1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "sysemu/tcg.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #endif 38 39 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 40 41 #ifndef CONFIG_USER_ONLY 42 43 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 44 MMUAccessType access_type, ARMMMUIdx mmu_idx, 45 bool s1_is_el0, 46 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 47 target_ulong *page_size_ptr, 48 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 49 __attribute__((nonnull)); 50 #endif 51 52 static void switch_mode(CPUARMState *env, int mode); 53 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 54 55 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 56 { 57 ARMCPU *cpu = env_archcpu(env); 58 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 59 60 /* VFP data registers are always little-endian. */ 61 if (reg < nregs) { 62 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); 63 } 64 if (arm_feature(env, ARM_FEATURE_NEON)) { 65 /* Aliases for Q regs. */ 66 nregs += 16; 67 if (reg < nregs) { 68 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 69 return gdb_get_reg128(buf, q[0], q[1]); 70 } 71 } 72 switch (reg - nregs) { 73 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; 74 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; 75 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; 76 } 77 return 0; 78 } 79 80 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 81 { 82 ARMCPU *cpu = env_archcpu(env); 83 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 84 85 if (reg < nregs) { 86 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 87 return 8; 88 } 89 if (arm_feature(env, ARM_FEATURE_NEON)) { 90 nregs += 16; 91 if (reg < nregs) { 92 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 93 q[0] = ldq_le_p(buf); 94 q[1] = ldq_le_p(buf + 8); 95 return 16; 96 } 97 } 98 switch (reg - nregs) { 99 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 100 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 101 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 102 } 103 return 0; 104 } 105 106 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 107 { 108 switch (reg) { 109 case 0 ... 31: 110 { 111 /* 128 bit FP register - quads are in LE order */ 112 uint64_t *q = aa64_vfp_qreg(env, reg); 113 return gdb_get_reg128(buf, q[1], q[0]); 114 } 115 case 32: 116 /* FPSR */ 117 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 118 case 33: 119 /* FPCR */ 120 return gdb_get_reg32(buf,vfp_get_fpcr(env)); 121 default: 122 return 0; 123 } 124 } 125 126 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 127 { 128 switch (reg) { 129 case 0 ... 31: 130 /* 128 bit FP register */ 131 { 132 uint64_t *q = aa64_vfp_qreg(env, reg); 133 q[0] = ldq_le_p(buf); 134 q[1] = ldq_le_p(buf + 8); 135 return 16; 136 } 137 case 32: 138 /* FPSR */ 139 vfp_set_fpsr(env, ldl_p(buf)); 140 return 4; 141 case 33: 142 /* FPCR */ 143 vfp_set_fpcr(env, ldl_p(buf)); 144 return 4; 145 default: 146 return 0; 147 } 148 } 149 150 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 151 { 152 assert(ri->fieldoffset); 153 if (cpreg_field_is_64bit(ri)) { 154 return CPREG_FIELD64(env, ri); 155 } else { 156 return CPREG_FIELD32(env, ri); 157 } 158 } 159 160 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 161 uint64_t value) 162 { 163 assert(ri->fieldoffset); 164 if (cpreg_field_is_64bit(ri)) { 165 CPREG_FIELD64(env, ri) = value; 166 } else { 167 CPREG_FIELD32(env, ri) = value; 168 } 169 } 170 171 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 172 { 173 return (char *)env + ri->fieldoffset; 174 } 175 176 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 177 { 178 /* Raw read of a coprocessor register (as needed for migration, etc). */ 179 if (ri->type & ARM_CP_CONST) { 180 return ri->resetvalue; 181 } else if (ri->raw_readfn) { 182 return ri->raw_readfn(env, ri); 183 } else if (ri->readfn) { 184 return ri->readfn(env, ri); 185 } else { 186 return raw_read(env, ri); 187 } 188 } 189 190 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 191 uint64_t v) 192 { 193 /* Raw write of a coprocessor register (as needed for migration, etc). 194 * Note that constant registers are treated as write-ignored; the 195 * caller should check for success by whether a readback gives the 196 * value written. 197 */ 198 if (ri->type & ARM_CP_CONST) { 199 return; 200 } else if (ri->raw_writefn) { 201 ri->raw_writefn(env, ri, v); 202 } else if (ri->writefn) { 203 ri->writefn(env, ri, v); 204 } else { 205 raw_write(env, ri, v); 206 } 207 } 208 209 /** 210 * arm_get/set_gdb_*: get/set a gdb register 211 * @env: the CPU state 212 * @buf: a buffer to copy to/from 213 * @reg: register number (offset from start of group) 214 * 215 * We return the number of bytes copied 216 */ 217 218 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) 219 { 220 ARMCPU *cpu = env_archcpu(env); 221 const ARMCPRegInfo *ri; 222 uint32_t key; 223 224 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; 225 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 226 if (ri) { 227 if (cpreg_field_is_64bit(ri)) { 228 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 229 } else { 230 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 231 } 232 } 233 return 0; 234 } 235 236 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 237 { 238 return 0; 239 } 240 241 #ifdef TARGET_AARCH64 242 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) 243 { 244 ARMCPU *cpu = env_archcpu(env); 245 246 switch (reg) { 247 /* The first 32 registers are the zregs */ 248 case 0 ... 31: 249 { 250 int vq, len = 0; 251 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 252 len += gdb_get_reg128(buf, 253 env->vfp.zregs[reg].d[vq * 2 + 1], 254 env->vfp.zregs[reg].d[vq * 2]); 255 } 256 return len; 257 } 258 case 32: 259 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 260 case 33: 261 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 262 /* then 16 predicates and the ffr */ 263 case 34 ... 50: 264 { 265 int preg = reg - 34; 266 int vq, len = 0; 267 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 268 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 269 } 270 return len; 271 } 272 case 51: 273 { 274 /* 275 * We report in Vector Granules (VG) which is 64bit in a Z reg 276 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 277 */ 278 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; 279 return gdb_get_reg32(buf, vq * 2); 280 } 281 default: 282 /* gdbstub asked for something out our range */ 283 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 284 break; 285 } 286 287 return 0; 288 } 289 290 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) 291 { 292 ARMCPU *cpu = env_archcpu(env); 293 294 /* The first 32 registers are the zregs */ 295 switch (reg) { 296 /* The first 32 registers are the zregs */ 297 case 0 ... 31: 298 { 299 int vq, len = 0; 300 uint64_t *p = (uint64_t *) buf; 301 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 302 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 303 env->vfp.zregs[reg].d[vq * 2] = *p++; 304 len += 16; 305 } 306 return len; 307 } 308 case 32: 309 vfp_set_fpsr(env, *(uint32_t *)buf); 310 return 4; 311 case 33: 312 vfp_set_fpcr(env, *(uint32_t *)buf); 313 return 4; 314 case 34 ... 50: 315 { 316 int preg = reg - 34; 317 int vq, len = 0; 318 uint64_t *p = (uint64_t *) buf; 319 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 320 env->vfp.pregs[preg].p[vq / 4] = *p++; 321 len += 8; 322 } 323 return len; 324 } 325 case 51: 326 /* cannot set vg via gdbstub */ 327 return 0; 328 default: 329 /* gdbstub asked for something out our range */ 330 break; 331 } 332 333 return 0; 334 } 335 #endif /* TARGET_AARCH64 */ 336 337 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 338 { 339 /* Return true if the regdef would cause an assertion if you called 340 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 341 * program bug for it not to have the NO_RAW flag). 342 * NB that returning false here doesn't necessarily mean that calling 343 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 344 * read/write access functions which are safe for raw use" from "has 345 * read/write access functions which have side effects but has forgotten 346 * to provide raw access functions". 347 * The tests here line up with the conditions in read/write_raw_cp_reg() 348 * and assertions in raw_read()/raw_write(). 349 */ 350 if ((ri->type & ARM_CP_CONST) || 351 ri->fieldoffset || 352 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 353 return false; 354 } 355 return true; 356 } 357 358 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 359 { 360 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 361 int i; 362 bool ok = true; 363 364 for (i = 0; i < cpu->cpreg_array_len; i++) { 365 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 366 const ARMCPRegInfo *ri; 367 uint64_t newval; 368 369 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 370 if (!ri) { 371 ok = false; 372 continue; 373 } 374 if (ri->type & ARM_CP_NO_RAW) { 375 continue; 376 } 377 378 newval = read_raw_cp_reg(&cpu->env, ri); 379 if (kvm_sync) { 380 /* 381 * Only sync if the previous list->cpustate sync succeeded. 382 * Rather than tracking the success/failure state for every 383 * item in the list, we just recheck "does the raw write we must 384 * have made in write_list_to_cpustate() read back OK" here. 385 */ 386 uint64_t oldval = cpu->cpreg_values[i]; 387 388 if (oldval == newval) { 389 continue; 390 } 391 392 write_raw_cp_reg(&cpu->env, ri, oldval); 393 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 394 continue; 395 } 396 397 write_raw_cp_reg(&cpu->env, ri, newval); 398 } 399 cpu->cpreg_values[i] = newval; 400 } 401 return ok; 402 } 403 404 bool write_list_to_cpustate(ARMCPU *cpu) 405 { 406 int i; 407 bool ok = true; 408 409 for (i = 0; i < cpu->cpreg_array_len; i++) { 410 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 411 uint64_t v = cpu->cpreg_values[i]; 412 const ARMCPRegInfo *ri; 413 414 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 415 if (!ri) { 416 ok = false; 417 continue; 418 } 419 if (ri->type & ARM_CP_NO_RAW) { 420 continue; 421 } 422 /* Write value and confirm it reads back as written 423 * (to catch read-only registers and partially read-only 424 * registers where the incoming migration value doesn't match) 425 */ 426 write_raw_cp_reg(&cpu->env, ri, v); 427 if (read_raw_cp_reg(&cpu->env, ri) != v) { 428 ok = false; 429 } 430 } 431 return ok; 432 } 433 434 static void add_cpreg_to_list(gpointer key, gpointer opaque) 435 { 436 ARMCPU *cpu = opaque; 437 uint64_t regidx; 438 const ARMCPRegInfo *ri; 439 440 regidx = *(uint32_t *)key; 441 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 442 443 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 444 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 445 /* The value array need not be initialized at this point */ 446 cpu->cpreg_array_len++; 447 } 448 } 449 450 static void count_cpreg(gpointer key, gpointer opaque) 451 { 452 ARMCPU *cpu = opaque; 453 uint64_t regidx; 454 const ARMCPRegInfo *ri; 455 456 regidx = *(uint32_t *)key; 457 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 458 459 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 460 cpu->cpreg_array_len++; 461 } 462 } 463 464 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 465 { 466 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 467 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 468 469 if (aidx > bidx) { 470 return 1; 471 } 472 if (aidx < bidx) { 473 return -1; 474 } 475 return 0; 476 } 477 478 void init_cpreg_list(ARMCPU *cpu) 479 { 480 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 481 * Note that we require cpreg_tuples[] to be sorted by key ID. 482 */ 483 GList *keys; 484 int arraylen; 485 486 keys = g_hash_table_get_keys(cpu->cp_regs); 487 keys = g_list_sort(keys, cpreg_key_compare); 488 489 cpu->cpreg_array_len = 0; 490 491 g_list_foreach(keys, count_cpreg, cpu); 492 493 arraylen = cpu->cpreg_array_len; 494 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 495 cpu->cpreg_values = g_new(uint64_t, arraylen); 496 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 497 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 498 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 499 cpu->cpreg_array_len = 0; 500 501 g_list_foreach(keys, add_cpreg_to_list, cpu); 502 503 assert(cpu->cpreg_array_len == arraylen); 504 505 g_list_free(keys); 506 } 507 508 /* 509 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 510 */ 511 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 512 const ARMCPRegInfo *ri, 513 bool isread) 514 { 515 if (!is_a64(env) && arm_current_el(env) == 3 && 516 arm_is_secure_below_el3(env)) { 517 return CP_ACCESS_TRAP_UNCATEGORIZED; 518 } 519 return CP_ACCESS_OK; 520 } 521 522 /* Some secure-only AArch32 registers trap to EL3 if used from 523 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 524 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 525 * We assume that the .access field is set to PL1_RW. 526 */ 527 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 528 const ARMCPRegInfo *ri, 529 bool isread) 530 { 531 if (arm_current_el(env) == 3) { 532 return CP_ACCESS_OK; 533 } 534 if (arm_is_secure_below_el3(env)) { 535 return CP_ACCESS_TRAP_EL3; 536 } 537 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 538 return CP_ACCESS_TRAP_UNCATEGORIZED; 539 } 540 541 /* Check for traps to "powerdown debug" registers, which are controlled 542 * by MDCR.TDOSA 543 */ 544 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 545 bool isread) 546 { 547 int el = arm_current_el(env); 548 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 549 (env->cp15.mdcr_el2 & MDCR_TDE) || 550 (arm_hcr_el2_eff(env) & HCR_TGE); 551 552 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 553 return CP_ACCESS_TRAP_EL2; 554 } 555 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 556 return CP_ACCESS_TRAP_EL3; 557 } 558 return CP_ACCESS_OK; 559 } 560 561 /* Check for traps to "debug ROM" registers, which are controlled 562 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 563 */ 564 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 565 bool isread) 566 { 567 int el = arm_current_el(env); 568 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 569 (env->cp15.mdcr_el2 & MDCR_TDE) || 570 (arm_hcr_el2_eff(env) & HCR_TGE); 571 572 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 573 return CP_ACCESS_TRAP_EL2; 574 } 575 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 576 return CP_ACCESS_TRAP_EL3; 577 } 578 return CP_ACCESS_OK; 579 } 580 581 /* Check for traps to general debug registers, which are controlled 582 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 583 */ 584 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 585 bool isread) 586 { 587 int el = arm_current_el(env); 588 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 589 (env->cp15.mdcr_el2 & MDCR_TDE) || 590 (arm_hcr_el2_eff(env) & HCR_TGE); 591 592 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 593 return CP_ACCESS_TRAP_EL2; 594 } 595 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 596 return CP_ACCESS_TRAP_EL3; 597 } 598 return CP_ACCESS_OK; 599 } 600 601 /* Check for traps to performance monitor registers, which are controlled 602 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 603 */ 604 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 605 bool isread) 606 { 607 int el = arm_current_el(env); 608 609 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 610 && !arm_is_secure_below_el3(env)) { 611 return CP_ACCESS_TRAP_EL2; 612 } 613 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 614 return CP_ACCESS_TRAP_EL3; 615 } 616 return CP_ACCESS_OK; 617 } 618 619 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 620 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 621 bool isread) 622 { 623 if (arm_current_el(env) == 1) { 624 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 625 if (arm_hcr_el2_eff(env) & trap) { 626 return CP_ACCESS_TRAP_EL2; 627 } 628 } 629 return CP_ACCESS_OK; 630 } 631 632 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 633 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 634 bool isread) 635 { 636 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 637 return CP_ACCESS_TRAP_EL2; 638 } 639 return CP_ACCESS_OK; 640 } 641 642 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 643 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 644 bool isread) 645 { 646 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 647 return CP_ACCESS_TRAP_EL2; 648 } 649 return CP_ACCESS_OK; 650 } 651 652 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 653 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 654 bool isread) 655 { 656 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 657 return CP_ACCESS_TRAP_EL2; 658 } 659 return CP_ACCESS_OK; 660 } 661 662 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 663 { 664 ARMCPU *cpu = env_archcpu(env); 665 666 raw_write(env, ri, value); 667 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 668 } 669 670 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 671 { 672 ARMCPU *cpu = env_archcpu(env); 673 674 if (raw_read(env, ri) != value) { 675 /* Unlike real hardware the qemu TLB uses virtual addresses, 676 * not modified virtual addresses, so this causes a TLB flush. 677 */ 678 tlb_flush(CPU(cpu)); 679 raw_write(env, ri, value); 680 } 681 } 682 683 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 684 uint64_t value) 685 { 686 ARMCPU *cpu = env_archcpu(env); 687 688 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 689 && !extended_addresses_enabled(env)) { 690 /* For VMSA (when not using the LPAE long descriptor page table 691 * format) this register includes the ASID, so do a TLB flush. 692 * For PMSA it is purely a process ID and no action is needed. 693 */ 694 tlb_flush(CPU(cpu)); 695 } 696 raw_write(env, ri, value); 697 } 698 699 /* IS variants of TLB operations must affect all cores */ 700 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 701 uint64_t value) 702 { 703 CPUState *cs = env_cpu(env); 704 705 tlb_flush_all_cpus_synced(cs); 706 } 707 708 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 709 uint64_t value) 710 { 711 CPUState *cs = env_cpu(env); 712 713 tlb_flush_all_cpus_synced(cs); 714 } 715 716 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 717 uint64_t value) 718 { 719 CPUState *cs = env_cpu(env); 720 721 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 722 } 723 724 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 725 uint64_t value) 726 { 727 CPUState *cs = env_cpu(env); 728 729 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 730 } 731 732 /* 733 * Non-IS variants of TLB operations are upgraded to 734 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 735 * force broadcast of these operations. 736 */ 737 static bool tlb_force_broadcast(CPUARMState *env) 738 { 739 return (env->cp15.hcr_el2 & HCR_FB) && 740 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 741 } 742 743 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 744 uint64_t value) 745 { 746 /* Invalidate all (TLBIALL) */ 747 CPUState *cs = env_cpu(env); 748 749 if (tlb_force_broadcast(env)) { 750 tlb_flush_all_cpus_synced(cs); 751 } else { 752 tlb_flush(cs); 753 } 754 } 755 756 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 757 uint64_t value) 758 { 759 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 760 CPUState *cs = env_cpu(env); 761 762 value &= TARGET_PAGE_MASK; 763 if (tlb_force_broadcast(env)) { 764 tlb_flush_page_all_cpus_synced(cs, value); 765 } else { 766 tlb_flush_page(cs, value); 767 } 768 } 769 770 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 771 uint64_t value) 772 { 773 /* Invalidate by ASID (TLBIASID) */ 774 CPUState *cs = env_cpu(env); 775 776 if (tlb_force_broadcast(env)) { 777 tlb_flush_all_cpus_synced(cs); 778 } else { 779 tlb_flush(cs); 780 } 781 } 782 783 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 784 uint64_t value) 785 { 786 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 787 CPUState *cs = env_cpu(env); 788 789 value &= TARGET_PAGE_MASK; 790 if (tlb_force_broadcast(env)) { 791 tlb_flush_page_all_cpus_synced(cs, value); 792 } else { 793 tlb_flush_page(cs, value); 794 } 795 } 796 797 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 798 uint64_t value) 799 { 800 CPUState *cs = env_cpu(env); 801 802 tlb_flush_by_mmuidx(cs, 803 ARMMMUIdxBit_E10_1 | 804 ARMMMUIdxBit_E10_1_PAN | 805 ARMMMUIdxBit_E10_0); 806 } 807 808 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 809 uint64_t value) 810 { 811 CPUState *cs = env_cpu(env); 812 813 tlb_flush_by_mmuidx_all_cpus_synced(cs, 814 ARMMMUIdxBit_E10_1 | 815 ARMMMUIdxBit_E10_1_PAN | 816 ARMMMUIdxBit_E10_0); 817 } 818 819 820 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 821 uint64_t value) 822 { 823 CPUState *cs = env_cpu(env); 824 825 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 826 } 827 828 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 829 uint64_t value) 830 { 831 CPUState *cs = env_cpu(env); 832 833 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 834 } 835 836 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 837 uint64_t value) 838 { 839 CPUState *cs = env_cpu(env); 840 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 841 842 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 843 } 844 845 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 846 uint64_t value) 847 { 848 CPUState *cs = env_cpu(env); 849 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 850 851 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 852 ARMMMUIdxBit_E2); 853 } 854 855 static const ARMCPRegInfo cp_reginfo[] = { 856 /* Define the secure and non-secure FCSE identifier CP registers 857 * separately because there is no secure bank in V8 (no _EL3). This allows 858 * the secure register to be properly reset and migrated. There is also no 859 * v8 EL1 version of the register so the non-secure instance stands alone. 860 */ 861 { .name = "FCSEIDR", 862 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 863 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 864 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 865 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 866 { .name = "FCSEIDR_S", 867 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 868 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 869 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 870 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 871 /* Define the secure and non-secure context identifier CP registers 872 * separately because there is no secure bank in V8 (no _EL3). This allows 873 * the secure register to be properly reset and migrated. In the 874 * non-secure case, the 32-bit register will have reset and migration 875 * disabled during registration as it is handled by the 64-bit instance. 876 */ 877 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 878 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 879 .access = PL1_RW, .accessfn = access_tvm_trvm, 880 .secure = ARM_CP_SECSTATE_NS, 881 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 882 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 883 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 884 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 885 .access = PL1_RW, .accessfn = access_tvm_trvm, 886 .secure = ARM_CP_SECSTATE_S, 887 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 888 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 889 REGINFO_SENTINEL 890 }; 891 892 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 893 /* NB: Some of these registers exist in v8 but with more precise 894 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 895 */ 896 /* MMU Domain access control / MPU write buffer control */ 897 { .name = "DACR", 898 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 899 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 900 .writefn = dacr_write, .raw_writefn = raw_write, 901 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 902 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 903 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 904 * For v6 and v5, these mappings are overly broad. 905 */ 906 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 907 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 908 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 909 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 910 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 911 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 912 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 913 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 914 /* Cache maintenance ops; some of this space may be overridden later. */ 915 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 916 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 917 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 918 REGINFO_SENTINEL 919 }; 920 921 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 922 /* Not all pre-v6 cores implemented this WFI, so this is slightly 923 * over-broad. 924 */ 925 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 926 .access = PL1_W, .type = ARM_CP_WFI }, 927 REGINFO_SENTINEL 928 }; 929 930 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 931 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 932 * is UNPREDICTABLE; we choose to NOP as most implementations do). 933 */ 934 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 935 .access = PL1_W, .type = ARM_CP_WFI }, 936 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 937 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 938 * OMAPCP will override this space. 939 */ 940 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 941 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 942 .resetvalue = 0 }, 943 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 944 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 945 .resetvalue = 0 }, 946 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 947 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 948 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 949 .resetvalue = 0 }, 950 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 951 * implementing it as RAZ means the "debug architecture version" bits 952 * will read as a reserved value, which should cause Linux to not try 953 * to use the debug hardware. 954 */ 955 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 956 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 957 /* MMU TLB control. Note that the wildcarding means we cover not just 958 * the unified TLB ops but also the dside/iside/inner-shareable variants. 959 */ 960 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 961 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 962 .type = ARM_CP_NO_RAW }, 963 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 964 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 965 .type = ARM_CP_NO_RAW }, 966 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 967 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 968 .type = ARM_CP_NO_RAW }, 969 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 970 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 971 .type = ARM_CP_NO_RAW }, 972 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 973 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 974 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 975 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 976 REGINFO_SENTINEL 977 }; 978 979 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 980 uint64_t value) 981 { 982 uint32_t mask = 0; 983 984 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 985 if (!arm_feature(env, ARM_FEATURE_V8)) { 986 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 987 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 988 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 989 */ 990 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 991 /* VFP coprocessor: cp10 & cp11 [23:20] */ 992 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 993 994 if (!arm_feature(env, ARM_FEATURE_NEON)) { 995 /* ASEDIS [31] bit is RAO/WI */ 996 value |= (1 << 31); 997 } 998 999 /* VFPv3 and upwards with NEON implement 32 double precision 1000 * registers (D0-D31). 1001 */ 1002 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 1003 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 1004 value |= (1 << 30); 1005 } 1006 } 1007 value &= mask; 1008 } 1009 1010 /* 1011 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1012 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1013 */ 1014 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1015 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1016 value &= ~(0xf << 20); 1017 value |= env->cp15.cpacr_el1 & (0xf << 20); 1018 } 1019 1020 env->cp15.cpacr_el1 = value; 1021 } 1022 1023 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1024 { 1025 /* 1026 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1027 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1028 */ 1029 uint64_t value = env->cp15.cpacr_el1; 1030 1031 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1032 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1033 value &= ~(0xf << 20); 1034 } 1035 return value; 1036 } 1037 1038 1039 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1040 { 1041 /* Call cpacr_write() so that we reset with the correct RAO bits set 1042 * for our CPU features. 1043 */ 1044 cpacr_write(env, ri, 0); 1045 } 1046 1047 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1048 bool isread) 1049 { 1050 if (arm_feature(env, ARM_FEATURE_V8)) { 1051 /* Check if CPACR accesses are to be trapped to EL2 */ 1052 if (arm_current_el(env) == 1 && 1053 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 1054 return CP_ACCESS_TRAP_EL2; 1055 /* Check if CPACR accesses are to be trapped to EL3 */ 1056 } else if (arm_current_el(env) < 3 && 1057 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1058 return CP_ACCESS_TRAP_EL3; 1059 } 1060 } 1061 1062 return CP_ACCESS_OK; 1063 } 1064 1065 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1066 bool isread) 1067 { 1068 /* Check if CPTR accesses are set to trap to EL3 */ 1069 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1070 return CP_ACCESS_TRAP_EL3; 1071 } 1072 1073 return CP_ACCESS_OK; 1074 } 1075 1076 static const ARMCPRegInfo v6_cp_reginfo[] = { 1077 /* prefetch by MVA in v6, NOP in v7 */ 1078 { .name = "MVA_prefetch", 1079 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1080 .access = PL1_W, .type = ARM_CP_NOP }, 1081 /* We need to break the TB after ISB to execute self-modifying code 1082 * correctly and also to take any pending interrupts immediately. 1083 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1084 */ 1085 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1086 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1087 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1088 .access = PL0_W, .type = ARM_CP_NOP }, 1089 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1090 .access = PL0_W, .type = ARM_CP_NOP }, 1091 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1092 .access = PL1_RW, .accessfn = access_tvm_trvm, 1093 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1094 offsetof(CPUARMState, cp15.ifar_ns) }, 1095 .resetvalue = 0, }, 1096 /* Watchpoint Fault Address Register : should actually only be present 1097 * for 1136, 1176, 11MPCore. 1098 */ 1099 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1100 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1101 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1102 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1103 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1104 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1105 REGINFO_SENTINEL 1106 }; 1107 1108 /* Definitions for the PMU registers */ 1109 #define PMCRN_MASK 0xf800 1110 #define PMCRN_SHIFT 11 1111 #define PMCRLC 0x40 1112 #define PMCRDP 0x20 1113 #define PMCRX 0x10 1114 #define PMCRD 0x8 1115 #define PMCRC 0x4 1116 #define PMCRP 0x2 1117 #define PMCRE 0x1 1118 /* 1119 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1120 * which can be written as 1 to trigger behaviour but which stay RAZ). 1121 */ 1122 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1123 1124 #define PMXEVTYPER_P 0x80000000 1125 #define PMXEVTYPER_U 0x40000000 1126 #define PMXEVTYPER_NSK 0x20000000 1127 #define PMXEVTYPER_NSU 0x10000000 1128 #define PMXEVTYPER_NSH 0x08000000 1129 #define PMXEVTYPER_M 0x04000000 1130 #define PMXEVTYPER_MT 0x02000000 1131 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1132 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1133 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1134 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1135 PMXEVTYPER_EVTCOUNT) 1136 1137 #define PMCCFILTR 0xf8000000 1138 #define PMCCFILTR_M PMXEVTYPER_M 1139 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1140 1141 static inline uint32_t pmu_num_counters(CPUARMState *env) 1142 { 1143 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1144 } 1145 1146 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1147 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1148 { 1149 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1150 } 1151 1152 typedef struct pm_event { 1153 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1154 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1155 bool (*supported)(CPUARMState *); 1156 /* 1157 * Retrieve the current count of the underlying event. The programmed 1158 * counters hold a difference from the return value from this function 1159 */ 1160 uint64_t (*get_count)(CPUARMState *); 1161 /* 1162 * Return how many nanoseconds it will take (at a minimum) for count events 1163 * to occur. A negative value indicates the counter will never overflow, or 1164 * that the counter has otherwise arranged for the overflow bit to be set 1165 * and the PMU interrupt to be raised on overflow. 1166 */ 1167 int64_t (*ns_per_count)(uint64_t); 1168 } pm_event; 1169 1170 static bool event_always_supported(CPUARMState *env) 1171 { 1172 return true; 1173 } 1174 1175 static uint64_t swinc_get_count(CPUARMState *env) 1176 { 1177 /* 1178 * SW_INCR events are written directly to the pmevcntr's by writes to 1179 * PMSWINC, so there is no underlying count maintained by the PMU itself 1180 */ 1181 return 0; 1182 } 1183 1184 static int64_t swinc_ns_per(uint64_t ignored) 1185 { 1186 return -1; 1187 } 1188 1189 /* 1190 * Return the underlying cycle count for the PMU cycle counters. If we're in 1191 * usermode, simply return 0. 1192 */ 1193 static uint64_t cycles_get_count(CPUARMState *env) 1194 { 1195 #ifndef CONFIG_USER_ONLY 1196 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1197 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1198 #else 1199 return cpu_get_host_ticks(); 1200 #endif 1201 } 1202 1203 #ifndef CONFIG_USER_ONLY 1204 static int64_t cycles_ns_per(uint64_t cycles) 1205 { 1206 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1207 } 1208 1209 static bool instructions_supported(CPUARMState *env) 1210 { 1211 return icount_enabled() == 1; /* Precise instruction counting */ 1212 } 1213 1214 static uint64_t instructions_get_count(CPUARMState *env) 1215 { 1216 return (uint64_t)icount_get_raw(); 1217 } 1218 1219 static int64_t instructions_ns_per(uint64_t icount) 1220 { 1221 return icount_to_ns((int64_t)icount); 1222 } 1223 #endif 1224 1225 static bool pmu_8_1_events_supported(CPUARMState *env) 1226 { 1227 /* For events which are supported in any v8.1 PMU */ 1228 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1229 } 1230 1231 static bool pmu_8_4_events_supported(CPUARMState *env) 1232 { 1233 /* For events which are supported in any v8.1 PMU */ 1234 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1235 } 1236 1237 static uint64_t zero_event_get_count(CPUARMState *env) 1238 { 1239 /* For events which on QEMU never fire, so their count is always zero */ 1240 return 0; 1241 } 1242 1243 static int64_t zero_event_ns_per(uint64_t cycles) 1244 { 1245 /* An event which never fires can never overflow */ 1246 return -1; 1247 } 1248 1249 static const pm_event pm_events[] = { 1250 { .number = 0x000, /* SW_INCR */ 1251 .supported = event_always_supported, 1252 .get_count = swinc_get_count, 1253 .ns_per_count = swinc_ns_per, 1254 }, 1255 #ifndef CONFIG_USER_ONLY 1256 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1257 .supported = instructions_supported, 1258 .get_count = instructions_get_count, 1259 .ns_per_count = instructions_ns_per, 1260 }, 1261 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1262 .supported = event_always_supported, 1263 .get_count = cycles_get_count, 1264 .ns_per_count = cycles_ns_per, 1265 }, 1266 #endif 1267 { .number = 0x023, /* STALL_FRONTEND */ 1268 .supported = pmu_8_1_events_supported, 1269 .get_count = zero_event_get_count, 1270 .ns_per_count = zero_event_ns_per, 1271 }, 1272 { .number = 0x024, /* STALL_BACKEND */ 1273 .supported = pmu_8_1_events_supported, 1274 .get_count = zero_event_get_count, 1275 .ns_per_count = zero_event_ns_per, 1276 }, 1277 { .number = 0x03c, /* STALL */ 1278 .supported = pmu_8_4_events_supported, 1279 .get_count = zero_event_get_count, 1280 .ns_per_count = zero_event_ns_per, 1281 }, 1282 }; 1283 1284 /* 1285 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1286 * events (i.e. the statistical profiling extension), this implementation 1287 * should first be updated to something sparse instead of the current 1288 * supported_event_map[] array. 1289 */ 1290 #define MAX_EVENT_ID 0x3c 1291 #define UNSUPPORTED_EVENT UINT16_MAX 1292 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1293 1294 /* 1295 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1296 * of ARM event numbers to indices in our pm_events array. 1297 * 1298 * Note: Events in the 0x40XX range are not currently supported. 1299 */ 1300 void pmu_init(ARMCPU *cpu) 1301 { 1302 unsigned int i; 1303 1304 /* 1305 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1306 * events to them 1307 */ 1308 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1309 supported_event_map[i] = UNSUPPORTED_EVENT; 1310 } 1311 cpu->pmceid0 = 0; 1312 cpu->pmceid1 = 0; 1313 1314 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1315 const pm_event *cnt = &pm_events[i]; 1316 assert(cnt->number <= MAX_EVENT_ID); 1317 /* We do not currently support events in the 0x40xx range */ 1318 assert(cnt->number <= 0x3f); 1319 1320 if (cnt->supported(&cpu->env)) { 1321 supported_event_map[cnt->number] = i; 1322 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1323 if (cnt->number & 0x20) { 1324 cpu->pmceid1 |= event_mask; 1325 } else { 1326 cpu->pmceid0 |= event_mask; 1327 } 1328 } 1329 } 1330 } 1331 1332 /* 1333 * Check at runtime whether a PMU event is supported for the current machine 1334 */ 1335 static bool event_supported(uint16_t number) 1336 { 1337 if (number > MAX_EVENT_ID) { 1338 return false; 1339 } 1340 return supported_event_map[number] != UNSUPPORTED_EVENT; 1341 } 1342 1343 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1344 bool isread) 1345 { 1346 /* Performance monitor registers user accessibility is controlled 1347 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1348 * trapping to EL2 or EL3 for other accesses. 1349 */ 1350 int el = arm_current_el(env); 1351 1352 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1353 return CP_ACCESS_TRAP; 1354 } 1355 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1356 && !arm_is_secure_below_el3(env)) { 1357 return CP_ACCESS_TRAP_EL2; 1358 } 1359 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1360 return CP_ACCESS_TRAP_EL3; 1361 } 1362 1363 return CP_ACCESS_OK; 1364 } 1365 1366 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1367 const ARMCPRegInfo *ri, 1368 bool isread) 1369 { 1370 /* ER: event counter read trap control */ 1371 if (arm_feature(env, ARM_FEATURE_V8) 1372 && arm_current_el(env) == 0 1373 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1374 && isread) { 1375 return CP_ACCESS_OK; 1376 } 1377 1378 return pmreg_access(env, ri, isread); 1379 } 1380 1381 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1382 const ARMCPRegInfo *ri, 1383 bool isread) 1384 { 1385 /* SW: software increment write trap control */ 1386 if (arm_feature(env, ARM_FEATURE_V8) 1387 && arm_current_el(env) == 0 1388 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1389 && !isread) { 1390 return CP_ACCESS_OK; 1391 } 1392 1393 return pmreg_access(env, ri, isread); 1394 } 1395 1396 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1397 const ARMCPRegInfo *ri, 1398 bool isread) 1399 { 1400 /* ER: event counter read trap control */ 1401 if (arm_feature(env, ARM_FEATURE_V8) 1402 && arm_current_el(env) == 0 1403 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1404 return CP_ACCESS_OK; 1405 } 1406 1407 return pmreg_access(env, ri, isread); 1408 } 1409 1410 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1411 const ARMCPRegInfo *ri, 1412 bool isread) 1413 { 1414 /* CR: cycle counter read trap control */ 1415 if (arm_feature(env, ARM_FEATURE_V8) 1416 && arm_current_el(env) == 0 1417 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1418 && isread) { 1419 return CP_ACCESS_OK; 1420 } 1421 1422 return pmreg_access(env, ri, isread); 1423 } 1424 1425 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1426 * the current EL, security state, and register configuration. 1427 */ 1428 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1429 { 1430 uint64_t filter; 1431 bool e, p, u, nsk, nsu, nsh, m; 1432 bool enabled, prohibited, filtered; 1433 bool secure = arm_is_secure(env); 1434 int el = arm_current_el(env); 1435 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1436 1437 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1438 return false; 1439 } 1440 1441 if (!arm_feature(env, ARM_FEATURE_EL2) || 1442 (counter < hpmn || counter == 31)) { 1443 e = env->cp15.c9_pmcr & PMCRE; 1444 } else { 1445 e = env->cp15.mdcr_el2 & MDCR_HPME; 1446 } 1447 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1448 1449 if (!secure) { 1450 if (el == 2 && (counter < hpmn || counter == 31)) { 1451 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1452 } else { 1453 prohibited = false; 1454 } 1455 } else { 1456 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1457 !(env->cp15.mdcr_el3 & MDCR_SPME); 1458 } 1459 1460 if (prohibited && counter == 31) { 1461 prohibited = env->cp15.c9_pmcr & PMCRDP; 1462 } 1463 1464 if (counter == 31) { 1465 filter = env->cp15.pmccfiltr_el0; 1466 } else { 1467 filter = env->cp15.c14_pmevtyper[counter]; 1468 } 1469 1470 p = filter & PMXEVTYPER_P; 1471 u = filter & PMXEVTYPER_U; 1472 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1473 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1474 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1475 m = arm_el_is_aa64(env, 1) && 1476 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1477 1478 if (el == 0) { 1479 filtered = secure ? u : u != nsu; 1480 } else if (el == 1) { 1481 filtered = secure ? p : p != nsk; 1482 } else if (el == 2) { 1483 filtered = !nsh; 1484 } else { /* EL3 */ 1485 filtered = m != p; 1486 } 1487 1488 if (counter != 31) { 1489 /* 1490 * If not checking PMCCNTR, ensure the counter is setup to an event we 1491 * support 1492 */ 1493 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1494 if (!event_supported(event)) { 1495 return false; 1496 } 1497 } 1498 1499 return enabled && !prohibited && !filtered; 1500 } 1501 1502 static void pmu_update_irq(CPUARMState *env) 1503 { 1504 ARMCPU *cpu = env_archcpu(env); 1505 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1506 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1507 } 1508 1509 /* 1510 * Ensure c15_ccnt is the guest-visible count so that operations such as 1511 * enabling/disabling the counter or filtering, modifying the count itself, 1512 * etc. can be done logically. This is essentially a no-op if the counter is 1513 * not enabled at the time of the call. 1514 */ 1515 static void pmccntr_op_start(CPUARMState *env) 1516 { 1517 uint64_t cycles = cycles_get_count(env); 1518 1519 if (pmu_counter_enabled(env, 31)) { 1520 uint64_t eff_cycles = cycles; 1521 if (env->cp15.c9_pmcr & PMCRD) { 1522 /* Increment once every 64 processor clock cycles */ 1523 eff_cycles /= 64; 1524 } 1525 1526 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1527 1528 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1529 1ull << 63 : 1ull << 31; 1530 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1531 env->cp15.c9_pmovsr |= (1 << 31); 1532 pmu_update_irq(env); 1533 } 1534 1535 env->cp15.c15_ccnt = new_pmccntr; 1536 } 1537 env->cp15.c15_ccnt_delta = cycles; 1538 } 1539 1540 /* 1541 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1542 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1543 * pmccntr_op_start. 1544 */ 1545 static void pmccntr_op_finish(CPUARMState *env) 1546 { 1547 if (pmu_counter_enabled(env, 31)) { 1548 #ifndef CONFIG_USER_ONLY 1549 /* Calculate when the counter will next overflow */ 1550 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1551 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1552 remaining_cycles = (uint32_t)remaining_cycles; 1553 } 1554 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1555 1556 if (overflow_in > 0) { 1557 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1558 overflow_in; 1559 ARMCPU *cpu = env_archcpu(env); 1560 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1561 } 1562 #endif 1563 1564 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1565 if (env->cp15.c9_pmcr & PMCRD) { 1566 /* Increment once every 64 processor clock cycles */ 1567 prev_cycles /= 64; 1568 } 1569 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1570 } 1571 } 1572 1573 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1574 { 1575 1576 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1577 uint64_t count = 0; 1578 if (event_supported(event)) { 1579 uint16_t event_idx = supported_event_map[event]; 1580 count = pm_events[event_idx].get_count(env); 1581 } 1582 1583 if (pmu_counter_enabled(env, counter)) { 1584 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1585 1586 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1587 env->cp15.c9_pmovsr |= (1 << counter); 1588 pmu_update_irq(env); 1589 } 1590 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1591 } 1592 env->cp15.c14_pmevcntr_delta[counter] = count; 1593 } 1594 1595 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1596 { 1597 if (pmu_counter_enabled(env, counter)) { 1598 #ifndef CONFIG_USER_ONLY 1599 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1600 uint16_t event_idx = supported_event_map[event]; 1601 uint64_t delta = UINT32_MAX - 1602 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1603 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1604 1605 if (overflow_in > 0) { 1606 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1607 overflow_in; 1608 ARMCPU *cpu = env_archcpu(env); 1609 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1610 } 1611 #endif 1612 1613 env->cp15.c14_pmevcntr_delta[counter] -= 1614 env->cp15.c14_pmevcntr[counter]; 1615 } 1616 } 1617 1618 void pmu_op_start(CPUARMState *env) 1619 { 1620 unsigned int i; 1621 pmccntr_op_start(env); 1622 for (i = 0; i < pmu_num_counters(env); i++) { 1623 pmevcntr_op_start(env, i); 1624 } 1625 } 1626 1627 void pmu_op_finish(CPUARMState *env) 1628 { 1629 unsigned int i; 1630 pmccntr_op_finish(env); 1631 for (i = 0; i < pmu_num_counters(env); i++) { 1632 pmevcntr_op_finish(env, i); 1633 } 1634 } 1635 1636 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1637 { 1638 pmu_op_start(&cpu->env); 1639 } 1640 1641 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1642 { 1643 pmu_op_finish(&cpu->env); 1644 } 1645 1646 void arm_pmu_timer_cb(void *opaque) 1647 { 1648 ARMCPU *cpu = opaque; 1649 1650 /* 1651 * Update all the counter values based on the current underlying counts, 1652 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1653 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1654 * counter may expire. 1655 */ 1656 pmu_op_start(&cpu->env); 1657 pmu_op_finish(&cpu->env); 1658 } 1659 1660 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1661 uint64_t value) 1662 { 1663 pmu_op_start(env); 1664 1665 if (value & PMCRC) { 1666 /* The counter has been reset */ 1667 env->cp15.c15_ccnt = 0; 1668 } 1669 1670 if (value & PMCRP) { 1671 unsigned int i; 1672 for (i = 0; i < pmu_num_counters(env); i++) { 1673 env->cp15.c14_pmevcntr[i] = 0; 1674 } 1675 } 1676 1677 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1678 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1679 1680 pmu_op_finish(env); 1681 } 1682 1683 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1684 uint64_t value) 1685 { 1686 unsigned int i; 1687 for (i = 0; i < pmu_num_counters(env); i++) { 1688 /* Increment a counter's count iff: */ 1689 if ((value & (1 << i)) && /* counter's bit is set */ 1690 /* counter is enabled and not filtered */ 1691 pmu_counter_enabled(env, i) && 1692 /* counter is SW_INCR */ 1693 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1694 pmevcntr_op_start(env, i); 1695 1696 /* 1697 * Detect if this write causes an overflow since we can't predict 1698 * PMSWINC overflows like we can for other events 1699 */ 1700 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1701 1702 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1703 env->cp15.c9_pmovsr |= (1 << i); 1704 pmu_update_irq(env); 1705 } 1706 1707 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1708 1709 pmevcntr_op_finish(env, i); 1710 } 1711 } 1712 } 1713 1714 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1715 { 1716 uint64_t ret; 1717 pmccntr_op_start(env); 1718 ret = env->cp15.c15_ccnt; 1719 pmccntr_op_finish(env); 1720 return ret; 1721 } 1722 1723 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1724 uint64_t value) 1725 { 1726 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1727 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1728 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1729 * accessed. 1730 */ 1731 env->cp15.c9_pmselr = value & 0x1f; 1732 } 1733 1734 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1735 uint64_t value) 1736 { 1737 pmccntr_op_start(env); 1738 env->cp15.c15_ccnt = value; 1739 pmccntr_op_finish(env); 1740 } 1741 1742 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1743 uint64_t value) 1744 { 1745 uint64_t cur_val = pmccntr_read(env, NULL); 1746 1747 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1748 } 1749 1750 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1751 uint64_t value) 1752 { 1753 pmccntr_op_start(env); 1754 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1755 pmccntr_op_finish(env); 1756 } 1757 1758 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1759 uint64_t value) 1760 { 1761 pmccntr_op_start(env); 1762 /* M is not accessible from AArch32 */ 1763 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1764 (value & PMCCFILTR); 1765 pmccntr_op_finish(env); 1766 } 1767 1768 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1769 { 1770 /* M is not visible in AArch32 */ 1771 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1772 } 1773 1774 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1775 uint64_t value) 1776 { 1777 value &= pmu_counter_mask(env); 1778 env->cp15.c9_pmcnten |= value; 1779 } 1780 1781 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1782 uint64_t value) 1783 { 1784 value &= pmu_counter_mask(env); 1785 env->cp15.c9_pmcnten &= ~value; 1786 } 1787 1788 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1789 uint64_t value) 1790 { 1791 value &= pmu_counter_mask(env); 1792 env->cp15.c9_pmovsr &= ~value; 1793 pmu_update_irq(env); 1794 } 1795 1796 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1797 uint64_t value) 1798 { 1799 value &= pmu_counter_mask(env); 1800 env->cp15.c9_pmovsr |= value; 1801 pmu_update_irq(env); 1802 } 1803 1804 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1805 uint64_t value, const uint8_t counter) 1806 { 1807 if (counter == 31) { 1808 pmccfiltr_write(env, ri, value); 1809 } else if (counter < pmu_num_counters(env)) { 1810 pmevcntr_op_start(env, counter); 1811 1812 /* 1813 * If this counter's event type is changing, store the current 1814 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1815 * pmevcntr_op_finish has the correct baseline when it converts back to 1816 * a delta. 1817 */ 1818 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1819 PMXEVTYPER_EVTCOUNT; 1820 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1821 if (old_event != new_event) { 1822 uint64_t count = 0; 1823 if (event_supported(new_event)) { 1824 uint16_t event_idx = supported_event_map[new_event]; 1825 count = pm_events[event_idx].get_count(env); 1826 } 1827 env->cp15.c14_pmevcntr_delta[counter] = count; 1828 } 1829 1830 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1831 pmevcntr_op_finish(env, counter); 1832 } 1833 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1834 * PMSELR value is equal to or greater than the number of implemented 1835 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1836 */ 1837 } 1838 1839 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1840 const uint8_t counter) 1841 { 1842 if (counter == 31) { 1843 return env->cp15.pmccfiltr_el0; 1844 } else if (counter < pmu_num_counters(env)) { 1845 return env->cp15.c14_pmevtyper[counter]; 1846 } else { 1847 /* 1848 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1849 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1850 */ 1851 return 0; 1852 } 1853 } 1854 1855 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1856 uint64_t value) 1857 { 1858 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1859 pmevtyper_write(env, ri, value, counter); 1860 } 1861 1862 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1863 uint64_t value) 1864 { 1865 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1866 env->cp15.c14_pmevtyper[counter] = value; 1867 1868 /* 1869 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1870 * pmu_op_finish calls when loading saved state for a migration. Because 1871 * we're potentially updating the type of event here, the value written to 1872 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1873 * different counter type. Therefore, we need to set this value to the 1874 * current count for the counter type we're writing so that pmu_op_finish 1875 * has the correct count for its calculation. 1876 */ 1877 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1878 if (event_supported(event)) { 1879 uint16_t event_idx = supported_event_map[event]; 1880 env->cp15.c14_pmevcntr_delta[counter] = 1881 pm_events[event_idx].get_count(env); 1882 } 1883 } 1884 1885 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1886 { 1887 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1888 return pmevtyper_read(env, ri, counter); 1889 } 1890 1891 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1892 uint64_t value) 1893 { 1894 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1895 } 1896 1897 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1898 { 1899 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1900 } 1901 1902 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1903 uint64_t value, uint8_t counter) 1904 { 1905 if (counter < pmu_num_counters(env)) { 1906 pmevcntr_op_start(env, counter); 1907 env->cp15.c14_pmevcntr[counter] = value; 1908 pmevcntr_op_finish(env, counter); 1909 } 1910 /* 1911 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1912 * are CONSTRAINED UNPREDICTABLE. 