_write }, 5084 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5085 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5086 .access = PL3_W, .type = ARM_CP_NO_RAW, 5087 .writefn = tlbi_aa64_vae3is_write }, 5088 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5089 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5090 .access = PL3_W, .type = ARM_CP_NO_RAW, 5091 .writefn = tlbi_aa64_vae3is_write }, 5092 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5093 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5094 .access = PL3_W, .type = ARM_CP_NO_RAW, 5095 .writefn = tlbi_aa64_alle3_write }, 5096 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5097 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5098 .access = PL3_W, .type = ARM_CP_NO_RAW, 5099 .writefn = tlbi_aa64_vae3_write }, 5100 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5101 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5102 .access = PL3_W, .type = ARM_CP_NO_RAW, 5103 .writefn = tlbi_aa64_vae3_write }, 5104 REGINFO_SENTINEL 5105 }; 5106 5107 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5108 bool isread) 5109 { 5110 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 5111 * but the AArch32 CTR has its own reginfo struct) 5112 */ 5113 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5114 return CP_ACCESS_TRAP; 5115 } 5116 return CP_ACCESS_OK; 5117 } 5118 5119 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5120 uint64_t value) 5121 { 5122 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5123 * read via a bit in OSLSR_EL1. 5124 */ 5125 int oslock; 5126 5127 if (ri->state == ARM_CP_STATE_AA32) { 5128 oslock = (value == 0xC5ACCE55); 5129 } else { 5130 oslock = value & 1; 5131 } 5132 5133 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5134 } 5135 5136 static const ARMCPRegInfo debug_cp_reginfo[] = { 5137 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5138 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5139 * unlike DBGDRAR it is never accessible from EL0. 5140 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5141 * accessor. 5142 */ 5143 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5144 .access = PL0_R, .accessfn = access_tdra, 5145 .type = ARM_CP_CONST, .resetvalue = 0 }, 5146 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5147 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5148 .access = PL1_R, .accessfn = access_tdra, 5149 .type = ARM_CP_CONST, .resetvalue = 0 }, 5150 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5151 .access = PL0_R, .accessfn = access_tdra, 5152 .type = ARM_CP_CONST, .resetvalue = 0 }, 5153 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5154 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5155 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5156 .access = PL1_RW, .accessfn = access_tda, 5157 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5158 .resetvalue = 0 }, 5159 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 5160 * We don't implement the configurable EL0 access. 5161 */ 5162 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 5163 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5164 .type = ARM_CP_ALIAS, 5165 .access = PL1_R, .accessfn = access_tda, 5166 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 5167 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 5168 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 5169 .access = PL1_W, .type = ARM_CP_NO_RAW, 5170 .accessfn = access_tdosa, 5171 .writefn = oslar_write }, 5172 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 5173 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 5174 .access = PL1_R, .resetvalue = 10, 5175 .accessfn = access_tdosa, 5176 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 5177 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 5178 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 5179 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 5180 .access = PL1_RW, .accessfn = access_tdosa, 5181 .type = ARM_CP_NOP }, 5182 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 5183 * implement vector catch debug events yet. 5184 */ 5185 { .name = "DBGVCR", 5186 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5187 .access = PL1_RW, .accessfn = access_tda, 5188 .type = ARM_CP_NOP }, 5189 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 5190 * to save and restore a 32-bit guest's DBGVCR) 5191 */ 5192 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 5193 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 5194 .access = PL2_RW, .accessfn = access_tda, 5195 .type = ARM_CP_NOP }, 5196 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 5197 * Channel but Linux may try to access this register. The 32-bit 5198 * alias is DBGDCCINT. 5199 */ 5200 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 5201 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5202 .access = PL1_RW, .accessfn = access_tda, 5203 .type = ARM_CP_NOP }, 5204 REGINFO_SENTINEL 5205 }; 5206 5207 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 5208 /* 64 bit access versions of the (dummy) debug registers */ 5209 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 5210 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5211 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 5212 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5213 REGINFO_SENTINEL 5214 }; 5215 5216 /* Return the exception level to which exceptions should be taken 5217 * via SVEAccessTrap. If an exception should be routed through 5218 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 5219 * take care of raising that exception. 5220 * C.f. the ARM pseudocode function CheckSVEEnabled. 5221 */ 5222 int sve_exception_el(CPUARMState *env, int el) 5223 { 5224 #ifndef CONFIG_USER_ONLY 5225 if (el <= 1) { 5226 bool disabled = false; 5227 5228 /* The CPACR.ZEN controls traps to EL1: 5229 * 0, 2 : trap EL0 and EL1 accesses 5230 * 1 : trap only EL0 accesses 5231 * 3 : trap no accesses 5232 */ 5233 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 5234 disabled = true; 5235 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 5236 disabled = el == 0; 5237 } 5238 if (disabled) { 5239 /* route_to_el2 */ 5240 return (arm_feature(env, ARM_FEATURE_EL2) 5241 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1); 5242 } 5243 5244 /* Check CPACR.FPEN. */ 5245 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 5246 disabled = true; 5247 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 5248 disabled = el == 0; 5249 } 5250 if (disabled) { 5251 return 0; 5252 } 5253 } 5254 5255 /* CPTR_EL2. Since TZ and TFP are positive, 5256 * they will be zero when EL2 is not present. 5257 */ 5258 if (el <= 2 && !arm_is_secure_below_el3(env)) { 5259 if (env->cp15.cptr_el[2] & CPTR_TZ) { 5260 return 2; 5261 } 5262 if (env->cp15.cptr_el[2] & CPTR_TFP) { 5263 return 0; 5264 } 5265 } 5266 5267 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 5268 if (arm_feature(env, ARM_FEATURE_EL3) 5269 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 5270 return 3; 5271 } 5272 #endif 5273 return 0; 5274 } 5275 5276 /* 5277 * Given that SVE is enabled, return the vector length for EL. 5278 */ 5279 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 5280 { 5281 ARMCPU *cpu = env_archcpu(env); 5282 uint32_t zcr_len = cpu->sve_max_vq - 1; 5283 5284 if (el <= 1) { 5285 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 5286 } 5287 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 5288 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 5289 } 5290 if (arm_feature(env, ARM_FEATURE_EL3)) { 5291 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 5292 } 5293 return zcr_len; 5294 } 5295 5296 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5297 uint64_t value) 5298 { 5299 int cur_el = arm_current_el(env); 5300 int old_len = sve_zcr_len_for_el(env, cur_el); 5301 int new_len; 5302 5303 /* Bits other than [3:0] are RAZ/WI. */ 5304 raw_write(env, ri, value & 0xf); 5305 5306 /* 5307 * Because we arrived here, we know both FP and SVE are enabled; 5308 * otherwise we would have trapped access to the ZCR_ELn register. 5309 */ 5310 new_len = sve_zcr_len_for_el(env, cur_el); 5311 if (new_len < old_len) { 5312 aarch64_sve_narrow_vq(env, new_len + 1); 5313 } 5314 } 5315 5316 static const ARMCPRegInfo zcr_el1_reginfo = { 5317 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 5318 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 5319 .access = PL1_RW, .type = ARM_CP_SVE, 5320 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 5321 .writefn = zcr_write, .raw_writefn = raw_write 5322 }; 5323 5324 static const ARMCPRegInfo zcr_el2_reginfo = { 5325 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5326 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5327 .access = PL2_RW, .type = ARM_CP_SVE, 5328 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 5329 .writefn = zcr_write, .raw_writefn = raw_write 5330 }; 5331 5332 static const ARMCPRegInfo zcr_no_el2_reginfo = { 5333 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5334 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5335 .access = PL2_RW, .type = ARM_CP_SVE, 5336 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 5337 }; 5338 5339 static const ARMCPRegInfo zcr_el3_reginfo = { 5340 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 5341 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 5342 .access = PL3_RW, .type = ARM_CP_SVE, 5343 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 5344 .writefn = zcr_write, .raw_writefn = raw_write 5345 }; 5346 5347 void hw_watchpoint_update(ARMCPU *cpu, int n) 5348 { 5349 CPUARMState *env = &cpu->env; 5350 vaddr len = 0; 5351 vaddr wvr = env->cp15.dbgwvr[n]; 5352 uint64_t wcr = env->cp15.dbgwcr[n]; 5353 int mask; 5354 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 5355 5356 if (env->cpu_watchpoint[n]) { 5357 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 5358 env->cpu_watchpoint[n] = NULL; 5359 } 5360 5361 if (!extract64(wcr, 0, 1)) { 5362 /* E bit clear : watchpoint disabled */ 5363 return; 5364 } 5365 5366 switch (extract64(wcr, 3, 2)) { 5367 case 0: 5368 /* LSC 00 is reserved and must behave as if the wp is disabled */ 5369 return; 5370 case 1: 5371 flags |= BP_MEM_READ; 5372 break; 5373 case 2: 5374 flags |= BP_MEM_WRITE; 5375 break; 5376 case 3: 5377 flags |= BP_MEM_ACCESS; 5378 break; 5379 } 5380 5381 /* Attempts to use both MASK and BAS fields simultaneously are 5382 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 5383 * thus generating a watchpoint for every byte in the masked region. 5384 */ 5385 mask = extract64(wcr, 24, 4); 5386 if (mask == 1 || mask == 2) { 5387 /* Reserved values of MASK; we must act as if the mask value was 5388 * some non-reserved value, or as if the watchpoint were disabled. 5389 * We choose the latter. 5390 */ 5391 return; 5392 } else if (mask) { 5393 /* Watchpoint covers an aligned area up to 2GB in size */ 5394 len = 1ULL << mask; 5395 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 5396 * whether the watchpoint fires when the unmasked bits match; we opt 5397 * to generate the exceptions. 5398 */ 5399 wvr &= ~(len - 1); 5400 } else { 5401 /* Watchpoint covers bytes defined by the byte address select bits */ 5402 int bas = extract64(wcr, 5, 8); 5403 int basstart; 5404 5405 if (bas == 0) { 5406 /* This must act as if the watchpoint is disabled */ 5407 return; 5408 } 5409 5410 if (extract64(wvr, 2, 1)) { 5411 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 5412 * ignored, and BAS[3:0] define which bytes to watch. 5413 */ 5414 bas &= 0xf; 5415 } 5416 /* The BAS bits are supposed to be programmed to indicate a contiguous 5417 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 5418 * we fire for each byte in the word/doubleword addressed by the WVR. 5419 * We choose to ignore any non-zero bits after the first range of 1s. 5420 */ 5421 basstart = ctz32(bas); 5422 len = cto32(bas >> basstart); 5423 wvr += basstart; 5424 } 5425 5426 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 5427 &env->cpu_watchpoint[n]); 5428 } 5429 5430 void hw_watchpoint_update_all(ARMCPU *cpu) 5431 { 5432 int i; 5433 CPUARMState *env = &cpu->env; 5434 5435 /* Completely clear out existing QEMU watchpoints and our array, to 5436 * avoid possible stale entries following migration load. 5437 */ 5438 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 5439 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 5440 5441 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 5442 hw_watchpoint_update(cpu, i); 5443 } 5444 } 5445 5446 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5447 uint64_t value) 5448 { 5449 ARMCPU *cpu = env_archcpu(env); 5450 int i = ri->crm; 5451 5452 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 5453 * register reads and behaves as if values written are sign extended. 5454 * Bits [1:0] are RES0. 5455 */ 5456 value = sextract64(value, 0, 49) & ~3ULL; 5457 5458 raw_write(env, ri, value); 5459 hw_watchpoint_update(cpu, i); 5460 } 5461 5462 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5463 uint64_t value) 5464 { 5465 ARMCPU *cpu = env_archcpu(env); 5466 int i = ri->crm; 5467 5468 raw_write(env, ri, value); 5469 hw_watchpoint_update(cpu, i); 5470 } 5471 5472 void hw_breakpoint_update(ARMCPU *cpu, int n) 5473 { 5474 CPUARMState *env = &cpu->env; 5475 uint64_t bvr = env->cp15.dbgbvr[n]; 5476 uint64_t bcr = env->cp15.dbgbcr[n]; 5477 vaddr addr; 5478 int bt; 5479 int flags = BP_CPU; 5480 5481 if (env->cpu_breakpoint[n]) { 5482 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 5483 env->cpu_breakpoint[n] = NULL; 5484 } 5485 5486 if (!extract64(bcr, 0, 1)) { 5487 /* E bit clear : watchpoint disabled */ 5488 return; 5489 } 5490 5491 bt = extract64(bcr, 20, 4); 5492 5493 switch (bt) { 5494 case 4: /* unlinked address mismatch (reserved if AArch64) */ 5495 case 5: /* linked address mismatch (reserved if AArch64) */ 5496 qemu_log_mask(LOG_UNIMP, 5497 "arm: address mismatch breakpoint types not implemented\n"); 5498 return; 5499 case 0: /* unlinked address match */ 5500 case 1: /* linked address match */ 5501 { 5502 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 5503 * we behave as if the register was sign extended. Bits [1:0] are 5504 * RES0. The BAS field is used to allow setting breakpoints on 16 5505 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 5506 * a bp will fire if the addresses covered by the bp and the addresses 5507 * covered by the insn overlap but the insn doesn't start at the 5508 * start of the bp address range. We choose to require the insn and 5509 * the bp to have the same address. The constraints on writing to 5510 * BAS enforced in dbgbcr_write mean we have only four cases: 5511 * 0b0000 => no breakpoint 5512 * 0b0011 => breakpoint on addr 5513 * 0b1100 => breakpoint on addr + 2 5514 * 0b1111 => breakpoint on addr 5515 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 5516 */ 5517 int bas = extract64(bcr, 5, 4); 5518 addr = sextract64(bvr, 0, 49) & ~3ULL; 5519 if (bas == 0) { 5520 return; 5521 } 5522 if (bas == 0xc) { 5523 addr += 2; 5524 } 5525 break; 5526 } 5527 case 2: /* unlinked context ID match */ 5528 case 8: /* unlinked VMID match (reserved if no EL2) */ 5529 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 5530 qemu_log_mask(LOG_UNIMP, 5531 "arm: unlinked context breakpoint types not implemented\n"); 5532 return; 5533 case 9: /* linked VMID match (reserved if no EL2) */ 5534 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 5535 case 3: /* linked context ID match */ 5536 default: 5537 /* We must generate no events for Linked context matches (unless 5538 * they are linked to by some other bp/wp, which is handled in 5539 * updates for the linking bp/wp). We choose to also generate no events 5540 * for reserved values. 5541 */ 5542 return; 5543 } 5544 5545 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 5546 } 5547 5548 void hw_breakpoint_update_all(ARMCPU *cpu) 5549 { 5550 int i; 5551 CPUARMState *env = &cpu->env; 5552 5553 /* Completely clear out existing QEMU breakpoints and our array, to 5554 * avoid possible stale entries following migration load. 5555 */ 5556 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 5557 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 5558 5559 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 5560 hw_breakpoint_update(cpu, i); 5561 } 5562 } 5563 5564 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5565 uint64_t value) 5566 { 5567 ARMCPU *cpu = env_archcpu(env); 5568 int i = ri->crm; 5569 5570 raw_write(env, ri, value); 5571 hw_breakpoint_update(cpu, i); 5572 } 5573 5574 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5575 uint64_t value) 5576 { 5577 ARMCPU *cpu = env_archcpu(env); 5578 int i = ri->crm; 5579 5580 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 5581 * copy of BAS[0]. 5582 */ 5583 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 5584 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 5585 5586 raw_write(env, ri, value); 5587 hw_breakpoint_update(cpu, i); 5588 } 5589 5590 static void define_debug_regs(ARMCPU *cpu) 5591 { 5592 /* Define v7 and v8 architectural debug registers. 5593 * These are just dummy implementations for now. 5594 */ 5595 int i; 5596 int wrps, brps, ctx_cmps; 5597 ARMCPRegInfo dbgdidr = { 5598 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 5599 .access = PL0_R, .accessfn = access_tda, 5600 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 5601 }; 5602 5603 /* Note that all these register fields hold "number of Xs minus 1". */ 5604 brps = extract32(cpu->dbgdidr, 24, 4); 5605 wrps = extract32(cpu->dbgdidr, 28, 4); 5606 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 5607 5608 assert(ctx_cmps <= brps); 5609 5610 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 5611 * of the debug registers such as number of breakpoints; 5612 * check that if they both exist then they agree. 5613 */ 5614 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 5615 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 5616 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 5617 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 5618 } 5619 5620 define_one_arm_cp_reg(cpu, &dbgdidr); 5621 define_arm_cp_regs(cpu, debug_cp_reginfo); 5622 5623 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 5624 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 5625 } 5626 5627 for (i = 0; i < brps + 1; i++) { 5628 ARMCPRegInfo dbgregs[] = { 5629 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 5630 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 5631 .access = PL1_RW, .accessfn = access_tda, 5632 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 5633 .writefn = dbgbvr_write, .raw_writefn = raw_write 5634 }, 5635 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 5636 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 5637 .access = PL1_RW, .accessfn = access_tda, 5638 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 5639 .writefn = dbgbcr_write, .raw_writefn = raw_write 5640 }, 5641 REGINFO_SENTINEL 5642 }; 5643 define_arm_cp_regs(cpu, dbgregs); 5644 } 5645 5646 for (i = 0; i < wrps + 1; i++) { 5647 ARMCPRegInfo dbgregs[] = { 5648 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 5649 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 5650 .access = PL1_RW, .accessfn = access_tda, 5651 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 5652 .writefn = dbgwvr_write, .raw_writefn = raw_write 5653 }, 5654 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 5655 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 5656 .access = PL1_RW, .accessfn = access_tda, 5657 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 5658 .writefn = dbgwcr_write, .raw_writefn = raw_write 5659 }, 5660 REGINFO_SENTINEL 5661 }; 5662 define_arm_cp_regs(cpu, dbgregs); 5663 } 5664 } 5665 5666 /* We don't know until after realize whether there's a GICv3 5667 * attached, and that is what registers the gicv3 sysregs. 5668 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 5669 * at runtime. 5670 */ 5671 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 5672 { 5673 ARMCPU *cpu = env_archcpu(env); 5674 uint64_t pfr1 = cpu->id_pfr1; 5675 5676 if (env->gicv3state) { 5677 pfr1 |= 1 << 28; 5678 } 5679 return pfr1; 5680 } 5681 5682 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 5683 { 5684 ARMCPU *cpu = env_archcpu(env); 5685 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 5686 5687 if (env->gicv3state) { 5688 pfr0 |= 1 << 24; 5689 } 5690 return pfr0; 5691 } 5692 5693 /* Shared logic between LORID and the rest of the LOR* registers. 5694 * Secure state has already been delt with. 5695 */ 5696 static CPAccessResult access_lor_ns(CPUARMState *env) 5697 { 5698 int el = arm_current_el(env); 5699 5700 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 5701 return CP_ACCESS_TRAP_EL2; 5702 } 5703 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 5704 return CP_ACCESS_TRAP_EL3; 5705 } 5706 return CP_ACCESS_OK; 5707 } 5708 5709 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 5710 bool isread) 5711 { 5712 if (arm_is_secure_below_el3(env)) { 5713 /* Access ok in secure mode. */ 5714 return CP_ACCESS_OK; 5715 } 5716 return access_lor_ns(env); 5717 } 5718 5719 static CPAccessResult access_lor_other(CPUARMState *env, 5720 const ARMCPRegInfo *ri, bool isread) 5721 { 5722 if (arm_is_secure_below_el3(env)) { 5723 /* Access denied in secure mode. */ 5724 return CP_ACCESS_TRAP; 5725 } 5726 return access_lor_ns(env); 5727 } 5728 5729 #ifdef TARGET_AARCH64 5730 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 5731 bool isread) 5732 { 5733 int el = arm_current_el(env); 5734 5735 if (el < 2 && 5736 arm_feature(env, ARM_FEATURE_EL2) && 5737 !(arm_hcr_el2_eff(env) & HCR_APK)) { 5738 return CP_ACCESS_TRAP_EL2; 5739 } 5740 if (el < 3 && 5741 arm_feature(env, ARM_FEATURE_EL3) && 5742 !(env->cp15.scr_el3 & SCR_APK)) { 5743 return CP_ACCESS_TRAP_EL3; 5744 } 5745 return CP_ACCESS_OK; 5746 } 5747 5748 static const ARMCPRegInfo pauth_reginfo[] = { 5749 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5750 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 5751 .access = PL1_RW, .accessfn = access_pauth, 5752 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 5753 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5754 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 5755 .access = PL1_RW, .accessfn = access_pauth, 5756 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 5757 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5758 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 5759 .access = PL1_RW, .accessfn = access_pauth, 5760 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 5761 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5762 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 5763 .access = PL1_RW, .accessfn = access_pauth, 5764 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 5765 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5766 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 5767 .access = PL1_RW, .accessfn = access_pauth, 5768 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 5769 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5770 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 5771 .access = PL1_RW, .accessfn = access_pauth, 5772 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 5773 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5774 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 5775 .access = PL1_RW, .accessfn = access_pauth, 5776 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 5777 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5778 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 5779 .access = PL1_RW, .accessfn = access_pauth, 5780 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 5781 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5782 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 5783 .access = PL1_RW, .accessfn = access_pauth, 5784 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 5785 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5786 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 5787 .access = PL1_RW, .accessfn = access_pauth, 5788 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 5789 REGINFO_SENTINEL 5790 }; 5791 5792 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 5793 { 5794 Error *err = NULL; 5795 uint64_t ret; 5796 5797 /* Success sets NZCV = 0000. */ 5798 env->NF = env->CF = env->VF = 0, env->ZF = 1; 5799 5800 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 5801 /* 5802 * ??? Failed, for unknown reasons in the crypto subsystem. 5803 * The best we can do is log the reason and return the 5804 * timed-out indication to the guest. There is no reason 5805 * we know to expect this failure to be transitory, so the 5806 * guest may well hang retrying the operation. 