xref: /openbmc/qemu/target/arm/helper.c (revision 673b1f86)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "qemu/range.h"
29 #include "qapi/qapi-commands-machine-target.h"
30 #include "qapi/error.h"
31 #include "qemu/guest-random.h"
32 #ifdef CONFIG_TCG
33 #include "arm_ldst.h"
34 #include "exec/cpu_ldst.h"
35 #endif
36 
37 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
38 
39 #ifndef CONFIG_USER_ONLY
40 
41 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
42                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
43                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
44                                target_ulong *page_size_ptr,
45                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
46 #endif
47 
48 static void switch_mode(CPUARMState *env, int mode);
49 
50 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
51 {
52     int nregs;
53 
54     /* VFP data registers are always little-endian.  */
55     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
56     if (reg < nregs) {
57         stq_le_p(buf, *aa32_vfp_dreg(env, reg));
58         return 8;
59     }
60     if (arm_feature(env, ARM_FEATURE_NEON)) {
61         /* Aliases for Q regs.  */
62         nregs += 16;
63         if (reg < nregs) {
64             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
65             stq_le_p(buf, q[0]);
66             stq_le_p(buf + 8, q[1]);
67             return 16;
68         }
69     }
70     switch (reg - nregs) {
71     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
72     case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
73     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
74     }
75     return 0;
76 }
77 
78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
79 {
80     int nregs;
81 
82     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
83     if (reg < nregs) {
84         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
85         return 8;
86     }
87     if (arm_feature(env, ARM_FEATURE_NEON)) {
88         nregs += 16;
89         if (reg < nregs) {
90             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
91             q[0] = ldq_le_p(buf);
92             q[1] = ldq_le_p(buf + 8);
93             return 16;
94         }
95     }
96     switch (reg - nregs) {
97     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
98     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
99     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
100     }
101     return 0;
102 }
103 
104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
105 {
106     switch (reg) {
107     case 0 ... 31:
108         /* 128 bit FP register */
109         {
110             uint64_t *q = aa64_vfp_qreg(env, reg);
111             stq_le_p(buf, q[0]);
112             stq_le_p(buf + 8, q[1]);
113             return 16;
114         }
115     case 32:
116         /* FPSR */
117         stl_p(buf, vfp_get_fpsr(env));
118         return 4;
119     case 33:
120         /* FPCR */
121         stl_p(buf, vfp_get_fpcr(env));
122         return 4;
123     default:
124         return 0;
125     }
126 }
127 
128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
129 {
130     switch (reg) {
131     case 0 ... 31:
132         /* 128 bit FP register */
133         {
134             uint64_t *q = aa64_vfp_qreg(env, reg);
135             q[0] = ldq_le_p(buf);
136             q[1] = ldq_le_p(buf + 8);
137             return 16;
138         }
139     case 32:
140         /* FPSR */
141         vfp_set_fpsr(env, ldl_p(buf));
142         return 4;
143     case 33:
144         /* FPCR */
145         vfp_set_fpcr(env, ldl_p(buf));
146         return 4;
147     default:
148         return 0;
149     }
150 }
151 
152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
153 {
154     assert(ri->fieldoffset);
155     if (cpreg_field_is_64bit(ri)) {
156         return CPREG_FIELD64(env, ri);
157     } else {
158         return CPREG_FIELD32(env, ri);
159     }
160 }
161 
162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163                       uint64_t value)
164 {
165     assert(ri->fieldoffset);
166     if (cpreg_field_is_64bit(ri)) {
167         CPREG_FIELD64(env, ri) = value;
168     } else {
169         CPREG_FIELD32(env, ri) = value;
170     }
171 }
172 
173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
174 {
175     return (char *)env + ri->fieldoffset;
176 }
177 
178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
179 {
180     /* Raw read of a coprocessor register (as needed for migration, etc). */
181     if (ri->type & ARM_CP_CONST) {
182         return ri->resetvalue;
183     } else if (ri->raw_readfn) {
184         return ri->raw_readfn(env, ri);
185     } else if (ri->readfn) {
186         return ri->readfn(env, ri);
187     } else {
188         return raw_read(env, ri);
189     }
190 }
191 
192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
193                              uint64_t v)
194 {
195     /* Raw write of a coprocessor register (as needed for migration, etc).
196      * Note that constant registers are treated as write-ignored; the
197      * caller should check for success by whether a readback gives the
198      * value written.
199      */
200     if (ri->type & ARM_CP_CONST) {
201         return;
202     } else if (ri->raw_writefn) {
203         ri->raw_writefn(env, ri, v);
204     } else if (ri->writefn) {
205         ri->writefn(env, ri, v);
206     } else {
207         raw_write(env, ri, v);
208     }
209 }
210 
211 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
212 {
213     ARMCPU *cpu = env_archcpu(env);
214     const ARMCPRegInfo *ri;
215     uint32_t key;
216 
217     key = cpu->dyn_xml.cpregs_keys[reg];
218     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
219     if (ri) {
220         if (cpreg_field_is_64bit(ri)) {
221             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
222         } else {
223             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
224         }
225     }
226     return 0;
227 }
228 
229 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
230 {
231     return 0;
232 }
233 
234 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
235 {
236    /* Return true if the regdef would cause an assertion if you called
237     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
238     * program bug for it not to have the NO_RAW flag).
239     * NB that returning false here doesn't necessarily mean that calling
240     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
241     * read/write access functions which are safe for raw use" from "has
242     * read/write access functions which have side effects but has forgotten
243     * to provide raw access functions".
244     * The tests here line up with the conditions in read/write_raw_cp_reg()
245     * and assertions in raw_read()/raw_write().
246     */
247     if ((ri->type & ARM_CP_CONST) ||
248         ri->fieldoffset ||
249         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
250         return false;
251     }
252     return true;
253 }
254 
255 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
256 {
257     /* Write the coprocessor state from cpu->env to the (index,value) list. */
258     int i;
259     bool ok = true;
260 
261     for (i = 0; i < cpu->cpreg_array_len; i++) {
262         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
263         const ARMCPRegInfo *ri;
264         uint64_t newval;
265 
266         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
267         if (!ri) {
268             ok = false;
269             continue;
270         }
271         if (ri->type & ARM_CP_NO_RAW) {
272             continue;
273         }
274 
275         newval = read_raw_cp_reg(&cpu->env, ri);
276         if (kvm_sync) {
277             /*
278              * Only sync if the previous list->cpustate sync succeeded.
279              * Rather than tracking the success/failure state for every
280              * item in the list, we just recheck "does the raw write we must
281              * have made in write_list_to_cpustate() read back OK" here.
282              */
283             uint64_t oldval = cpu->cpreg_values[i];
284 
285             if (oldval == newval) {
286                 continue;
287             }
288 
289             write_raw_cp_reg(&cpu->env, ri, oldval);
290             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
291                 continue;
292             }
293 
294             write_raw_cp_reg(&cpu->env, ri, newval);
295         }
296         cpu->cpreg_values[i] = newval;
297     }
298     return ok;
299 }
300 
301 bool write_list_to_cpustate(ARMCPU *cpu)
302 {
303     int i;
304     bool ok = true;
305 
306     for (i = 0; i < cpu->cpreg_array_len; i++) {
307         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
308         uint64_t v = cpu->cpreg_values[i];
309         const ARMCPRegInfo *ri;
310 
311         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
312         if (!ri) {
313             ok = false;
314             continue;
315         }
316         if (ri->type & ARM_CP_NO_RAW) {
317             continue;
318         }
319         /* Write value and confirm it reads back as written
320          * (to catch read-only registers and partially read-only
321          * registers where the incoming migration value doesn't match)
322          */
323         write_raw_cp_reg(&cpu->env, ri, v);
324         if (read_raw_cp_reg(&cpu->env, ri) != v) {
325             ok = false;
326         }
327     }
328     return ok;
329 }
330 
331 static void add_cpreg_to_list(gpointer key, gpointer opaque)
332 {
333     ARMCPU *cpu = opaque;
334     uint64_t regidx;
335     const ARMCPRegInfo *ri;
336 
337     regidx = *(uint32_t *)key;
338     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
339 
340     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
341         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
342         /* The value array need not be initialized at this point */
343         cpu->cpreg_array_len++;
344     }
345 }
346 
347 static void count_cpreg(gpointer key, gpointer opaque)
348 {
349     ARMCPU *cpu = opaque;
350     uint64_t regidx;
351     const ARMCPRegInfo *ri;
352 
353     regidx = *(uint32_t *)key;
354     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
355 
356     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
357         cpu->cpreg_array_len++;
358     }
359 }
360 
361 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
362 {
363     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
364     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
365 
366     if (aidx > bidx) {
367         return 1;
368     }
369     if (aidx < bidx) {
370         return -1;
371     }
372     return 0;
373 }
374 
375 void init_cpreg_list(ARMCPU *cpu)
376 {
377     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
378      * Note that we require cpreg_tuples[] to be sorted by key ID.
379      */
380     GList *keys;
381     int arraylen;
382 
383     keys = g_hash_table_get_keys(cpu->cp_regs);
384     keys = g_list_sort(keys, cpreg_key_compare);
385 
386     cpu->cpreg_array_len = 0;
387 
388     g_list_foreach(keys, count_cpreg, cpu);
389 
390     arraylen = cpu->cpreg_array_len;
391     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
392     cpu->cpreg_values = g_new(uint64_t, arraylen);
393     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
394     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
395     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
396     cpu->cpreg_array_len = 0;
397 
398     g_list_foreach(keys, add_cpreg_to_list, cpu);
399 
400     assert(cpu->cpreg_array_len == arraylen);
401 
402     g_list_free(keys);
403 }
404 
405 /*
406  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
407  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
408  *
409  * access_el3_aa32ns: Used to check AArch32 register views.
410  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
411  */
412 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
413                                         const ARMCPRegInfo *ri,
414                                         bool isread)
415 {
416     bool secure = arm_is_secure_below_el3(env);
417 
418     assert(!arm_el_is_aa64(env, 3));
419     if (secure) {
420         return CP_ACCESS_TRAP_UNCATEGORIZED;
421     }
422     return CP_ACCESS_OK;
423 }
424 
425 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
426                                                 const ARMCPRegInfo *ri,
427                                                 bool isread)
428 {
429     if (!arm_el_is_aa64(env, 3)) {
430         return access_el3_aa32ns(env, ri, isread);
431     }
432     return CP_ACCESS_OK;
433 }
434 
435 /* Some secure-only AArch32 registers trap to EL3 if used from
436  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
437  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
438  * We assume that the .access field is set to PL1_RW.
439  */
440 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
441                                             const ARMCPRegInfo *ri,
442                                             bool isread)
443 {
444     if (arm_current_el(env) == 3) {
445         return CP_ACCESS_OK;
446     }
447     if (arm_is_secure_below_el3(env)) {
448         return CP_ACCESS_TRAP_EL3;
449     }
450     /* This will be EL1 NS and EL2 NS, which just UNDEF */
451     return CP_ACCESS_TRAP_UNCATEGORIZED;
452 }
453 
454 /* Check for traps to "powerdown debug" registers, which are controlled
455  * by MDCR.TDOSA
456  */
457 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
458                                    bool isread)
459 {
460     int el = arm_current_el(env);
461     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
462         (env->cp15.mdcr_el2 & MDCR_TDE) ||
463         (arm_hcr_el2_eff(env) & HCR_TGE);
464 
465     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
466         return CP_ACCESS_TRAP_EL2;
467     }
468     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
469         return CP_ACCESS_TRAP_EL3;
470     }
471     return CP_ACCESS_OK;
472 }
473 
474 /* Check for traps to "debug ROM" registers, which are controlled
475  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
476  */
477 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
478                                   bool isread)
479 {
480     int el = arm_current_el(env);
481     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
482         (env->cp15.mdcr_el2 & MDCR_TDE) ||
483         (arm_hcr_el2_eff(env) & HCR_TGE);
484 
485     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
486         return CP_ACCESS_TRAP_EL2;
487     }
488     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
489         return CP_ACCESS_TRAP_EL3;
490     }
491     return CP_ACCESS_OK;
492 }
493 
494 /* Check for traps to general debug registers, which are controlled
495  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
496  */
497 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
498                                   bool isread)
499 {
500     int el = arm_current_el(env);
501     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
502         (env->cp15.mdcr_el2 & MDCR_TDE) ||
503         (arm_hcr_el2_eff(env) & HCR_TGE);
504 
505     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
506         return CP_ACCESS_TRAP_EL2;
507     }
508     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
509         return CP_ACCESS_TRAP_EL3;
510     }
511     return CP_ACCESS_OK;
512 }
513 
514 /* Check for traps to performance monitor registers, which are controlled
515  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
516  */
517 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
518                                  bool isread)
519 {
520     int el = arm_current_el(env);
521 
522     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
523         && !arm_is_secure_below_el3(env)) {
524         return CP_ACCESS_TRAP_EL2;
525     }
526     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
527         return CP_ACCESS_TRAP_EL3;
528     }
529     return CP_ACCESS_OK;
530 }
531 
532 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
533 {
534     ARMCPU *cpu = env_archcpu(env);
535 
536     raw_write(env, ri, value);
537     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
538 }
539 
540 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
541 {
542     ARMCPU *cpu = env_archcpu(env);
543 
544     if (raw_read(env, ri) != value) {
545         /* Unlike real hardware the qemu TLB uses virtual addresses,
546          * not modified virtual addresses, so this causes a TLB flush.
547          */
548         tlb_flush(CPU(cpu));
549         raw_write(env, ri, value);
550     }
551 }
552 
553 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
554                              uint64_t value)
555 {
556     ARMCPU *cpu = env_archcpu(env);
557 
558     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
559         && !extended_addresses_enabled(env)) {
560         /* For VMSA (when not using the LPAE long descriptor page table
561          * format) this register includes the ASID, so do a TLB flush.
562          * For PMSA it is purely a process ID and no action is needed.
563          */
564         tlb_flush(CPU(cpu));
565     }
566     raw_write(env, ri, value);
567 }
568 
569 /* IS variants of TLB operations must affect all cores */
570 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
571                              uint64_t value)
572 {
573     CPUState *cs = env_cpu(env);
574 
575     tlb_flush_all_cpus_synced(cs);
576 }
577 
578 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579                              uint64_t value)
580 {
581     CPUState *cs = env_cpu(env);
582 
583     tlb_flush_all_cpus_synced(cs);
584 }
585 
586 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
587                              uint64_t value)
588 {
589     CPUState *cs = env_cpu(env);
590 
591     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
592 }
593 
594 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
595                              uint64_t value)
596 {
597     CPUState *cs = env_cpu(env);
598 
599     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
600 }
601 
602 /*
603  * Non-IS variants of TLB operations are upgraded to
604  * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
605  * force broadcast of these operations.