1913 */ 1914 } 1915 1916 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1917 uint8_t counter) 1918 { 1919 if (counter < pmu_num_counters(env)) { 1920 uint64_t ret; 1921 pmevcntr_op_start(env, counter); 1922 ret = env->cp15.c14_pmevcntr[counter]; 1923 pmevcntr_op_finish(env, counter); 1924 return ret; 1925 } else { 1926 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1927 * are CONSTRAINED UNPREDICTABLE. */ 1928 return 0; 1929 } 1930 } 1931 1932 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1933 uint64_t value) 1934 { 1935 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1936 pmevcntr_write(env, ri, value, counter); 1937 } 1938 1939 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1940 { 1941 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1942 return pmevcntr_read(env, ri, counter); 1943 } 1944 1945 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1946 uint64_t value) 1947 { 1948 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1949 assert(counter < pmu_num_counters(env)); 1950 env->cp15.c14_pmevcntr[counter] = value; 1951 pmevcntr_write(env, ri, value, counter); 1952 } 1953 1954 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1955 { 1956 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1957 assert(counter < pmu_num_counters(env)); 1958 return env->cp15.c14_pmevcntr[counter]; 1959 } 1960 1961 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1962 uint64_t value) 1963 { 1964 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1965 } 1966 1967 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1968 { 1969 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1970 } 1971 1972 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1973 uint64_t value) 1974 { 1975 if (arm_feature(env, ARM_FEATURE_V8)) { 1976 env->cp15.c9_pmuserenr = value & 0xf; 1977 } else { 1978 env->cp15.c9_pmuserenr = value & 1; 1979 } 1980 } 1981 1982 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1983 uint64_t value) 1984 { 1985 /* We have no event counters so only the C bit can be changed */ 1986 value &= pmu_counter_mask(env); 1987 env->cp15.c9_pminten |= value; 1988 pmu_update_irq(env); 1989 } 1990 1991 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1992 uint64_t value) 1993 { 1994 value &= pmu_counter_mask(env); 1995 env->cp15.c9_pminten &= ~value; 1996 pmu_update_irq(env); 1997 } 1998 1999 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2000 uint64_t value) 2001 { 2002 /* Note that even though the AArch64 view of this register has bits 2003 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 2004 * architectural requirements for bits which are RES0 only in some 2005 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 2006 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 2007 */ 2008 raw_write(env, ri, value & ~0x1FULL); 2009 } 2010 2011 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2012 { 2013 /* Begin with base v8.0 state. */ 2014 uint32_t valid_mask = 0x3fff; 2015 ARMCPU *cpu = env_archcpu(env); 2016 2017 if (ri->state == ARM_CP_STATE_AA64) { 2018 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 2019 valid_mask &= ~SCR_NET; 2020 2021 if (cpu_isar_feature(aa64_lor, cpu)) { 2022 valid_mask |= SCR_TLOR; 2023 } 2024 if (cpu_isar_feature(aa64_pauth, cpu)) { 2025 valid_mask |= SCR_API | SCR_APK; 2026 } 2027 if (cpu_isar_feature(aa64_mte, cpu)) { 2028 valid_mask |= SCR_ATA; 2029 } 2030 } else { 2031 valid_mask &= ~(SCR_RW | SCR_ST); 2032 } 2033 2034 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2035 valid_mask &= ~SCR_HCE; 2036 2037 /* On ARMv7, SMD (or SCD as it is called in v7) is only 2038 * supported if EL2 exists. The bit is UNK/SBZP when 2039 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 2040 * when EL2 is unavailable. 2041 * On ARMv8, this bit is always available. 2042 */ 2043 if (arm_feature(env, ARM_FEATURE_V7) && 2044 !arm_feature(env, ARM_FEATURE_V8)) { 2045 valid_mask &= ~SCR_SMD; 2046 } 2047 } 2048 2049 /* Clear all-context RES0 bits. */ 2050 value &= valid_mask; 2051 raw_write(env, ri, value); 2052 } 2053 2054 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2055 const ARMCPRegInfo *ri, 2056 bool isread) 2057 { 2058 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2059 return CP_ACCESS_TRAP_EL2; 2060 } 2061 2062 return CP_ACCESS_OK; 2063 } 2064 2065 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2066 { 2067 ARMCPU *cpu = env_archcpu(env); 2068 2069 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2070 * bank 2071 */ 2072 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2073 ri->secure & ARM_CP_SECSTATE_S); 2074 2075 return cpu->ccsidr[index]; 2076 } 2077 2078 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2079 uint64_t value) 2080 { 2081 raw_write(env, ri, value & 0xf); 2082 } 2083 2084 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2085 { 2086 CPUState *cs = env_cpu(env); 2087 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 2088 uint64_t ret = 0; 2089 bool allow_virt = (arm_current_el(env) == 1 && 2090 (!arm_is_secure_below_el3(env) || 2091 (env->cp15.scr_el3 & SCR_EEL2))); 2092 2093 if (allow_virt && (hcr_el2 & HCR_IMO)) { 2094 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2095 ret |= CPSR_I; 2096 } 2097 } else { 2098 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2099 ret |= CPSR_I; 2100 } 2101 } 2102 2103 if (allow_virt && (hcr_el2 & HCR_FMO)) { 2104 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2105 ret |= CPSR_F; 2106 } 2107 } else { 2108 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2109 ret |= CPSR_F; 2110 } 2111 } 2112 2113 /* External aborts are not possible in QEMU so A bit is always clear */ 2114 return ret; 2115 } 2116 2117 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2118 bool isread) 2119 { 2120 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2121 return CP_ACCESS_TRAP_EL2; 2122 } 2123 2124 return CP_ACCESS_OK; 2125 } 2126 2127 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2128 bool isread) 2129 { 2130 if (arm_feature(env, ARM_FEATURE_V8)) { 2131 return access_aa64_tid1(env, ri, isread); 2132 } 2133 2134 return CP_ACCESS_OK; 2135 } 2136 2137 static const ARMCPRegInfo v7_cp_reginfo[] = { 2138 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2139 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2140 .access = PL1_W, .type = ARM_CP_NOP }, 2141 /* Performance monitors are implementation defined in v7, 2142 * but with an ARM recommended set of registers, which we 2143 * follow. 2144 * 2145 * Performance registers fall into three categories: 2146 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2147 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2148 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2149 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2150 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2151 */ 2152 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2153 .access = PL0_RW, .type = ARM_CP_ALIAS, 2154 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2155 .writefn = pmcntenset_write, 2156 .accessfn = pmreg_access, 2157 .raw_writefn = raw_write }, 2158 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2159 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2160 .access = PL0_RW, .accessfn = pmreg_access, 2161 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2162 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2163 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2164 .access = PL0_RW, 2165 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2166 .accessfn = pmreg_access, 2167 .writefn = pmcntenclr_write, 2168 .type = ARM_CP_ALIAS }, 2169 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2170 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2171 .access = PL0_RW, .accessfn = pmreg_access, 2172 .type = ARM_CP_ALIAS, 2173 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2174 .writefn = pmcntenclr_write }, 2175 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2176 .access = PL0_RW, .type = ARM_CP_IO, 2177 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2178 .accessfn = pmreg_access, 2179 .writefn = pmovsr_write, 2180 .raw_writefn = raw_write }, 2181 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2182 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2183 .access = PL0_RW, .accessfn = pmreg_access, 2184 .type = ARM_CP_ALIAS | ARM_CP_IO, 2185 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2186 .writefn = pmovsr_write, 2187 .raw_writefn = raw_write }, 2188 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2189 .access = PL0_W, .accessfn = pmreg_access_swinc, 2190 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2191 .writefn = pmswinc_write }, 2192 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2193 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2194 .access = PL0_W, .accessfn = pmreg_access_swinc, 2195 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2196 .writefn = pmswinc_write }, 2197 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2198 .access = PL0_RW, .type = ARM_CP_ALIAS, 2199 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2200 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2201 .raw_writefn = raw_write}, 2202 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2203 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2204 .access = PL0_RW, .accessfn = pmreg_access_selr, 2205 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2206 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2207 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2208 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2209 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2210 .accessfn = pmreg_access_ccntr }, 2211 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2212 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2213 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2214 .type = ARM_CP_IO, 2215 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2216 .readfn = pmccntr_read, .writefn = pmccntr_write, 2217 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2218 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2219 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2220 .access = PL0_RW, .accessfn = pmreg_access, 2221 .type = ARM_CP_ALIAS | ARM_CP_IO, 2222 .resetvalue = 0, }, 2223 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2224 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2225 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2226 .access = PL0_RW, .accessfn = pmreg_access, 2227 .type = ARM_CP_IO, 2228 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2229 .resetvalue = 0, }, 2230 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2231 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2232 .accessfn = pmreg_access, 2233 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2234 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2235 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2236 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2237 .accessfn = pmreg_access, 2238 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2239 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2240 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2241 .accessfn = pmreg_access_xevcntr, 2242 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2243 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2244 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2245 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2246 .accessfn = pmreg_access_xevcntr, 2247 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2248 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2249 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2250 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2251 .resetvalue = 0, 2252 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2253 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2254 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2255 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2256 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2257 .resetvalue = 0, 2258 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2259 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2260 .access = PL1_RW, .accessfn = access_tpm, 2261 .type = ARM_CP_ALIAS | ARM_CP_IO, 2262 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2263 .resetvalue = 0, 2264 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2265 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2266 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2267 .access = PL1_RW, .accessfn = access_tpm, 2268 .type = ARM_CP_IO, 2269 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2270 .writefn = pmintenset_write, .raw_writefn = raw_write, 2271 .resetvalue = 0x0 }, 2272 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2273 .access = PL1_RW, .accessfn = access_tpm, 2274 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2275 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2276 .writefn = pmintenclr_write, }, 2277 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2278 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2279 .access = PL1_RW, .accessfn = access_tpm, 2280 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2281 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2282 .writefn = pmintenclr_write }, 2283 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2284 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2285 .access = PL1_R, 2286 .accessfn = access_aa64_tid2, 2287 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2288 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2289 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2290 .access = PL1_RW, 2291 .accessfn = access_aa64_tid2, 2292 .writefn = csselr_write, .resetvalue = 0, 2293 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2294 offsetof(CPUARMState, cp15.csselr_ns) } }, 2295 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2296 * just RAZ for all cores: 2297 */ 2298 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2299 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2300 .access = PL1_R, .type = ARM_CP_CONST, 2301 .accessfn = access_aa64_tid1, 2302 .resetvalue = 0 }, 2303 /* Auxiliary fault status registers: these also are IMPDEF, and we 2304 * choose to RAZ/WI for all cores. 2305 */ 2306 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2307 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2308 .access = PL1_RW, .accessfn = access_tvm_trvm, 2309 .type = ARM_CP_CONST, .resetvalue = 0 }, 2310 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2311 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2312 .access = PL1_RW, .accessfn = access_tvm_trvm, 2313 .type = ARM_CP_CONST, .resetvalue = 0 }, 2314 /* MAIR can just read-as-written because we don't implement caches 2315 * and so don't need to care about memory attributes. 2316 */ 2317 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2318 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2319 .access = PL1_RW, .accessfn = access_tvm_trvm, 2320 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2321 .resetvalue = 0 }, 2322 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2323 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2324 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2325 .resetvalue = 0 }, 2326 /* For non-long-descriptor page tables these are PRRR and NMRR; 2327 * regardless they still act as reads-as-written for QEMU. 2328 */ 2329 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2330 * allows them to assign the correct fieldoffset based on the endianness 2331 * handled in the field definitions. 2332 */ 2333 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2334 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2335 .access = PL1_RW, .accessfn = access_tvm_trvm, 2336 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2337 offsetof(CPUARMState, cp15.mair0_ns) }, 2338 .resetfn = arm_cp_reset_ignore }, 2339 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2340 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2341 .access = PL1_RW, .accessfn = access_tvm_trvm, 2342 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2343 offsetof(CPUARMState, cp15.mair1_ns) }, 2344 .resetfn = arm_cp_reset_ignore }, 2345 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2346 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2347 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2348 /* 32 bit ITLB invalidates */ 2349 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2350 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2351 .writefn = tlbiall_write }, 2352 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2353 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2354 .writefn = tlbimva_write }, 2355 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2356 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2357 .writefn = tlbiasid_write }, 2358 /* 32 bit DTLB invalidates */ 2359 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2360 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2361 .writefn = tlbiall_write }, 2362 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2363 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2364 .writefn = tlbimva_write }, 2365 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2366 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2367 .writefn = tlbiasid_write }, 2368 /* 32 bit TLB invalidates */ 2369 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2370 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2371 .writefn = tlbiall_write }, 2372 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2373 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2374 .writefn = tlbimva_write }, 2375 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2376 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2377 .writefn = tlbiasid_write }, 2378 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2379 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2380 .writefn = tlbimvaa_write }, 2381 REGINFO_SENTINEL 2382 }; 2383 2384 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2385 /* 32 bit TLB invalidates, Inner Shareable */ 2386 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2387 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2388 .writefn = tlbiall_is_write }, 2389 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2390 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2391 .writefn = tlbimva_is_write }, 2392 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2393 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2394 .writefn = tlbiasid_is_write }, 2395 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2396 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2397 .writefn = tlbimvaa_is_write }, 2398 REGINFO_SENTINEL 2399 }; 2400 2401 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2402 /* PMOVSSET is not implemented in v7 before v7ve */ 2403 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2404 .access = PL0_RW, .accessfn = pmreg_access, 2405 .type = ARM_CP_ALIAS | ARM_CP_IO, 2406 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2407 .writefn = pmovsset_write, 2408 .raw_writefn = raw_write }, 2409 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2410 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2411 .access = PL0_RW, .accessfn = pmreg_access, 2412 .type = ARM_CP_ALIAS | ARM_CP_IO, 2413 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2414 .writefn = pmovsset_write, 2415 .raw_writefn = raw_write }, 2416 REGINFO_SENTINEL 2417 }; 2418 2419 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2420 uint64_t value) 2421 { 2422 value &= 1; 2423 env->teecr = value; 2424 } 2425 2426 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2427 bool isread) 2428 { 2429 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2430 return CP_ACCESS_TRAP; 2431 } 2432 return CP_ACCESS_OK; 2433 } 2434 2435 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2436 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2437 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2438 .resetvalue = 0, 2439 .writefn = teecr_write }, 2440 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2441 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2442 .accessfn = teehbr_access, .resetvalue = 0 }, 2443 REGINFO_SENTINEL 2444 }; 2445 2446 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2447 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2448 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2449 .access = PL0_RW, 2450 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2451 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2452 .access = PL0_RW, 2453 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2454 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2455 .resetfn = arm_cp_reset_ignore }, 2456 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2457 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2458 .access = PL0_R|PL1_W, 2459 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2460 .resetvalue = 0}, 2461 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2462 .access = PL0_R|PL1_W, 2463 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2464 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2465 .resetfn = arm_cp_reset_ignore }, 2466 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2467 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2468 .access = PL1_RW, 2469 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2470 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2471 .access = PL1_RW, 2472 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2473 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2474 .resetvalue = 0 }, 2475 REGINFO_SENTINEL 2476 }; 2477 2478 #ifndef CONFIG_USER_ONLY 2479 2480 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2481 bool isread) 2482 { 2483 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2484 * Writable only at the highest implemented exception level. 2485 */ 2486 int el = arm_current_el(env); 2487 uint64_t hcr; 2488 uint32_t cntkctl; 2489 2490 switch (el) { 2491 case 0: 2492 hcr = arm_hcr_el2_eff(env); 2493 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2494 cntkctl = env->cp15.cnthctl_el2; 2495 } else { 2496 cntkctl = env->cp15.c14_cntkctl; 2497 } 2498 if (!extract32(cntkctl, 0, 2)) { 2499 return CP_ACCESS_TRAP; 2500 } 2501 break; 2502 case 1: 2503 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2504 arm_is_secure_below_el3(env)) { 2505 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2506 return CP_ACCESS_TRAP_UNCATEGORIZED; 2507 } 2508 break; 2509 case 2: 2510 case 3: 2511 break; 2512 } 2513 2514 if (!isread && el < arm_highest_el(env)) { 2515 return CP_ACCESS_TRAP_UNCATEGORIZED; 2516 } 2517 2518 return CP_ACCESS_OK; 2519 } 2520 2521 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2522 bool isread) 2523 { 2524 unsigned int cur_el = arm_current_el(env); 2525 bool secure = arm_is_secure(env); 2526 uint64_t hcr = arm_hcr_el2_eff(env); 2527 2528 switch (cur_el) { 2529 case 0: 2530 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2531 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2532 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2533 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2534 } 2535 2536 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2537 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2538 return CP_ACCESS_TRAP; 2539 } 2540 2541 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2542 if (hcr & HCR_E2H) { 2543 if (timeridx == GTIMER_PHYS && 2544 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2545 return CP_ACCESS_TRAP_EL2; 2546 } 2547 } else { 2548 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2549 if (arm_feature(env, ARM_FEATURE_EL2) && 2550 timeridx == GTIMER_PHYS && !secure && 2551 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2552 return CP_ACCESS_TRAP_EL2; 2553 } 2554 } 2555 break; 2556 2557 case 1: 2558 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2559 if (arm_feature(env, ARM_FEATURE_EL2) && 2560 timeridx == GTIMER_PHYS && !secure && 2561 (hcr & HCR_E2H 2562 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2563 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2564 return CP_ACCESS_TRAP_EL2; 2565 } 2566 break; 2567 } 2568 return CP_ACCESS_OK; 2569 } 2570 2571 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2572 bool isread) 2573 { 2574 unsigned int cur_el = arm_current_el(env); 2575 bool secure = arm_is_secure(env); 2576 uint64_t hcr = arm_hcr_el2_eff(env); 2577 2578 switch (cur_el) { 2579 case 0: 2580 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2581 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2582 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2583 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2584 } 2585 2586 /* 2587 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2588 * EL0 if EL0[PV]TEN is zero. 2589 */ 2590 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2591 return CP_ACCESS_TRAP; 2592 } 2593 /* fall through */ 2594 2595 case 1: 2596 if (arm_feature(env, ARM_FEATURE_EL2) && 2597 timeridx == GTIMER_PHYS && !secure) { 2598 if (hcr & HCR_E2H) { 2599 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2600 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2601 return CP_ACCESS_TRAP_EL2; 2602 } 2603 } else { 2604 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2605 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2606 return CP_ACCESS_TRAP_EL2; 2607 } 2608 } 2609 } 2610 break; 2611 } 2612 return CP_ACCESS_OK; 2613 } 2614 2615 static CPAccessResult gt_pct_access(CPUARMState *env, 2616 const ARMCPRegInfo *ri, 2617 bool isread) 2618 { 2619 return gt_counter_access(env, GTIMER_PHYS, isread); 2620 } 2621 2622 static CPAccessResult gt_vct_access(CPUARMState *env, 2623 const ARMCPRegInfo *ri, 2624 bool isread) 2625 { 2626 return gt_counter_access(env, GTIMER_VIRT, isread); 2627 } 2628 2629 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2630 bool isread) 2631 { 2632 return gt_timer_access(env, GTIMER_PHYS, isread); 2633 } 2634 2635 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2636 bool isread) 2637 { 2638 return gt_timer_access(env, GTIMER_VIRT, isread); 2639 } 2640 2641 static CPAccessResult gt_stimer_access(CPUARMState *env, 2642 const ARMCPRegInfo *ri, 2643 bool isread) 2644 { 2645 /* The AArch64 register view of the secure physical timer is 2646 * always accessible from EL3, and configurably accessible from 2647 * Secure EL1. 2648 */ 2649 switch (arm_current_el(env)) { 2650 case 1: 2651 if (!arm_is_secure(env)) { 2652 return CP_ACCESS_TRAP; 2653 } 2654 if (!(env->cp15.scr_el3 & SCR_ST)) { 2655 return CP_ACCESS_TRAP_EL3; 2656 } 2657 return CP_ACCESS_OK; 2658 case 0: 2659 case 2: 2660 return CP_ACCESS_TRAP; 2661 case 3: 2662 return CP_ACCESS_OK; 2663 default: 2664 g_assert_not_reached(); 2665 } 2666 } 2667 2668 static uint64_t gt_get_countervalue(CPUARMState *env) 2669 { 2670 ARMCPU *cpu = env_archcpu(env); 2671 2672 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2673 } 2674 2675 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2676 { 2677 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2678 2679 if (gt->ctl & 1) { 2680 /* Timer enabled: calculate and set current ISTATUS, irq, and 2681 * reset timer to when ISTATUS next has to change 2682 */ 2683 uint64_t offset = timeridx == GTIMER_VIRT ? 2684 cpu->env.cp15.cntvoff_el2 : 0; 2685 uint64_t count = gt_get_countervalue(&cpu->env); 2686 /* Note that this must be unsigned 64 bit arithmetic: */ 2687 int istatus = count - offset >= gt->cval; 2688 uint64_t nexttick; 2689 int irqstate; 2690 2691 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2692 2693 irqstate = (istatus && !(gt->ctl & 2)); 2694 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2695 2696 if (istatus) { 2697 /* Next transition is when count rolls back over to zero */ 2698 nexttick = UINT64_MAX; 2699 } else { 2700 /* Next transition is when we hit cval */ 2701 nexttick = gt->cval + offset; 2702 } 2703 /* Note that the desired next expiry time might be beyond the 2704 * signed-64-bit range of a QEMUTimer -- in this case we just 2705 * set the timer for as far in the future as possible. When the 2706 * timer expires we will reset the timer for any remaining period. 2707 */ 2708 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2709 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2710 } else { 2711 timer_mod(cpu->gt_timer[timeridx], nexttick); 2712 } 2713 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2714 } else { 2715 /* Timer disabled: ISTATUS and timer output always clear */ 2716 gt->ctl &= ~4; 2717 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2718 timer_del(cpu->gt_timer[timeridx]); 2719 trace_arm_gt_recalc_disabled(timeridx); 2720 } 2721 } 2722 2723 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2724 int timeridx) 2725 { 2726 ARMCPU *cpu = env_archcpu(env); 2727 2728 timer_del(cpu->gt_timer[timeridx]); 2729 } 2730 2731 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2732 { 2733 return gt_get_countervalue(env); 2734 } 2735 2736 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2737 { 2738 uint64_t hcr; 2739 2740 switch (arm_current_el(env)) { 2741 case 2: 2742 hcr = arm_hcr_el2_eff(env); 2743 if (hcr & HCR_E2H) { 2744 return 0; 2745 } 2746 break; 2747 case 0: 2748 hcr = arm_hcr_el2_eff(env); 2749 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2750 return 0; 2751 } 2752 break; 2753 } 2754 2755 return env->cp15.cntvoff_el2; 2756 } 2757 2758 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2759 { 2760 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2761 } 2762 2763 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2764 int timeridx, 2765 uint64_t value) 2766 { 2767 trace_arm_gt_cval_write(timeridx, value); 2768 env->cp15.c14_timer[timeridx].cval = value; 2769 gt_recalc_timer(env_archcpu(env), timeridx); 2770 } 2771 2772 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2773 int timeridx) 2774 { 2775 uint64_t offset = 0; 2776 2777 switch (timeridx) { 2778 case GTIMER_VIRT: 2779 case GTIMER_HYPVIRT: 2780 offset = gt_virt_cnt_offset(env); 2781 break; 2782 } 2783 2784 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2785 (gt_get_countervalue(env) - offset)); 2786 } 2787 2788 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2789 int timeridx, 2790 uint64_t value) 2791 { 2792 uint64_t offset = 0; 2793 2794 switch (timeridx) { 2795 case GTIMER_VIRT: 2796 case GTIMER_HYPVIRT: 2797 offset = gt_virt_cnt_offset(env); 2798 break; 2799 } 2800 2801 trace_arm_gt_tval_write(timeridx, value); 2802 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2803 sextract64(value, 0, 32); 2804 gt_recalc_timer(env_archcpu(env), timeridx); 2805 } 2806 2807 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2808 int timeridx, 2809 uint64_t value) 2810 { 2811 ARMCPU *cpu = env_archcpu(env); 2812 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2813 2814 trace_arm_gt_ctl_write(timeridx, value); 2815 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2816 if ((oldval ^ value) & 1) { 2817 /* Enable toggled */ 2818 gt_recalc_timer(cpu, timeridx); 2819 } else if ((oldval ^ value) & 2) { 2820 /* IMASK toggled: don't need to recalculate, 2821 * just set the interrupt line based on ISTATUS 2822 */ 2823 int irqstate = (oldval & 4) && !(value & 2); 2824 2825 trace_arm_gt_imask_toggle(timeridx, irqstate); 2826 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2827 } 2828 } 2829 2830 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2831 { 2832 gt_timer_reset(env, ri, GTIMER_PHYS); 2833 } 2834 2835 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2836 uint64_t value) 2837 { 2838 gt_cval_write(env, ri, GTIMER_PHYS, value); 2839 } 2840 2841 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2842 { 2843 return gt_tval_read(env, ri, GTIMER_PHYS); 2844 } 2845 2846 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2847 uint64_t value) 2848 { 2849 gt_tval_write(env, ri, GTIMER_PHYS, value); 2850 } 2851 2852 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2853 uint64_t value) 2854 { 2855 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2856 } 2857 2858 static int gt_phys_redir_timeridx(CPUARMState *env) 2859 { 2860 switch (arm_mmu_idx(env)) { 2861 case ARMMMUIdx_E20_0: 2862 case ARMMMUIdx_E20_2: 2863 case ARMMMUIdx_E20_2_PAN: 2864 return GTIMER_HYP; 2865 default: 2866 return GTIMER_PHYS; 2867 } 2868 } 2869 2870 static int gt_virt_redir_timeridx(CPUARMState *env) 2871 { 2872 switch (arm_mmu_idx(env)) { 2873 case ARMMMUIdx_E20_0: 2874 case ARMMMUIdx_E20_2: 2875 case ARMMMUIdx_E20_2_PAN: 2876 return GTIMER_HYPVIRT; 2877 default: 2878 return GTIMER_VIRT; 2879 } 2880 } 2881 2882 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2883 const ARMCPRegInfo *ri) 2884 { 2885 int timeridx = gt_phys_redir_timeridx(env); 2886 return env->cp15.c14_timer[timeridx].cval; 2887 } 2888 2889 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2890 uint64_t value) 2891 { 2892 int timeridx = gt_phys_redir_timeridx(env); 2893 gt_cval_write(env, ri, timeridx, value); 2894 } 2895 2896 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2897 const ARMCPRegInfo *ri) 2898 { 2899 int timeridx = gt_phys_redir_timeridx(env); 2900 return gt_tval_read(env, ri, timeridx); 2901 } 2902 2903 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2904 uint64_t value) 2905 { 2906 int timeridx = gt_phys_redir_timeridx(env); 2907 gt_tval_write(env, ri, timeridx, value); 2908 } 2909 2910 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2911 const ARMCPRegInfo *ri) 2912 { 2913 int timeridx = gt_phys_redir_timeridx(env); 2914 return env->cp15.c14_timer[timeridx].ctl; 2915 } 2916 2917 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2918 uint64_t value) 2919 { 2920 int timeridx = gt_phys_redir_timeridx(env); 2921 gt_ctl_write(env, ri, timeridx, value); 2922 } 2923 2924 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2925 { 2926 gt_timer_reset(env, ri, GTIMER_VIRT); 2927 } 2928 2929 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2930 uint64_t value) 2931 { 2932 gt_cval_write(env, ri, GTIMER_VIRT, value); 2933 } 2934 2935 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2936 { 2937 return gt_tval_read(env, ri, GTIMER_VIRT); 2938 } 2939 2940 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2941 uint64_t value) 2942 { 2943 gt_tval_write(env, ri, GTIMER_VIRT, value); 2944 } 2945 2946 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2947 uint64_t value) 2948 { 2949 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2950 } 2951 2952 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2953 uint64_t value) 2954 { 2955 ARMCPU *cpu = env_archcpu(env); 2956 2957 trace_arm_gt_cntvoff_write(value); 2958 raw_write(env, ri, value); 2959 gt_recalc_timer(cpu, GTIMER_VIRT); 2960 } 2961 2962 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2963 const ARMCPRegInfo *ri) 2964 { 2965 int timeridx = gt_virt_redir_timeridx(env); 2966 return env->cp15.c14_timer[timeridx].cval; 2967 } 2968 2969 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2970 uint64_t value) 2971 { 2972 int timeridx = gt_virt_redir_timeridx(env); 2973 gt_cval_write(env, ri, timeridx, value); 2974 } 2975 2976 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2977 const ARMCPRegInfo *ri) 2978 { 2979 int timeridx = gt_virt_redir_timeridx(env); 2980 return gt_tval_read(env, ri, timeridx); 2981 } 2982 2983 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2984 uint64_t value) 2985 { 2986 int timeridx = gt_virt_redir_timeridx(env); 2987 gt_tval_write(env, ri, timeridx, value); 2988 } 2989 2990 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2991 const ARMCPRegInfo *ri) 2992 { 2993 int timeridx = gt_virt_redir_timeridx(env); 2994 return env->cp15.c14_timer[timeridx].ctl; 2995 } 2996 2997 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2998 uint64_t value) 2999 { 3000 int timeridx = gt_virt_redir_timeridx(env); 3001 gt_ctl_write(env, ri, timeridx, value); 3002 } 3003 3004 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3005 { 3006 gt_timer_reset(env, ri, GTIMER_HYP); 3007 } 3008 3009 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3010 uint64_t value) 3011 { 3012 gt_cval_write(env, ri, GTIMER_HYP, value); 3013 } 3014 3015 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3016 { 3017 return gt_tval_read(env, ri, GTIMER_HYP); 3018 } 3019 3020 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3021 uint64_t value) 3022 { 3023 gt_tval_write(env, ri, GTIMER_HYP, value); 3024 } 3025 3026 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3027 uint64_t value) 3028 { 3029 gt_ctl_write(env, ri, GTIMER_HYP, value); 3030 } 3031 3032 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3033 { 3034 gt_timer_reset(env, ri, GTIMER_SEC); 3035 } 3036 3037 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3038 uint64_t value) 3039 { 3040 gt_cval_write(env, ri, GTIMER_SEC, value); 3041 } 3042 3043 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3044 { 3045 return gt_tval_read(env, ri, GTIMER_SEC); 3046 } 3047 3048 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3049 uint64_t value) 3050 { 3051 gt_tval_write(env, ri, GTIMER_SEC, value); 3052 } 3053 3054 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3055 uint64_t value) 3056 { 3057 gt_ctl_write(env, ri, GTIMER_SEC, value); 3058 } 3059 3060 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3061 { 3062 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3063 } 3064 3065 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3066 uint64_t value) 3067 { 3068 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3069 } 3070 3071 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3072 { 3073 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3074 } 3075 3076 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3077 uint64_t value) 3078 { 3079 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3080 } 3081 3082 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3083 uint64_t value) 3084 { 3085 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3086 } 3087 3088 void arm_gt_ptimer_cb(void *opaque) 3089 { 3090 ARMCPU *cpu = opaque; 3091 3092 gt_recalc_timer(cpu, GTIMER_PHYS); 3093 } 3094 3095 void arm_gt_vtimer_cb(void *opaque) 3096 { 3097 ARMCPU *cpu = opaque; 3098 3099 gt_recalc_timer(cpu, GTIMER_VIRT); 3100 } 3101 3102 void arm_gt_htimer_cb(void *opaque) 3103 { 3104 ARMCPU *cpu = opaque; 3105 3106 gt_recalc_timer(cpu, GTIMER_HYP); 3107 } 3108 3109 void arm_gt_stimer_cb(void *opaque) 3110 { 3111 ARMCPU *cpu = opaque; 3112 3113 gt_recalc_timer(cpu, GTIMER_SEC); 3114 } 3115 3116 void arm_gt_hvtimer_cb(void *opaque) 3117 { 3118 ARMCPU *cpu = opaque; 3119 3120 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3121 } 3122 3123 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3124 { 3125 ARMCPU *cpu = env_archcpu(env); 3126 3127 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3128 } 3129 3130 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3131 /* Note that CNTFRQ is purely reads-as-written for the benefit 3132 * of software; writing it doesn't actually change the timer frequency. 3133 * Our reset value matches the fixed frequency we implement the timer at. 3134 */ 3135 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3136 .type = ARM_CP_ALIAS, 3137 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3138 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3139 }, 3140 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3141 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3142 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3143 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3144 .resetfn = arm_gt_cntfrq_reset, 3145 }, 3146 /* overall control: mostly access permissions */ 3147 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3148 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3149 .access = PL1_RW, 3150 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3151 .resetvalue = 0, 3152 }, 3153 /* per-timer control */ 3154 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3155 .secure = ARM_CP_SECSTATE_NS, 3156 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3157 .accessfn = gt_ptimer_access, 3158 .fieldoffset = offsetoflow32(CPUARMState, 3159 cp15.c14_timer[GTIMER_PHYS].ctl), 3160 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3161 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3162 }, 3163 { .name = "CNTP_CTL_S", 3164 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3165 .secure = ARM_CP_SECSTATE_S, 3166 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3167 .accessfn = gt_ptimer_access, 3168 .fieldoffset = offsetoflow32(CPUARMState, 3169 cp15.c14_timer[GTIMER_SEC].ctl), 3170 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3171 }, 3172 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3173 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3174 .type = ARM_CP_IO, .access = PL0_RW, 3175 .accessfn = gt_ptimer_access, 3176 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3177 .resetvalue = 0, 3178 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3179 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3180 }, 3181 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3182 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3183 .accessfn = gt_vtimer_access, 3184 .fieldoffset = offsetoflow32(CPUARMState, 3185 cp15.c14_timer[GTIMER_VIRT].ctl), 3186 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3187 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3188 }, 3189 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3190 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3191 .type = ARM_CP_IO, .access = PL0_RW, 3192 .accessfn = gt_vtimer_access, 3193 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3194 .resetvalue = 0, 3195 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3196 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3197 }, 3198 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3199 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3200 .secure = ARM_CP_SECSTATE_NS, 3201 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3202 .accessfn = gt_ptimer_access, 3203 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3204 }, 3205 { .name = "CNTP_TVAL_S", 3206 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3207 .secure = ARM_CP_SECSTATE_S, 3208 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3209 .accessfn = gt_ptimer_access, 3210 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3211 }, 3212 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3213 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3214 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3215 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3216 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3217 }, 3218 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3219 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3220 .accessfn = gt_vtimer_access, 3221 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3222 }, 3223 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3224 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3225 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3226 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3227 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3228 }, 3229 /* The counter itself */ 3230 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3231 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3232 .accessfn = gt_pct_access, 3233 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3234 }, 3235 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3236 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3237 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3238 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3239 }, 3240 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3241 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3242 .accessfn = gt_vct_access, 3243 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3244 }, 3245 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3246 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3247 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3248 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3249 }, 3250 /* Comparison value, indicating when the timer goes off */ 3251 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3252 .secure = ARM_CP_SECSTATE_NS, 3253 .access = PL0_RW, 3254 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3255 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3256 .accessfn = gt_ptimer_access, 3257 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3258 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3259 }, 3260 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3261 .secure = ARM_CP_SECSTATE_S, 3262 .access = PL0_RW, 3263 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3264 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3265 .accessfn = gt_ptimer_access, 3266 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3267 }, 3268 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3269 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3270 .access = PL0_RW, 3271 .type = ARM_CP_IO, 3272 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3273 .resetvalue = 0, .accessfn = gt_ptimer_access, 3274 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3275 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3276 }, 3277 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3278 .access = PL0_RW, 3279 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3280 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3281 .accessfn = gt_vtimer_access, 3282 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3283 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3284 }, 3285 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3286 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3287 .access = PL0_RW, 3288 .type = ARM_CP_IO, 3289 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3290 .resetvalue = 0, .accessfn = gt_vtimer_access, 3291 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3292 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3293 }, 3294 /* Secure timer -- this is actually restricted to only EL3 3295 * and configurably Secure-EL1 via the accessfn. 3296 */ 3297 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3298 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3299 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3300 .accessfn = gt_stimer_access, 3301 .readfn = gt_sec_tval_read, 3302 .writefn = gt_sec_tval_write, 3303 .resetfn = gt_sec_timer_reset, 3304 }, 3305 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3306 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3307 .type = ARM_CP_IO, .access = PL1_RW, 3308 .accessfn = gt_stimer_access, 3309 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3310 .resetvalue = 0, 3311 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3312 }, 3313 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3314 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3315 .type = ARM_CP_IO, .access = PL1_RW, 3316 .accessfn = gt_stimer_access, 3317 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3318 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3319 }, 3320 REGINFO_SENTINEL 3321 }; 3322 3323 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3324 bool isread) 3325 { 3326 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3327 return CP_ACCESS_TRAP; 3328 } 3329 return CP_ACCESS_OK; 3330 } 3331 3332 #else 3333 3334 /* In user-mode most of the generic timer registers are inaccessible 3335 * however modern kernels (4.12+) allow access to cntvct_el0 3336 */ 3337 3338 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3339 { 3340 ARMCPU *cpu = env_archcpu(env); 3341 3342 /* Currently we have no support for QEMUTimer in linux-user so we 3343 * can't call gt_get_countervalue(env), instead we directly 3344 * call the lower level functions. 3345 */ 3346 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3347 } 3348 3349 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3350 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3351 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3352 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3353 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3354 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3355 }, 3356 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3357 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3358 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3359 .readfn = gt_virt_cnt_read, 3360 }, 3361 REGINFO_SENTINEL 3362 }; 3363 3364 #endif 3365 3366 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3367 { 3368 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3369 raw_write(env, ri, value); 3370 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3371 raw_write(env, ri, value & 0xfffff6ff); 3372 } else { 3373 raw_write(env, ri, value & 0xfffff1ff); 3374 } 3375 } 3376 3377 #ifndef CONFIG_USER_ONLY 3378 /* get_phys_addr() isn't present for user-mode-only targets */ 3379 3380 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3381 bool isread) 3382 { 3383 if (ri->opc2 & 4) { 3384 /* The ATS12NSO* operations must trap to EL3 if executed in 3385 * Secure EL1 (which can only happen if EL3 is AArch64). 3386 * They are simply UNDEF if executed from NS EL1. 3387 * They function normally from EL2 or EL3. 3388 */ 3389 if (arm_current_el(env) == 1) { 3390 if (arm_is_secure_below_el3(env)) { 3391 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3392 } 3393 return CP_ACCESS_TRAP_UNCATEGORIZED; 3394 } 3395 } 3396 return CP_ACCESS_OK; 3397 } 3398 3399 #ifdef CONFIG_TCG 3400 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3401 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3402 { 3403 hwaddr phys_addr; 3404 target_ulong page_size; 3405 int prot; 3406 bool ret; 3407 uint64_t par64; 3408 bool format64 = false; 3409 MemTxAttrs attrs = {}; 3410 ARMMMUFaultInfo fi = {}; 3411 ARMCacheAttrs cacheattrs = {}; 3412 3413 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3414 &prot, &page_size, &fi, &cacheattrs); 3415 3416 if (ret) { 3417 /* 3418 * Some kinds of translation fault must cause exceptions rather 3419 * than being reported in the PAR. 3420 */ 3421 int current_el = arm_current_el(env); 3422 int target_el; 3423 uint32_t syn, fsr, fsc; 3424 bool take_exc = false; 3425 3426 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) 3427 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3428 /* 3429 * Synchronous stage 2 fault on an access made as part of the 3430 * translation table walk for AT S1E0* or AT S1E1* insn 3431 * executed from NS EL1. If this is a synchronous external abort 3432 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3433 * to EL3. Otherwise the fault is taken as an exception to EL2, 3434 * and HPFAR_EL2 holds the faulting IPA. 3435 */ 3436 if (fi.type == ARMFault_SyncExternalOnWalk && 3437 (env->cp15.scr_el3 & SCR_EA)) { 3438 target_el = 3; 3439 } else { 3440 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3441 target_el = 2; 3442 } 3443 take_exc = true; 3444 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3445 /* 3446 * Synchronous external aborts during a translation table walk 3447 * are taken as Data Abort exceptions. 3448 */ 3449 if (fi.stage2) { 3450 if (current_el == 3) { 3451 target_el = 3; 3452 } else { 3453 target_el = 2; 3454 } 3455 } else { 3456 target_el = exception_target_el(env); 3457 } 3458 take_exc = true; 3459 } 3460 3461 if (take_exc) { 3462 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3463 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3464 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3465 fsr = arm_fi_to_lfsc(&fi); 3466 fsc = extract32(fsr, 0, 6); 3467 } else { 3468 fsr = arm_fi_to_sfsc(&fi); 3469 fsc = 0x3f; 3470 } 3471 /* 3472 * Report exception with ESR indicating a fault due to a 3473 * translation table walk for a cache maintenance instruction. 3474 */ 3475 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3476 fi.ea, 1, fi.s1ptw, 1, fsc); 3477 env->exception.vaddress = value; 3478 env->exception.fsr = fsr; 3479 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3480 } 3481 } 3482 3483 if (is_a64(env)) { 3484 format64 = true; 3485 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3486 /* 3487 * ATS1Cxx: 3488 * * TTBCR.EAE determines whether the result is returned using the 3489 * 32-bit or the 64-bit PAR format 3490 * * Instructions executed in Hyp mode always use the 64bit format 3491 * 3492 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3493 * * The Non-secure TTBCR.EAE bit is set to 1 3494 * * The implementation includes EL2, and the value of HCR.VM is 1 3495 * 3496 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3497 * 3498 * ATS1Hx always uses the 64bit format. 3499 */ 3500 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3501 3502 if (arm_feature(env, ARM_FEATURE_EL2)) { 3503 if (mmu_idx == ARMMMUIdx_E10_0 || 3504 mmu_idx == ARMMMUIdx_E10_1 || 3505 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3506 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3507 } else { 3508 format64 |= arm_current_el(env) == 2; 3509 } 3510 } 3511 } 3512 3513 if (format64) { 3514 /* Create a 64-bit PAR */ 3515 par64 = (1 << 11); /* LPAE bit always set */ 3516 if (!ret) { 3517 par64 |= phys_addr & ~0xfffULL; 3518 if (!attrs.secure) { 3519 par64 |= (1 << 9); /* NS */ 3520 } 3521 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3522 par64 |= cacheattrs.shareability << 7; /* SH */ 3523 } else { 3524 uint32_t fsr = arm_fi_to_lfsc(&fi); 3525 3526 par64 |= 1; /* F */ 3527 par64 |= (fsr & 0x3f) << 1; /* FS */ 3528 if (fi.stage2) { 3529 par64 |= (1 << 9); /* S */ 3530 } 3531 if (fi.s1ptw) { 3532 par64 |= (1 << 8); /* PTW */ 3533 } 3534 } 3535 } else { 3536 /* fsr is a DFSR/IFSR value for the short descriptor 3537 * translation table format (with WnR always clear). 