5807 */ 5808 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 5809 ri->name, error_get_pretty(err)); 5810 error_free(err); 5811 5812 env->ZF = 0; /* NZCF = 0100 */ 5813 return 0; 5814 } 5815 return ret; 5816 } 5817 5818 /* We do not support re-seeding, so the two registers operate the same. */ 5819 static const ARMCPRegInfo rndr_reginfo[] = { 5820 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 5821 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5822 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 5823 .access = PL0_R, .readfn = rndr_readfn }, 5824 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 5825 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5826 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 5827 .access = PL0_R, .readfn = rndr_readfn }, 5828 REGINFO_SENTINEL 5829 }; 5830 #endif 5831 5832 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 5833 bool isread) 5834 { 5835 int el = arm_current_el(env); 5836 5837 if (el == 0) { 5838 uint64_t sctlr = arm_sctlr(env, el); 5839 if (!(sctlr & SCTLR_EnRCTX)) { 5840 return CP_ACCESS_TRAP; 5841 } 5842 } else if (el == 1) { 5843 uint64_t hcr = arm_hcr_el2_eff(env); 5844 if (hcr & HCR_NV) { 5845 return CP_ACCESS_TRAP_EL2; 5846 } 5847 } 5848 return CP_ACCESS_OK; 5849 } 5850 5851 static const ARMCPRegInfo predinv_reginfo[] = { 5852 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 5853 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 5854 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5855 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 5856 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 5857 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5858 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 5859 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 5860 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5861 /* 5862 * Note the AArch32 opcodes have a different OPC1. 5863 */ 5864 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 5865 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 5866 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5867 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 5868 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 5869 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5870 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 5871 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 5872 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5873 REGINFO_SENTINEL 5874 }; 5875 5876 void register_cp_regs_for_features(ARMCPU *cpu) 5877 { 5878 /* Register all the coprocessor registers based on feature bits */ 5879 CPUARMState *env = &cpu->env; 5880 if (arm_feature(env, ARM_FEATURE_M)) { 5881 /* M profile has no coprocessor registers */ 5882 return; 5883 } 5884 5885 define_arm_cp_regs(cpu, cp_reginfo); 5886 if (!arm_feature(env, ARM_FEATURE_V8)) { 5887 /* Must go early as it is full of wildcards that may be 5888 * overridden by later definitions. 5889 */ 5890 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 5891 } 5892 5893 if (arm_feature(env, ARM_FEATURE_V6)) { 5894 /* The ID registers all have impdef reset values */ 5895 ARMCPRegInfo v6_idregs[] = { 5896 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 5897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5898 .access = PL1_R, .type = ARM_CP_CONST, 5899 .resetvalue = cpu->id_pfr0 }, 5900 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 5901 * the value of the GIC field until after we define these regs. 5902 */ 5903 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 5904 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 5905 .access = PL1_R, .type = ARM_CP_NO_RAW, 5906 .readfn = id_pfr1_read, 5907 .writefn = arm_cp_write_ignore }, 5908 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 5909 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 5910 .access = PL1_R, .type = ARM_CP_CONST, 5911 .resetvalue = cpu->id_dfr0 }, 5912 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 5913 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 5914 .access = PL1_R, .type = ARM_CP_CONST, 5915 .resetvalue = cpu->id_afr0 }, 5916 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 5917 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 5918 .access = PL1_R, .type = ARM_CP_CONST, 5919 .resetvalue = cpu->id_mmfr0 }, 5920 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 5921 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 5922 .access = PL1_R, .type = ARM_CP_CONST, 5923 .resetvalue = cpu->id_mmfr1 }, 5924 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 5925 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 5926 .access = PL1_R, .type = ARM_CP_CONST, 5927 .resetvalue = cpu->id_mmfr2 }, 5928 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 5929 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 5930 .access = PL1_R, .type = ARM_CP_CONST, 5931 .resetvalue = cpu->id_mmfr3 }, 5932 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 5933 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5934 .access = PL1_R, .type = ARM_CP_CONST, 5935 .resetvalue = cpu->isar.id_isar0 }, 5936 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 5937 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 5938 .access = PL1_R, .type = ARM_CP_CONST, 5939 .resetvalue = cpu->isar.id_isar1 }, 5940 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 5941 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5942 .access = PL1_R, .type = ARM_CP_CONST, 5943 .resetvalue = cpu->isar.id_isar2 }, 5944 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 5945 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 5946 .access = PL1_R, .type = ARM_CP_CONST, 5947 .resetvalue = cpu->isar.id_isar3 }, 5948 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 5949 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 5950 .access = PL1_R, .type = ARM_CP_CONST, 5951 .resetvalue = cpu->isar.id_isar4 }, 5952 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 5953 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 5954 .access = PL1_R, .type = ARM_CP_CONST, 5955 .resetvalue = cpu->isar.id_isar5 }, 5956 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 5957 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 5958 .access = PL1_R, .type = ARM_CP_CONST, 5959 .resetvalue = cpu->id_mmfr4 }, 5960 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 5961 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 5962 .access = PL1_R, .type = ARM_CP_CONST, 5963 .resetvalue = cpu->isar.id_isar6 }, 5964 REGINFO_SENTINEL 5965 }; 5966 define_arm_cp_regs(cpu, v6_idregs); 5967 define_arm_cp_regs(cpu, v6_cp_reginfo); 5968 } else { 5969 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 5970 } 5971 if (arm_feature(env, ARM_FEATURE_V6K)) { 5972 define_arm_cp_regs(cpu, v6k_cp_reginfo); 5973 } 5974 if (arm_feature(env, ARM_FEATURE_V7MP) && 5975 !arm_feature(env, ARM_FEATURE_PMSA)) { 5976 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 5977 } 5978 if (arm_feature(env, ARM_FEATURE_V7VE)) { 5979 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 5980 } 5981 if (arm_feature(env, ARM_FEATURE_V7)) { 5982 /* v7 performance monitor control register: same implementor 5983 * field as main ID register, and we implement four counters in 5984 * addition to the cycle count register. 5985 */ 5986 unsigned int i, pmcrn = 4; 5987 ARMCPRegInfo pmcr = { 5988 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 5989 .access = PL0_RW, 5990 .type = ARM_CP_IO | ARM_CP_ALIAS, 5991 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 5992 .accessfn = pmreg_access, .writefn = pmcr_write, 5993 .raw_writefn = raw_write, 5994 }; 5995 ARMCPRegInfo pmcr64 = { 5996 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 5997 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 5998 .access = PL0_RW, .accessfn = pmreg_access, 5999 .type = ARM_CP_IO, 6000 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6001 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT), 6002 .writefn = pmcr_write, .raw_writefn = raw_write, 6003 }; 6004 define_one_arm_cp_reg(cpu, &pmcr); 6005 define_one_arm_cp_reg(cpu, &pmcr64); 6006 for (i = 0; i < pmcrn; i++) { 6007 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6008 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6009 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6010 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6011 ARMCPRegInfo pmev_regs[] = { 6012 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6013 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6014 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6015 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6016 .accessfn = pmreg_access }, 6017 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6018 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6019 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6020 .type = ARM_CP_IO, 6021 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6022 .raw_readfn = pmevcntr_rawread, 6023 .raw_writefn = pmevcntr_rawwrite }, 6024 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6025 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6026 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6027 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6028 .accessfn = pmreg_access }, 6029 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6030 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6031 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6032 .type = ARM_CP_IO, 6033 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6034 .raw_writefn = pmevtyper_rawwrite }, 6035 REGINFO_SENTINEL 6036 }; 6037 define_arm_cp_regs(cpu, pmev_regs); 6038 g_free(pmevcntr_name); 6039 g_free(pmevcntr_el0_name); 6040 g_free(pmevtyper_name); 6041 g_free(pmevtyper_el0_name); 6042 } 6043 ARMCPRegInfo clidr = { 6044 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 6045 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 6046 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 6047 }; 6048 define_one_arm_cp_reg(cpu, &clidr); 6049 define_arm_cp_regs(cpu, v7_cp_reginfo); 6050 define_debug_regs(cpu); 6051 } else { 6052 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 6053 } 6054 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 && 6055 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) { 6056 ARMCPRegInfo v81_pmu_regs[] = { 6057 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6058 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6059 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6060 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6061 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6062 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6063 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6064 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6065 REGINFO_SENTINEL 6066 }; 6067 define_arm_cp_regs(cpu, v81_pmu_regs); 6068 } 6069 if (arm_feature(env, ARM_FEATURE_V8)) { 6070 /* AArch64 ID registers, which all have impdef reset values. 6071 * Note that within the ID register ranges the unused slots 6072 * must all RAZ, not UNDEF; future architecture versions may 6073 * define new registers here. 6074 */ 6075 ARMCPRegInfo v8_idregs[] = { 6076 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 6077 * know the right value for the GIC field until after we 6078 * define these regs. 6079 */ 6080 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 6081 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 6082 .access = PL1_R, .type = ARM_CP_NO_RAW, 6083 .readfn = id_aa64pfr0_read, 6084 .writefn = arm_cp_write_ignore }, 6085 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 6086 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 6087 .access = PL1_R, .type = ARM_CP_CONST, 6088 .resetvalue = cpu->isar.id_aa64pfr1}, 6089 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 6091 .access = PL1_R, .type = ARM_CP_CONST, 6092 .resetvalue = 0 }, 6093 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6094 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 6095 .access = PL1_R, .type = ARM_CP_CONST, 6096 .resetvalue = 0 }, 6097 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 6098 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 6099 .access = PL1_R, .type = ARM_CP_CONST, 6100 /* At present, only SVEver == 0 is defined anyway. */ 6101 .resetvalue = 0 }, 6102 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6103 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 6104 .access = PL1_R, .type = ARM_CP_CONST, 6105 .resetvalue = 0 }, 6106 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6107 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 6108 .access = PL1_R, .type = ARM_CP_CONST, 6109 .resetvalue = 0 }, 6110 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6111 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 6112 .access = PL1_R, .type = ARM_CP_CONST, 6113 .resetvalue = 0 }, 6114 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 6115 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 6116 .access = PL1_R, .type = ARM_CP_CONST, 6117 .resetvalue = cpu->id_aa64dfr0 }, 6118 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 6119 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 6120 .access = PL1_R, .type = ARM_CP_CONST, 6121 .resetvalue = cpu->id_aa64dfr1 }, 6122 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6123 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 6124 .access = PL1_R, .type = ARM_CP_CONST, 6125 .resetvalue = 0 }, 6126 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6127 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 6128 .access = PL1_R, .type = ARM_CP_CONST, 6129 .resetvalue = 0 }, 6130 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 6131 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 6132 .access = PL1_R, .type = ARM_CP_CONST, 6133 .resetvalue = cpu->id_aa64afr0 }, 6134 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 6135 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 6136 .access = PL1_R, .type = ARM_CP_CONST, 6137 .resetvalue = cpu->id_aa64afr1 }, 6138 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6139 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 6140 .access = PL1_R, .type = ARM_CP_CONST, 6141 .resetvalue = 0 }, 6142 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6143 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 6144 .access = PL1_R, .type = ARM_CP_CONST, 6145 .resetvalue = 0 }, 6146 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 6147 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 6148 .access = PL1_R, .type = ARM_CP_CONST, 6149 .resetvalue = cpu->isar.id_aa64isar0 }, 6150 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 6151 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 6152 .access = PL1_R, .type = ARM_CP_CONST, 6153 .resetvalue = cpu->isar.id_aa64isar1 }, 6154 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6155 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 6156 .access = PL1_R, .type = ARM_CP_CONST, 6157 .resetvalue = 0 }, 6158 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6159 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 6160 .access = PL1_R, .type = ARM_CP_CONST, 6161 .resetvalue = 0 }, 6162 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6163 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 6164 .access = PL1_R, .type = ARM_CP_CONST, 6165 .resetvalue = 0 }, 6166 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6167 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 6168 .access = PL1_R, .type = ARM_CP_CONST, 6169 .resetvalue = 0 }, 6170 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6171 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 6172 .access = PL1_R, .type = ARM_CP_CONST, 6173 .resetvalue = 0 }, 6174 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6175 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 6176 .access = PL1_R, .type = ARM_CP_CONST, 6177 .resetvalue = 0 }, 6178 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 6179 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6180 .access = PL1_R, .type = ARM_CP_CONST, 6181 .resetvalue = cpu->isar.id_aa64mmfr0 }, 6182 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 6183 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 6184 .access = PL1_R, .type = ARM_CP_CONST, 6185 .resetvalue = cpu->isar.id_aa64mmfr1 }, 6186 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6187 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 6188 .access = PL1_R, .type = ARM_CP_CONST, 6189 .resetvalue = 0 }, 6190 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6191 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 6192 .access = PL1_R, .type = ARM_CP_CONST, 6193 .resetvalue = 0 }, 6194 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6195 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 6196 .access = PL1_R, .type = ARM_CP_CONST, 6197 .resetvalue = 0 }, 6198 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6199 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 6200 .access = PL1_R, .type = ARM_CP_CONST, 6201 .resetvalue = 0 }, 6202 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6203 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 6204 .access = PL1_R, .type = ARM_CP_CONST, 6205 .resetvalue = 0 }, 6206 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6207 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 6208 .access = PL1_R, .type = ARM_CP_CONST, 6209 .resetvalue = 0 }, 6210 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 6211 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 6212 .access = PL1_R, .type = ARM_CP_CONST, 6213 .resetvalue = cpu->isar.mvfr0 }, 6214 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 6215 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 6216 .access = PL1_R, .type = ARM_CP_CONST, 6217 .resetvalue = cpu->isar.mvfr1 }, 6218 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 6219 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 6220 .access = PL1_R, .type = ARM_CP_CONST, 6221 .resetvalue = cpu->isar.mvfr2 }, 6222 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6223 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 6224 .access = PL1_R, .type = ARM_CP_CONST, 6225 .resetvalue = 0 }, 6226 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6227 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 6228 .access = PL1_R, .type = ARM_CP_CONST, 6229 .resetvalue = 0 }, 6230 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6231 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 6232 .access = PL1_R, .type = ARM_CP_CONST, 6233 .resetvalue = 0 }, 6234 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6235 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 6236 .access = PL1_R, .type = ARM_CP_CONST, 6237 .resetvalue = 0 }, 6238 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6239 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 6240 .access = PL1_R, .type = ARM_CP_CONST, 6241 .resetvalue = 0 }, 6242 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 6243 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 6244 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6245 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 6246 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 6247 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 6248 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6249 .resetvalue = cpu->pmceid0 }, 6250 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 6251 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 6252 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6253 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 6254 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 6255 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 6256 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6257 .resetvalue = cpu->pmceid1 }, 6258 REGINFO_SENTINEL 6259 }; 6260 #ifdef CONFIG_USER_ONLY 6261 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 6262 { .name = "ID_AA64PFR0_EL1", 6263 .exported_bits = 0x000f000f00ff0000, 6264 .fixed_bits = 0x0000000000000011 }, 6265 { .name = "ID_AA64PFR1_EL1", 6266 .exported_bits = 0x00000000000000f0 }, 6267 { .name = "ID_AA64PFR*_EL1_RESERVED", 6268 .is_glob = true }, 6269 { .name = "ID_AA64ZFR0_EL1" }, 6270 { .name = "ID_AA64MMFR0_EL1", 6271 .fixed_bits = 0x00000000ff000000 }, 6272 { .name = "ID_AA64MMFR1_EL1" }, 6273 { .name = "ID_AA64MMFR*_EL1_RESERVED", 6274 .is_glob = true }, 6275 { .name = "ID_AA64DFR0_EL1", 6276 .fixed_bits = 0x0000000000000006 }, 6277 { .name = "ID_AA64DFR1_EL1" }, 6278 { .name = "ID_AA64DFR*_EL1_RESERVED", 6279 .is_glob = true }, 6280 { .name = "ID_AA64AFR*", 6281 .is_glob = true }, 6282 { .name = "ID_AA64ISAR0_EL1", 6283 .exported_bits = 0x00fffffff0fffff0 }, 6284 { .name = "ID_AA64ISAR1_EL1", 6285 .exported_bits = 0x000000f0ffffffff }, 6286 { .name = "ID_AA64ISAR*_EL1_RESERVED", 6287 .is_glob = true }, 6288 REGUSERINFO_SENTINEL 6289 }; 6290 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 6291 #endif 6292 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 6293 if (!arm_feature(env, ARM_FEATURE_EL3) && 6294 !arm_feature(env, ARM_FEATURE_EL2)) { 6295 ARMCPRegInfo rvbar = { 6296 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 6297 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6298 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 6299 }; 6300 define_one_arm_cp_reg(cpu, &rvbar); 6301 } 6302 define_arm_cp_regs(cpu, v8_idregs); 6303 define_arm_cp_regs(cpu, v8_cp_reginfo); 6304 } 6305 if (arm_feature(env, ARM_FEATURE_EL2)) { 6306 uint64_t vmpidr_def = mpidr_read_val(env); 6307 ARMCPRegInfo vpidr_regs[] = { 6308 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 6309 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6310 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6311 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 6312 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 6313 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 6314 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6315 .access = PL2_RW, .resetvalue = cpu->midr, 6316 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6317 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 6318 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6319 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6320 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 6321 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 6322 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 6323 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6324 .access = PL2_RW, 6325 .resetvalue = vmpidr_def, 6326 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 6327 REGINFO_SENTINEL 6328 }; 6329 define_arm_cp_regs(cpu, vpidr_regs); 6330 define_arm_cp_regs(cpu, el2_cp_reginfo); 6331 if (arm_feature(env, ARM_FEATURE_V8)) { 6332 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 6333 } 6334 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 6335 if (!arm_feature(env, ARM_FEATURE_EL3)) { 6336 ARMCPRegInfo rvbar = { 6337 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 6338 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 6339 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 6340 }; 6341 define_one_arm_cp_reg(cpu, &rvbar); 6342 } 6343 } else { 6344 /* If EL2 is missing but higher ELs are enabled, we need to 6345 * register the no_el2 reginfos. 6346 */ 6347 if (arm_feature(env, ARM_FEATURE_EL3)) { 6348 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 6349 * of MIDR_EL1 and MPIDR_EL1. 