606  */
607 static bool tlb_force_broadcast(CPUARMState *env)
608 {
609     return (env->cp15.hcr_el2 & HCR_FB) &&
610         arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
611 }
612 
613 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
614                           uint64_t value)
615 {
616     /* Invalidate all (TLBIALL) */
617     ARMCPU *cpu = env_archcpu(env);
618 
619     if (tlb_force_broadcast(env)) {
620         tlbiall_is_write(env, NULL, value);
621         return;
622     }
623 
624     tlb_flush(CPU(cpu));
625 }
626 
627 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
628                           uint64_t value)
629 {
630     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
631     ARMCPU *cpu = env_archcpu(env);
632 
633     if (tlb_force_broadcast(env)) {
634         tlbimva_is_write(env, NULL, value);
635         return;
636     }
637 
638     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
639 }
640 
641 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
642                            uint64_t value)
643 {
644     /* Invalidate by ASID (TLBIASID) */
645     ARMCPU *cpu = env_archcpu(env);
646 
647     if (tlb_force_broadcast(env)) {
648         tlbiasid_is_write(env, NULL, value);
649         return;
650     }
651 
652     tlb_flush(CPU(cpu));
653 }
654 
655 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
656                            uint64_t value)
657 {
658     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
659     ARMCPU *cpu = env_archcpu(env);
660 
661     if (tlb_force_broadcast(env)) {
662         tlbimvaa_is_write(env, NULL, value);
663         return;
664     }
665 
666     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
667 }
668 
669 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
670                                uint64_t value)
671 {
672     CPUState *cs = env_cpu(env);
673 
674     tlb_flush_by_mmuidx(cs,
675                         ARMMMUIdxBit_S12NSE1 |
676                         ARMMMUIdxBit_S12NSE0 |
677                         ARMMMUIdxBit_S2NS);
678 }
679 
680 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
681                                   uint64_t value)
682 {
683     CPUState *cs = env_cpu(env);
684 
685     tlb_flush_by_mmuidx_all_cpus_synced(cs,
686                                         ARMMMUIdxBit_S12NSE1 |
687                                         ARMMMUIdxBit_S12NSE0 |
688                                         ARMMMUIdxBit_S2NS);
689 }
690 
691 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
692                             uint64_t value)
693 {
694     /* Invalidate by IPA. This has to invalidate any structures that
695      * contain only stage 2 translation information, but does not need
696      * to apply to structures that contain combined stage 1 and stage 2
697      * translation information.
698      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
699      */
700     CPUState *cs = env_cpu(env);
701     uint64_t pageaddr;
702 
703     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
704         return;
705     }
706 
707     pageaddr = sextract64(value << 12, 0, 40);
708 
709     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
710 }
711 
712 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
713                                uint64_t value)
714 {
715     CPUState *cs = env_cpu(env);
716     uint64_t pageaddr;
717 
718     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
719         return;
720     }
721 
722     pageaddr = sextract64(value << 12, 0, 40);
723 
724     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
725                                              ARMMMUIdxBit_S2NS);
726 }
727 
728 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
729                               uint64_t value)
730 {
731     CPUState *cs = env_cpu(env);
732 
733     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
734 }
735 
736 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
737                                  uint64_t value)
738 {
739     CPUState *cs = env_cpu(env);
740 
741     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
742 }
743 
744 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
745                               uint64_t value)
746 {
747     CPUState *cs = env_cpu(env);
748     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
749 
750     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
751 }
752 
753 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
754                                  uint64_t value)
755 {
756     CPUState *cs = env_cpu(env);
757     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
758 
759     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
760                                              ARMMMUIdxBit_S1E2);
761 }
762 
763 static const ARMCPRegInfo cp_reginfo[] = {
764     /* Define the secure and non-secure FCSE identifier CP registers
765      * separately because there is no secure bank in V8 (no _EL3).  This allows
766      * the secure register to be properly reset and migrated. There is also no
767      * v8 EL1 version of the register so the non-secure instance stands alone.
768      */
769     { .name = "FCSEIDR",
770       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
771       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
772       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
773       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
774     { .name = "FCSEIDR_S",
775       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
776       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
777       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
778       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
779     /* Define the secure and non-secure context identifier CP registers
780      * separately because there is no secure bank in V8 (no _EL3).  This allows
781      * the secure register to be properly reset and migrated.  In the
782      * non-secure case, the 32-bit register will have reset and migration
783      * disabled during registration as it is handled by the 64-bit instance.
784      */
785     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
786       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
787       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
788       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
789       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
790     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
791       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
792       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
793       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
794       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
795     REGINFO_SENTINEL
796 };
797 
798 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
799     /* NB: Some of these registers exist in v8 but with more precise
800      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
801      */
802     /* MMU Domain access control / MPU write buffer control */
803     { .name = "DACR",
804       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
805       .access = PL1_RW, .resetvalue = 0,
806       .writefn = dacr_write, .raw_writefn = raw_write,
807       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
808                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
809     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
810      * For v6 and v5, these mappings are overly broad.
811      */
812     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
813       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
814     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
815       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
816     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
817       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
818     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
819       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
820     /* Cache maintenance ops; some of this space may be overridden later. */
821     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
822       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
823       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
824     REGINFO_SENTINEL
825 };
826 
827 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
828     /* Not all pre-v6 cores implemented this WFI, so this is slightly
829      * over-broad.
830      */
831     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
832       .access = PL1_W, .type = ARM_CP_WFI },
833     REGINFO_SENTINEL
834 };
835 
836 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
837     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
838      * is UNPREDICTABLE; we choose to NOP as most implementations do).
839      */
840     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
841       .access = PL1_W, .type = ARM_CP_WFI },
842     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
843      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
844      * OMAPCP will override this space.
845      */
846     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
847       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
848       .resetvalue = 0 },
849     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
850       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
851       .resetvalue = 0 },
852     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
853     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
854       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
855       .resetvalue = 0 },
856     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
857      * implementing it as RAZ means the "debug architecture version" bits
858      * will read as a reserved value, which should cause Linux to not try
859      * to use the debug hardware.
860      */
861     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
862       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
863     /* MMU TLB control. Note that the wildcarding means we cover not just
864      * the unified TLB ops but also the dside/iside/inner-shareable variants.
865      */
866     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
867       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
868       .type = ARM_CP_NO_RAW },
869     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
870       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
871       .type = ARM_CP_NO_RAW },
872     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
873       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
874       .type = ARM_CP_NO_RAW },
875     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
876       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
877       .type = ARM_CP_NO_RAW },
878     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
879       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
880     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
881       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
882     REGINFO_SENTINEL
883 };
884 
885 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
886                         uint64_t value)
887 {
888     uint32_t mask = 0;
889 
890     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
891     if (!arm_feature(env, ARM_FEATURE_V8)) {
892         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
893          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
894          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
895          */
896         if (arm_feature(env, ARM_FEATURE_VFP)) {
897             /* VFP coprocessor: cp10 & cp11 [23:20] */
898             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
899 
900             if (!arm_feature(env, ARM_FEATURE_NEON)) {
901                 /* ASEDIS [31] bit is RAO/WI */
902                 value |= (1 << 31);
903             }
904 
905             /* VFPv3 and upwards with NEON implement 32 double precision
906              * registers (D0-D31).
907              */
908             if (!arm_feature(env, ARM_FEATURE_NEON) ||
909                     !arm_feature(env, ARM_FEATURE_VFP3)) {
910                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
911                 value |= (1 << 30);
912             }
913         }
914         value &= mask;
915     }
916 
917     /*
918      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
919      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
920      */
921     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
922         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
923         value &= ~(0xf << 20);
924         value |= env->cp15.cpacr_el1 & (0xf << 20);
925     }
926 
927     env->cp15.cpacr_el1 = value;
928 }
929 
930 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
931 {
932     /*
933      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
934      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
935      */
936     uint64_t value = env->cp15.cpacr_el1;
937 
938     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
939         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
940         value &= ~(0xf << 20);
941     }
942     return value;
943 }
944 
945 
946 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
947 {
948     /* Call cpacr_write() so that we reset with the correct RAO bits set
949      * for our CPU features.
950      */
951     cpacr_write(env, ri, 0);
952 }
953 
954 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
955                                    bool isread)
956 {
957     if (arm_feature(env, ARM_FEATURE_V8)) {
958         /* Check if CPACR accesses are to be trapped to EL2 */
959         if (arm_current_el(env) == 1 &&
960             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
961             return CP_ACCESS_TRAP_EL2;
962         /* Check if CPACR accesses are to be trapped to EL3 */
963         } else if (arm_current_el(env) < 3 &&
964                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
965             return CP_ACCESS_TRAP_EL3;
966         }
967     }
968 
969     return CP_ACCESS_OK;
970 }
971 
972 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
973                                   bool isread)
974 {
975     /* Check if CPTR accesses are set to trap to EL3 */
976     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
977         return CP_ACCESS_TRAP_EL3;
978     }
979 
980     return CP_ACCESS_OK;
981 }
982 
983 static const ARMCPRegInfo v6_cp_reginfo[] = {
984     /* prefetch by MVA in v6, NOP in v7 */
985     { .name = "MVA_prefetch",
986       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
987       .access = PL1_W, .type = ARM_CP_NOP },
988     /* We need to break the TB after ISB to execute self-modifying code
989      * correctly and also to take any pending interrupts immediately.
990      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
991      */
992     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
993       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
994     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
995       .access = PL0_W, .type = ARM_CP_NOP },
996     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
997       .access = PL0_W, .type = ARM_CP_NOP },
998     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
999       .access = PL1_RW,
1000       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1001                              offsetof(CPUARMState, cp15.ifar_ns) },
1002       .resetvalue = 0, },
1003     /* Watchpoint Fault Address Register : should actually only be present
1004      * for 1136, 1176, 11MPCore.
1005      */
1006     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1007       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1008     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1009       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1010       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1011       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1012     REGINFO_SENTINEL
1013 };
1014 
1015 /* Definitions for the PMU registers */
1016 #define PMCRN_MASK  0xf800
1017 #define PMCRN_SHIFT 11
1018 #define PMCRLC  0x40
1019 #define PMCRDP  0x10
1020 #define PMCRD   0x8
1021 #define PMCRC   0x4
1022 #define PMCRP   0x2
1023 #define PMCRE   0x1
1024 
1025 #define PMXEVTYPER_P          0x80000000
1026 #define PMXEVTYPER_U          0x40000000
1027 #define PMXEVTYPER_NSK        0x20000000
1028 #define PMXEVTYPER_NSU        0x10000000
1029 #define PMXEVTYPER_NSH        0x08000000
1030 #define PMXEVTYPER_M          0x04000000
1031 #define PMXEVTYPER_MT         0x02000000
1032 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1033 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1034                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1035                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1036                                PMXEVTYPER_EVTCOUNT)
1037 
1038 #define PMCCFILTR             0xf8000000
1039 #define PMCCFILTR_M           PMXEVTYPER_M
1040 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1041 
1042 static inline uint32_t pmu_num_counters(CPUARMState *env)
1043 {
1044   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1045 }
1046 
1047 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1048 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1049 {
1050   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1051 }
1052 
1053 typedef struct pm_event {
1054     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1055     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1056     bool (*supported)(CPUARMState *);
1057     /*
1058      * Retrieve the current count of the underlying event. The programmed
1059      * counters hold a difference from the return value from this function
1060      */
1061     uint64_t (*get_count)(CPUARMState *);
1062     /*
1063      * Return how many nanoseconds it will take (at a minimum) for count events
1064      * to occur. A negative value indicates the counter will never overflow, or
1065      * that the counter has otherwise arranged for the overflow bit to be set
1066      * and the PMU interrupt to be raised on overflow.
1067      */
1068     int64_t (*ns_per_count)(uint64_t);
1069 } pm_event;
1070 
1071 static bool event_always_supported(CPUARMState *env)
1072 {
1073     return true;
1074 }
1075 
1076 static uint64_t swinc_get_count(CPUARMState *env)
1077 {
1078     /*
1079      * SW_INCR events are written directly to the pmevcntr's by writes to
1080      * PMSWINC, so there is no underlying count maintained by the PMU itself
1081      */
1082     return 0;
1083 }
1084 
1085 static int64_t swinc_ns_per(uint64_t ignored)
1086 {
1087     return -1;
1088 }
1089 
1090 /*
1091  * Return the underlying cycle count for the PMU cycle counters. If we're in
1092  * usermode, simply return 0.
1093  */
1094 static uint64_t cycles_get_count(CPUARMState *env)
1095 {
1096 #ifndef CONFIG_USER_ONLY
1097     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1098                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1099 #else
1100     return cpu_get_host_ticks();
1101 #endif
1102 }
1103 
1104 #ifndef CONFIG_USER_ONLY
1105 static int64_t cycles_ns_per(uint64_t cycles)
1106 {
1107     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1108 }
1109 
1110 static bool instructions_supported(CPUARMState *env)
1111 {
1112     return use_icount == 1 /* Precise instruction counting */;
1113 }
1114 
1115 static uint64_t instructions_get_count(CPUARMState *env)
1116 {
1117     return (uint64_t)cpu_get_icount_raw();
1118 }
1119 
1120 static int64_t instructions_ns_per(uint64_t icount)
1121 {
1122     return cpu_icount_to_ns((int64_t)icount);
1123 }
1124 #endif
1125 
1126 static const pm_event pm_events[] = {
1127     { .number = 0x000, /* SW_INCR */
1128       .supported = event_always_supported,
1129       .get_count = swinc_get_count,
1130       .ns_per_count = swinc_ns_per,
1131     },
1132 #ifndef CONFIG_USER_ONLY
1133     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1134       .supported = instructions_supported,
1135       .get_count = instructions_get_count,
1136       .ns_per_count = instructions_ns_per,
1137     },
1138     { .number = 0x011, /* CPU_CYCLES, Cycle */
1139       .supported = event_always_supported,
1140       .get_count = cycles_get_count,
1141       .ns_per_count = cycles_ns_per,
1142     }
1143 #endif
1144 };
1145 
1146 /*
1147  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1148  * events (i.e. the statistical profiling extension), this implementation
1149  * should first be updated to something sparse instead of the current
1150  * supported_event_map[] array.