3538 * Convert it to a 32-bit PAR. 3539 */ 3540 if (!ret) { 3541 /* We do not set any attribute bits in the PAR */ 3542 if (page_size == (1 << 24) 3543 && arm_feature(env, ARM_FEATURE_V7)) { 3544 par64 = (phys_addr & 0xff000000) | (1 << 1); 3545 } else { 3546 par64 = phys_addr & 0xfffff000; 3547 } 3548 if (!attrs.secure) { 3549 par64 |= (1 << 9); /* NS */ 3550 } 3551 } else { 3552 uint32_t fsr = arm_fi_to_sfsc(&fi); 3553 3554 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3555 ((fsr & 0xf) << 1) | 1; 3556 } 3557 } 3558 return par64; 3559 } 3560 #endif /* CONFIG_TCG */ 3561 3562 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3563 { 3564 #ifdef CONFIG_TCG 3565 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3566 uint64_t par64; 3567 ARMMMUIdx mmu_idx; 3568 int el = arm_current_el(env); 3569 bool secure = arm_is_secure_below_el3(env); 3570 3571 switch (ri->opc2 & 6) { 3572 case 0: 3573 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3574 switch (el) { 3575 case 3: 3576 mmu_idx = ARMMMUIdx_SE3; 3577 break; 3578 case 2: 3579 g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */ 3580 /* fall through */ 3581 case 1: 3582 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3583 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3584 : ARMMMUIdx_Stage1_E1_PAN); 3585 } else { 3586 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3587 } 3588 break; 3589 default: 3590 g_assert_not_reached(); 3591 } 3592 break; 3593 case 2: 3594 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3595 switch (el) { 3596 case 3: 3597 mmu_idx = ARMMMUIdx_SE10_0; 3598 break; 3599 case 2: 3600 mmu_idx = ARMMMUIdx_Stage1_E0; 3601 break; 3602 case 1: 3603 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3604 break; 3605 default: 3606 g_assert_not_reached(); 3607 } 3608 break; 3609 case 4: 3610 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3611 mmu_idx = ARMMMUIdx_E10_1; 3612 break; 3613 case 6: 3614 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3615 mmu_idx = ARMMMUIdx_E10_0; 3616 break; 3617 default: 3618 g_assert_not_reached(); 3619 } 3620 3621 par64 = do_ats_write(env, value, access_type, mmu_idx); 3622 3623 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3624 #else 3625 /* Handled by hardware accelerator. */ 3626 g_assert_not_reached(); 3627 #endif /* CONFIG_TCG */ 3628 } 3629 3630 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3631 uint64_t value) 3632 { 3633 #ifdef CONFIG_TCG 3634 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3635 uint64_t par64; 3636 3637 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3638 3639 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3640 #else 3641 /* Handled by hardware accelerator. */ 3642 g_assert_not_reached(); 3643 #endif /* CONFIG_TCG */ 3644 } 3645 3646 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3647 bool isread) 3648 { 3649 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3650 return CP_ACCESS_TRAP; 3651 } 3652 return CP_ACCESS_OK; 3653 } 3654 3655 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3656 uint64_t value) 3657 { 3658 #ifdef CONFIG_TCG 3659 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3660 ARMMMUIdx mmu_idx; 3661 int secure = arm_is_secure_below_el3(env); 3662 3663 switch (ri->opc2 & 6) { 3664 case 0: 3665 switch (ri->opc1) { 3666 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3667 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3668 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3669 : ARMMMUIdx_Stage1_E1_PAN); 3670 } else { 3671 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3672 } 3673 break; 3674 case 4: /* AT S1E2R, AT S1E2W */ 3675 mmu_idx = ARMMMUIdx_E2; 3676 break; 3677 case 6: /* AT S1E3R, AT S1E3W */ 3678 mmu_idx = ARMMMUIdx_SE3; 3679 break; 3680 default: 3681 g_assert_not_reached(); 3682 } 3683 break; 3684 case 2: /* AT S1E0R, AT S1E0W */ 3685 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3686 break; 3687 case 4: /* AT S12E1R, AT S12E1W */ 3688 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3689 break; 3690 case 6: /* AT S12E0R, AT S12E0W */ 3691 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3692 break; 3693 default: 3694 g_assert_not_reached(); 3695 } 3696 3697 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3698 #else 3699 /* Handled by hardware accelerator. */ 3700 g_assert_not_reached(); 3701 #endif /* CONFIG_TCG */ 3702 } 3703 #endif 3704 3705 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3706 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3707 .access = PL1_RW, .resetvalue = 0, 3708 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3709 offsetoflow32(CPUARMState, cp15.par_ns) }, 3710 .writefn = par_write }, 3711 #ifndef CONFIG_USER_ONLY 3712 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3713 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3714 .access = PL1_W, .accessfn = ats_access, 3715 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3716 #endif 3717 REGINFO_SENTINEL 3718 }; 3719 3720 /* Return basic MPU access permission bits. */ 3721 static uint32_t simple_mpu_ap_bits(uint32_t val) 3722 { 3723 uint32_t ret; 3724 uint32_t mask; 3725 int i; 3726 ret = 0; 3727 mask = 3; 3728 for (i = 0; i < 16; i += 2) { 3729 ret |= (val >> i) & mask; 3730 mask <<= 2; 3731 } 3732 return ret; 3733 } 3734 3735 /* Pad basic MPU access permission bits to extended format. */ 3736 static uint32_t extended_mpu_ap_bits(uint32_t val) 3737 { 3738 uint32_t ret; 3739 uint32_t mask; 3740 int i; 3741 ret = 0; 3742 mask = 3; 3743 for (i = 0; i < 16; i += 2) { 3744 ret |= (val & mask) << i; 3745 mask <<= 2; 3746 } 3747 return ret; 3748 } 3749 3750 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3751 uint64_t value) 3752 { 3753 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3754 } 3755 3756 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3757 { 3758 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3759 } 3760 3761 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3762 uint64_t value) 3763 { 3764 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3765 } 3766 3767 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3768 { 3769 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3770 } 3771 3772 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3773 { 3774 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3775 3776 if (!u32p) { 3777 return 0; 3778 } 3779 3780 u32p += env->pmsav7.rnr[M_REG_NS]; 3781 return *u32p; 3782 } 3783 3784 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3785 uint64_t value) 3786 { 3787 ARMCPU *cpu = env_archcpu(env); 3788 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3789 3790 if (!u32p) { 3791 return; 3792 } 3793 3794 u32p += env->pmsav7.rnr[M_REG_NS]; 3795 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3796 *u32p = value; 3797 } 3798 3799 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3800 uint64_t value) 3801 { 3802 ARMCPU *cpu = env_archcpu(env); 3803 uint32_t nrgs = cpu->pmsav7_dregion; 3804 3805 if (value >= nrgs) { 3806 qemu_log_mask(LOG_GUEST_ERROR, 3807 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3808 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3809 return; 3810 } 3811 3812 raw_write(env, ri, value); 3813 } 3814 3815 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3816 /* Reset for all these registers is handled in arm_cpu_reset(), 3817 * because the PMSAv7 is also used by M-profile CPUs, which do 3818 * not register cpregs but still need the state to be reset. 3819 */ 3820 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3821 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3822 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3823 .readfn = pmsav7_read, .writefn = pmsav7_write, 3824 .resetfn = arm_cp_reset_ignore }, 3825 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3826 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3827 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3828 .readfn = pmsav7_read, .writefn = pmsav7_write, 3829 .resetfn = arm_cp_reset_ignore }, 3830 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3831 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3832 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3833 .readfn = pmsav7_read, .writefn = pmsav7_write, 3834 .resetfn = arm_cp_reset_ignore }, 3835 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3836 .access = PL1_RW, 3837 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3838 .writefn = pmsav7_rgnr_write, 3839 .resetfn = arm_cp_reset_ignore }, 3840 REGINFO_SENTINEL 3841 }; 3842 3843 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3844 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3845 .access = PL1_RW, .type = ARM_CP_ALIAS, 3846 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3847 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3848 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3849 .access = PL1_RW, .type = ARM_CP_ALIAS, 3850 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3851 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3852 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3853 .access = PL1_RW, 3854 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3855 .resetvalue = 0, }, 3856 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3857 .access = PL1_RW, 3858 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3859 .resetvalue = 0, }, 3860 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3861 .access = PL1_RW, 3862 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3863 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3864 .access = PL1_RW, 3865 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3866 /* Protection region base and size registers */ 3867 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3868 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3869 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3870 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3871 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3872 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3873 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3874 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3875 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3876 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3877 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3878 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3879 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3880 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3881 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3882 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3883 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3884 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3885 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3886 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3887 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3888 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3889 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3890 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3891 REGINFO_SENTINEL 3892 }; 3893 3894 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3895 uint64_t value) 3896 { 3897 TCR *tcr = raw_ptr(env, ri); 3898 int maskshift = extract32(value, 0, 3); 3899 3900 if (!arm_feature(env, ARM_FEATURE_V8)) { 3901 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3902 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3903 * using Long-desciptor translation table format */ 3904 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3905 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3906 /* In an implementation that includes the Security Extensions 3907 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3908 * Short-descriptor translation table format. 3909 */ 3910 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3911 } else { 3912 value &= TTBCR_N; 3913 } 3914 } 3915 3916 /* Update the masks corresponding to the TCR bank being written 3917 * Note that we always calculate mask and base_mask, but 3918 * they are only used for short-descriptor tables (ie if EAE is 0); 3919 * for long-descriptor tables the TCR fields are used differently 3920 * and the mask and base_mask values are meaningless. 3921 */ 3922 tcr->raw_tcr = value; 3923 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3924 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3925 } 3926 3927 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3928 uint64_t value) 3929 { 3930 ARMCPU *cpu = env_archcpu(env); 3931 TCR *tcr = raw_ptr(env, ri); 3932 3933 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3934 /* With LPAE the TTBCR could result in a change of ASID 3935 * via the TTBCR.A1 bit, so do a TLB flush. 3936 */ 3937 tlb_flush(CPU(cpu)); 3938 } 3939 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3940 value = deposit64(tcr->raw_tcr, 0, 32, value); 3941 vmsa_ttbcr_raw_write(env, ri, value); 3942 } 3943 3944 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3945 { 3946 TCR *tcr = raw_ptr(env, ri); 3947 3948 /* Reset both the TCR as well as the masks corresponding to the bank of 3949 * the TCR being reset. 3950 */ 3951 tcr->raw_tcr = 0; 3952 tcr->mask = 0; 3953 tcr->base_mask = 0xffffc000u; 3954 } 3955 3956 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3957 uint64_t value) 3958 { 3959 ARMCPU *cpu = env_archcpu(env); 3960 TCR *tcr = raw_ptr(env, ri); 3961 3962 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3963 tlb_flush(CPU(cpu)); 3964 tcr->raw_tcr = value; 3965 } 3966 3967 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3968 uint64_t value) 3969 { 3970 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3971 if (cpreg_field_is_64bit(ri) && 3972 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3973 ARMCPU *cpu = env_archcpu(env); 3974 tlb_flush(CPU(cpu)); 3975 } 3976 raw_write(env, ri, value); 3977 } 3978 3979 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3980 uint64_t value) 3981 { 3982 /* 3983 * If we are running with E2&0 regime, then an ASID is active. 3984 * Flush if that might be changing. Note we're not checking 3985 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3986 * holds the active ASID, only checking the field that might. 3987 */ 3988 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3989 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3990 tlb_flush_by_mmuidx(env_cpu(env), 3991 ARMMMUIdxBit_E20_2 | 3992 ARMMMUIdxBit_E20_2_PAN | 3993 ARMMMUIdxBit_E20_0); 3994 } 3995 raw_write(env, ri, value); 3996 } 3997 3998 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3999 uint64_t value) 4000 { 4001 ARMCPU *cpu = env_archcpu(env); 4002 CPUState *cs = CPU(cpu); 4003 4004 /* 4005 * A change in VMID to the stage2 page table (Stage2) invalidates 4006 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 4007 */ 4008 if (raw_read(env, ri) != value) { 4009 tlb_flush_by_mmuidx(cs, 4010 ARMMMUIdxBit_E10_1 | 4011 ARMMMUIdxBit_E10_1_PAN | 4012 ARMMMUIdxBit_E10_0); 4013 raw_write(env, ri, value); 4014 } 4015 } 4016 4017 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4018 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4019 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4020 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4021 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4022 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4023 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4024 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4025 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4026 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4027 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4028 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4029 offsetof(CPUARMState, cp15.dfar_ns) } }, 4030 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4031 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4032 .access = PL1_RW, .accessfn = access_tvm_trvm, 4033 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4034 .resetvalue = 0, }, 4035 REGINFO_SENTINEL 4036 }; 4037 4038 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4039 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4040 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4041 .access = PL1_RW, .accessfn = access_tvm_trvm, 4042 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4043 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4044 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4045 .access = PL1_RW, .accessfn = access_tvm_trvm, 4046 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4047 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4048 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4049 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4050 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4051 .access = PL1_RW, .accessfn = access_tvm_trvm, 4052 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4053 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4054 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4055 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4056 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4057 .access = PL1_RW, .accessfn = access_tvm_trvm, 4058 .writefn = vmsa_tcr_el12_write, 4059 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 4060 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4061 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4062 .access = PL1_RW, .accessfn = access_tvm_trvm, 4063 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4064 .raw_writefn = vmsa_ttbcr_raw_write, 4065 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4066 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4067 REGINFO_SENTINEL 4068 }; 4069 4070 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4071 * qemu tlbs nor adjusting cached masks. 4072 */ 4073 static const ARMCPRegInfo ttbcr2_reginfo = { 4074 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4075 .access = PL1_RW, .accessfn = access_tvm_trvm, 4076 .type = ARM_CP_ALIAS, 4077 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4078 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 4079 }; 4080 4081 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4082 uint64_t value) 4083 { 4084 env->cp15.c15_ticonfig = value & 0xe7; 4085 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4086 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4087 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4088 } 4089 4090 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4091 uint64_t value) 4092 { 4093 env->cp15.c15_threadid = value & 0xffff; 4094 } 4095 4096 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4097 uint64_t value) 4098 { 4099 /* Wait-for-interrupt (deprecated) */ 4100 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4101 } 4102 4103 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4104 uint64_t value) 4105 { 4106 /* On OMAP there are registers indicating the max/min index of dcache lines 4107 * containing a dirty line; cache flush operations have to reset these. 4108 */ 4109 env->cp15.c15_i_max = 0x000; 4110 env->cp15.c15_i_min = 0xff0; 4111 } 4112 4113 static const ARMCPRegInfo omap_cp_reginfo[] = { 4114 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4115 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4116 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4117 .resetvalue = 0, }, 4118 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4119 .access = PL1_RW, .type = ARM_CP_NOP }, 4120 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4121 .access = PL1_RW, 4122 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4123 .writefn = omap_ticonfig_write }, 4124 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4125 .access = PL1_RW, 4126 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4127 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4128 .access = PL1_RW, .resetvalue = 0xff0, 4129 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4130 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4131 .access = PL1_RW, 4132 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4133 .writefn = omap_threadid_write }, 4134 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4135 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4136 .type = ARM_CP_NO_RAW, 4137 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4138 /* TODO: Peripheral port remap register: 4139 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4140 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4141 * when MMU is off. 4142 */ 4143 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4144 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4145 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4146 .writefn = omap_cachemaint_write }, 4147 { .name = "C9", .cp = 15, .crn = 9, 4148 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4149 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4150 REGINFO_SENTINEL 4151 }; 4152 4153 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4154 uint64_t value) 4155 { 4156 env->cp15.c15_cpar = value & 0x3fff; 4157 } 4158 4159 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4160 { .name = "XSCALE_CPAR", 4161 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4162 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4163 .writefn = xscale_cpar_write, }, 4164 { .name = "XSCALE_AUXCR", 4165 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4166 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4167 .resetvalue = 0, }, 4168 /* XScale specific cache-lockdown: since we have no cache we NOP these 4169 * and hope the guest does not really rely on cache behaviour. 4170 */ 4171 { .name = "XSCALE_LOCK_ICACHE_LINE", 4172 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4173 .access = PL1_W, .type = ARM_CP_NOP }, 4174 { .name = "XSCALE_UNLOCK_ICACHE", 4175 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4176 .access = PL1_W, .type = ARM_CP_NOP }, 4177 { .name = "XSCALE_DCACHE_LOCK", 4178 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4179 .access = PL1_RW, .type = ARM_CP_NOP }, 4180 { .name = "XSCALE_UNLOCK_DCACHE", 4181 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4182 .access = PL1_W, .type = ARM_CP_NOP }, 4183 REGINFO_SENTINEL 4184 }; 4185 4186 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4187 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4188 * implementation of this implementation-defined space. 4189 * Ideally this should eventually disappear in favour of actually 4190 * implementing the correct behaviour for all cores. 4191 */ 4192 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4193 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4194 .access = PL1_RW, 4195 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4196 .resetvalue = 0 }, 4197 REGINFO_SENTINEL 4198 }; 4199 4200 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4201 /* Cache status: RAZ because we have no cache so it's always clean */ 4202 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4203 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4204 .resetvalue = 0 }, 4205 REGINFO_SENTINEL 4206 }; 4207 4208 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4209 /* We never have a a block transfer operation in progress */ 4210 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4211 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4212 .resetvalue = 0 }, 4213 /* The cache ops themselves: these all NOP for QEMU */ 4214 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4215 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4216 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4217 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4218 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4219 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4220 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4221 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4222 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4223 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4224 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4225 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4226 REGINFO_SENTINEL 4227 }; 4228 4229 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4230 /* The cache test-and-clean instructions always return (1 << 30) 4231 * to indicate that there are no dirty cache lines. 4232 */ 4233 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4234 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4235 .resetvalue = (1 << 30) }, 4236 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4237 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4238 .resetvalue = (1 << 30) }, 4239 REGINFO_SENTINEL 4240 }; 4241 4242 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4243 /* Ignore ReadBuffer accesses */ 4244 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4245 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4246 .access = PL1_RW, .resetvalue = 0, 4247 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4248 REGINFO_SENTINEL 4249 }; 4250 4251 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4252 { 4253 ARMCPU *cpu = env_archcpu(env); 4254 unsigned int cur_el = arm_current_el(env); 4255 bool secure = arm_is_secure(env); 4256 4257 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4258 return env->cp15.vpidr_el2; 4259 } 4260 return raw_read(env, ri); 4261 } 4262 4263 static uint64_t mpidr_read_val(CPUARMState *env) 4264 { 4265 ARMCPU *cpu = env_archcpu(env); 4266 uint64_t mpidr = cpu->mp_affinity; 4267 4268 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4269 mpidr |= (1U << 31); 4270 /* Cores which are uniprocessor (non-coherent) 4271 * but still implement the MP extensions set 4272 * bit 30. (For instance, Cortex-R5). 4273 */ 4274 if (cpu->mp_is_up) { 4275 mpidr |= (1u << 30); 4276 } 4277 } 4278 return mpidr; 4279 } 4280 4281 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4282 { 4283 unsigned int cur_el = arm_current_el(env); 4284 bool secure = arm_is_secure(env); 4285 4286 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4287 return env->cp15.vmpidr_el2; 4288 } 4289 return mpidr_read_val(env); 4290 } 4291 4292 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4293 /* NOP AMAIR0/1 */ 4294 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4295 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4296 .access = PL1_RW, .accessfn = access_tvm_trvm, 4297 .type = ARM_CP_CONST, .resetvalue = 0 }, 4298 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4299 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4300 .access = PL1_RW, .accessfn = access_tvm_trvm, 4301 .type = ARM_CP_CONST, .resetvalue = 0 }, 4302 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4303 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4304 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4305 offsetof(CPUARMState, cp15.par_ns)} }, 4306 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4307 .access = PL1_RW, .accessfn = access_tvm_trvm, 4308 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4309 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4310 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4311 .writefn = vmsa_ttbr_write, }, 4312 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4313 .access = PL1_RW, .accessfn = access_tvm_trvm, 4314 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4315 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4316 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4317 .writefn = vmsa_ttbr_write, }, 4318 REGINFO_SENTINEL 4319 }; 4320 4321 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4322 { 4323 return vfp_get_fpcr(env); 4324 } 4325 4326 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4327 uint64_t value) 4328 { 4329 vfp_set_fpcr(env, value); 4330 } 4331 4332 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4333 { 4334 return vfp_get_fpsr(env); 4335 } 4336 4337 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4338 uint64_t value) 4339 { 4340 vfp_set_fpsr(env, value); 4341 } 4342 4343 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4344 bool isread) 4345 { 4346 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4347 return CP_ACCESS_TRAP; 4348 } 4349 return CP_ACCESS_OK; 4350 } 4351 4352 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4353 uint64_t value) 4354 { 4355 env->daif = value & PSTATE_DAIF; 4356 } 4357 4358 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4359 { 4360 return env->pstate & PSTATE_PAN; 4361 } 4362 4363 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4364 uint64_t value) 4365 { 4366 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4367 } 4368 4369 static const ARMCPRegInfo pan_reginfo = { 4370 .name = "PAN", .state = ARM_CP_STATE_AA64, 4371 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4372 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4373 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4374 }; 4375 4376 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4377 { 4378 return env->pstate & PSTATE_UAO; 4379 } 4380 4381 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4382 uint64_t value) 4383 { 4384 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4385 } 4386 4387 static const ARMCPRegInfo uao_reginfo = { 4388 .name = "UAO", .state = ARM_CP_STATE_AA64, 4389 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4390 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4391 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4392 }; 4393 4394 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4395 const ARMCPRegInfo *ri, 4396 bool isread) 4397 { 4398 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4399 switch (arm_current_el(env)) { 4400 case 0: 4401 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4402 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4403 return CP_ACCESS_TRAP; 4404 } 4405 /* fall through */ 4406 case 1: 4407 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4408 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4409 return CP_ACCESS_TRAP_EL2; 4410 } 4411 break; 4412 } 4413 return CP_ACCESS_OK; 4414 } 4415 4416 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4417 const ARMCPRegInfo *ri, 4418 bool isread) 4419 { 4420 /* Cache invalidate/clean to Point of Unification... */ 4421 switch (arm_current_el(env)) { 4422 case 0: 4423 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4424 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4425 return CP_ACCESS_TRAP; 4426 } 4427 /* fall through */ 4428 case 1: 4429 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4430 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4431 return CP_ACCESS_TRAP_EL2; 4432 } 4433 break; 4434 } 4435 return CP_ACCESS_OK; 4436 } 4437 4438 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4439 * Page D4-1736 (DDI0487A.b) 4440 */ 4441 4442 static int vae1_tlbmask(CPUARMState *env) 4443 { 4444 /* Since we exclude secure first, we may read HCR_EL2 directly. */ 4445 if (arm_is_secure_below_el3(env)) { 4446 return ARMMMUIdxBit_SE10_1 | 4447 ARMMMUIdxBit_SE10_1_PAN | 4448 ARMMMUIdxBit_SE10_0; 4449 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) 4450 == (HCR_E2H | HCR_TGE)) { 4451 return ARMMMUIdxBit_E20_2 | 4452 ARMMMUIdxBit_E20_2_PAN | 4453 ARMMMUIdxBit_E20_0; 4454 } else { 4455 return ARMMMUIdxBit_E10_1 | 4456 ARMMMUIdxBit_E10_1_PAN | 4457 ARMMMUIdxBit_E10_0; 4458 } 4459 } 4460 4461 /* Return 56 if TBI is enabled, 64 otherwise. */ 4462 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4463 uint64_t addr) 4464 { 4465 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4466 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4467 int select = extract64(addr, 55, 1); 4468 4469 return (tbi >> select) & 1 ? 56 : 64; 4470 } 4471 4472 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4473 { 4474 ARMMMUIdx mmu_idx; 4475 4476 /* Only the regime of the mmu_idx below is significant. */ 4477 if (arm_is_secure_below_el3(env)) { 4478 mmu_idx = ARMMMUIdx_SE10_0; 4479 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) 4480 == (HCR_E2H | HCR_TGE)) { 4481 mmu_idx = ARMMMUIdx_E20_0; 4482 } else { 4483 mmu_idx = ARMMMUIdx_E10_0; 4484 } 4485 return tlbbits_for_regime(env, mmu_idx, addr); 4486 } 4487 4488 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4489 uint64_t value) 4490 { 4491 CPUState *cs = env_cpu(env); 4492 int mask = vae1_tlbmask(env); 4493 4494 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4495 } 4496 4497 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4498 uint64_t value) 4499 { 4500 CPUState *cs = env_cpu(env); 4501 int mask = vae1_tlbmask(env); 4502 4503 if (tlb_force_broadcast(env)) { 4504 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4505 } else { 4506 tlb_flush_by_mmuidx(cs, mask); 4507 } 4508 } 4509 4510 static int alle1_tlbmask(CPUARMState *env) 4511 { 4512 /* 4513 * Note that the 'ALL' scope must invalidate both stage 1 and 4514 * stage 2 translations, whereas most other scopes only invalidate 4515 * stage 1 translations. 4516 */ 4517 if (arm_is_secure_below_el3(env)) { 4518 return ARMMMUIdxBit_SE10_1 | 4519 ARMMMUIdxBit_SE10_1_PAN | 4520 ARMMMUIdxBit_SE10_0; 4521 } else { 4522 return ARMMMUIdxBit_E10_1 | 4523 ARMMMUIdxBit_E10_1_PAN | 4524 ARMMMUIdxBit_E10_0; 4525 } 4526 } 4527 4528 static int e2_tlbmask(CPUARMState *env) 4529 { 4530 /* TODO: ARMv8.4-SecEL2 */ 4531 return ARMMMUIdxBit_E20_0 | 4532 ARMMMUIdxBit_E20_2 | 4533 ARMMMUIdxBit_E20_2_PAN | 4534 ARMMMUIdxBit_E2; 4535 } 4536 4537 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4538 uint64_t value) 4539 { 4540 CPUState *cs = env_cpu(env); 4541 int mask = alle1_tlbmask(env); 4542 4543 tlb_flush_by_mmuidx(cs, mask); 4544 } 4545 4546 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4547 uint64_t value) 4548 { 4549 CPUState *cs = env_cpu(env); 4550 int mask = e2_tlbmask(env); 4551 4552 tlb_flush_by_mmuidx(cs, mask); 4553 } 4554 4555 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4556 uint64_t value) 4557 { 4558 ARMCPU *cpu = env_archcpu(env); 4559 CPUState *cs = CPU(cpu); 4560 4561 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4562 } 4563 4564 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4565 uint64_t value) 4566 { 4567 CPUState *cs = env_cpu(env); 4568 int mask = alle1_tlbmask(env); 4569 4570 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4571 } 4572 4573 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4574 uint64_t value) 4575 { 4576 CPUState *cs = env_cpu(env); 4577 int mask = e2_tlbmask(env); 4578 4579 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4580 } 4581 4582 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4583 uint64_t value) 4584 { 4585 CPUState *cs = env_cpu(env); 4586 4587 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4588 } 4589 4590 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4591 uint64_t value) 4592 { 4593 /* Invalidate by VA, EL2 4594 * Currently handles both VAE2 and VALE2, since we don't support 4595 * flush-last-level-only. 4596 */ 4597 CPUState *cs = env_cpu(env); 4598 int mask = e2_tlbmask(env); 4599 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4600 4601 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4602 } 4603 4604 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4605 uint64_t value) 4606 { 4607 /* Invalidate by VA, EL3 4608 * Currently handles both VAE3 and VALE3, since we don't support 4609 * flush-last-level-only. 4610 */ 4611 ARMCPU *cpu = env_archcpu(env); 4612 CPUState *cs = CPU(cpu); 4613 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4614 4615 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4616 } 4617 4618 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4619 uint64_t value) 4620 { 4621 CPUState *cs = env_cpu(env); 4622 int mask = vae1_tlbmask(env); 4623 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4624 int bits = vae1_tlbbits(env, pageaddr); 4625 4626 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4627 } 4628 4629 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4630 uint64_t value) 4631 { 4632 /* Invalidate by VA, EL1&0 (AArch64 version). 4633 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4634 * since we don't support flush-for-specific-ASID-only or 4635 * flush-last-level-only. 4636 */ 4637 CPUState *cs = env_cpu(env); 4638 int mask = vae1_tlbmask(env); 4639 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4640 int bits = vae1_tlbbits(env, pageaddr); 4641 4642 if (tlb_force_broadcast(env)) { 4643 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4644 } else { 4645 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4646 } 4647 } 4648 4649 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4650 uint64_t value) 4651 { 4652 CPUState *cs = env_cpu(env); 4653 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4654 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr); 4655 4656 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4657 ARMMMUIdxBit_E2, bits); 4658 } 4659 4660 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4661 uint64_t value) 4662 { 4663 CPUState *cs = env_cpu(env); 4664 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4665 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4666 4667 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4668 ARMMMUIdxBit_SE3, bits); 4669 } 4670 4671 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4672 bool isread) 4673 { 4674 int cur_el = arm_current_el(env); 4675 4676 if (cur_el < 2) { 4677 uint64_t hcr = arm_hcr_el2_eff(env); 4678 4679 if (cur_el == 0) { 4680 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4681 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4682 return CP_ACCESS_TRAP_EL2; 4683 } 4684 } else { 4685 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4686 return CP_ACCESS_TRAP; 4687 } 4688 if (hcr & HCR_TDZ) { 4689 return CP_ACCESS_TRAP_EL2; 4690 } 4691 } 4692 } else if (hcr & HCR_TDZ) { 4693 return CP_ACCESS_TRAP_EL2; 4694 } 4695 } 4696 return CP_ACCESS_OK; 4697 } 4698 4699 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4700 { 4701 ARMCPU *cpu = env_archcpu(env); 4702 int dzp_bit = 1 << 4; 4703 4704 /* DZP indicates whether DC ZVA access is allowed */ 4705 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4706 dzp_bit = 0; 4707 } 4708 return cpu->dcz_blocksize | dzp_bit; 4709 } 4710 4711 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4712 bool isread) 4713 { 4714 if (!(env->pstate & PSTATE_SP)) { 4715 /* Access to SP_EL0 is undefined if it's being used as 4716 * the stack pointer. 4717 */ 4718 return CP_ACCESS_TRAP_UNCATEGORIZED; 4719 } 4720 return CP_ACCESS_OK; 4721 } 4722 4723 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4724 { 4725 return env->pstate & PSTATE_SP; 4726 } 4727 4728 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4729 { 4730 update_spsel(env, val); 4731 } 4732 4733 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4734 uint64_t value) 4735 { 4736 ARMCPU *cpu = env_archcpu(env); 4737 4738 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4739 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4740 value &= ~SCTLR_M; 4741 } 4742 4743 /* ??? Lots of these bits are not implemented. */ 4744 4745 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4746 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4747 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4748 } else { 4749 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4750 SCTLR_ATA0 | SCTLR_ATA); 4751 } 4752 } 4753 4754 if (raw_read(env, ri) == value) { 4755 /* Skip the TLB flush if nothing actually changed; Linux likes 4756 * to do a lot of pointless SCTLR writes. 4757 */ 4758 return; 4759 } 4760 4761 raw_write(env, ri, value); 4762 4763 /* This may enable/disable the MMU, so do a TLB flush. */ 4764 tlb_flush(CPU(cpu)); 4765 4766 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4767 /* 4768 * Normally we would always end the TB on an SCTLR write; see the 4769 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4770 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4771 * of hflags from the translator, so do it here. 4772 */ 4773 arm_rebuild_hflags(env); 4774 } 4775 } 4776 4777 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4778 bool isread) 4779 { 4780 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4781 return CP_ACCESS_TRAP_FP_EL2; 4782 } 4783 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4784 return CP_ACCESS_TRAP_FP_EL3; 4785 } 4786 return CP_ACCESS_OK; 4787 } 4788 4789 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4790 uint64_t value) 4791 { 4792 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4793 } 4794 4795 static const ARMCPRegInfo v8_cp_reginfo[] = { 4796 /* Minimal set of EL0-visible registers. This will need to be expanded 4797 * significantly for system emulation of AArch64 CPUs. 4798 */ 4799 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4800 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4801 .access = PL0_RW, .type = ARM_CP_NZCV }, 4802 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4803 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4804 .type = ARM_CP_NO_RAW, 4805 .access = PL0_RW, .accessfn = aa64_daif_access, 4806 .fieldoffset = offsetof(CPUARMState, daif), 4807 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4808 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4809 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4810 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4811 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4812 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4813 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4814 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4815 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4816 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4817 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4818 .access = PL0_R, .type = ARM_CP_NO_RAW, 4819 .readfn = aa64_dczid_read }, 4820 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4821 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4822 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4823 #ifndef CONFIG_USER_ONLY 4824 /* Avoid overhead of an access check that always passes in user-mode */ 4825 .accessfn = aa64_zva_access, 4826 #endif 4827 }, 4828 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4829 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4830 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4831 /* Cache ops: all NOPs since we don't emulate caches */ 4832 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4833 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4834 .access = PL1_W, .type = ARM_CP_NOP, 4835 .accessfn = aa64_cacheop_pou_access }, 4836 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4837 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4838 .access = PL1_W, .type = ARM_CP_NOP, 4839 .accessfn = aa64_cacheop_pou_access }, 4840 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4841 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4842 .access = PL0_W, .type = ARM_CP_NOP, 4843 .accessfn = aa64_cacheop_pou_access }, 4844 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4845 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4846 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4847 .type = ARM_CP_NOP }, 4848 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4849 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4850 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4851 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4852 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4853 .access = PL0_W, .type = ARM_CP_NOP, 4854 .accessfn = aa64_cacheop_poc_access }, 4855 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4856 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4857 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4858 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4859 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4860 .access = PL0_W, .type = ARM_CP_NOP, 4861 .accessfn = aa64_cacheop_pou_access }, 4862 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4863 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4864 .access = PL0_W, .type = ARM_CP_NOP, 4865 .accessfn = aa64_cacheop_poc_access }, 4866 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4867 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4868 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4869 /* TLBI operations */ 4870 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4871 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4872 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4873 .writefn = tlbi_aa64_vmalle1is_write }, 4874 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4875 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4876 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4877 .writefn = tlbi_aa64_vae1is_write }, 4878 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4879 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4880 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4881 .writefn = tlbi_aa64_vmalle1is_write }, 4882 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4883 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4884 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4885 .writefn = tlbi_aa64_vae1is_write }, 4886 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4887 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4888 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4889 .writefn = tlbi_aa64_vae1is_write }, 4890 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4891 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4892 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4893 .writefn = tlbi_aa64_vae1is_write }, 4894 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4895 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4896 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4897 .writefn = tlbi_aa64_vmalle1_write }, 4898 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4899 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4900 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4901 .writefn = tlbi_aa64_vae1_write }, 4902 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4903 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4904 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4905 .writefn = tlbi_aa64_vmalle1_write }, 4906 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4907 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4908 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4909 .writefn = tlbi_aa64_vae1_write }, 4910 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4911 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4912 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4913 .writefn = tlbi_aa64_vae1_write }, 4914 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4915 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4916 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4917 .writefn = tlbi_aa64_vae1_write }, 4918 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4919 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4920 .access = PL2_W, .type = ARM_CP_NOP }, 4921 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4922 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4923 .access = PL2_W, .type = ARM_CP_NOP }, 4924 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4926 .access = PL2_W, .type = ARM_CP_NO_RAW, 4927 .writefn = tlbi_aa64_alle1is_write }, 4928 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4929 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4930 .access = PL2_W, .type = ARM_CP_NO_RAW, 4931 .writefn = tlbi_aa64_alle1is_write }, 4932 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4933 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4934 .access = PL2_W, .type = ARM_CP_NOP }, 4935 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4936 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4937 .access = PL2_W, .type = ARM_CP_NOP }, 4938 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4939 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4940 .access = PL2_W, .type = ARM_CP_NO_RAW, 4941 .writefn = tlbi_aa64_alle1_write }, 4942 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4943 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4944 .access = PL2_W, .type = ARM_CP_NO_RAW, 4945 .writefn = tlbi_aa64_alle1is_write }, 4946 #ifndef CONFIG_USER_ONLY 4947 /* 64 bit address translation operations */ 4948 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4949 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4950 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4951 .writefn = ats_write64 }, 4952 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4953 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4954 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4955 .writefn = ats_write64 }, 4956 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4957 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4958 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4959 .writefn = ats_write64 }, 4960 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4961 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4962 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4963 .writefn = ats_write64 }, 4964 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4965 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4966 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4967 .writefn = ats_write64 }, 4968 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4969 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4970 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4971 .writefn = ats_write64 }, 4972 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4973 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4974 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4975 .writefn = ats_write64 }, 4976 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4977 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4978 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4979 .writefn = ats_write64 }, 4980 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4981 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4982 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4983 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4984 .writefn = ats_write64 }, 4985 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4986 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4987 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4988 .writefn = ats_write64 }, 4989 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4990 .type = ARM_CP_ALIAS, 4991 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4992 .access = PL1_RW, .resetvalue = 0, 4993 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4994 .writefn = par_write }, 4995 #endif 4996 /* TLB invalidate last level of translation table walk */ 4997 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4998 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4999 .writefn = tlbimva_is_write }, 5000 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5001 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5002 .writefn = tlbimvaa_is_write }, 5003 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5004 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5005 .writefn = tlbimva_write }, 5006 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5007 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5008 .writefn = tlbimvaa_write }, 5009 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5010 .type = ARM_CP_NO_RAW, .access = PL2_W, 5011 .writefn = tlbimva_hyp_write }, 5012 { .name = "TLBIMVALHIS", 5013 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5014 .type = ARM_CP_NO_RAW, .access = PL2_W, 5015 .writefn = tlbimva_hyp_is_write }, 5016 { .name = "TLBIIPAS2", 5017 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5018 .type = ARM_CP_NOP, .access = PL2_W }, 5019 { .name = "TLBIIPAS2IS", 5020 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5021 .type = ARM_CP_NOP, .access = PL2_W }, 5022 { .name = "TLBIIPAS2L", 5023 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5024 .type = ARM_CP_NOP, .access = PL2_W }, 5025 { .name = "TLBIIPAS2LIS", 5026 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5027 .type = ARM_CP_NOP, .access = PL2_W }, 5028 /* 32 bit cache operations */ 5029 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5030 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5031 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5032 .type = ARM_CP_NOP, .access = PL1_W }, 5033 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5034 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5035 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5036 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5037 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5038 .type = ARM_CP_NOP, .access = PL1_W }, 5039 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5040 .type = ARM_CP_NOP, .access = PL1_W }, 5041 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5042 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5043 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5044 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5045 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5046 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5047 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5048 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5049 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5050 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5051 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5052 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5053 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5054 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5055 /* MMU Domain access control / MPU write buffer control */ 5056 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5057 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5058 .writefn = dacr_write, .raw_writefn = raw_write, 5059 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5060 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5061 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5062 .type = ARM_CP_ALIAS, 5063 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5064 .access = PL1_RW, 5065 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5066 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5067 .type = ARM_CP_ALIAS, 5068 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5069 .access = PL1_RW, 5070 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5071 /* We rely on the access checks not allowing the guest to write to the 5072 * state field when SPSel indicates that it's being used as the stack 5073 * pointer. 