6350 */ 6351 ARMCPRegInfo vpidr_regs[] = { 6352 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6353 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6354 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6355 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 6356 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6357 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6358 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6359 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6360 .type = ARM_CP_NO_RAW, 6361 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 6362 REGINFO_SENTINEL 6363 }; 6364 define_arm_cp_regs(cpu, vpidr_regs); 6365 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 6366 if (arm_feature(env, ARM_FEATURE_V8)) { 6367 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 6368 } 6369 } 6370 } 6371 if (arm_feature(env, ARM_FEATURE_EL3)) { 6372 define_arm_cp_regs(cpu, el3_cp_reginfo); 6373 ARMCPRegInfo el3_regs[] = { 6374 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 6375 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 6376 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 6377 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 6378 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 6379 .access = PL3_RW, 6380 .raw_writefn = raw_write, .writefn = sctlr_write, 6381 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 6382 .resetvalue = cpu->reset_sctlr }, 6383 REGINFO_SENTINEL 6384 }; 6385 6386 define_arm_cp_regs(cpu, el3_regs); 6387 } 6388 /* The behaviour of NSACR is sufficiently various that we don't 6389 * try to describe it in a single reginfo: 6390 * if EL3 is 64 bit, then trap to EL3 from S EL1, 6391 * reads as constant 0xc00 from NS EL1 and NS EL2 6392 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 6393 * if v7 without EL3, register doesn't exist 6394 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 6395 */ 6396 if (arm_feature(env, ARM_FEATURE_EL3)) { 6397 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6398 ARMCPRegInfo nsacr = { 6399 .name = "NSACR", .type = ARM_CP_CONST, 6400 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6401 .access = PL1_RW, .accessfn = nsacr_access, 6402 .resetvalue = 0xc00 6403 }; 6404 define_one_arm_cp_reg(cpu, &nsacr); 6405 } else { 6406 ARMCPRegInfo nsacr = { 6407 .name = "NSACR", 6408 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6409 .access = PL3_RW | PL1_R, 6410 .resetvalue = 0, 6411 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 6412 }; 6413 define_one_arm_cp_reg(cpu, &nsacr); 6414 } 6415 } else { 6416 if (arm_feature(env, ARM_FEATURE_V8)) { 6417 ARMCPRegInfo nsacr = { 6418 .name = "NSACR", .type = ARM_CP_CONST, 6419 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6420 .access = PL1_R, 6421 .resetvalue = 0xc00 6422 }; 6423 define_one_arm_cp_reg(cpu, &nsacr); 6424 } 6425 } 6426 6427 if (arm_feature(env, ARM_FEATURE_PMSA)) { 6428 if (arm_feature(env, ARM_FEATURE_V6)) { 6429 /* PMSAv6 not implemented */ 6430 assert(arm_feature(env, ARM_FEATURE_V7)); 6431 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6432 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 6433 } else { 6434 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 6435 } 6436 } else { 6437 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6438 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 6439 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */ 6440 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) { 6441 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 6442 } 6443 } 6444 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 6445 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 6446 } 6447 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 6448 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 6449 } 6450 if (arm_feature(env, ARM_FEATURE_VAPA)) { 6451 define_arm_cp_regs(cpu, vapa_cp_reginfo); 6452 } 6453 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 6454 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 6455 } 6456 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 6457 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 6458 } 6459 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 6460 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 6461 } 6462 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 6463 define_arm_cp_regs(cpu, omap_cp_reginfo); 6464 } 6465 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 6466 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 6467 } 6468 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6469 define_arm_cp_regs(cpu, xscale_cp_reginfo); 6470 } 6471 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 6472 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 6473 } 6474 if (arm_feature(env, ARM_FEATURE_LPAE)) { 6475 define_arm_cp_regs(cpu, lpae_cp_reginfo); 6476 } 6477 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 6478 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 6479 * be read-only (ie write causes UNDEF exception). 6480 */ 6481 { 6482 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 6483 /* Pre-v8 MIDR space. 6484 * Note that the MIDR isn't a simple constant register because 6485 * of the TI925 behaviour where writes to another register can 6486 * cause the MIDR value to change. 6487 * 6488 * Unimplemented registers in the c15 0 0 0 space default to 6489 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 6490 * and friends override accordingly. 6491 */ 6492 { .name = "MIDR", 6493 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 6494 .access = PL1_R, .resetvalue = cpu->midr, 6495 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 6496 .readfn = midr_read, 6497 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6498 .type = ARM_CP_OVERRIDE }, 6499 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 6500 { .name = "DUMMY", 6501 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 6502 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6503 { .name = "DUMMY", 6504 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 6505 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6506 { .name = "DUMMY", 6507 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 6508 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6509 { .name = "DUMMY", 6510 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 6511 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6512 { .name = "DUMMY", 6513 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 6514 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6515 REGINFO_SENTINEL 6516 }; 6517 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 6518 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 6519 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 6520 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 6521 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6522 .readfn = midr_read }, 6523 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 6524 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6525 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6526 .access = PL1_R, .resetvalue = cpu->midr }, 6527 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6528 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 6529 .access = PL1_R, .resetvalue = cpu->midr }, 6530 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 6531 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 6532 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 6533 REGINFO_SENTINEL 6534 }; 6535 ARMCPRegInfo id_cp_reginfo[] = { 6536 /* These are common to v8 and pre-v8 */ 6537 { .name = "CTR", 6538 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 6539 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6540 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 6541 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 6542 .access = PL0_R, .accessfn = ctr_el0_access, 6543 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6544 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 6545 { .name = "TCMTR", 6546 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 6547 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6548 REGINFO_SENTINEL 6549 }; 6550 /* TLBTR is specific to VMSA */ 6551 ARMCPRegInfo id_tlbtr_reginfo = { 6552 .name = "TLBTR", 6553 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 6554 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 6555 }; 6556 /* MPUIR is specific to PMSA V6+ */ 6557 ARMCPRegInfo id_mpuir_reginfo = { 6558 .name = "MPUIR", 6559 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6560 .access = PL1_R, .type = ARM_CP_CONST, 6561 .resetvalue = cpu->pmsav7_dregion << 8 6562 }; 6563 ARMCPRegInfo crn0_wi_reginfo = { 6564 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 6565 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 6566 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 6567 }; 6568 #ifdef CONFIG_USER_ONLY 6569 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 6570 { .name = "MIDR_EL1", 6571 .exported_bits = 0x00000000ffffffff }, 6572 { .name = "REVIDR_EL1" }, 6573 REGUSERINFO_SENTINEL 6574 }; 6575 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 6576 #endif 6577 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 6578 arm_feature(env, ARM_FEATURE_STRONGARM)) { 6579 ARMCPRegInfo *r; 6580 /* Register the blanket "writes ignored" value first to cover the 6581 * whole space. Then update the specific ID registers to allow write 6582 * access, so that they ignore writes rather than causing them to 6583 * UNDEF. 6584 */ 6585 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 6586 for (r = id_pre_v8_midr_cp_reginfo; 6587 r->type != ARM_CP_SENTINEL; r++) { 6588 r->access = PL1_RW; 6589 } 6590 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 6591 r->access = PL1_RW; 6592 } 6593 id_mpuir_reginfo.access = PL1_RW; 6594 id_tlbtr_reginfo.access = PL1_RW; 6595 } 6596 if (arm_feature(env, ARM_FEATURE_V8)) { 6597 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 6598 } else { 6599 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 6600 } 6601 define_arm_cp_regs(cpu, id_cp_reginfo); 6602 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 6603 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 6604 } else if (arm_feature(env, ARM_FEATURE_V7)) { 6605 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 6606 } 6607 } 6608 6609 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 6610 ARMCPRegInfo mpidr_cp_reginfo[] = { 6611 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 6612 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 6613 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 6614 REGINFO_SENTINEL 6615 }; 6616 #ifdef CONFIG_USER_ONLY 6617 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 6618 { .name = "MPIDR_EL1", 6619 .fixed_bits = 0x0000000080000000 }, 6620 REGUSERINFO_SENTINEL 6621 }; 6622 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 6623 #endif 6624 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 6625 } 6626 6627 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 6628 ARMCPRegInfo auxcr_reginfo[] = { 6629 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 6630 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 6631 .access = PL1_RW, .type = ARM_CP_CONST, 6632 .resetvalue = cpu->reset_auxcr }, 6633 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 6634 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 6635 .access = PL2_RW, .type = ARM_CP_CONST, 6636 .resetvalue = 0 }, 6637 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 6638 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 6639 .access = PL3_RW, .type = ARM_CP_CONST, 6640 .resetvalue = 0 }, 6641 REGINFO_SENTINEL 6642 }; 6643 define_arm_cp_regs(cpu, auxcr_reginfo); 6644 if (arm_feature(env, ARM_FEATURE_V8)) { 6645 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ 6646 ARMCPRegInfo hactlr2_reginfo = { 6647 .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 6648 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 6649 .access = PL2_RW, .type = ARM_CP_CONST, 6650 .resetvalue = 0 6651 }; 6652 define_one_arm_cp_reg(cpu, &hactlr2_reginfo); 6653 } 6654 } 6655 6656 if (arm_feature(env, ARM_FEATURE_CBAR)) { 6657 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6658 /* 32 bit view is [31:18] 0...0 [43:32]. */ 6659 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 6660 | extract64(cpu->reset_cbar, 32, 12); 6661 ARMCPRegInfo cbar_reginfo[] = { 6662 { .name = "CBAR", 6663 .type = ARM_CP_CONST, 6664 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 6665 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 6666 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 6667 .type = ARM_CP_CONST, 6668 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 6669 .access = PL1_R, .resetvalue = cbar32 }, 6670 REGINFO_SENTINEL 6671 }; 6672 /* We don't implement a r/w 64 bit CBAR currently */ 6673 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 6674 define_arm_cp_regs(cpu, cbar_reginfo); 6675 } else { 6676 ARMCPRegInfo cbar = { 6677 .name = "CBAR", 6678 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 6679 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 6680 .fieldoffset = offsetof(CPUARMState, 6681 cp15.c15_config_base_address) 6682 }; 6683 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 6684 cbar.access = PL1_R; 6685 cbar.fieldoffset = 0; 6686 cbar.type = ARM_CP_CONST; 6687 } 6688 define_one_arm_cp_reg(cpu, &cbar); 6689 } 6690 } 6691 6692 if (arm_feature(env, ARM_FEATURE_VBAR)) { 6693 ARMCPRegInfo vbar_cp_reginfo[] = { 6694 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 6695 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 6696 .access = PL1_RW, .writefn = vbar_write, 6697 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 6698 offsetof(CPUARMState, cp15.vbar_ns) }, 6699 .resetvalue = 0 }, 6700 REGINFO_SENTINEL 6701 }; 6702 define_arm_cp_regs(cpu, vbar_cp_reginfo); 6703 } 6704 6705 /* Generic registers whose values depend on the implementation */ 6706 { 6707 ARMCPRegInfo sctlr = { 6708 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 6709 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6710 .access = PL1_RW, 6711 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 6712 offsetof(CPUARMState, cp15.sctlr_ns) }, 6713 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 6714 .raw_writefn = raw_write, 6715 }; 6716 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6717 /* Normally we would always end the TB on an SCTLR write, but Linux 6718 * arch/arm/mach-pxa/sleep.S expects two instructions following 6719 * an MMU enable to execute from cache. Imitate this behaviour. 6720 */ 6721 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 6722 } 6723 define_one_arm_cp_reg(cpu, &sctlr); 6724 } 6725 6726 if (cpu_isar_feature(aa64_lor, cpu)) { 6727 /* 6728 * A trivial implementation of ARMv8.1-LOR leaves all of these 6729 * registers fixed at 0, which indicates that there are zero 6730 * supported Limited Ordering regions. 6731 */ 6732 static const ARMCPRegInfo lor_reginfo[] = { 6733 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6734 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6735 .access = PL1_RW, .accessfn = access_lor_other, 6736 .type = ARM_CP_CONST, .resetvalue = 0 }, 6737 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6738 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6739 .access = PL1_RW, .accessfn = access_lor_other, 6740 .type = ARM_CP_CONST, .resetvalue = 0 }, 6741 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6742 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6743 .access = PL1_RW, .accessfn = access_lor_other, 6744 .type = ARM_CP_CONST, .resetvalue = 0 }, 6745 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6746 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6747 .access = PL1_RW, .accessfn = access_lor_other, 6748 .type = ARM_CP_CONST, .resetvalue = 0 }, 6749 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6750 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6751 .access = PL1_R, .accessfn = access_lorid, 6752 .type = ARM_CP_CONST, .resetvalue = 0 }, 6753 REGINFO_SENTINEL 6754 }; 6755 define_arm_cp_regs(cpu, lor_reginfo); 6756 } 6757 6758 if (cpu_isar_feature(aa64_sve, cpu)) { 6759 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 6760 if (arm_feature(env, ARM_FEATURE_EL2)) { 6761 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 6762 } else { 6763 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 6764 } 6765 if (arm_feature(env, ARM_FEATURE_EL3)) { 6766 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 6767 } 6768 } 6769 6770 #ifdef TARGET_AARCH64 6771 if (cpu_isar_feature(aa64_pauth, cpu)) { 6772 define_arm_cp_regs(cpu, pauth_reginfo); 6773 } 6774 if (cpu_isar_feature(aa64_rndr, cpu)) { 6775 define_arm_cp_regs(cpu, rndr_reginfo); 6776 } 6777 #endif 6778 6779 /* 6780 * While all v8.0 cpus support aarch64, QEMU does have configurations 6781 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max, 6782 * which will set ID_ISAR6. 6783 */ 6784 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) 6785 ? cpu_isar_feature(aa64_predinv, cpu) 6786 : cpu_isar_feature(aa32_predinv, cpu)) { 6787 define_arm_cp_regs(cpu, predinv_reginfo); 6788 } 6789 } 6790 6791 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 6792 { 6793 CPUState *cs = CPU(cpu); 6794 CPUARMState *env = &cpu->env; 6795 6796 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6797 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 6798 aarch64_fpu_gdb_set_reg, 6799 34, "aarch64-fpu.xml", 0); 6800 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 6801 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6802 51, "arm-neon.xml", 0); 6803 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 6804 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6805 35, "arm-vfp3.xml", 0); 6806 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 6807 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6808 19, "arm-vfp.xml", 0); 6809 } 6810 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 6811 arm_gen_dynamic_xml(cs), 6812 "system-registers.xml", 0); 6813 } 6814 6815 /* Sort alphabetically by type name, except for "any". */ 6816 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 6817 { 6818 ObjectClass *class_a = (ObjectClass *)a; 6819 ObjectClass *class_b = (ObjectClass *)b; 6820 const char *name_a, *name_b; 6821 6822 name_a = object_class_get_name(class_a); 6823 name_b = object_class_get_name(class_b); 6824 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 6825 return 1; 6826 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 6827 return -1; 6828 } else { 6829 return strcmp(name_a, name_b); 6830 } 6831 } 6832 6833 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 6834 { 6835 ObjectClass *oc = data; 6836 const char *typename; 6837 char *name; 6838 6839 typename = object_class_get_name(oc); 6840 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 6841 qemu_printf(" %s\n", name); 6842 g_free(name); 6843 } 6844 6845 void arm_cpu_list(void) 6846 { 6847 GSList *list; 6848 6849 list = object_class_get_list(TYPE_ARM_CPU, false); 6850 list = g_slist_sort(list, arm_cpu_list_compare); 6851 qemu_printf("Available CPUs:\n"); 6852 g_slist_foreach(list, arm_cpu_list_entry, NULL); 6853 g_slist_free(list); 6854 } 6855 6856 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 6857 { 6858 ObjectClass *oc = data; 6859 CpuDefinitionInfoList **cpu_list = user_data; 6860 CpuDefinitionInfoList *entry; 6861 CpuDefinitionInfo *info; 6862 const char *typename; 6863 6864 typename = object_class_get_name(oc); 6865 info = g_malloc0(sizeof(*info)); 6866 info->name = g_strndup(typename, 6867 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 6868 info->q_typename = g_strdup(typename); 6869 6870 entry = g_malloc0(sizeof(*entry)); 6871 entry->value = info; 6872 entry->next = *cpu_list; 6873 *cpu_list = entry; 6874 } 6875 6876 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 6877 { 6878 CpuDefinitionInfoList *cpu_list = NULL; 6879 GSList *list; 6880 6881 list = object_class_get_list(TYPE_ARM_CPU, false); 6882 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 6883 g_slist_free(list); 6884 6885 return cpu_list; 6886 } 6887 6888 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 6889 void *opaque, int state, int secstate, 6890 int crm, int opc1, int opc2, 6891 const char *name) 6892 { 6893 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 6894 * add a single reginfo struct to the hash table. 6895 */ 6896 uint32_t *key = g_new(uint32_t, 1); 6897 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 6898 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 6899 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 6900 6901 r2->name = g_strdup(name); 6902 /* Reset the secure state to the specific incoming state. This is 6903 * necessary as the register may have been defined with both states. 6904 */ 6905 r2->secure = secstate; 6906 6907 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 6908 /* Register is banked (using both entries in array). 6909 * Overwriting fieldoffset as the array is only used to define 6910 * banked registers but later only fieldoffset is used. 6911 */ 6912 r2->fieldoffset = r->bank_fieldoffsets[ns]; 6913 } 6914 6915 if (state == ARM_CP_STATE_AA32) { 6916 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 6917 /* If the register is banked then we don't need to migrate or 6918 * reset the 32-bit instance in certain cases: 6919 * 6920 * 1) If the register has both 32-bit and 64-bit instances then we 6921 * can count on the 64-bit instance taking care of the 6922 * non-secure bank. 6923 * 2) If ARMv8 is enabled then we can count on a 64-bit version 6924 * taking care of the secure bank. This requires that separate 6925 * 32 and 64-bit definitions are provided. 6926 */ 6927 if ((r->state == ARM_CP_STATE_BOTH && ns) || 6928 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 6929 r2->type |= ARM_CP_ALIAS; 6930 } 6931 } else if ((secstate != r->secure) && !ns) { 6932 /* The register is not banked so we only want to allow migration of 6933 * the non-secure instance. 6934 */ 6935 r2->type |= ARM_CP_ALIAS; 6936 } 6937 6938 if (r->state == ARM_CP_STATE_BOTH) { 6939 /* We assume it is a cp15 register if the .cp field is left unset. 6940 */ 6941 if (r2->cp == 0) { 6942 r2->cp = 15; 6943 } 6944 6945 #ifdef HOST_WORDS_BIGENDIAN 6946 if (r2->fieldoffset) { 6947 r2->fieldoffset += sizeof(uint32_t); 6948 } 6949 #endif 6950 } 6951 } 6952 if (state == ARM_CP_STATE_AA64) { 6953 /* To allow abbreviation of ARMCPRegInfo 6954 * definitions, we treat cp == 0 as equivalent to 6955 * the value for "standard guest-visible sysreg". 6956 * STATE_BOTH definitions are also always "standard 6957 * sysreg" in their AArch64 view (the .cp value may 6958 * be non-zero for the benefit of the AArch32 view). 6959 */ 6960 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 6961 r2->cp = CP_REG_ARM64_SYSREG_CP; 6962 } 6963 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 6964 r2->opc0, opc1, opc2); 6965 } else { 6966 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 6967 } 6968 if (opaque) { 6969 r2->opaque = opaque; 6970 } 6971 /* reginfo passed to helpers is correct for the actual access, 6972 * and is never ARM_CP_STATE_BOTH: 6973 */ 6974 r2->state = state; 6975 /* Make sure reginfo passed to helpers for wildcarded regs 6976 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 6977 */ 6978 r2->crm = crm; 6979 r2->opc1 = opc1; 6980 r2->opc2 = opc2; 6981 /* By convention, for wildcarded registers only the first 6982 * entry is used for migration; the others are marked as 6983 * ALIAS so we don't try to transfer the register 6984 * multiple times. Special registers (ie NOP/WFI) are 6985 * never migratable and not even raw-accessible. 6986 */ 6987 if ((r->type & ARM_CP_SPECIAL)) { 6988 r2->type |= ARM_CP_NO_RAW; 6989 } 6990 if (((r->crm == CP_ANY) && crm != 0) || 6991 ((r->opc1 == CP_ANY) && opc1 != 0) || 6992 ((r->opc2 == CP_ANY) && opc2 != 0)) { 6993 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 6994 } 6995 6996 /* Check that raw accesses are either forbidden or handled. Note that 6997 * we can't assert this earlier because the setup of fieldoffset for 6998 * banked registers has to be done first. 6999 */ 7000 if (!(r2->type & ARM_CP_NO_RAW)) { 7001 assert(!raw_accessors_invalid(r2)); 7002 } 7003 7004 /* Overriding of an existing definition must be explicitly 7005 * requested. 7006 */ 7007 if (!(r->type & ARM_CP_OVERRIDE)) { 7008 ARMCPRegInfo *oldreg; 7009 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 7010 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 7011 fprintf(stderr, "Register redefined: cp=%d %d bit " 7012 "crn=%d crm=%d opc1=%d opc2=%d, " 7013 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 7014 r2->crn, r2->crm, r2->opc1, r2->opc2, 7015 oldreg->name, r2->name); 7016 g_assert_not_reached(); 7017 } 7018 } 7019 g_hash_table_insert(cpu->cp_regs, key, r2); 7020 } 7021 7022 7023 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 7024 const ARMCPRegInfo *r, void *opaque) 7025 { 7026 /* Define implementations of coprocessor registers. 7027 * We store these in a hashtable because typically 7028 * there are less than 150 registers in a space which 7029 * is 16*16*16*8*8 = 262144 in size. 7030 * Wildcarding is supported for the crm, opc1 and opc2 fields. 7031 * If a register is defined twice then the second definition is 7032 * used, so this can be used to define some generic registers and 7033 * then override them with implementation specific variations. 7034 * At least one of the original and the second definition should 7035 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 7036 * against accidental use. 7037 * 7038 * The state field defines whether the register is to be 7039 * visible in the AArch32 or AArch64 execution state. If the 7040 * state is set to ARM_CP_STATE_BOTH then we synthesise a 7041 * reginfo structure for the AArch32 view, which sees the lower 7042 * 32 bits of the 64 bit register. 7043 * 7044 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 7045 * be wildcarded. AArch64 registers are always considered to be 64 7046 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 7047 * the register, if any. 7048 */ 7049 int crm, opc1, opc2, state; 7050 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 7051 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 7052 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 7053 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 7054 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 7055 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 7056 /* 64 bit registers have only CRm and Opc1 fields */ 7057 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 7058 /* op0 only exists in the AArch64 encodings */ 7059 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 7060 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 7061 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 7062 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 7063 * encodes a minimum access level for the register. We roll this 7064 * runtime check into our general permission check code, so check 7065 * here that the reginfo's specified permissions are strict enough 7066 * to encompass the generic architectural permission check. 