1151  */
1152 #define MAX_EVENT_ID 0x11
1153 #define UNSUPPORTED_EVENT UINT16_MAX
1154 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1155 
1156 /*
1157  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1158  * of ARM event numbers to indices in our pm_events array.
1159  *
1160  * Note: Events in the 0x40XX range are not currently supported.
1161  */
1162 void pmu_init(ARMCPU *cpu)
1163 {
1164     unsigned int i;
1165 
1166     /*
1167      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1168      * events to them
1169      */
1170     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1171         supported_event_map[i] = UNSUPPORTED_EVENT;
1172     }
1173     cpu->pmceid0 = 0;
1174     cpu->pmceid1 = 0;
1175 
1176     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1177         const pm_event *cnt = &pm_events[i];
1178         assert(cnt->number <= MAX_EVENT_ID);
1179         /* We do not currently support events in the 0x40xx range */
1180         assert(cnt->number <= 0x3f);
1181 
1182         if (cnt->supported(&cpu->env)) {
1183             supported_event_map[cnt->number] = i;
1184             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1185             if (cnt->number & 0x20) {
1186                 cpu->pmceid1 |= event_mask;
1187             } else {
1188                 cpu->pmceid0 |= event_mask;
1189             }
1190         }
1191     }
1192 }
1193 
1194 /*
1195  * Check at runtime whether a PMU event is supported for the current machine
1196  */
1197 static bool event_supported(uint16_t number)
1198 {
1199     if (number > MAX_EVENT_ID) {
1200         return false;
1201     }
1202     return supported_event_map[number] != UNSUPPORTED_EVENT;
1203 }
1204 
1205 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1206                                    bool isread)
1207 {
1208     /* Performance monitor registers user accessibility is controlled
1209      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1210      * trapping to EL2 or EL3 for other accesses.
1211      */
1212     int el = arm_current_el(env);
1213 
1214     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1215         return CP_ACCESS_TRAP;
1216     }
1217     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1218         && !arm_is_secure_below_el3(env)) {
1219         return CP_ACCESS_TRAP_EL2;
1220     }
1221     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1222         return CP_ACCESS_TRAP_EL3;
1223     }
1224 
1225     return CP_ACCESS_OK;
1226 }
1227 
1228 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1229                                            const ARMCPRegInfo *ri,
1230                                            bool isread)
1231 {
1232     /* ER: event counter read trap control */
1233     if (arm_feature(env, ARM_FEATURE_V8)
1234         && arm_current_el(env) == 0
1235         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1236         && isread) {
1237         return CP_ACCESS_OK;
1238     }
1239 
1240     return pmreg_access(env, ri, isread);
1241 }
1242 
1243 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1244                                          const ARMCPRegInfo *ri,
1245                                          bool isread)
1246 {
1247     /* SW: software increment write trap control */
1248     if (arm_feature(env, ARM_FEATURE_V8)
1249         && arm_current_el(env) == 0
1250         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1251         && !isread) {
1252         return CP_ACCESS_OK;
1253     }
1254 
1255     return pmreg_access(env, ri, isread);
1256 }
1257 
1258 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1259                                         const ARMCPRegInfo *ri,
1260                                         bool isread)
1261 {
1262     /* ER: event counter read trap control */
1263     if (arm_feature(env, ARM_FEATURE_V8)
1264         && arm_current_el(env) == 0
1265         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1266         return CP_ACCESS_OK;
1267     }
1268 
1269     return pmreg_access(env, ri, isread);
1270 }
1271 
1272 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1273                                          const ARMCPRegInfo *ri,
1274                                          bool isread)
1275 {
1276     /* CR: cycle counter read trap control */
1277     if (arm_feature(env, ARM_FEATURE_V8)
1278         && arm_current_el(env) == 0
1279         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1280         && isread) {
1281         return CP_ACCESS_OK;
1282     }
1283 
1284     return pmreg_access(env, ri, isread);
1285 }
1286 
1287 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1288  * the current EL, security state, and register configuration.
1289  */
1290 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1291 {
1292     uint64_t filter;
1293     bool e, p, u, nsk, nsu, nsh, m;
1294     bool enabled, prohibited, filtered;
1295     bool secure = arm_is_secure(env);
1296     int el = arm_current_el(env);
1297     uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1298 
1299     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1300         return false;
1301     }
1302 
1303     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1304             (counter < hpmn || counter == 31)) {
1305         e = env->cp15.c9_pmcr & PMCRE;
1306     } else {
1307         e = env->cp15.mdcr_el2 & MDCR_HPME;
1308     }
1309     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1310 
1311     if (!secure) {
1312         if (el == 2 && (counter < hpmn || counter == 31)) {
1313             prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1314         } else {
1315             prohibited = false;
1316         }
1317     } else {
1318         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1319            (env->cp15.mdcr_el3 & MDCR_SPME);
1320     }
1321 
1322     if (prohibited && counter == 31) {
1323         prohibited = env->cp15.c9_pmcr & PMCRDP;
1324     }
1325 
1326     if (counter == 31) {
1327         filter = env->cp15.pmccfiltr_el0;
1328     } else {
1329         filter = env->cp15.c14_pmevtyper[counter];
1330     }
1331 
1332     p   = filter & PMXEVTYPER_P;
1333     u   = filter & PMXEVTYPER_U;
1334     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1335     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1336     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1337     m   = arm_el_is_aa64(env, 1) &&
1338               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1339 
1340     if (el == 0) {
1341         filtered = secure ? u : u != nsu;
1342     } else if (el == 1) {
1343         filtered = secure ? p : p != nsk;
1344     } else if (el == 2) {
1345         filtered = !nsh;
1346     } else { /* EL3 */
1347         filtered = m != p;
1348     }
1349 
1350     if (counter != 31) {
1351         /*
1352          * If not checking PMCCNTR, ensure the counter is setup to an event we
1353          * support
1354          */
1355         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1356         if (!event_supported(event)) {
1357             return false;
1358         }
1359     }
1360 
1361     return enabled && !prohibited && !filtered;
1362 }
1363 
1364 static void pmu_update_irq(CPUARMState *env)
1365 {
1366     ARMCPU *cpu = env_archcpu(env);
1367     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1368             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1369 }
1370 
1371 /*
1372  * Ensure c15_ccnt is the guest-visible count so that operations such as
1373  * enabling/disabling the counter or filtering, modifying the count itself,
1374  * etc. can be done logically. This is essentially a no-op if the counter is
1375  * not enabled at the time of the call.
1376  */
1377 static void pmccntr_op_start(CPUARMState *env)
1378 {
1379     uint64_t cycles = cycles_get_count(env);
1380 
1381     if (pmu_counter_enabled(env, 31)) {
1382         uint64_t eff_cycles = cycles;
1383         if (env->cp15.c9_pmcr & PMCRD) {
1384             /* Increment once every 64 processor clock cycles */
1385             eff_cycles /= 64;
1386         }
1387 
1388         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1389 
1390         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1391                                  1ull << 63 : 1ull << 31;
1392         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1393             env->cp15.c9_pmovsr |= (1 << 31);
1394             pmu_update_irq(env);
1395         }
1396 
1397         env->cp15.c15_ccnt = new_pmccntr;
1398     }
1399     env->cp15.c15_ccnt_delta = cycles;
1400 }
1401 
1402 /*
1403  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1404  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1405  * pmccntr_op_start.
1406  */
1407 static void pmccntr_op_finish(CPUARMState *env)
1408 {
1409     if (pmu_counter_enabled(env, 31)) {
1410 #ifndef CONFIG_USER_ONLY
1411         /* Calculate when the counter will next overflow */
1412         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1413         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1414             remaining_cycles = (uint32_t)remaining_cycles;
1415         }
1416         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1417 
1418         if (overflow_in > 0) {
1419             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1420                 overflow_in;
1421             ARMCPU *cpu = env_archcpu(env);
1422             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1423         }
1424 #endif
1425 
1426         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1427         if (env->cp15.c9_pmcr & PMCRD) {
1428             /* Increment once every 64 processor clock cycles */
1429             prev_cycles /= 64;
1430         }
1431         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1432     }
1433 }
1434 
1435 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1436 {
1437 
1438     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1439     uint64_t count = 0;
1440     if (event_supported(event)) {
1441         uint16_t event_idx = supported_event_map[event];
1442         count = pm_events[event_idx].get_count(env);
1443     }
1444 
1445     if (pmu_counter_enabled(env, counter)) {
1446         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1447 
1448         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1449             env->cp15.c9_pmovsr |= (1 << counter);
1450             pmu_update_irq(env);
1451         }
1452         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1453     }
1454     env->cp15.c14_pmevcntr_delta[counter] = count;
1455 }
1456 
1457 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1458 {
1459     if (pmu_counter_enabled(env, counter)) {
1460 #ifndef CONFIG_USER_ONLY
1461         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1462         uint16_t event_idx = supported_event_map[event];
1463         uint64_t delta = UINT32_MAX -
1464             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1465         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1466 
1467         if (overflow_in > 0) {
1468             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1469                 overflow_in;
1470             ARMCPU *cpu = env_archcpu(env);
1471             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1472         }
1473 #endif
1474 
1475         env->cp15.c14_pmevcntr_delta[counter] -=
1476             env->cp15.c14_pmevcntr[counter];
1477     }
1478 }
1479 
1480 void pmu_op_start(CPUARMState *env)
1481 {
1482     unsigned int i;
1483     pmccntr_op_start(env);
1484     for (i = 0; i < pmu_num_counters(env); i++) {
1485         pmevcntr_op_start(env, i);
1486     }
1487 }
1488 
1489 void pmu_op_finish(CPUARMState *env)
1490 {
1491     unsigned int i;
1492     pmccntr_op_finish(env);
1493     for (i = 0; i < pmu_num_counters(env); i++) {
1494         pmevcntr_op_finish(env, i);
1495     }
1496 }
1497 
1498 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1499 {
1500     pmu_op_start(&cpu->env);
1501 }
1502 
1503 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1504 {
1505     pmu_op_finish(&cpu->env);
1506 }
1507 
1508 void arm_pmu_timer_cb(void *opaque)
1509 {
1510     ARMCPU *cpu = opaque;
1511 
1512     /*
1513      * Update all the counter values based on the current underlying counts,
1514      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1515      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1516      * counter may expire.
1517      */
1518     pmu_op_start(&cpu->env);
1519     pmu_op_finish(&cpu->env);
1520 }
1521 
1522 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523                        uint64_t value)
1524 {
1525     pmu_op_start(env);
1526 
1527     if (value & PMCRC) {
1528         /* The counter has been reset */
1529         env->cp15.c15_ccnt = 0;
1530     }
1531 
1532     if (value & PMCRP) {
1533         unsigned int i;
1534         for (i = 0; i < pmu_num_counters(env); i++) {
1535             env->cp15.c14_pmevcntr[i] = 0;
1536         }
1537     }
1538 
1539     /* only the DP, X, D and E bits are writable */
1540     env->cp15.c9_pmcr &= ~0x39;
1541     env->cp15.c9_pmcr |= (value & 0x39);
1542 
1543     pmu_op_finish(env);
1544 }
1545 
1546 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1547                           uint64_t value)
1548 {
1549     unsigned int i;
1550     for (i = 0; i < pmu_num_counters(env); i++) {
1551         /* Increment a counter's count iff: */
1552         if ((value & (1 << i)) && /* counter's bit is set */
1553                 /* counter is enabled and not filtered */
1554                 pmu_counter_enabled(env, i) &&
1555                 /* counter is SW_INCR */
1556                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1557             pmevcntr_op_start(env, i);
1558 
1559             /*
1560              * Detect if this write causes an overflow since we can't predict
1561              * PMSWINC overflows like we can for other events
1562              */
1563             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1564 
1565             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1566                 env->cp15.c9_pmovsr |= (1 << i);
1567                 pmu_update_irq(env);
1568             }
1569 
1570             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1571 
1572             pmevcntr_op_finish(env, i);
1573         }
1574     }
1575 }
1576 
1577 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1578 {
1579     uint64_t ret;
1580     pmccntr_op_start(env);
1581     ret = env->cp15.c15_ccnt;
1582     pmccntr_op_finish(env);
1583     return ret;
1584 }
1585 
1586 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1587                          uint64_t value)
1588 {
1589     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1590      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1591      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1592      * accessed.
1593      */
1594     env->cp15.c9_pmselr = value & 0x1f;
1595 }
1596 
1597 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1598                         uint64_t value)
1599 {
1600     pmccntr_op_start(env);
1601     env->cp15.c15_ccnt = value;
1602     pmccntr_op_finish(env);
1603 }
1604 
1605 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1606                             uint64_t value)
1607 {
1608     uint64_t cur_val = pmccntr_read(env, NULL);
1609 
1610     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1611 }
1612 
1613 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1614                             uint64_t value)
1615 {
1616     pmccntr_op_start(env);
1617     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1618     pmccntr_op_finish(env);
1619 }
1620 
1621 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1622                             uint64_t value)
1623 {
1624     pmccntr_op_start(env);
1625     /* M is not accessible from AArch32 */
1626     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1627         (value & PMCCFILTR);
1628     pmccntr_op_finish(env);
1629 }
1630 
1631 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1632 {
1633     /* M is not visible in AArch32 */
1634     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1635 }
1636 
1637 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1638                             uint64_t value)
1639 {
1640     value &= pmu_counter_mask(env);
1641     env->cp15.c9_pmcnten |= value;
1642 }
1643 
1644 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1645                              uint64_t value)
1646 {
1647     value &= pmu_counter_mask(env);
1648     env->cp15.c9_pmcnten &= ~value;
1649 }
1650 
1651 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1652                          uint64_t value)
1653 {
1654     value &= pmu_counter_mask(env);
1655     env->cp15.c9_pmovsr &= ~value;
1656     pmu_update_irq(env);
1657 }
1658 
1659 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1660                          uint64_t value)
1661 {
1662     value &= pmu_counter_mask(env);
1663     env->cp15.c9_pmovsr |= value;
1664     pmu_update_irq(env);
1665 }
1666 
1667 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1668                              uint64_t value, const uint8_t counter)
1669 {
1670     if (counter == 31) {
1671         pmccfiltr_write(env, ri, value);
1672     } else if (counter < pmu_num_counters(env)) {
1673         pmevcntr_op_start(env, counter);
1674 
1675         /*
1676          * If this counter's event type is changing, store the current
1677          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1678          * pmevcntr_op_finish has the correct baseline when it converts back to
1679          * a delta.