5074 */ 5075 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5076 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5077 .access = PL1_RW, .accessfn = sp_el0_access, 5078 .type = ARM_CP_ALIAS, 5079 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5080 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5081 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5082 .access = PL2_RW, .type = ARM_CP_ALIAS, 5083 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5084 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5085 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5086 .type = ARM_CP_NO_RAW, 5087 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5088 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5089 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5090 .type = ARM_CP_ALIAS, 5091 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5092 .access = PL2_RW, .accessfn = fpexc32_access }, 5093 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5094 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5095 .access = PL2_RW, .resetvalue = 0, 5096 .writefn = dacr_write, .raw_writefn = raw_write, 5097 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5098 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5099 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5100 .access = PL2_RW, .resetvalue = 0, 5101 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5102 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5103 .type = ARM_CP_ALIAS, 5104 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5105 .access = PL2_RW, 5106 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5107 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5108 .type = ARM_CP_ALIAS, 5109 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5110 .access = PL2_RW, 5111 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5112 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5113 .type = ARM_CP_ALIAS, 5114 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5115 .access = PL2_RW, 5116 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5117 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5118 .type = ARM_CP_ALIAS, 5119 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5120 .access = PL2_RW, 5121 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5122 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5123 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5124 .resetvalue = 0, 5125 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5126 { .name = "SDCR", .type = ARM_CP_ALIAS, 5127 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5128 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5129 .writefn = sdcr_write, 5130 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5131 REGINFO_SENTINEL 5132 }; 5133 5134 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5135 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5136 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5137 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5138 .access = PL2_RW, 5139 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5140 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5141 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5142 .access = PL2_RW, 5143 .type = ARM_CP_CONST, .resetvalue = 0 }, 5144 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5145 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5146 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5147 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5148 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5149 .access = PL2_RW, 5150 .type = ARM_CP_CONST, .resetvalue = 0 }, 5151 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5152 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5153 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5154 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5155 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5156 .access = PL2_RW, .type = ARM_CP_CONST, 5157 .resetvalue = 0 }, 5158 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5159 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5160 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5161 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5162 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5163 .access = PL2_RW, .type = ARM_CP_CONST, 5164 .resetvalue = 0 }, 5165 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5166 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5167 .access = PL2_RW, .type = ARM_CP_CONST, 5168 .resetvalue = 0 }, 5169 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5170 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5171 .access = PL2_RW, .type = ARM_CP_CONST, 5172 .resetvalue = 0 }, 5173 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5174 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5175 .access = PL2_RW, .type = ARM_CP_CONST, 5176 .resetvalue = 0 }, 5177 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5178 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5179 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5180 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5181 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5182 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5183 .type = ARM_CP_CONST, .resetvalue = 0 }, 5184 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5185 .cp = 15, .opc1 = 6, .crm = 2, 5186 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5187 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5188 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5189 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5190 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5191 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5192 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5193 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5194 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5195 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5196 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5197 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5198 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5199 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5200 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5201 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5202 .resetvalue = 0 }, 5203 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5204 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5205 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5206 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5207 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5208 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5209 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5210 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5211 .resetvalue = 0 }, 5212 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5213 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5214 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5215 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5216 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5217 .resetvalue = 0 }, 5218 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5219 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5220 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5221 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5222 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5223 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5224 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5225 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5226 .access = PL2_RW, .accessfn = access_tda, 5227 .type = ARM_CP_CONST, .resetvalue = 0 }, 5228 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5229 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5230 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5231 .type = ARM_CP_CONST, .resetvalue = 0 }, 5232 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5233 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5234 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5235 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5236 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5237 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5238 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5239 .type = ARM_CP_CONST, 5240 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5241 .access = PL2_RW, .resetvalue = 0 }, 5242 REGINFO_SENTINEL 5243 }; 5244 5245 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5246 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5247 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5248 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5249 .access = PL2_RW, 5250 .type = ARM_CP_CONST, .resetvalue = 0 }, 5251 REGINFO_SENTINEL 5252 }; 5253 5254 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5255 { 5256 ARMCPU *cpu = env_archcpu(env); 5257 5258 if (arm_feature(env, ARM_FEATURE_V8)) { 5259 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5260 } else { 5261 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5262 } 5263 5264 if (arm_feature(env, ARM_FEATURE_EL3)) { 5265 valid_mask &= ~HCR_HCD; 5266 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5267 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5268 * However, if we're using the SMC PSCI conduit then QEMU is 5269 * effectively acting like EL3 firmware and so the guest at 5270 * EL2 should retain the ability to prevent EL1 from being 5271 * able to make SMC calls into the ersatz firmware, so in 5272 * that case HCR.TSC should be read/write. 5273 */ 5274 valid_mask &= ~HCR_TSC; 5275 } 5276 5277 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5278 if (cpu_isar_feature(aa64_vh, cpu)) { 5279 valid_mask |= HCR_E2H; 5280 } 5281 if (cpu_isar_feature(aa64_lor, cpu)) { 5282 valid_mask |= HCR_TLOR; 5283 } 5284 if (cpu_isar_feature(aa64_pauth, cpu)) { 5285 valid_mask |= HCR_API | HCR_APK; 5286 } 5287 if (cpu_isar_feature(aa64_mte, cpu)) { 5288 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5289 } 5290 } 5291 5292 /* Clear RES0 bits. */ 5293 value &= valid_mask; 5294 5295 /* 5296 * These bits change the MMU setup: 5297 * HCR_VM enables stage 2 translation 5298 * HCR_PTW forbids certain page-table setups 5299 * HCR_DC disables stage1 and enables stage2 translation 5300 * HCR_DCT enables tagging on (disabled) stage1 translation 5301 */ 5302 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5303 tlb_flush(CPU(cpu)); 5304 } 5305 env->cp15.hcr_el2 = value; 5306 5307 /* 5308 * Updates to VI and VF require us to update the status of 5309 * virtual interrupts, which are the logical OR of these bits 5310 * and the state of the input lines from the GIC. (This requires 5311 * that we have the iothread lock, which is done by marking the 5312 * reginfo structs as ARM_CP_IO.) 5313 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5314 * possible for it to be taken immediately, because VIRQ and 5315 * VFIQ are masked unless running at EL0 or EL1, and HCR 5316 * can only be written at EL2. 5317 */ 5318 g_assert(qemu_mutex_iothread_locked()); 5319 arm_cpu_update_virq(cpu); 5320 arm_cpu_update_vfiq(cpu); 5321 } 5322 5323 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5324 { 5325 do_hcr_write(env, value, 0); 5326 } 5327 5328 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5329 uint64_t value) 5330 { 5331 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5332 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5333 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5334 } 5335 5336 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5337 uint64_t value) 5338 { 5339 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5340 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5341 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5342 } 5343 5344 /* 5345 * Return the effective value of HCR_EL2. 5346 * Bits that are not included here: 5347 * RW (read from SCR_EL3.RW as needed) 5348 */ 5349 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5350 { 5351 uint64_t ret = env->cp15.hcr_el2; 5352 5353 if (arm_is_secure_below_el3(env)) { 5354 /* 5355 * "This register has no effect if EL2 is not enabled in the 5356 * current Security state". This is ARMv8.4-SecEL2 speak for 5357 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5358 * 5359 * Prior to that, the language was "In an implementation that 5360 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5361 * as if this field is 0 for all purposes other than a direct 5362 * read or write access of HCR_EL2". With lots of enumeration 5363 * on a per-field basis. In current QEMU, this is condition 5364 * is arm_is_secure_below_el3. 5365 * 5366 * Since the v8.4 language applies to the entire register, and 5367 * appears to be backward compatible, use that. 5368 */ 5369 return 0; 5370 } 5371 5372 /* 5373 * For a cpu that supports both aarch64 and aarch32, we can set bits 5374 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5375 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5376 */ 5377 if (!arm_el_is_aa64(env, 2)) { 5378 uint64_t aa32_valid; 5379 5380 /* 5381 * These bits are up-to-date as of ARMv8.6. 5382 * For HCR, it's easiest to list just the 2 bits that are invalid. 5383 * For HCR2, list those that are valid. 5384 */ 5385 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5386 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5387 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5388 ret &= aa32_valid; 5389 } 5390 5391 if (ret & HCR_TGE) { 5392 /* These bits are up-to-date as of ARMv8.6. */ 5393 if (ret & HCR_E2H) { 5394 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5395 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5396 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5397 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5398 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5399 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5400 } else { 5401 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5402 } 5403 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5404 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5405 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5406 HCR_TLOR); 5407 } 5408 5409 return ret; 5410 } 5411 5412 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5413 uint64_t value) 5414 { 5415 /* 5416 * For A-profile AArch32 EL3, if NSACR.CP10 5417 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5418 */ 5419 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5420 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5421 value &= ~(0x3 << 10); 5422 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5423 } 5424 env->cp15.cptr_el[2] = value; 5425 } 5426 5427 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5428 { 5429 /* 5430 * For A-profile AArch32 EL3, if NSACR.CP10 5431 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5432 */ 5433 uint64_t value = env->cp15.cptr_el[2]; 5434 5435 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5436 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5437 value |= 0x3 << 10; 5438 } 5439 return value; 5440 } 5441 5442 static const ARMCPRegInfo el2_cp_reginfo[] = { 5443 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5444 .type = ARM_CP_IO, 5445 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5446 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5447 .writefn = hcr_write }, 5448 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5449 .type = ARM_CP_ALIAS | ARM_CP_IO, 5450 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5451 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5452 .writefn = hcr_writelow }, 5453 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5454 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5455 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5456 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5457 .type = ARM_CP_ALIAS, 5458 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5459 .access = PL2_RW, 5460 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5461 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5462 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5463 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5464 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5465 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5466 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5467 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5468 .type = ARM_CP_ALIAS, 5469 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5470 .access = PL2_RW, 5471 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5472 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5473 .type = ARM_CP_ALIAS, 5474 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5475 .access = PL2_RW, 5476 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5477 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5478 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5479 .access = PL2_RW, .writefn = vbar_write, 5480 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5481 .resetvalue = 0 }, 5482 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5483 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5484 .access = PL3_RW, .type = ARM_CP_ALIAS, 5485 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5486 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5487 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5488 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5489 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5490 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5491 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5492 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5493 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5494 .resetvalue = 0 }, 5495 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5496 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5497 .access = PL2_RW, .type = ARM_CP_ALIAS, 5498 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5499 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5500 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5501 .access = PL2_RW, .type = ARM_CP_CONST, 5502 .resetvalue = 0 }, 5503 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5504 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5505 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5506 .access = PL2_RW, .type = ARM_CP_CONST, 5507 .resetvalue = 0 }, 5508 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5509 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5510 .access = PL2_RW, .type = ARM_CP_CONST, 5511 .resetvalue = 0 }, 5512 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5513 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5514 .access = PL2_RW, .type = ARM_CP_CONST, 5515 .resetvalue = 0 }, 5516 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5517 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5518 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5519 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5520 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5521 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5522 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5523 .type = ARM_CP_ALIAS, 5524 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5525 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5526 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5527 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5528 .access = PL2_RW, 5529 /* no .writefn needed as this can't cause an ASID change; 5530 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5531 */ 5532 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5533 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5534 .cp = 15, .opc1 = 6, .crm = 2, 5535 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5536 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5537 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5538 .writefn = vttbr_write }, 5539 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5540 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5541 .access = PL2_RW, .writefn = vttbr_write, 5542 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5543 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5544 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5545 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5546 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5547 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5548 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5549 .access = PL2_RW, .resetvalue = 0, 5550 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5551 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5552 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5553 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5554 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5555 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5556 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5557 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5558 { .name = "TLBIALLNSNH", 5559 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5560 .type = ARM_CP_NO_RAW, .access = PL2_W, 5561 .writefn = tlbiall_nsnh_write }, 5562 { .name = "TLBIALLNSNHIS", 5563 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5564 .type = ARM_CP_NO_RAW, .access = PL2_W, 5565 .writefn = tlbiall_nsnh_is_write }, 5566 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5567 .type = ARM_CP_NO_RAW, .access = PL2_W, 5568 .writefn = tlbiall_hyp_write }, 5569 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5570 .type = ARM_CP_NO_RAW, .access = PL2_W, 5571 .writefn = tlbiall_hyp_is_write }, 5572 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5573 .type = ARM_CP_NO_RAW, .access = PL2_W, 5574 .writefn = tlbimva_hyp_write }, 5575 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5576 .type = ARM_CP_NO_RAW, .access = PL2_W, 5577 .writefn = tlbimva_hyp_is_write }, 5578 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5579 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5580 .type = ARM_CP_NO_RAW, .access = PL2_W, 5581 .writefn = tlbi_aa64_alle2_write }, 5582 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5583 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5584 .type = ARM_CP_NO_RAW, .access = PL2_W, 5585 .writefn = tlbi_aa64_vae2_write }, 5586 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5587 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5588 .access = PL2_W, .type = ARM_CP_NO_RAW, 5589 .writefn = tlbi_aa64_vae2_write }, 5590 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5591 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5592 .access = PL2_W, .type = ARM_CP_NO_RAW, 5593 .writefn = tlbi_aa64_alle2is_write }, 5594 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5595 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5596 .type = ARM_CP_NO_RAW, .access = PL2_W, 5597 .writefn = tlbi_aa64_vae2is_write }, 5598 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5599 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5600 .access = PL2_W, .type = ARM_CP_NO_RAW, 5601 .writefn = tlbi_aa64_vae2is_write }, 5602 #ifndef CONFIG_USER_ONLY 5603 /* Unlike the other EL2-related AT operations, these must 5604 * UNDEF from EL3 if EL2 is not implemented, which is why we 5605 * define them here rather than with the rest of the AT ops. 5606 */ 5607 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5608 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5609 .access = PL2_W, .accessfn = at_s1e2_access, 5610 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5611 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5612 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5613 .access = PL2_W, .accessfn = at_s1e2_access, 5614 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5615 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5616 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5617 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5618 * to behave as if SCR.NS was 1. 5619 */ 5620 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5621 .access = PL2_W, 5622 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5623 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5624 .access = PL2_W, 5625 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5626 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5627 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5628 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5629 * reset values as IMPDEF. We choose to reset to 3 to comply with 5630 * both ARMv7 and ARMv8. 5631 */ 5632 .access = PL2_RW, .resetvalue = 3, 5633 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5634 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5635 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5636 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5637 .writefn = gt_cntvoff_write, 5638 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5639 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5640 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5641 .writefn = gt_cntvoff_write, 5642 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5643 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5644 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5645 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5646 .type = ARM_CP_IO, .access = PL2_RW, 5647 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5648 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5649 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5650 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5651 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5652 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5653 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5654 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5655 .resetfn = gt_hyp_timer_reset, 5656 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5657 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5658 .type = ARM_CP_IO, 5659 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5660 .access = PL2_RW, 5661 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5662 .resetvalue = 0, 5663 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5664 #endif 5665 /* The only field of MDCR_EL2 that has a defined architectural reset value 5666 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5667 * don't implement any PMU event counters, so using zero as a reset 5668 * value for MDCR_EL2 is okay 5669 */ 5670 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5671 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5672 .access = PL2_RW, .resetvalue = 0, 5673 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5674 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5675 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5676 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5677 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5678 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5679 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5680 .access = PL2_RW, 5681 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5682 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5683 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5684 .access = PL2_RW, 5685 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5686 REGINFO_SENTINEL 5687 }; 5688 5689 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5690 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5691 .type = ARM_CP_ALIAS | ARM_CP_IO, 5692 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5693 .access = PL2_RW, 5694 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5695 .writefn = hcr_writehigh }, 5696 REGINFO_SENTINEL 5697 }; 5698 5699 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5700 bool isread) 5701 { 5702 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5703 * At Secure EL1 it traps to EL3. 5704 */ 5705 if (arm_current_el(env) == 3) { 5706 return CP_ACCESS_OK; 5707 } 5708 if (arm_is_secure_below_el3(env)) { 5709 return CP_ACCESS_TRAP_EL3; 5710 } 5711 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5712 if (isread) { 5713 return CP_ACCESS_OK; 5714 } 5715 return CP_ACCESS_TRAP_UNCATEGORIZED; 5716 } 5717 5718 static const ARMCPRegInfo el3_cp_reginfo[] = { 5719 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5720 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5721 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5722 .resetvalue = 0, .writefn = scr_write }, 5723 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5724 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5725 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5726 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5727 .writefn = scr_write }, 5728 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5729 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5730 .access = PL3_RW, .resetvalue = 0, 5731 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5732 { .name = "SDER", 5733 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5734 .access = PL3_RW, .resetvalue = 0, 5735 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5736 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5737 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5738 .writefn = vbar_write, .resetvalue = 0, 5739 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5740 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5741 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5742 .access = PL3_RW, .resetvalue = 0, 5743 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5744 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5745 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5746 .access = PL3_RW, 5747 /* no .writefn needed as this can't cause an ASID change; 5748 * we must provide a .raw_writefn and .resetfn because we handle 5749 * reset and migration for the AArch32 TTBCR(S), which might be 5750 * using mask and base_mask. 5751 */ 5752 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5753 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5754 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5755 .type = ARM_CP_ALIAS, 5756 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5757 .access = PL3_RW, 5758 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5759 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5760 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5761 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5762 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5763 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5764 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5765 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5766 .type = ARM_CP_ALIAS, 5767 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5768 .access = PL3_RW, 5769 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5770 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5771 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5772 .access = PL3_RW, .writefn = vbar_write, 5773 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5774 .resetvalue = 0 }, 5775 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5776 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5777 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5778 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5779 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5780 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5781 .access = PL3_RW, .resetvalue = 0, 5782 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5783 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5784 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5785 .access = PL3_RW, .type = ARM_CP_CONST, 5786 .resetvalue = 0 }, 5787 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5788 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5789 .access = PL3_RW, .type = ARM_CP_CONST, 5790 .resetvalue = 0 }, 5791 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5792 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5793 .access = PL3_RW, .type = ARM_CP_CONST, 5794 .resetvalue = 0 }, 5795 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5796 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5797 .access = PL3_W, .type = ARM_CP_NO_RAW, 5798 .writefn = tlbi_aa64_alle3is_write }, 5799 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5800 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5801 .access = PL3_W, .type = ARM_CP_NO_RAW, 5802 .writefn = tlbi_aa64_vae3is_write }, 5803 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5804 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5805 .access = PL3_W, .type = ARM_CP_NO_RAW, 5806 .writefn = tlbi_aa64_vae3is_write }, 5807 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5808 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5809 .access = PL3_W, .type = ARM_CP_NO_RAW, 5810 .writefn = tlbi_aa64_alle3_write }, 5811 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5812 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5813 .access = PL3_W, .type = ARM_CP_NO_RAW, 5814 .writefn = tlbi_aa64_vae3_write }, 5815 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5816 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5817 .access = PL3_W, .type = ARM_CP_NO_RAW, 5818 .writefn = tlbi_aa64_vae3_write }, 5819 REGINFO_SENTINEL 5820 }; 5821 5822 #ifndef CONFIG_USER_ONLY 5823 /* Test if system register redirection is to occur in the current state. */ 5824 static bool redirect_for_e2h(CPUARMState *env) 5825 { 5826 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5827 } 5828 5829 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5830 { 5831 CPReadFn *readfn; 5832 5833 if (redirect_for_e2h(env)) { 5834 /* Switch to the saved EL2 version of the register. */ 5835 ri = ri->opaque; 5836 readfn = ri->readfn; 5837 } else { 5838 readfn = ri->orig_readfn; 5839 } 5840 if (readfn == NULL) { 5841 readfn = raw_read; 5842 } 5843 return readfn(env, ri); 5844 } 5845 5846 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5847 uint64_t value) 5848 { 5849 CPWriteFn *writefn; 5850 5851 if (redirect_for_e2h(env)) { 5852 /* Switch to the saved EL2 version of the register. */ 5853 ri = ri->opaque; 5854 writefn = ri->writefn; 5855 } else { 5856 writefn = ri->orig_writefn; 5857 } 5858 if (writefn == NULL) { 5859 writefn = raw_write; 5860 } 5861 writefn(env, ri, value); 5862 } 5863 5864 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5865 { 5866 struct E2HAlias { 5867 uint32_t src_key, dst_key, new_key; 5868 const char *src_name, *dst_name, *new_name; 5869 bool (*feature)(const ARMISARegisters *id); 5870 }; 5871 5872 #define K(op0, op1, crn, crm, op2) \ 5873 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5874 5875 static const struct E2HAlias aliases[] = { 5876 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5877 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5878 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5879 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5880 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5881 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5882 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5883 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5884 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5885 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5886 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5887 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5888 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5889 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5890 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5891 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5892 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5893 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5894 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5895 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5896 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5897 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5898 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5899 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5900 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5901 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5902 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5903 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5904 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5905 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5906 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5907 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5908 5909 /* 5910 * Note that redirection of ZCR is mentioned in the description 5911 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5912 * not in the summary table. 5913 */ 5914 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5915 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5916 5917 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5918 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5919 5920 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5921 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5922 }; 5923 #undef K 5924 5925 size_t i; 5926 5927 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5928 const struct E2HAlias *a = &aliases[i]; 5929 ARMCPRegInfo *src_reg, *dst_reg; 5930 5931 if (a->feature && !a->feature(&cpu->isar)) { 5932 continue; 5933 } 5934 5935 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5936 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5937 g_assert(src_reg != NULL); 5938 g_assert(dst_reg != NULL); 5939 5940 /* Cross-compare names to detect typos in the keys. */ 5941 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5942 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5943 5944 /* None of the core system registers use opaque; we will. */ 5945 g_assert(src_reg->opaque == NULL); 5946 5947 /* Create alias before redirection so we dup the right data. */ 5948 if (a->new_key) { 5949 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5950 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5951 bool ok; 5952 5953 new_reg->name = a->new_name; 5954 new_reg->type |= ARM_CP_ALIAS; 5955 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5956 new_reg->access &= PL2_RW | PL3_RW; 5957 5958 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5959 g_assert(ok); 5960 } 5961 5962 src_reg->opaque = dst_reg; 5963 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5964 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5965 if (!src_reg->raw_readfn) { 5966 src_reg->raw_readfn = raw_read; 5967 } 5968 if (!src_reg->raw_writefn) { 5969 src_reg->raw_writefn = raw_write; 5970 } 5971 src_reg->readfn = el2_e2h_read; 5972 src_reg->writefn = el2_e2h_write; 5973 } 5974 } 5975 #endif 5976 5977 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5978 bool isread) 5979 { 5980 int cur_el = arm_current_el(env); 5981 5982 if (cur_el < 2) { 5983 uint64_t hcr = arm_hcr_el2_eff(env); 5984 5985 if (cur_el == 0) { 5986 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5987 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5988 return CP_ACCESS_TRAP_EL2; 5989 } 5990 } else { 5991 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5992 return CP_ACCESS_TRAP; 5993 } 5994 if (hcr & HCR_TID2) { 5995 return CP_ACCESS_TRAP_EL2; 5996 } 5997 } 5998 } else if (hcr & HCR_TID2) { 5999 return CP_ACCESS_TRAP_EL2; 6000 } 6001 } 6002 6003 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6004 return CP_ACCESS_TRAP_EL2; 6005 } 6006 6007 return CP_ACCESS_OK; 6008 } 6009 6010 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6011 uint64_t value) 6012 { 6013 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6014 * read via a bit in OSLSR_EL1. 6015 */ 6016 int oslock; 6017 6018 if (ri->state == ARM_CP_STATE_AA32) { 6019 oslock = (value == 0xC5ACCE55); 6020 } else { 6021 oslock = value & 1; 6022 } 6023 6024 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6025 } 6026 6027 static const ARMCPRegInfo debug_cp_reginfo[] = { 6028 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6029 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6030 * unlike DBGDRAR it is never accessible from EL0. 6031 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6032 * accessor. 6033 */ 6034 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6035 .access = PL0_R, .accessfn = access_tdra, 6036 .type = ARM_CP_CONST, .resetvalue = 0 }, 6037 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6038 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6039 .access = PL1_R, .accessfn = access_tdra, 6040 .type = ARM_CP_CONST, .resetvalue = 0 }, 6041 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6042 .access = PL0_R, .accessfn = access_tdra, 6043 .type = ARM_CP_CONST, .resetvalue = 0 }, 6044 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6045 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6046 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6047 .access = PL1_RW, .accessfn = access_tda, 6048 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6049 .resetvalue = 0 }, 6050 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 6051 * We don't implement the configurable EL0 access. 6052 */ 6053 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 6054 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6055 .type = ARM_CP_ALIAS, 6056 .access = PL1_R, .accessfn = access_tda, 6057 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6058 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6059 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6060 .access = PL1_W, .type = ARM_CP_NO_RAW, 6061 .accessfn = access_tdosa, 6062 .writefn = oslar_write }, 6063 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6064 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6065 .access = PL1_R, .resetvalue = 10, 6066 .accessfn = access_tdosa, 6067 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6068 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6069 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6070 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6071 .access = PL1_RW, .accessfn = access_tdosa, 6072 .type = ARM_CP_NOP }, 6073 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6074 * implement vector catch debug events yet. 6075 */ 6076 { .name = "DBGVCR", 6077 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6078 .access = PL1_RW, .accessfn = access_tda, 6079 .type = ARM_CP_NOP }, 6080 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6081 * to save and restore a 32-bit guest's DBGVCR) 6082 */ 6083 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6084 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6085 .access = PL2_RW, .accessfn = access_tda, 6086 .type = ARM_CP_NOP }, 6087 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6088 * Channel but Linux may try to access this register. The 32-bit 6089 * alias is DBGDCCINT. 6090 */ 6091 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6092 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6093 .access = PL1_RW, .accessfn = access_tda, 6094 .type = ARM_CP_NOP }, 6095 REGINFO_SENTINEL 6096 }; 6097 6098 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6099 /* 64 bit access versions of the (dummy) debug registers */ 6100 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6101 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6102 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6103 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6104 REGINFO_SENTINEL 6105 }; 6106 6107 /* Return the exception level to which exceptions should be taken 6108 * via SVEAccessTrap. If an exception should be routed through 6109 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6110 * take care of raising that exception. 6111 * C.f. the ARM pseudocode function CheckSVEEnabled. 6112 */ 6113 int sve_exception_el(CPUARMState *env, int el) 6114 { 6115 #ifndef CONFIG_USER_ONLY 6116 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6117 6118 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6119 bool disabled = false; 6120 6121 /* The CPACR.ZEN controls traps to EL1: 6122 * 0, 2 : trap EL0 and EL1 accesses 6123 * 1 : trap only EL0 accesses 6124 * 3 : trap no accesses 6125 */ 6126 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6127 disabled = true; 6128 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6129 disabled = el == 0; 6130 } 6131 if (disabled) { 6132 /* route_to_el2 */ 6133 return hcr_el2 & HCR_TGE ? 2 : 1; 6134 } 6135 6136 /* Check CPACR.FPEN. */ 6137 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6138 disabled = true; 6139 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6140 disabled = el == 0; 6141 } 6142 if (disabled) { 6143 return 0; 6144 } 6145 } 6146 6147 /* CPTR_EL2. Since TZ and TFP are positive, 6148 * they will be zero when EL2 is not present. 6149 */ 6150 if (el <= 2 && !arm_is_secure_below_el3(env)) { 6151 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6152 return 2; 6153 } 6154 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6155 return 0; 6156 } 6157 } 6158 6159 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6160 if (arm_feature(env, ARM_FEATURE_EL3) 6161 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6162 return 3; 6163 } 6164 #endif 6165 return 0; 6166 } 6167 6168 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6169 { 6170 uint32_t end_len; 6171 6172 end_len = start_len &= 0xf; 6173 if (!test_bit(start_len, cpu->sve_vq_map)) { 6174 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6175 assert(end_len < start_len); 6176 } 6177 return end_len; 6178 } 6179 6180 /* 6181 * Given that SVE is enabled, return the vector length for EL. 6182 */ 6183 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6184 { 6185 ARMCPU *cpu = env_archcpu(env); 6186 uint32_t zcr_len = cpu->sve_max_vq - 1; 6187 6188 if (el <= 1) { 6189 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6190 } 6191 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6192 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6193 } 6194 if (arm_feature(env, ARM_FEATURE_EL3)) { 6195 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6196 } 6197 6198 return sve_zcr_get_valid_len(cpu, zcr_len); 6199 } 6200 6201 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6202 uint64_t value) 6203 { 6204 int cur_el = arm_current_el(env); 6205 int old_len = sve_zcr_len_for_el(env, cur_el); 6206 int new_len; 6207 6208 /* Bits other than [3:0] are RAZ/WI. */ 6209 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6210 raw_write(env, ri, value & 0xf); 6211 6212 /* 6213 * Because we arrived here, we know both FP and SVE are enabled; 6214 * otherwise we would have trapped access to the ZCR_ELn register. 6215 */ 6216 new_len = sve_zcr_len_for_el(env, cur_el); 6217 if (new_len < old_len) { 6218 aarch64_sve_narrow_vq(env, new_len + 1); 6219 } 6220 } 6221 6222 static const ARMCPRegInfo zcr_el1_reginfo = { 6223 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6224 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6225 .access = PL1_RW, .type = ARM_CP_SVE, 6226 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6227 .writefn = zcr_write, .raw_writefn = raw_write 6228 }; 6229 6230 static const ARMCPRegInfo zcr_el2_reginfo = { 6231 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6232 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6233 .access = PL2_RW, .type = ARM_CP_SVE, 6234 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6235 .writefn = zcr_write, .raw_writefn = raw_write 6236 }; 6237 6238 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6239 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6240 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6241 .access = PL2_RW, .type = ARM_CP_SVE, 6242 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6243 }; 6244 6245 static const ARMCPRegInfo zcr_el3_reginfo = { 6246 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6247 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6248 .access = PL3_RW, .type = ARM_CP_SVE, 6249 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6250 .writefn = zcr_write, .raw_writefn = raw_write 6251 }; 6252 6253 void hw_watchpoint_update(ARMCPU *cpu, int n) 6254 { 6255 CPUARMState *env = &cpu->env; 6256 vaddr len = 0; 6257 vaddr wvr = env->cp15.dbgwvr[n]; 6258 uint64_t wcr = env->cp15.dbgwcr[n]; 6259 int mask; 6260 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6261 6262 if (env->cpu_watchpoint[n]) { 6263 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6264 env->cpu_watchpoint[n] = NULL; 6265 } 6266 6267 if (!extract64(wcr, 0, 1)) { 6268 /* E bit clear : watchpoint disabled */ 6269 return; 6270 } 6271 6272 switch (extract64(wcr, 3, 2)) { 6273 case 0: 6274 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6275 return; 6276 case 1: 6277 flags |= BP_MEM_READ; 6278 break; 6279 case 2: 6280 flags |= BP_MEM_WRITE; 6281 break; 6282 case 3: 6283 flags |= BP_MEM_ACCESS; 6284 break; 6285 } 6286 6287 /* Attempts to use both MASK and BAS fields simultaneously are 6288 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6289 * thus generating a watchpoint for every byte in the masked region. 6290 */ 6291 mask = extract64(wcr, 24, 4); 6292 if (mask == 1 || mask == 2) { 6293 /* Reserved values of MASK; we must act as if the mask value was 6294 * some non-reserved value, or as if the watchpoint were disabled. 6295 * We choose the latter. 6296 */ 6297 return; 6298 } else if (mask) { 6299 /* Watchpoint covers an aligned area up to 2GB in size */ 6300 len = 1ULL << mask; 6301 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6302 * whether the watchpoint fires when the unmasked bits match; we opt 6303 * to generate the exceptions. 6304 */ 6305 wvr &= ~(len - 1); 6306 } else { 6307 /* Watchpoint covers bytes defined by the byte address select bits */ 6308 int bas = extract64(wcr, 5, 8); 6309 int basstart; 6310 6311 if (extract64(wvr, 2, 1)) { 6312 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6313 * ignored, and BAS[3:0] define which bytes to watch. 6314 */ 6315 bas &= 0xf; 6316 } 6317 6318 if (bas == 0) { 6319 /* This must act as if the watchpoint is disabled */ 6320 return; 6321 } 6322 6323 /* The BAS bits are supposed to be programmed to indicate a contiguous 6324 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6325 * we fire for each byte in the word/doubleword addressed by the WVR. 6326 * We choose to ignore any non-zero bits after the first range of 1s. 6327 */ 6328 basstart = ctz32(bas); 6329 len = cto32(bas >> basstart); 6330 wvr += basstart; 6331 } 6332 6333 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6334 &env->cpu_watchpoint[n]); 6335 } 6336 6337 void hw_watchpoint_update_all(ARMCPU *cpu) 6338 { 6339 int i; 6340 CPUARMState *env = &cpu->env; 6341 6342 /* Completely clear out existing QEMU watchpoints and our array, to 6343 * avoid possible stale entries following migration load. 6344 */ 6345 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6346 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6347 6348 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6349 hw_watchpoint_update(cpu, i); 6350 } 6351 } 6352 6353 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6354 uint64_t value) 6355 { 6356 ARMCPU *cpu = env_archcpu(env); 6357 int i = ri->crm; 6358 6359 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6360 * register reads and behaves as if values written are sign extended. 6361 * Bits [1:0] are RES0. 6362 */ 6363 value = sextract64(value, 0, 49) & ~3ULL; 6364 6365 raw_write(env, ri, value); 6366 hw_watchpoint_update(cpu, i); 6367 } 6368 6369 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6370 uint64_t value) 6371 { 6372 ARMCPU *cpu = env_archcpu(env); 6373 int i = ri->crm; 6374 6375 raw_write(env, ri, value); 6376 hw_watchpoint_update(cpu, i); 6377 } 6378 6379 void hw_breakpoint_update(ARMCPU *cpu, int n) 6380 { 6381 CPUARMState *env = &cpu->env; 6382 uint64_t bvr = env->cp15.dbgbvr[n]; 6383 uint64_t bcr = env->cp15.dbgbcr[n]; 6384 vaddr addr; 6385 int bt; 6386 int flags = BP_CPU; 6387 6388 if (env->cpu_breakpoint[n]) { 6389 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6390 env->cpu_breakpoint[n] = NULL; 6391 } 6392 6393 if (!extract64(bcr, 0, 1)) { 6394 /* E bit clear : watchpoint disabled */ 6395 return; 6396 } 6397 6398 bt = extract64(bcr, 20, 4); 6399 6400 switch (bt) { 6401 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6402 case 5: /* linked address mismatch (reserved if AArch64) */ 6403 qemu_log_mask(LOG_UNIMP, 6404 "arm: address mismatch breakpoint types not implemented\n"); 6405 return; 6406 case 0: /* unlinked address match */ 6407 case 1: /* linked address match */ 6408 { 6409 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6410 * we behave as if the register was sign extended. Bits [1:0] are 6411 * RES0. The BAS field is used to allow setting breakpoints on 16 6412 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6413 * a bp will fire if the addresses covered by the bp and the addresses 6414 * covered by the insn overlap but the insn doesn't start at the 6415 * start of the bp address range. We choose to require the insn and 6416 * the bp to have the same address. The constraints on writing to 6417 * BAS enforced in dbgbcr_write mean we have only four cases: 6418 * 0b0000 => no breakpoint 6419 * 0b0011 => breakpoint on addr 6420 * 0b1100 => breakpoint on addr + 2 6421 * 0b1111 => breakpoint on addr 6422 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6423 */ 6424 int bas = extract64(bcr, 5, 4); 6425 addr = sextract64(bvr, 0, 49) & ~3ULL; 6426 if (bas == 0) { 6427 return; 6428 } 6429 if (bas == 0xc) { 6430 addr += 2; 6431 } 6432 break; 6433 } 6434 case 2: /* unlinked context ID match */ 6435 case 8: /* unlinked VMID match (reserved if no EL2) */ 6436 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6437 qemu_log_mask(LOG_UNIMP, 6438 "arm: unlinked context breakpoint types not implemented\n"); 6439 return; 6440 case 9: /* linked VMID match (reserved if no EL2) */ 6441 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6442 case 3: /* linked context ID match */ 6443 default: 6444 /* We must generate no events for Linked context matches (unless 6445 * they are linked to by some other bp/wp, which is handled in 6446 * updates for the linking bp/wp). We choose to also generate no events 6447 * for reserved values. 6448 */ 6449 return; 6450 } 6451 6452 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6453 } 6454 6455 void hw_breakpoint_update_all(ARMCPU *cpu) 6456 { 6457 int i; 6458 CPUARMState *env = &cpu->env; 6459 6460 /* Completely clear out existing QEMU breakpoints and our array, to 6461 * avoid possible stale entries following migration load. 6462 */ 6463 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6464 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6465 6466 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6467 hw_breakpoint_update(cpu, i); 6468 } 6469 } 6470 6471 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6472 uint64_t value) 6473 { 6474 ARMCPU *cpu = env_archcpu(env); 6475 int i = ri->crm; 6476 6477 raw_write(env, ri, value); 6478 hw_breakpoint_update(cpu, i); 6479 } 6480 6481 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6482 uint64_t value) 6483 { 6484 ARMCPU *cpu = env_archcpu(env); 6485 int i = ri->crm; 6486 6487 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6488 * copy of BAS[0]. 6489 */ 6490 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6491 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6492 6493 raw_write(env, ri, value); 6494 hw_breakpoint_update(cpu, i); 6495 } 6496 6497 static void define_debug_regs(ARMCPU *cpu) 6498 { 6499 /* Define v7 and v8 architectural debug registers. 6500 * These are just dummy implementations for now. 6501 */ 6502 int i; 6503 int wrps, brps, ctx_cmps; 6504 ARMCPRegInfo dbgdidr = { 6505 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 6506 .access = PL0_R, .accessfn = access_tda, 6507 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6508 }; 6509 6510 /* Note that all these register fields hold "number of Xs minus 1". */ 6511 brps = arm_num_brps(cpu); 6512 wrps = arm_num_wrps(cpu); 6513 ctx_cmps = arm_num_ctx_cmps(cpu); 6514 6515 assert(ctx_cmps <= brps); 6516 6517 define_one_arm_cp_reg(cpu, &dbgdidr); 6518 define_arm_cp_regs(cpu, debug_cp_reginfo); 6519 6520 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6521 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6522 } 6523 6524 for (i = 0; i < brps; i++) { 6525 ARMCPRegInfo dbgregs[] = { 6526 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6527 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6528 .access = PL1_RW, .accessfn = access_tda, 6529 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6530 .writefn = dbgbvr_write, .raw_writefn = raw_write 6531 }, 6532 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6533 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6534 .access = PL1_RW, .accessfn = access_tda, 6535 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6536 .writefn = dbgbcr_write, .raw_writefn = raw_write 6537 }, 6538 REGINFO_SENTINEL 6539 }; 6540 define_arm_cp_regs(cpu, dbgregs); 6541 } 6542 6543 for (i = 0; i < wrps; i++) { 6544 ARMCPRegInfo dbgregs[] = { 6545 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6546 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6547 .access = PL1_RW, .accessfn = access_tda, 6548 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6549 .writefn = dbgwvr_write, .raw_writefn = raw_write 6550 }, 6551 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6552 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6553 .access = PL1_RW, .accessfn = access_tda, 6554 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6555 .writefn = dbgwcr_write, .raw_writefn = raw_write 6556 }, 6557 REGINFO_SENTINEL 6558 }; 6559 define_arm_cp_regs(cpu, dbgregs); 6560 } 6561 } 6562 6563 static void define_pmu_regs(ARMCPU *cpu) 6564 { 6565 /* 6566 * v7 performance monitor control register: same implementor 6567 * field as main ID register, and we implement four counters in 6568 * addition to the cycle count register. 