7067 */ 7068 if (r->state != ARM_CP_STATE_AA32) { 7069 int mask = 0; 7070 switch (r->opc1) { 7071 case 0: 7072 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 7073 mask = PL0U_R | PL1_RW; 7074 break; 7075 case 1: case 2: 7076 /* min_EL EL1 */ 7077 mask = PL1_RW; 7078 break; 7079 case 3: 7080 /* min_EL EL0 */ 7081 mask = PL0_RW; 7082 break; 7083 case 4: 7084 /* min_EL EL2 */ 7085 mask = PL2_RW; 7086 break; 7087 case 5: 7088 /* unallocated encoding, so not possible */ 7089 assert(false); 7090 break; 7091 case 6: 7092 /* min_EL EL3 */ 7093 mask = PL3_RW; 7094 break; 7095 case 7: 7096 /* min_EL EL1, secure mode only (we don't check the latter) */ 7097 mask = PL1_RW; 7098 break; 7099 default: 7100 /* broken reginfo with out-of-range opc1 */ 7101 assert(false); 7102 break; 7103 } 7104 /* assert our permissions are not too lax (stricter is fine) */ 7105 assert((r->access & ~mask) == 0); 7106 } 7107 7108 /* Check that the register definition has enough info to handle 7109 * reads and writes if they are permitted. 7110 */ 7111 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 7112 if (r->access & PL3_R) { 7113 assert((r->fieldoffset || 7114 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7115 r->readfn); 7116 } 7117 if (r->access & PL3_W) { 7118 assert((r->fieldoffset || 7119 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7120 r->writefn); 7121 } 7122 } 7123 /* Bad type field probably means missing sentinel at end of reg list */ 7124 assert(cptype_valid(r->type)); 7125 for (crm = crmmin; crm <= crmmax; crm++) { 7126 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 7127 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 7128 for (state = ARM_CP_STATE_AA32; 7129 state <= ARM_CP_STATE_AA64; state++) { 7130 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 7131 continue; 7132 } 7133 if (state == ARM_CP_STATE_AA32) { 7134 /* Under AArch32 CP registers can be common 7135 * (same for secure and non-secure world) or banked. 7136 */ 7137 char *name; 7138 7139 switch (r->secure) { 7140 case ARM_CP_SECSTATE_S: 7141 case ARM_CP_SECSTATE_NS: 7142 add_cpreg_to_hashtable(cpu, r, opaque, state, 7143 r->secure, crm, opc1, opc2, 7144 r->name); 7145 break; 7146 default: 7147 name = g_strdup_printf("%s_S", r->name); 7148 add_cpreg_to_hashtable(cpu, r, opaque, state, 7149 ARM_CP_SECSTATE_S, 7150 crm, opc1, opc2, name); 7151 g_free(name); 7152 add_cpreg_to_hashtable(cpu, r, opaque, state, 7153 ARM_CP_SECSTATE_NS, 7154 crm, opc1, opc2, r->name); 7155 break; 7156 } 7157 } else { 7158 /* AArch64 registers get mapped to non-secure instance 7159 * of AArch32 */ 7160 add_cpreg_to_hashtable(cpu, r, opaque, state, 7161 ARM_CP_SECSTATE_NS, 7162 crm, opc1, opc2, r->name); 7163 } 7164 } 7165 } 7166 } 7167 } 7168 } 7169 7170 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 7171 const ARMCPRegInfo *regs, void *opaque) 7172 { 7173 /* Define a whole list of registers */ 7174 const ARMCPRegInfo *r; 7175 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7176 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 7177 } 7178 } 7179 7180 /* 7181 * Modify ARMCPRegInfo for access from userspace. 7182 * 7183 * This is a data driven modification directed by 7184 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 7185 * user-space cannot alter any values and dynamic values pertaining to 7186 * execution state are hidden from user space view anyway. 7187 */ 7188 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 7189 { 7190 const ARMCPRegUserSpaceInfo *m; 7191 ARMCPRegInfo *r; 7192 7193 for (m = mods; m->name; m++) { 7194 GPatternSpec *pat = NULL; 7195 if (m->is_glob) { 7196 pat = g_pattern_spec_new(m->name); 7197 } 7198 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7199 if (pat && g_pattern_match_string(pat, r->name)) { 7200 r->type = ARM_CP_CONST; 7201 r->access = PL0U_R; 7202 r->resetvalue = 0; 7203 /* continue */ 7204 } else if (strcmp(r->name, m->name) == 0) { 7205 r->type = ARM_CP_CONST; 7206 r->access = PL0U_R; 7207 r->resetvalue &= m->exported_bits; 7208 r->resetvalue |= m->fixed_bits; 7209 break; 7210 } 7211 } 7212 if (pat) { 7213 g_pattern_spec_free(pat); 7214 } 7215 } 7216 } 7217 7218 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 7219 { 7220 return g_hash_table_lookup(cpregs, &encoded_cp); 7221 } 7222 7223 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 7224 uint64_t value) 7225 { 7226 /* Helper coprocessor write function for write-ignore registers */ 7227 } 7228 7229 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 7230 { 7231 /* Helper coprocessor write function for read-as-zero registers */ 7232 return 0; 7233 } 7234 7235 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 7236 { 7237 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 7238 } 7239 7240 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 7241 { 7242 /* Return true if it is not valid for us to switch to 7243 * this CPU mode (ie all the UNPREDICTABLE cases in 7244 * the ARM ARM CPSRWriteByInstr pseudocode). 7245 */ 7246 7247 /* Changes to or from Hyp via MSR and CPS are illegal. */ 7248 if (write_type == CPSRWriteByInstr && 7249 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 7250 mode == ARM_CPU_MODE_HYP)) { 7251 return 1; 7252 } 7253 7254 switch (mode) { 7255 case ARM_CPU_MODE_USR: 7256 return 0; 7257 case ARM_CPU_MODE_SYS: 7258 case ARM_CPU_MODE_SVC: 7259 case ARM_CPU_MODE_ABT: 7260 case ARM_CPU_MODE_UND: 7261 case ARM_CPU_MODE_IRQ: 7262 case ARM_CPU_MODE_FIQ: 7263 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 7264 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 7265 */ 7266 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 7267 * and CPS are treated as illegal mode changes. 7268 */ 7269 if (write_type == CPSRWriteByInstr && 7270 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 7271 (arm_hcr_el2_eff(env) & HCR_TGE)) { 7272 return 1; 7273 } 7274 return 0; 7275 case ARM_CPU_MODE_HYP: 7276 return !arm_feature(env, ARM_FEATURE_EL2) 7277 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 7278 case ARM_CPU_MODE_MON: 7279 return arm_current_el(env) < 3; 7280 default: 7281 return 1; 7282 } 7283 } 7284 7285 uint32_t cpsr_read(CPUARMState *env) 7286 { 7287 int ZF; 7288 ZF = (env->ZF == 0); 7289 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 7290 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 7291 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 7292 | ((env->condexec_bits & 0xfc) << 8) 7293 | (env->GE << 16) | (env->daif & CPSR_AIF); 7294 } 7295 7296 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 7297 CPSRWriteType write_type) 7298 { 7299 uint32_t changed_daif; 7300 7301 if (mask & CPSR_NZCV) { 7302 env->ZF = (~val) & CPSR_Z; 7303 env->NF = val; 7304 env->CF = (val >> 29) & 1; 7305 env->VF = (val << 3) & 0x80000000; 7306 } 7307 if (mask & CPSR_Q) 7308 env->QF = ((val & CPSR_Q) != 0); 7309 if (mask & CPSR_T) 7310 env->thumb = ((val & CPSR_T) != 0); 7311 if (mask & CPSR_IT_0_1) { 7312 env->condexec_bits &= ~3; 7313 env->condexec_bits |= (val >> 25) & 3; 7314 } 7315 if (mask & CPSR_IT_2_7) { 7316 env->condexec_bits &= 3; 7317 env->condexec_bits |= (val >> 8) & 0xfc; 7318 } 7319 if (mask & CPSR_GE) { 7320 env->GE = (val >> 16) & 0xf; 7321 } 7322 7323 /* In a V7 implementation that includes the security extensions but does 7324 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 7325 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 7326 * bits respectively. 7327 * 7328 * In a V8 implementation, it is permitted for privileged software to 7329 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 7330 */ 7331 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 7332 arm_feature(env, ARM_FEATURE_EL3) && 7333 !arm_feature(env, ARM_FEATURE_EL2) && 7334 !arm_is_secure(env)) { 7335 7336 changed_daif = (env->daif ^ val) & mask; 7337 7338 if (changed_daif & CPSR_A) { 7339 /* Check to see if we are allowed to change the masking of async 7340 * abort exceptions from a non-secure state. 7341 */ 7342 if (!(env->cp15.scr_el3 & SCR_AW)) { 7343 qemu_log_mask(LOG_GUEST_ERROR, 7344 "Ignoring attempt to switch CPSR_A flag from " 7345 "non-secure world with SCR.AW bit clear\n"); 7346 mask &= ~CPSR_A; 7347 } 7348 } 7349 7350 if (changed_daif & CPSR_F) { 7351 /* Check to see if we are allowed to change the masking of FIQ 7352 * exceptions from a non-secure state. 7353 */ 7354 if (!(env->cp15.scr_el3 & SCR_FW)) { 7355 qemu_log_mask(LOG_GUEST_ERROR, 7356 "Ignoring attempt to switch CPSR_F flag from " 7357 "non-secure world with SCR.FW bit clear\n"); 7358 mask &= ~CPSR_F; 7359 } 7360 7361 /* Check whether non-maskable FIQ (NMFI) support is enabled. 7362 * If this bit is set software is not allowed to mask 7363 * FIQs, but is allowed to set CPSR_F to 0. 7364 */ 7365 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 7366 (val & CPSR_F)) { 7367 qemu_log_mask(LOG_GUEST_ERROR, 7368 "Ignoring attempt to enable CPSR_F flag " 7369 "(non-maskable FIQ [NMFI] support enabled)\n"); 7370 mask &= ~CPSR_F; 7371 } 7372 } 7373 } 7374 7375 env->daif &= ~(CPSR_AIF & mask); 7376 env->daif |= val & CPSR_AIF & mask; 7377 7378 if (write_type != CPSRWriteRaw && 7379 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 7380 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 7381 /* Note that we can only get here in USR mode if this is a 7382 * gdb stub write; for this case we follow the architectural 7383 * behaviour for guest writes in USR mode of ignoring an attempt 7384 * to switch mode. (Those are caught by translate.c for writes 7385 * triggered by guest instructions.) 7386 */ 7387 mask &= ~CPSR_M; 7388 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 7389 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 7390 * v7, and has defined behaviour in v8: 7391 * + leave CPSR.M untouched 7392 * + allow changes to the other CPSR fields 7393 * + set PSTATE.IL 7394 * For user changes via the GDB stub, we don't set PSTATE.IL, 7395 * as this would be unnecessarily harsh for a user error. 7396 */ 7397 mask &= ~CPSR_M; 7398 if (write_type != CPSRWriteByGDBStub && 7399 arm_feature(env, ARM_FEATURE_V8)) { 7400 mask |= CPSR_IL; 7401 val |= CPSR_IL; 7402 } 7403 qemu_log_mask(LOG_GUEST_ERROR, 7404 "Illegal AArch32 mode switch attempt from %s to %s\n", 7405 aarch32_mode_name(env->uncached_cpsr), 7406 aarch32_mode_name(val)); 7407 } else { 7408 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 7409 write_type == CPSRWriteExceptionReturn ? 7410 "Exception return from AArch32" : 7411 "AArch32 mode switch from", 7412 aarch32_mode_name(env->uncached_cpsr), 7413 aarch32_mode_name(val), env->regs[15]); 7414 switch_mode(env, val & CPSR_M); 7415 } 7416 } 7417 mask &= ~CACHED_CPSR_BITS; 7418 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 7419 } 7420 7421 /* Sign/zero extend */ 7422 uint32_t HELPER(sxtb16)(uint32_t x) 7423 { 7424 uint32_t res; 7425 res = (uint16_t)(int8_t)x; 7426 res |= (uint32_t)(int8_t)(x >> 16) << 16; 7427 return res; 7428 } 7429 7430 uint32_t HELPER(uxtb16)(uint32_t x) 7431 { 7432 uint32_t res; 7433 res = (uint16_t)(uint8_t)x; 7434 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 7435 return res; 7436 } 7437 7438 int32_t HELPER(sdiv)(int32_t num, int32_t den) 7439 { 7440 if (den == 0) 7441 return 0; 7442 if (num == INT_MIN && den == -1) 7443 return INT_MIN; 7444 return num / den; 7445 } 7446 7447 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 7448 { 7449 if (den == 0) 7450 return 0; 7451 return num / den; 7452 } 7453 7454 uint32_t HELPER(rbit)(uint32_t x) 7455 { 7456 return revbit32(x); 7457 } 7458 7459 #ifdef CONFIG_USER_ONLY 7460 7461 static void switch_mode(CPUARMState *env, int mode) 7462 { 7463 ARMCPU *cpu = env_archcpu(env); 7464 7465 if (mode != ARM_CPU_MODE_USR) { 7466 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 7467 } 7468 } 7469 7470 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7471 uint32_t cur_el, bool secure) 7472 { 7473 return 1; 7474 } 7475 7476 void aarch64_sync_64_to_32(CPUARMState *env) 7477 { 7478 g_assert_not_reached(); 7479 } 7480 7481 #else 7482 7483 static void switch_mode(CPUARMState *env, int mode) 7484 { 7485 int old_mode; 7486 int i; 7487 7488 old_mode = env->uncached_cpsr & CPSR_M; 7489 if (mode == old_mode) 7490 return; 7491 7492 if (old_mode == ARM_CPU_MODE_FIQ) { 7493 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7494 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 7495 } else if (mode == ARM_CPU_MODE_FIQ) { 7496 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7497 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 7498 } 7499 7500 i = bank_number(old_mode); 7501 env->banked_r13[i] = env->regs[13]; 7502 env->banked_spsr[i] = env->spsr; 7503 7504 i = bank_number(mode); 7505 env->regs[13] = env->banked_r13[i]; 7506 env->spsr = env->banked_spsr[i]; 7507 7508 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 7509 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 7510 } 7511 7512 /* Physical Interrupt Target EL Lookup Table 7513 * 7514 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 7515 * 7516 * The below multi-dimensional table is used for looking up the target 7517 * exception level given numerous condition criteria. Specifically, the 7518 * target EL is based on SCR and HCR routing controls as well as the 7519 * currently executing EL and secure state. 7520 * 7521 * Dimensions: 7522 * target_el_table[2][2][2][2][2][4] 7523 * | | | | | +--- Current EL 7524 * | | | | +------ Non-secure(0)/Secure(1) 7525 * | | | +--------- HCR mask override 7526 * | | +------------ SCR exec state control 7527 * | +--------------- SCR mask override 7528 * +------------------ 32-bit(0)/64-bit(1) EL3 7529 * 7530 * The table values are as such: 7531 * 0-3 = EL0-EL3 7532 * -1 = Cannot occur 7533 * 7534 * The ARM ARM target EL table includes entries indicating that an "exception 7535 * is not taken". The two cases where this is applicable are: 7536 * 1) An exception is taken from EL3 but the SCR does not have the exception 7537 * routed to EL3. 7538 * 2) An exception is taken from EL2 but the HCR does not have the exception 7539 * routed to EL2. 7540 * In these two cases, the below table contain a target of EL1. This value is 7541 * returned as it is expected that the consumer of the table data will check 7542 * for "target EL >= current EL" to ensure the exception is not taken. 7543 * 7544 * SCR HCR 7545 * 64 EA AMO From 7546 * BIT IRQ IMO Non-secure Secure 7547 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 7548 */ 7549 static const int8_t target_el_table[2][2][2][2][2][4] = { 7550 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7551 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 7552 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7553 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 7554 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7555 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 7556 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7557 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 7558 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 7559 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 7560 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 7561 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 7562 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7563 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 7564 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7565 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 7566 }; 7567 7568 /* 7569 * Determine the target EL for physical exceptions 7570 */ 7571 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7572 uint32_t cur_el, bool secure) 7573 { 7574 CPUARMState *env = cs->env_ptr; 7575 bool rw; 7576 bool scr; 7577 bool hcr; 7578 int target_el; 7579 /* Is the highest EL AArch64? */ 7580 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 7581 uint64_t hcr_el2; 7582 7583 if (arm_feature(env, ARM_FEATURE_EL3)) { 7584 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 7585 } else { 7586 /* Either EL2 is the highest EL (and so the EL2 register width 7587 * is given by is64); or there is no EL2 or EL3, in which case 7588 * the value of 'rw' does not affect the table lookup anyway. 7589 */ 7590 rw = is64; 7591 } 7592 7593 hcr_el2 = arm_hcr_el2_eff(env); 7594 switch (excp_idx) { 7595 case EXCP_IRQ: 7596 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 7597 hcr = hcr_el2 & HCR_IMO; 7598 break; 7599 case EXCP_FIQ: 7600 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 7601 hcr = hcr_el2 & HCR_FMO; 7602 break; 7603 default: 7604 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 7605 hcr = hcr_el2 & HCR_AMO; 7606 break; 7607 }; 7608 7609 /* Perform a table-lookup for the target EL given the current state */ 7610 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 7611 7612 assert(target_el > 0); 7613 7614 return target_el; 7615 } 7616 7617 void arm_log_exception(int idx) 7618 { 7619 if (qemu_loglevel_mask(CPU_LOG_INT)) { 7620 const char *exc = NULL; 7621 static const char * const excnames[] = { 7622 [EXCP_UDEF] = "Undefined Instruction", 7623 [EXCP_SWI] = "SVC", 7624 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 7625 [EXCP_DATA_ABORT] = "Data Abort", 7626 [EXCP_IRQ] = "IRQ", 7627 [EXCP_FIQ] = "FIQ", 7628 [EXCP_BKPT] = "Breakpoint", 7629 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 7630 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 7631 [EXCP_HVC] = "Hypervisor Call", 7632 [EXCP_HYP_TRAP] = "Hypervisor Trap", 7633 [EXCP_SMC] = "Secure Monitor Call", 7634 [EXCP_VIRQ] = "Virtual IRQ", 7635 [EXCP_VFIQ] = "Virtual FIQ", 7636 [EXCP_SEMIHOST] = "Semihosting call", 7637 [EXCP_NOCP] = "v7M NOCP UsageFault", 7638 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 7639 [EXCP_STKOF] = "v8M STKOF UsageFault", 7640 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 7641 [EXCP_LSERR] = "v8M LSERR UsageFault", 7642 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 7643 }; 7644 7645 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 7646 exc = excnames[idx]; 7647 } 7648 if (!exc) { 7649 exc = "unknown"; 7650 } 7651 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 7652 } 7653 } 7654 7655 /* 7656 * Function used to synchronize QEMU's AArch64 register set with AArch32 7657 * register set. This is necessary when switching between AArch32 and AArch64 7658 * execution state. 7659 */ 7660 void aarch64_sync_32_to_64(CPUARMState *env) 7661 { 7662 int i; 7663 uint32_t mode = env->uncached_cpsr & CPSR_M; 7664 7665 /* We can blanket copy R[0:7] to X[0:7] */ 7666 for (i = 0; i < 8; i++) { 7667 env->xregs[i] = env->regs[i]; 7668 } 7669 7670 /* 7671 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7672 * Otherwise, they come from the banked user regs. 7673 */ 7674 if (mode == ARM_CPU_MODE_FIQ) { 7675 for (i = 8; i < 13; i++) { 7676 env->xregs[i] = env->usr_regs[i - 8]; 7677 } 7678 } else { 7679 for (i = 8; i < 13; i++) { 7680 env->xregs[i] = env->regs[i]; 7681 } 7682 } 7683 7684 /* 7685 * Registers x13-x23 are the various mode SP and FP registers. Registers 7686 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7687 * from the mode banked register. 7688 */ 7689 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7690 env->xregs[13] = env->regs[13]; 7691 env->xregs[14] = env->regs[14]; 7692 } else { 7693 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7694 /* HYP is an exception in that it is copied from r14 */ 7695 if (mode == ARM_CPU_MODE_HYP) { 7696 env->xregs[14] = env->regs[14]; 7697 } else { 7698 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 7699 } 7700 } 7701 7702 if (mode == ARM_CPU_MODE_HYP) { 7703 env->xregs[15] = env->regs[13]; 7704 } else { 7705 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7706 } 7707 7708 if (mode == ARM_CPU_MODE_IRQ) { 7709 env->xregs[16] = env->regs[14]; 7710 env->xregs[17] = env->regs[13]; 7711 } else { 7712 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 7713 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7714 } 7715 7716 if (mode == ARM_CPU_MODE_SVC) { 7717 env->xregs[18] = env->regs[14]; 7718 env->xregs[19] = env->regs[13]; 7719 } else { 7720 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 7721 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7722 } 7723 7724 if (mode == ARM_CPU_MODE_ABT) { 7725 env->xregs[20] = env->regs[14]; 7726 env->xregs[21] = env->regs[13]; 7727 } else { 7728 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 7729 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7730 } 7731 7732 if (mode == ARM_CPU_MODE_UND) { 7733 env->xregs[22] = env->regs[14]; 7734 env->xregs[23] = env->regs[13]; 7735 } else { 7736 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 7737 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7738 } 7739 7740 /* 7741 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7742 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7743 * FIQ bank for r8-r14. 7744 */ 7745 if (mode == ARM_CPU_MODE_FIQ) { 7746 for (i = 24; i < 31; i++) { 7747 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7748 } 7749 } else { 7750 for (i = 24; i < 29; i++) { 7751 env->xregs[i] = env->fiq_regs[i - 24]; 7752 } 7753 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7754 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 7755 } 7756 7757 env->pc = env->regs[15]; 7758 } 7759 7760 /* 7761 * Function used to synchronize QEMU's AArch32 register set with AArch64 7762 * register set. This is necessary when switching between AArch32 and AArch64 7763 * execution state. 7764 */ 7765 void aarch64_sync_64_to_32(CPUARMState *env) 7766 { 7767 int i; 7768 uint32_t mode = env->uncached_cpsr & CPSR_M; 7769 7770 /* We can blanket copy X[0:7] to R[0:7] */ 7771 for (i = 0; i < 8; i++) { 7772 env->regs[i] = env->xregs[i]; 7773 } 7774 7775 /* 7776 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 7777 * Otherwise, we copy x8-x12 into the banked user regs. 7778 */ 7779 if (mode == ARM_CPU_MODE_FIQ) { 7780 for (i = 8; i < 13; i++) { 7781 env->usr_regs[i - 8] = env->xregs[i]; 7782 } 7783 } else { 7784 for (i = 8; i < 13; i++) { 7785 env->regs[i] = env->xregs[i]; 7786 } 7787 } 7788 7789 /* 7790 * Registers r13 & r14 depend on the current mode. 7791 * If we are in a given mode, we copy the corresponding x registers to r13 7792 * and r14. Otherwise, we copy the x register to the banked r13 and r14 7793 * for the mode. 7794 */ 7795 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7796 env->regs[13] = env->xregs[13]; 7797 env->regs[14] = env->xregs[14]; 7798 } else { 7799 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 7800 7801 /* 7802 * HYP is an exception in that it does not have its own banked r14 but 7803 * shares the USR r14 7804 */ 7805 if (mode == ARM_CPU_MODE_HYP) { 7806 env->regs[14] = env->xregs[14]; 7807 } else { 7808 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 7809 } 7810 } 7811 7812 if (mode == ARM_CPU_MODE_HYP) { 7813 env->regs[13] = env->xregs[15]; 7814 } else { 7815 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 7816 } 7817 7818 if (mode == ARM_CPU_MODE_IRQ) { 7819 env->regs[14] = env->xregs[16]; 7820 env->regs[13] = env->xregs[17]; 7821 } else { 7822 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 7823 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 7824 } 7825 7826 if (mode == ARM_CPU_MODE_SVC) { 7827 env->regs[14] = env->xregs[18]; 7828 env->regs[13] = env->xregs[19]; 7829 } else { 7830 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 7831 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 7832 } 7833 7834 if (mode == ARM_CPU_MODE_ABT) { 7835 env->regs[14] = env->xregs[20]; 7836 env->regs[13] = env->xregs[21]; 7837 } else { 7838 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 7839 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 7840 } 7841 7842 if (mode == ARM_CPU_MODE_UND) { 7843 env->regs[14] = env->xregs[22]; 7844 env->regs[13] = env->xregs[23]; 7845 } else { 7846 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 7847 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 7848 } 7849 7850 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7851 * mode, then we can copy to r8-r14. Otherwise, we copy to the 7852 * FIQ bank for r8-r14. 7853 */ 7854 if (mode == ARM_CPU_MODE_FIQ) { 7855 for (i = 24; i < 31; i++) { 7856 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 7857 } 7858 } else { 7859 for (i = 24; i < 29; i++) { 7860 env->fiq_regs[i - 24] = env->xregs[i]; 7861 } 7862 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 7863 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 7864 } 7865 7866 env->regs[15] = env->pc; 7867 } 7868 7869 static void take_aarch32_exception(CPUARMState *env, int new_mode, 7870 uint32_t mask, uint32_t offset, 7871 uint32_t newpc) 7872 { 7873 /* Change the CPU state so as to actually take the exception. */ 7874 switch_mode(env, new_mode); 7875 /* 7876 * For exceptions taken to AArch32 we must clear the SS bit in both 7877 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 7878 */ 7879 env->uncached_cpsr &= ~PSTATE_SS; 7880 env->spsr = cpsr_read(env); 7881 /* Clear IT bits. */ 7882 env->condexec_bits = 0; 7883 /* Switch to the new mode, and to the correct instruction set. */ 7884 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 7885 /* Set new mode endianness */ 7886 env->uncached_cpsr &= ~CPSR_E; 7887 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 7888 env->uncached_cpsr |= CPSR_E; 7889 } 7890 /* J and IL must always be cleared for exception entry */ 7891 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 7892 env->daif |= mask; 7893 7894 if (new_mode == ARM_CPU_MODE_HYP) { 7895 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 7896 env->elr_el[2] = env->regs[15]; 7897 } else { 7898 /* 7899 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 7900 * and we should just guard the thumb mode on V4 7901 */ 7902 if (arm_feature(env, ARM_FEATURE_V4T)) { 7903 env->thumb = 7904 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 7905 } 7906 env->regs[14] = env->regs[15] + offset; 7907 } 7908 env->regs[15] = newpc; 7909 } 7910 7911 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 7912 { 7913 /* 7914 * Handle exception entry to Hyp mode; this is sufficiently 7915 * different to entry to other AArch32 modes that we handle it 7916 * separately here. 7917 * 7918 * The vector table entry used is always the 0x14 Hyp mode entry point, 7919 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 7920 * The offset applied to the preferred return address is always zero 7921 * (see DDI0487C.a section G1.12.3). 