1680          */
1681         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1682             PMXEVTYPER_EVTCOUNT;
1683         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1684         if (old_event != new_event) {
1685             uint64_t count = 0;
1686             if (event_supported(new_event)) {
1687                 uint16_t event_idx = supported_event_map[new_event];
1688                 count = pm_events[event_idx].get_count(env);
1689             }
1690             env->cp15.c14_pmevcntr_delta[counter] = count;
1691         }
1692 
1693         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1694         pmevcntr_op_finish(env, counter);
1695     }
1696     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1697      * PMSELR value is equal to or greater than the number of implemented
1698      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1699      */
1700 }
1701 
1702 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1703                                const uint8_t counter)
1704 {
1705     if (counter == 31) {
1706         return env->cp15.pmccfiltr_el0;
1707     } else if (counter < pmu_num_counters(env)) {
1708         return env->cp15.c14_pmevtyper[counter];
1709     } else {
1710       /*
1711        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1712        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1713        */
1714         return 0;
1715     }
1716 }
1717 
1718 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1719                               uint64_t value)
1720 {
1721     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1722     pmevtyper_write(env, ri, value, counter);
1723 }
1724 
1725 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1726                                uint64_t value)
1727 {
1728     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1729     env->cp15.c14_pmevtyper[counter] = value;
1730 
1731     /*
1732      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1733      * pmu_op_finish calls when loading saved state for a migration. Because
1734      * we're potentially updating the type of event here, the value written to
1735      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1736      * different counter type. Therefore, we need to set this value to the
1737      * current count for the counter type we're writing so that pmu_op_finish
1738      * has the correct count for its calculation.
1739      */
1740     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1741     if (event_supported(event)) {
1742         uint16_t event_idx = supported_event_map[event];
1743         env->cp15.c14_pmevcntr_delta[counter] =
1744             pm_events[event_idx].get_count(env);
1745     }
1746 }
1747 
1748 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1749 {
1750     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751     return pmevtyper_read(env, ri, counter);
1752 }
1753 
1754 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1755                              uint64_t value)
1756 {
1757     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1758 }
1759 
1760 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1761 {
1762     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1763 }
1764 
1765 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1766                              uint64_t value, uint8_t counter)
1767 {
1768     if (counter < pmu_num_counters(env)) {
1769         pmevcntr_op_start(env, counter);
1770         env->cp15.c14_pmevcntr[counter] = value;
1771         pmevcntr_op_finish(env, counter);
1772     }
1773     /*
1774      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1775      * are CONSTRAINED UNPREDICTABLE.
1776      */
1777 }
1778 
1779 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1780                               uint8_t counter)
1781 {
1782     if (counter < pmu_num_counters(env)) {
1783         uint64_t ret;
1784         pmevcntr_op_start(env, counter);
1785         ret = env->cp15.c14_pmevcntr[counter];
1786         pmevcntr_op_finish(env, counter);
1787         return ret;
1788     } else {
1789       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1790        * are CONSTRAINED UNPREDICTABLE. */
1791         return 0;
1792     }
1793 }
1794 
1795 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1796                              uint64_t value)
1797 {
1798     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1799     pmevcntr_write(env, ri, value, counter);
1800 }
1801 
1802 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1803 {
1804     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1805     return pmevcntr_read(env, ri, counter);
1806 }
1807 
1808 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1809                              uint64_t value)
1810 {
1811     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1812     assert(counter < pmu_num_counters(env));
1813     env->cp15.c14_pmevcntr[counter] = value;
1814     pmevcntr_write(env, ri, value, counter);
1815 }
1816 
1817 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1818 {
1819     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1820     assert(counter < pmu_num_counters(env));
1821     return env->cp15.c14_pmevcntr[counter];
1822 }
1823 
1824 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1825                              uint64_t value)
1826 {
1827     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1828 }
1829 
1830 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1831 {
1832     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1833 }
1834 
1835 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1836                             uint64_t value)
1837 {
1838     if (arm_feature(env, ARM_FEATURE_V8)) {
1839         env->cp15.c9_pmuserenr = value & 0xf;
1840     } else {
1841         env->cp15.c9_pmuserenr = value & 1;
1842     }
1843 }
1844 
1845 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1846                              uint64_t value)
1847 {
1848     /* We have no event counters so only the C bit can be changed */
1849     value &= pmu_counter_mask(env);
1850     env->cp15.c9_pminten |= value;
1851     pmu_update_irq(env);
1852 }
1853 
1854 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1855                              uint64_t value)
1856 {
1857     value &= pmu_counter_mask(env);
1858     env->cp15.c9_pminten &= ~value;
1859     pmu_update_irq(env);
1860 }
1861 
1862 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1863                        uint64_t value)
1864 {
1865     /* Note that even though the AArch64 view of this register has bits
1866      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1867      * architectural requirements for bits which are RES0 only in some
1868      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1869      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1870      */
1871     raw_write(env, ri, value & ~0x1FULL);
1872 }
1873 
1874 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1875 {
1876     /* Begin with base v8.0 state.  */
1877     uint32_t valid_mask = 0x3fff;
1878     ARMCPU *cpu = env_archcpu(env);
1879 
1880     if (arm_el_is_aa64(env, 3)) {
1881         value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1882         valid_mask &= ~SCR_NET;
1883     } else {
1884         valid_mask &= ~(SCR_RW | SCR_ST);
1885     }
1886 
1887     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1888         valid_mask &= ~SCR_HCE;
1889 
1890         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1891          * supported if EL2 exists. The bit is UNK/SBZP when
1892          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1893          * when EL2 is unavailable.
1894          * On ARMv8, this bit is always available.
1895          */
1896         if (arm_feature(env, ARM_FEATURE_V7) &&
1897             !arm_feature(env, ARM_FEATURE_V8)) {
1898             valid_mask &= ~SCR_SMD;
1899         }
1900     }
1901     if (cpu_isar_feature(aa64_lor, cpu)) {
1902         valid_mask |= SCR_TLOR;
1903     }
1904     if (cpu_isar_feature(aa64_pauth, cpu)) {
1905         valid_mask |= SCR_API | SCR_APK;
1906     }
1907 
1908     /* Clear all-context RES0 bits.  */
1909     value &= valid_mask;
1910     raw_write(env, ri, value);
1911 }
1912 
1913 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1914 {
1915     ARMCPU *cpu = env_archcpu(env);
1916 
1917     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1918      * bank
1919      */
1920     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1921                                         ri->secure & ARM_CP_SECSTATE_S);
1922 
1923     return cpu->ccsidr[index];
1924 }
1925 
1926 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1927                          uint64_t value)
1928 {
1929     raw_write(env, ri, value & 0xf);
1930 }
1931 
1932 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1933 {
1934     CPUState *cs = env_cpu(env);
1935     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1936     uint64_t ret = 0;
1937     bool allow_virt = (arm_current_el(env) == 1 &&
1938                        (!arm_is_secure_below_el3(env) ||
1939                         (env->cp15.scr_el3 & SCR_EEL2)));
1940 
1941     if (allow_virt && (hcr_el2 & HCR_IMO)) {
1942         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1943             ret |= CPSR_I;
1944         }
1945     } else {
1946         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1947             ret |= CPSR_I;
1948         }
1949     }
1950 
1951     if (allow_virt && (hcr_el2 & HCR_FMO)) {
1952         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1953             ret |= CPSR_F;
1954         }
1955     } else {
1956         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1957             ret |= CPSR_F;
1958         }
1959     }
1960 
1961     /* External aborts are not possible in QEMU so A bit is always clear */
1962     return ret;
1963 }
1964 
1965 static const ARMCPRegInfo v7_cp_reginfo[] = {
1966     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1967     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1968       .access = PL1_W, .type = ARM_CP_NOP },
1969     /* Performance monitors are implementation defined in v7,
1970      * but with an ARM recommended set of registers, which we
1971      * follow.
1972      *
1973      * Performance registers fall into three categories:
1974      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1975      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1976      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1977      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1978      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1979      */
1980     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1981       .access = PL0_RW, .type = ARM_CP_ALIAS,
1982       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1983       .writefn = pmcntenset_write,
1984       .accessfn = pmreg_access,
1985       .raw_writefn = raw_write },
1986     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1987       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1988       .access = PL0_RW, .accessfn = pmreg_access,
1989       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1990       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1991     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1992       .access = PL0_RW,
1993       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1994       .accessfn = pmreg_access,
1995       .writefn = pmcntenclr_write,
1996       .type = ARM_CP_ALIAS },
1997     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1998       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1999       .access = PL0_RW, .accessfn = pmreg_access,
2000       .type = ARM_CP_ALIAS,
2001       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2002       .writefn = pmcntenclr_write },
2003     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2004       .access = PL0_RW, .type = ARM_CP_IO,
2005       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2006       .accessfn = pmreg_access,
2007       .writefn = pmovsr_write,
2008       .raw_writefn = raw_write },
2009     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2010       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2011       .access = PL0_RW, .accessfn = pmreg_access,
2012       .type = ARM_CP_ALIAS | ARM_CP_IO,
2013       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2014       .writefn = pmovsr_write,
2015       .raw_writefn = raw_write },
2016     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2017       .access = PL0_W, .accessfn = pmreg_access_swinc,
2018       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2019       .writefn = pmswinc_write },
2020     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2021       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2022       .access = PL0_W, .accessfn = pmreg_access_swinc,
2023       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2024       .writefn = pmswinc_write },
2025     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2026       .access = PL0_RW, .type = ARM_CP_ALIAS,
2027       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2028       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2029       .raw_writefn = raw_write},
2030     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2031       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2032       .access = PL0_RW, .accessfn = pmreg_access_selr,
2033       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2034       .writefn = pmselr_write, .raw_writefn = raw_write, },
2035     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2036       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2037       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2038       .accessfn = pmreg_access_ccntr },
2039     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2040       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2041       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2042       .type = ARM_CP_IO,
2043       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2044       .readfn = pmccntr_read, .writefn = pmccntr_write,
2045       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2046     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2047       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2048       .access = PL0_RW, .accessfn = pmreg_access,
2049       .type = ARM_CP_ALIAS | ARM_CP_IO,
2050       .resetvalue = 0, },
2051     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2052       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2053       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2054       .access = PL0_RW, .accessfn = pmreg_access,
2055       .type = ARM_CP_IO,
2056       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2057       .resetvalue = 0, },
2058     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2059       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2060       .accessfn = pmreg_access,
2061       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2062     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2063       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2064       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2065       .accessfn = pmreg_access,
2066       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2067     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2068       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2069       .accessfn = pmreg_access_xevcntr,
2070       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2071     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2072       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2073       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2074       .accessfn = pmreg_access_xevcntr,
2075       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2076     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2077       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2078       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2079       .resetvalue = 0,
2080       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2081     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2082       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2083       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2084       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2085       .resetvalue = 0,
2086       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2087     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2088       .access = PL1_RW, .accessfn = access_tpm,
2089       .type = ARM_CP_ALIAS | ARM_CP_IO,
2090       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2091       .resetvalue = 0,
2092       .writefn = pmintenset_write, .raw_writefn = raw_write },
2093     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2094       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2095       .access = PL1_RW, .accessfn = access_tpm,
2096       .type = ARM_CP_IO,
2097       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2098       .writefn = pmintenset_write, .raw_writefn = raw_write,
2099       .resetvalue = 0x0 },
2100     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2101       .access = PL1_RW, .accessfn = access_tpm,
2102       .type = ARM_CP_ALIAS | ARM_CP_IO,
2103       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2104       .writefn = pmintenclr_write, },
2105     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2106       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2107       .access = PL1_RW, .accessfn = access_tpm,
2108       .type = ARM_CP_ALIAS | ARM_CP_IO,
2109       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2110       .writefn = pmintenclr_write },
2111     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2112       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2113       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2114     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2115       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2116       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2117       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2118                              offsetof(CPUARMState, cp15.csselr_ns) } },
2119     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2120      * just RAZ for all cores:
2121      */
2122     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2123       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2124       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2125     /* Auxiliary fault status registers: these also are IMPDEF, and we
2126      * choose to RAZ/WI for all cores.
2127      */
2128     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2129       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2130       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2131     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2132       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2133       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2134     /* MAIR can just read-as-written because we don't implement caches
2135      * and so don't need to care about memory attributes.
2136      */
2137     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2138       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2139       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2140       .resetvalue = 0 },
2141     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2142       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2143       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2144       .resetvalue = 0 },
2145     /* For non-long-descriptor page tables these are PRRR and NMRR;
2146      * regardless they still act as reads-as-written for QEMU.
2147      */
2148      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2149       * allows them to assign the correct fieldoffset based on the endianness
2150       * handled in the field definitions.
2151       */
2152     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2153       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2154       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2155                              offsetof(CPUARMState, cp15.mair0_ns) },
2156       .resetfn = arm_cp_reset_ignore },
2157     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2158       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2159       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2160                              offsetof(CPUARMState, cp15.mair1_ns) },
2161       .resetfn = arm_cp_reset_ignore },
2162     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2163       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2164       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2165     /* 32 bit ITLB invalidates */
2166     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2167       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2168     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2169       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2170     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2171       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2172     /* 32 bit DTLB invalidates */
2173     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2174       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2175     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2176       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2177     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2178       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2179     /* 32 bit TLB invalidates */
2180     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2181       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2182     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2183       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2184     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2185       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2186     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2187       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2188     REGINFO_SENTINEL
2189 };
2190 
2191 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2192     /* 32 bit TLB invalidates, Inner Shareable */
2193     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2194       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2195     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2196       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2197     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2198       .type = ARM_CP_NO_RAW, .access = PL1_W,
2199       .writefn = tlbiasid_is_write },
2200     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2201       .type = ARM_CP_NO_RAW, .access = PL1_W,
2202       .writefn = tlbimvaa_is_write },
2203     REGINFO_SENTINEL
2204 };
2205 
2206 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2207     /* PMOVSSET is not implemented in v7 before v7ve */
2208     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2209       .access = PL0_RW, .accessfn = pmreg_access,
2210       .type = ARM_CP_ALIAS | ARM_CP_IO,
2211       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2212       .writefn = pmovsset_write,
2213       .raw_writefn = raw_write },
2214     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2215       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2216       .access = PL0_RW, .accessfn = pmreg_access,
2217       .type = ARM_CP_ALIAS | ARM_CP_IO,
2218       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2219       .writefn = pmovsset_write,
2220       .raw_writefn = raw_write },
2221     REGINFO_SENTINEL
2222 };
2223 
2224 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2225                         uint64_t value)
2226 {
2227     value &= 1;
2228     env->teecr = value;
2229 }
2230 
2231 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2232                                     bool isread)
2233 {
2234     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2235         return CP_ACCESS_TRAP;
2236     }
2237     return CP_ACCESS_OK;
2238 }
2239 
2240 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2241     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2242       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2243       .resetvalue = 0,
2244       .writefn = teecr_write },
2245     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2246       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2247       .accessfn = teehbr_access, .resetvalue = 0 },
2248     REGINFO_SENTINEL
2249 };
2250 
2251 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2252     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2253       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2254       .access = PL0_RW,
2255       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2256     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2257       .access = PL0_RW,
2258       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2259                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2260       .resetfn = arm_cp_reset_ignore },
2261     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2262       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2263       .access = PL0_R|PL1_W,
2264       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2265       .resetvalue = 0},
2266     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2267       .access = PL0_R|PL1_W,
2268       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2269                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2270       .resetfn = arm_cp_reset_ignore },
2271     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2272       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2273       .access = PL1_RW,
2274       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2275     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2276       .access = PL1_RW,
2277       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2278                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2279       .resetvalue = 0 },
2280     REGINFO_SENTINEL
2281 };
2282 
2283 #ifndef CONFIG_USER_ONLY
2284 
2285 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2286                                        bool isread)
2287 {
2288     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2289      * Writable only at the highest implemented exception level.