6569 */ 6570 unsigned int i, pmcrn = 4; 6571 ARMCPRegInfo pmcr = { 6572 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6573 .access = PL0_RW, 6574 .type = ARM_CP_IO | ARM_CP_ALIAS, 6575 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6576 .accessfn = pmreg_access, .writefn = pmcr_write, 6577 .raw_writefn = raw_write, 6578 }; 6579 ARMCPRegInfo pmcr64 = { 6580 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6581 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6582 .access = PL0_RW, .accessfn = pmreg_access, 6583 .type = ARM_CP_IO, 6584 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6585 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6586 PMCRLC, 6587 .writefn = pmcr_write, .raw_writefn = raw_write, 6588 }; 6589 define_one_arm_cp_reg(cpu, &pmcr); 6590 define_one_arm_cp_reg(cpu, &pmcr64); 6591 for (i = 0; i < pmcrn; i++) { 6592 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6593 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6594 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6595 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6596 ARMCPRegInfo pmev_regs[] = { 6597 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6598 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6599 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6600 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6601 .accessfn = pmreg_access }, 6602 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6603 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6604 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6605 .type = ARM_CP_IO, 6606 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6607 .raw_readfn = pmevcntr_rawread, 6608 .raw_writefn = pmevcntr_rawwrite }, 6609 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6610 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6611 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6612 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6613 .accessfn = pmreg_access }, 6614 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6615 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6616 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6617 .type = ARM_CP_IO, 6618 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6619 .raw_writefn = pmevtyper_rawwrite }, 6620 REGINFO_SENTINEL 6621 }; 6622 define_arm_cp_regs(cpu, pmev_regs); 6623 g_free(pmevcntr_name); 6624 g_free(pmevcntr_el0_name); 6625 g_free(pmevtyper_name); 6626 g_free(pmevtyper_el0_name); 6627 } 6628 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6629 ARMCPRegInfo v81_pmu_regs[] = { 6630 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6631 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6632 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6633 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6634 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6635 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6636 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6637 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6638 REGINFO_SENTINEL 6639 }; 6640 define_arm_cp_regs(cpu, v81_pmu_regs); 6641 } 6642 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6643 static const ARMCPRegInfo v84_pmmir = { 6644 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6645 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6646 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6647 .resetvalue = 0 6648 }; 6649 define_one_arm_cp_reg(cpu, &v84_pmmir); 6650 } 6651 } 6652 6653 /* We don't know until after realize whether there's a GICv3 6654 * attached, and that is what registers the gicv3 sysregs. 6655 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6656 * at runtime. 6657 */ 6658 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6659 { 6660 ARMCPU *cpu = env_archcpu(env); 6661 uint64_t pfr1 = cpu->isar.id_pfr1; 6662 6663 if (env->gicv3state) { 6664 pfr1 |= 1 << 28; 6665 } 6666 return pfr1; 6667 } 6668 6669 #ifndef CONFIG_USER_ONLY 6670 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6671 { 6672 ARMCPU *cpu = env_archcpu(env); 6673 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6674 6675 if (env->gicv3state) { 6676 pfr0 |= 1 << 24; 6677 } 6678 return pfr0; 6679 } 6680 #endif 6681 6682 /* Shared logic between LORID and the rest of the LOR* registers. 6683 * Secure state has already been delt with. 6684 */ 6685 static CPAccessResult access_lor_ns(CPUARMState *env) 6686 { 6687 int el = arm_current_el(env); 6688 6689 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6690 return CP_ACCESS_TRAP_EL2; 6691 } 6692 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6693 return CP_ACCESS_TRAP_EL3; 6694 } 6695 return CP_ACCESS_OK; 6696 } 6697 6698 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 6699 bool isread) 6700 { 6701 if (arm_is_secure_below_el3(env)) { 6702 /* Access ok in secure mode. */ 6703 return CP_ACCESS_OK; 6704 } 6705 return access_lor_ns(env); 6706 } 6707 6708 static CPAccessResult access_lor_other(CPUARMState *env, 6709 const ARMCPRegInfo *ri, bool isread) 6710 { 6711 if (arm_is_secure_below_el3(env)) { 6712 /* Access denied in secure mode. */ 6713 return CP_ACCESS_TRAP; 6714 } 6715 return access_lor_ns(env); 6716 } 6717 6718 /* 6719 * A trivial implementation of ARMv8.1-LOR leaves all of these 6720 * registers fixed at 0, which indicates that there are zero 6721 * supported Limited Ordering regions. 6722 */ 6723 static const ARMCPRegInfo lor_reginfo[] = { 6724 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6725 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6726 .access = PL1_RW, .accessfn = access_lor_other, 6727 .type = ARM_CP_CONST, .resetvalue = 0 }, 6728 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6729 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6730 .access = PL1_RW, .accessfn = access_lor_other, 6731 .type = ARM_CP_CONST, .resetvalue = 0 }, 6732 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6733 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6734 .access = PL1_RW, .accessfn = access_lor_other, 6735 .type = ARM_CP_CONST, .resetvalue = 0 }, 6736 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6737 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6738 .access = PL1_RW, .accessfn = access_lor_other, 6739 .type = ARM_CP_CONST, .resetvalue = 0 }, 6740 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6741 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6742 .access = PL1_R, .accessfn = access_lorid, 6743 .type = ARM_CP_CONST, .resetvalue = 0 }, 6744 REGINFO_SENTINEL 6745 }; 6746 6747 #ifdef TARGET_AARCH64 6748 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6749 bool isread) 6750 { 6751 int el = arm_current_el(env); 6752 6753 if (el < 2 && 6754 arm_feature(env, ARM_FEATURE_EL2) && 6755 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6756 return CP_ACCESS_TRAP_EL2; 6757 } 6758 if (el < 3 && 6759 arm_feature(env, ARM_FEATURE_EL3) && 6760 !(env->cp15.scr_el3 & SCR_APK)) { 6761 return CP_ACCESS_TRAP_EL3; 6762 } 6763 return CP_ACCESS_OK; 6764 } 6765 6766 static const ARMCPRegInfo pauth_reginfo[] = { 6767 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6768 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6769 .access = PL1_RW, .accessfn = access_pauth, 6770 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6771 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6772 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6773 .access = PL1_RW, .accessfn = access_pauth, 6774 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6775 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6776 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6777 .access = PL1_RW, .accessfn = access_pauth, 6778 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6779 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6780 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6781 .access = PL1_RW, .accessfn = access_pauth, 6782 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6783 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6784 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6785 .access = PL1_RW, .accessfn = access_pauth, 6786 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6787 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6788 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6789 .access = PL1_RW, .accessfn = access_pauth, 6790 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6791 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6792 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6793 .access = PL1_RW, .accessfn = access_pauth, 6794 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6795 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6796 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6797 .access = PL1_RW, .accessfn = access_pauth, 6798 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6799 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6800 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6801 .access = PL1_RW, .accessfn = access_pauth, 6802 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6803 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6804 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6805 .access = PL1_RW, .accessfn = access_pauth, 6806 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6807 REGINFO_SENTINEL 6808 }; 6809 6810 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6811 { 6812 Error *err = NULL; 6813 uint64_t ret; 6814 6815 /* Success sets NZCV = 0000. */ 6816 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6817 6818 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6819 /* 6820 * ??? Failed, for unknown reasons in the crypto subsystem. 6821 * The best we can do is log the reason and return the 6822 * timed-out indication to the guest. There is no reason 6823 * we know to expect this failure to be transitory, so the 6824 * guest may well hang retrying the operation. 6825 */ 6826 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6827 ri->name, error_get_pretty(err)); 6828 error_free(err); 6829 6830 env->ZF = 0; /* NZCF = 0100 */ 6831 return 0; 6832 } 6833 return ret; 6834 } 6835 6836 /* We do not support re-seeding, so the two registers operate the same. */ 6837 static const ARMCPRegInfo rndr_reginfo[] = { 6838 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6839 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6840 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6841 .access = PL0_R, .readfn = rndr_readfn }, 6842 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6843 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6844 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6845 .access = PL0_R, .readfn = rndr_readfn }, 6846 REGINFO_SENTINEL 6847 }; 6848 6849 #ifndef CONFIG_USER_ONLY 6850 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6851 uint64_t value) 6852 { 6853 ARMCPU *cpu = env_archcpu(env); 6854 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6855 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6856 uint64_t vaddr_in = (uint64_t) value; 6857 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6858 void *haddr; 6859 int mem_idx = cpu_mmu_index(env, false); 6860 6861 /* This won't be crossing page boundaries */ 6862 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6863 if (haddr) { 6864 6865 ram_addr_t offset; 6866 MemoryRegion *mr; 6867 6868 /* RCU lock is already being held */ 6869 mr = memory_region_from_host(haddr, &offset); 6870 6871 if (mr) { 6872 memory_region_writeback(mr, offset, dline_size); 6873 } 6874 } 6875 } 6876 6877 static const ARMCPRegInfo dcpop_reg[] = { 6878 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6879 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6880 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6881 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6882 REGINFO_SENTINEL 6883 }; 6884 6885 static const ARMCPRegInfo dcpodp_reg[] = { 6886 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6887 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6888 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6889 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6890 REGINFO_SENTINEL 6891 }; 6892 #endif /*CONFIG_USER_ONLY*/ 6893 6894 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 6895 bool isread) 6896 { 6897 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 6898 return CP_ACCESS_TRAP_EL2; 6899 } 6900 6901 return CP_ACCESS_OK; 6902 } 6903 6904 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 6905 bool isread) 6906 { 6907 int el = arm_current_el(env); 6908 6909 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6910 uint64_t hcr = arm_hcr_el2_eff(env); 6911 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 6912 return CP_ACCESS_TRAP_EL2; 6913 } 6914 } 6915 if (el < 3 && 6916 arm_feature(env, ARM_FEATURE_EL3) && 6917 !(env->cp15.scr_el3 & SCR_ATA)) { 6918 return CP_ACCESS_TRAP_EL3; 6919 } 6920 return CP_ACCESS_OK; 6921 } 6922 6923 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 6924 { 6925 return env->pstate & PSTATE_TCO; 6926 } 6927 6928 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6929 { 6930 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 6931 } 6932 6933 static const ARMCPRegInfo mte_reginfo[] = { 6934 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 6935 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 6936 .access = PL1_RW, .accessfn = access_mte, 6937 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 6938 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 6939 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 6940 .access = PL1_RW, .accessfn = access_mte, 6941 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 6942 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 6943 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 6944 .access = PL2_RW, .accessfn = access_mte, 6945 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 6946 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 6947 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 6948 .access = PL3_RW, 6949 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 6950 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 6951 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 6952 .access = PL1_RW, .accessfn = access_mte, 6953 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 6954 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 6955 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 6956 .access = PL1_RW, .accessfn = access_mte, 6957 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 6958 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 6959 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 6960 .access = PL1_R, .accessfn = access_aa64_tid5, 6961 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 6962 { .name = "TCO", .state = ARM_CP_STATE_AA64, 6963 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 6964 .type = ARM_CP_NO_RAW, 6965 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 6966 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 6967 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 6968 .type = ARM_CP_NOP, .access = PL1_W, 6969 .accessfn = aa64_cacheop_poc_access }, 6970 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 6971 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 6972 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6973 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 6974 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 6975 .type = ARM_CP_NOP, .access = PL1_W, 6976 .accessfn = aa64_cacheop_poc_access }, 6977 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 6978 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 6979 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6980 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 6981 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 6982 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6983 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 6984 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 6985 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6986 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 6987 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 6988 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6989 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 6990 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 6991 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6992 REGINFO_SENTINEL 6993 }; 6994 6995 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 6996 { .name = "TCO", .state = ARM_CP_STATE_AA64, 6997 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 6998 .type = ARM_CP_CONST, .access = PL0_RW, }, 6999 REGINFO_SENTINEL 7000 }; 7001 7002 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7003 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7004 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7005 .type = ARM_CP_NOP, .access = PL0_W, 7006 .accessfn = aa64_cacheop_poc_access }, 7007 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7008 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7009 .type = ARM_CP_NOP, .access = PL0_W, 7010 .accessfn = aa64_cacheop_poc_access }, 7011 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7012 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7013 .type = ARM_CP_NOP, .access = PL0_W, 7014 .accessfn = aa64_cacheop_poc_access }, 7015 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7016 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7017 .type = ARM_CP_NOP, .access = PL0_W, 7018 .accessfn = aa64_cacheop_poc_access }, 7019 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7020 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7021 .type = ARM_CP_NOP, .access = PL0_W, 7022 .accessfn = aa64_cacheop_poc_access }, 7023 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7024 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7025 .type = ARM_CP_NOP, .access = PL0_W, 7026 .accessfn = aa64_cacheop_poc_access }, 7027 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7028 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7029 .type = ARM_CP_NOP, .access = PL0_W, 7030 .accessfn = aa64_cacheop_poc_access }, 7031 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7032 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7033 .type = ARM_CP_NOP, .access = PL0_W, 7034 .accessfn = aa64_cacheop_poc_access }, 7035 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7036 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7037 .access = PL0_W, .type = ARM_CP_DC_GVA, 7038 #ifndef CONFIG_USER_ONLY 7039 /* Avoid overhead of an access check that always passes in user-mode */ 7040 .accessfn = aa64_zva_access, 7041 #endif 7042 }, 7043 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7044 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7045 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7046 #ifndef CONFIG_USER_ONLY 7047 /* Avoid overhead of an access check that always passes in user-mode */ 7048 .accessfn = aa64_zva_access, 7049 #endif 7050 }, 7051 REGINFO_SENTINEL 7052 }; 7053 7054 #endif 7055 7056 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7057 bool isread) 7058 { 7059 int el = arm_current_el(env); 7060 7061 if (el == 0) { 7062 uint64_t sctlr = arm_sctlr(env, el); 7063 if (!(sctlr & SCTLR_EnRCTX)) { 7064 return CP_ACCESS_TRAP; 7065 } 7066 } else if (el == 1) { 7067 uint64_t hcr = arm_hcr_el2_eff(env); 7068 if (hcr & HCR_NV) { 7069 return CP_ACCESS_TRAP_EL2; 7070 } 7071 } 7072 return CP_ACCESS_OK; 7073 } 7074 7075 static const ARMCPRegInfo predinv_reginfo[] = { 7076 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7077 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7078 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7079 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7080 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7081 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7082 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7083 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7084 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7085 /* 7086 * Note the AArch32 opcodes have a different OPC1. 7087 */ 7088 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7089 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7090 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7091 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7092 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7093 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7094 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7095 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7096 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7097 REGINFO_SENTINEL 7098 }; 7099 7100 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7101 { 7102 /* Read the high 32 bits of the current CCSIDR */ 7103 return extract64(ccsidr_read(env, ri), 32, 32); 7104 } 7105 7106 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7107 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7108 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7109 .access = PL1_R, 7110 .accessfn = access_aa64_tid2, 7111 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7112 REGINFO_SENTINEL 7113 }; 7114 7115 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7116 bool isread) 7117 { 7118 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7119 return CP_ACCESS_TRAP_EL2; 7120 } 7121 7122 return CP_ACCESS_OK; 7123 } 7124 7125 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7126 bool isread) 7127 { 7128 if (arm_feature(env, ARM_FEATURE_V8)) { 7129 return access_aa64_tid3(env, ri, isread); 7130 } 7131 7132 return CP_ACCESS_OK; 7133 } 7134 7135 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7136 bool isread) 7137 { 7138 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7139 return CP_ACCESS_TRAP_EL2; 7140 } 7141 7142 return CP_ACCESS_OK; 7143 } 7144 7145 static const ARMCPRegInfo jazelle_regs[] = { 7146 { .name = "JIDR", 7147 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7148 .access = PL1_R, .accessfn = access_jazelle, 7149 .type = ARM_CP_CONST, .resetvalue = 0 }, 7150 { .name = "JOSCR", 7151 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7152 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7153 { .name = "JMCR", 7154 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7155 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7156 REGINFO_SENTINEL 7157 }; 7158 7159 static const ARMCPRegInfo vhe_reginfo[] = { 7160 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7161 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7162 .access = PL2_RW, 7163 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7164 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7165 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7166 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7167 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7168 #ifndef CONFIG_USER_ONLY 7169 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7170 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7171 .fieldoffset = 7172 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7173 .type = ARM_CP_IO, .access = PL2_RW, 7174 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7175 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7176 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7177 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7178 .resetfn = gt_hv_timer_reset, 7179 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7180 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7181 .type = ARM_CP_IO, 7182 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7183 .access = PL2_RW, 7184 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7185 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7186 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7187 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7188 .type = ARM_CP_IO | ARM_CP_ALIAS, 7189 .access = PL2_RW, .accessfn = e2h_access, 7190 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7191 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7192 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7193 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7194 .type = ARM_CP_IO | ARM_CP_ALIAS, 7195 .access = PL2_RW, .accessfn = e2h_access, 7196 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7197 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7198 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7199 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7200 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7201 .access = PL2_RW, .accessfn = e2h_access, 7202 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7203 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7204 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7205 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7206 .access = PL2_RW, .accessfn = e2h_access, 7207 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7208 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7209 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7210 .type = ARM_CP_IO | ARM_CP_ALIAS, 7211 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7212 .access = PL2_RW, .accessfn = e2h_access, 7213 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7214 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7215 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7216 .type = ARM_CP_IO | ARM_CP_ALIAS, 7217 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7218 .access = PL2_RW, .accessfn = e2h_access, 7219 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7220 #endif 7221 REGINFO_SENTINEL 7222 }; 7223 7224 #ifndef CONFIG_USER_ONLY 7225 static const ARMCPRegInfo ats1e1_reginfo[] = { 7226 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7227 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7228 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7229 .writefn = ats_write64 }, 7230 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7231 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7232 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7233 .writefn = ats_write64 }, 7234 REGINFO_SENTINEL 7235 }; 7236 7237 static const ARMCPRegInfo ats1cp_reginfo[] = { 7238 { .name = "ATS1CPRP", 7239 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7240 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7241 .writefn = ats_write }, 7242 { .name = "ATS1CPWP", 7243 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7244 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7245 .writefn = ats_write }, 7246 REGINFO_SENTINEL 7247 }; 7248 #endif 7249 7250 /* 7251 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7252 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7253 * is non-zero, which is never for ARMv7, optionally in ARMv8 7254 * and mandatorily for ARMv8.2 and up. 7255 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7256 * implementation is RAZ/WI we can ignore this detail, as we 7257 * do for ACTLR. 7258 */ 7259 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7260 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7261 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7262 .access = PL1_RW, .accessfn = access_tacr, 7263 .type = ARM_CP_CONST, .resetvalue = 0 }, 7264 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7265 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7266 .access = PL2_RW, .type = ARM_CP_CONST, 7267 .resetvalue = 0 }, 7268 REGINFO_SENTINEL 7269 }; 7270 7271 void register_cp_regs_for_features(ARMCPU *cpu) 7272 { 7273 /* Register all the coprocessor registers based on feature bits */ 7274 CPUARMState *env = &cpu->env; 7275 if (arm_feature(env, ARM_FEATURE_M)) { 7276 /* M profile has no coprocessor registers */ 7277 return; 7278 } 7279 7280 define_arm_cp_regs(cpu, cp_reginfo); 7281 if (!arm_feature(env, ARM_FEATURE_V8)) { 7282 /* Must go early as it is full of wildcards that may be 7283 * overridden by later definitions. 7284 */ 7285 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7286 } 7287 7288 if (arm_feature(env, ARM_FEATURE_V6)) { 7289 /* The ID registers all have impdef reset values */ 7290 ARMCPRegInfo v6_idregs[] = { 7291 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7292 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7293 .access = PL1_R, .type = ARM_CP_CONST, 7294 .accessfn = access_aa32_tid3, 7295 .resetvalue = cpu->isar.id_pfr0 }, 7296 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7297 * the value of the GIC field until after we define these regs. 7298 */ 7299 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7300 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7301 .access = PL1_R, .type = ARM_CP_NO_RAW, 7302 .accessfn = access_aa32_tid3, 7303 .readfn = id_pfr1_read, 7304 .writefn = arm_cp_write_ignore }, 7305 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7306 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7307 .access = PL1_R, .type = ARM_CP_CONST, 7308 .accessfn = access_aa32_tid3, 7309 .resetvalue = cpu->isar.id_dfr0 }, 7310 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7311 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7312 .access = PL1_R, .type = ARM_CP_CONST, 7313 .accessfn = access_aa32_tid3, 7314 .resetvalue = cpu->id_afr0 }, 7315 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7316 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7317 .access = PL1_R, .type = ARM_CP_CONST, 7318 .accessfn = access_aa32_tid3, 7319 .resetvalue = cpu->isar.id_mmfr0 }, 7320 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7321 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7322 .access = PL1_R, .type = ARM_CP_CONST, 7323 .accessfn = access_aa32_tid3, 7324 .resetvalue = cpu->isar.id_mmfr1 }, 7325 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7326 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7327 .access = PL1_R, .type = ARM_CP_CONST, 7328 .accessfn = access_aa32_tid3, 7329 .resetvalue = cpu->isar.id_mmfr2 }, 7330 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7331 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7332 .access = PL1_R, .type = ARM_CP_CONST, 7333 .accessfn = access_aa32_tid3, 7334 .resetvalue = cpu->isar.id_mmfr3 }, 7335 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7336 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7337 .access = PL1_R, .type = ARM_CP_CONST, 7338 .accessfn = access_aa32_tid3, 7339 .resetvalue = cpu->isar.id_isar0 }, 7340 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7341 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7342 .access = PL1_R, .type = ARM_CP_CONST, 7343 .accessfn = access_aa32_tid3, 7344 .resetvalue = cpu->isar.id_isar1 }, 7345 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7346 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7347 .access = PL1_R, .type = ARM_CP_CONST, 7348 .accessfn = access_aa32_tid3, 7349 .resetvalue = cpu->isar.id_isar2 }, 7350 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7351 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7352 .access = PL1_R, .type = ARM_CP_CONST, 7353 .accessfn = access_aa32_tid3, 7354 .resetvalue = cpu->isar.id_isar3 }, 7355 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7356 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7357 .access = PL1_R, .type = ARM_CP_CONST, 7358 .accessfn = access_aa32_tid3, 7359 .resetvalue = cpu->isar.id_isar4 }, 7360 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7361 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7362 .access = PL1_R, .type = ARM_CP_CONST, 7363 .accessfn = access_aa32_tid3, 7364 .resetvalue = cpu->isar.id_isar5 }, 7365 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7366 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7367 .access = PL1_R, .type = ARM_CP_CONST, 7368 .accessfn = access_aa32_tid3, 7369 .resetvalue = cpu->isar.id_mmfr4 }, 7370 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7371 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7372 .access = PL1_R, .type = ARM_CP_CONST, 7373 .accessfn = access_aa32_tid3, 7374 .resetvalue = cpu->isar.id_isar6 }, 7375 REGINFO_SENTINEL 7376 }; 7377 define_arm_cp_regs(cpu, v6_idregs); 7378 define_arm_cp_regs(cpu, v6_cp_reginfo); 7379 } else { 7380 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7381 } 7382 if (arm_feature(env, ARM_FEATURE_V6K)) { 7383 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7384 } 7385 if (arm_feature(env, ARM_FEATURE_V7MP) && 7386 !arm_feature(env, ARM_FEATURE_PMSA)) { 7387 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7388 } 7389 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7390 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7391 } 7392 if (arm_feature(env, ARM_FEATURE_V7)) { 7393 ARMCPRegInfo clidr = { 7394 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7395 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7396 .access = PL1_R, .type = ARM_CP_CONST, 7397 .accessfn = access_aa64_tid2, 7398 .resetvalue = cpu->clidr 7399 }; 7400 define_one_arm_cp_reg(cpu, &clidr); 7401 define_arm_cp_regs(cpu, v7_cp_reginfo); 7402 define_debug_regs(cpu); 7403 define_pmu_regs(cpu); 7404 } else { 7405 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7406 } 7407 if (arm_feature(env, ARM_FEATURE_V8)) { 7408 /* AArch64 ID registers, which all have impdef reset values. 7409 * Note that within the ID register ranges the unused slots 7410 * must all RAZ, not UNDEF; future architecture versions may 7411 * define new registers here. 7412 */ 7413 ARMCPRegInfo v8_idregs[] = { 7414 /* 7415 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7416 * emulation because we don't know the right value for the 7417 * GIC field until after we define these regs. 7418 */ 7419 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7420 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7421 .access = PL1_R, 7422 #ifdef CONFIG_USER_ONLY 7423 .type = ARM_CP_CONST, 7424 .resetvalue = cpu->isar.id_aa64pfr0 7425 #else 7426 .type = ARM_CP_NO_RAW, 7427 .accessfn = access_aa64_tid3, 7428 .readfn = id_aa64pfr0_read, 7429 .writefn = arm_cp_write_ignore 7430 #endif 7431 }, 7432 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7433 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7434 .access = PL1_R, .type = ARM_CP_CONST, 7435 .accessfn = access_aa64_tid3, 7436 .resetvalue = cpu->isar.id_aa64pfr1}, 7437 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7438 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7439 .access = PL1_R, .type = ARM_CP_CONST, 7440 .accessfn = access_aa64_tid3, 7441 .resetvalue = 0 }, 7442 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7443 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7444 .access = PL1_R, .type = ARM_CP_CONST, 7445 .accessfn = access_aa64_tid3, 7446 .resetvalue = 0 }, 7447 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7448 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7449 .access = PL1_R, .type = ARM_CP_CONST, 7450 .accessfn = access_aa64_tid3, 7451 /* At present, only SVEver == 0 is defined anyway. */ 7452 .resetvalue = 0 }, 7453 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7454 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7455 .access = PL1_R, .type = ARM_CP_CONST, 7456 .accessfn = access_aa64_tid3, 7457 .resetvalue = 0 }, 7458 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7459 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7460 .access = PL1_R, .type = ARM_CP_CONST, 7461 .accessfn = access_aa64_tid3, 7462 .resetvalue = 0 }, 7463 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7464 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7465 .access = PL1_R, .type = ARM_CP_CONST, 7466 .accessfn = access_aa64_tid3, 7467 .resetvalue = 0 }, 7468 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7469 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7470 .access = PL1_R, .type = ARM_CP_CONST, 7471 .accessfn = access_aa64_tid3, 7472 .resetvalue = cpu->isar.id_aa64dfr0 }, 7473 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7474 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7475 .access = PL1_R, .type = ARM_CP_CONST, 7476 .accessfn = access_aa64_tid3, 7477 .resetvalue = cpu->isar.id_aa64dfr1 }, 7478 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7479 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7480 .access = PL1_R, .type = ARM_CP_CONST, 7481 .accessfn = access_aa64_tid3, 7482 .resetvalue = 0 }, 7483 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7484 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7485 .access = PL1_R, .type = ARM_CP_CONST, 7486 .accessfn = access_aa64_tid3, 7487 .resetvalue = 0 }, 7488 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7489 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7490 .access = PL1_R, .type = ARM_CP_CONST, 7491 .accessfn = access_aa64_tid3, 7492 .resetvalue = cpu->id_aa64afr0 }, 7493 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7494 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7495 .access = PL1_R, .type = ARM_CP_CONST, 7496 .accessfn = access_aa64_tid3, 7497 .resetvalue = cpu->id_aa64afr1 }, 7498 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7499 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7500 .access = PL1_R, .type = ARM_CP_CONST, 7501 .accessfn = access_aa64_tid3, 7502 .resetvalue = 0 }, 7503 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7504 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7505 .access = PL1_R, .type = ARM_CP_CONST, 7506 .accessfn = access_aa64_tid3, 7507 .resetvalue = 0 }, 7508 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7509 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7510 .access = PL1_R, .type = ARM_CP_CONST, 7511 .accessfn = access_aa64_tid3, 7512 .resetvalue = cpu->isar.id_aa64isar0 }, 7513 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7514 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7515 .access = PL1_R, .type = ARM_CP_CONST, 7516 .accessfn = access_aa64_tid3, 7517 .resetvalue = cpu->isar.id_aa64isar1 }, 7518 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7519 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7520 .access = PL1_R, .type = ARM_CP_CONST, 7521 .accessfn = access_aa64_tid3, 7522 .resetvalue = 0 }, 7523 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7524 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7525 .access = PL1_R, .type = ARM_CP_CONST, 7526 .accessfn = access_aa64_tid3, 7527 .resetvalue = 0 }, 7528 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7529 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7530 .access = PL1_R, .type = ARM_CP_CONST, 7531 .accessfn = access_aa64_tid3, 7532 .resetvalue = 0 }, 7533 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7534 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7535 .access = PL1_R, .type = ARM_CP_CONST, 7536 .accessfn = access_aa64_tid3, 7537 .resetvalue = 0 }, 7538 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7539 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7540 .access = PL1_R, .type = ARM_CP_CONST, 7541 .accessfn = access_aa64_tid3, 7542 .resetvalue = 0 }, 7543 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7544 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7545 .access = PL1_R, .type = ARM_CP_CONST, 7546 .accessfn = access_aa64_tid3, 7547 .resetvalue = 0 }, 7548 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7549 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7550 .access = PL1_R, .type = ARM_CP_CONST, 7551 .accessfn = access_aa64_tid3, 7552 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7553 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7554 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7555 .access = PL1_R, .type = ARM_CP_CONST, 7556 .accessfn = access_aa64_tid3, 7557 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7558 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7559 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7560 .access = PL1_R, .type = ARM_CP_CONST, 7561 .accessfn = access_aa64_tid3, 7562 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7563 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7564 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7565 .access = PL1_R, .type = ARM_CP_CONST, 7566 .accessfn = access_aa64_tid3, 7567 .resetvalue = 0 }, 7568 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7569 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7570 .access = PL1_R, .type = ARM_CP_CONST, 7571 .accessfn = access_aa64_tid3, 7572 .resetvalue = 0 }, 7573 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7574 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7575 .access = PL1_R, .type = ARM_CP_CONST, 7576 .accessfn = access_aa64_tid3, 7577 .resetvalue = 0 }, 7578 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7579 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7580 .access = PL1_R, .type = ARM_CP_CONST, 7581 .accessfn = access_aa64_tid3, 7582 .resetvalue = 0 }, 7583 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7584 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7585 .access = PL1_R, .type = ARM_CP_CONST, 7586 .accessfn = access_aa64_tid3, 7587 .resetvalue = 0 }, 7588 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7589 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7590 .access = PL1_R, .type = ARM_CP_CONST, 7591 .accessfn = access_aa64_tid3, 7592 .resetvalue = cpu->isar.mvfr0 }, 7593 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7594 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7595 .access = PL1_R, .type = ARM_CP_CONST, 7596 .accessfn = access_aa64_tid3, 7597 .resetvalue = cpu->isar.mvfr1 }, 7598 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7599 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7600 .access = PL1_R, .type = ARM_CP_CONST, 7601 .accessfn = access_aa64_tid3, 7602 .resetvalue = cpu->isar.mvfr2 }, 7603 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7604 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7605 .access = PL1_R, .type = ARM_CP_CONST, 7606 .accessfn = access_aa64_tid3, 7607 .resetvalue = 0 }, 7608 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7609 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7610 .access = PL1_R, .type = ARM_CP_CONST, 7611 .accessfn = access_aa64_tid3, 7612 .resetvalue = 0 }, 7613 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7614 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7615 .access = PL1_R, .type = ARM_CP_CONST, 7616 .accessfn = access_aa64_tid3, 7617 .resetvalue = 0 }, 7618 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7619 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7620 .access = PL1_R, .type = ARM_CP_CONST, 7621 .accessfn = access_aa64_tid3, 7622 .resetvalue = 0 }, 7623 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7624 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7625 .access = PL1_R, .type = ARM_CP_CONST, 7626 .accessfn = access_aa64_tid3, 7627 .resetvalue = 0 }, 7628 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7629 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7630 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7631 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7632 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7633 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7634 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7635 .resetvalue = cpu->pmceid0 }, 7636 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7637 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7638 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7639 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7640 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7641 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7642 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7643 .resetvalue = cpu->pmceid1 }, 7644 REGINFO_SENTINEL 7645 }; 7646 #ifdef CONFIG_USER_ONLY 7647 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7648 { .name = "ID_AA64PFR0_EL1", 7649 .exported_bits = 0x000f000f00ff0000, 7650 .fixed_bits = 0x0000000000000011 }, 7651 { .name = "ID_AA64PFR1_EL1", 7652 .exported_bits = 0x00000000000000f0 }, 7653 { .name = "ID_AA64PFR*_EL1_RESERVED", 7654 .is_glob = true }, 7655 { .name = "ID_AA64ZFR0_EL1" }, 7656 { .name = "ID_AA64MMFR0_EL1", 7657 .fixed_bits = 0x00000000ff000000 }, 7658 { .name = "ID_AA64MMFR1_EL1" }, 7659 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7660 .is_glob = true }, 7661 { .name = "ID_AA64DFR0_EL1", 7662 .fixed_bits = 0x0000000000000006 }, 7663 { .name = "ID_AA64DFR1_EL1" }, 7664 { .name = "ID_AA64DFR*_EL1_RESERVED", 7665 .is_glob = true }, 7666 { .name = "ID_AA64AFR*", 7667 .is_glob = true }, 7668 { .name = "ID_AA64ISAR0_EL1", 7669 .exported_bits = 0x00fffffff0fffff0 }, 7670 { .name = "ID_AA64ISAR1_EL1", 7671 .exported_bits = 0x000000f0ffffffff }, 7672 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7673 .is_glob = true }, 7674 REGUSERINFO_SENTINEL 7675 }; 7676 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7677 #endif 7678 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7679 if (!arm_feature(env, ARM_FEATURE_EL3) && 7680 !arm_feature(env, ARM_FEATURE_EL2)) { 7681 ARMCPRegInfo rvbar = { 7682 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7683 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7684 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7685 }; 7686 define_one_arm_cp_reg(cpu, &rvbar); 7687 } 7688 define_arm_cp_regs(cpu, v8_idregs); 7689 define_arm_cp_regs(cpu, v8_cp_reginfo); 7690 } 7691 if (arm_feature(env, ARM_FEATURE_EL2)) { 7692 uint64_t vmpidr_def = mpidr_read_val(env); 7693 ARMCPRegInfo vpidr_regs[] = { 7694 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7695 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7696 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7697 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7698 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7699 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7700 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7701 .access = PL2_RW, .resetvalue = cpu->midr, 7702 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7703 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7704 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7705 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7706 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7707 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7708 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7709 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7710 .access = PL2_RW, 7711 .resetvalue = vmpidr_def, 7712 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7713 REGINFO_SENTINEL 7714 }; 7715 define_arm_cp_regs(cpu, vpidr_regs); 7716 define_arm_cp_regs(cpu, el2_cp_reginfo); 7717 if (arm_feature(env, ARM_FEATURE_V8)) { 7718 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7719 } 7720 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7721 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7722 ARMCPRegInfo rvbar = { 7723 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7724 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7725 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7726 }; 7727 define_one_arm_cp_reg(cpu, &rvbar); 7728 } 7729 } else { 7730 /* If EL2 is missing but higher ELs are enabled, we need to 7731 * register the no_el2 reginfos. 7732 */ 7733 if (arm_feature(env, ARM_FEATURE_EL3)) { 7734 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 7735 * of MIDR_EL1 and MPIDR_EL1. 7736 */ 7737 ARMCPRegInfo vpidr_regs[] = { 7738 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7739 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7740 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7741 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 7742 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7743 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7744 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7745 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7746 .type = ARM_CP_NO_RAW, 7747 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 7748 REGINFO_SENTINEL 7749 }; 7750 define_arm_cp_regs(cpu, vpidr_regs); 7751 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 7752 if (arm_feature(env, ARM_FEATURE_V8)) { 7753 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 7754 } 7755 } 7756 } 7757 if (arm_feature(env, ARM_FEATURE_EL3)) { 7758 define_arm_cp_regs(cpu, el3_cp_reginfo); 7759 ARMCPRegInfo el3_regs[] = { 7760 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7761 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7762 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 7763 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7764 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7765 .access = PL3_RW, 7766 .raw_writefn = raw_write, .writefn = sctlr_write, 7767 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7768 .resetvalue = cpu->reset_sctlr }, 7769 REGINFO_SENTINEL 7770 }; 7771 7772 define_arm_cp_regs(cpu, el3_regs); 7773 } 7774 /* The behaviour of NSACR is sufficiently various that we don't 7775 * try to describe it in a single reginfo: 7776 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7777 * reads as constant 0xc00 from NS EL1 and NS EL2 7778 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7779 * if v7 without EL3, register doesn't exist 7780 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7781 */ 7782 if (arm_feature(env, ARM_FEATURE_EL3)) { 7783 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7784 ARMCPRegInfo nsacr = { 7785 .name = "NSACR", .type = ARM_CP_CONST, 7786 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7787 .access = PL1_RW, .accessfn = nsacr_access, 7788 .resetvalue = 0xc00 7789 }; 7790 define_one_arm_cp_reg(cpu, &nsacr); 7791 } else { 7792 ARMCPRegInfo nsacr = { 7793 .name = "NSACR", 7794 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7795 .access = PL3_RW | PL1_R, 7796 .resetvalue = 0, 7797 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7798 }; 7799 define_one_arm_cp_reg(cpu, &nsacr); 7800 } 7801 } else { 7802 if (arm_feature(env, ARM_FEATURE_V8)) { 7803 ARMCPRegInfo nsacr = { 7804 .name = "NSACR", .type = ARM_CP_CONST, 7805 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7806 .access = PL1_R, 7807 .resetvalue = 0xc00 7808 }; 7809 define_one_arm_cp_reg(cpu, &nsacr); 7810 } 7811 } 7812 7813 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7814 if (arm_feature(env, ARM_FEATURE_V6)) { 7815 /* PMSAv6 not implemented */ 7816 assert(arm_feature(env, ARM_FEATURE_V7)); 7817 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7818 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7819 } else { 7820 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7821 } 7822 } else { 7823 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7824 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7825 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7826 if (cpu_isar_feature(aa32_hpd, cpu)) { 7827 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7828 } 7829 } 7830 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7831 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7832 } 7833 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7834 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7835 } 7836 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7837 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7838 } 7839 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7840 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7841 } 7842 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7843 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7844 } 7845 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7846 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7847 } 7848 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7849 define_arm_cp_regs(cpu, omap_cp_reginfo); 7850 } 7851 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7852 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7853 } 7854 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7855 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7856 } 7857 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7858 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7859 } 7860 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7861 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7862 } 7863 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7864 define_arm_cp_regs(cpu, jazelle_regs); 7865 } 7866 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7867 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7868 * be read-only (ie write causes UNDEF exception). 7869 */ 7870 { 7871 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7872 /* Pre-v8 MIDR space. 7873 * Note that the MIDR isn't a simple constant register because 7874 * of the TI925 behaviour where writes to another register can 7875 * cause the MIDR value to change. 7876 * 7877 * Unimplemented registers in the c15 0 0 0 space default to 7878 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 7879 * and friends override accordingly. 