7922 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 7923 */ 7924 uint32_t addr, mask; 7925 ARMCPU *cpu = ARM_CPU(cs); 7926 CPUARMState *env = &cpu->env; 7927 7928 switch (cs->exception_index) { 7929 case EXCP_UDEF: 7930 addr = 0x04; 7931 break; 7932 case EXCP_SWI: 7933 addr = 0x14; 7934 break; 7935 case EXCP_BKPT: 7936 /* Fall through to prefetch abort. */ 7937 case EXCP_PREFETCH_ABORT: 7938 env->cp15.ifar_s = env->exception.vaddress; 7939 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 7940 (uint32_t)env->exception.vaddress); 7941 addr = 0x0c; 7942 break; 7943 case EXCP_DATA_ABORT: 7944 env->cp15.dfar_s = env->exception.vaddress; 7945 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 7946 (uint32_t)env->exception.vaddress); 7947 addr = 0x10; 7948 break; 7949 case EXCP_IRQ: 7950 addr = 0x18; 7951 break; 7952 case EXCP_FIQ: 7953 addr = 0x1c; 7954 break; 7955 case EXCP_HVC: 7956 addr = 0x08; 7957 break; 7958 case EXCP_HYP_TRAP: 7959 addr = 0x14; 7960 break; 7961 default: 7962 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7963 } 7964 7965 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 7966 if (!arm_feature(env, ARM_FEATURE_V8)) { 7967 /* 7968 * QEMU syndrome values are v8-style. v7 has the IL bit 7969 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 7970 * If this is a v7 CPU, squash the IL bit in those cases. 7971 */ 7972 if (cs->exception_index == EXCP_PREFETCH_ABORT || 7973 (cs->exception_index == EXCP_DATA_ABORT && 7974 !(env->exception.syndrome & ARM_EL_ISV)) || 7975 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 7976 env->exception.syndrome &= ~ARM_EL_IL; 7977 } 7978 } 7979 env->cp15.esr_el[2] = env->exception.syndrome; 7980 } 7981 7982 if (arm_current_el(env) != 2 && addr < 0x14) { 7983 addr = 0x14; 7984 } 7985 7986 mask = 0; 7987 if (!(env->cp15.scr_el3 & SCR_EA)) { 7988 mask |= CPSR_A; 7989 } 7990 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 7991 mask |= CPSR_I; 7992 } 7993 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 7994 mask |= CPSR_F; 7995 } 7996 7997 addr += env->cp15.hvbar; 7998 7999 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 8000 } 8001 8002 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 8003 { 8004 ARMCPU *cpu = ARM_CPU(cs); 8005 CPUARMState *env = &cpu->env; 8006 uint32_t addr; 8007 uint32_t mask; 8008 int new_mode; 8009 uint32_t offset; 8010 uint32_t moe; 8011 8012 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 8013 switch (syn_get_ec(env->exception.syndrome)) { 8014 case EC_BREAKPOINT: 8015 case EC_BREAKPOINT_SAME_EL: 8016 moe = 1; 8017 break; 8018 case EC_WATCHPOINT: 8019 case EC_WATCHPOINT_SAME_EL: 8020 moe = 10; 8021 break; 8022 case EC_AA32_BKPT: 8023 moe = 3; 8024 break; 8025 case EC_VECTORCATCH: 8026 moe = 5; 8027 break; 8028 default: 8029 moe = 0; 8030 break; 8031 } 8032 8033 if (moe) { 8034 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 8035 } 8036 8037 if (env->exception.target_el == 2) { 8038 arm_cpu_do_interrupt_aarch32_hyp(cs); 8039 return; 8040 } 8041 8042 switch (cs->exception_index) { 8043 case EXCP_UDEF: 8044 new_mode = ARM_CPU_MODE_UND; 8045 addr = 0x04; 8046 mask = CPSR_I; 8047 if (env->thumb) 8048 offset = 2; 8049 else 8050 offset = 4; 8051 break; 8052 case EXCP_SWI: 8053 new_mode = ARM_CPU_MODE_SVC; 8054 addr = 0x08; 8055 mask = CPSR_I; 8056 /* The PC already points to the next instruction. */ 8057 offset = 0; 8058 break; 8059 case EXCP_BKPT: 8060 /* Fall through to prefetch abort. */ 8061 case EXCP_PREFETCH_ABORT: 8062 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 8063 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 8064 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 8065 env->exception.fsr, (uint32_t)env->exception.vaddress); 8066 new_mode = ARM_CPU_MODE_ABT; 8067 addr = 0x0c; 8068 mask = CPSR_A | CPSR_I; 8069 offset = 4; 8070 break; 8071 case EXCP_DATA_ABORT: 8072 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 8073 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 8074 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 8075 env->exception.fsr, 8076 (uint32_t)env->exception.vaddress); 8077 new_mode = ARM_CPU_MODE_ABT; 8078 addr = 0x10; 8079 mask = CPSR_A | CPSR_I; 8080 offset = 8; 8081 break; 8082 case EXCP_IRQ: 8083 new_mode = ARM_CPU_MODE_IRQ; 8084 addr = 0x18; 8085 /* Disable IRQ and imprecise data aborts. */ 8086 mask = CPSR_A | CPSR_I; 8087 offset = 4; 8088 if (env->cp15.scr_el3 & SCR_IRQ) { 8089 /* IRQ routed to monitor mode */ 8090 new_mode = ARM_CPU_MODE_MON; 8091 mask |= CPSR_F; 8092 } 8093 break; 8094 case EXCP_FIQ: 8095 new_mode = ARM_CPU_MODE_FIQ; 8096 addr = 0x1c; 8097 /* Disable FIQ, IRQ and imprecise data aborts. */ 8098 mask = CPSR_A | CPSR_I | CPSR_F; 8099 if (env->cp15.scr_el3 & SCR_FIQ) { 8100 /* FIQ routed to monitor mode */ 8101 new_mode = ARM_CPU_MODE_MON; 8102 } 8103 offset = 4; 8104 break; 8105 case EXCP_VIRQ: 8106 new_mode = ARM_CPU_MODE_IRQ; 8107 addr = 0x18; 8108 /* Disable IRQ and imprecise data aborts. */ 8109 mask = CPSR_A | CPSR_I; 8110 offset = 4; 8111 break; 8112 case EXCP_VFIQ: 8113 new_mode = ARM_CPU_MODE_FIQ; 8114 addr = 0x1c; 8115 /* Disable FIQ, IRQ and imprecise data aborts. */ 8116 mask = CPSR_A | CPSR_I | CPSR_F; 8117 offset = 4; 8118 break; 8119 case EXCP_SMC: 8120 new_mode = ARM_CPU_MODE_MON; 8121 addr = 0x08; 8122 mask = CPSR_A | CPSR_I | CPSR_F; 8123 offset = 0; 8124 break; 8125 default: 8126 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8127 return; /* Never happens. Keep compiler happy. */ 8128 } 8129 8130 if (new_mode == ARM_CPU_MODE_MON) { 8131 addr += env->cp15.mvbar; 8132 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 8133 /* High vectors. When enabled, base address cannot be remapped. */ 8134 addr += 0xffff0000; 8135 } else { 8136 /* ARM v7 architectures provide a vector base address register to remap 8137 * the interrupt vector table. 8138 * This register is only followed in non-monitor mode, and is banked. 8139 * Note: only bits 31:5 are valid. 8140 */ 8141 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 8142 } 8143 8144 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 8145 env->cp15.scr_el3 &= ~SCR_NS; 8146 } 8147 8148 take_aarch32_exception(env, new_mode, mask, offset, addr); 8149 } 8150 8151 /* Handle exception entry to a target EL which is using AArch64 */ 8152 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 8153 { 8154 ARMCPU *cpu = ARM_CPU(cs); 8155 CPUARMState *env = &cpu->env; 8156 unsigned int new_el = env->exception.target_el; 8157 target_ulong addr = env->cp15.vbar_el[new_el]; 8158 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 8159 unsigned int cur_el = arm_current_el(env); 8160 8161 /* 8162 * Note that new_el can never be 0. If cur_el is 0, then 8163 * el0_a64 is is_a64(), else el0_a64 is ignored. 8164 */ 8165 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 8166 8167 if (cur_el < new_el) { 8168 /* Entry vector offset depends on whether the implemented EL 8169 * immediately lower than the target level is using AArch32 or AArch64 8170 */ 8171 bool is_aa64; 8172 8173 switch (new_el) { 8174 case 3: 8175 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 8176 break; 8177 case 2: 8178 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 8179 break; 8180 case 1: 8181 is_aa64 = is_a64(env); 8182 break; 8183 default: 8184 g_assert_not_reached(); 8185 } 8186 8187 if (is_aa64) { 8188 addr += 0x400; 8189 } else { 8190 addr += 0x600; 8191 } 8192 } else if (pstate_read(env) & PSTATE_SP) { 8193 addr += 0x200; 8194 } 8195 8196 switch (cs->exception_index) { 8197 case EXCP_PREFETCH_ABORT: 8198 case EXCP_DATA_ABORT: 8199 env->cp15.far_el[new_el] = env->exception.vaddress; 8200 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 8201 env->cp15.far_el[new_el]); 8202 /* fall through */ 8203 case EXCP_BKPT: 8204 case EXCP_UDEF: 8205 case EXCP_SWI: 8206 case EXCP_HVC: 8207 case EXCP_HYP_TRAP: 8208 case EXCP_SMC: 8209 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 8210 /* 8211 * QEMU internal FP/SIMD syndromes from AArch32 include the 8212 * TA and coproc fields which are only exposed if the exception 8213 * is taken to AArch32 Hyp mode. Mask them out to get a valid 8214 * AArch64 format syndrome. 8215 */ 8216 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 8217 } 8218 env->cp15.esr_el[new_el] = env->exception.syndrome; 8219 break; 8220 case EXCP_IRQ: 8221 case EXCP_VIRQ: 8222 addr += 0x80; 8223 break; 8224 case EXCP_FIQ: 8225 case EXCP_VFIQ: 8226 addr += 0x100; 8227 break; 8228 case EXCP_SEMIHOST: 8229 qemu_log_mask(CPU_LOG_INT, 8230 "...handling as semihosting call 0x%" PRIx64 "\n", 8231 env->xregs[0]); 8232 env->xregs[0] = do_arm_semihosting(env); 8233 return; 8234 default: 8235 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8236 } 8237 8238 if (is_a64(env)) { 8239 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 8240 aarch64_save_sp(env, arm_current_el(env)); 8241 env->elr_el[new_el] = env->pc; 8242 } else { 8243 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 8244 env->elr_el[new_el] = env->regs[15]; 8245 8246 aarch64_sync_32_to_64(env); 8247 8248 env->condexec_bits = 0; 8249 } 8250 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 8251 env->elr_el[new_el]); 8252 8253 pstate_write(env, PSTATE_DAIF | new_mode); 8254 env->aarch64 = 1; 8255 aarch64_restore_sp(env, new_el); 8256 8257 env->pc = addr; 8258 8259 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 8260 new_el, env->pc, pstate_read(env)); 8261 } 8262 8263 static inline bool check_for_semihosting(CPUState *cs) 8264 { 8265 #ifdef CONFIG_TCG 8266 /* Check whether this exception is a semihosting call; if so 8267 * then handle it and return true; otherwise return false. 8268 */ 8269 ARMCPU *cpu = ARM_CPU(cs); 8270 CPUARMState *env = &cpu->env; 8271 8272 if (is_a64(env)) { 8273 if (cs->exception_index == EXCP_SEMIHOST) { 8274 /* This is always the 64-bit semihosting exception. 8275 * The "is this usermode" and "is semihosting enabled" 8276 * checks have been done at translate time. 8277 */ 8278 qemu_log_mask(CPU_LOG_INT, 8279 "...handling as semihosting call 0x%" PRIx64 "\n", 8280 env->xregs[0]); 8281 env->xregs[0] = do_arm_semihosting(env); 8282 return true; 8283 } 8284 return false; 8285 } else { 8286 uint32_t imm; 8287 8288 /* Only intercept calls from privileged modes, to provide some 8289 * semblance of security. 8290 */ 8291 if (cs->exception_index != EXCP_SEMIHOST && 8292 (!semihosting_enabled() || 8293 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 8294 return false; 8295 } 8296 8297 switch (cs->exception_index) { 8298 case EXCP_SEMIHOST: 8299 /* This is always a semihosting call; the "is this usermode" 8300 * and "is semihosting enabled" checks have been done at 8301 * translate time. 8302 */ 8303 break; 8304 case EXCP_SWI: 8305 /* Check for semihosting interrupt. */ 8306 if (env->thumb) { 8307 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 8308 & 0xff; 8309 if (imm == 0xab) { 8310 break; 8311 } 8312 } else { 8313 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 8314 & 0xffffff; 8315 if (imm == 0x123456) { 8316 break; 8317 } 8318 } 8319 return false; 8320 case EXCP_BKPT: 8321 /* See if this is a semihosting syscall. */ 8322 if (env->thumb) { 8323 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 8324 & 0xff; 8325 if (imm == 0xab) { 8326 env->regs[15] += 2; 8327 break; 8328 } 8329 } 8330 return false; 8331 default: 8332 return false; 8333 } 8334 8335 qemu_log_mask(CPU_LOG_INT, 8336 "...handling as semihosting call 0x%x\n", 8337 env->regs[0]); 8338 env->regs[0] = do_arm_semihosting(env); 8339 return true; 8340 } 8341 #else 8342 return false; 8343 #endif 8344 } 8345 8346 /* Handle a CPU exception for A and R profile CPUs. 8347 * Do any appropriate logging, handle PSCI calls, and then hand off 8348 * to the AArch64-entry or AArch32-entry function depending on the 8349 * target exception level's register width. 8350 */ 8351 void arm_cpu_do_interrupt(CPUState *cs) 8352 { 8353 ARMCPU *cpu = ARM_CPU(cs); 8354 CPUARMState *env = &cpu->env; 8355 unsigned int new_el = env->exception.target_el; 8356 8357 assert(!arm_feature(env, ARM_FEATURE_M)); 8358 8359 arm_log_exception(cs->exception_index); 8360 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 8361 new_el); 8362 if (qemu_loglevel_mask(CPU_LOG_INT) 8363 && !excp_is_internal(cs->exception_index)) { 8364 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 8365 syn_get_ec(env->exception.syndrome), 8366 env->exception.syndrome); 8367 } 8368 8369 if (arm_is_psci_call(cpu, cs->exception_index)) { 8370 arm_handle_psci_call(cpu); 8371 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 8372 return; 8373 } 8374 8375 /* Semihosting semantics depend on the register width of the 8376 * code that caused the exception, not the target exception level, 8377 * so must be handled here. 8378 */ 8379 if (check_for_semihosting(cs)) { 8380 return; 8381 } 8382 8383 /* Hooks may change global state so BQL should be held, also the 8384 * BQL needs to be held for any modification of 8385 * cs->interrupt_request. 8386 */ 8387 g_assert(qemu_mutex_iothread_locked()); 8388 8389 arm_call_pre_el_change_hook(cpu); 8390 8391 assert(!excp_is_internal(cs->exception_index)); 8392 if (arm_el_is_aa64(env, new_el)) { 8393 arm_cpu_do_interrupt_aarch64(cs); 8394 } else { 8395 arm_cpu_do_interrupt_aarch32(cs); 8396 } 8397 8398 arm_call_el_change_hook(cpu); 8399 8400 if (!kvm_enabled()) { 8401 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 8402 } 8403 } 8404 #endif /* !CONFIG_USER_ONLY */ 8405 8406 /* Return the exception level which controls this address translation regime */ 8407 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 8408 { 8409 switch (mmu_idx) { 8410 case ARMMMUIdx_S2NS: 8411 case ARMMMUIdx_S1E2: 8412 return 2; 8413 case ARMMMUIdx_S1E3: 8414 return 3; 8415 case ARMMMUIdx_S1SE0: 8416 return arm_el_is_aa64(env, 3) ? 1 : 3; 8417 case ARMMMUIdx_S1SE1: 8418 case ARMMMUIdx_S1NSE0: 8419 case ARMMMUIdx_S1NSE1: 8420 case ARMMMUIdx_MPrivNegPri: 8421 case ARMMMUIdx_MUserNegPri: 8422 case ARMMMUIdx_MPriv: 8423 case ARMMMUIdx_MUser: 8424 case ARMMMUIdx_MSPrivNegPri: 8425 case ARMMMUIdx_MSUserNegPri: 8426 case ARMMMUIdx_MSPriv: 8427 case ARMMMUIdx_MSUser: 8428 return 1; 8429 default: 8430 g_assert_not_reached(); 8431 } 8432 } 8433 8434 #ifndef CONFIG_USER_ONLY 8435 8436 /* Return the SCTLR value which controls this address translation regime */ 8437 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 8438 { 8439 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 8440 } 8441 8442 /* Return true if the specified stage of address translation is disabled */ 8443 static inline bool regime_translation_disabled(CPUARMState *env, 8444 ARMMMUIdx mmu_idx) 8445 { 8446 if (arm_feature(env, ARM_FEATURE_M)) { 8447 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 8448 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 8449 case R_V7M_MPU_CTRL_ENABLE_MASK: 8450 /* Enabled, but not for HardFault and NMI */ 8451 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 8452 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 8453 /* Enabled for all cases */ 8454 return false; 8455 case 0: 8456 default: 8457 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 8458 * we warned about that in armv7m_nvic.c when the guest set it. 8459 */ 8460 return true; 8461 } 8462 } 8463 8464 if (mmu_idx == ARMMMUIdx_S2NS) { 8465 /* HCR.DC means HCR.VM behaves as 1 */ 8466 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 8467 } 8468 8469 if (env->cp15.hcr_el2 & HCR_TGE) { 8470 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 8471 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 8472 return true; 8473 } 8474 } 8475 8476 if ((env->cp15.hcr_el2 & HCR_DC) && 8477 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) { 8478 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 8479 return true; 8480 } 8481 8482 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 8483 } 8484 8485 static inline bool regime_translation_big_endian(CPUARMState *env, 8486 ARMMMUIdx mmu_idx) 8487 { 8488 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 8489 } 8490 8491 /* Return the TTBR associated with this translation regime */ 8492 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8493 int ttbrn) 8494 { 8495 if (mmu_idx == ARMMMUIdx_S2NS) { 8496 return env->cp15.vttbr_el2; 8497 } 8498 if (ttbrn == 0) { 8499 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8500 } else { 8501 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8502 } 8503 } 8504 8505 #endif /* !CONFIG_USER_ONLY */ 8506 8507 /* Return the TCR controlling this translation regime */ 8508 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 8509 { 8510 if (mmu_idx == ARMMMUIdx_S2NS) { 8511 return &env->cp15.vtcr_el2; 8512 } 8513 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 8514 } 8515 8516 /* Convert a possible stage1+2 MMU index into the appropriate 8517 * stage 1 MMU index 8518 */ 8519 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 8520 { 8521 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8522 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 8523 } 8524 return mmu_idx; 8525 } 8526 8527 /* Return true if the translation regime is using LPAE format page tables */ 8528 static inline bool regime_using_lpae_format(CPUARMState *env, 8529 ARMMMUIdx mmu_idx) 8530 { 8531 int el = regime_el(env, mmu_idx); 8532 if (el == 2 || arm_el_is_aa64(env, el)) { 8533 return true; 8534 } 8535 if (arm_feature(env, ARM_FEATURE_LPAE) 8536 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8537 return true; 8538 } 8539 return false; 8540 } 8541 8542 /* Returns true if the stage 1 translation regime is using LPAE format page 8543 * tables. Used when raising alignment exceptions, whose FSR changes depending 8544 * on whether the long or short descriptor format is in use. */ 8545 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8546 { 8547 mmu_idx = stage_1_mmu_idx(mmu_idx); 8548 8549 return regime_using_lpae_format(env, mmu_idx); 8550 } 8551 8552 #ifndef CONFIG_USER_ONLY 8553 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8554 { 8555 switch (mmu_idx) { 8556 case ARMMMUIdx_S1SE0: 8557 case ARMMMUIdx_S1NSE0: 8558 case ARMMMUIdx_MUser: 8559 case ARMMMUIdx_MSUser: 8560 case ARMMMUIdx_MUserNegPri: 8561 case ARMMMUIdx_MSUserNegPri: 8562 return true; 8563 default: 8564 return false; 8565 case ARMMMUIdx_S12NSE0: 8566 case ARMMMUIdx_S12NSE1: 8567 g_assert_not_reached(); 8568 } 8569 } 8570 8571 /* Translate section/page access permissions to page 8572 * R/W protection flags 8573 * 8574 * @env: CPUARMState 8575 * @mmu_idx: MMU index indicating required translation regime 8576 * @ap: The 3-bit access permissions (AP[2:0]) 8577 * @domain_prot: The 2-bit domain access permissions 8578 */ 8579 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8580 int ap, int domain_prot) 8581 { 8582 bool is_user = regime_is_user(env, mmu_idx); 8583 8584 if (domain_prot == 3) { 8585 return PAGE_READ | PAGE_WRITE; 8586 } 8587 8588 switch (ap) { 8589 case 0: 8590 if (arm_feature(env, ARM_FEATURE_V7)) { 8591 return 0; 8592 } 8593 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8594 case SCTLR_S: 8595 return is_user ? 0 : PAGE_READ; 8596 case SCTLR_R: 8597 return PAGE_READ; 8598 default: 8599 return 0; 8600 } 8601 case 1: 8602 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8603 case 2: 8604 if (is_user) { 8605 return PAGE_READ; 8606 } else { 8607 return PAGE_READ | PAGE_WRITE; 8608 } 8609 case 3: 8610 return PAGE_READ | PAGE_WRITE; 8611 case 4: /* Reserved. */ 8612 return 0; 8613 case 5: 8614 return is_user ? 0 : PAGE_READ; 8615 case 6: 8616 return PAGE_READ; 8617 case 7: 8618 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8619 return 0; 8620 } 8621 return PAGE_READ; 8622 default: 8623 g_assert_not_reached(); 8624 } 8625 } 8626 8627 /* Translate section/page access permissions to page 8628 * R/W protection flags. 8629 * 8630 * @ap: The 2-bit simple AP (AP[2:1]) 8631 * @is_user: TRUE if accessing from PL0 8632 */ 8633 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8634 { 8635 switch (ap) { 8636 case 0: 8637 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8638 case 1: 8639 return PAGE_READ | PAGE_WRITE; 8640 case 2: 8641 return is_user ? 0 : PAGE_READ; 8642 case 3: 8643 return PAGE_READ; 8644 default: 8645 g_assert_not_reached(); 8646 } 8647 } 8648 8649 static inline int 8650 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8651 { 8652 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8653 } 8654 8655 /* Translate S2 section/page access permissions to protection flags 8656 * 8657 * @env: CPUARMState 8658 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8659 * @xn: XN (execute-never) bit 8660 */ 8661 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8662 { 8663 int prot = 0; 8664 8665 if (s2ap & 1) { 8666 prot |= PAGE_READ; 8667 } 8668 if (s2ap & 2) { 8669 prot |= PAGE_WRITE; 8670 } 8671 if (!xn) { 8672 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8673 prot |= PAGE_EXEC; 8674 } 8675 } 8676 return prot; 8677 } 8678 8679 /* Translate section/page access permissions to protection flags 8680 * 8681 * @env: CPUARMState 8682 * @mmu_idx: MMU index indicating required translation regime 8683 * @is_aa64: TRUE if AArch64 8684 * @ap: The 2-bit simple AP (AP[2:1]) 8685 * @ns: NS (non-secure) bit 8686 * @xn: XN (execute-never) bit 8687 * @pxn: PXN (privileged execute-never) bit 8688 */ 8689 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8690 int ap, int ns, int xn, int pxn) 8691 { 8692 bool is_user = regime_is_user(env, mmu_idx); 8693 int prot_rw, user_rw; 8694 bool have_wxn; 8695 int wxn = 0; 8696 8697 assert(mmu_idx != ARMMMUIdx_S2NS); 8698 8699 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8700 if (is_user) { 8701 prot_rw = user_rw; 8702 } else { 8703 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8704 } 8705 8706 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8707 return prot_rw; 8708 } 8709 8710 /* TODO have_wxn should be replaced with 8711 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8712 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8713 * compatible processors have EL2, which is required for [U]WXN. 8714 */ 8715 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8716 8717 if (have_wxn) { 8718 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8719 } 8720 8721 if (is_aa64) { 8722 switch (regime_el(env, mmu_idx)) { 8723 case 1: 8724 if (!is_user) { 8725 xn = pxn || (user_rw & PAGE_WRITE); 8726 } 8727 break; 8728 case 2: 8729 case 3: 8730 break; 8731 } 8732 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8733 switch (regime_el(env, mmu_idx)) { 8734 case 1: 8735 case 3: 8736 if (is_user) { 8737 xn = xn || !