2290      */
2291     int el = arm_current_el(env);
2292 
2293     switch (el) {
2294     case 0:
2295         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2296             return CP_ACCESS_TRAP;
2297         }
2298         break;
2299     case 1:
2300         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2301             arm_is_secure_below_el3(env)) {
2302             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2303             return CP_ACCESS_TRAP_UNCATEGORIZED;
2304         }
2305         break;
2306     case 2:
2307     case 3:
2308         break;
2309     }
2310 
2311     if (!isread && el < arm_highest_el(env)) {
2312         return CP_ACCESS_TRAP_UNCATEGORIZED;
2313     }
2314 
2315     return CP_ACCESS_OK;
2316 }
2317 
2318 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2319                                         bool isread)
2320 {
2321     unsigned int cur_el = arm_current_el(env);
2322     bool secure = arm_is_secure(env);
2323 
2324     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2325     if (cur_el == 0 &&
2326         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2327         return CP_ACCESS_TRAP;
2328     }
2329 
2330     if (arm_feature(env, ARM_FEATURE_EL2) &&
2331         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2332         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2333         return CP_ACCESS_TRAP_EL2;
2334     }
2335     return CP_ACCESS_OK;
2336 }
2337 
2338 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2339                                       bool isread)
2340 {
2341     unsigned int cur_el = arm_current_el(env);
2342     bool secure = arm_is_secure(env);
2343 
2344     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2345      * EL0[PV]TEN is zero.
2346      */
2347     if (cur_el == 0 &&
2348         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2349         return CP_ACCESS_TRAP;
2350     }
2351 
2352     if (arm_feature(env, ARM_FEATURE_EL2) &&
2353         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2354         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2355         return CP_ACCESS_TRAP_EL2;
2356     }
2357     return CP_ACCESS_OK;
2358 }
2359 
2360 static CPAccessResult gt_pct_access(CPUARMState *env,
2361                                     const ARMCPRegInfo *ri,
2362                                     bool isread)
2363 {
2364     return gt_counter_access(env, GTIMER_PHYS, isread);
2365 }
2366 
2367 static CPAccessResult gt_vct_access(CPUARMState *env,
2368                                     const ARMCPRegInfo *ri,
2369                                     bool isread)
2370 {
2371     return gt_counter_access(env, GTIMER_VIRT, isread);
2372 }
2373 
2374 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2375                                        bool isread)
2376 {
2377     return gt_timer_access(env, GTIMER_PHYS, isread);
2378 }
2379 
2380 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2381                                        bool isread)
2382 {
2383     return gt_timer_access(env, GTIMER_VIRT, isread);
2384 }
2385 
2386 static CPAccessResult gt_stimer_access(CPUARMState *env,
2387                                        const ARMCPRegInfo *ri,
2388                                        bool isread)
2389 {
2390     /* The AArch64 register view of the secure physical timer is
2391      * always accessible from EL3, and configurably accessible from
2392      * Secure EL1.
2393      */
2394     switch (arm_current_el(env)) {
2395     case 1:
2396         if (!arm_is_secure(env)) {
2397             return CP_ACCESS_TRAP;
2398         }
2399         if (!(env->cp15.scr_el3 & SCR_ST)) {
2400             return CP_ACCESS_TRAP_EL3;
2401         }
2402         return CP_ACCESS_OK;
2403     case 0:
2404     case 2:
2405         return CP_ACCESS_TRAP;
2406     case 3:
2407         return CP_ACCESS_OK;
2408     default:
2409         g_assert_not_reached();
2410     }
2411 }
2412 
2413 static uint64_t gt_get_countervalue(CPUARMState *env)
2414 {
2415     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2416 }
2417 
2418 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2419 {
2420     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2421 
2422     if (gt->ctl & 1) {
2423         /* Timer enabled: calculate and set current ISTATUS, irq, and
2424          * reset timer to when ISTATUS next has to change
2425          */
2426         uint64_t offset = timeridx == GTIMER_VIRT ?
2427                                       cpu->env.cp15.cntvoff_el2 : 0;
2428         uint64_t count = gt_get_countervalue(&cpu->env);
2429         /* Note that this must be unsigned 64 bit arithmetic: */
2430         int istatus = count - offset >= gt->cval;
2431         uint64_t nexttick;
2432         int irqstate;
2433 
2434         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2435 
2436         irqstate = (istatus && !(gt->ctl & 2));
2437         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2438 
2439         if (istatus) {
2440             /* Next transition is when count rolls back over to zero */
2441             nexttick = UINT64_MAX;
2442         } else {
2443             /* Next transition is when we hit cval */
2444             nexttick = gt->cval + offset;
2445         }
2446         /* Note that the desired next expiry time might be beyond the
2447          * signed-64-bit range of a QEMUTimer -- in this case we just
2448          * set the timer for as far in the future as possible. When the
2449          * timer expires we will reset the timer for any remaining period.
2450          */
2451         if (nexttick > INT64_MAX / GTIMER_SCALE) {
2452             nexttick = INT64_MAX / GTIMER_SCALE;
2453         }
2454         timer_mod(cpu->gt_timer[timeridx], nexttick);
2455         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2456     } else {
2457         /* Timer disabled: ISTATUS and timer output always clear */
2458         gt->ctl &= ~4;
2459         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2460         timer_del(cpu->gt_timer[timeridx]);
2461         trace_arm_gt_recalc_disabled(timeridx);
2462     }
2463 }
2464 
2465 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2466                            int timeridx)
2467 {
2468     ARMCPU *cpu = env_archcpu(env);
2469 
2470     timer_del(cpu->gt_timer[timeridx]);
2471 }
2472 
2473 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2474 {
2475     return gt_get_countervalue(env);
2476 }
2477 
2478 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2479 {
2480     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2481 }
2482 
2483 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2484                           int timeridx,
2485                           uint64_t value)
2486 {
2487     trace_arm_gt_cval_write(timeridx, value);
2488     env->cp15.c14_timer[timeridx].cval = value;
2489     gt_recalc_timer(env_archcpu(env), timeridx);
2490 }
2491 
2492 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2493                              int timeridx)
2494 {
2495     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2496 
2497     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2498                       (gt_get_countervalue(env) - offset));
2499 }
2500 
2501 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2502                           int timeridx,
2503                           uint64_t value)
2504 {
2505     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2506 
2507     trace_arm_gt_tval_write(timeridx, value);
2508     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2509                                          sextract64(value, 0, 32);
2510     gt_recalc_timer(env_archcpu(env), timeridx);
2511 }
2512 
2513 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2514                          int timeridx,
2515                          uint64_t value)
2516 {
2517     ARMCPU *cpu = env_archcpu(env);
2518     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2519 
2520     trace_arm_gt_ctl_write(timeridx, value);
2521     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2522     if ((oldval ^ value) & 1) {
2523         /* Enable toggled */
2524         gt_recalc_timer(cpu, timeridx);
2525     } else if ((oldval ^ value) & 2) {
2526         /* IMASK toggled: don't need to recalculate,
2527          * just set the interrupt line based on ISTATUS
2528          */
2529         int irqstate = (oldval & 4) && !(value & 2);
2530 
2531         trace_arm_gt_imask_toggle(timeridx, irqstate);
2532         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2533     }
2534 }
2535 
2536 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2537 {
2538     gt_timer_reset(env, ri, GTIMER_PHYS);
2539 }
2540 
2541 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2542                                uint64_t value)
2543 {
2544     gt_cval_write(env, ri, GTIMER_PHYS, value);
2545 }
2546 
2547 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2548 {
2549     return gt_tval_read(env, ri, GTIMER_PHYS);
2550 }
2551 
2552 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2553                                uint64_t value)
2554 {
2555     gt_tval_write(env, ri, GTIMER_PHYS, value);
2556 }
2557 
2558 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2559                               uint64_t value)
2560 {
2561     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2562 }
2563 
2564 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2565 {
2566     gt_timer_reset(env, ri, GTIMER_VIRT);
2567 }
2568 
2569 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2570                                uint64_t value)
2571 {
2572     gt_cval_write(env, ri, GTIMER_VIRT, value);
2573 }
2574 
2575 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2576 {
2577     return gt_tval_read(env, ri, GTIMER_VIRT);
2578 }
2579 
2580 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2581                                uint64_t value)
2582 {
2583     gt_tval_write(env, ri, GTIMER_VIRT, value);
2584 }
2585 
2586 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2587                               uint64_t value)
2588 {
2589     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2590 }
2591 
2592 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2593                               uint64_t value)
2594 {
2595     ARMCPU *cpu = env_archcpu(env);
2596 
2597     trace_arm_gt_cntvoff_write(value);
2598     raw_write(env, ri, value);
2599     gt_recalc_timer(cpu, GTIMER_VIRT);
2600 }
2601 
2602 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2603 {
2604     gt_timer_reset(env, ri, GTIMER_HYP);
2605 }
2606 
2607 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2608                               uint64_t value)
2609 {
2610     gt_cval_write(env, ri, GTIMER_HYP, value);
2611 }
2612 
2613 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2614 {
2615     return gt_tval_read(env, ri, GTIMER_HYP);
2616 }
2617 
2618 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2619                               uint64_t value)
2620 {
2621     gt_tval_write(env, ri, GTIMER_HYP, value);
2622 }
2623 
2624 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2625                               uint64_t value)
2626 {
2627     gt_ctl_write(env, ri, GTIMER_HYP, value);
2628 }
2629 
2630 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2631 {
2632     gt_timer_reset(env, ri, GTIMER_SEC);
2633 }
2634 
2635 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2636                               uint64_t value)
2637 {
2638     gt_cval_write(env, ri, GTIMER_SEC, value);
2639 }
2640 
2641 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2642 {
2643     return gt_tval_read(env, ri, GTIMER_SEC);
2644 }
2645 
2646 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2647                               uint64_t value)
2648 {
2649     gt_tval_write(env, ri, GTIMER_SEC, value);
2650 }
2651 
2652 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2653                               uint64_t value)
2654 {
2655     gt_ctl_write(env, ri, GTIMER_SEC, value);
2656 }
2657 
2658 void arm_gt_ptimer_cb(void *opaque)
2659 {
2660     ARMCPU *cpu = opaque;
2661 
2662     gt_recalc_timer(cpu, GTIMER_PHYS);
2663 }
2664 
2665 void arm_gt_vtimer_cb(void *opaque)
2666 {
2667     ARMCPU *cpu = opaque;
2668 
2669     gt_recalc_timer(cpu, GTIMER_VIRT);
2670 }
2671 
2672 void arm_gt_htimer_cb(void *opaque)
2673 {
2674     ARMCPU *cpu = opaque;
2675 
2676     gt_recalc_timer(cpu, GTIMER_HYP);
2677 }
2678 
2679 void arm_gt_stimer_cb(void *opaque)
2680 {
2681     ARMCPU *cpu = opaque;
2682 
2683     gt_recalc_timer(cpu, GTIMER_SEC);
2684 }
2685 
2686 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2687     /* Note that CNTFRQ is purely reads-as-written for the benefit
2688      * of software; writing it doesn't actually change the timer frequency.
2689      * Our reset value matches the fixed frequency we implement the timer at.
2690      */
2691     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2692       .type = ARM_CP_ALIAS,
2693       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2694       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2695     },
2696     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2697       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2698       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2699       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2700       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2701     },
2702     /* overall control: mostly access permissions */
2703     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2704       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2705       .access = PL1_RW,
2706       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2707       .resetvalue = 0,
2708     },
2709     /* per-timer control */
2710     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2711       .secure = ARM_CP_SECSTATE_NS,
2712       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2713       .accessfn = gt_ptimer_access,
2714       .fieldoffset = offsetoflow32(CPUARMState,
2715                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2716       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2717     },
2718     { .name = "CNTP_CTL_S",
2719       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2720       .secure = ARM_CP_SECSTATE_S,
2721       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2722       .accessfn = gt_ptimer_access,
2723       .fieldoffset = offsetoflow32(CPUARMState,
2724                                    cp15.c14_timer[GTIMER_SEC].ctl),
2725       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2726     },
2727     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2728       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2729       .type = ARM_CP_IO, .access = PL0_RW,
2730       .accessfn = gt_ptimer_access,
2731       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2732       .resetvalue = 0,
2733       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2734     },
2735     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2736       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2737       .accessfn = gt_vtimer_access,
2738       .fieldoffset = offsetoflow32(CPUARMState,
2739                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2740       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2741     },
2742     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2743       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2744       .type = ARM_CP_IO, .access = PL0_RW,
2745       .accessfn = gt_vtimer_access,
2746       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2747       .resetvalue = 0,
2748       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2749     },
2750     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2751     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2752       .secure = ARM_CP_SECSTATE_NS,
2753       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2754       .accessfn = gt_ptimer_access,
2755       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2756     },
2757     { .name = "CNTP_TVAL_S",
2758       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2759       .secure = ARM_CP_SECSTATE_S,
2760       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2761       .accessfn = gt_ptimer_access,
2762       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2763     },
2764     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2765       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2766       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2767       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2768       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2769     },
2770     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2771       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2772       .accessfn = gt_vtimer_access,
2773       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2774     },
2775     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2776       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2777       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2778       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2779       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2780     },
2781     /* The counter itself */
2782     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2783       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2784       .accessfn = gt_pct_access,
2785       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2786     },
2787     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2788       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2789       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2790       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2791     },
2792     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2793       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2794       .accessfn = gt_vct_access,
2795       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2796     },
2797     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2798       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2799       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2800       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2801     },
2802     /* Comparison value, indicating when the timer goes off */
2803     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2804       .secure = ARM_CP_SECSTATE_NS,
2805       .access = PL0_RW,
2806       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2807       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2808       .accessfn = gt_ptimer_access,
2809       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2810     },
2811     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2812       .secure = ARM_CP_SECSTATE_S,
2813       .access = PL0_RW,
2814       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2815       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2816       .accessfn = gt_ptimer_access,
2817       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2818     },
2819     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2820       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2821       .access = PL0_RW,
2822       .type = ARM_CP_IO,
2823       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2824       .resetvalue = 0, .accessfn = gt_ptimer_access,
2825       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2826     },
2827     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2828       .access = PL0_RW,
2829       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2830       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2831       .accessfn = gt_vtimer_access,
2832       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2833     },
2834     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2835       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2836       .access = PL0_RW,
2837       .type = ARM_CP_IO,
2838       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2839       .resetvalue = 0, .accessfn = gt_vtimer_access,
2840       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2841     },
2842     /* Secure timer -- this is actually restricted to only EL3
2843      * and configurably Secure-EL1 via the accessfn.