7880 */ 7881 { .name = "MIDR", 7882 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 7883 .access = PL1_R, .resetvalue = cpu->midr, 7884 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 7885 .readfn = midr_read, 7886 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7887 .type = ARM_CP_OVERRIDE }, 7888 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 7889 { .name = "DUMMY", 7890 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 7891 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7892 { .name = "DUMMY", 7893 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 7894 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7895 { .name = "DUMMY", 7896 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 7897 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7898 { .name = "DUMMY", 7899 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 7900 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7901 { .name = "DUMMY", 7902 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 7903 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7904 REGINFO_SENTINEL 7905 }; 7906 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 7907 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 7908 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 7909 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 7910 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7911 .readfn = midr_read }, 7912 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 7913 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7914 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7915 .access = PL1_R, .resetvalue = cpu->midr }, 7916 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7917 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 7918 .access = PL1_R, .resetvalue = cpu->midr }, 7919 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 7920 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 7921 .access = PL1_R, 7922 .accessfn = access_aa64_tid1, 7923 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 7924 REGINFO_SENTINEL 7925 }; 7926 ARMCPRegInfo id_cp_reginfo[] = { 7927 /* These are common to v8 and pre-v8 */ 7928 { .name = "CTR", 7929 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 7930 .access = PL1_R, .accessfn = ctr_el0_access, 7931 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7932 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 7933 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 7934 .access = PL0_R, .accessfn = ctr_el0_access, 7935 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7936 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 7937 { .name = "TCMTR", 7938 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 7939 .access = PL1_R, 7940 .accessfn = access_aa32_tid1, 7941 .type = ARM_CP_CONST, .resetvalue = 0 }, 7942 REGINFO_SENTINEL 7943 }; 7944 /* TLBTR is specific to VMSA */ 7945 ARMCPRegInfo id_tlbtr_reginfo = { 7946 .name = "TLBTR", 7947 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 7948 .access = PL1_R, 7949 .accessfn = access_aa32_tid1, 7950 .type = ARM_CP_CONST, .resetvalue = 0, 7951 }; 7952 /* MPUIR is specific to PMSA V6+ */ 7953 ARMCPRegInfo id_mpuir_reginfo = { 7954 .name = "MPUIR", 7955 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7956 .access = PL1_R, .type = ARM_CP_CONST, 7957 .resetvalue = cpu->pmsav7_dregion << 8 7958 }; 7959 ARMCPRegInfo crn0_wi_reginfo = { 7960 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 7961 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 7962 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 7963 }; 7964 #ifdef CONFIG_USER_ONLY 7965 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 7966 { .name = "MIDR_EL1", 7967 .exported_bits = 0x00000000ffffffff }, 7968 { .name = "REVIDR_EL1" }, 7969 REGUSERINFO_SENTINEL 7970 }; 7971 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 7972 #endif 7973 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 7974 arm_feature(env, ARM_FEATURE_STRONGARM)) { 7975 ARMCPRegInfo *r; 7976 /* Register the blanket "writes ignored" value first to cover the 7977 * whole space. Then update the specific ID registers to allow write 7978 * access, so that they ignore writes rather than causing them to 7979 * UNDEF. 7980 */ 7981 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 7982 for (r = id_pre_v8_midr_cp_reginfo; 7983 r->type != ARM_CP_SENTINEL; r++) { 7984 r->access = PL1_RW; 7985 } 7986 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 7987 r->access = PL1_RW; 7988 } 7989 id_mpuir_reginfo.access = PL1_RW; 7990 id_tlbtr_reginfo.access = PL1_RW; 7991 } 7992 if (arm_feature(env, ARM_FEATURE_V8)) { 7993 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 7994 } else { 7995 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 7996 } 7997 define_arm_cp_regs(cpu, id_cp_reginfo); 7998 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 7999 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8000 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8001 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8002 } 8003 } 8004 8005 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8006 ARMCPRegInfo mpidr_cp_reginfo[] = { 8007 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8008 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8009 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8010 REGINFO_SENTINEL 8011 }; 8012 #ifdef CONFIG_USER_ONLY 8013 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8014 { .name = "MPIDR_EL1", 8015 .fixed_bits = 0x0000000080000000 }, 8016 REGUSERINFO_SENTINEL 8017 }; 8018 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8019 #endif 8020 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8021 } 8022 8023 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8024 ARMCPRegInfo auxcr_reginfo[] = { 8025 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8026 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8027 .access = PL1_RW, .accessfn = access_tacr, 8028 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8029 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8030 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8031 .access = PL2_RW, .type = ARM_CP_CONST, 8032 .resetvalue = 0 }, 8033 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8034 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8035 .access = PL3_RW, .type = ARM_CP_CONST, 8036 .resetvalue = 0 }, 8037 REGINFO_SENTINEL 8038 }; 8039 define_arm_cp_regs(cpu, auxcr_reginfo); 8040 if (cpu_isar_feature(aa32_ac2, cpu)) { 8041 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8042 } 8043 } 8044 8045 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8046 /* 8047 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8048 * There are two flavours: 8049 * (1) older 32-bit only cores have a simple 32-bit CBAR 8050 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8051 * 32-bit register visible to AArch32 at a different encoding 8052 * to the "flavour 1" register and with the bits rearranged to 8053 * be able to squash a 64-bit address into the 32-bit view. 8054 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8055 * in future if we support AArch32-only configs of some of the 8056 * AArch64 cores we might need to add a specific feature flag 8057 * to indicate cores with "flavour 2" CBAR. 8058 */ 8059 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8060 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8061 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8062 | extract64(cpu->reset_cbar, 32, 12); 8063 ARMCPRegInfo cbar_reginfo[] = { 8064 { .name = "CBAR", 8065 .type = ARM_CP_CONST, 8066 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8067 .access = PL1_R, .resetvalue = cbar32 }, 8068 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8069 .type = ARM_CP_CONST, 8070 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8071 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8072 REGINFO_SENTINEL 8073 }; 8074 /* We don't implement a r/w 64 bit CBAR currently */ 8075 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8076 define_arm_cp_regs(cpu, cbar_reginfo); 8077 } else { 8078 ARMCPRegInfo cbar = { 8079 .name = "CBAR", 8080 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8081 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8082 .fieldoffset = offsetof(CPUARMState, 8083 cp15.c15_config_base_address) 8084 }; 8085 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8086 cbar.access = PL1_R; 8087 cbar.fieldoffset = 0; 8088 cbar.type = ARM_CP_CONST; 8089 } 8090 define_one_arm_cp_reg(cpu, &cbar); 8091 } 8092 } 8093 8094 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8095 ARMCPRegInfo vbar_cp_reginfo[] = { 8096 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8097 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8098 .access = PL1_RW, .writefn = vbar_write, 8099 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8100 offsetof(CPUARMState, cp15.vbar_ns) }, 8101 .resetvalue = 0 }, 8102 REGINFO_SENTINEL 8103 }; 8104 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8105 } 8106 8107 /* Generic registers whose values depend on the implementation */ 8108 { 8109 ARMCPRegInfo sctlr = { 8110 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8111 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8112 .access = PL1_RW, .accessfn = access_tvm_trvm, 8113 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8114 offsetof(CPUARMState, cp15.sctlr_ns) }, 8115 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8116 .raw_writefn = raw_write, 8117 }; 8118 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8119 /* Normally we would always end the TB on an SCTLR write, but Linux 8120 * arch/arm/mach-pxa/sleep.S expects two instructions following 8121 * an MMU enable to execute from cache. Imitate this behaviour. 8122 */ 8123 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8124 } 8125 define_one_arm_cp_reg(cpu, &sctlr); 8126 } 8127 8128 if (cpu_isar_feature(aa64_lor, cpu)) { 8129 define_arm_cp_regs(cpu, lor_reginfo); 8130 } 8131 if (cpu_isar_feature(aa64_pan, cpu)) { 8132 define_one_arm_cp_reg(cpu, &pan_reginfo); 8133 } 8134 #ifndef CONFIG_USER_ONLY 8135 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8136 define_arm_cp_regs(cpu, ats1e1_reginfo); 8137 } 8138 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8139 define_arm_cp_regs(cpu, ats1cp_reginfo); 8140 } 8141 #endif 8142 if (cpu_isar_feature(aa64_uao, cpu)) { 8143 define_one_arm_cp_reg(cpu, &uao_reginfo); 8144 } 8145 8146 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8147 define_arm_cp_regs(cpu, vhe_reginfo); 8148 } 8149 8150 if (cpu_isar_feature(aa64_sve, cpu)) { 8151 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8152 if (arm_feature(env, ARM_FEATURE_EL2)) { 8153 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8154 } else { 8155 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8156 } 8157 if (arm_feature(env, ARM_FEATURE_EL3)) { 8158 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8159 } 8160 } 8161 8162 #ifdef TARGET_AARCH64 8163 if (cpu_isar_feature(aa64_pauth, cpu)) { 8164 define_arm_cp_regs(cpu, pauth_reginfo); 8165 } 8166 if (cpu_isar_feature(aa64_rndr, cpu)) { 8167 define_arm_cp_regs(cpu, rndr_reginfo); 8168 } 8169 #ifndef CONFIG_USER_ONLY 8170 /* Data Cache clean instructions up to PoP */ 8171 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8172 define_one_arm_cp_reg(cpu, dcpop_reg); 8173 8174 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8175 define_one_arm_cp_reg(cpu, dcpodp_reg); 8176 } 8177 } 8178 #endif /*CONFIG_USER_ONLY*/ 8179 8180 /* 8181 * If full MTE is enabled, add all of the system registers. 8182 * If only "instructions available at EL0" are enabled, 8183 * then define only a RAZ/WI version of PSTATE.TCO. 8184 */ 8185 if (cpu_isar_feature(aa64_mte, cpu)) { 8186 define_arm_cp_regs(cpu, mte_reginfo); 8187 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8188 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8189 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8190 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8191 } 8192 #endif 8193 8194 if (cpu_isar_feature(any_predinv, cpu)) { 8195 define_arm_cp_regs(cpu, predinv_reginfo); 8196 } 8197 8198 if (cpu_isar_feature(any_ccidx, cpu)) { 8199 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8200 } 8201 8202 #ifndef CONFIG_USER_ONLY 8203 /* 8204 * Register redirections and aliases must be done last, 8205 * after the registers from the other extensions have been defined. 8206 */ 8207 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8208 define_arm_vh_e2h_redirects_aliases(cpu); 8209 } 8210 #endif 8211 } 8212 8213 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 8214 { 8215 CPUState *cs = CPU(cpu); 8216 CPUARMState *env = &cpu->env; 8217 8218 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8219 /* 8220 * The lower part of each SVE register aliases to the FPU 8221 * registers so we don't need to include both. 8222 */ 8223 #ifdef TARGET_AARCH64 8224 if (isar_feature_aa64_sve(&cpu->isar)) { 8225 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, 8226 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), 8227 "sve-registers.xml", 0); 8228 } else 8229 #endif 8230 { 8231 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 8232 aarch64_fpu_gdb_set_reg, 8233 34, "aarch64-fpu.xml", 0); 8234 } 8235 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 8236 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8237 51, "arm-neon.xml", 0); 8238 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 8239 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8240 35, "arm-vfp3.xml", 0); 8241 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 8242 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8243 19, "arm-vfp.xml", 0); 8244 } 8245 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 8246 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), 8247 "system-registers.xml", 0); 8248 8249 } 8250 8251 /* Sort alphabetically by type name, except for "any". */ 8252 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8253 { 8254 ObjectClass *class_a = (ObjectClass *)a; 8255 ObjectClass *class_b = (ObjectClass *)b; 8256 const char *name_a, *name_b; 8257 8258 name_a = object_class_get_name(class_a); 8259 name_b = object_class_get_name(class_b); 8260 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8261 return 1; 8262 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8263 return -1; 8264 } else { 8265 return strcmp(name_a, name_b); 8266 } 8267 } 8268 8269 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8270 { 8271 ObjectClass *oc = data; 8272 const char *typename; 8273 char *name; 8274 8275 typename = object_class_get_name(oc); 8276 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8277 qemu_printf(" %s\n", name); 8278 g_free(name); 8279 } 8280 8281 void arm_cpu_list(void) 8282 { 8283 GSList *list; 8284 8285 list = object_class_get_list(TYPE_ARM_CPU, false); 8286 list = g_slist_sort(list, arm_cpu_list_compare); 8287 qemu_printf("Available CPUs:\n"); 8288 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8289 g_slist_free(list); 8290 } 8291 8292 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8293 { 8294 ObjectClass *oc = data; 8295 CpuDefinitionInfoList **cpu_list = user_data; 8296 CpuDefinitionInfoList *entry; 8297 CpuDefinitionInfo *info; 8298 const char *typename; 8299 8300 typename = object_class_get_name(oc); 8301 info = g_malloc0(sizeof(*info)); 8302 info->name = g_strndup(typename, 8303 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8304 info->q_typename = g_strdup(typename); 8305 8306 entry = g_malloc0(sizeof(*entry)); 8307 entry->value = info; 8308 entry->next = *cpu_list; 8309 *cpu_list = entry; 8310 } 8311 8312 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8313 { 8314 CpuDefinitionInfoList *cpu_list = NULL; 8315 GSList *list; 8316 8317 list = object_class_get_list(TYPE_ARM_CPU, false); 8318 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8319 g_slist_free(list); 8320 8321 return cpu_list; 8322 } 8323 8324 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8325 void *opaque, int state, int secstate, 8326 int crm, int opc1, int opc2, 8327 const char *name) 8328 { 8329 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8330 * add a single reginfo struct to the hash table. 8331 */ 8332 uint32_t *key = g_new(uint32_t, 1); 8333 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8334 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8335 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8336 8337 r2->name = g_strdup(name); 8338 /* Reset the secure state to the specific incoming state. This is 8339 * necessary as the register may have been defined with both states. 8340 */ 8341 r2->secure = secstate; 8342 8343 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8344 /* Register is banked (using both entries in array). 8345 * Overwriting fieldoffset as the array is only used to define 8346 * banked registers but later only fieldoffset is used. 8347 */ 8348 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8349 } 8350 8351 if (state == ARM_CP_STATE_AA32) { 8352 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8353 /* If the register is banked then we don't need to migrate or 8354 * reset the 32-bit instance in certain cases: 8355 * 8356 * 1) If the register has both 32-bit and 64-bit instances then we 8357 * can count on the 64-bit instance taking care of the 8358 * non-secure bank. 8359 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8360 * taking care of the secure bank. This requires that separate 8361 * 32 and 64-bit definitions are provided. 8362 */ 8363 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8364 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8365 r2->type |= ARM_CP_ALIAS; 8366 } 8367 } else if ((secstate != r->secure) && !ns) { 8368 /* The register is not banked so we only want to allow migration of 8369 * the non-secure instance. 8370 */ 8371 r2->type |= ARM_CP_ALIAS; 8372 } 8373 8374 if (r->state == ARM_CP_STATE_BOTH) { 8375 /* We assume it is a cp15 register if the .cp field is left unset. 8376 */ 8377 if (r2->cp == 0) { 8378 r2->cp = 15; 8379 } 8380 8381 #ifdef HOST_WORDS_BIGENDIAN 8382 if (r2->fieldoffset) { 8383 r2->fieldoffset += sizeof(uint32_t); 8384 } 8385 #endif 8386 } 8387 } 8388 if (state == ARM_CP_STATE_AA64) { 8389 /* To allow abbreviation of ARMCPRegInfo 8390 * definitions, we treat cp == 0 as equivalent to 8391 * the value for "standard guest-visible sysreg". 8392 * STATE_BOTH definitions are also always "standard 8393 * sysreg" in their AArch64 view (the .cp value may 8394 * be non-zero for the benefit of the AArch32 view). 8395 */ 8396 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8397 r2->cp = CP_REG_ARM64_SYSREG_CP; 8398 } 8399 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8400 r2->opc0, opc1, opc2); 8401 } else { 8402 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8403 } 8404 if (opaque) { 8405 r2->opaque = opaque; 8406 } 8407 /* reginfo passed to helpers is correct for the actual access, 8408 * and is never ARM_CP_STATE_BOTH: 8409 */ 8410 r2->state = state; 8411 /* Make sure reginfo passed to helpers for wildcarded regs 8412 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8413 */ 8414 r2->crm = crm; 8415 r2->opc1 = opc1; 8416 r2->opc2 = opc2; 8417 /* By convention, for wildcarded registers only the first 8418 * entry is used for migration; the others are marked as 8419 * ALIAS so we don't try to transfer the register 8420 * multiple times. Special registers (ie NOP/WFI) are 8421 * never migratable and not even raw-accessible. 8422 */ 8423 if ((r->type & ARM_CP_SPECIAL)) { 8424 r2->type |= ARM_CP_NO_RAW; 8425 } 8426 if (((r->crm == CP_ANY) && crm != 0) || 8427 ((r->opc1 == CP_ANY) && opc1 != 0) || 8428 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8429 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8430 } 8431 8432 /* Check that raw accesses are either forbidden or handled. Note that 8433 * we can't assert this earlier because the setup of fieldoffset for 8434 * banked registers has to be done first. 8435 */ 8436 if (!(r2->type & ARM_CP_NO_RAW)) { 8437 assert(!raw_accessors_invalid(r2)); 8438 } 8439 8440 /* Overriding of an existing definition must be explicitly 8441 * requested. 8442 */ 8443 if (!(r->type & ARM_CP_OVERRIDE)) { 8444 ARMCPRegInfo *oldreg; 8445 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8446 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8447 fprintf(stderr, "Register redefined: cp=%d %d bit " 8448 "crn=%d crm=%d opc1=%d opc2=%d, " 8449 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8450 r2->crn, r2->crm, r2->opc1, r2->opc2, 8451 oldreg->name, r2->name); 8452 g_assert_not_reached(); 8453 } 8454 } 8455 g_hash_table_insert(cpu->cp_regs, key, r2); 8456 } 8457 8458 8459 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8460 const ARMCPRegInfo *r, void *opaque) 8461 { 8462 /* Define implementations of coprocessor registers. 8463 * We store these in a hashtable because typically 8464 * there are less than 150 registers in a space which 8465 * is 16*16*16*8*8 = 262144 in size. 8466 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8467 * If a register is defined twice then the second definition is 8468 * used, so this can be used to define some generic registers and 8469 * then override them with implementation specific variations. 8470 * At least one of the original and the second definition should 8471 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8472 * against accidental use. 8473 * 8474 * The state field defines whether the register is to be 8475 * visible in the AArch32 or AArch64 execution state. If the 8476 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8477 * reginfo structure for the AArch32 view, which sees the lower 8478 * 32 bits of the 64 bit register. 8479 * 8480 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8481 * be wildcarded. AArch64 registers are always considered to be 64 8482 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8483 * the register, if any. 8484 */ 8485 int crm, opc1, opc2, state; 8486 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8487 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8488 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8489 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8490 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8491 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8492 /* 64 bit registers have only CRm and Opc1 fields */ 8493 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8494 /* op0 only exists in the AArch64 encodings */ 8495 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8496 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8497 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8498 /* 8499 * This API is only for Arm's system coprocessors (14 and 15) or 8500 * (M-profile or v7A-and-earlier only) for implementation defined 8501 * coprocessors in the range 0..7. Our decode assumes this, since 8502 * 8..13 can be used for other insns including VFP and Neon. See 8503 * valid_cp() in translate.c. Assert here that we haven't tried 8504 * to use an invalid coprocessor number. 8505 */ 8506 switch (r->state) { 8507 case ARM_CP_STATE_BOTH: 8508 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8509 if (r->cp == 0) { 8510 break; 8511 } 8512 /* fall through */ 8513 case ARM_CP_STATE_AA32: 8514 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8515 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8516 assert(r->cp >= 14 && r->cp <= 15); 8517 } else { 8518 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8519 } 8520 break; 8521 case ARM_CP_STATE_AA64: 8522 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8523 break; 8524 default: 8525 g_assert_not_reached(); 8526 } 8527 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8528 * encodes a minimum access level for the register. We roll this 8529 * runtime check into our general permission check code, so check 8530 * here that the reginfo's specified permissions are strict enough 8531 * to encompass the generic architectural permission check. 8532 */ 8533 if (r->state != ARM_CP_STATE_AA32) { 8534 int mask = 0; 8535 switch (r->opc1) { 8536 case 0: 8537 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8538 mask = PL0U_R | PL1_RW; 8539 break; 8540 case 1: case 2: 8541 /* min_EL EL1 */ 8542 mask = PL1_RW; 8543 break; 8544 case 3: 8545 /* min_EL EL0 */ 8546 mask = PL0_RW; 8547 break; 8548 case 4: 8549 case 5: 8550 /* min_EL EL2 */ 8551 mask = PL2_RW; 8552 break; 8553 case 6: 8554 /* min_EL EL3 */ 8555 mask = PL3_RW; 8556 break; 8557 case 7: 8558 /* min_EL EL1, secure mode only (we don't check the latter) */ 8559 mask = PL1_RW; 8560 break; 8561 default: 8562 /* broken reginfo with out-of-range opc1 */ 8563 assert(false); 8564 break; 8565 } 8566 /* assert our permissions are not too lax (stricter is fine) */ 8567 assert((r->access & ~mask) == 0); 8568 } 8569 8570 /* Check that the register definition has enough info to handle 8571 * reads and writes if they are permitted. 8572 */ 8573 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8574 if (r->access & PL3_R) { 8575 assert((r->fieldoffset || 8576 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8577 r->readfn); 8578 } 8579 if (r->access & PL3_W) { 8580 assert((r->fieldoffset || 8581 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8582 r->writefn); 8583 } 8584 } 8585 /* Bad type field probably means missing sentinel at end of reg list */ 8586 assert(cptype_valid(r->type)); 8587 for (crm = crmmin; crm <= crmmax; crm++) { 8588 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8589 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8590 for (state = ARM_CP_STATE_AA32; 8591 state <= ARM_CP_STATE_AA64; state++) { 8592 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8593 continue; 8594 } 8595 if (state == ARM_CP_STATE_AA32) { 8596 /* Under AArch32 CP registers can be common 8597 * (same for secure and non-secure world) or banked. 8598 */ 8599 char *name; 8600 8601 switch (r->secure) { 8602 case ARM_CP_SECSTATE_S: 8603 case ARM_CP_SECSTATE_NS: 8604 add_cpreg_to_hashtable(cpu, r, opaque, state, 8605 r->secure, crm, opc1, opc2, 8606 r->name); 8607 break; 8608 default: 8609 name = g_strdup_printf("%s_S", r->name); 8610 add_cpreg_to_hashtable(cpu, r, opaque, state, 8611 ARM_CP_SECSTATE_S, 8612 crm, opc1, opc2, name); 8613 g_free(name); 8614 add_cpreg_to_hashtable(cpu, r, opaque, state, 8615 ARM_CP_SECSTATE_NS, 8616 crm, opc1, opc2, r->name); 8617 break; 8618 } 8619 } else { 8620 /* AArch64 registers get mapped to non-secure instance 8621 * of AArch32 */ 8622 add_cpreg_to_hashtable(cpu, r, opaque, state, 8623 ARM_CP_SECSTATE_NS, 8624 crm, opc1, opc2, r->name); 8625 } 8626 } 8627 } 8628 } 8629 } 8630 } 8631 8632 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8633 const ARMCPRegInfo *regs, void *opaque) 8634 { 8635 /* Define a whole list of registers */ 8636 const ARMCPRegInfo *r; 8637 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8638 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8639 } 8640 } 8641 8642 /* 8643 * Modify ARMCPRegInfo for access from userspace. 8644 * 8645 * This is a data driven modification directed by 8646 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8647 * user-space cannot alter any values and dynamic values pertaining to 8648 * execution state are hidden from user space view anyway. 8649 */ 8650 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8651 { 8652 const ARMCPRegUserSpaceInfo *m; 8653 ARMCPRegInfo *r; 8654 8655 for (m = mods; m->name; m++) { 8656 GPatternSpec *pat = NULL; 8657 if (m->is_glob) { 8658 pat = g_pattern_spec_new(m->name); 8659 } 8660 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8661 if (pat && g_pattern_match_string(pat, r->name)) { 8662 r->type = ARM_CP_CONST; 8663 r->access = PL0U_R; 8664 r->resetvalue = 0; 8665 /* continue */ 8666 } else if (strcmp(r->name, m->name) == 0) { 8667 r->type = ARM_CP_CONST; 8668 r->access = PL0U_R; 8669 r->resetvalue &= m->exported_bits; 8670 r->resetvalue |= m->fixed_bits; 8671 break; 8672 } 8673 } 8674 if (pat) { 8675 g_pattern_spec_free(pat); 8676 } 8677 } 8678 } 8679 8680 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8681 { 8682 return g_hash_table_lookup(cpregs, &encoded_cp); 8683 } 8684 8685 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8686 uint64_t value) 8687 { 8688 /* Helper coprocessor write function for write-ignore registers */ 8689 } 8690 8691 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8692 { 8693 /* Helper coprocessor write function for read-as-zero registers */ 8694 return 0; 8695 } 8696 8697 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8698 { 8699 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8700 } 8701 8702 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8703 { 8704 /* Return true if it is not valid for us to switch to 8705 * this CPU mode (ie all the UNPREDICTABLE cases in 8706 * the ARM ARM CPSRWriteByInstr pseudocode). 8707 */ 8708 8709 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8710 if (write_type == CPSRWriteByInstr && 8711 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8712 mode == ARM_CPU_MODE_HYP)) { 8713 return 1; 8714 } 8715 8716 switch (mode) { 8717 case ARM_CPU_MODE_USR: 8718 return 0; 8719 case ARM_CPU_MODE_SYS: 8720 case ARM_CPU_MODE_SVC: 8721 case ARM_CPU_MODE_ABT: 8722 case ARM_CPU_MODE_UND: 8723 case ARM_CPU_MODE_IRQ: 8724 case ARM_CPU_MODE_FIQ: 8725 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8726 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8727 */ 8728 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8729 * and CPS are treated as illegal mode changes. 8730 */ 8731 if (write_type == CPSRWriteByInstr && 8732 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8733 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8734 return 1; 8735 } 8736 return 0; 8737 case ARM_CPU_MODE_HYP: 8738 return !arm_feature(env, ARM_FEATURE_EL2) 8739 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 8740 case ARM_CPU_MODE_MON: 8741 return arm_current_el(env) < 3; 8742 default: 8743 return 1; 8744 } 8745 } 8746 8747 uint32_t cpsr_read(CPUARMState *env) 8748 { 8749 int ZF; 8750 ZF = (env->ZF == 0); 8751 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8752 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8753 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8754 | ((env->condexec_bits & 0xfc) << 8) 8755 | (env->GE << 16) | (env->daif & CPSR_AIF); 8756 } 8757 8758 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8759 CPSRWriteType write_type) 8760 { 8761 uint32_t changed_daif; 8762 8763 if (mask & CPSR_NZCV) { 8764 env->ZF = (~val) & CPSR_Z; 8765 env->NF = val; 8766 env->CF = (val >> 29) & 1; 8767 env->VF = (val << 3) & 0x80000000; 8768 } 8769 if (mask & CPSR_Q) 8770 env->QF = ((val & CPSR_Q) != 0); 8771 if (mask & CPSR_T) 8772 env->thumb = ((val & CPSR_T) != 0); 8773 if (mask & CPSR_IT_0_1) { 8774 env->condexec_bits &= ~3; 8775 env->condexec_bits |= (val >> 25) & 3; 8776 } 8777 if (mask & CPSR_IT_2_7) { 8778 env->condexec_bits &= 3; 8779 env->condexec_bits |= (val >> 8) & 0xfc; 8780 } 8781 if (mask & CPSR_GE) { 8782 env->GE = (val >> 16) & 0xf; 8783 } 8784 8785 /* In a V7 implementation that includes the security extensions but does 8786 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8787 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8788 * bits respectively. 8789 * 8790 * In a V8 implementation, it is permitted for privileged software to 8791 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8792 */ 8793 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8794 arm_feature(env, ARM_FEATURE_EL3) && 8795 !arm_feature(env, ARM_FEATURE_EL2) && 8796 !arm_is_secure(env)) { 8797 8798 changed_daif = (env->daif ^ val) & mask; 8799 8800 if (changed_daif & CPSR_A) { 8801 /* Check to see if we are allowed to change the masking of async 8802 * abort exceptions from a non-secure state. 8803 */ 8804 if (!(env->cp15.scr_el3 & SCR_AW)) { 8805 qemu_log_mask(LOG_GUEST_ERROR, 8806 "Ignoring attempt to switch CPSR_A flag from " 8807 "non-secure world with SCR.AW bit clear\n"); 8808 mask &= ~CPSR_A; 8809 } 8810 } 8811 8812 if (changed_daif & CPSR_F) { 8813 /* Check to see if we are allowed to change the masking of FIQ 8814 * exceptions from a non-secure state. 8815 */ 8816 if (!(env->cp15.scr_el3 & SCR_FW)) { 8817 qemu_log_mask(LOG_GUEST_ERROR, 8818 "Ignoring attempt to switch CPSR_F flag from " 8819 "non-secure world with SCR.FW bit clear\n"); 8820 mask &= ~CPSR_F; 8821 } 8822 8823 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8824 * If this bit is set software is not allowed to mask 8825 * FIQs, but is allowed to set CPSR_F to 0. 8826 */ 8827 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8828 (val & CPSR_F)) { 8829 qemu_log_mask(LOG_GUEST_ERROR, 8830 "Ignoring attempt to enable CPSR_F flag " 8831 "(non-maskable FIQ [NMFI] support enabled)\n"); 8832 mask &= ~CPSR_F; 8833 } 8834 } 8835 } 8836 8837 env->daif &= ~(CPSR_AIF & mask); 8838 env->daif |= val & CPSR_AIF & mask; 8839 8840 if (write_type != CPSRWriteRaw && 8841 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 8842 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 8843 /* Note that we can only get here in USR mode if this is a 8844 * gdb stub write; for this case we follow the architectural 8845 * behaviour for guest writes in USR mode of ignoring an attempt 8846 * to switch mode. (Those are caught by translate.c for writes 8847 * triggered by guest instructions.) 8848 */ 8849 mask &= ~CPSR_M; 8850 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 8851 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 8852 * v7, and has defined behaviour in v8: 8853 * + leave CPSR.M untouched 8854 * + allow changes to the other CPSR fields 8855 * + set PSTATE.IL 8856 * For user changes via the GDB stub, we don't set PSTATE.IL, 8857 * as this would be unnecessarily harsh for a user error. 8858 */ 8859 mask &= ~CPSR_M; 8860 if (write_type != CPSRWriteByGDBStub && 8861 arm_feature(env, ARM_FEATURE_V8)) { 8862 mask |= CPSR_IL; 8863 val |= CPSR_IL; 8864 } 8865 qemu_log_mask(LOG_GUEST_ERROR, 8866 "Illegal AArch32 mode switch attempt from %s to %s\n", 8867 aarch32_mode_name(env->uncached_cpsr), 8868 aarch32_mode_name(val)); 8869 } else { 8870 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 8871 write_type == CPSRWriteExceptionReturn ? 8872 "Exception return from AArch32" : 8873 "AArch32 mode switch from", 8874 aarch32_mode_name(env->uncached_cpsr), 8875 aarch32_mode_name(val), env->regs[15]); 8876 switch_mode(env, val & CPSR_M); 8877 } 8878 } 8879 mask &= ~CACHED_CPSR_BITS; 8880 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 8881 } 8882 8883 /* Sign/zero extend */ 8884 uint32_t HELPER(sxtb16)(uint32_t x) 8885 { 8886 uint32_t res; 8887 res = (uint16_t)(int8_t)x; 8888 res |= (uint32_t)(int8_t)(x >> 16) << 16; 8889 return res; 8890 } 8891 8892 uint32_t HELPER(uxtb16)(uint32_t x) 8893 { 8894 uint32_t res; 8895 res = (uint16_t)(uint8_t)x; 8896 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 8897 return res; 8898 } 8899 8900 int32_t HELPER(sdiv)(int32_t num, int32_t den) 8901 { 8902 if (den == 0) 8903 return 0; 8904 if (num == INT_MIN && den == -1) 8905 return INT_MIN; 8906 return num / den; 8907 } 8908 8909 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 8910 { 8911 if (den == 0) 8912 return 0; 8913 return num / den; 8914 } 8915 8916 uint32_t HELPER(rbit)(uint32_t x) 8917 { 8918 return revbit32(x); 8919 } 8920 8921 #ifdef CONFIG_USER_ONLY 8922 8923 static void switch_mode(CPUARMState *env, int mode) 8924 { 8925 ARMCPU *cpu = env_archcpu(env); 8926 8927 if (mode != ARM_CPU_MODE_USR) { 8928 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 8929 } 8930 } 8931 8932 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 8933 uint32_t cur_el, bool secure) 8934 { 8935 return 1; 8936 } 8937 8938 void aarch64_sync_64_to_32(CPUARMState *env) 8939 { 8940 g_assert_not_reached(); 8941 } 8942 8943 #else 8944 8945 static void switch_mode(CPUARMState *env, int mode) 8946 { 8947 int old_mode; 8948 int i; 8949 8950 old_mode = env->uncached_cpsr & CPSR_M; 8951 if (mode == old_mode) 8952 return; 8953 8954 if (old_mode == ARM_CPU_MODE_FIQ) { 8955 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8956 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 8957 } else if (mode == ARM_CPU_MODE_FIQ) { 8958 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8959 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 8960 } 8961 8962 i = bank_number(old_mode); 8963 env->banked_r13[i] = env->regs[13]; 8964 env->banked_spsr[i] = env->spsr; 8965 8966 i = bank_number(mode); 8967 env->regs[13] = env->banked_r13[i]; 8968 env->spsr = env->banked_spsr[i]; 8969 8970 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 8971 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 8972 } 8973 8974 /* Physical Interrupt Target EL Lookup Table 8975 * 8976 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 8977 * 8978 * The below multi-dimensional table is used for looking up the target 8979 * exception level given numerous condition criteria. Specifically, the 8980 * target EL is based on SCR and HCR routing controls as well as the 8981 * currently executing EL and secure state. 8982 * 8983 * Dimensions: 8984 * target_el_table[2][2][2][2][2][4] 8985 * | | | | | +--- Current EL 8986 * | | | | +------ Non-secure(0)/Secure(1) 8987 * | | | +--------- HCR mask override 8988 * | | +------------ SCR exec state control 8989 * | +--------------- SCR mask override 8990 * +------------------ 32-bit(0)/64-bit(1) EL3 8991 * 8992 * The table values are as such: 8993 * 0-3 = EL0-EL3 8994 * -1 = Cannot occur 8995 * 8996 * The ARM ARM target EL table includes entries indicating that an "exception 8997 * is not taken". The two cases where this is applicable are: 8998 * 1) An exception is taken from EL3 but the SCR does not have the exception 8999 * routed to EL3. 9000 * 2) An exception is taken from EL2 but the HCR does not have the exception 9001 * routed to EL2. 9002 * In these two cases, the below table contain a target of EL1. This value is 9003 * returned as it is expected that the consumer of the table data will check 9004 * for "target EL >= current EL" to ensure the exception is not taken. 9005 * 9006 * SCR HCR 9007 * 64 EA AMO From 9008 * BIT IRQ IMO Non-secure Secure 9009 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9010 */ 9011 static const int8_t target_el_table[2][2][2][2][2][4] = { 9012 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9013 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9014 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9015 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9016 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9017 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9018 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9019 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9020 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9021 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 9022 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 9023 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 9024 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9025 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9026 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9027 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 9028 }; 9029 9030 /* 9031 * Determine the target EL for physical exceptions 9032 */ 9033 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9034 uint32_t cur_el, bool secure) 9035 { 9036 CPUARMState *env = cs->env_ptr; 9037 bool rw; 9038 bool scr; 9039 bool hcr; 9040 int target_el; 9041 /* Is the highest EL AArch64? */ 9042 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9043 uint64_t hcr_el2; 9044 9045 if (arm_feature(env, ARM_FEATURE_EL3)) { 9046 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9047 } else { 9048 /* Either EL2 is the highest EL (and so the EL2 register width 9049 * is given by is64); or there is no EL2 or EL3, in which case 9050 * the value of 'rw' does not affect the table lookup anyway. 9051 */ 9052 rw = is64; 9053 } 9054 9055 hcr_el2 = arm_hcr_el2_eff(env); 9056 switch (excp_idx) { 9057 case EXCP_IRQ: 9058 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9059 hcr = hcr_el2 & HCR_IMO; 9060 break; 9061 case EXCP_FIQ: 9062 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9063 hcr = hcr_el2 & HCR_FMO; 9064 break; 9065 default: 9066 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9067 hcr = hcr_el2 & HCR_AMO; 9068 break; 9069 }; 9070 9071 /* 9072 * For these purposes, TGE and AMO/IMO/FMO both force the 9073 * interrupt to EL2. Fold TGE into the bit extracted above. 9074 */ 9075 hcr |= (hcr_el2 & HCR_TGE) != 0; 9076 9077 /* Perform a table-lookup for the target EL given the current state */ 9078 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9079 9080 assert(target_el > 0); 9081 9082 return target_el; 9083 } 9084 9085 void arm_log_exception(int idx) 9086 { 9087 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9088 const char *exc = NULL; 9089 static const char * const excnames[] = { 9090 [EXCP_UDEF] = "Undefined Instruction", 9091 [EXCP_SWI] = "SVC", 9092 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9093 [EXCP_DATA_ABORT] = "Data Abort", 9094 [EXCP_IRQ] = "IRQ", 9095 [EXCP_FIQ] = "FIQ", 9096 [EXCP_BKPT] = "Breakpoint", 9097 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9098 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9099 [EXCP_HVC] = "Hypervisor Call", 9100 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9101 [EXCP_SMC] = "Secure Monitor Call", 9102 [EXCP_VIRQ] = "Virtual IRQ", 9103 [EXCP_VFIQ] = "Virtual FIQ", 9104 [EXCP_SEMIHOST] = "Semihosting call", 9105 [EXCP_NOCP] = "v7M NOCP UsageFault", 9106 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9107 [EXCP_STKOF] = "v8M STKOF UsageFault", 9108 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9109 [EXCP_LSERR] = "v8M LSERR UsageFault", 9110 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9111 }; 9112 9113 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9114 exc = excnames[idx]; 9115 } 9116 if (!exc) { 9117 exc = "unknown"; 9118 } 9119 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 9120 } 9121 } 9122 9123 /* 9124 * Function used to synchronize QEMU's AArch64 register set with AArch32 9125 * register set. This is necessary when switching between AArch32 and AArch64 9126 * execution state. 9127 */ 9128 void aarch64_sync_32_to_64(CPUARMState *env) 9129 { 9130 int i; 9131 uint32_t mode = env->uncached_cpsr & CPSR_M; 9132 9133 /* We can blanket copy R[0:7] to X[0:7] */ 9134 for (i = 0; i < 8; i++) { 9135 env->xregs[i] = env->regs[i]; 9136 } 9137 9138 /* 9139 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9140 * Otherwise, they come from the banked user regs. 9141 */ 9142 if (mode == ARM_CPU_MODE_FIQ) { 9143 for (i = 8; i < 13; i++) { 9144 env->xregs[i] = env->usr_regs[i - 8]; 9145 } 9146 } else { 9147 for (i = 8; i < 13; i++) { 9148 env->xregs[i] = env->regs[i]; 9149 } 9150 } 9151 9152 /* 9153 * Registers x13-x23 are the various mode SP and FP registers. Registers 9154 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9155 * from the mode banked register. 9156 */ 9157 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9158 env->xregs[13] = env->regs[13]; 9159 env->xregs[14] = env->regs[14]; 9160 } else { 9161 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9162 /* HYP is an exception in that it is copied from r14 */ 9163 if (mode == ARM_CPU_MODE_HYP) { 9164 env->xregs[14] = env->regs[14]; 9165 } else { 9166 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9167 } 9168 } 9169 9170 if (mode == ARM_CPU_MODE_HYP) { 9171 env->xregs[15] = env->regs[13]; 9172 } else { 9173 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9174 } 9175 9176 if (mode == ARM_CPU_MODE_IRQ) { 9177 env->xregs[16] = env->regs[14]; 9178 env->xregs[17] = env->regs[13]; 9179 } else { 9180 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9181 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9182 } 9183 9184 if (mode == ARM_CPU_MODE_SVC) { 9185 env->xregs[18] = env->regs[14]; 9186 env->xregs[19] = env->regs[13]; 9187 } else { 9188 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9189 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9190 } 9191 9192 if (mode == ARM_CPU_MODE_ABT) { 9193 env->xregs[20] = env->regs[14]; 9194 env->xregs[21] = env->regs[13]; 9195 } else { 9196 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9197 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9198 } 9199 9200 if (mode == ARM_CPU_MODE_UND) { 9201 env->xregs[22] = env->regs[14]; 9202 env->xregs[23] = env->regs[13]; 9203 } else { 9204 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9205 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9206 } 9207 9208 /* 9209 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9210 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9211 * FIQ bank for r8-r14. 9212 */ 9213 if (mode == ARM_CPU_MODE_FIQ) { 9214 for (i = 24; i < 31; i++) { 9215 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9216 } 9217 } else { 9218 for (i = 24; i < 29; i++) { 9219 env->xregs[i] = env->fiq_regs[i - 24]; 9220 } 9221 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9222 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9223 } 9224 9225 env->pc = env->regs[15]; 9226 } 9227 9228 /* 9229 * Function used to synchronize QEMU's AArch32 register set with AArch64 9230 * register set. This is necessary when switching between AArch32 and AArch64 9231 * execution state. 9232 */ 9233 void aarch64_sync_64_to_32(CPUARMState *env) 9234 { 9235 int i; 9236 uint32_t mode = env->uncached_cpsr & CPSR_M; 9237 9238 /* We can blanket copy X[0:7] to R[0:7] */ 9239 for (i = 0; i < 8; i++) { 9240 env->regs[i] = env->xregs[i]; 9241 } 9242 9243 /* 9244 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9245 * Otherwise, we copy x8-x12 into the banked user regs. 9246 */ 9247 if (mode == ARM_CPU_MODE_FIQ) { 9248 for (i = 8; i < 13; i++) { 9249 env->usr_regs[i - 8] = env->xregs[i]; 9250 } 9251 } else { 9252 for (i = 8; i < 13; i++) { 9253 env->regs[i] = env->xregs[i]; 9254 } 9255 } 9256 9257 /* 9258 * Registers r13 & r14 depend on the current mode. 9259 * If we are in a given mode, we copy the corresponding x registers to r13 9260 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9261 * for the mode. 9262 */ 9263 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9264 env->regs[13] = env->xregs[13]; 9265 env->regs[14] = env->xregs[14]; 9266 } else { 9267 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9268 9269 /* 9270 * HYP is an exception in that it does not have its own banked r14 but 9271 * shares the USR r14 9272 */ 9273 if (mode == ARM_CPU_MODE_HYP) { 9274 env->regs[14] = env->xregs[14]; 9275 } else { 9276 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9277 } 9278 } 9279 9280 if (mode == ARM_CPU_MODE_HYP) { 9281 env->regs[13] = env->xregs[15]; 9282 } else { 9283 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9284 } 9285 9286 if (mode == ARM_CPU_MODE_IRQ) { 9287 env->regs[14] = env->xregs[16]; 9288 env->regs[13] = env->xregs[17]; 9289 } else { 9290 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9291 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9292 } 9293 9294 if (mode == ARM_CPU_MODE_SVC) { 9295 env->regs[14] = env->xregs[18]; 9296 env->regs[13] = env->xregs[19]; 9297 } else { 9298 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9299 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9300 } 9301 9302 if (mode == ARM_CPU_MODE_ABT) { 9303 env->regs[14] = env->xregs[20]; 9304 env->regs[13] = env->xregs[21]; 9305 } else { 9306 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9307 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9308 } 9309 9310 if (mode == ARM_CPU_MODE_UND) { 9311 env->regs[14] = env->xregs[22]; 9312 env->regs[13] = env->xregs[23]; 9313 } else { 9314 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9315 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9316 } 9317 9318 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9319 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9320 * FIQ bank for r8-r14. 9321 */ 9322 if (mode == ARM_CPU_MODE_FIQ) { 9323 for (i = 24; i < 31; i++) { 9324 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9325 } 9326 } else { 9327 for (i = 24; i < 29; i++) { 9328 env->fiq_regs[i - 24] = env->xregs[i]; 9329 } 9330 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9331 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9332 } 9333 9334 env->regs[15] = env->pc; 9335 } 9336 9337 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9338 uint32_t mask, uint32_t offset, 9339 uint32_t newpc) 9340 { 9341 int new_el; 9342 9343 /* Change the CPU state so as to actually take the exception. */ 9344 switch_mode(env, new_mode); 9345 9346 /* 9347 * For exceptions taken to AArch32 we must clear the SS bit in both 9348 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9349 */ 9350 env->uncached_cpsr &= ~PSTATE_SS; 9351 env->spsr = cpsr_read(env); 9352 /* Clear IT bits. */ 9353 env->condexec_bits = 0; 9354 /* Switch to the new mode, and to the correct instruction set. */ 9355 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9356 9357 /* This must be after mode switching. */ 9358 new_el = arm_current_el(env); 9359 9360 /* Set new mode endianness */ 9361 env->uncached_cpsr &= ~CPSR_E; 9362 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9363 env->uncached_cpsr |= CPSR_E; 9364 } 9365 /* J and IL must always be cleared for exception entry */ 9366 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9367 env->daif |= mask; 9368 9369 if (new_mode == ARM_CPU_MODE_HYP) { 9370 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9371 env->elr_el[2] = env->regs[15]; 9372 } else { 9373 /* CPSR.PAN is normally preserved preserved unless... */ 9374 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9375 switch (new_el) { 9376 case 3: 9377 if (!arm_is_secure_below_el3(env)) { 9378 /* ... the target is EL3, from non-secure state. */ 9379 env->uncached_cpsr &= ~CPSR_PAN; 9380 break; 9381 } 9382 /* ... the target is EL3, from secure state ... */ 9383 /* fall through */ 9384 case 1: 9385 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9386 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9387 env->uncached_cpsr |= CPSR_PAN; 9388 } 9389 break; 9390 } 9391 } 9392 /* 9393 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9394 * and we should just guard the thumb mode on V4 9395 */ 9396 if (arm_feature(env, ARM_FEATURE_V4T)) { 9397 env->thumb = 9398 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9399 } 9400 env->regs[14] = env->regs[15] + offset; 9401 } 9402 env->regs[15] = newpc; 9403 arm_rebuild_hflags(env); 9404 } 9405 9406 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9407 { 9408 /* 9409 * Handle exception entry to Hyp mode; this is sufficiently 9410 * different to entry to other AArch32 modes that we handle it 9411 * separately here. 9412 * 9413 * The vector table entry used is always the 0x14 Hyp mode entry point, 9414 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9415 * The offset applied to the preferred return address is always zero 9416 * (see DDI0487C.a section G1.12.3). 9417 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9418 */ 9419 uint32_t addr, mask; 9420 ARMCPU *cpu = ARM_CPU(cs); 9421 CPUARMState *env = &cpu->env; 9422 9423 switch (cs->exception_index) { 9424 case EXCP_UDEF: 9425 addr = 0x04; 9426 break; 9427 case EXCP_SWI: 9428 addr = 0x14; 9429 break; 9430 case EXCP_BKPT: 9431 /* Fall through to prefetch abort. */ 9432 case EXCP_PREFETCH_ABORT: 9433 env->cp15.ifar_s = env->exception.vaddress; 9434 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9435 (uint32_t)env->exception.vaddress); 9436 addr = 0x0c; 9437 break; 9438 case EXCP_DATA_ABORT: 9439 env->cp15.dfar_s = env->exception.vaddress; 9440 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9441 (uint32_t)env->exception.vaddress); 9442 addr = 0x10; 9443 break; 9444 case EXCP_IRQ: 9445 addr = 0x18; 9446 break; 9447 case EXCP_FIQ: 9448 addr = 0x1c; 9449 break; 9450 case EXCP_HVC: 9451 addr = 0x08; 9452 break; 9453 case EXCP_HYP_TRAP: 9454 addr = 0x14; 9455 break; 9456 default: 9457 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9458 } 9459 9460 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9461 if (!arm_feature(env, ARM_FEATURE_V8)) { 9462 /* 9463 * QEMU syndrome values are v8-style. v7 has the IL bit 9464 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9465 * If this is a v7 CPU, squash the IL bit in those cases. 9466 */ 9467 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9468 (cs->exception_index == EXCP_DATA_ABORT && 9469 !(env->exception.syndrome & ARM_EL_ISV)) || 9470 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9471 env->exception.syndrome &= ~ARM_EL_IL; 9472 } 9473 } 9474 env->cp15.esr_el[2] = env->exception.syndrome; 9475 } 9476 9477 if (arm_current_el(env) != 2 && addr < 0x14) { 9478 addr = 0x14; 9479 } 9480 9481 mask = 0; 9482 if (!(env->cp15.scr_el3 & SCR_EA)) { 9483 mask |= CPSR_A; 9484 } 9485 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9486 mask |= CPSR_I; 9487 } 9488 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9489 mask |= CPSR_F; 9490 } 9491 9492 addr += env->cp15.hvbar; 9493 9494 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9495 } 9496 9497 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9498 { 9499 ARMCPU *cpu = ARM_CPU(cs); 9500 CPUARMState *env = &cpu->env; 9501 uint32_t addr; 9502 uint32_t mask; 9503 int new_mode; 9504 uint32_t offset; 9505 uint32_t moe; 9506 9507 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9508 switch (syn_get_ec(env->exception.syndrome)) { 9509 case EC_BREAKPOINT: 9510 case EC_BREAKPOINT_SAME_EL: 9511 moe = 1; 9512 break; 9513 case EC_WATCHPOINT: 9514 case EC_WATCHPOINT_SAME_EL: 9515 moe = 10; 9516 break; 9517 case EC_AA32_BKPT: 9518 moe = 3; 9519 break; 9520 case EC_VECTORCATCH: 9521 moe = 5; 9522 break; 9523 default: 9524 moe = 0; 9525 break; 9526 } 9527 9528 if (moe) { 9529 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9530 } 9531 9532 if (env->exception.target_el == 2) { 9533 arm_cpu_do_interrupt_aarch32_hyp(cs); 9534 return; 9535 } 9536 9537 switch (cs->exception_index) { 9538 case EXCP_UDEF: 9539 new_mode = ARM_CPU_MODE_UND; 9540 addr = 0x04; 9541 mask = CPSR_I; 9542 if (env->thumb) 9543 offset = 2; 9544 else 9545 offset = 4; 9546 break; 9547 case EXCP_SWI: 9548 new_mode = ARM_CPU_MODE_SVC; 9549 addr = 0x08; 9550 mask = CPSR_I; 9551 /* The PC already points to the next instruction. */ 9552 offset = 0; 9553 break; 9554 case EXCP_BKPT: 9555 /* Fall through to prefetch abort. */ 9556 case EXCP_PREFETCH_ABORT: 9557 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9558 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9559 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9560 env->exception.fsr, (uint32_t)env->exception.vaddress); 9561 new_mode = ARM_CPU_MODE_ABT; 9562 addr = 0x0c; 9563 mask = CPSR_A | CPSR_I; 9564 offset = 4; 9565 break; 9566 case EXCP_DATA_ABORT: 9567 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9568 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9569 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9570 env->exception.fsr, 9571 (uint32_t)env->exception.vaddress); 9572 new_mode = ARM_CPU_MODE_ABT; 9573 addr = 0x10; 9574 mask = CPSR_A | CPSR_I; 9575 offset = 8; 9576 break; 9577 case EXCP_IRQ: 9578 new_mode = ARM_CPU_MODE_IRQ; 9579 addr = 0x18; 9580 /* Disable IRQ and imprecise data aborts. */ 9581 mask = CPSR_A | CPSR_I; 9582 offset = 4; 9583 if (env->cp15.scr_el3 & SCR_IRQ) { 9584 /* IRQ routed to monitor mode */ 9585 new_mode = ARM_CPU_MODE_MON; 9586 mask |= CPSR_F; 9587 } 9588 break; 9589 case EXCP_FIQ: 9590 new_mode = ARM_CPU_MODE_FIQ; 9591 addr = 0x1c; 9592 /* Disable FIQ, IRQ and imprecise data aborts. */ 9593 mask = CPSR_A | CPSR_I | CPSR_F; 9594 if (env->cp15.scr_el3 & SCR_FIQ) { 9595 /* FIQ routed to monitor mode */ 9596 new_mode = ARM_CPU_MODE_MON; 9597 } 9598 offset = 4; 9599 break; 9600 case EXCP_VIRQ: 9601 new_mode = ARM_CPU_MODE_IRQ; 9602 addr = 0x18; 9603 /* Disable IRQ and imprecise data aborts. */ 9604 mask = CPSR_A | CPSR_I; 9605 offset = 4; 9606 break; 9607 case EXCP_VFIQ: 9608 new_mode = ARM_CPU_MODE_FIQ; 9609 addr = 0x1c; 9610 /* Disable FIQ, IRQ and imprecise data aborts. */ 9611 mask = CPSR_A | CPSR_I | CPSR_F; 9612 offset = 4; 9613 break; 9614 case EXCP_SMC: 9615 new_mode = ARM_CPU_MODE_MON; 9616 addr = 0x08; 9617 mask = CPSR_A | CPSR_I | CPSR_F; 9618 offset = 0; 9619 break; 9620 default: 9621 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9622 return; /* Never happens. Keep compiler happy. */ 9623 } 9624 9625 if (new_mode == ARM_CPU_MODE_MON) { 9626 addr += env->cp15.mvbar; 9627 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9628 /* High vectors. When enabled, base address cannot be remapped. */ 9629 addr += 0xffff0000; 9630 } else { 9631 /* ARM v7 architectures provide a vector base address register to remap 9632 * the interrupt vector table. 