(user_rw & PAGE_READ); 8738 } else { 8739 int uwxn = 0; 8740 if (have_wxn) { 8741 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8742 } 8743 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8744 (uwxn && (user_rw & PAGE_WRITE)); 8745 } 8746 break; 8747 case 2: 8748 break; 8749 } 8750 } else { 8751 xn = wxn = 0; 8752 } 8753 8754 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8755 return prot_rw; 8756 } 8757 return prot_rw | PAGE_EXEC; 8758 } 8759 8760 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8761 uint32_t *table, uint32_t address) 8762 { 8763 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8764 TCR *tcr = regime_tcr(env, mmu_idx); 8765 8766 if (address & tcr->mask) { 8767 if (tcr->raw_tcr & TTBCR_PD1) { 8768 /* Translation table walk disabled for TTBR1 */ 8769 return false; 8770 } 8771 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 8772 } else { 8773 if (tcr->raw_tcr & TTBCR_PD0) { 8774 /* Translation table walk disabled for TTBR0 */ 8775 return false; 8776 } 8777 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 8778 } 8779 *table |= (address >> 18) & 0x3ffc; 8780 return true; 8781 } 8782 8783 /* Translate a S1 pagetable walk through S2 if needed. */ 8784 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 8785 hwaddr addr, MemTxAttrs txattrs, 8786 ARMMMUFaultInfo *fi) 8787 { 8788 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 8789 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8790 target_ulong s2size; 8791 hwaddr s2pa; 8792 int s2prot; 8793 int ret; 8794 ARMCacheAttrs cacheattrs = {}; 8795 ARMCacheAttrs *pcacheattrs = NULL; 8796 8797 if (env->cp15.hcr_el2 & HCR_PTW) { 8798 /* 8799 * PTW means we must fault if this S1 walk touches S2 Device 8800 * memory; otherwise we don't care about the attributes and can 8801 * save the S2 translation the effort of computing them. 8802 */ 8803 pcacheattrs = &cacheattrs; 8804 } 8805 8806 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 8807 &txattrs, &s2prot, &s2size, fi, pcacheattrs); 8808 if (ret) { 8809 assert(fi->type != ARMFault_None); 8810 fi->s2addr = addr; 8811 fi->stage2 = true; 8812 fi->s1ptw = true; 8813 return ~0; 8814 } 8815 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 8816 /* Access was to Device memory: generate Permission fault */ 8817 fi->type = ARMFault_Permission; 8818 fi->s2addr = addr; 8819 fi->stage2 = true; 8820 fi->s1ptw = true; 8821 return ~0; 8822 } 8823 addr = s2pa; 8824 } 8825 return addr; 8826 } 8827 8828 /* All loads done in the course of a page table walk go through here. */ 8829 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8830 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8831 { 8832 ARMCPU *cpu = ARM_CPU(cs); 8833 CPUARMState *env = &cpu->env; 8834 MemTxAttrs attrs = {}; 8835 MemTxResult result = MEMTX_OK; 8836 AddressSpace *as; 8837 uint32_t data; 8838 8839 attrs.secure = is_secure; 8840 as = arm_addressspace(cs, attrs); 8841 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8842 if (fi->s1ptw) { 8843 return 0; 8844 } 8845 if (regime_translation_big_endian(env, mmu_idx)) { 8846 data = address_space_ldl_be(as, addr, attrs, &result); 8847 } else { 8848 data = address_space_ldl_le(as, addr, attrs, &result); 8849 } 8850 if (result == MEMTX_OK) { 8851 return data; 8852 } 8853 fi->type = ARMFault_SyncExternalOnWalk; 8854 fi->ea = arm_extabort_type(result); 8855 return 0; 8856 } 8857 8858 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8859 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8860 { 8861 ARMCPU *cpu = ARM_CPU(cs); 8862 CPUARMState *env = &cpu->env; 8863 MemTxAttrs attrs = {}; 8864 MemTxResult result = MEMTX_OK; 8865 AddressSpace *as; 8866 uint64_t data; 8867 8868 attrs.secure = is_secure; 8869 as = arm_addressspace(cs, attrs); 8870 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8871 if (fi->s1ptw) { 8872 return 0; 8873 } 8874 if (regime_translation_big_endian(env, mmu_idx)) { 8875 data = address_space_ldq_be(as, addr, attrs, &result); 8876 } else { 8877 data = address_space_ldq_le(as, addr, attrs, &result); 8878 } 8879 if (result == MEMTX_OK) { 8880 return data; 8881 } 8882 fi->type = ARMFault_SyncExternalOnWalk; 8883 fi->ea = arm_extabort_type(result); 8884 return 0; 8885 } 8886 8887 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 8888 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8889 hwaddr *phys_ptr, int *prot, 8890 target_ulong *page_size, 8891 ARMMMUFaultInfo *fi) 8892 { 8893 CPUState *cs = env_cpu(env); 8894 int level = 1; 8895 uint32_t table; 8896 uint32_t desc; 8897 int type; 8898 int ap; 8899 int domain = 0; 8900 int domain_prot; 8901 hwaddr phys_addr; 8902 uint32_t dacr; 8903 8904 /* Pagetable walk. */ 8905 /* Lookup l1 descriptor. */ 8906 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8907 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8908 fi->type = ARMFault_Translation; 8909 goto do_fault; 8910 } 8911 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8912 mmu_idx, fi); 8913 if (fi->type != ARMFault_None) { 8914 goto do_fault; 8915 } 8916 type = (desc & 3); 8917 domain = (desc >> 5) & 0x0f; 8918 if (regime_el(env, mmu_idx) == 1) { 8919 dacr = env->cp15.dacr_ns; 8920 } else { 8921 dacr = env->cp15.dacr_s; 8922 } 8923 domain_prot = (dacr >> (domain * 2)) & 3; 8924 if (type == 0) { 8925 /* Section translation fault. */ 8926 fi->type = ARMFault_Translation; 8927 goto do_fault; 8928 } 8929 if (type != 2) { 8930 level = 2; 8931 } 8932 if (domain_prot == 0 || domain_prot == 2) { 8933 fi->type = ARMFault_Domain; 8934 goto do_fault; 8935 } 8936 if (type == 2) { 8937 /* 1Mb section. */ 8938 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8939 ap = (desc >> 10) & 3; 8940 *page_size = 1024 * 1024; 8941 } else { 8942 /* Lookup l2 entry. */ 8943 if (type == 1) { 8944 /* Coarse pagetable. */ 8945 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8946 } else { 8947 /* Fine pagetable. */ 8948 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 8949 } 8950 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8951 mmu_idx, fi); 8952 if (fi->type != ARMFault_None) { 8953 goto do_fault; 8954 } 8955 switch (desc & 3) { 8956 case 0: /* Page translation fault. */ 8957 fi->type = ARMFault_Translation; 8958 goto do_fault; 8959 case 1: /* 64k page. */ 8960 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8961 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 8962 *page_size = 0x10000; 8963 break; 8964 case 2: /* 4k page. */ 8965 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8966 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 8967 *page_size = 0x1000; 8968 break; 8969 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 8970 if (type == 1) { 8971 /* ARMv6/XScale extended small page format */ 8972 if (arm_feature(env, ARM_FEATURE_XSCALE) 8973 || arm_feature(env, ARM_FEATURE_V6)) { 8974 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8975 *page_size = 0x1000; 8976 } else { 8977 /* UNPREDICTABLE in ARMv5; we choose to take a 8978 * page translation fault. 8979 */ 8980 fi->type = ARMFault_Translation; 8981 goto do_fault; 8982 } 8983 } else { 8984 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 8985 *page_size = 0x400; 8986 } 8987 ap = (desc >> 4) & 3; 8988 break; 8989 default: 8990 /* Never happens, but compiler isn't smart enough to tell. */ 8991 abort(); 8992 } 8993 } 8994 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8995 *prot |= *prot ? PAGE_EXEC : 0; 8996 if (!(*prot & (1 << access_type))) { 8997 /* Access permission fault. */ 8998 fi->type = ARMFault_Permission; 8999 goto do_fault; 9000 } 9001 *phys_ptr = phys_addr; 9002 return false; 9003 do_fault: 9004 fi->domain = domain; 9005 fi->level = level; 9006 return true; 9007 } 9008 9009 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 9010 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9011 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 9012 target_ulong *page_size, ARMMMUFaultInfo *fi) 9013 { 9014 CPUState *cs = env_cpu(env); 9015 int level = 1; 9016 uint32_t table; 9017 uint32_t desc; 9018 uint32_t xn; 9019 uint32_t pxn = 0; 9020 int type; 9021 int ap; 9022 int domain = 0; 9023 int domain_prot; 9024 hwaddr phys_addr; 9025 uint32_t dacr; 9026 bool ns; 9027 9028 /* Pagetable walk. */ 9029 /* Lookup l1 descriptor. */ 9030 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9031 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9032 fi->type = ARMFault_Translation; 9033 goto do_fault; 9034 } 9035 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9036 mmu_idx, fi); 9037 if (fi->type != ARMFault_None) { 9038 goto do_fault; 9039 } 9040 type = (desc & 3); 9041 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 9042 /* Section translation fault, or attempt to use the encoding 9043 * which is Reserved on implementations without PXN. 9044 */ 9045 fi->type = ARMFault_Translation; 9046 goto do_fault; 9047 } 9048 if ((type == 1) || !(desc & (1 << 18))) { 9049 /* Page or Section. */ 9050 domain = (desc >> 5) & 0x0f; 9051 } 9052 if (regime_el(env, mmu_idx) == 1) { 9053 dacr = env->cp15.dacr_ns; 9054 } else { 9055 dacr = env->cp15.dacr_s; 9056 } 9057 if (type == 1) { 9058 level = 2; 9059 } 9060 domain_prot = (dacr >> (domain * 2)) & 3; 9061 if (domain_prot == 0 || domain_prot == 2) { 9062 /* Section or Page domain fault */ 9063 fi->type = ARMFault_Domain; 9064 goto do_fault; 9065 } 9066 if (type != 1) { 9067 if (desc & (1 << 18)) { 9068 /* Supersection. */ 9069 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 9070 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 9071 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 9072 *page_size = 0x1000000; 9073 } else { 9074 /* Section. */ 9075 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9076 *page_size = 0x100000; 9077 } 9078 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 9079 xn = desc & (1 << 4); 9080 pxn = desc & 1; 9081 ns = extract32(desc, 19, 1); 9082 } else { 9083 if (arm_feature(env, ARM_FEATURE_PXN)) { 9084 pxn = (desc >> 2) & 1; 9085 } 9086 ns = extract32(desc, 3, 1); 9087 /* Lookup l2 entry. */ 9088 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9089 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9090 mmu_idx, fi); 9091 if (fi->type != ARMFault_None) { 9092 goto do_fault; 9093 } 9094 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 9095 switch (desc & 3) { 9096 case 0: /* Page translation fault. */ 9097 fi->type = ARMFault_Translation; 9098 goto do_fault; 9099 case 1: /* 64k page. */ 9100 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9101 xn = desc & (1 << 15); 9102 *page_size = 0x10000; 9103 break; 9104 case 2: case 3: /* 4k page. */ 9105 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9106 xn = desc & 1; 9107 *page_size = 0x1000; 9108 break; 9109 default: 9110 /* Never happens, but compiler isn't smart enough to tell. */ 9111 abort(); 9112 } 9113 } 9114 if (domain_prot == 3) { 9115 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9116 } else { 9117 if (pxn && !regime_is_user(env, mmu_idx)) { 9118 xn = 1; 9119 } 9120 if (xn && access_type == MMU_INST_FETCH) { 9121 fi->type = ARMFault_Permission; 9122 goto do_fault; 9123 } 9124 9125 if (arm_feature(env, ARM_FEATURE_V6K) && 9126 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 9127 /* The simplified model uses AP[0] as an access control bit. */ 9128 if ((ap & 1) == 0) { 9129 /* Access flag fault. */ 9130 fi->type = ARMFault_AccessFlag; 9131 goto do_fault; 9132 } 9133 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 9134 } else { 9135 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9136 } 9137 if (*prot && !xn) { 9138 *prot |= PAGE_EXEC; 9139 } 9140 if (!(*prot & (1 << access_type))) { 9141 /* Access permission fault. */ 9142 fi->type = ARMFault_Permission; 9143 goto do_fault; 9144 } 9145 } 9146 if (ns) { 9147 /* The NS bit will (as required by the architecture) have no effect if 9148 * the CPU doesn't support TZ or this is a non-secure translation 9149 * regime, because the attribute will already be non-secure. 9150 */ 9151 attrs->secure = false; 9152 } 9153 *phys_ptr = phys_addr; 9154 return false; 9155 do_fault: 9156 fi->domain = domain; 9157 fi->level = level; 9158 return true; 9159 } 9160 9161 /* 9162 * check_s2_mmu_setup 9163 * @cpu: ARMCPU 9164 * @is_aa64: True if the translation regime is in AArch64 state 9165 * @startlevel: Suggested starting level 9166 * @inputsize: Bitsize of IPAs 9167 * @stride: Page-table stride (See the ARM ARM) 9168 * 9169 * Returns true if the suggested S2 translation parameters are OK and 9170 * false otherwise. 9171 */ 9172 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 9173 int inputsize, int stride) 9174 { 9175 const int grainsize = stride + 3; 9176 int startsizecheck; 9177 9178 /* Negative levels are never allowed. */ 9179 if (level < 0) { 9180 return false; 9181 } 9182 9183 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 9184 if (startsizecheck < 1 || startsizecheck > stride + 4) { 9185 return false; 9186 } 9187 9188 if (is_aa64) { 9189 CPUARMState *env = &cpu->env; 9190 unsigned int pamax = arm_pamax(cpu); 9191 9192 switch (stride) { 9193 case 13: /* 64KB Pages. */ 9194 if (level == 0 || (level == 1 && pamax <= 42)) { 9195 return false; 9196 } 9197 break; 9198 case 11: /* 16KB Pages. */ 9199 if (level == 0 || (level == 1 && pamax <= 40)) { 9200 return false; 9201 } 9202 break; 9203 case 9: /* 4KB Pages. */ 9204 if (level == 0 && pamax <= 42) { 9205 return false; 9206 } 9207 break; 9208 default: 9209 g_assert_not_reached(); 9210 } 9211 9212 /* Inputsize checks. */ 9213 if (inputsize > pamax && 9214 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 9215 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 9216 return false; 9217 } 9218 } else { 9219 /* AArch32 only supports 4KB pages. Assert on that. */ 9220 assert(stride == 9); 9221 9222 if (level == 0) { 9223 return false; 9224 } 9225 } 9226 return true; 9227 } 9228 9229 /* Translate from the 4-bit stage 2 representation of 9230 * memory attributes (without cache-allocation hints) to 9231 * the 8-bit representation of the stage 1 MAIR registers 9232 * (which includes allocation hints). 9233 * 9234 * ref: shared/translation/attrs/S2AttrDecode() 9235 * .../S2ConvertAttrsHints() 9236 */ 9237 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 9238 { 9239 uint8_t hiattr = extract32(s2attrs, 2, 2); 9240 uint8_t loattr = extract32(s2attrs, 0, 2); 9241 uint8_t hihint = 0, lohint = 0; 9242 9243 if (hiattr != 0) { /* normal memory */ 9244 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 9245 hiattr = loattr = 1; /* non-cacheable */ 9246 } else { 9247 if (hiattr != 1) { /* Write-through or write-back */ 9248 hihint = 3; /* RW allocate */ 9249 } 9250 if (loattr != 1) { /* Write-through or write-back */ 9251 lohint = 3; /* RW allocate */ 9252 } 9253 } 9254 } 9255 9256 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 9257 } 9258 #endif /* !CONFIG_USER_ONLY */ 9259 9260 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va, 9261 ARMMMUIdx mmu_idx) 9262 { 9263 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 9264 uint32_t el = regime_el(env, mmu_idx); 9265 bool tbi, tbid, epd, hpd, using16k, using64k; 9266 int select, tsz; 9267 9268 /* 9269 * Bit 55 is always between the two regions, and is canonical for 9270 * determining if address tagging is enabled. 9271 */ 9272 select = extract64(va, 55, 1); 9273 9274 if (el > 1) { 9275 tsz = extract32(tcr, 0, 6); 9276 using64k = extract32(tcr, 14, 1); 9277 using16k = extract32(tcr, 15, 1); 9278 if (mmu_idx == ARMMMUIdx_S2NS) { 9279 /* VTCR_EL2 */ 9280 tbi = tbid = hpd = false; 9281 } else { 9282 tbi = extract32(tcr, 20, 1); 9283 hpd = extract32(tcr, 24, 1); 9284 tbid = extract32(tcr, 29, 1); 9285 } 9286 epd = false; 9287 } else if (!select) { 9288 tsz = extract32(tcr, 0, 6); 9289 epd = extract32(tcr, 7, 1); 9290 using64k = extract32(tcr, 14, 1); 9291 using16k = extract32(tcr, 15, 1); 9292 tbi = extract64(tcr, 37, 1); 9293 hpd = extract64(tcr, 41, 1); 9294 tbid = extract64(tcr, 51, 1); 9295 } else { 9296 int tg = extract32(tcr, 30, 2); 9297 using16k = tg == 1; 9298 using64k = tg == 3; 9299 tsz = extract32(tcr, 16, 6); 9300 epd = extract32(tcr, 23, 1); 9301 tbi = extract64(tcr, 38, 1); 9302 hpd = extract64(tcr, 42, 1); 9303 tbid = extract64(tcr, 52, 1); 9304 } 9305 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 9306 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 9307 9308 return (ARMVAParameters) { 9309 .tsz = tsz, 9310 .select = select, 9311 .tbi = tbi, 9312 .tbid = tbid, 9313 .epd = epd, 9314 .hpd = hpd, 9315 .using16k = using16k, 9316 .using64k = using64k, 9317 }; 9318 } 9319 9320 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 9321 ARMMMUIdx mmu_idx, bool data) 9322 { 9323 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx); 9324 9325 /* Present TBI as a composite with TBID. */ 9326 ret.tbi &= (data || !ret.tbid); 9327 return ret; 9328 } 9329 9330 #ifndef CONFIG_USER_ONLY 9331 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 9332 ARMMMUIdx mmu_idx) 9333 { 9334 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 9335 uint32_t el = regime_el(env, mmu_idx); 9336 int select, tsz; 9337 bool epd, hpd; 9338 9339 if (mmu_idx == ARMMMUIdx_S2NS) { 9340 /* VTCR */ 9341 bool sext = extract32(tcr, 4, 1); 9342 bool sign = extract32(tcr, 3, 1); 9343 9344 /* 9345 * If the sign-extend bit is not the same as t0sz[3], the result 9346 * is unpredictable. Flag this as a guest error. 9347 */ 9348 if (sign != sext) { 9349 qemu_log_mask(LOG_GUEST_ERROR, 9350 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 9351 } 9352 tsz = sextract32(tcr, 0, 4) + 8; 9353 select = 0; 9354 hpd = false; 9355 epd = false; 9356 } else if (el == 2) { 9357 /* HTCR */ 9358 tsz = extract32(tcr, 0, 3); 9359 select = 0; 9360 hpd = extract64(tcr, 24, 1); 9361 epd = false; 9362 } else { 9363 int t0sz = extract32(tcr, 0, 3); 9364 int t1sz = extract32(tcr, 16, 3); 9365 9366 if (t1sz == 0) { 9367 select = va > (0xffffffffu >> t0sz); 9368 } else { 9369 /* Note that we will detect errors later. */ 9370 select = va >= ~(0xffffffffu >> t1sz); 9371 } 9372 if (!select) { 9373 tsz = t0sz; 9374 epd = extract32(tcr, 7, 1); 9375 hpd = extract64(tcr, 41, 1); 9376 } else { 9377 tsz = t1sz; 9378 epd = extract32(tcr, 23, 1); 9379 hpd = extract64(tcr, 42, 1); 9380 } 9381 /* For aarch32, hpd0 is not enabled without t2e as well. */ 9382 hpd &= extract32(tcr, 6, 1); 9383 } 9384 9385 return (ARMVAParameters) { 9386 .tsz = tsz, 9387 .select = select, 9388 .epd = epd, 9389 .hpd = hpd, 9390 }; 9391 } 9392 9393 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 9394 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9395 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 9396 target_ulong *page_size_ptr, 9397 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9398 { 9399 ARMCPU *cpu = env_archcpu(env); 9400 CPUState *cs = CPU(cpu); 9401 /* Read an LPAE long-descriptor translation table. */ 9402 ARMFaultType fault_type = ARMFault_Translation; 9403 uint32_t level; 9404 ARMVAParameters param; 9405 uint64_t ttbr; 9406 hwaddr descaddr, indexmask, indexmask_grainsize; 9407 uint32_t tableattrs; 9408 target_ulong page_size; 9409 uint32_t attrs; 9410 int32_t stride; 9411 int addrsize, inputsize; 9412 TCR *tcr = regime_tcr(env, mmu_idx); 9413 int ap, ns, xn, pxn; 9414 uint32_t el = regime_el(env, mmu_idx); 9415 bool ttbr1_valid; 9416 uint64_t descaddrmask; 9417 bool aarch64 = arm_el_is_aa64(env, el); 9418 bool guarded = false; 9419 9420 /* TODO: 9421 * This code does not handle the different format TCR for VTCR_EL2. 9422 * This code also does not support shareability levels. 9423 * Attribute and permission bit handling should also be checked when adding 9424 * support for those page table walks. 9425 */ 9426 if (aarch64) { 9427 param = aa64_va_parameters(env, address, mmu_idx, 9428 access_type != MMU_INST_FETCH); 9429 level = 0; 9430 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 9431 * invalid. 9432 */ 9433 ttbr1_valid = (el < 2); 9434 addrsize = 64 - 8 * param.tbi; 9435 inputsize = 64 - param.tsz; 9436 } else { 9437 param = aa32_va_parameters(env, address, mmu_idx); 9438 level = 1; 9439 /* There is no TTBR1 for EL2 */ 9440 ttbr1_valid = (el != 2); 9441 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32); 9442 inputsize = addrsize - param.tsz; 9443 } 9444 9445 /* 9446 * We determined the region when collecting the parameters, but we 9447 * have not yet validated that the address is valid for the region. 9448 * Extract the top bits and verify that they all match select. 9449 * 9450 * For aa32, if inputsize == addrsize, then we have selected the 9451 * region by exclusion in aa32_va_parameters and there is no more 9452 * validation to do here. 9453 */ 9454 if (inputsize < addrsize) { 9455 target_ulong top_bits = sextract64(address, inputsize, 9456 addrsize - inputsize); 9457 if (-top_bits != param.select || (param.select && !ttbr1_valid)) { 9458 /* The gap between the two regions is a Translation fault */ 9459 fault_type = ARMFault_Translation; 9460 goto do_fault; 9461 } 9462 } 9463 9464 if (param.using64k) { 9465 stride = 13; 9466 } else if (param.using16k) { 9467 stride = 11; 9468 } else { 9469 stride = 9; 9470 } 9471 9472 /* Note that QEMU ignores shareability and cacheability attributes, 9473 * so we don't need to do anything with the SH, ORGN, IRGN fields 9474 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 9475 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 9476 * implement any ASID-like capability so we can ignore it (instead 9477 * we will always flush the TLB any time the ASID is changed). 9478 */ 9479 ttbr = regime_ttbr(env, mmu_idx, param.select); 9480 9481 /* Here we should have set up all the parameters for the translation: 9482 * inputsize, ttbr, epd, stride, tbi 9483 */ 9484 9485 if (param.epd) { 9486 /* Translation table walk disabled => Translation fault on TLB miss 9487 * Note: This is always 0 on 64-bit EL2 and EL3. 9488 */ 9489 goto do_fault; 9490 } 9491 9492 if (mmu_idx != ARMMMUIdx_S2NS) { 9493 /* The starting level depends on the virtual address size (which can 9494 * be up to 48 bits) and the translation granule size. It indicates 9495 * the number of strides (stride bits at a time) needed to 9496 * consume the bits of the input address. In the pseudocode this is: 9497 * level = 4 - RoundUp((inputsize - grainsize) / stride) 9498 * where their 'inputsize' is our 'inputsize', 'grainsize' is 9499 * our 'stride + 3' and 'stride' is our 'stride'. 9500 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 9501 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 9502 * = 4 - (inputsize - 4) / stride; 9503 */ 9504 level = 4 - (inputsize - 4) / stride; 9505 } else { 9506 /* For stage 2 translations the starting level is specified by the 9507 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 9508 */ 9509 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 9510 uint32_t startlevel; 9511 bool ok; 9512 9513 if (!aarch64 || stride == 9) { 9514 /* AArch32 or 4KB pages */ 9515 startlevel = 2 - sl0; 9516 } else { 9517 /* 16KB or 64KB pages */ 9518 startlevel = 3 - sl0; 9519 } 9520 9521 /* Check that the starting level is valid. */ 9522 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 9523 inputsize, stride); 9524 if (!ok) { 9525 fault_type = ARMFault_Translation; 9526 goto do_fault; 9527 } 9528 level = startlevel; 9529 } 9530 9531 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 9532 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 9533 9534 /* Now we can extract the actual base address from the TTBR */ 9535 descaddr = extract64(ttbr, 0, 48); 9536 descaddr &= ~indexmask; 9537 9538 /* The address field in the descriptor goes up to bit 39 for ARMv7 9539 * but up to bit 47 for ARMv8, but we use the descaddrmask 9540 * up to bit 39 for AArch32, because we don't need other bits in that case 9541 * to construct next descriptor address (anyway they should be all zeroes). 9542 */ 9543 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 9544 ~indexmask_grainsize; 9545 9546 /* Secure accesses start with the page table in secure memory and 9547 * can be downgraded to non-secure at any step. Non-secure accesses 9548 * remain non-secure. We implement this by just ORing in the NSTable/NS 9549 * bits at each step. 9550 */ 9551 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 9552 for (;;) { 9553 uint64_t descriptor; 9554 bool nstable; 9555 9556 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9557 descaddr &= ~7ULL; 9558 nstable = extract32(tableattrs, 4, 1); 9559 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 9560 if (fi->type != ARMFault_None) { 9561 goto do_fault; 9562 } 9563 9564 if (!(descriptor & 1) || 9565 (!(descriptor & 2) && (level == 3))) { 9566 /* Invalid, or the Reserved level 3 encoding */ 9567 goto do_fault; 9568 } 9569 descaddr = descriptor & descaddrmask; 9570 9571 if ((descriptor & 2) && (level < 3)) { 9572 /* Table entry. The top five bits are attributes which may 9573 * propagate down through lower levels of the table (and 9574 * which are all arranged so that 0 means "no effect", so 9575 * we can gather them up by ORing in the bits at each level). 9576 */ 9577 tableattrs |= extract64(descriptor, 59, 5); 9578 level++; 9579 indexmask = indexmask_grainsize; 9580 continue; 9581 } 9582 /* Block entry at level 1 or 2, or page entry at level 3. 9583 * These are basically the same thing, although the number 9584 * of bits we pull in from the vaddr varies. 9585 */ 9586 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9587 descaddr |= (address & (page_size - 1)); 9588 /* Extract attributes from the descriptor */ 9589 attrs = extract64(descriptor, 2, 10) 9590 | (extract64(descriptor, 52, 12) << 10); 9591 9592 if (mmu_idx == ARMMMUIdx_S2NS) { 9593 /* Stage 2 table descriptors do not include any attribute fields */ 9594 break; 9595 } 9596 /* Merge in attributes from table descriptors */ 9597 attrs |= nstable << 3; /* NS */ 9598 guarded = extract64(descriptor, 50, 1); /* GP */ 9599 if (param.hpd) { 9600 /* HPD disables all the table attributes except NSTable. */ 9601 break; 9602 } 9603 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9604 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9605 * means "force PL1 access only", which means forcing AP[1] to 0. 9606 */ 9607 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 9608 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 9609 break; 9610 } 9611 /* Here descaddr is the final physical address, and attributes 9612 * are all in attrs. 9613 */ 9614 fault_type = ARMFault_AccessFlag; 9615 if ((attrs & (1 << 8)) == 0) { 9616 /* Access flag */ 9617 goto do_fault; 9618 } 9619 9620 ap = extract32(attrs, 4, 2); 9621 xn = extract32(attrs, 12, 1); 9622 9623 if (mmu_idx == ARMMMUIdx_S2NS) { 9624 ns = true; 9625 *prot = get_S2prot(env, ap, xn); 9626 } else { 9627 ns = extract32(attrs, 3, 1); 9628 pxn = extract32(attrs, 11, 1); 9629 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9630 } 9631 9632 fault_type = ARMFault_Permission; 9633 if (!(*prot & (1 << access_type))) { 9634 goto do_fault; 9635 } 9636 9637 if (ns) { 9638 /* The NS bit will (as required by the architecture) have no effect if 9639 * the CPU doesn't support TZ or this is a non-secure translation 9640 * regime, because the attribute will already be non-secure. 