2844      */
2845     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2846       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2847       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2848       .accessfn = gt_stimer_access,
2849       .readfn = gt_sec_tval_read,
2850       .writefn = gt_sec_tval_write,
2851       .resetfn = gt_sec_timer_reset,
2852     },
2853     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2854       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2855       .type = ARM_CP_IO, .access = PL1_RW,
2856       .accessfn = gt_stimer_access,
2857       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2858       .resetvalue = 0,
2859       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2860     },
2861     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2862       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2863       .type = ARM_CP_IO, .access = PL1_RW,
2864       .accessfn = gt_stimer_access,
2865       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2866       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2867     },
2868     REGINFO_SENTINEL
2869 };
2870 
2871 #else
2872 
2873 /* In user-mode most of the generic timer registers are inaccessible
2874  * however modern kernels (4.12+) allow access to cntvct_el0
2875  */
2876 
2877 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2878 {
2879     /* Currently we have no support for QEMUTimer in linux-user so we
2880      * can't call gt_get_countervalue(env), instead we directly
2881      * call the lower level functions.
2882      */
2883     return cpu_get_clock() / GTIMER_SCALE;
2884 }
2885 
2886 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2887     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2888       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2889       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2890       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2891       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2892     },
2893     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2894       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2895       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2896       .readfn = gt_virt_cnt_read,
2897     },
2898     REGINFO_SENTINEL
2899 };
2900 
2901 #endif
2902 
2903 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2904 {
2905     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2906         raw_write(env, ri, value);
2907     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2908         raw_write(env, ri, value & 0xfffff6ff);
2909     } else {
2910         raw_write(env, ri, value & 0xfffff1ff);
2911     }
2912 }
2913 
2914 #ifndef CONFIG_USER_ONLY
2915 /* get_phys_addr() isn't present for user-mode-only targets */
2916 
2917 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2918                                  bool isread)
2919 {
2920     if (ri->opc2 & 4) {
2921         /* The ATS12NSO* operations must trap to EL3 if executed in
2922          * Secure EL1 (which can only happen if EL3 is AArch64).
2923          * They are simply UNDEF if executed from NS EL1.
2924          * They function normally from EL2 or EL3.
2925          */
2926         if (arm_current_el(env) == 1) {
2927             if (arm_is_secure_below_el3(env)) {
2928                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2929             }
2930             return CP_ACCESS_TRAP_UNCATEGORIZED;
2931         }
2932     }
2933     return CP_ACCESS_OK;
2934 }
2935 
2936 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2937                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2938 {
2939     hwaddr phys_addr;
2940     target_ulong page_size;
2941     int prot;
2942     bool ret;
2943     uint64_t par64;
2944     bool format64 = false;
2945     MemTxAttrs attrs = {};
2946     ARMMMUFaultInfo fi = {};
2947     ARMCacheAttrs cacheattrs = {};
2948 
2949     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2950                         &prot, &page_size, &fi, &cacheattrs);
2951 
2952     if (ret) {
2953         /*
2954          * Some kinds of translation fault must cause exceptions rather
2955          * than being reported in the PAR.
2956          */
2957         int current_el = arm_current_el(env);
2958         int target_el;
2959         uint32_t syn, fsr, fsc;
2960         bool take_exc = false;
2961 
2962         if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
2963             && (mmu_idx == ARMMMUIdx_S1NSE1 || mmu_idx == ARMMMUIdx_S1NSE0)) {
2964             /*
2965              * Synchronous stage 2 fault on an access made as part of the
2966              * translation table walk for AT S1E0* or AT S1E1* insn
2967              * executed from NS EL1. If this is a synchronous external abort
2968              * and SCR_EL3.EA == 1, then we take a synchronous external abort
2969              * to EL3. Otherwise the fault is taken as an exception to EL2,
2970              * and HPFAR_EL2 holds the faulting IPA.
2971              */
2972             if (fi.type == ARMFault_SyncExternalOnWalk &&
2973                 (env->cp15.scr_el3 & SCR_EA)) {
2974                 target_el = 3;
2975             } else {
2976                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
2977                 target_el = 2;
2978             }
2979             take_exc = true;
2980         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
2981             /*
2982              * Synchronous external aborts during a translation table walk
2983              * are taken as Data Abort exceptions.
2984              */
2985             if (fi.stage2) {
2986                 if (current_el == 3) {
2987                     target_el = 3;
2988                 } else {
2989                     target_el = 2;
2990                 }
2991             } else {
2992                 target_el = exception_target_el(env);
2993             }
2994             take_exc = true;
2995         }
2996 
2997         if (take_exc) {
2998             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
2999             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3000                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3001                 fsr = arm_fi_to_lfsc(&fi);
3002                 fsc = extract32(fsr, 0, 6);
3003             } else {
3004                 fsr = arm_fi_to_sfsc(&fi);
3005                 fsc = 0x3f;
3006             }
3007             /*
3008              * Report exception with ESR indicating a fault due to a
3009              * translation table walk for a cache maintenance instruction.
3010              */
3011             syn = syn_data_abort_no_iss(current_el == target_el,
3012                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3013             env->exception.vaddress = value;
3014             env->exception.fsr = fsr;
3015             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3016         }
3017     }
3018 
3019     if (is_a64(env)) {
3020         format64 = true;
3021     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3022         /*
3023          * ATS1Cxx:
3024          * * TTBCR.EAE determines whether the result is returned using the
3025          *   32-bit or the 64-bit PAR format
3026          * * Instructions executed in Hyp mode always use the 64bit format
3027          *
3028          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3029          * * The Non-secure TTBCR.EAE bit is set to 1
3030          * * The implementation includes EL2, and the value of HCR.VM is 1
3031          *
3032          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3033          *
3034          * ATS1Hx always uses the 64bit format.
3035          */
3036         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3037 
3038         if (arm_feature(env, ARM_FEATURE_EL2)) {
3039             if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
3040                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3041             } else {
3042                 format64 |= arm_current_el(env) == 2;
3043             }
3044         }
3045     }
3046 
3047     if (format64) {
3048         /* Create a 64-bit PAR */
3049         par64 = (1 << 11); /* LPAE bit always set */
3050         if (!ret) {
3051             par64 |= phys_addr & ~0xfffULL;
3052             if (!attrs.secure) {
3053                 par64 |= (1 << 9); /* NS */
3054             }
3055             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3056             par64 |= cacheattrs.shareability << 7; /* SH */
3057         } else {
3058             uint32_t fsr = arm_fi_to_lfsc(&fi);
3059 
3060             par64 |= 1; /* F */
3061             par64 |= (fsr & 0x3f) << 1; /* FS */
3062             if (fi.stage2) {
3063                 par64 |= (1 << 9); /* S */
3064             }
3065             if (fi.s1ptw) {
3066                 par64 |= (1 << 8); /* PTW */
3067             }
3068         }
3069     } else {
3070         /* fsr is a DFSR/IFSR value for the short descriptor
3071          * translation table format (with WnR always clear).
3072          * Convert it to a 32-bit PAR.
3073          */
3074         if (!ret) {
3075             /* We do not set any attribute bits in the PAR */
3076             if (page_size == (1 << 24)
3077                 && arm_feature(env, ARM_FEATURE_V7)) {
3078                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3079             } else {
3080                 par64 = phys_addr & 0xfffff000;
3081             }
3082             if (!attrs.secure) {
3083                 par64 |= (1 << 9); /* NS */
3084             }
3085         } else {
3086             uint32_t fsr = arm_fi_to_sfsc(&fi);
3087 
3088             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3089                     ((fsr & 0xf) << 1) | 1;
3090         }
3091     }
3092     return par64;
3093 }
3094 
3095 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3096 {
3097     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3098     uint64_t par64;
3099     ARMMMUIdx mmu_idx;
3100     int el = arm_current_el(env);
3101     bool secure = arm_is_secure_below_el3(env);
3102 
3103     switch (ri->opc2 & 6) {
3104     case 0:
3105         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3106         switch (el) {
3107         case 3:
3108             mmu_idx = ARMMMUIdx_S1E3;
3109             break;
3110         case 2:
3111             mmu_idx = ARMMMUIdx_S1NSE1;
3112             break;
3113         case 1:
3114             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3115             break;
3116         default:
3117             g_assert_not_reached();
3118         }
3119         break;
3120     case 2:
3121         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3122         switch (el) {
3123         case 3:
3124             mmu_idx = ARMMMUIdx_S1SE0;
3125             break;
3126         case 2:
3127             mmu_idx = ARMMMUIdx_S1NSE0;
3128             break;
3129         case 1:
3130             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3131             break;
3132         default:
3133             g_assert_not_reached();
3134         }
3135         break;
3136     case 4:
3137         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3138         mmu_idx = ARMMMUIdx_S12NSE1;
3139         break;
3140     case 6:
3141         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3142         mmu_idx = ARMMMUIdx_S12NSE0;
3143         break;
3144     default:
3145         g_assert_not_reached();
3146     }
3147 
3148     par64 = do_ats_write(env, value, access_type, mmu_idx);
3149 
3150     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3151 }
3152 
3153 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3154                         uint64_t value)
3155 {
3156     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3157     uint64_t par64;
3158 
3159     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3160 
3161     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3162 }
3163 
3164 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3165                                      bool isread)
3166 {
3167     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3168         return CP_ACCESS_TRAP;
3169     }
3170     return CP_ACCESS_OK;
3171 }
3172 
3173 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3174                         uint64_t value)
3175 {
3176     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3177     ARMMMUIdx mmu_idx;
3178     int secure = arm_is_secure_below_el3(env);
3179 
3180     switch (ri->opc2 & 6) {
3181     case 0:
3182         switch (ri->opc1) {
3183         case 0: /* AT S1E1R, AT S1E1W */
3184             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3185             break;
3186         case 4: /* AT S1E2R, AT S1E2W */
3187             mmu_idx = ARMMMUIdx_S1E2;
3188             break;
3189         case 6: /* AT S1E3R, AT S1E3W */
3190             mmu_idx = ARMMMUIdx_S1E3;
3191             break;
3192         default:
3193             g_assert_not_reached();
3194         }
3195         break;
3196     case 2: /* AT S1E0R, AT S1E0W */
3197         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3198         break;
3199     case 4: /* AT S12E1R, AT S12E1W */
3200         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3201         break;
3202     case 6: /* AT S12E0R, AT S12E0W */
3203         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3204         break;
3205     default:
3206         g_assert_not_reached();
3207     }
3208 
3209     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3210 }
3211 #endif
3212 
3213 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3214     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3215       .access = PL1_RW, .resetvalue = 0,
3216       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3217                              offsetoflow32(CPUARMState, cp15.par_ns) },
3218       .writefn = par_write },
3219 #ifndef CONFIG_USER_ONLY
3220     /* This underdecoding is safe because the reginfo is NO_RAW. */
3221     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3222       .access = PL1_W, .accessfn = ats_access,
3223       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3224 #endif
3225     REGINFO_SENTINEL
3226 };
3227 
3228 /* Return basic MPU access permission bits.  */
3229 static uint32_t simple_mpu_ap_bits(uint32_t val)
3230 {
3231     uint32_t ret;
3232     uint32_t mask;
3233     int i;
3234     ret = 0;
3235     mask = 3;
3236     for (i = 0; i < 16; i += 2) {
3237         ret |= (val >> i) & mask;
3238         mask <<= 2;
3239     }
3240     return ret;
3241 }
3242 
3243 /* Pad basic MPU access permission bits to extended format.  */
3244 static uint32_t extended_mpu_ap_bits(uint32_t val)
3245 {
3246     uint32_t ret;
3247     uint32_t mask;
3248     int i;
3249     ret = 0;
3250     mask = 3;
3251     for (i = 0; i < 16; i += 2) {
3252         ret |= (val & mask) << i;
3253         mask <<= 2;
3254     }
3255     return ret;
3256 }
3257 
3258 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3259                                  uint64_t value)
3260 {
3261     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3262 }
3263 
3264 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3265 {
3266     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3267 }
3268 
3269 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3270                                  uint64_t value)
3271 {
3272     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3273 }
3274 
3275 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3276 {
3277     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3278 }
3279 
3280 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3281 {
3282     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3283 
3284     if (!u32p) {
3285         return 0;
3286     }
3287 
3288     u32p += env->pmsav7.rnr[M_REG_NS];
3289     return *u32p;
3290 }
3291 
3292 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3293                          uint64_t value)
3294 {
3295     ARMCPU *cpu = env_archcpu(env);
3296     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3297 
3298     if (!u32p) {
3299         return;
3300     }
3301 
3302     u32p += env->pmsav7.rnr[M_REG_NS];
3303     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3304     *u32p = value;
3305 }
3306 
3307 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3308                               uint64_t value)
3309 {
3310     ARMCPU *cpu = env_archcpu(env);
3311     uint32_t nrgs = cpu->pmsav7_dregion;
3312 
3313     if (value >= nrgs) {
3314         qemu_log_mask(LOG_GUEST_ERROR,
3315                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3316                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3317         return;
3318     }
3319 
3320     raw_write(env, ri, value);
3321 }
3322 
3323 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3324     /* Reset for all these registers is handled in arm_cpu_reset(),
3325      * because the PMSAv7 is also used by M-profile CPUs, which do
3326      * not register cpregs but still need the state to be reset.