9633 * This register is only followed in non-monitor mode, and is banked. 9634 * Note: only bits 31:5 are valid. 9635 */ 9636 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9637 } 9638 9639 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9640 env->cp15.scr_el3 &= ~SCR_NS; 9641 } 9642 9643 take_aarch32_exception(env, new_mode, mask, offset, addr); 9644 } 9645 9646 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9647 { 9648 /* 9649 * Return the register number of the AArch64 view of the AArch32 9650 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9651 * be that of the AArch32 mode the exception came from. 9652 */ 9653 int mode = env->uncached_cpsr & CPSR_M; 9654 9655 switch (aarch32_reg) { 9656 case 0 ... 7: 9657 return aarch32_reg; 9658 case 8 ... 12: 9659 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9660 case 13: 9661 switch (mode) { 9662 case ARM_CPU_MODE_USR: 9663 case ARM_CPU_MODE_SYS: 9664 return 13; 9665 case ARM_CPU_MODE_HYP: 9666 return 15; 9667 case ARM_CPU_MODE_IRQ: 9668 return 17; 9669 case ARM_CPU_MODE_SVC: 9670 return 19; 9671 case ARM_CPU_MODE_ABT: 9672 return 21; 9673 case ARM_CPU_MODE_UND: 9674 return 23; 9675 case ARM_CPU_MODE_FIQ: 9676 return 29; 9677 default: 9678 g_assert_not_reached(); 9679 } 9680 case 14: 9681 switch (mode) { 9682 case ARM_CPU_MODE_USR: 9683 case ARM_CPU_MODE_SYS: 9684 case ARM_CPU_MODE_HYP: 9685 return 14; 9686 case ARM_CPU_MODE_IRQ: 9687 return 16; 9688 case ARM_CPU_MODE_SVC: 9689 return 18; 9690 case ARM_CPU_MODE_ABT: 9691 return 20; 9692 case ARM_CPU_MODE_UND: 9693 return 22; 9694 case ARM_CPU_MODE_FIQ: 9695 return 30; 9696 default: 9697 g_assert_not_reached(); 9698 } 9699 case 15: 9700 return 31; 9701 default: 9702 g_assert_not_reached(); 9703 } 9704 } 9705 9706 /* Handle exception entry to a target EL which is using AArch64 */ 9707 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9708 { 9709 ARMCPU *cpu = ARM_CPU(cs); 9710 CPUARMState *env = &cpu->env; 9711 unsigned int new_el = env->exception.target_el; 9712 target_ulong addr = env->cp15.vbar_el[new_el]; 9713 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9714 unsigned int old_mode; 9715 unsigned int cur_el = arm_current_el(env); 9716 int rt; 9717 9718 /* 9719 * Note that new_el can never be 0. If cur_el is 0, then 9720 * el0_a64 is is_a64(), else el0_a64 is ignored. 9721 */ 9722 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9723 9724 if (cur_el < new_el) { 9725 /* Entry vector offset depends on whether the implemented EL 9726 * immediately lower than the target level is using AArch32 or AArch64 9727 */ 9728 bool is_aa64; 9729 uint64_t hcr; 9730 9731 switch (new_el) { 9732 case 3: 9733 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9734 break; 9735 case 2: 9736 hcr = arm_hcr_el2_eff(env); 9737 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9738 is_aa64 = (hcr & HCR_RW) != 0; 9739 break; 9740 } 9741 /* fall through */ 9742 case 1: 9743 is_aa64 = is_a64(env); 9744 break; 9745 default: 9746 g_assert_not_reached(); 9747 } 9748 9749 if (is_aa64) { 9750 addr += 0x400; 9751 } else { 9752 addr += 0x600; 9753 } 9754 } else if (pstate_read(env) & PSTATE_SP) { 9755 addr += 0x200; 9756 } 9757 9758 switch (cs->exception_index) { 9759 case EXCP_PREFETCH_ABORT: 9760 case EXCP_DATA_ABORT: 9761 env->cp15.far_el[new_el] = env->exception.vaddress; 9762 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9763 env->cp15.far_el[new_el]); 9764 /* fall through */ 9765 case EXCP_BKPT: 9766 case EXCP_UDEF: 9767 case EXCP_SWI: 9768 case EXCP_HVC: 9769 case EXCP_HYP_TRAP: 9770 case EXCP_SMC: 9771 switch (syn_get_ec(env->exception.syndrome)) { 9772 case EC_ADVSIMDFPACCESSTRAP: 9773 /* 9774 * QEMU internal FP/SIMD syndromes from AArch32 include the 9775 * TA and coproc fields which are only exposed if the exception 9776 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9777 * AArch64 format syndrome. 9778 */ 9779 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9780 break; 9781 case EC_CP14RTTRAP: 9782 case EC_CP15RTTRAP: 9783 case EC_CP14DTTRAP: 9784 /* 9785 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 9786 * the raw register field from the insn; when taking this to 9787 * AArch64 we must convert it to the AArch64 view of the register 9788 * number. Notice that we read a 4-bit AArch32 register number and 9789 * write back a 5-bit AArch64 one. 9790 */ 9791 rt = extract32(env->exception.syndrome, 5, 4); 9792 rt = aarch64_regnum(env, rt); 9793 env->exception.syndrome = deposit32(env->exception.syndrome, 9794 5, 5, rt); 9795 break; 9796 case EC_CP15RRTTRAP: 9797 case EC_CP14RRTTRAP: 9798 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 9799 rt = extract32(env->exception.syndrome, 5, 4); 9800 rt = aarch64_regnum(env, rt); 9801 env->exception.syndrome = deposit32(env->exception.syndrome, 9802 5, 5, rt); 9803 rt = extract32(env->exception.syndrome, 10, 4); 9804 rt = aarch64_regnum(env, rt); 9805 env->exception.syndrome = deposit32(env->exception.syndrome, 9806 10, 5, rt); 9807 break; 9808 } 9809 env->cp15.esr_el[new_el] = env->exception.syndrome; 9810 break; 9811 case EXCP_IRQ: 9812 case EXCP_VIRQ: 9813 addr += 0x80; 9814 break; 9815 case EXCP_FIQ: 9816 case EXCP_VFIQ: 9817 addr += 0x100; 9818 break; 9819 default: 9820 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9821 } 9822 9823 if (is_a64(env)) { 9824 old_mode = pstate_read(env); 9825 aarch64_save_sp(env, arm_current_el(env)); 9826 env->elr_el[new_el] = env->pc; 9827 } else { 9828 old_mode = cpsr_read(env); 9829 env->elr_el[new_el] = env->regs[15]; 9830 9831 aarch64_sync_32_to_64(env); 9832 9833 env->condexec_bits = 0; 9834 } 9835 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 9836 9837 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9838 env->elr_el[new_el]); 9839 9840 if (cpu_isar_feature(aa64_pan, cpu)) { 9841 /* The value of PSTATE.PAN is normally preserved, except when ... */ 9842 new_mode |= old_mode & PSTATE_PAN; 9843 switch (new_el) { 9844 case 2: 9845 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 9846 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 9847 != (HCR_E2H | HCR_TGE)) { 9848 break; 9849 } 9850 /* fall through */ 9851 case 1: 9852 /* ... the target is EL1 ... */ 9853 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 9854 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 9855 new_mode |= PSTATE_PAN; 9856 } 9857 break; 9858 } 9859 } 9860 if (cpu_isar_feature(aa64_mte, cpu)) { 9861 new_mode |= PSTATE_TCO; 9862 } 9863 9864 pstate_write(env, PSTATE_DAIF | new_mode); 9865 env->aarch64 = 1; 9866 aarch64_restore_sp(env, new_el); 9867 helper_rebuild_hflags_a64(env, new_el); 9868 9869 env->pc = addr; 9870 9871 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 9872 new_el, env->pc, pstate_read(env)); 9873 } 9874 9875 /* 9876 * Do semihosting call and set the appropriate return value. All the 9877 * permission and validity checks have been done at translate time. 9878 * 9879 * We only see semihosting exceptions in TCG only as they are not 9880 * trapped to the hypervisor in KVM. 9881 */ 9882 #ifdef CONFIG_TCG 9883 static void handle_semihosting(CPUState *cs) 9884 { 9885 ARMCPU *cpu = ARM_CPU(cs); 9886 CPUARMState *env = &cpu->env; 9887 9888 if (is_a64(env)) { 9889 qemu_log_mask(CPU_LOG_INT, 9890 "...handling as semihosting call 0x%" PRIx64 "\n", 9891 env->xregs[0]); 9892 env->xregs[0] = do_arm_semihosting(env); 9893 env->pc += 4; 9894 } else { 9895 qemu_log_mask(CPU_LOG_INT, 9896 "...handling as semihosting call 0x%x\n", 9897 env->regs[0]); 9898 env->regs[0] = do_arm_semihosting(env); 9899 env->regs[15] += env->thumb ? 2 : 4; 9900 } 9901 } 9902 #endif 9903 9904 /* Handle a CPU exception for A and R profile CPUs. 9905 * Do any appropriate logging, handle PSCI calls, and then hand off 9906 * to the AArch64-entry or AArch32-entry function depending on the 9907 * target exception level's register width. 9908 */ 9909 void arm_cpu_do_interrupt(CPUState *cs) 9910 { 9911 ARMCPU *cpu = ARM_CPU(cs); 9912 CPUARMState *env = &cpu->env; 9913 unsigned int new_el = env->exception.target_el; 9914 9915 assert(!arm_feature(env, ARM_FEATURE_M)); 9916 9917 arm_log_exception(cs->exception_index); 9918 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 9919 new_el); 9920 if (qemu_loglevel_mask(CPU_LOG_INT) 9921 && !excp_is_internal(cs->exception_index)) { 9922 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 9923 syn_get_ec(env->exception.syndrome), 9924 env->exception.syndrome); 9925 } 9926 9927 if (arm_is_psci_call(cpu, cs->exception_index)) { 9928 arm_handle_psci_call(cpu); 9929 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 9930 return; 9931 } 9932 9933 /* 9934 * Semihosting semantics depend on the register width of the code 9935 * that caused the exception, not the target exception level, so 9936 * must be handled here. 9937 */ 9938 #ifdef CONFIG_TCG 9939 if (cs->exception_index == EXCP_SEMIHOST) { 9940 handle_semihosting(cs); 9941 return; 9942 } 9943 #endif 9944 9945 /* Hooks may change global state so BQL should be held, also the 9946 * BQL needs to be held for any modification of 9947 * cs->interrupt_request. 9948 */ 9949 g_assert(qemu_mutex_iothread_locked()); 9950 9951 arm_call_pre_el_change_hook(cpu); 9952 9953 assert(!excp_is_internal(cs->exception_index)); 9954 if (arm_el_is_aa64(env, new_el)) { 9955 arm_cpu_do_interrupt_aarch64(cs); 9956 } else { 9957 arm_cpu_do_interrupt_aarch32(cs); 9958 } 9959 9960 arm_call_el_change_hook(cpu); 9961 9962 if (!kvm_enabled()) { 9963 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 9964 } 9965 } 9966 #endif /* !CONFIG_USER_ONLY */ 9967 9968 uint64_t arm_sctlr(CPUARMState *env, int el) 9969 { 9970 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 9971 if (el == 0) { 9972 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 9973 el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1); 9974 } 9975 return env->cp15.sctlr_el[el]; 9976 } 9977 9978 /* Return the SCTLR value which controls this address translation regime */ 9979 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 9980 { 9981 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 9982 } 9983 9984 #ifndef CONFIG_USER_ONLY 9985 9986 /* Return true if the specified stage of address translation is disabled */ 9987 static inline bool regime_translation_disabled(CPUARMState *env, 9988 ARMMMUIdx mmu_idx) 9989 { 9990 if (arm_feature(env, ARM_FEATURE_M)) { 9991 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 9992 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 9993 case R_V7M_MPU_CTRL_ENABLE_MASK: 9994 /* Enabled, but not for HardFault and NMI */ 9995 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 9996 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 9997 /* Enabled for all cases */ 9998 return false; 9999 case 0: 10000 default: 10001 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10002 * we warned about that in armv7m_nvic.c when the guest set it. 10003 */ 10004 return true; 10005 } 10006 } 10007 10008 if (mmu_idx == ARMMMUIdx_Stage2) { 10009 /* HCR.DC means HCR.VM behaves as 1 */ 10010 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10011 } 10012 10013 if (env->cp15.hcr_el2 & HCR_TGE) { 10014 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10015 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10016 return true; 10017 } 10018 } 10019 10020 if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10021 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10022 return true; 10023 } 10024 10025 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10026 } 10027 10028 static inline bool regime_translation_big_endian(CPUARMState *env, 10029 ARMMMUIdx mmu_idx) 10030 { 10031 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10032 } 10033 10034 /* Return the TTBR associated with this translation regime */ 10035 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10036 int ttbrn) 10037 { 10038 if (mmu_idx == ARMMMUIdx_Stage2) { 10039 return env->cp15.vttbr_el2; 10040 } 10041 if (ttbrn == 0) { 10042 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10043 } else { 10044 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10045 } 10046 } 10047 10048 #endif /* !CONFIG_USER_ONLY */ 10049 10050 /* Convert a possible stage1+2 MMU index into the appropriate 10051 * stage 1 MMU index 10052 */ 10053 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10054 { 10055 switch (mmu_idx) { 10056 case ARMMMUIdx_E10_0: 10057 return ARMMMUIdx_Stage1_E0; 10058 case ARMMMUIdx_E10_1: 10059 return ARMMMUIdx_Stage1_E1; 10060 case ARMMMUIdx_E10_1_PAN: 10061 return ARMMMUIdx_Stage1_E1_PAN; 10062 default: 10063 return mmu_idx; 10064 } 10065 } 10066 10067 /* Return true if the translation regime is using LPAE format page tables */ 10068 static inline bool regime_using_lpae_format(CPUARMState *env, 10069 ARMMMUIdx mmu_idx) 10070 { 10071 int el = regime_el(env, mmu_idx); 10072 if (el == 2 || arm_el_is_aa64(env, el)) { 10073 return true; 10074 } 10075 if (arm_feature(env, ARM_FEATURE_LPAE) 10076 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10077 return true; 10078 } 10079 return false; 10080 } 10081 10082 /* Returns true if the stage 1 translation regime is using LPAE format page 10083 * tables. Used when raising alignment exceptions, whose FSR changes depending 10084 * on whether the long or short descriptor format is in use. */ 10085 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10086 { 10087 mmu_idx = stage_1_mmu_idx(mmu_idx); 10088 10089 return regime_using_lpae_format(env, mmu_idx); 10090 } 10091 10092 #ifndef CONFIG_USER_ONLY 10093 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10094 { 10095 switch (mmu_idx) { 10096 case ARMMMUIdx_SE10_0: 10097 case ARMMMUIdx_E20_0: 10098 case ARMMMUIdx_Stage1_E0: 10099 case ARMMMUIdx_MUser: 10100 case ARMMMUIdx_MSUser: 10101 case ARMMMUIdx_MUserNegPri: 10102 case ARMMMUIdx_MSUserNegPri: 10103 return true; 10104 default: 10105 return false; 10106 case ARMMMUIdx_E10_0: 10107 case ARMMMUIdx_E10_1: 10108 case ARMMMUIdx_E10_1_PAN: 10109 g_assert_not_reached(); 10110 } 10111 } 10112 10113 /* Translate section/page access permissions to page 10114 * R/W protection flags 10115 * 10116 * @env: CPUARMState 10117 * @mmu_idx: MMU index indicating required translation regime 10118 * @ap: The 3-bit access permissions (AP[2:0]) 10119 * @domain_prot: The 2-bit domain access permissions 10120 */ 10121 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10122 int ap, int domain_prot) 10123 { 10124 bool is_user = regime_is_user(env, mmu_idx); 10125 10126 if (domain_prot == 3) { 10127 return PAGE_READ | PAGE_WRITE; 10128 } 10129 10130 switch (ap) { 10131 case 0: 10132 if (arm_feature(env, ARM_FEATURE_V7)) { 10133 return 0; 10134 } 10135 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10136 case SCTLR_S: 10137 return is_user ? 0 : PAGE_READ; 10138 case SCTLR_R: 10139 return PAGE_READ; 10140 default: 10141 return 0; 10142 } 10143 case 1: 10144 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10145 case 2: 10146 if (is_user) { 10147 return PAGE_READ; 10148 } else { 10149 return PAGE_READ | PAGE_WRITE; 10150 } 10151 case 3: 10152 return PAGE_READ | PAGE_WRITE; 10153 case 4: /* Reserved. */ 10154 return 0; 10155 case 5: 10156 return is_user ? 0 : PAGE_READ; 10157 case 6: 10158 return PAGE_READ; 10159 case 7: 10160 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10161 return 0; 10162 } 10163 return PAGE_READ; 10164 default: 10165 g_assert_not_reached(); 10166 } 10167 } 10168 10169 /* Translate section/page access permissions to page 10170 * R/W protection flags. 10171 * 10172 * @ap: The 2-bit simple AP (AP[2:1]) 10173 * @is_user: TRUE if accessing from PL0 10174 */ 10175 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10176 { 10177 switch (ap) { 10178 case 0: 10179 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10180 case 1: 10181 return PAGE_READ | PAGE_WRITE; 10182 case 2: 10183 return is_user ? 0 : PAGE_READ; 10184 case 3: 10185 return PAGE_READ; 10186 default: 10187 g_assert_not_reached(); 10188 } 10189 } 10190 10191 static inline int 10192 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10193 { 10194 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10195 } 10196 10197 /* Translate S2 section/page access permissions to protection flags 10198 * 10199 * @env: CPUARMState 10200 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10201 * @xn: XN (execute-never) bits 10202 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10203 */ 10204 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10205 { 10206 int prot = 0; 10207 10208 if (s2ap & 1) { 10209 prot |= PAGE_READ; 10210 } 10211 if (s2ap & 2) { 10212 prot |= PAGE_WRITE; 10213 } 10214 10215 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10216 switch (xn) { 10217 case 0: 10218 prot |= PAGE_EXEC; 10219 break; 10220 case 1: 10221 if (s1_is_el0) { 10222 prot |= PAGE_EXEC; 10223 } 10224 break; 10225 case 2: 10226 break; 10227 case 3: 10228 if (!s1_is_el0) { 10229 prot |= PAGE_EXEC; 10230 } 10231 break; 10232 default: 10233 g_assert_not_reached(); 10234 } 10235 } else { 10236 if (!extract32(xn, 1, 1)) { 10237 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10238 prot |= PAGE_EXEC; 10239 } 10240 } 10241 } 10242 return prot; 10243 } 10244 10245 /* Translate section/page access permissions to protection flags 10246 * 10247 * @env: CPUARMState 10248 * @mmu_idx: MMU index indicating required translation regime 10249 * @is_aa64: TRUE if AArch64 10250 * @ap: The 2-bit simple AP (AP[2:1]) 10251 * @ns: NS (non-secure) bit 10252 * @xn: XN (execute-never) bit 10253 * @pxn: PXN (privileged execute-never) bit 10254 */ 10255 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10256 int ap, int ns, int xn, int pxn) 10257 { 10258 bool is_user = regime_is_user(env, mmu_idx); 10259 int prot_rw, user_rw; 10260 bool have_wxn; 10261 int wxn = 0; 10262 10263 assert(mmu_idx != ARMMMUIdx_Stage2); 10264 10265 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10266 if (is_user) { 10267 prot_rw = user_rw; 10268 } else { 10269 if (user_rw && regime_is_pan(env, mmu_idx)) { 10270 /* PAN forbids data accesses but doesn't affect insn fetch */ 10271 prot_rw = 0; 10272 } else { 10273 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10274 } 10275 } 10276 10277 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10278 return prot_rw; 10279 } 10280 10281 /* TODO have_wxn should be replaced with 10282 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10283 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10284 * compatible processors have EL2, which is required for [U]WXN. 10285 */ 10286 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10287 10288 if (have_wxn) { 10289 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10290 } 10291 10292 if (is_aa64) { 10293 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10294 xn = pxn || (user_rw & PAGE_WRITE); 10295 } 10296 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10297 switch (regime_el(env, mmu_idx)) { 10298 case 1: 10299 case 3: 10300 if (is_user) { 10301 xn = xn || !(user_rw & PAGE_READ); 10302 } else { 10303 int uwxn = 0; 10304 if (have_wxn) { 10305 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10306 } 10307 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10308 (uwxn && (user_rw & PAGE_WRITE)); 10309 } 10310 break; 10311 case 2: 10312 break; 10313 } 10314 } else { 10315 xn = wxn = 0; 10316 } 10317 10318 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10319 return prot_rw; 10320 } 10321 return prot_rw | PAGE_EXEC; 10322 } 10323 10324 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10325 uint32_t *table, uint32_t address) 10326 { 10327 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10328 TCR *tcr = regime_tcr(env, mmu_idx); 10329 10330 if (address & tcr->mask) { 10331 if (tcr->raw_tcr & TTBCR_PD1) { 10332 /* Translation table walk disabled for TTBR1 */ 10333 return false; 10334 } 10335 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10336 } else { 10337 if (tcr->raw_tcr & TTBCR_PD0) { 10338 /* Translation table walk disabled for TTBR0 */ 10339 return false; 10340 } 10341 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10342 } 10343 *table |= (address >> 18) & 0x3ffc; 10344 return true; 10345 } 10346 10347 /* Translate a S1 pagetable walk through S2 if needed. */ 10348 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10349 hwaddr addr, MemTxAttrs txattrs, 10350 ARMMMUFaultInfo *fi) 10351 { 10352 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10353 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10354 target_ulong s2size; 10355 hwaddr s2pa; 10356 int s2prot; 10357 int ret; 10358 ARMCacheAttrs cacheattrs = {}; 10359 10360 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2, 10361 false, 10362 &s2pa, &txattrs, &s2prot, &s2size, fi, 10363 &cacheattrs); 10364 if (ret) { 10365 assert(fi->type != ARMFault_None); 10366 fi->s2addr = addr; 10367 fi->stage2 = true; 10368 fi->s1ptw = true; 10369 return ~0; 10370 } 10371 if ((env->cp15.hcr_el2 & HCR_PTW) && (cacheattrs.attrs & 0xf0) == 0) { 10372 /* 10373 * PTW set and S1 walk touched S2 Device memory: 10374 * generate Permission fault. 10375 */ 10376 fi->type = ARMFault_Permission; 10377 fi->s2addr = addr; 10378 fi->stage2 = true; 10379 fi->s1ptw = true; 10380 return ~0; 10381 } 10382 addr = s2pa; 10383 } 10384 return addr; 10385 } 10386 10387 /* All loads done in the course of a page table walk go through here. */ 10388 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10389 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10390 { 10391 ARMCPU *cpu = ARM_CPU(cs); 10392 CPUARMState *env = &cpu->env; 10393 MemTxAttrs attrs = {}; 10394 MemTxResult result = MEMTX_OK; 10395 AddressSpace *as; 10396 uint32_t data; 10397 10398 attrs.secure = is_secure; 10399 as = arm_addressspace(cs, attrs); 10400 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10401 if (fi->s1ptw) { 10402 return 0; 10403 } 10404 if (regime_translation_big_endian(env, mmu_idx)) { 10405 data = address_space_ldl_be(as, addr, attrs, &result); 10406 } else { 10407 data = address_space_ldl_le(as, addr, attrs, &result); 10408 } 10409 if (result == MEMTX_OK) { 10410 return data; 10411 } 10412 fi->type = ARMFault_SyncExternalOnWalk; 10413 fi->ea = arm_extabort_type(result); 10414 return 0; 10415 } 10416 10417 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10418 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10419 { 10420 ARMCPU *cpu = ARM_CPU(cs); 10421 CPUARMState *env = &cpu->env; 10422 MemTxAttrs attrs = {}; 10423 MemTxResult result = MEMTX_OK; 10424 AddressSpace *as; 10425 uint64_t data; 10426 10427 attrs.secure = is_secure; 10428 as = arm_addressspace(cs, attrs); 10429 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10430 if (fi->s1ptw) { 10431 return 0; 10432 } 10433 if (regime_translation_big_endian(env, mmu_idx)) { 10434 data = address_space_ldq_be(as, addr, attrs, &result); 10435 } else { 10436 data = address_space_ldq_le(as, addr, attrs, &result); 10437 } 10438 if (result == MEMTX_OK) { 10439 return data; 10440 } 10441 fi->type = ARMFault_SyncExternalOnWalk; 10442 fi->ea = arm_extabort_type(result); 10443 return 0; 10444 } 10445 10446 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10447 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10448 hwaddr *phys_ptr, int *prot, 10449 target_ulong *page_size, 10450 ARMMMUFaultInfo *fi) 10451 { 10452 CPUState *cs = env_cpu(env); 10453 int level = 1; 10454 uint32_t table; 10455 uint32_t desc; 10456 int type; 10457 int ap; 10458 int domain = 0; 10459 int domain_prot; 10460 hwaddr phys_addr; 10461 uint32_t dacr; 10462 10463 /* Pagetable walk. */ 10464 /* Lookup l1 descriptor. */ 10465 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10466 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10467 fi->type = ARMFault_Translation; 10468 goto do_fault; 10469 } 10470 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10471 mmu_idx, fi); 10472 if (fi->type != ARMFault_None) { 10473 goto do_fault; 10474 } 10475 type = (desc & 3); 10476 domain = (desc >> 5) & 0x0f; 10477 if (regime_el(env, mmu_idx) == 1) { 10478 dacr = env->cp15.dacr_ns; 10479 } else { 10480 dacr = env->cp15.dacr_s; 10481 } 10482 domain_prot = (dacr >> (domain * 2)) & 3; 10483 if (type == 0) { 10484 /* Section translation fault. */ 10485 fi->type = ARMFault_Translation; 10486 goto do_fault; 10487 } 10488 if (type != 2) { 10489 level = 2; 10490 } 10491 if (domain_prot == 0 || domain_prot == 2) { 10492 fi->type = ARMFault_Domain; 10493 goto do_fault; 10494 } 10495 if (type == 2) { 10496 /* 1Mb section. */ 10497 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10498 ap = (desc >> 10) & 3; 10499 *page_size = 1024 * 1024; 10500 } else { 10501 /* Lookup l2 entry. */ 10502 if (type == 1) { 10503 /* Coarse pagetable. */ 10504 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10505 } else { 10506 /* Fine pagetable. */ 10507 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10508 } 10509 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10510 mmu_idx, fi); 10511 if (fi->type != ARMFault_None) { 10512 goto do_fault; 10513 } 10514 switch (desc & 3) { 10515 case 0: /* Page translation fault. */ 10516 fi->type = ARMFault_Translation; 10517 goto do_fault; 10518 case 1: /* 64k page. */ 10519 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10520 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10521 *page_size = 0x10000; 10522 break; 10523 case 2: /* 4k page. */ 10524 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10525 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10526 *page_size = 0x1000; 10527 break; 10528 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10529 if (type == 1) { 10530 /* ARMv6/XScale extended small page format */ 10531 if (arm_feature(env, ARM_FEATURE_XSCALE) 10532 || arm_feature(env, ARM_FEATURE_V6)) { 10533 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10534 *page_size = 0x1000; 10535 } else { 10536 /* UNPREDICTABLE in ARMv5; we choose to take a 10537 * page translation fault. 10538 */ 10539 fi->type = ARMFault_Translation; 10540 goto do_fault; 10541 } 10542 } else { 10543 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10544 *page_size = 0x400; 10545 } 10546 ap = (desc >> 4) & 3; 10547 break; 10548 default: 10549 /* Never happens, but compiler isn't smart enough to tell. */ 10550 abort(); 10551 } 10552 } 10553 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10554 *prot |= *prot ? PAGE_EXEC : 0; 10555 if (!(*prot & (1 << access_type))) { 10556 /* Access permission fault. */ 10557 fi->type = ARMFault_Permission; 10558 goto do_fault; 10559 } 10560 *phys_ptr = phys_addr; 10561 return false; 10562 do_fault: 10563 fi->domain = domain; 10564 fi->level = level; 10565 return true; 10566 } 10567 10568 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10569 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10570 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10571 target_ulong *page_size, ARMMMUFaultInfo *fi) 10572 { 10573 CPUState *cs = env_cpu(env); 10574 ARMCPU *cpu = env_archcpu(env); 10575 int level = 1; 10576 uint32_t table; 10577 uint32_t desc; 10578 uint32_t xn; 10579 uint32_t pxn = 0; 10580 int type; 10581 int ap; 10582 int domain = 0; 10583 int domain_prot; 10584 hwaddr phys_addr; 10585 uint32_t dacr; 10586 bool ns; 10587 10588 /* Pagetable walk. */ 10589 /* Lookup l1 descriptor. */ 10590 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10591 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10592 fi->type = ARMFault_Translation; 10593 goto do_fault; 10594 } 10595 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10596 mmu_idx, fi); 10597 if (fi->type != ARMFault_None) { 10598 goto do_fault; 10599 } 10600 type = (desc & 3); 10601 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10602 /* Section translation fault, or attempt to use the encoding 10603 * which is Reserved on implementations without PXN. 10604 */ 10605 fi->type = ARMFault_Translation; 10606 goto do_fault; 10607 } 10608 if ((type == 1) || !(desc & (1 << 18))) { 10609 /* Page or Section. */ 10610 domain = (desc >> 5) & 0x0f; 10611 } 10612 if (regime_el(env, mmu_idx) == 1) { 10613 dacr = env->cp15.dacr_ns; 10614 } else { 10615 dacr = env->cp15.dacr_s; 10616 } 10617 if (type == 1) { 10618 level = 2; 10619 } 10620 domain_prot = (dacr >> (domain * 2)) & 3; 10621 if (domain_prot == 0 || domain_prot == 2) { 10622 /* Section or Page domain fault */ 10623 fi->type = ARMFault_Domain; 10624 goto do_fault; 10625 } 10626 if (type != 1) { 10627 if (desc & (1 << 18)) { 10628 /* Supersection. */ 10629 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10630 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10631 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10632 *page_size = 0x1000000; 10633 } else { 10634 /* Section. */ 10635 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10636 *page_size = 0x100000; 10637 } 10638 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10639 xn = desc & (1 << 4); 10640 pxn = desc & 1; 10641 ns = extract32(desc, 19, 1); 10642 } else { 10643 if (cpu_isar_feature(aa32_pxn, cpu)) { 10644 pxn = (desc >> 2) & 1; 10645 } 10646 ns = extract32(desc, 3, 1); 10647 /* Lookup l2 entry. */ 10648 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10649 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10650 mmu_idx, fi); 10651 if (fi->type != ARMFault_None) { 10652 goto do_fault; 10653 } 10654 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10655 switch (desc & 3) { 10656 case 0: /* Page translation fault. */ 10657 fi->type = ARMFault_Translation; 10658 goto do_fault; 10659 case 1: /* 64k page. */ 10660 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10661 xn = desc & (1 << 15); 10662 *page_size = 0x10000; 10663 break; 10664 case 2: case 3: /* 4k page. */ 10665 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10666 xn = desc & 1; 10667 *page_size = 0x1000; 10668 break; 10669 default: 10670 /* Never happens, but compiler isn't smart enough to tell. */ 10671 abort(); 10672 } 10673 } 10674 if (domain_prot == 3) { 10675 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10676 } else { 10677 if (pxn && !regime_is_user(env, mmu_idx)) { 10678 xn = 1; 10679 } 10680 if (xn && access_type == MMU_INST_FETCH) { 10681 fi->type = ARMFault_Permission; 10682 goto do_fault; 10683 } 10684 10685 if (arm_feature(env, ARM_FEATURE_V6K) && 10686 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10687 /* The simplified model uses AP[0] as an access control bit. */ 10688 if ((ap & 1) == 0) { 10689 /* Access flag fault. */ 10690 fi->type = ARMFault_AccessFlag; 10691 goto do_fault; 10692 } 10693 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10694 } else { 10695 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10696 } 10697 if (*prot && !xn) { 10698 *prot |= PAGE_EXEC; 10699 } 10700 if (!(*prot & (1 << access_type))) { 10701 /* Access permission fault. */ 10702 fi->type = ARMFault_Permission; 10703 goto do_fault; 10704 } 10705 } 10706 if (ns) { 10707 /* The NS bit will (as required by the architecture) have no effect if 10708 * the CPU doesn't support TZ or this is a non-secure translation 10709 * regime, because the attribute will already be non-secure. 10710 */ 10711 attrs->secure = false; 10712 } 10713 *phys_ptr = phys_addr; 10714 return false; 10715 do_fault: 10716 fi->domain = domain; 10717 fi->level = level; 10718 return true; 10719 } 10720 10721 /* 10722 * check_s2_mmu_setup 10723 * @cpu: ARMCPU 10724 * @is_aa64: True if the translation regime is in AArch64 state 10725 * @startlevel: Suggested starting level 10726 * @inputsize: Bitsize of IPAs 10727 * @stride: Page-table stride (See the ARM ARM) 10728 * 10729 * Returns true if the suggested S2 translation parameters are OK and 10730 * false otherwise. 10731 */ 10732 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10733 int inputsize, int stride) 10734 { 10735 const int grainsize = stride + 3; 10736 int startsizecheck; 10737 10738 /* Negative levels are never allowed. */ 10739 if (level < 0) { 10740 return false; 10741 } 10742 10743 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10744 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10745 return false; 10746 } 10747 10748 if (is_aa64) { 10749 CPUARMState *env = &cpu->env; 10750 unsigned int pamax = arm_pamax(cpu); 10751 10752 switch (stride) { 10753 case 13: /* 64KB Pages. */ 10754 if (level == 0 || (level == 1 && pamax <= 42)) { 10755 return false; 10756 } 10757 break; 10758 case 11: /* 16KB Pages. */ 10759 if (level == 0 || (level == 1 && pamax <= 40)) { 10760 return false; 10761 } 10762 break; 10763 case 9: /* 4KB Pages. */ 10764 if (level == 0 && pamax <= 42) { 10765 return false; 10766 } 10767 break; 10768 default: 10769 g_assert_not_reached(); 10770 } 10771 10772 /* Inputsize checks. */ 10773 if (inputsize > pamax && 10774 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 10775 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10776 return false; 10777 } 10778 } else { 10779 /* AArch32 only supports 4KB pages. Assert on that. */ 10780 assert(stride == 9); 10781 10782 if (level == 0) { 10783 return false; 10784 } 10785 } 10786 return true; 10787 } 10788 10789 /* Translate from the 4-bit stage 2 representation of 10790 * memory attributes (without cache-allocation hints) to 10791 * the 8-bit representation of the stage 1 MAIR registers 10792 * (which includes allocation hints). 10793 * 10794 * ref: shared/translation/attrs/S2AttrDecode() 10795 * .../S2ConvertAttrsHints() 10796 */ 10797 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 10798 { 10799 uint8_t hiattr = extract32(s2attrs, 2, 2); 10800 uint8_t loattr = extract32(s2attrs, 0, 2); 10801 uint8_t hihint = 0, lohint = 0; 10802 10803 if (hiattr != 0) { /* normal memory */ 10804 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 10805 hiattr = loattr = 1; /* non-cacheable */ 10806 } else { 10807 if (hiattr != 1) { /* Write-through or write-back */ 10808 hihint = 3; /* RW allocate */ 10809 } 10810 if (loattr != 1) { /* Write-through or write-back */ 10811 lohint = 3; /* RW allocate */ 10812 } 10813 } 10814 } 10815 10816 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 10817 } 10818 #endif /* !CONFIG_USER_ONLY */ 10819 10820 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10821 { 10822 if (regime_has_2_ranges(mmu_idx)) { 10823 return extract64(tcr, 37, 2); 10824 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10825 return 0; /* VTCR_EL2 */ 10826 } else { 10827 /* Replicate the single TBI bit so we always have 2 bits. */ 10828 return extract32(tcr, 20, 1) * 3; 10829 } 10830 } 10831 10832 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10833 { 10834 if (regime_has_2_ranges(mmu_idx)) { 10835 return extract64(tcr, 51, 2); 10836 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10837 return 0; /* VTCR_EL2 */ 10838 } else { 10839 /* Replicate the single TBID bit so we always have 2 bits. */ 10840 return extract32(tcr, 29, 1) * 3; 10841 } 10842 } 10843 10844 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10845 { 10846 if (regime_has_2_ranges(mmu_idx)) { 10847 return extract64(tcr, 57, 2); 10848 } else { 10849 /* Replicate the single TCMA bit so we always have 2 bits. */ 10850 return extract32(tcr, 30, 1) * 3; 10851 } 10852 } 10853 10854 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10855 ARMMMUIdx mmu_idx, bool data) 10856 { 10857 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10858 bool epd, hpd, using16k, using64k; 10859 int select, tsz, tbi; 10860 10861 if (!regime_has_2_ranges(mmu_idx)) { 10862 select = 0; 10863 tsz = extract32(tcr, 0, 6); 10864 using64k = extract32(tcr, 14, 1); 10865 using16k = extract32(tcr, 15, 1); 10866 if (mmu_idx == ARMMMUIdx_Stage2) { 10867 /* VTCR_EL2 */ 10868 hpd = false; 10869 } else { 10870 hpd = extract32(tcr, 24, 1); 10871 } 10872 epd = false; 10873 } else { 10874 /* 10875 * Bit 55 is always between the two regions, and is canonical for 10876 * determining if address tagging is enabled. 10877 */ 10878 select = extract64(va, 55, 1); 10879 if (!select) { 10880 tsz = extract32(tcr, 0, 6); 10881 epd = extract32(tcr, 7, 1); 10882 using64k = extract32(tcr, 14, 1); 10883 using16k = extract32(tcr, 15, 1); 10884 hpd = extract64(tcr, 41, 1); 10885 } else { 10886 int tg = extract32(tcr, 30, 2); 10887 using16k = tg == 1; 10888 using64k = tg == 3; 10889 tsz = extract32(tcr, 16, 6); 10890 epd = extract32(tcr, 23, 1); 10891 hpd = extract64(tcr, 42, 1); 10892 } 10893 } 10894 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 10895 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 10896 10897 /* Present TBI as a composite with TBID. */ 10898 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10899 if (!data) { 10900 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10901 } 10902 tbi = (tbi >> select) & 1; 10903 10904 return (ARMVAParameters) { 10905 .tsz = tsz, 10906 .select = select, 10907 .tbi = tbi, 10908 .epd = epd, 10909 .hpd = hpd, 10910 .using16k = using16k, 10911 .using64k = using64k, 10912 }; 10913 } 10914 10915 #ifndef CONFIG_USER_ONLY 10916 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 10917 ARMMMUIdx mmu_idx) 10918 { 10919 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10920 uint32_t el = regime_el(env, mmu_idx); 10921 int select, tsz; 10922 bool epd, hpd; 10923 10924 if (mmu_idx == ARMMMUIdx_Stage2) { 10925 /* VTCR */ 10926 bool sext = extract32(tcr, 4, 1); 10927 bool sign = extract32(tcr, 3, 1); 10928 10929 /* 10930 * If the sign-extend bit is not the same as t0sz[3], the result 10931 * is unpredictable. Flag this as a guest error. 10932 */ 10933 if (sign != sext) { 10934 qemu_log_mask(LOG_GUEST_ERROR, 10935 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 10936 } 10937 tsz = sextract32(tcr, 0, 4) + 8; 10938 select = 0; 10939 hpd = false; 10940 epd = false; 10941 } else if (el == 2) { 10942 /* HTCR */ 10943 tsz = extract32(tcr, 0, 3); 10944 select = 0; 10945 hpd = extract64(tcr, 24, 1); 10946 epd = false; 10947 } else { 10948 int t0sz = extract32(tcr, 0, 3); 10949 int t1sz = extract32(tcr, 16, 3); 10950 10951 if (t1sz == 0) { 10952 select = va > (0xffffffffu >> t0sz); 10953 } else { 10954 /* Note that we will detect errors later. */ 10955 select = va >= ~(0xffffffffu >> t1sz); 10956 } 10957 if (!select) { 10958 tsz = t0sz; 10959 epd = extract32(tcr, 7, 1); 10960 hpd = extract64(tcr, 41, 1); 10961 } else { 10962 tsz = t1sz; 10963 epd = extract32(tcr, 23, 1); 10964 hpd = extract64(tcr, 42, 1); 10965 } 10966 /* For aarch32, hpd0 is not enabled without t2e as well. */ 10967 hpd &= extract32(tcr, 6, 1); 10968 } 10969 10970 return (ARMVAParameters) { 10971 .tsz = tsz, 10972 .select = select, 10973 .epd = epd, 10974 .hpd = hpd, 10975 }; 10976 } 10977 10978 /** 10979 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 10980 * 10981 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10982 * prot and page_size may not be filled in, and the populated fsr value provides 10983 * information on why the translation aborted, in the format of a long-format 10984 * DFSR/IFSR fault register, with the following caveats: 10985 * * the WnR bit is never set (the caller must do this). 10986 * 10987 * @env: CPUARMState 10988 * @address: virtual address to get physical address for 10989 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 10990 * @mmu_idx: MMU index indicating required translation regime 10991 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 10992 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 10993 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 10994 * @phys_ptr: set to the physical address corresponding to the virtual address 10995 * @attrs: set to the memory transaction attributes to use 10996 * @prot: set to the permissions for the page containing phys_ptr 10997 * @page_size_ptr: set to the size of the page containing phys_ptr 10998 * @fi: set to fault info if the translation fails 10999 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11000 */ 11001 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 11002 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11003 bool s1_is_el0, 11004 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11005 target_ulong *page_size_ptr, 11006 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11007 { 11008 ARMCPU *cpu = env_archcpu(env); 11009 CPUState *cs = CPU(cpu); 11010 /* Read an LPAE long-descriptor translation table. */ 11011 ARMFaultType fault_type = ARMFault_Translation; 11012 uint32_t level; 11013 ARMVAParameters param; 11014 uint64_t ttbr; 11015 hwaddr descaddr, indexmask, indexmask_grainsize; 11016 uint32_t tableattrs; 11017 target_ulong page_size; 11018 uint32_t attrs; 11019 int32_t stride; 11020 int addrsize, inputsize; 11021 TCR *tcr = regime_tcr(env, mmu_idx); 11022 int ap, ns, xn, pxn; 11023 uint32_t el = regime_el(env, mmu_idx); 11024 uint64_t descaddrmask; 11025 bool aarch64 = arm_el_is_aa64(env, el); 11026 bool guarded = false; 11027 11028 /* TODO: This code does not support shareability levels. */ 11029 if (aarch64) { 11030 param = aa64_va_parameters(env, address, mmu_idx, 11031 access_type != MMU_INST_FETCH); 11032 level = 0; 11033 addrsize = 64 - 8 * param.tbi; 11034 inputsize = 64 - param.tsz; 11035 } else { 11036 param = aa32_va_parameters(env, address, mmu_idx); 11037 level = 1; 11038 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11039 inputsize = addrsize - param.tsz; 11040 } 11041 11042 /* 11043 * We determined the region when collecting the parameters, but we 11044 * have not yet validated that the address is valid for the region. 11045 * Extract the top bits and verify that they all match select. 11046 * 11047 * For aa32, if inputsize == addrsize, then we have selected the 11048 * region by exclusion in aa32_va_parameters and there is no more 11049 * validation to do here. 11050 */ 11051 if (inputsize < addrsize) { 11052 target_ulong top_bits = sextract64(address, inputsize, 11053 addrsize - inputsize); 11054 if (-top_bits != param.select) { 11055 /* The gap between the two regions is a Translation fault */ 11056 fault_type = ARMFault_Translation; 11057 goto do_fault; 11058 } 11059 } 11060 11061 if (param.using64k) { 11062 stride = 13; 11063 } else if (param.using16k) { 11064 stride = 11; 11065 } else { 11066 stride = 9; 11067 } 11068 11069 /* Note that QEMU ignores shareability and cacheability attributes, 11070 * so we don't need to do anything with the SH, ORGN, IRGN fields 11071 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11072 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11073 * implement any ASID-like capability so we can ignore it (instead 11074 * we will always flush the TLB any time the ASID is changed). 11075 */ 11076 ttbr = regime_ttbr(env, mmu_idx, param.select); 11077 11078 /* Here we should have set up all the parameters for the translation: 11079 * inputsize, ttbr, epd, stride, tbi 11080 */ 11081 11082 if (param.epd) { 11083 /* Translation table walk disabled => Translation fault on TLB miss 11084 * Note: This is always 0 on 64-bit EL2 and EL3. 11085 */ 11086 goto do_fault; 11087 } 11088 11089 if (mmu_idx != ARMMMUIdx_Stage2) { 11090 /* The starting level depends on the virtual address size (which can 11091 * be up to 48 bits) and the translation granule size. It indicates 11092 * the number of strides (stride bits at a time) needed to 11093 * consume the bits of the input address. In the pseudocode this is: 11094 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11095 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11096 * our 'stride + 3' and 'stride' is our 'stride'. 11097 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11098 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11099 * = 4 - (inputsize - 4) / stride; 11100 */ 11101 level = 4 - (inputsize - 4) / stride; 11102 } else { 11103 /* For stage 2 translations the starting level is specified by the 11104 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11105 */ 11106 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11107 uint32_t startlevel; 11108 bool ok; 11109 11110 if (!aarch64 || stride == 9) { 11111 /* AArch32 or 4KB pages */ 11112 startlevel = 2 - sl0; 11113 } else { 11114 /* 16KB or 64KB pages */ 11115 startlevel = 3 - sl0; 11116 } 11117 11118 /* Check that the starting level is valid. */ 11119 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11120 inputsize, stride); 11121 if (!ok) { 11122 fault_type = ARMFault_Translation; 11123 goto do_fault; 11124 } 11125 level = startlevel; 11126 } 11127 11128 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11129 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11130 11131 /* Now we can extract the actual base address from the TTBR */ 11132 descaddr = extract64(ttbr, 0, 48); 11133 /* 11134 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11135 * and also to mask out CnP (bit 0) which could validly be non-zero. 11136 */ 11137 descaddr &= ~indexmask; 11138 11139 /* The address field in the descriptor goes up to bit 39 for ARMv7 11140 * but up to bit 47 for ARMv8, but we use the descaddrmask 11141 * up to bit 39 for AArch32, because we don't need other bits in that case 11142 * to construct next descriptor address (anyway they should be all zeroes). 11143 */ 11144 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11145 ~indexmask_grainsize; 11146 11147 /* Secure accesses start with the page table in secure memory and 11148 * can be downgraded to non-secure at any step. Non-secure accesses 11149 * remain non-secure. We implement this by just ORing in the NSTable/NS 11150 * bits at each step. 11151 */ 11152 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11153 for (;;) { 11154 uint64_t descriptor; 11155 bool nstable; 11156 11157 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11158 descaddr &= ~7ULL; 11159 nstable = extract32(tableattrs, 4, 1); 11160 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11161 if (fi->type != ARMFault_None) { 11162 goto do_fault; 11163 } 11164 11165 if (!(descriptor & 1) || 11166 (!(descriptor & 2) && (level == 3))) { 11167 /* Invalid, or the Reserved level 3 encoding */ 11168 goto do_fault; 11169 } 11170 descaddr = descriptor & descaddrmask; 11171 11172 if ((descriptor & 2) && (level < 3)) { 11173 /* Table entry. The top five bits are attributes which may 11174 * propagate down through lower levels of the table (and 11175 * which are all arranged so that 0 means "no effect", so 11176 * we can gather them up by ORing in the bits at each level). 11177 */ 11178 tableattrs |= extract64(descriptor, 59, 5); 11179 level++; 11180 indexmask = indexmask_grainsize; 11181 continue; 11182 } 11183 /* Block entry at level 1 or 2, or page entry at level 3. 11184 * These are basically the same thing, although the number 11185 * of bits we pull in from the vaddr varies. 11186 */ 11187 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11188 descaddr |= (address & (page_size - 1)); 11189 /* Extract attributes from the descriptor */ 11190 attrs = extract64(descriptor, 2, 10) 11191 | (extract64(descriptor, 52, 12) << 10); 11192 11193 if (mmu_idx == ARMMMUIdx_Stage2) { 11194 /* Stage 2 table descriptors do not include any attribute fields */ 11195 break; 11196 } 11197 /* Merge in attributes from table descriptors */ 11198 attrs |= nstable << 3; /* NS */ 11199 guarded = extract64(descriptor, 50, 1); /* GP */ 11200 if (param.hpd) { 11201 /* HPD disables all the table attributes except NSTable. */ 11202 break; 11203 } 11204 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11205 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11206 * means "force PL1 access only", which means forcing AP[1] to 0. 11207 */ 11208 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11209 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11210 break; 11211 } 11212 /* Here descaddr is the final physical address, and attributes 11213 * are all in attrs. 11214 */ 11215 fault_type = ARMFault_AccessFlag; 11216 if ((attrs & (1 << 8)) == 0) { 11217 /* Access flag */ 11218 goto do_fault; 11219 } 11220 11221 ap = extract32(attrs, 4, 2); 11222 11223 if (mmu_idx == ARMMMUIdx_Stage2) { 11224 ns = true; 11225 xn = extract32(attrs, 11, 2); 11226 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11227 } else { 11228 ns = extract32(attrs, 3, 1); 11229 xn = extract32(attrs, 12, 1); 11230 pxn = extract32(attrs, 11, 1); 11231 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11232 } 11233 11234 fault_type = ARMFault_Permission; 11235 if (!(*prot & (1 << access_type))) { 11236 goto do_fault; 11237 } 11238 11239 if (ns) { 11240 /* The NS bit will (as required by the architecture) have no effect if 11241 * the CPU doesn't support TZ or this is a non-secure translation 11242 * regime, because the attribute will already be non-secure. 11243 */ 11244 txattrs->secure = false; 11245 } 11246 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11247 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11248 arm_tlb_bti_gp(txattrs) = true; 11249 } 11250 11251 if (mmu_idx == ARMMMUIdx_Stage2) { 11252 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11253 } else { 11254 /* Index into MAIR registers for cache attributes */ 11255 uint8_t attrindx = extract32(attrs, 0, 3); 11256 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11257 assert(attrindx <= 7); 11258 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11259 } 11260 cacheattrs->shareability = extract32(attrs, 6, 2); 11261 11262 *phys_ptr = descaddr; 11263 *page_size_ptr = page_size; 11264 return false; 11265 11266 do_fault: 11267 fi->type = fault_type; 11268 fi->level = level; 11269 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11270 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2); 11271 return true; 11272 } 11273 11274 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11275 ARMMMUIdx mmu_idx, 11276 int32_t address, int *prot) 11277 { 11278 if (!arm_feature(env, ARM_FEATURE_M)) { 11279 *prot = PAGE_READ | PAGE_WRITE; 11280 switch (address) { 11281 case 0xF0000000 ... 0xFFFFFFFF: 11282 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11283 /* hivecs execing is ok */ 11284 *prot |= PAGE_EXEC; 11285 } 11286 break; 11287 case 0x00000000 ... 0x7FFFFFFF: 11288 *prot |= PAGE_EXEC; 11289 break; 11290 } 11291 } else { 11292 /* Default system address map for M profile cores. 11293 * The architecture specifies which regions are execute-never; 11294 * at the MPU level no other checks are defined. 11295 */ 11296 switch (address) { 11297 case 0x00000000 ... 0x1fffffff: /* ROM */ 11298 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11299 case 0x60000000 ... 0x7fffffff: /* RAM */ 11300 case 0x80000000 ... 0x9fffffff: /* RAM */ 11301 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11302 break; 11303 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11304 case 0xa0000000 ... 0xbfffffff: /* Device */ 11305 case 0xc0000000 ... 0xdfffffff: /* Device */ 11306 case 0xe0000000 ... 0xffffffff: /* System */ 11307 *prot = PAGE_READ | PAGE_WRITE; 11308 break; 11309 default: 11310 g_assert_not_reached(); 11311 } 11312 } 11313 } 11314 11315 static bool pmsav7_use_background_region(ARMCPU *cpu, 11316 ARMMMUIdx mmu_idx, bool is_user) 11317 { 11318 /* Return true if we should use the default memory map as a 11319 * "background" region if there are no hits against any MPU regions. 11320 */ 11321 CPUARMState *env = &cpu->env; 11322 11323 if (is_user) { 11324 return false; 11325 } 11326 11327 if (arm_feature(env, ARM_FEATURE_M)) { 11328 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11329 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11330 } else { 11331 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11332 } 11333 } 11334 11335 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11336 { 11337 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11338 return arm_feature(env, ARM_FEATURE_M) && 11339 extract32(address, 20, 12) == 0xe00; 11340 } 11341 11342 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11343 { 11344 /* True if address is in the M profile system region 11345 * 0xe0000000 - 0xffffffff 11346 */ 11347 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11348 } 11349 11350 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11351 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11352 hwaddr *phys_ptr, int *prot, 11353 target_ulong *page_size, 11354 ARMMMUFaultInfo *fi) 11355 { 11356 ARMCPU *cpu = env_archcpu(env); 11357 int n; 11358 bool is_user = regime_is_user(env, mmu_idx); 11359 11360 *phys_ptr = address; 11361 *page_size = TARGET_PAGE_SIZE; 11362 *prot = 0; 11363 11364 if (regime_translation_disabled(env, mmu_idx) || 11365 m_is_ppb_region(env, address)) { 11366 /* MPU disabled or M profile PPB access: use default memory map. 11367 * The other case which uses the default memory map in the 11368 * v7M ARM ARM pseudocode is exception vector reads from the vector 11369 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11370 * which always does a direct read using address_space_ldl(), rather 11371 * than going via this function, so we don't need to check that here. 11372 */ 11373 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11374 } else { /* MPU enabled */ 11375 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11376 /* region search */ 11377 uint32_t base = env->pmsav7.drbar[n]; 11378 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11379 uint32_t rmask; 11380 bool srdis = false; 11381 11382 if (!(env->pmsav7.drsr[n] & 0x1)) { 11383 continue; 11384 } 11385 11386 if (!rsize) { 11387 qemu_log_mask(LOG_GUEST_ERROR, 11388 "DRSR[%d]: Rsize field cannot be 0\n", n); 11389 continue; 11390 } 11391 rsize++; 11392 rmask = (1ull << rsize) - 1; 11393 11394 if (base & rmask) { 11395 qemu_log_mask(LOG_GUEST_ERROR, 11396 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11397 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11398 n, base, rmask); 11399 continue; 11400 } 11401 11402 if (address < base || address > base + rmask) { 11403 /* 11404 * Address not in this region. We must check whether the 11405 * region covers addresses in the same page as our address. 11406 * In that case we must not report a size that covers the 11407 * whole page for a subsequent hit against a different MPU 11408 * region or the background region, because it would result in 11409 * incorrect TLB hits for subsequent accesses to addresses that 11410 * are in this MPU region. 11411 */ 11412 if (ranges_overlap(base, rmask, 11413 address & TARGET_PAGE_MASK, 11414 TARGET_PAGE_SIZE)) { 11415 *page_size = 1; 11416 } 11417 continue; 11418 } 11419 11420 /* Region matched */ 11421 11422 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11423 int i, snd; 11424 uint32_t srdis_mask; 11425 11426 rsize -= 3; /* sub region size (power of 2) */ 11427 snd = ((address - base) >> rsize) & 0x7; 11428 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11429 11430 srdis_mask = srdis ? 