9641 */ 9642 txattrs->secure = false; 9643 } 9644 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 9645 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 9646 txattrs->target_tlb_bit0 = true; 9647 } 9648 9649 if (cacheattrs != NULL) { 9650 if (mmu_idx == ARMMMUIdx_S2NS) { 9651 cacheattrs->attrs = convert_stage2_attrs(env, 9652 extract32(attrs, 0, 4)); 9653 } else { 9654 /* Index into MAIR registers for cache attributes */ 9655 uint8_t attrindx = extract32(attrs, 0, 3); 9656 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9657 assert(attrindx <= 7); 9658 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9659 } 9660 cacheattrs->shareability = extract32(attrs, 6, 2); 9661 } 9662 9663 *phys_ptr = descaddr; 9664 *page_size_ptr = page_size; 9665 return false; 9666 9667 do_fault: 9668 fi->type = fault_type; 9669 fi->level = level; 9670 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9671 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9672 return true; 9673 } 9674 9675 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9676 ARMMMUIdx mmu_idx, 9677 int32_t address, int *prot) 9678 { 9679 if (!arm_feature(env, ARM_FEATURE_M)) { 9680 *prot = PAGE_READ | PAGE_WRITE; 9681 switch (address) { 9682 case 0xF0000000 ... 0xFFFFFFFF: 9683 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9684 /* hivecs execing is ok */ 9685 *prot |= PAGE_EXEC; 9686 } 9687 break; 9688 case 0x00000000 ... 0x7FFFFFFF: 9689 *prot |= PAGE_EXEC; 9690 break; 9691 } 9692 } else { 9693 /* Default system address map for M profile cores. 9694 * The architecture specifies which regions are execute-never; 9695 * at the MPU level no other checks are defined. 9696 */ 9697 switch (address) { 9698 case 0x00000000 ... 0x1fffffff: /* ROM */ 9699 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9700 case 0x60000000 ... 0x7fffffff: /* RAM */ 9701 case 0x80000000 ... 0x9fffffff: /* RAM */ 9702 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9703 break; 9704 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9705 case 0xa0000000 ... 0xbfffffff: /* Device */ 9706 case 0xc0000000 ... 0xdfffffff: /* Device */ 9707 case 0xe0000000 ... 0xffffffff: /* System */ 9708 *prot = PAGE_READ | PAGE_WRITE; 9709 break; 9710 default: 9711 g_assert_not_reached(); 9712 } 9713 } 9714 } 9715 9716 static bool pmsav7_use_background_region(ARMCPU *cpu, 9717 ARMMMUIdx mmu_idx, bool is_user) 9718 { 9719 /* Return true if we should use the default memory map as a 9720 * "background" region if there are no hits against any MPU regions. 9721 */ 9722 CPUARMState *env = &cpu->env; 9723 9724 if (is_user) { 9725 return false; 9726 } 9727 9728 if (arm_feature(env, ARM_FEATURE_M)) { 9729 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 9730 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9731 } else { 9732 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9733 } 9734 } 9735 9736 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9737 { 9738 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9739 return arm_feature(env, ARM_FEATURE_M) && 9740 extract32(address, 20, 12) == 0xe00; 9741 } 9742 9743 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9744 { 9745 /* True if address is in the M profile system region 9746 * 0xe0000000 - 0xffffffff 9747 */ 9748 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9749 } 9750 9751 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9752 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9753 hwaddr *phys_ptr, int *prot, 9754 target_ulong *page_size, 9755 ARMMMUFaultInfo *fi) 9756 { 9757 ARMCPU *cpu = env_archcpu(env); 9758 int n; 9759 bool is_user = regime_is_user(env, mmu_idx); 9760 9761 *phys_ptr = address; 9762 *page_size = TARGET_PAGE_SIZE; 9763 *prot = 0; 9764 9765 if (regime_translation_disabled(env, mmu_idx) || 9766 m_is_ppb_region(env, address)) { 9767 /* MPU disabled or M profile PPB access: use default memory map. 9768 * The other case which uses the default memory map in the 9769 * v7M ARM ARM pseudocode is exception vector reads from the vector 9770 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9771 * which always does a direct read using address_space_ldl(), rather 9772 * than going via this function, so we don't need to check that here. 9773 */ 9774 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9775 } else { /* MPU enabled */ 9776 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9777 /* region search */ 9778 uint32_t base = env->pmsav7.drbar[n]; 9779 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9780 uint32_t rmask; 9781 bool srdis = false; 9782 9783 if (!(env->pmsav7.drsr[n] & 0x1)) { 9784 continue; 9785 } 9786 9787 if (!rsize) { 9788 qemu_log_mask(LOG_GUEST_ERROR, 9789 "DRSR[%d]: Rsize field cannot be 0\n", n); 9790 continue; 9791 } 9792 rsize++; 9793 rmask = (1ull << rsize) - 1; 9794 9795 if (base & rmask) { 9796 qemu_log_mask(LOG_GUEST_ERROR, 9797 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9798 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9799 n, base, rmask); 9800 continue; 9801 } 9802 9803 if (address < base || address > base + rmask) { 9804 /* 9805 * Address not in this region. We must check whether the 9806 * region covers addresses in the same page as our address. 9807 * In that case we must not report a size that covers the 9808 * whole page for a subsequent hit against a different MPU 9809 * region or the background region, because it would result in 9810 * incorrect TLB hits for subsequent accesses to addresses that 9811 * are in this MPU region. 9812 */ 9813 if (ranges_overlap(base, rmask, 9814 address & TARGET_PAGE_MASK, 9815 TARGET_PAGE_SIZE)) { 9816 *page_size = 1; 9817 } 9818 continue; 9819 } 9820 9821 /* Region matched */ 9822 9823 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9824 int i, snd; 9825 uint32_t srdis_mask; 9826 9827 rsize -= 3; /* sub region size (power of 2) */ 9828 snd = ((address - base) >> rsize) & 0x7; 9829 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9830 9831 srdis_mask = srdis ? 0x3 : 0x0; 9832 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9833 /* This will check in groups of 2, 4 and then 8, whether 9834 * the subregion bits are consistent. rsize is incremented 9835 * back up to give the region size, considering consistent 9836 * adjacent subregions as one region. Stop testing if rsize 9837 * is already big enough for an entire QEMU page. 9838 */ 9839 int snd_rounded = snd & ~(i - 1); 9840 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9841 snd_rounded + 8, i); 9842 if (srdis_mask ^ srdis_multi) { 9843 break; 9844 } 9845 srdis_mask = (srdis_mask << i) | srdis_mask; 9846 rsize++; 9847 } 9848 } 9849 if (srdis) { 9850 continue; 9851 } 9852 if (rsize < TARGET_PAGE_BITS) { 9853 *page_size = 1 << rsize; 9854 } 9855 break; 9856 } 9857 9858 if (n == -1) { /* no hits */ 9859 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9860 /* background fault */ 9861 fi->type = ARMFault_Background; 9862 return true; 9863 } 9864 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9865 } else { /* a MPU hit! */ 9866 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 9867 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 9868 9869 if (m_is_system_region(env, address)) { 9870 /* System space is always execute never */ 9871 xn = 1; 9872 } 9873 9874 if (is_user) { /* User mode AP bit decoding */ 9875 switch (ap) { 9876 case 0: 9877 case 1: 9878 case 5: 9879 break; /* no access */ 9880 case 3: 9881 *prot |= PAGE_WRITE; 9882 /* fall through */ 9883 case 2: 9884 case 6: 9885 *prot |= PAGE_READ | PAGE_EXEC; 9886 break; 9887 case 7: 9888 /* for v7M, same as 6; for R profile a reserved value */ 9889 if (arm_feature(env, ARM_FEATURE_M)) { 9890 *prot |= PAGE_READ | PAGE_EXEC; 9891 break; 9892 } 9893 /* fall through */ 9894 default: 9895 qemu_log_mask(LOG_GUEST_ERROR, 9896 "DRACR[%d]: Bad value for AP bits: 0x%" 9897 PRIx32 "\n", n, ap); 9898 } 9899 } else { /* Priv. mode AP bits decoding */ 9900 switch (ap) { 9901 case 0: 9902 break; /* no access */ 9903 case 1: 9904 case 2: 9905 case 3: 9906 *prot |= PAGE_WRITE; 9907 /* fall through */ 9908 case 5: 9909 case 6: 9910 *prot |= PAGE_READ | PAGE_EXEC; 9911 break; 9912 case 7: 9913 /* for v7M, same as 6; for R profile a reserved value */ 9914 if (arm_feature(env, ARM_FEATURE_M)) { 9915 *prot |= PAGE_READ | PAGE_EXEC; 9916 break; 9917 } 9918 /* fall through */ 9919 default: 9920 qemu_log_mask(LOG_GUEST_ERROR, 9921 "DRACR[%d]: Bad value for AP bits: 0x%" 9922 PRIx32 "\n", n, ap); 9923 } 9924 } 9925 9926 /* execute never */ 9927 if (xn) { 9928 *prot &= ~PAGE_EXEC; 9929 } 9930 } 9931 } 9932 9933 fi->type = ARMFault_Permission; 9934 fi->level = 1; 9935 return !(*prot & (1 << access_type)); 9936 } 9937 9938 static bool v8m_is_sau_exempt(CPUARMState *env, 9939 uint32_t address, MMUAccessType access_type) 9940 { 9941 /* The architecture specifies that certain address ranges are 9942 * exempt from v8M SAU/IDAU checks. 9943 */ 9944 return 9945 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 9946 (address >= 0xe0000000 && address <= 0xe0002fff) || 9947 (address >= 0xe000e000 && address <= 0xe000efff) || 9948 (address >= 0xe002e000 && address <= 0xe002efff) || 9949 (address >= 0xe0040000 && address <= 0xe0041fff) || 9950 (address >= 0xe00ff000 && address <= 0xe00fffff); 9951 } 9952 9953 void v8m_security_lookup(CPUARMState *env, uint32_t address, 9954 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9955 V8M_SAttributes *sattrs) 9956 { 9957 /* Look up the security attributes for this address. Compare the 9958 * pseudocode SecurityCheck() function. 9959 * We assume the caller has zero-initialized *sattrs. 9960 */ 9961 ARMCPU *cpu = env_archcpu(env); 9962 int r; 9963 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 9964 int idau_region = IREGION_NOTVALID; 9965 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 9966 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 9967 9968 if (cpu->idau) { 9969 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 9970 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 9971 9972 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 9973 &idau_nsc); 9974 } 9975 9976 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 9977 /* 0xf0000000..0xffffffff is always S for insn fetches */ 9978 return; 9979 } 9980 9981 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 9982 sattrs->ns = !regime_is_secure(env, mmu_idx); 9983 return; 9984 } 9985 9986 if (idau_region != IREGION_NOTVALID) { 9987 sattrs->irvalid = true; 9988 sattrs->iregion = idau_region; 9989 } 9990 9991 switch (env->sau.ctrl & 3) { 9992 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 9993 break; 9994 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 9995 sattrs->ns = true; 9996 break; 9997 default: /* SAU.ENABLE == 1 */ 9998 for (r = 0; r < cpu->sau_sregion; r++) { 9999 if (env->sau.rlar[r] & 1) { 10000 uint32_t base = env->sau.rbar[r] & ~0x1f; 10001 uint32_t limit = env->sau.rlar[r] | 0x1f; 10002 10003 if (base <= address && limit >= address) { 10004 if (base > addr_page_base || limit < addr_page_limit) { 10005 sattrs->subpage = true; 10006 } 10007 if (sattrs->srvalid) { 10008 /* If we hit in more than one region then we must report 10009 * as Secure, not NS-Callable, with no valid region 10010 * number info. 10011 */ 10012 sattrs->ns = false; 10013 sattrs->nsc = false; 10014 sattrs->sregion = 0; 10015 sattrs->srvalid = false; 10016 break; 10017 } else { 10018 if (env->sau.rlar[r] & 2) { 10019 sattrs->nsc = true; 10020 } else { 10021 sattrs->ns = true; 10022 } 10023 sattrs->srvalid = true; 10024 sattrs->sregion = r; 10025 } 10026 } else { 10027 /* 10028 * Address not in this region. We must check whether the 10029 * region covers addresses in the same page as our address. 10030 * In that case we must not report a size that covers the 10031 * whole page for a subsequent hit against a different MPU 10032 * region or the background region, because it would result 10033 * in incorrect TLB hits for subsequent accesses to 10034 * addresses that are in this MPU region. 10035 */ 10036 if (limit >= base && 10037 ranges_overlap(base, limit - base + 1, 10038 addr_page_base, 10039 TARGET_PAGE_SIZE)) { 10040 sattrs->subpage = true; 10041 } 10042 } 10043 } 10044 } 10045 break; 10046 } 10047 10048 /* 10049 * The IDAU will override the SAU lookup results if it specifies 10050 * higher security than the SAU does. 10051 */ 10052 if (!idau_ns) { 10053 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 10054 sattrs->ns = false; 10055 sattrs->nsc = idau_nsc; 10056 } 10057 } 10058 } 10059 10060 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 10061 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10062 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10063 int *prot, bool *is_subpage, 10064 ARMMMUFaultInfo *fi, uint32_t *mregion) 10065 { 10066 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 10067 * that a full phys-to-virt translation does). 10068 * mregion is (if not NULL) set to the region number which matched, 10069 * or -1 if no region number is returned (MPU off, address did not 10070 * hit a region, address hit in multiple regions). 10071 * We set is_subpage to true if the region hit doesn't cover the 10072 * entire TARGET_PAGE the address is within. 10073 */ 10074 ARMCPU *cpu = env_archcpu(env); 10075 bool is_user = regime_is_user(env, mmu_idx); 10076 uint32_t secure = regime_is_secure(env, mmu_idx); 10077 int n; 10078 int matchregion = -1; 10079 bool hit = false; 10080 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10081 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10082 10083 *is_subpage = false; 10084 *phys_ptr = address; 10085 *prot = 0; 10086 if (mregion) { 10087 *mregion = -1; 10088 } 10089 10090 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 10091 * was an exception vector read from the vector table (which is always 10092 * done using the default system address map), because those accesses 10093 * are done in arm_v7m_load_vector(), which always does a direct 10094 * read using address_space_ldl(), rather than going via this function. 10095 */ 10096 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 10097 hit = true; 10098 } else if (m_is_ppb_region(env, address)) { 10099 hit = true; 10100 } else { 10101 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10102 hit = true; 10103 } 10104 10105 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10106 /* region search */ 10107 /* Note that the base address is bits [31:5] from the register 10108 * with bits [4:0] all zeroes, but the limit address is bits 10109 * [31:5] from the register with bits [4:0] all ones. 10110 */ 10111 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 10112 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 10113 10114 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 10115 /* Region disabled */ 10116 continue; 10117 } 10118 10119 if (address < base || address > limit) { 10120 /* 10121 * Address not in this region. We must check whether the 10122 * region covers addresses in the same page as our address. 10123 * In that case we must not report a size that covers the 10124 * whole page for a subsequent hit against a different MPU 10125 * region or the background region, because it would result in 10126 * incorrect TLB hits for subsequent accesses to addresses that 10127 * are in this MPU region. 10128 */ 10129 if (limit >= base && 10130 ranges_overlap(base, limit - base + 1, 10131 addr_page_base, 10132 TARGET_PAGE_SIZE)) { 10133 *is_subpage = true; 10134 } 10135 continue; 10136 } 10137 10138 if (base > addr_page_base || limit < addr_page_limit) { 10139 *is_subpage = true; 10140 } 10141 10142 if (matchregion != -1) { 10143 /* Multiple regions match -- always a failure (unlike 10144 * PMSAv7 where highest-numbered-region wins) 10145 */ 10146 fi->type = ARMFault_Permission; 10147 fi->level = 1; 10148 return true; 10149 } 10150 10151 matchregion = n; 10152 hit = true; 10153 } 10154 } 10155 10156 if (!hit) { 10157 /* background fault */ 10158 fi->type = ARMFault_Background; 10159 return true; 10160 } 10161 10162 if (matchregion == -1) { 10163 /* hit using the background region */ 10164 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10165 } else { 10166 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 10167 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 10168 10169 if (m_is_system_region(env, address)) { 10170 /* System space is always execute never */ 10171 xn = 1; 10172 } 10173 10174 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 10175 if (*prot && !xn) { 10176 *prot |= PAGE_EXEC; 10177 } 10178 /* We don't need to look the attribute up in the MAIR0/MAIR1 10179 * registers because that only tells us about cacheability. 10180 */ 10181 if (mregion) { 10182 *mregion = matchregion; 10183 } 10184 } 10185 10186 fi->type = ARMFault_Permission; 10187 fi->level = 1; 10188 return !(*prot & (1 << access_type)); 10189 } 10190 10191 10192 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 10193 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10194 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10195 int *prot, target_ulong *page_size, 10196 ARMMMUFaultInfo *fi) 10197 { 10198 uint32_t secure = regime_is_secure(env, mmu_idx); 10199 V8M_SAttributes sattrs = {}; 10200 bool ret; 10201 bool mpu_is_subpage; 10202 10203 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10204 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 10205 if (access_type == MMU_INST_FETCH) { 10206 /* Instruction fetches always use the MMU bank and the 10207 * transaction attribute determined by the fetch address, 10208 * regardless of CPU state. This is painful for QEMU 10209 * to handle, because it would mean we need to encode 10210 * into the mmu_idx not just the (user, negpri) information 10211 * for the current security state but also that for the 10212 * other security state, which would balloon the number 10213 * of mmu_idx values needed alarmingly. 10214 * Fortunately we can avoid this because it's not actually 10215 * possible to arbitrarily execute code from memory with 10216 * the wrong security attribute: it will always generate 10217 * an exception of some kind or another, apart from the 10218 * special case of an NS CPU executing an SG instruction 10219 * in S&NSC memory. So we always just fail the translation 10220 * here and sort things out in the exception handler 10221 * (including possibly emulating an SG instruction). 10222 */ 10223 if (sattrs.ns != !secure) { 10224 if (sattrs.nsc) { 10225 fi->type = ARMFault_QEMU_NSCExec; 10226 } else { 10227 fi->type = ARMFault_QEMU_SFault; 10228 } 10229 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10230 *phys_ptr = address; 10231 *prot = 0; 10232 return true; 10233 } 10234 } else { 10235 /* For data accesses we always use the MMU bank indicated 10236 * by the current CPU state, but the security attributes 10237 * might downgrade a secure access to nonsecure. 10238 */ 10239 if (sattrs.ns) { 10240 txattrs->secure = false; 10241 } else if (!secure) { 10242 /* NS access to S memory must fault. 10243 * Architecturally we should first check whether the 10244 * MPU information for this address indicates that we 10245 * are doing an unaligned access to Device memory, which 10246 * should generate a UsageFault instead. QEMU does not 10247 * currently check for that kind of unaligned access though. 10248 * If we added it we would need to do so as a special case 10249 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 10250 */ 10251 fi->type = ARMFault_QEMU_SFault; 10252 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10253 *phys_ptr = address; 10254 *prot = 0; 10255 return true; 10256 } 10257 } 10258 } 10259 10260 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 10261 txattrs, prot, &mpu_is_subpage, fi, NULL); 10262 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 10263 return ret; 10264 } 10265 10266 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 10267 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10268 hwaddr *phys_ptr, int *prot, 10269 ARMMMUFaultInfo *fi) 10270 { 10271 int n; 10272 uint32_t mask; 10273 uint32_t base; 10274 bool is_user = regime_is_user(env, mmu_idx); 10275 10276 if (regime_translation_disabled(env, mmu_idx)) { 10277 /* MPU disabled. */ 10278 *phys_ptr = address; 10279 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10280 return false; 10281 } 10282 10283 *phys_ptr = address; 10284 for (n = 7; n >= 0; n--) { 10285 base = env->cp15.c6_region[n]; 10286 if ((base & 1) == 0) { 10287 continue; 10288 } 10289 mask = 1 << ((base >> 1) & 0x1f); 10290 /* Keep this shift separate from the above to avoid an 10291 (undefined) << 32. */ 10292 mask = (mask << 1) - 1; 10293 if (((base ^ address) & ~mask) == 0) { 10294 break; 10295 } 10296 } 10297 if (n < 0) { 10298 fi->type = ARMFault_Background; 10299 return true; 10300 } 10301 10302 if (access_type == MMU_INST_FETCH) { 10303 mask = env->cp15.pmsav5_insn_ap; 10304 } else { 10305 mask = env->cp15.pmsav5_data_ap; 10306 } 10307 mask = (mask >> (n * 4)) & 0xf; 10308 switch (mask) { 10309 case 0: 10310 fi->type = ARMFault_Permission; 10311 fi->level = 1; 10312 return true; 10313 case 1: 10314 if (is_user) { 10315 fi->type = ARMFault_Permission; 10316 fi->level = 1; 10317 return true; 10318 } 10319 *prot = PAGE_READ | PAGE_WRITE; 10320 break; 10321 case 2: 10322 *prot = PAGE_READ; 10323 if (!is_user) { 10324 *prot |= PAGE_WRITE; 10325 } 10326 break; 10327 case 3: 10328 *prot = PAGE_READ | PAGE_WRITE; 10329 break; 10330 case 5: 10331 if (is_user) { 10332 fi->type = ARMFault_Permission; 10333 fi->level = 1; 10334 return true; 10335 } 10336 *prot = PAGE_READ; 10337 break; 10338 case 6: 10339 *prot = PAGE_READ; 10340 break; 10341 default: 10342 /* Bad permission. */ 10343 fi->type = ARMFault_Permission; 10344 fi->level = 1; 10345 return true; 10346 } 10347 *prot |= PAGE_EXEC; 10348 return false; 10349 } 10350 10351 /* Combine either inner or outer cacheability attributes for normal 10352 * memory, according to table D4-42 and pseudocode procedure 10353 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 10354 * 10355 * NB: only stage 1 includes allocation hints (RW bits), leading to 10356 * some asymmetry. 10357 */ 10358 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 10359 { 10360 if (s1 == 4 || s2 == 4) { 10361 /* non-cacheable has precedence */ 10362 return 4; 10363 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 10364 /* stage 1 write-through takes precedence */ 10365 return s1; 10366 } else if (extract32(s2, 2, 2) == 2) { 10367 /* stage 2 write-through takes precedence, but the allocation hint 10368 * is still taken from stage 1 10369 */ 10370 return (2 << 2) | extract32(s1, 0, 2); 10371 } else { /* write-back */ 10372 return s1; 10373 } 10374 } 10375 10376 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 10377 * and CombineS1S2Desc() 10378 * 10379 * @s1: Attributes from stage 1 walk 10380 * @s2: Attributes from stage 2 walk 10381 */ 10382 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 10383 { 10384 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 10385 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 10386 ARMCacheAttrs ret; 10387 10388 /* Combine shareability attributes (table D4-43) */ 10389 if (s1.shareability == 2 || s2.shareability == 2) { 10390 /* if either are outer-shareable, the result is outer-shareable */ 10391 ret.shareability = 2; 10392 } else if (s1.shareability == 3 || s2.shareability == 3) { 10393 /* if either are inner-shareable, the result is inner-shareable */ 10394 ret.shareability = 3; 10395 } else { 10396 /* both non-shareable */ 10397 ret.shareability = 0; 10398 } 10399 10400 /* Combine memory type and cacheability attributes */ 10401 if (s1hi == 0 || s2hi == 0) { 10402 /* Device has precedence over normal */ 10403 if (s1lo == 0 || s2lo == 0) { 10404 /* nGnRnE has precedence over anything */ 10405 ret.attrs = 0; 10406 } else if (s1lo == 4 || s2lo == 4) { 10407 /* non-Reordering has precedence over Reordering */ 10408 ret.attrs = 4; /* nGnRE */ 10409 } else if (s1lo == 8 || s2lo == 8) { 10410 /* non-Gathering has precedence over Gathering */ 10411 ret.attrs = 8; /* nGRE */ 10412 } else { 10413 ret.attrs = 0xc; /* GRE */ 10414 } 10415 10416 /* Any location for which the resultant memory type is any 10417 * type of Device memory is always treated as Outer Shareable. 10418 */ 10419 ret.shareability = 2; 10420 } else { /* Normal memory */ 10421 /* Outer/inner cacheability combine independently */ 10422 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 10423 | combine_cacheattr_nibble(s1lo, s2lo); 10424 10425 if (ret.attrs == 0x44) { 10426 /* Any location for which the resultant memory type is Normal 10427 * Inner Non-cacheable, Outer Non-cacheable is always treated 10428 * as Outer Shareable. 10429 */ 10430 ret.shareability = 2; 10431 } 10432 } 10433 10434 return ret; 10435 } 10436 10437 10438 /* get_phys_addr - get the physical address for this virtual address 10439 * 10440 * Find the physical address corresponding to the given virtual address, 10441 * by doing a translation table walk on MMU based systems or using the 10442 * MPU state on MPU based systems. 10443 * 10444 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10445 * prot and page_size may not be filled in, and the populated fsr value provides 10446 * information on why the translation aborted, in the format of a 10447 * DFSR/IFSR fault register, with the following caveats: 10448 * * we honour the short vs long DFSR format differences. 