3327      */
3328     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3329       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3330       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3331       .readfn = pmsav7_read, .writefn = pmsav7_write,
3332       .resetfn = arm_cp_reset_ignore },
3333     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3334       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3335       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3336       .readfn = pmsav7_read, .writefn = pmsav7_write,
3337       .resetfn = arm_cp_reset_ignore },
3338     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3339       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3340       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3341       .readfn = pmsav7_read, .writefn = pmsav7_write,
3342       .resetfn = arm_cp_reset_ignore },
3343     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3344       .access = PL1_RW,
3345       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3346       .writefn = pmsav7_rgnr_write,
3347       .resetfn = arm_cp_reset_ignore },
3348     REGINFO_SENTINEL
3349 };
3350 
3351 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3352     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3353       .access = PL1_RW, .type = ARM_CP_ALIAS,
3354       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3355       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3356     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3357       .access = PL1_RW, .type = ARM_CP_ALIAS,
3358       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3359       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3360     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3361       .access = PL1_RW,
3362       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3363       .resetvalue = 0, },
3364     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3365       .access = PL1_RW,
3366       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3367       .resetvalue = 0, },
3368     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3369       .access = PL1_RW,
3370       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3371     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3372       .access = PL1_RW,
3373       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3374     /* Protection region base and size registers */
3375     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3376       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3377       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3378     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3379       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3380       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3381     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3382       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3383       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3384     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3385       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3386       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3387     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3388       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3389       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3390     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3391       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3392       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3393     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3394       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3395       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3396     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3397       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3398       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3399     REGINFO_SENTINEL
3400 };
3401 
3402 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3403                                  uint64_t value)
3404 {
3405     TCR *tcr = raw_ptr(env, ri);
3406     int maskshift = extract32(value, 0, 3);
3407 
3408     if (!arm_feature(env, ARM_FEATURE_V8)) {
3409         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3410             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3411              * using Long-desciptor translation table format */
3412             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3413         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3414             /* In an implementation that includes the Security Extensions
3415              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3416              * Short-descriptor translation table format.
3417              */
3418             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3419         } else {
3420             value &= TTBCR_N;
3421         }
3422     }
3423 
3424     /* Update the masks corresponding to the TCR bank being written
3425      * Note that we always calculate mask and base_mask, but
3426      * they are only used for short-descriptor tables (ie if EAE is 0);
3427      * for long-descriptor tables the TCR fields are used differently
3428      * and the mask and base_mask values are meaningless.
3429      */
3430     tcr->raw_tcr = value;
3431     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3432     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3433 }
3434 
3435 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3436                              uint64_t value)
3437 {
3438     ARMCPU *cpu = env_archcpu(env);
3439     TCR *tcr = raw_ptr(env, ri);
3440 
3441     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3442         /* With LPAE the TTBCR could result in a change of ASID
3443          * via the TTBCR.A1 bit, so do a TLB flush.
3444          */
3445         tlb_flush(CPU(cpu));
3446     }
3447     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3448     value = deposit64(tcr->raw_tcr, 0, 32, value);
3449     vmsa_ttbcr_raw_write(env, ri, value);
3450 }
3451 
3452 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3453 {
3454     TCR *tcr = raw_ptr(env, ri);
3455 
3456     /* Reset both the TCR as well as the masks corresponding to the bank of
3457      * the TCR being reset.
3458      */
3459     tcr->raw_tcr = 0;
3460     tcr->mask = 0;
3461     tcr->base_mask = 0xffffc000u;
3462 }
3463 
3464 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3465                                uint64_t value)
3466 {
3467     ARMCPU *cpu = env_archcpu(env);
3468     TCR *tcr = raw_ptr(env, ri);
3469 
3470     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3471     tlb_flush(CPU(cpu));
3472     tcr->raw_tcr = value;
3473 }
3474 
3475 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3476                             uint64_t value)
3477 {
3478     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3479     if (cpreg_field_is_64bit(ri) &&
3480         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3481         ARMCPU *cpu = env_archcpu(env);
3482         tlb_flush(CPU(cpu));
3483     }
3484     raw_write(env, ri, value);
3485 }
3486 
3487 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3488                         uint64_t value)
3489 {
3490     ARMCPU *cpu = env_archcpu(env);
3491     CPUState *cs = CPU(cpu);
3492 
3493     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
3494     if (raw_read(env, ri) != value) {
3495         tlb_flush_by_mmuidx(cs,
3496                             ARMMMUIdxBit_S12NSE1 |
3497                             ARMMMUIdxBit_S12NSE0 |
3498                             ARMMMUIdxBit_S2NS);
3499         raw_write(env, ri, value);
3500     }
3501 }
3502 
3503 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3504     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3505       .access = PL1_RW, .type = ARM_CP_ALIAS,
3506       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3507                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3508     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3509       .access = PL1_RW, .resetvalue = 0,
3510       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3511                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3512     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3513       .access = PL1_RW, .resetvalue = 0,
3514       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3515                              offsetof(CPUARMState, cp15.dfar_ns) } },
3516     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3517       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3518       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3519       .resetvalue = 0, },
3520     REGINFO_SENTINEL
3521 };
3522 
3523 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3524     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3525       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3526       .access = PL1_RW,
3527       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3528     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3529       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3530       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3531       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3532                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
3533     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3534       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3535       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3536       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3537                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
3538     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3539       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3540       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3541       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3542       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3543     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3544       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3545       .raw_writefn = vmsa_ttbcr_raw_write,
3546       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3547                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3548     REGINFO_SENTINEL
3549 };
3550 
3551 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3552  * qemu tlbs nor adjusting cached masks.
3553  */
3554 static const ARMCPRegInfo ttbcr2_reginfo = {
3555     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3556     .access = PL1_RW, .type = ARM_CP_ALIAS,
3557     .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3558                            offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3559 };
3560 
3561 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3562                                 uint64_t value)
3563 {
3564     env->cp15.c15_ticonfig = value & 0xe7;
3565     /* The OS_TYPE bit in this register changes the reported CPUID! */
3566     env->cp15.c0_cpuid = (value & (1 << 5)) ?
3567         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3568 }
3569 
3570 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3571                                 uint64_t value)
3572 {
3573     env->cp15.c15_threadid = value & 0xffff;
3574 }
3575 
3576 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3577                            uint64_t value)
3578 {
3579     /* Wait-for-interrupt (deprecated) */
3580     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3581 }
3582 
3583 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3584                                   uint64_t value)
3585 {
3586     /* On OMAP there are registers indicating the max/min index of dcache lines
3587      * containing a dirty line; cache flush operations have to reset these.
3588      */
3589     env->cp15.c15_i_max = 0x000;
3590     env->cp15.c15_i_min = 0xff0;
3591 }
3592 
3593 static const ARMCPRegInfo omap_cp_reginfo[] = {
3594     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3595       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3596       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3597       .resetvalue = 0, },
3598     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3599       .access = PL1_RW, .type = ARM_CP_NOP },
3600     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3601       .access = PL1_RW,
3602       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3603       .writefn = omap_ticonfig_write },
3604     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3605       .access = PL1_RW,
3606       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3607     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3608       .access = PL1_RW, .resetvalue = 0xff0,
3609       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3610     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3611       .access = PL1_RW,
3612       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3613       .writefn = omap_threadid_write },
3614     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3615       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3616       .type = ARM_CP_NO_RAW,
3617       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3618     /* TODO: Peripheral port remap register:
3619      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3620      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3621      * when MMU is off.
3622      */
3623     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3624       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3625       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3626       .writefn = omap_cachemaint_write },
3627     { .name = "C9", .cp = 15, .crn = 9,
3628       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3629       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3630     REGINFO_SENTINEL
3631 };
3632 
3633 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3634                               uint64_t value)
3635 {
3636     env->cp15.c15_cpar = value & 0x3fff;
3637 }
3638 
3639 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3640     { .name = "XSCALE_CPAR",
3641       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3642       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3643       .writefn = xscale_cpar_write, },
3644     { .name = "XSCALE_AUXCR",
3645       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3646       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3647       .resetvalue = 0, },
3648     /* XScale specific cache-lockdown: since we have no cache we NOP these
3649      * and hope the guest does not really rely on cache behaviour.
3650      */
3651     { .name = "XSCALE_LOCK_ICACHE_LINE",
3652       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3653       .access = PL1_W, .type = ARM_CP_NOP },
3654     { .name = "XSCALE_UNLOCK_ICACHE",
3655       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3656       .access = PL1_W, .type = ARM_CP_NOP },
3657     { .name = "XSCALE_DCACHE_LOCK",
3658       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3659       .access = PL1_RW, .type = ARM_CP_NOP },
3660     { .name = "XSCALE_UNLOCK_DCACHE",
3661       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3662       .access = PL1_W, .type = ARM_CP_NOP },
3663     REGINFO_SENTINEL
3664 };
3665 
3666 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3667     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3668      * implementation of this implementation-defined space.
3669      * Ideally this should eventually disappear in favour of actually
3670      * implementing the correct behaviour for all cores.
3671      */
3672     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3673       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3674       .access = PL1_RW,
3675       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3676       .resetvalue = 0 },
3677     REGINFO_SENTINEL
3678 };
3679 
3680 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3681     /* Cache status: RAZ because we have no cache so it's always clean */
3682     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3683       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3684       .resetvalue = 0 },
3685     REGINFO_SENTINEL
3686 };
3687 
3688 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3689     /* We never have a a block transfer operation in progress */
3690     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3691       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3692       .resetvalue = 0 },
3693     /* The cache ops themselves: these all NOP for QEMU */
3694     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3695       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3696     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3697       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3698     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3699       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3700     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3701       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3702     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3703       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3704     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3705       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3706     REGINFO_SENTINEL
3707 };
3708 
3709 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3710     /* The cache test-and-clean instructions always return (1 << 30)
3711      * to indicate that there are no dirty cache lines.
3712      */
3713     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3714       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3715       .resetvalue = (1 << 30) },
3716     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3717       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3718       .resetvalue = (1 << 30) },
3719     REGINFO_SENTINEL
3720 };
3721 
3722 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3723     /* Ignore ReadBuffer accesses */
3724     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3725       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3726       .access = PL1_RW, .resetvalue = 0,
3727       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3728     REGINFO_SENTINEL
3729 };
3730 
3731 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3732 {
3733     ARMCPU *cpu = env_archcpu(env);
3734     unsigned int cur_el = arm_current_el(env);
3735     bool secure = arm_is_secure(env);
3736 
3737     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3738         return env->cp15.vpidr_el2;
3739     }
3740     return raw_read(env, ri);
3741 }
3742 
3743 static uint64_t mpidr_read_val(CPUARMState *env)
3744 {
3745     ARMCPU *cpu = env_archcpu(env);
3746     uint64_t mpidr = cpu->mp_affinity;
3747 
3748     if (arm_feature(env, ARM_FEATURE_V7MP)) {
3749         mpidr |= (1U << 31);
3750         /* Cores which are uniprocessor (non-coherent)
3751          * but still implement the MP extensions set
3752          * bit 30. (For instance, Cortex-R5).
3753          */
3754         if (cpu->mp_is_up) {
3755             mpidr |= (1u << 30);
3756         }
3757     }
3758     return mpidr;
3759 }
3760 
3761 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3762 {
3763     unsigned int cur_el = arm_current_el(env);
3764     bool secure = arm_is_secure(env);
3765 
3766     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3767         return env->cp15.vmpidr_el2;
3768     }
3769     return mpidr_read_val(env);
3770 }
3771 
3772 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3773     /* NOP AMAIR0/1 */
3774     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3775       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3776       .access = PL1_RW, .type = ARM_CP_CONST,
3777       .resetvalue = 0 },
3778     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3779     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3780       .access = PL1_RW, .type = ARM_CP_CONST,
3781       .resetvalue = 0 },
3782     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3783       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3784       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3785                              offsetof(CPUARMState, cp15.par_ns)} },
3786     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3787       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3788       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3789                              offsetof(CPUARMState, cp15.ttbr0_ns) },
3790       .writefn = vmsa_ttbr_write, },
3791     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3792       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3793       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3794                              offsetof(CPUARMState, cp15.ttbr1_ns) },
3795       .writefn = vmsa_ttbr_write, },
3796     REGINFO_SENTINEL
3797 };
3798 
3799 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3800 {
3801     return vfp_get_fpcr(env);
3802 }
3803 
3804 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3805                             uint64_t value)
3806 {
3807     vfp_set_fpcr(env, value);
3808 }
3809 
3810 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3811 {
3812     return vfp_get_fpsr(env);
3813 }
3814 
3815 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3816                             uint64_t value)
3817 {
3818     vfp_set_fpsr(env, value);
3819 }
3820 
3821 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3822                                        bool isread)
3823 {
3824     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3825         return CP_ACCESS_TRAP;
3826     }
3827     return CP_ACCESS_OK;
3828 }
3829 
3830 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3831                             uint64_t value)
3832 {
3833     env->daif = value & PSTATE_DAIF;
3834 }
3835 
3836 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3837                                           const ARMCPRegInfo *ri,
3838                                           bool isread)
3839 {
3840     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3841      * SCTLR_EL1.UCI is set.