0x3 : 0x0; 11431 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11432 /* This will check in groups of 2, 4 and then 8, whether 11433 * the subregion bits are consistent. rsize is incremented 11434 * back up to give the region size, considering consistent 11435 * adjacent subregions as one region. Stop testing if rsize 11436 * is already big enough for an entire QEMU page. 11437 */ 11438 int snd_rounded = snd & ~(i - 1); 11439 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11440 snd_rounded + 8, i); 11441 if (srdis_mask ^ srdis_multi) { 11442 break; 11443 } 11444 srdis_mask = (srdis_mask << i) | srdis_mask; 11445 rsize++; 11446 } 11447 } 11448 if (srdis) { 11449 continue; 11450 } 11451 if (rsize < TARGET_PAGE_BITS) { 11452 *page_size = 1 << rsize; 11453 } 11454 break; 11455 } 11456 11457 if (n == -1) { /* no hits */ 11458 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11459 /* background fault */ 11460 fi->type = ARMFault_Background; 11461 return true; 11462 } 11463 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11464 } else { /* a MPU hit! */ 11465 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11466 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11467 11468 if (m_is_system_region(env, address)) { 11469 /* System space is always execute never */ 11470 xn = 1; 11471 } 11472 11473 if (is_user) { /* User mode AP bit decoding */ 11474 switch (ap) { 11475 case 0: 11476 case 1: 11477 case 5: 11478 break; /* no access */ 11479 case 3: 11480 *prot |= PAGE_WRITE; 11481 /* fall through */ 11482 case 2: 11483 case 6: 11484 *prot |= PAGE_READ | PAGE_EXEC; 11485 break; 11486 case 7: 11487 /* for v7M, same as 6; for R profile a reserved value */ 11488 if (arm_feature(env, ARM_FEATURE_M)) { 11489 *prot |= PAGE_READ | PAGE_EXEC; 11490 break; 11491 } 11492 /* fall through */ 11493 default: 11494 qemu_log_mask(LOG_GUEST_ERROR, 11495 "DRACR[%d]: Bad value for AP bits: 0x%" 11496 PRIx32 "\n", n, ap); 11497 } 11498 } else { /* Priv. mode AP bits decoding */ 11499 switch (ap) { 11500 case 0: 11501 break; /* no access */ 11502 case 1: 11503 case 2: 11504 case 3: 11505 *prot |= PAGE_WRITE; 11506 /* fall through */ 11507 case 5: 11508 case 6: 11509 *prot |= PAGE_READ | PAGE_EXEC; 11510 break; 11511 case 7: 11512 /* for v7M, same as 6; for R profile a reserved value */ 11513 if (arm_feature(env, ARM_FEATURE_M)) { 11514 *prot |= PAGE_READ | PAGE_EXEC; 11515 break; 11516 } 11517 /* fall through */ 11518 default: 11519 qemu_log_mask(LOG_GUEST_ERROR, 11520 "DRACR[%d]: Bad value for AP bits: 0x%" 11521 PRIx32 "\n", n, ap); 11522 } 11523 } 11524 11525 /* execute never */ 11526 if (xn) { 11527 *prot &= ~PAGE_EXEC; 11528 } 11529 } 11530 } 11531 11532 fi->type = ARMFault_Permission; 11533 fi->level = 1; 11534 return !(*prot & (1 << access_type)); 11535 } 11536 11537 static bool v8m_is_sau_exempt(CPUARMState *env, 11538 uint32_t address, MMUAccessType access_type) 11539 { 11540 /* The architecture specifies that certain address ranges are 11541 * exempt from v8M SAU/IDAU checks. 11542 */ 11543 return 11544 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11545 (address >= 0xe0000000 && address <= 0xe0002fff) || 11546 (address >= 0xe000e000 && address <= 0xe000efff) || 11547 (address >= 0xe002e000 && address <= 0xe002efff) || 11548 (address >= 0xe0040000 && address <= 0xe0041fff) || 11549 (address >= 0xe00ff000 && address <= 0xe00fffff); 11550 } 11551 11552 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11553 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11554 V8M_SAttributes *sattrs) 11555 { 11556 /* Look up the security attributes for this address. Compare the 11557 * pseudocode SecurityCheck() function. 11558 * We assume the caller has zero-initialized *sattrs. 11559 */ 11560 ARMCPU *cpu = env_archcpu(env); 11561 int r; 11562 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11563 int idau_region = IREGION_NOTVALID; 11564 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11565 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11566 11567 if (cpu->idau) { 11568 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11569 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11570 11571 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11572 &idau_nsc); 11573 } 11574 11575 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11576 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11577 return; 11578 } 11579 11580 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11581 sattrs->ns = !regime_is_secure(env, mmu_idx); 11582 return; 11583 } 11584 11585 if (idau_region != IREGION_NOTVALID) { 11586 sattrs->irvalid = true; 11587 sattrs->iregion = idau_region; 11588 } 11589 11590 switch (env->sau.ctrl & 3) { 11591 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11592 break; 11593 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11594 sattrs->ns = true; 11595 break; 11596 default: /* SAU.ENABLE == 1 */ 11597 for (r = 0; r < cpu->sau_sregion; r++) { 11598 if (env->sau.rlar[r] & 1) { 11599 uint32_t base = env->sau.rbar[r] & ~0x1f; 11600 uint32_t limit = env->sau.rlar[r] | 0x1f; 11601 11602 if (base <= address && limit >= address) { 11603 if (base > addr_page_base || limit < addr_page_limit) { 11604 sattrs->subpage = true; 11605 } 11606 if (sattrs->srvalid) { 11607 /* If we hit in more than one region then we must report 11608 * as Secure, not NS-Callable, with no valid region 11609 * number info. 11610 */ 11611 sattrs->ns = false; 11612 sattrs->nsc = false; 11613 sattrs->sregion = 0; 11614 sattrs->srvalid = false; 11615 break; 11616 } else { 11617 if (env->sau.rlar[r] & 2) { 11618 sattrs->nsc = true; 11619 } else { 11620 sattrs->ns = true; 11621 } 11622 sattrs->srvalid = true; 11623 sattrs->sregion = r; 11624 } 11625 } else { 11626 /* 11627 * Address not in this region. We must check whether the 11628 * region covers addresses in the same page as our address. 11629 * In that case we must not report a size that covers the 11630 * whole page for a subsequent hit against a different MPU 11631 * region or the background region, because it would result 11632 * in incorrect TLB hits for subsequent accesses to 11633 * addresses that are in this MPU region. 11634 */ 11635 if (limit >= base && 11636 ranges_overlap(base, limit - base + 1, 11637 addr_page_base, 11638 TARGET_PAGE_SIZE)) { 11639 sattrs->subpage = true; 11640 } 11641 } 11642 } 11643 } 11644 break; 11645 } 11646 11647 /* 11648 * The IDAU will override the SAU lookup results if it specifies 11649 * higher security than the SAU does. 11650 */ 11651 if (!idau_ns) { 11652 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11653 sattrs->ns = false; 11654 sattrs->nsc = idau_nsc; 11655 } 11656 } 11657 } 11658 11659 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11660 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11661 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11662 int *prot, bool *is_subpage, 11663 ARMMMUFaultInfo *fi, uint32_t *mregion) 11664 { 11665 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11666 * that a full phys-to-virt translation does). 11667 * mregion is (if not NULL) set to the region number which matched, 11668 * or -1 if no region number is returned (MPU off, address did not 11669 * hit a region, address hit in multiple regions). 11670 * We set is_subpage to true if the region hit doesn't cover the 11671 * entire TARGET_PAGE the address is within. 11672 */ 11673 ARMCPU *cpu = env_archcpu(env); 11674 bool is_user = regime_is_user(env, mmu_idx); 11675 uint32_t secure = regime_is_secure(env, mmu_idx); 11676 int n; 11677 int matchregion = -1; 11678 bool hit = false; 11679 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11680 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11681 11682 *is_subpage = false; 11683 *phys_ptr = address; 11684 *prot = 0; 11685 if (mregion) { 11686 *mregion = -1; 11687 } 11688 11689 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11690 * was an exception vector read from the vector table (which is always 11691 * done using the default system address map), because those accesses 11692 * are done in arm_v7m_load_vector(), which always does a direct 11693 * read using address_space_ldl(), rather than going via this function. 11694 */ 11695 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11696 hit = true; 11697 } else if (m_is_ppb_region(env, address)) { 11698 hit = true; 11699 } else { 11700 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11701 hit = true; 11702 } 11703 11704 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11705 /* region search */ 11706 /* Note that the base address is bits [31:5] from the register 11707 * with bits [4:0] all zeroes, but the limit address is bits 11708 * [31:5] from the register with bits [4:0] all ones. 11709 */ 11710 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11711 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 11712 11713 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 11714 /* Region disabled */ 11715 continue; 11716 } 11717 11718 if (address < base || address > limit) { 11719 /* 11720 * Address not in this region. We must check whether the 11721 * region covers addresses in the same page as our address. 11722 * In that case we must not report a size that covers the 11723 * whole page for a subsequent hit against a different MPU 11724 * region or the background region, because it would result in 11725 * incorrect TLB hits for subsequent accesses to addresses that 11726 * are in this MPU region. 11727 */ 11728 if (limit >= base && 11729 ranges_overlap(base, limit - base + 1, 11730 addr_page_base, 11731 TARGET_PAGE_SIZE)) { 11732 *is_subpage = true; 11733 } 11734 continue; 11735 } 11736 11737 if (base > addr_page_base || limit < addr_page_limit) { 11738 *is_subpage = true; 11739 } 11740 11741 if (matchregion != -1) { 11742 /* Multiple regions match -- always a failure (unlike 11743 * PMSAv7 where highest-numbered-region wins) 11744 */ 11745 fi->type = ARMFault_Permission; 11746 fi->level = 1; 11747 return true; 11748 } 11749 11750 matchregion = n; 11751 hit = true; 11752 } 11753 } 11754 11755 if (!hit) { 11756 /* background fault */ 11757 fi->type = ARMFault_Background; 11758 return true; 11759 } 11760 11761 if (matchregion == -1) { 11762 /* hit using the background region */ 11763 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11764 } else { 11765 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 11766 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 11767 11768 if (m_is_system_region(env, address)) { 11769 /* System space is always execute never */ 11770 xn = 1; 11771 } 11772 11773 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 11774 if (*prot && !xn) { 11775 *prot |= PAGE_EXEC; 11776 } 11777 /* We don't need to look the attribute up in the MAIR0/MAIR1 11778 * registers because that only tells us about cacheability. 11779 */ 11780 if (mregion) { 11781 *mregion = matchregion; 11782 } 11783 } 11784 11785 fi->type = ARMFault_Permission; 11786 fi->level = 1; 11787 return !(*prot & (1 << access_type)); 11788 } 11789 11790 11791 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 11792 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11793 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11794 int *prot, target_ulong *page_size, 11795 ARMMMUFaultInfo *fi) 11796 { 11797 uint32_t secure = regime_is_secure(env, mmu_idx); 11798 V8M_SAttributes sattrs = {}; 11799 bool ret; 11800 bool mpu_is_subpage; 11801 11802 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11803 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 11804 if (access_type == MMU_INST_FETCH) { 11805 /* Instruction fetches always use the MMU bank and the 11806 * transaction attribute determined by the fetch address, 11807 * regardless of CPU state. This is painful for QEMU 11808 * to handle, because it would mean we need to encode 11809 * into the mmu_idx not just the (user, negpri) information 11810 * for the current security state but also that for the 11811 * other security state, which would balloon the number 11812 * of mmu_idx values needed alarmingly. 11813 * Fortunately we can avoid this because it's not actually 11814 * possible to arbitrarily execute code from memory with 11815 * the wrong security attribute: it will always generate 11816 * an exception of some kind or another, apart from the 11817 * special case of an NS CPU executing an SG instruction 11818 * in S&NSC memory. So we always just fail the translation 11819 * here and sort things out in the exception handler 11820 * (including possibly emulating an SG instruction). 11821 */ 11822 if (sattrs.ns != !secure) { 11823 if (sattrs.nsc) { 11824 fi->type = ARMFault_QEMU_NSCExec; 11825 } else { 11826 fi->type = ARMFault_QEMU_SFault; 11827 } 11828 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11829 *phys_ptr = address; 11830 *prot = 0; 11831 return true; 11832 } 11833 } else { 11834 /* For data accesses we always use the MMU bank indicated 11835 * by the current CPU state, but the security attributes 11836 * might downgrade a secure access to nonsecure. 11837 */ 11838 if (sattrs.ns) { 11839 txattrs->secure = false; 11840 } else if (!secure) { 11841 /* NS access to S memory must fault. 11842 * Architecturally we should first check whether the 11843 * MPU information for this address indicates that we 11844 * are doing an unaligned access to Device memory, which 11845 * should generate a UsageFault instead. QEMU does not 11846 * currently check for that kind of unaligned access though. 11847 * If we added it we would need to do so as a special case 11848 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 11849 */ 11850 fi->type = ARMFault_QEMU_SFault; 11851 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11852 *phys_ptr = address; 11853 *prot = 0; 11854 return true; 11855 } 11856 } 11857 } 11858 11859 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 11860 txattrs, prot, &mpu_is_subpage, fi, NULL); 11861 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 11862 return ret; 11863 } 11864 11865 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 11866 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11867 hwaddr *phys_ptr, int *prot, 11868 ARMMMUFaultInfo *fi) 11869 { 11870 int n; 11871 uint32_t mask; 11872 uint32_t base; 11873 bool is_user = regime_is_user(env, mmu_idx); 11874 11875 if (regime_translation_disabled(env, mmu_idx)) { 11876 /* MPU disabled. */ 11877 *phys_ptr = address; 11878 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11879 return false; 11880 } 11881 11882 *phys_ptr = address; 11883 for (n = 7; n >= 0; n--) { 11884 base = env->cp15.c6_region[n]; 11885 if ((base & 1) == 0) { 11886 continue; 11887 } 11888 mask = 1 << ((base >> 1) & 0x1f); 11889 /* Keep this shift separate from the above to avoid an 11890 (undefined) << 32. */ 11891 mask = (mask << 1) - 1; 11892 if (((base ^ address) & ~mask) == 0) { 11893 break; 11894 } 11895 } 11896 if (n < 0) { 11897 fi->type = ARMFault_Background; 11898 return true; 11899 } 11900 11901 if (access_type == MMU_INST_FETCH) { 11902 mask = env->cp15.pmsav5_insn_ap; 11903 } else { 11904 mask = env->cp15.pmsav5_data_ap; 11905 } 11906 mask = (mask >> (n * 4)) & 0xf; 11907 switch (mask) { 11908 case 0: 11909 fi->type = ARMFault_Permission; 11910 fi->level = 1; 11911 return true; 11912 case 1: 11913 if (is_user) { 11914 fi->type = ARMFault_Permission; 11915 fi->level = 1; 11916 return true; 11917 } 11918 *prot = PAGE_READ | PAGE_WRITE; 11919 break; 11920 case 2: 11921 *prot = PAGE_READ; 11922 if (!is_user) { 11923 *prot |= PAGE_WRITE; 11924 } 11925 break; 11926 case 3: 11927 *prot = PAGE_READ | PAGE_WRITE; 11928 break; 11929 case 5: 11930 if (is_user) { 11931 fi->type = ARMFault_Permission; 11932 fi->level = 1; 11933 return true; 11934 } 11935 *prot = PAGE_READ; 11936 break; 11937 case 6: 11938 *prot = PAGE_READ; 11939 break; 11940 default: 11941 /* Bad permission. */ 11942 fi->type = ARMFault_Permission; 11943 fi->level = 1; 11944 return true; 11945 } 11946 *prot |= PAGE_EXEC; 11947 return false; 11948 } 11949 11950 /* Combine either inner or outer cacheability attributes for normal 11951 * memory, according to table D4-42 and pseudocode procedure 11952 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 11953 * 11954 * NB: only stage 1 includes allocation hints (RW bits), leading to 11955 * some asymmetry. 11956 */ 11957 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 11958 { 11959 if (s1 == 4 || s2 == 4) { 11960 /* non-cacheable has precedence */ 11961 return 4; 11962 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 11963 /* stage 1 write-through takes precedence */ 11964 return s1; 11965 } else if (extract32(s2, 2, 2) == 2) { 11966 /* stage 2 write-through takes precedence, but the allocation hint 11967 * is still taken from stage 1 11968 */ 11969 return (2 << 2) | extract32(s1, 0, 2); 11970 } else { /* write-back */ 11971 return s1; 11972 } 11973 } 11974 11975 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 11976 * and CombineS1S2Desc() 11977 * 11978 * @s1: Attributes from stage 1 walk 11979 * @s2: Attributes from stage 2 walk 11980 */ 11981 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 11982 { 11983 uint8_t s1lo, s2lo, s1hi, s2hi; 11984 ARMCacheAttrs ret; 11985 bool tagged = false; 11986 11987 if (s1.attrs == 0xf0) { 11988 tagged = true; 11989 s1.attrs = 0xff; 11990 } 11991 11992 s1lo = extract32(s1.attrs, 0, 4); 11993 s2lo = extract32(s2.attrs, 0, 4); 11994 s1hi = extract32(s1.attrs, 4, 4); 11995 s2hi = extract32(s2.attrs, 4, 4); 11996 11997 /* Combine shareability attributes (table D4-43) */ 11998 if (s1.shareability == 2 || s2.shareability == 2) { 11999 /* if either are outer-shareable, the result is outer-shareable */ 12000 ret.shareability = 2; 12001 } else if (s1.shareability == 3 || s2.shareability == 3) { 12002 /* if either are inner-shareable, the result is inner-shareable */ 12003 ret.shareability = 3; 12004 } else { 12005 /* both non-shareable */ 12006 ret.shareability = 0; 12007 } 12008 12009 /* Combine memory type and cacheability attributes */ 12010 if (s1hi == 0 || s2hi == 0) { 12011 /* Device has precedence over normal */ 12012 if (s1lo == 0 || s2lo == 0) { 12013 /* nGnRnE has precedence over anything */ 12014 ret.attrs = 0; 12015 } else if (s1lo == 4 || s2lo == 4) { 12016 /* non-Reordering has precedence over Reordering */ 12017 ret.attrs = 4; /* nGnRE */ 12018 } else if (s1lo == 8 || s2lo == 8) { 12019 /* non-Gathering has precedence over Gathering */ 12020 ret.attrs = 8; /* nGRE */ 12021 } else { 12022 ret.attrs = 0xc; /* GRE */ 12023 } 12024 12025 /* Any location for which the resultant memory type is any 12026 * type of Device memory is always treated as Outer Shareable. 12027 */ 12028 ret.shareability = 2; 12029 } else { /* Normal memory */ 12030 /* Outer/inner cacheability combine independently */ 12031 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12032 | combine_cacheattr_nibble(s1lo, s2lo); 12033 12034 if (ret.attrs == 0x44) { 12035 /* Any location for which the resultant memory type is Normal 12036 * Inner Non-cacheable, Outer Non-cacheable is always treated 12037 * as Outer Shareable. 12038 */ 12039 ret.shareability = 2; 12040 } 12041 } 12042 12043 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12044 if (tagged && ret.attrs == 0xff) { 12045 ret.attrs = 0xf0; 12046 } 12047 12048 return ret; 12049 } 12050 12051 12052 /* get_phys_addr - get the physical address for this virtual address 12053 * 12054 * Find the physical address corresponding to the given virtual address, 12055 * by doing a translation table walk on MMU based systems or using the 12056 * MPU state on MPU based systems. 12057 * 12058 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12059 * prot and page_size may not be filled in, and the populated fsr value provides 12060 * information on why the translation aborted, in the format of a 12061 * DFSR/IFSR fault register, with the following caveats: 12062 * * we honour the short vs long DFSR format differences. 12063 * * the WnR bit is never set (the caller must do this). 12064 * * for PSMAv5 based systems we don't bother to return a full FSR format 12065 * value. 12066 * 12067 * @env: CPUARMState 12068 * @address: virtual address to get physical address for 12069 * @access_type: 0 for read, 1 for write, 2 for execute 12070 * @mmu_idx: MMU index indicating required translation regime 12071 * @phys_ptr: set to the physical address corresponding to the virtual address 12072 * @attrs: set to the memory transaction attributes to use 12073 * @prot: set to the permissions for the page containing phys_ptr 12074 * @page_size: set to the size of the page containing phys_ptr 12075 * @fi: set to fault info if the translation fails 12076 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12077 */ 12078 bool get_phys_addr(CPUARMState *env, target_ulong address, 12079 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12080 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12081 target_ulong *page_size, 12082 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12083 { 12084 if (mmu_idx == ARMMMUIdx_E10_0 || 12085 mmu_idx == ARMMMUIdx_E10_1 || 12086 mmu_idx == ARMMMUIdx_E10_1_PAN) { 12087 /* Call ourselves recursively to do the stage 1 and then stage 2 12088 * translations. 12089 */ 12090 if (arm_feature(env, ARM_FEATURE_EL2)) { 12091 hwaddr ipa; 12092 int s2_prot; 12093 int ret; 12094 ARMCacheAttrs cacheattrs2 = {}; 12095 12096 ret = get_phys_addr(env, address, access_type, 12097 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 12098 prot, page_size, fi, cacheattrs); 12099 12100 /* If S1 fails or S2 is disabled, return early. */ 12101 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12102 *phys_ptr = ipa; 12103 return ret; 12104 } 12105 12106 /* S1 is done. Now do S2 translation. */ 12107 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2, 12108 mmu_idx == ARMMMUIdx_E10_0, 12109 phys_ptr, attrs, &s2_prot, 12110 page_size, fi, &cacheattrs2); 12111 fi->s2addr = ipa; 12112 /* Combine the S1 and S2 perms. */ 12113 *prot &= s2_prot; 12114 12115 /* If S2 fails, return early. */ 12116 if (ret) { 12117 return ret; 12118 } 12119 12120 /* Combine the S1 and S2 cache attributes. */ 12121 if (env->cp15.hcr_el2 & HCR_DC) { 12122 /* 12123 * HCR.DC forces the first stage attributes to 12124 * Normal Non-Shareable, 12125 * Inner Write-Back Read-Allocate Write-Allocate, 12126 * Outer Write-Back Read-Allocate Write-Allocate. 12127 * Do not overwrite Tagged within attrs. 12128 */ 12129 if (cacheattrs->attrs != 0xf0) { 12130 cacheattrs->attrs = 0xff; 12131 } 12132 cacheattrs->shareability = 0; 12133 } 12134 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12135 return 0; 12136 } else { 12137 /* 12138 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12139 */ 12140 mmu_idx = stage_1_mmu_idx(mmu_idx); 12141 } 12142 } 12143 12144 /* The page table entries may downgrade secure to non-secure, but 12145 * cannot upgrade an non-secure translation regime's attributes 12146 * to secure. 12147 */ 12148 attrs->secure = regime_is_secure(env, mmu_idx); 12149 attrs->user = regime_is_user(env, mmu_idx); 12150 12151 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12152 * In v7 and earlier it affects all stage 1 translations. 12153 */ 12154 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12155 && !arm_feature(env, ARM_FEATURE_V8)) { 12156 if (regime_el(env, mmu_idx) == 3) { 12157 address += env->cp15.fcseidr_s; 12158 } else { 12159 address += env->cp15.fcseidr_ns; 12160 } 12161 } 12162 12163 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12164 bool ret; 12165 *page_size = TARGET_PAGE_SIZE; 12166 12167 if (arm_feature(env, ARM_FEATURE_V8)) { 12168 /* PMSAv8 */ 12169 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12170 phys_ptr, attrs, prot, page_size, fi); 12171 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12172 /* PMSAv7 */ 12173 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12174 phys_ptr, prot, page_size, fi); 12175 } else { 12176 /* Pre-v7 MPU */ 12177 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12178 phys_ptr, prot, fi); 12179 } 12180 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12181 " mmu_idx %u -> %s (prot %c%c%c)\n", 12182 access_type == MMU_DATA_LOAD ? "reading" : 12183 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12184 (uint32_t)address, mmu_idx, 12185 ret ? "Miss" : "Hit", 12186 *prot & PAGE_READ ? 'r' : '-', 12187 *prot & PAGE_WRITE ? 'w' : '-', 12188 *prot & PAGE_EXEC ? 'x' : '-'); 12189 12190 return ret; 12191 } 12192 12193 /* Definitely a real MMU, not an MPU */ 12194 12195 if (regime_translation_disabled(env, mmu_idx)) { 12196 uint64_t hcr; 12197 uint8_t memattr; 12198 12199 /* 12200 * MMU disabled. S1 addresses within aa64 translation regimes are 12201 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12202 */ 12203 if (mmu_idx != ARMMMUIdx_Stage2) { 12204 int r_el = regime_el(env, mmu_idx); 12205 if (arm_el_is_aa64(env, r_el)) { 12206 int pamax = arm_pamax(env_archcpu(env)); 12207 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12208 int addrtop, tbi; 12209 12210 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12211 if (access_type == MMU_INST_FETCH) { 12212 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12213 } 12214 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12215 addrtop = (tbi ? 55 : 63); 12216 12217 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12218 fi->type = ARMFault_AddressSize; 12219 fi->level = 0; 12220 fi->stage2 = false; 12221 return 1; 12222 } 12223 12224 /* 12225 * When TBI is disabled, we've just validated that all of the 12226 * bits above PAMax are zero, so logically we only need to 12227 * clear the top byte for TBI. But it's clearer to follow 12228 * the pseudocode set of addrdesc.paddress. 12229 */ 12230 address = extract64(address, 0, 52); 12231 } 12232 } 12233 *phys_ptr = address; 12234 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12235 *page_size = TARGET_PAGE_SIZE; 12236 12237 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12238 hcr = arm_hcr_el2_eff(env); 12239 cacheattrs->shareability = 0; 12240 if (hcr & HCR_DC) { 12241 if (hcr & HCR_DCT) { 12242 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12243 } else { 12244 memattr = 0xff; /* Normal, WB, RWA */ 12245 } 12246 } else if (access_type == MMU_INST_FETCH) { 12247 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12248 memattr = 0xee; /* Normal, WT, RA, NT */ 12249 } else { 12250 memattr = 0x44; /* Normal, NC, No */ 12251 } 12252 cacheattrs->shareability = 2; /* outer sharable */ 12253 } else { 12254 memattr = 0x00; /* Device, nGnRnE */ 12255 } 12256 cacheattrs->attrs = memattr; 12257 return 0; 12258 } 12259 12260 if (regime_using_lpae_format(env, mmu_idx)) { 12261 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12262 phys_ptr, attrs, prot, page_size, 12263 fi, cacheattrs); 12264 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12265 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12266 phys_ptr, attrs, prot, page_size, fi); 12267 } else { 12268 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12269 phys_ptr, prot, page_size, fi); 12270 } 12271 } 12272 12273 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12274 MemTxAttrs *attrs) 12275 { 12276 ARMCPU *cpu = ARM_CPU(cs); 12277 CPUARMState *env = &cpu->env; 12278 hwaddr phys_addr; 12279 target_ulong page_size; 12280 int prot; 12281 bool ret; 12282 ARMMMUFaultInfo fi = {}; 12283 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12284 ARMCacheAttrs cacheattrs = {}; 12285 12286 *attrs = (MemTxAttrs) {}; 12287 12288 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 12289 attrs, &prot, &page_size, &fi, &cacheattrs); 12290 12291 if (ret) { 12292 return -1; 12293 } 12294 return phys_addr; 12295 } 12296 12297 #endif 12298 12299 /* Note that signed overflow is undefined in C. The following routines are 12300 careful to use unsigned types where modulo arithmetic is required. 12301 Failure to do so _will_ break on newer gcc. */ 12302 12303 /* Signed saturating arithmetic. */ 12304 12305 /* Perform 16-bit signed saturating addition. */ 12306 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12307 { 12308 uint16_t res; 12309 12310 res = a + b; 12311 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12312 if (a & 0x8000) 12313 res = 0x8000; 12314 else 12315 res = 0x7fff; 12316 } 12317 return res; 12318 } 12319 12320 /* Perform 8-bit signed saturating addition. */ 12321 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12322 { 12323 uint8_t res; 12324 12325 res = a + b; 12326 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12327 if (a & 0x80) 12328 res = 0x80; 12329 else 12330 res = 0x7f; 12331 } 12332 return res; 12333 } 12334 12335 /* Perform 16-bit signed saturating subtraction. */ 12336 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12337 { 12338 uint16_t res; 12339 12340 res = a - b; 12341 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12342 if (a & 0x8000) 12343 res = 0x8000; 12344 else 12345 res = 0x7fff; 12346 } 12347 return res; 12348 } 12349 12350 /* Perform 8-bit signed saturating subtraction. */ 12351 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12352 { 12353 uint8_t res; 12354 12355 res = a - b; 12356 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12357 if (a & 0x80) 12358 res = 0x80; 12359 else 12360 res = 0x7f; 12361 } 12362 return res; 12363 } 12364 12365 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12366 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12367 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12368 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12369 #define PFX q 12370 12371 #include "op_addsub.h" 12372 12373 /* Unsigned saturating arithmetic. */ 12374 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12375 { 12376 uint16_t res; 12377 res = a + b; 12378 if (res < a) 12379 res = 0xffff; 12380 return res; 12381 } 12382 12383 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12384 { 12385 if (a > b) 12386 return a - b; 12387 else 12388 return 0; 12389 } 12390 12391 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12392 { 12393 uint8_t res; 12394 res = a + b; 12395 if (res < a) 12396 res = 0xff; 12397 return res; 12398 } 12399 12400 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12401 { 12402 if (a > b) 12403 return a - b; 12404 else 12405 return 0; 12406 } 12407 12408 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12409 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12410 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12411 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12412 #define PFX uq 12413 12414 #include "op_addsub.h" 12415 12416 /* Signed modulo arithmetic. */ 12417 #define SARITH16(a, b, n, op) do { \ 12418 int32_t sum; \ 12419 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12420 RESULT(sum, n, 16); \ 12421 if (sum >= 0) \ 12422 ge |= 3 << (n * 2); \ 12423 } while(0) 12424 12425 #define SARITH8(a, b, n, op) do { \ 12426 int32_t sum; \ 12427 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12428 RESULT(sum, n, 8); \ 12429 if (sum >= 0) \ 12430 ge |= 1 << n; \ 12431 } while(0) 12432 12433 12434 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12435 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12436 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12437 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12438 #define PFX s 12439 #define ARITH_GE 12440 12441 #include "op_addsub.h" 12442 12443 /* Unsigned modulo arithmetic. */ 12444 #define ADD16(a, b, n) do { \ 12445 uint32_t sum; \ 12446 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12447 RESULT(sum, n, 16); \ 12448 if ((sum >> 16) == 1) \ 12449 ge |= 3 << (n * 2); \ 12450 } while(0) 12451 12452 #define ADD8(a, b, n) do { \ 12453 uint32_t sum; \ 12454 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12455 RESULT(sum, n, 8); \ 12456 if ((sum >> 8) == 1) \ 12457 ge |= 1 << n; \ 12458 } while(0) 12459 12460 #define SUB16(a, b, n) do { \ 12461 uint32_t sum; \ 12462 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12463 RESULT(sum, n, 16); \ 12464 if ((sum >> 16) == 0) \ 12465 ge |= 3 << (n * 2); \ 12466 } while(0) 12467 12468 #define SUB8(a, b, n) do { \ 12469 uint32_t sum; \ 12470 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12471 RESULT(sum, n, 8); \ 12472 if ((sum >> 8) == 0) \ 12473 ge |= 1 << n; \ 12474 } while(0) 12475 12476 #define PFX u 12477 #define ARITH_GE 12478 12479 #include "op_addsub.h" 12480 12481 /* Halved signed arithmetic. */ 12482 #define ADD16(a, b, n) \ 12483 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12484 #define SUB16(a, b, n) \ 12485 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12486 #define ADD8(a, b, n) \ 12487 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12488 #define SUB8(a, b, n) \ 12489 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12490 #define PFX sh 12491 12492 #include "op_addsub.h" 12493 12494 /* Halved unsigned arithmetic. */ 12495 #define ADD16(a, b, n) \ 12496 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12497 #define SUB16(a, b, n) \ 12498 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12499 #define ADD8(a, b, n) \ 12500 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12501 #define SUB8(a, b, n) \ 12502 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12503 #define PFX uh 12504 12505 #include "op_addsub.h" 12506 12507 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12508 { 12509 if (a > b) 12510 return a - b; 12511 else 12512 return b - a; 12513 } 12514 12515 /* Unsigned sum of absolute byte differences. */ 12516 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12517 { 12518 uint32_t sum; 12519 sum = do_usad(a, b); 12520 sum += do_usad(a >> 8, b >> 8); 12521 sum += do_usad(a >> 16, b >>16); 12522 sum += do_usad(a >> 24, b >> 24); 12523 return sum; 12524 } 12525 12526 /* For ARMv6 SEL instruction. */ 12527 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12528 { 12529 uint32_t mask; 12530 12531 mask = 0; 12532 if (flags & 1) 12533 mask |= 0xff; 12534 if (flags & 2) 12535 mask |= 0xff00; 12536 if (flags & 4) 12537 mask |= 0xff0000; 12538 if (flags & 8) 12539 mask |= 0xff000000; 12540 return (a & mask) | (b & ~mask); 12541 } 12542 12543 /* CRC helpers. 12544 * The upper bytes of val (above the number specified by 'bytes') must have 12545 * been zeroed out by the caller. 12546 */ 12547 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12548 { 12549 uint8_t buf[4]; 12550 12551 stl_le_p(buf, val); 12552 12553 /* zlib crc32 converts the accumulator and output to one's complement. */ 12554 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12555 } 12556 12557 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12558 { 12559 uint8_t buf[4]; 12560 12561 stl_le_p(buf, val); 12562 12563 /* Linux crc32c converts the output to one's complement. */ 12564 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12565 } 12566 12567 /* Return the exception level to which FP-disabled exceptions should 12568 * be taken, or 0 if FP is enabled. 12569 */ 12570 int fp_exception_el(CPUARMState *env, int cur_el) 12571 { 12572 #ifndef CONFIG_USER_ONLY 12573 /* CPACR and the CPTR registers don't exist before v6, so FP is 12574 * always accessible 12575 */ 12576 if (!arm_feature(env, ARM_FEATURE_V6)) { 12577 return 0; 12578 } 12579 12580 if (arm_feature(env, ARM_FEATURE_M)) { 12581 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12582 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12583 return 1; 12584 } 12585 12586 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12587 if (!extract32(env->v7m.nsacr, 10, 1)) { 12588 /* FP insns cause a NOCP UsageFault taken to Secure */ 12589 return 3; 12590 } 12591 } 12592 12593 return 0; 12594 } 12595 12596 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12597 * 0, 2 : trap EL0 and EL1/PL1 accesses 12598 * 1 : trap only EL0 accesses 12599 * 3 : trap no accesses 12600 * This register is ignored if E2H+TGE are both set. 12601 */ 12602 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12603 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12604 12605 switch (fpen) { 12606 case 0: 12607 case 2: 12608 if (cur_el == 0 || cur_el == 1) { 12609 /* Trap to PL1, which might be EL1 or EL3 */ 12610 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12611 return 3; 12612 } 12613 return 1; 12614 } 12615 if (cur_el == 3 && !is_a64(env)) { 12616 /* Secure PL1 running at EL3 */ 12617 return 3; 12618 } 12619 break; 12620 case 1: 12621 if (cur_el == 0) { 12622 return 1; 12623 } 12624 break; 12625 case 3: 12626 break; 12627 } 12628 } 12629 12630 /* 12631 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12632 * to control non-secure access to the FPU. It doesn't have any 12633 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12634 */ 12635 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12636 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12637 if (!extract32(env->cp15.nsacr, 10, 1)) { 12638 /* FP insns act as UNDEF */ 12639 return cur_el == 2 ? 2 : 1; 12640 } 12641 } 12642 12643 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12644 * check because zero bits in the registers mean "don't trap". 12645 */ 12646 12647 /* CPTR_EL2 : present in v7VE or v8 */ 12648 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12649 && !arm_is_secure_below_el3(env)) { 12650 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12651 return 2; 12652 } 12653 12654 /* CPTR_EL3 : present in v8 */ 12655 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12656 /* Trap all FP ops to EL3 */ 12657 return 3; 12658 } 12659 #endif 12660 return 0; 12661 } 12662 12663 /* Return the exception level we're running at if this is our mmu_idx */ 12664 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12665 { 12666 if (mmu_idx & ARM_MMU_IDX_M) { 12667 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12668 } 12669 12670 switch (mmu_idx) { 12671 case ARMMMUIdx_E10_0: 12672 case ARMMMUIdx_E20_0: 12673 case ARMMMUIdx_SE10_0: 12674 return 0; 12675 case ARMMMUIdx_E10_1: 12676 case ARMMMUIdx_E10_1_PAN: 12677 case ARMMMUIdx_SE10_1: 12678 case ARMMMUIdx_SE10_1_PAN: 12679 return 1; 12680 case ARMMMUIdx_E2: 12681 case ARMMMUIdx_E20_2: 12682 case ARMMMUIdx_E20_2_PAN: 12683 return 2; 12684 case ARMMMUIdx_SE3: 12685 return 3; 12686 default: 12687 g_assert_not_reached(); 12688 } 12689 } 12690 12691 #ifndef CONFIG_TCG 12692 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12693 { 12694 g_assert_not_reached(); 12695 } 12696 #endif 12697 12698 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12699 { 12700 if (arm_feature(env, ARM_FEATURE_M)) { 12701 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12702 } 12703 12704 /* See ARM pseudo-function ELIsInHost. */ 12705 switch (el) { 12706 case 0: 12707 if (arm_is_secure_below_el3(env)) { 12708 return ARMMMUIdx_SE10_0; 12709 } 12710 if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE) 12711 && arm_el_is_aa64(env, 2)) { 12712 return ARMMMUIdx_E20_0; 12713 } 12714 return ARMMMUIdx_E10_0; 12715 case 1: 12716 if (arm_is_secure_below_el3(env)) { 12717 if (env->pstate & PSTATE_PAN) { 12718 return ARMMMUIdx_SE10_1_PAN; 12719 } 12720 return ARMMMUIdx_SE10_1; 12721 } 12722 if (env->pstate & PSTATE_PAN) { 12723 return ARMMMUIdx_E10_1_PAN; 12724 } 12725 return ARMMMUIdx_E10_1; 12726 case 2: 12727 /* TODO: ARMv8.4-SecEL2 */ 12728 /* Note that TGE does not apply at EL2. */ 12729 if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) { 12730 if (env->pstate & PSTATE_PAN) { 12731 return ARMMMUIdx_E20_2_PAN; 12732 } 12733 return ARMMMUIdx_E20_2; 12734 } 12735 return ARMMMUIdx_E2; 12736 case 3: 12737 return ARMMMUIdx_SE3; 12738 default: 12739 g_assert_not_reached(); 12740 } 12741 } 12742 12743 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12744 { 12745 return arm_mmu_idx_el(env, arm_current_el(env)); 12746 } 12747 12748 #ifndef CONFIG_USER_ONLY 12749 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 12750 { 12751 return stage_1_mmu_idx(arm_mmu_idx(env)); 12752 } 12753 #endif 12754 12755 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 12756 ARMMMUIdx mmu_idx, uint32_t flags) 12757 { 12758 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 12759 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 12760 arm_to_core_mmu_idx(mmu_idx)); 12761 12762 if (arm_singlestep_active(env)) { 12763 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 12764 } 12765 return flags; 12766 } 12767 12768 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 12769 ARMMMUIdx mmu_idx, uint32_t flags) 12770 { 12771 bool sctlr_b = arm_sctlr_b(env); 12772 12773 if (sctlr_b) { 12774 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 12775 } 12776 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 12777 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12778 } 12779 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 12780 12781 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12782 } 12783 12784 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 12785 ARMMMUIdx mmu_idx) 12786 { 12787 uint32_t flags = 0; 12788 12789 if (arm_v7m_is_handler_mode(env)) { 12790 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1); 12791 } 12792 12793 /* 12794 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 12795 * is suppressing them because the requested execution priority 12796 * is less than 0. 12797 */ 12798 if (arm_feature(env, ARM_FEATURE_V8) && 12799 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 12800 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 12801 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1); 12802 } 12803 12804 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12805 } 12806 12807 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 12808 { 12809 int flags = 0; 12810 12811 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 12812 arm_debug_target_el(env)); 12813 return flags; 12814 } 12815 12816 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 12817 ARMMMUIdx mmu_idx) 12818 { 12819 uint32_t flags = rebuild_hflags_aprofile(env); 12820 12821 if (arm_el_is_aa64(env, 1)) { 12822 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 12823 } 12824 12825 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && 12826 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12827 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); 12828 } 12829 12830 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12831 } 12832 12833 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 12834 ARMMMUIdx mmu_idx) 12835 { 12836 uint32_t flags = rebuild_hflags_aprofile(env); 12837 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 12838 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 12839 uint64_t sctlr; 12840 int tbii, tbid; 12841 12842 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 12843 12844 /* Get control bits for tagged addresses. */ 12845 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 12846 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 12847 12848 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 12849 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 12850 12851 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 12852 int sve_el = sve_exception_el(env, el); 12853 uint32_t zcr_len; 12854 12855 /* 12856 * If SVE is disabled, but FP is enabled, 12857 * then the effective len is 0. 12858 */ 12859 if (sve_el != 0 && fp_el == 0) { 12860 zcr_len = 0; 12861 } else { 12862 zcr_len = sve_zcr_len_for_el(env, el); 12863 } 12864 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 12865 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 12866 } 12867 12868 sctlr = regime_sctlr(env, stage1); 12869 12870 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 12871 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12872 } 12873 12874 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 12875 /* 12876 * In order to save space in flags, we record only whether 12877 * pauth is "inactive", meaning all insns are implemented as 12878 * a nop, or "active" when some action must be performed. 12879 * The decision of which action to take is left to a helper. 12880 */ 12881 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 12882 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 12883 } 12884 } 12885 12886 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12887 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 12888 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 12889 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 12890 } 12891 } 12892 12893 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 12894 if (!(env->pstate & PSTATE_UAO)) { 12895 switch (mmu_idx) { 12896 case ARMMMUIdx_E10_1: 12897 case ARMMMUIdx_E10_1_PAN: 12898 case ARMMMUIdx_SE10_1: 12899 case ARMMMUIdx_SE10_1_PAN: 12900 /* TODO: ARMv8.3-NV */ 12901 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12902 break; 12903 case ARMMMUIdx_E20_2: 12904 case ARMMMUIdx_E20_2_PAN: 12905 /* TODO: ARMv8.4-SecEL2 */ 12906 /* 12907 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 12908 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 12909 */ 12910 if (env->cp15.hcr_el2 & HCR_TGE) { 12911 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12912 } 12913 break; 12914 default: 12915 break; 12916 } 12917 } 12918 12919 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 12920 /* 12921 * Set MTE_ACTIVE if any access may be Checked, and leave clear 12922 * if all accesses must be Unchecked: 12923 * 1) If no TBI, then there are no tags in the address to check, 12924 * 2) If Tag Check Override, then all accesses are Unchecked, 12925 * 3) If Tag Check Fail == 0, then Checked access have no effect, 12926 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 12927 */ 12928 if (allocation_tag_access_enabled(env, el, sctlr)) { 12929 flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1); 12930 if (tbid 12931 && !(env->pstate & PSTATE_TCO) 12932 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 12933 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1); 12934 } 12935 } 12936 /* And again for unprivileged accesses, if required. */ 12937 if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV) 12938 && tbid 12939 && !(env->pstate & PSTATE_TCO) 12940 && (sctlr & SCTLR_TCF0) 12941 && allocation_tag_access_enabled(env, 0, sctlr)) { 12942 flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1); 12943 } 12944 /* Cache TCMA as well as TBI. */ 12945 flags = FIELD_DP32(flags, TBFLAG_A64, TCMA, 12946 aa64_va_parameter_tcma(tcr, mmu_idx)); 12947 } 12948 12949 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12950 } 12951 12952 static uint32_t rebuild_hflags_internal(CPUARMState *env) 12953 { 12954 int el = arm_current_el(env); 12955 int fp_el = fp_exception_el(env, el); 12956 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12957 12958 if (is_a64(env)) { 12959 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12960 } else if (arm_feature(env, ARM_FEATURE_M)) { 12961 return rebuild_hflags_m32(env, fp_el, mmu_idx); 12962 } else { 12963 return rebuild_hflags_a32(env, fp_el, mmu_idx); 12964 } 12965 } 12966 12967 void arm_rebuild_hflags(CPUARMState *env) 12968 { 12969 env->hflags = rebuild_hflags_internal(env); 12970 } 12971 12972 /* 12973 * If we have triggered a EL state change we can't rely on the 12974 * translator having passed it to us, we need to recompute. 12975 */ 12976 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 12977 { 12978 int el = arm_current_el(env); 12979 int fp_el = fp_exception_el(env, el); 12980 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12981 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12982 } 12983 12984 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 12985 { 12986 int fp_el = fp_exception_el(env, el); 12987 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12988 12989 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12990 } 12991 12992 /* 12993 * If we have triggered a EL state change we can't rely on the 12994 * translator having passed it to us, we need to recompute. 12995 */ 12996 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 12997 { 12998 int el = arm_current_el(env); 12999 int fp_el = fp_exception_el(env, el); 13000 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13001 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13002 } 13003 13004 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13005 { 13006 int fp_el = fp_exception_el(env, el); 13007 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13008 13009 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13010 } 13011 13012 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13013 { 13014 int fp_el = fp_exception_el(env, el); 13015 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13016 13017 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13018 } 13019 13020 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13021 { 13022 #ifdef CONFIG_DEBUG_TCG 13023 uint32_t env_flags_current = env->hflags; 13024 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); 13025 13026 if (unlikely(env_flags_current != env_flags_rebuilt)) { 13027 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", 13028 env_flags_current, env_flags_rebuilt); 13029 abort(); 13030 } 13031 #endif 13032 } 13033 13034 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13035 target_ulong *cs_base, uint32_t *pflags) 13036 { 13037 uint32_t flags = env->hflags; 13038 uint32_t pstate_for_ss; 13039 13040 *cs_base = 0; 13041 assert_hflags_rebuild_correctly(env); 13042 13043 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 13044 *pc = env->pc; 13045 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13046 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 13047 } 13048 pstate_for_ss = env->pstate; 13049 } else { 13050 *pc = env->regs[15]; 13051 13052 if (arm_feature(env, ARM_FEATURE_M)) { 13053 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13054 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13055 != env->v7m.secure) { 13056 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1); 13057 } 13058 13059 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13060 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13061 (env->v7m.secure && 13062 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13063 /* 13064 * ASPEN is set, but FPCA/SFPA indicate that there is no 13065 * active FP context; we must create a new FP context before 13066 * executing any FP insn. 13067 */ 13068 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1); 13069 } 13070 13071 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13072 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13073 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1); 13074 } 13075 } else { 13076 /* 13077 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13078 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13079 */ 13080 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13081 flags = FIELD_DP32(flags, TBFLAG_A32, 13082 XSCALE_CPAR, env->cp15.c15_cpar); 13083 } else { 13084 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 13085 env->vfp.vec_len); 13086 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 13087 env->vfp.vec_stride); 13088 } 13089 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13090 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 13091 } 13092 } 13093 13094 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb); 13095 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits); 13096 pstate_for_ss = env->uncached_cpsr; 13097 } 13098 13099 /* 13100 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13101 * states defined in the ARM ARM for software singlestep: 13102 * SS_ACTIVE PSTATE.SS State 13103 * 0 x Inactive (the TB flag for SS is always 0) 13104 * 1 0 Active-pending 13105 * 1 1 Active-not-pending 13106 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 13107 */ 13108 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 13109 (pstate_for_ss & PSTATE_SS)) { 13110 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 13111 } 13112 13113 *pflags = flags; 13114 } 13115 13116 #ifdef TARGET_AARCH64 13117 /* 13118 * The manual says that when SVE is enabled and VQ is widened the 13119 * implementation is allowed to zero the previously inaccessible 13120 * portion of the registers. The corollary to that is that when 13121 * SVE is enabled and VQ is narrowed we are also allowed to zero 13122 * the now inaccessible portion of the registers. 13123 * 13124 * The intent of this is that no predicate bit beyond VQ is ever set. 13125 * Which means that some operations on predicate registers themselves 13126 * may operate on full uint64_t or even unrolled across the maximum 13127 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13128 * may well be cheaper than conditionals to restrict the operation 13129 * to the relevant portion of a uint16_t[16]. 13130 */ 13131 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13132 { 13133 int i, j; 13134 uint64_t pmask; 13135 13136 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13137 assert(vq <= env_archcpu(env)->sve_max_vq); 13138 13139 /* Zap the high bits of the zregs. */ 13140 for (i = 0; i < 32; i++) { 13141 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13142 } 13143 13144 /* Zap the high bits of the pregs and ffr. */ 13145 pmask = 0; 13146 if (vq & 3) { 13147 pmask = ~(-1ULL << (16 * (vq & 3))); 13148 } 13149 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13150 for (i = 0; i < 17; ++i) { 13151 env->vfp.pregs[i].p[j] &= pmask; 13152 } 13153 pmask = 0; 13154 } 13155 } 13156 13157 /* 13158 * Notice a change in SVE vector size when changing EL. 13159 */ 13160 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13161 int new_el, bool el0_a64) 13162 { 13163 ARMCPU *cpu = env_archcpu(env); 13164 int old_len, new_len; 13165 bool old_a64, new_a64; 13166 13167 /* Nothing to do if no SVE. */ 13168 if (!cpu_isar_feature(aa64_sve, cpu)) { 13169 return; 13170 } 13171 13172 /* Nothing to do if FP is disabled in either EL. */ 13173 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13174 return; 13175 } 13176 13177 /* 13178 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13179 * at ELx, or not available because the EL is in AArch32 state, then 13180 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13181 * has an effective value of 0". 13182 * 13183 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13184 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13185 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13186 * we already have the correct register contents when encountering the 13187 * vq0->vq0 transition between EL0->EL1. 13188 */ 13189 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13190 old_len = (old_a64 && !sve_exception_el(env, old_el) 13191 ? sve_zcr_len_for_el(env, old_el) : 0); 13192 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13193 new_len = (new_a64 && !sve_exception_el(env, new_el) 13194 ? sve_zcr_len_for_el(env, new_el) : 0); 13195 13196 /* When changing vector length, clear inaccessible state. */ 13197 if (new_len < old_len) { 13198 aarch64_sve_narrow_vq(env, new_len + 1); 13199 } 13200 } 13201 #endif 13202