10449 * * the WnR bit is never set (the caller must do this). 10450 * * for PSMAv5 based systems we don't bother to return a full FSR format 10451 * value. 10452 * 10453 * @env: CPUARMState 10454 * @address: virtual address to get physical address for 10455 * @access_type: 0 for read, 1 for write, 2 for execute 10456 * @mmu_idx: MMU index indicating required translation regime 10457 * @phys_ptr: set to the physical address corresponding to the virtual address 10458 * @attrs: set to the memory transaction attributes to use 10459 * @prot: set to the permissions for the page containing phys_ptr 10460 * @page_size: set to the size of the page containing phys_ptr 10461 * @fi: set to fault info if the translation fails 10462 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10463 */ 10464 bool get_phys_addr(CPUARMState *env, target_ulong address, 10465 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10466 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10467 target_ulong *page_size, 10468 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10469 { 10470 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10471 /* Call ourselves recursively to do the stage 1 and then stage 2 10472 * translations. 10473 */ 10474 if (arm_feature(env, ARM_FEATURE_EL2)) { 10475 hwaddr ipa; 10476 int s2_prot; 10477 int ret; 10478 ARMCacheAttrs cacheattrs2 = {}; 10479 10480 ret = get_phys_addr(env, address, access_type, 10481 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 10482 prot, page_size, fi, cacheattrs); 10483 10484 /* If S1 fails or S2 is disabled, return early. */ 10485 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10486 *phys_ptr = ipa; 10487 return ret; 10488 } 10489 10490 /* S1 is done. Now do S2 translation. */ 10491 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 10492 phys_ptr, attrs, &s2_prot, 10493 page_size, fi, 10494 cacheattrs != NULL ? &cacheattrs2 : NULL); 10495 fi->s2addr = ipa; 10496 /* Combine the S1 and S2 perms. */ 10497 *prot &= s2_prot; 10498 10499 /* Combine the S1 and S2 cache attributes, if needed */ 10500 if (!ret && cacheattrs != NULL) { 10501 if (env->cp15.hcr_el2 & HCR_DC) { 10502 /* 10503 * HCR.DC forces the first stage attributes to 10504 * Normal Non-Shareable, 10505 * Inner Write-Back Read-Allocate Write-Allocate, 10506 * Outer Write-Back Read-Allocate Write-Allocate. 10507 */ 10508 cacheattrs->attrs = 0xff; 10509 cacheattrs->shareability = 0; 10510 } 10511 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 10512 } 10513 10514 return ret; 10515 } else { 10516 /* 10517 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 10518 */ 10519 mmu_idx = stage_1_mmu_idx(mmu_idx); 10520 } 10521 } 10522 10523 /* The page table entries may downgrade secure to non-secure, but 10524 * cannot upgrade an non-secure translation regime's attributes 10525 * to secure. 10526 */ 10527 attrs->secure = regime_is_secure(env, mmu_idx); 10528 attrs->user = regime_is_user(env, mmu_idx); 10529 10530 /* Fast Context Switch Extension. This doesn't exist at all in v8. 10531 * In v7 and earlier it affects all stage 1 translations. 10532 */ 10533 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 10534 && !arm_feature(env, ARM_FEATURE_V8)) { 10535 if (regime_el(env, mmu_idx) == 3) { 10536 address += env->cp15.fcseidr_s; 10537 } else { 10538 address += env->cp15.fcseidr_ns; 10539 } 10540 } 10541 10542 if (arm_feature(env, ARM_FEATURE_PMSA)) { 10543 bool ret; 10544 *page_size = TARGET_PAGE_SIZE; 10545 10546 if (arm_feature(env, ARM_FEATURE_V8)) { 10547 /* PMSAv8 */ 10548 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 10549 phys_ptr, attrs, prot, page_size, fi); 10550 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10551 /* PMSAv7 */ 10552 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 10553 phys_ptr, prot, page_size, fi); 10554 } else { 10555 /* Pre-v7 MPU */ 10556 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 10557 phys_ptr, prot, fi); 10558 } 10559 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 10560 " mmu_idx %u -> %s (prot %c%c%c)\n", 10561 access_type == MMU_DATA_LOAD ? "reading" : 10562 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 10563 (uint32_t)address, mmu_idx, 10564 ret ? "Miss" : "Hit", 10565 *prot & PAGE_READ ? 'r' : '-', 10566 *prot & PAGE_WRITE ? 'w' : '-', 10567 *prot & PAGE_EXEC ? 'x' : '-'); 10568 10569 return ret; 10570 } 10571 10572 /* Definitely a real MMU, not an MPU */ 10573 10574 if (regime_translation_disabled(env, mmu_idx)) { 10575 /* MMU disabled. */ 10576 *phys_ptr = address; 10577 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10578 *page_size = TARGET_PAGE_SIZE; 10579 return 0; 10580 } 10581 10582 if (regime_using_lpae_format(env, mmu_idx)) { 10583 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 10584 phys_ptr, attrs, prot, page_size, 10585 fi, cacheattrs); 10586 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 10587 return get_phys_addr_v6(env, address, access_type, mmu_idx, 10588 phys_ptr, attrs, prot, page_size, fi); 10589 } else { 10590 return get_phys_addr_v5(env, address, access_type, mmu_idx, 10591 phys_ptr, prot, page_size, fi); 10592 } 10593 } 10594 10595 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 10596 MemTxAttrs *attrs) 10597 { 10598 ARMCPU *cpu = ARM_CPU(cs); 10599 CPUARMState *env = &cpu->env; 10600 hwaddr phys_addr; 10601 target_ulong page_size; 10602 int prot; 10603 bool ret; 10604 ARMMMUFaultInfo fi = {}; 10605 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 10606 10607 *attrs = (MemTxAttrs) {}; 10608 10609 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 10610 attrs, &prot, &page_size, &fi, NULL); 10611 10612 if (ret) { 10613 return -1; 10614 } 10615 return phys_addr; 10616 } 10617 10618 #endif 10619 10620 /* Note that signed overflow is undefined in C. The following routines are 10621 careful to use unsigned types where modulo arithmetic is required. 10622 Failure to do so _will_ break on newer gcc. */ 10623 10624 /* Signed saturating arithmetic. */ 10625 10626 /* Perform 16-bit signed saturating addition. */ 10627 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10628 { 10629 uint16_t res; 10630 10631 res = a + b; 10632 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10633 if (a & 0x8000) 10634 res = 0x8000; 10635 else 10636 res = 0x7fff; 10637 } 10638 return res; 10639 } 10640 10641 /* Perform 8-bit signed saturating addition. */ 10642 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10643 { 10644 uint8_t res; 10645 10646 res = a + b; 10647 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10648 if (a & 0x80) 10649 res = 0x80; 10650 else 10651 res = 0x7f; 10652 } 10653 return res; 10654 } 10655 10656 /* Perform 16-bit signed saturating subtraction. */ 10657 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10658 { 10659 uint16_t res; 10660 10661 res = a - b; 10662 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10663 if (a & 0x8000) 10664 res = 0x8000; 10665 else 10666 res = 0x7fff; 10667 } 10668 return res; 10669 } 10670 10671 /* Perform 8-bit signed saturating subtraction. */ 10672 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10673 { 10674 uint8_t res; 10675 10676 res = a - b; 10677 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10678 if (a & 0x80) 10679 res = 0x80; 10680 else 10681 res = 0x7f; 10682 } 10683 return res; 10684 } 10685 10686 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10687 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10688 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10689 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10690 #define PFX q 10691 10692 #include "op_addsub.h" 10693 10694 /* Unsigned saturating arithmetic. */ 10695 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10696 { 10697 uint16_t res; 10698 res = a + b; 10699 if (res < a) 10700 res = 0xffff; 10701 return res; 10702 } 10703 10704 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10705 { 10706 if (a > b) 10707 return a - b; 10708 else 10709 return 0; 10710 } 10711 10712 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10713 { 10714 uint8_t res; 10715 res = a + b; 10716 if (res < a) 10717 res = 0xff; 10718 return res; 10719 } 10720 10721 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10722 { 10723 if (a > b) 10724 return a - b; 10725 else 10726 return 0; 10727 } 10728 10729 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10730 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10731 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10732 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10733 #define PFX uq 10734 10735 #include "op_addsub.h" 10736 10737 /* Signed modulo arithmetic. */ 10738 #define SARITH16(a, b, n, op) do { \ 10739 int32_t sum; \ 10740 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10741 RESULT(sum, n, 16); \ 10742 if (sum >= 0) \ 10743 ge |= 3 << (n * 2); \ 10744 } while(0) 10745 10746 #define SARITH8(a, b, n, op) do { \ 10747 int32_t sum; \ 10748 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10749 RESULT(sum, n, 8); \ 10750 if (sum >= 0) \ 10751 ge |= 1 << n; \ 10752 } while(0) 10753 10754 10755 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10756 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10757 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10758 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10759 #define PFX s 10760 #define ARITH_GE 10761 10762 #include "op_addsub.h" 10763 10764 /* Unsigned modulo arithmetic. */ 10765 #define ADD16(a, b, n) do { \ 10766 uint32_t sum; \ 10767 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10768 RESULT(sum, n, 16); \ 10769 if ((sum >> 16) == 1) \ 10770 ge |= 3 << (n * 2); \ 10771 } while(0) 10772 10773 #define ADD8(a, b, n) do { \ 10774 uint32_t sum; \ 10775 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10776 RESULT(sum, n, 8); \ 10777 if ((sum >> 8) == 1) \ 10778 ge |= 1 << n; \ 10779 } while(0) 10780 10781 #define SUB16(a, b, n) do { \ 10782 uint32_t sum; \ 10783 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10784 RESULT(sum, n, 16); \ 10785 if ((sum >> 16) == 0) \ 10786 ge |= 3 << (n * 2); \ 10787 } while(0) 10788 10789 #define SUB8(a, b, n) do { \ 10790 uint32_t sum; \ 10791 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10792 RESULT(sum, n, 8); \ 10793 if ((sum >> 8) == 0) \ 10794 ge |= 1 << n; \ 10795 } while(0) 10796 10797 #define PFX u 10798 #define ARITH_GE 10799 10800 #include "op_addsub.h" 10801 10802 /* Halved signed arithmetic. */ 10803 #define ADD16(a, b, n) \ 10804 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10805 #define SUB16(a, b, n) \ 10806 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10807 #define ADD8(a, b, n) \ 10808 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10809 #define SUB8(a, b, n) \ 10810 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10811 #define PFX sh 10812 10813 #include "op_addsub.h" 10814 10815 /* Halved unsigned arithmetic. */ 10816 #define ADD16(a, b, n) \ 10817 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10818 #define SUB16(a, b, n) \ 10819 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10820 #define ADD8(a, b, n) \ 10821 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10822 #define SUB8(a, b, n) \ 10823 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10824 #define PFX uh 10825 10826 #include "op_addsub.h" 10827 10828 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10829 { 10830 if (a > b) 10831 return a - b; 10832 else 10833 return b - a; 10834 } 10835 10836 /* Unsigned sum of absolute byte differences. */ 10837 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10838 { 10839 uint32_t sum; 10840 sum = do_usad(a, b); 10841 sum += do_usad(a >> 8, b >> 8); 10842 sum += do_usad(a >> 16, b >>16); 10843 sum += do_usad(a >> 24, b >> 24); 10844 return sum; 10845 } 10846 10847 /* For ARMv6 SEL instruction. */ 10848 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10849 { 10850 uint32_t mask; 10851 10852 mask = 0; 10853 if (flags & 1) 10854 mask |= 0xff; 10855 if (flags & 2) 10856 mask |= 0xff00; 10857 if (flags & 4) 10858 mask |= 0xff0000; 10859 if (flags & 8) 10860 mask |= 0xff000000; 10861 return (a & mask) | (b & ~mask); 10862 } 10863 10864 /* CRC helpers. 10865 * The upper bytes of val (above the number specified by 'bytes') must have 10866 * been zeroed out by the caller. 10867 */ 10868 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 10869 { 10870 uint8_t buf[4]; 10871 10872 stl_le_p(buf, val); 10873 10874 /* zlib crc32 converts the accumulator and output to one's complement. */ 10875 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 10876 } 10877 10878 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 10879 { 10880 uint8_t buf[4]; 10881 10882 stl_le_p(buf, val); 10883 10884 /* Linux crc32c converts the output to one's complement. */ 10885 return crc32c(acc, buf, bytes) ^ 0xffffffff; 10886 } 10887 10888 /* Return the exception level to which FP-disabled exceptions should 10889 * be taken, or 0 if FP is enabled. 10890 */ 10891 int fp_exception_el(CPUARMState *env, int cur_el) 10892 { 10893 #ifndef CONFIG_USER_ONLY 10894 int fpen; 10895 10896 /* CPACR and the CPTR registers don't exist before v6, so FP is 10897 * always accessible 10898 */ 10899 if (!arm_feature(env, ARM_FEATURE_V6)) { 10900 return 0; 10901 } 10902 10903 if (arm_feature(env, ARM_FEATURE_M)) { 10904 /* CPACR can cause a NOCP UsageFault taken to current security state */ 10905 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 10906 return 1; 10907 } 10908 10909 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 10910 if (!extract32(env->v7m.nsacr, 10, 1)) { 10911 /* FP insns cause a NOCP UsageFault taken to Secure */ 10912 return 3; 10913 } 10914 } 10915 10916 return 0; 10917 } 10918 10919 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 10920 * 0, 2 : trap EL0 and EL1/PL1 accesses 10921 * 1 : trap only EL0 accesses 10922 * 3 : trap no accesses 10923 */ 10924 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 10925 switch (fpen) { 10926 case 0: 10927 case 2: 10928 if (cur_el == 0 || cur_el == 1) { 10929 /* Trap to PL1, which might be EL1 or EL3 */ 10930 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 10931 return 3; 10932 } 10933 return 1; 10934 } 10935 if (cur_el == 3 && !is_a64(env)) { 10936 /* Secure PL1 running at EL3 */ 10937 return 3; 10938 } 10939 break; 10940 case 1: 10941 if (cur_el == 0) { 10942 return 1; 10943 } 10944 break; 10945 case 3: 10946 break; 10947 } 10948 10949 /* 10950 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 10951 * to control non-secure access to the FPU. It doesn't have any 10952 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 10953 */ 10954 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 10955 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 10956 if (!extract32(env->cp15.nsacr, 10, 1)) { 10957 /* FP insns act as UNDEF */ 10958 return cur_el == 2 ? 2 : 1; 10959 } 10960 } 10961 10962 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 10963 * check because zero bits in the registers mean "don't trap". 10964 */ 10965 10966 /* CPTR_EL2 : present in v7VE or v8 */ 10967 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 10968 && !arm_is_secure_below_el3(env)) { 10969 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 10970 return 2; 10971 } 10972 10973 /* CPTR_EL3 : present in v8 */ 10974 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 10975 /* Trap all FP ops to EL3 */ 10976 return 3; 10977 } 10978 #endif 10979 return 0; 10980 } 10981 10982 #ifndef CONFIG_TCG 10983 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 10984 { 10985 g_assert_not_reached(); 10986 } 10987 #endif 10988 10989 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 10990 { 10991 int el; 10992 10993 if (arm_feature(env, ARM_FEATURE_M)) { 10994 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 10995 } 10996 10997 el = arm_current_el(env); 10998 if (el < 2 && arm_is_secure_below_el3(env)) { 10999 return ARMMMUIdx_S1SE0 + el; 11000 } else { 11001 return ARMMMUIdx_S12NSE0 + el; 11002 } 11003 } 11004 11005 int cpu_mmu_index(CPUARMState *env, bool ifetch) 11006 { 11007 return arm_to_core_mmu_idx(arm_mmu_idx(env)); 11008 } 11009 11010 #ifndef CONFIG_USER_ONLY 11011 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 11012 { 11013 return stage_1_mmu_idx(arm_mmu_idx(env)); 11014 } 11015 #endif 11016 11017 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11018 target_ulong *cs_base, uint32_t *pflags) 11019 { 11020 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 11021 int current_el = arm_current_el(env); 11022 int fp_el = fp_exception_el(env, current_el); 11023 uint32_t flags = 0; 11024 11025 if (is_a64(env)) { 11026 ARMCPU *cpu = env_archcpu(env); 11027 uint64_t sctlr; 11028 11029 *pc = env->pc; 11030 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 11031 11032 /* Get control bits for tagged addresses. */ 11033 { 11034 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 11035 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1); 11036 int tbii, tbid; 11037 11038 /* FIXME: ARMv8.1-VHE S2 translation regime. */ 11039 if (regime_el(env, stage1) < 2) { 11040 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1); 11041 tbid = (p1.tbi << 1) | p0.tbi; 11042 tbii = tbid & ~((p1.tbid << 1) | p0.tbid); 11043 } else { 11044 tbid = p0.tbi; 11045 tbii = tbid & !p0.tbid; 11046 } 11047 11048 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 11049 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 11050 } 11051 11052 if (cpu_isar_feature(aa64_sve, cpu)) { 11053 int sve_el = sve_exception_el(env, current_el); 11054 uint32_t zcr_len; 11055 11056 /* If SVE is disabled, but FP is enabled, 11057 * then the effective len is 0. 11058 */ 11059 if (sve_el != 0 && fp_el == 0) { 11060 zcr_len = 0; 11061 } else { 11062 zcr_len = sve_zcr_len_for_el(env, current_el); 11063 } 11064 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 11065 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 11066 } 11067 11068 sctlr = arm_sctlr(env, current_el); 11069 11070 if (cpu_isar_feature(aa64_pauth, cpu)) { 11071 /* 11072 * In order to save space in flags, we record only whether 11073 * pauth is "inactive", meaning all insns are implemented as 11074 * a nop, or "active" when some action must be performed. 11075 * The decision of which action to take is left to a helper. 11076 */ 11077 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 11078 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 11079 } 11080 } 11081 11082 if (cpu_isar_feature(aa64_bti, cpu)) { 11083 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 11084 if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 11085 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 11086 } 11087 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 11088 } 11089 } else { 11090 *pc = env->regs[15]; 11091 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb); 11092 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len); 11093 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride); 11094 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits); 11095 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env)); 11096 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 11097 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 11098 || arm_el_is_aa64(env, 1) || arm_feature(env, ARM_FEATURE_M)) { 11099 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 11100 } 11101 /* Note that XSCALE_CPAR shares bits with VECSTRIDE */ 11102 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11103 flags = FIELD_DP32(flags, TBFLAG_A32, 11104 XSCALE_CPAR, env->cp15.c15_cpar); 11105 } 11106 } 11107 11108 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 11109 11110 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11111 * states defined in the ARM ARM for software singlestep: 11112 * SS_ACTIVE PSTATE.SS State 11113 * 0 x Inactive (the TB flag for SS is always 0) 11114 * 1 0 Active-pending 11115 * 1 1 Active-not-pending 11116 */ 11117 if (arm_singlestep_active(env)) { 11118 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 11119 if (is_a64(env)) { 11120 if (env->pstate & PSTATE_SS) { 11121 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 11122 } 11123 } else { 11124 if (env->uncached_cpsr & PSTATE_SS) { 11125 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 11126 } 11127 } 11128 } 11129 if (arm_cpu_data_is_big_endian(env)) { 11130 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 11131 } 11132 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 11133 11134 if (arm_v7m_is_handler_mode(env)) { 11135 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1); 11136 } 11137 11138 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is 11139 * suppressing them because the requested execution priority is less than 0. 11140 */ 11141 if (arm_feature(env, ARM_FEATURE_V8) && 11142 arm_feature(env, ARM_FEATURE_M) && 11143 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 11144 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 11145 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1); 11146 } 11147 11148 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11149 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) != env->v7m.secure) { 11150 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1); 11151 } 11152 11153 if (arm_feature(env, ARM_FEATURE_M) && 11154 (env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11155 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11156 (env->v7m.secure && 11157 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11158 /* 11159 * ASPEN is set, but FPCA/SFPA indicate that there is no active 11160 * FP context; we must create a new FP context before executing 11161 * any FP insn. 11162 */ 11163 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1); 11164 } 11165 11166 if (arm_feature(env, ARM_FEATURE_M)) { 11167 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11168 11169 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11170 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1); 11171 } 11172 } 11173 11174 *pflags = flags; 11175 *cs_base = 0; 11176 } 11177 11178 #ifdef TARGET_AARCH64 11179 /* 11180 * The manual says that when SVE is enabled and VQ is widened the 11181 * implementation is allowed to zero the previously inaccessible 11182 * portion of the registers. The corollary to that is that when 11183 * SVE is enabled and VQ is narrowed we are also allowed to zero 11184 * the now inaccessible portion of the registers. 11185 * 11186 * The intent of this is that no predicate bit beyond VQ is ever set. 11187 * Which means that some operations on predicate registers themselves 11188 * may operate on full uint64_t or even unrolled across the maximum 11189 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11190 * may well be cheaper than conditionals to restrict the operation 11191 * to the relevant portion of a uint16_t[16]. 11192 */ 11193 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11194 { 11195 int i, j; 11196 uint64_t pmask; 11197 11198 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11199 assert(vq <= env_archcpu(env)->sve_max_vq); 11200 11201 /* Zap the high bits of the zregs. */ 11202 for (i = 0; i < 32; i++) { 11203 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11204 } 11205 11206 /* Zap the high bits of the pregs and ffr. */ 11207 pmask = 0; 11208 if (vq & 3) { 11209 pmask = ~(-1ULL << (16 * (vq & 3))); 11210 } 11211 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11212 for (i = 0; i < 17; ++i) { 11213 env->vfp.pregs[i].p[j] &= pmask; 11214 } 11215 pmask = 0; 11216 } 11217 } 11218 11219 /* 11220 * Notice a change in SVE vector size when changing EL. 11221 */ 11222 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11223 int new_el, bool el0_a64) 11224 { 11225 ARMCPU *cpu = env_archcpu(env); 11226 int old_len, new_len; 11227 bool old_a64, new_a64; 11228 11229 /* Nothing to do if no SVE. */ 11230 if (!cpu_isar_feature(aa64_sve, cpu)) { 11231 return; 11232 } 11233 11234 /* Nothing to do if FP is disabled in either EL. */ 11235 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11236 return; 11237 } 11238 11239 /* 11240 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11241 * at ELx, or not available because the EL is in AArch32 state, then 11242 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11243 * has an effective value of 0". 11244 * 11245 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11246 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11247 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11248 * we already have the correct register contents when encountering the 11249 * vq0->vq0 transition between EL0->EL1. 11250 */ 11251 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11252 old_len = (old_a64 && !sve_exception_el(env, old_el) 11253 ? sve_zcr_len_for_el(env, old_el) : 0); 11254 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11255 new_len = (new_a64 && !sve_exception_el(env, new_el) 11256 ? sve_zcr_len_for_el(env, new_el) : 0); 11257 11258 /* When changing vector length, clear inaccessible state. */ 11259 if (new_len < old_len) { 11260 aarch64_sve_narrow_vq(env, new_len + 1); 11261 } 11262 } 11263 #endif 11264