3842      */
3843     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3844         return CP_ACCESS_TRAP;
3845     }
3846     return CP_ACCESS_OK;
3847 }
3848 
3849 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3850  * Page D4-1736 (DDI0487A.b)
3851  */
3852 
3853 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3854                                       uint64_t value)
3855 {
3856     CPUState *cs = env_cpu(env);
3857     bool sec = arm_is_secure_below_el3(env);
3858 
3859     if (sec) {
3860         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3861                                             ARMMMUIdxBit_S1SE1 |
3862                                             ARMMMUIdxBit_S1SE0);
3863     } else {
3864         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3865                                             ARMMMUIdxBit_S12NSE1 |
3866                                             ARMMMUIdxBit_S12NSE0);
3867     }
3868 }
3869 
3870 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3871                                     uint64_t value)
3872 {
3873     CPUState *cs = env_cpu(env);
3874 
3875     if (tlb_force_broadcast(env)) {
3876         tlbi_aa64_vmalle1is_write(env, NULL, value);
3877         return;
3878     }
3879 
3880     if (arm_is_secure_below_el3(env)) {
3881         tlb_flush_by_mmuidx(cs,
3882                             ARMMMUIdxBit_S1SE1 |
3883                             ARMMMUIdxBit_S1SE0);
3884     } else {
3885         tlb_flush_by_mmuidx(cs,
3886                             ARMMMUIdxBit_S12NSE1 |
3887                             ARMMMUIdxBit_S12NSE0);
3888     }
3889 }
3890 
3891 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3892                                   uint64_t value)
3893 {
3894     /* Note that the 'ALL' scope must invalidate both stage 1 and
3895      * stage 2 translations, whereas most other scopes only invalidate
3896      * stage 1 translations.
3897      */
3898     ARMCPU *cpu = env_archcpu(env);
3899     CPUState *cs = CPU(cpu);
3900 
3901     if (arm_is_secure_below_el3(env)) {
3902         tlb_flush_by_mmuidx(cs,
3903                             ARMMMUIdxBit_S1SE1 |
3904                             ARMMMUIdxBit_S1SE0);
3905     } else {
3906         if (arm_feature(env, ARM_FEATURE_EL2)) {
3907             tlb_flush_by_mmuidx(cs,
3908                                 ARMMMUIdxBit_S12NSE1 |
3909                                 ARMMMUIdxBit_S12NSE0 |
3910                                 ARMMMUIdxBit_S2NS);
3911         } else {
3912             tlb_flush_by_mmuidx(cs,
3913                                 ARMMMUIdxBit_S12NSE1 |
3914                                 ARMMMUIdxBit_S12NSE0);
3915         }
3916     }
3917 }
3918 
3919 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3920                                   uint64_t value)
3921 {
3922     ARMCPU *cpu = env_archcpu(env);
3923     CPUState *cs = CPU(cpu);
3924 
3925     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3926 }
3927 
3928 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3929                                   uint64_t value)
3930 {
3931     ARMCPU *cpu = env_archcpu(env);
3932     CPUState *cs = CPU(cpu);
3933 
3934     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3935 }
3936 
3937 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3938                                     uint64_t value)
3939 {
3940     /* Note that the 'ALL' scope must invalidate both stage 1 and
3941      * stage 2 translations, whereas most other scopes only invalidate
3942      * stage 1 translations.
3943      */
3944     CPUState *cs = env_cpu(env);
3945     bool sec = arm_is_secure_below_el3(env);
3946     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3947 
3948     if (sec) {
3949         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3950                                             ARMMMUIdxBit_S1SE1 |
3951                                             ARMMMUIdxBit_S1SE0);
3952     } else if (has_el2) {
3953         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3954                                             ARMMMUIdxBit_S12NSE1 |
3955                                             ARMMMUIdxBit_S12NSE0 |
3956                                             ARMMMUIdxBit_S2NS);
3957     } else {
3958           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3959                                               ARMMMUIdxBit_S12NSE1 |
3960                                               ARMMMUIdxBit_S12NSE0);
3961     }
3962 }
3963 
3964 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3965                                     uint64_t value)
3966 {
3967     CPUState *cs = env_cpu(env);
3968 
3969     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3970 }
3971 
3972 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3973                                     uint64_t value)
3974 {
3975     CPUState *cs = env_cpu(env);
3976 
3977     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3978 }
3979 
3980 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3981                                  uint64_t value)
3982 {
3983     /* Invalidate by VA, EL2
3984      * Currently handles both VAE2 and VALE2, since we don't support
3985      * flush-last-level-only.
3986      */
3987     ARMCPU *cpu = env_archcpu(env);
3988     CPUState *cs = CPU(cpu);
3989     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3990 
3991     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3992 }
3993 
3994 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3995                                  uint64_t value)
3996 {
3997     /* Invalidate by VA, EL3
3998      * Currently handles both VAE3 and VALE3, since we don't support
3999      * flush-last-level-only.
4000      */
4001     ARMCPU *cpu = env_archcpu(env);
4002     CPUState *cs = CPU(cpu);
4003     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4004 
4005     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
4006 }
4007 
4008 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4009                                    uint64_t value)
4010 {
4011     ARMCPU *cpu = env_archcpu(env);
4012     CPUState *cs = CPU(cpu);
4013     bool sec = arm_is_secure_below_el3(env);
4014     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4015 
4016     if (sec) {
4017         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4018                                                  ARMMMUIdxBit_S1SE1 |
4019                                                  ARMMMUIdxBit_S1SE0);
4020     } else {
4021         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4022                                                  ARMMMUIdxBit_S12NSE1 |
4023                                                  ARMMMUIdxBit_S12NSE0);
4024     }
4025 }
4026 
4027 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4028                                  uint64_t value)
4029 {
4030     /* Invalidate by VA, EL1&0 (AArch64 version).
4031      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4032      * since we don't support flush-for-specific-ASID-only or
4033      * flush-last-level-only.
4034      */
4035     ARMCPU *cpu = env_archcpu(env);
4036     CPUState *cs = CPU(cpu);
4037     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4038 
4039     if (tlb_force_broadcast(env)) {
4040         tlbi_aa64_vae1is_write(env, NULL, value);
4041         return;
4042     }
4043 
4044     if (arm_is_secure_below_el3(env)) {
4045         tlb_flush_page_by_mmuidx(cs, pageaddr,
4046                                  ARMMMUIdxBit_S1SE1 |
4047                                  ARMMMUIdxBit_S1SE0);
4048     } else {
4049         tlb_flush_page_by_mmuidx(cs, pageaddr,
4050                                  ARMMMUIdxBit_S12NSE1 |
4051                                  ARMMMUIdxBit_S12NSE0);
4052     }
4053 }
4054 
4055 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4056                                    uint64_t value)
4057 {
4058     CPUState *cs = env_cpu(env);
4059     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4060 
4061     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4062                                              ARMMMUIdxBit_S1E2);
4063 }
4064 
4065 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4066                                    uint64_t value)
4067 {
4068     CPUState *cs = env_cpu(env);
4069     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4070 
4071     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4072                                              ARMMMUIdxBit_S1E3);
4073 }
4074 
4075 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4076                                     uint64_t value)
4077 {
4078     /* Invalidate by IPA. This has to invalidate any structures that
4079      * contain only stage 2 translation information, but does not need
4080      * to apply to structures that contain combined stage 1 and stage 2
4081      * translation information.
4082      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4083      */
4084     ARMCPU *cpu = env_archcpu(env);
4085     CPUState *cs = CPU(cpu);
4086     uint64_t pageaddr;
4087 
4088     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4089         return;
4090     }
4091 
4092     pageaddr = sextract64(value << 12, 0, 48);
4093 
4094     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
4095 }
4096 
4097 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4098                                       uint64_t value)
4099 {
4100     CPUState *cs = env_cpu(env);
4101     uint64_t pageaddr;
4102 
4103     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4104         return;
4105     }
4106 
4107     pageaddr = sextract64(value << 12, 0, 48);
4108 
4109     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4110                                              ARMMMUIdxBit_S2NS);
4111 }
4112 
4113 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4114                                       bool isread)
4115 {
4116     /* We don't implement EL2, so the only control on DC ZVA is the
4117      * bit in the SCTLR which can prohibit access for EL0.
4118      */
4119     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4120         return CP_ACCESS_TRAP;
4121     }
4122     return CP_ACCESS_OK;
4123 }
4124 
4125 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4126 {
4127     ARMCPU *cpu = env_archcpu(env);
4128     int dzp_bit = 1 << 4;
4129 
4130     /* DZP indicates whether DC ZVA access is allowed */
4131     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4132         dzp_bit = 0;
4133     }
4134     return cpu->dcz_blocksize | dzp_bit;
4135 }
4136 
4137 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4138                                     bool isread)
4139 {
4140     if (!(env->pstate & PSTATE_SP)) {
4141         /* Access to SP_EL0 is undefined if it's being used as
4142          * the stack pointer.
4143          */
4144         return CP_ACCESS_TRAP_UNCATEGORIZED;
4145     }
4146     return CP_ACCESS_OK;
4147 }
4148 
4149 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4150 {
4151     return env->pstate & PSTATE_SP;
4152 }
4153 
4154 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4155 {
4156     update_spsel(env, val);
4157 }
4158 
4159 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4160                         uint64_t value)
4161 {
4162     ARMCPU *cpu = env_archcpu(env);
4163 
4164     if (raw_read(env, ri) == value) {
4165         /* Skip the TLB flush if nothing actually changed; Linux likes
4166          * to do a lot of pointless SCTLR writes.
4167          */
4168         return;
4169     }
4170 
4171     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4172         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4173         value &= ~SCTLR_M;
4174     }
4175 
4176     raw_write(env, ri, value);
4177     /* ??? Lots of these bits are not implemented.  */
4178     /* This may enable/disable the MMU, so do a TLB flush.  */
4179     tlb_flush(CPU(cpu));
4180 
4181     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4182         /*
4183          * Normally we would always end the TB on an SCTLR write; see the
4184          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4185          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4186          * of hflags from the translator, so do it here.
4187          */
4188         arm_rebuild_hflags(env);
4189     }
4190 }
4191 
4192 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4193                                      bool isread)
4194 {
4195     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4196         return CP_ACCESS_TRAP_FP_EL2;
4197     }
4198     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4199         return CP_ACCESS_TRAP_FP_EL3;
4200     }
4201     return CP_ACCESS_OK;
4202 }
4203 
4204 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4205                        uint64_t value)
4206 {
4207     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4208 }
4209 
4210 static const ARMCPRegInfo v8_cp_reginfo[] = {
4211     /* Minimal set of EL0-visible registers. This will need to be expanded
4212      * significantly for system emulation of AArch64 CPUs.
4213      */
4214     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4215       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4216       .access = PL0_RW, .type = ARM_CP_NZCV },
4217     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4218       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4219       .type = ARM_CP_NO_RAW,
4220       .access = PL0_RW, .accessfn = aa64_daif_access,
4221       .fieldoffset = offsetof(CPUARMState, daif),
4222       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4223     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4224       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4225       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4226       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4227     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4228       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4229       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4230       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4231     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4232       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4233       .access = PL0_R, .type = ARM_CP_NO_RAW,
4234       .readfn = aa64_dczid_read },
4235     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4236       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4237       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4238 #ifndef CONFIG_USER_ONLY
4239       /* Avoid overhead of an access check that always passes in user-mode */
4240       .accessfn = aa64_zva_access,
4241 #endif
4242     },
4243     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4244       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4245       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4246     /* Cache ops: all NOPs since we don't emulate caches */
4247     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4248       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4249       .access = PL1_W, .type = ARM_CP_NOP },
4250     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4251       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4252       .access = PL1_W, .type = ARM_CP_NOP },
4253     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4254       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4255       .access = PL0_W, .type = ARM_CP_NOP,
4256       .accessfn = aa64_cacheop_access },
4257     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4258       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4259       .access = PL1_W, .type = ARM_CP_NOP },
4260     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4261       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4262       .access = PL1_W, .type = ARM_CP_NOP },
4263     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4264       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4265       .access = PL0_W, .type = ARM_CP_NOP,
4266       .accessfn = aa64_cacheop_access },
4267     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4268       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4269       .access = PL1_W, .type = ARM_CP_NOP },
4270     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4271       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4272       .access = PL0_W, .type = ARM_CP_NOP,
4273       .accessfn = aa64_cacheop_access },
4274     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4275       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4276       .access = PL0_W, .type = ARM_CP_NOP,
4277       .accessfn = aa64_cacheop_access },
4278     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4279       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4280       .access = PL1_W, .type = ARM_CP_NOP },
4281     /* TLBI operations */
4282     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4283       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4284       .access = PL1_W, .type = ARM_CP_NO_RAW,
4285       .writefn = tlbi_aa64_vmalle1is_write },
4286     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4287       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4288       .access = PL1_W, .type = ARM_CP_NO_RAW,
4289       .writefn = tlbi_aa64_vae1is_write },
4290     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4291       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4292       .access = PL1_W, .type = ARM_CP_NO_RAW,
4293       .writefn = tlbi_aa64_vmalle1is_write },
4294     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4295       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4296       .access = PL1_W, .type = ARM_CP_NO_RAW,
4297       .writefn = tlbi_aa64_vae1is_write },
4298     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4299       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4300       .access = PL1_W, .type = ARM_CP_NO_RAW,
4301       .writefn = tlbi_aa64_vae1is_write },
4302     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4303       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4304       .access = PL1_W, .type = ARM_CP_NO_RAW,
4305       .writefn = tlbi_aa64_vae1is_write },
4306     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4307       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4308       .access = PL1_W, .type = ARM_CP_NO_RAW,
4309       .writefn = tlbi_aa64_vmalle1_write },
4310     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4311       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4312       .access = PL1_W, .type = ARM_CP_NO_RAW,
4313       .writefn = tlbi_aa64_vae1_write },
4314     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4315       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4316       .access = PL1_W, .type = ARM_CP_NO_RAW,
4317       .writefn = tlbi_aa64_vmalle1_write },
4318     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4319       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4320       .access = PL1_W, .type = ARM_CP_NO_RAW,
4321       .writefn = tlbi_aa64_vae1_write },
4322     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4323       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4324       .access = PL1_W, .type = ARM_CP_NO_RAW,
4325       .writefn = tlbi_aa64_vae1_write },
4326     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4327       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4328       .access = PL1_W, .type = ARM_CP_NO_RAW,
4329       .writefn = tlbi_aa64_vae1_write },
4330     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4331       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4332       .access = PL2_W, .type = ARM_CP_NO_RAW,
4333       .writefn = tlbi_aa64_ipas2e1is_write },
4334     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4335       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4336       .access = PL2_W, .type = ARM_CP_NO_RAW,
4337       .writefn = tlbi_aa64_ipas2e1is_write },
4338     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4339       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4340       .access = PL2_W, .type = ARM_CP_NO_RAW,
4341       .writefn = tlbi_aa64_alle1is_write },
4342     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4343       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4344       .access = PL2_W, .type = ARM_CP_NO_RAW,
4345       .writefn = tlbi_aa64_alle1is_write },
4346     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4347       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4348       .access = PL2_W, .type = ARM_CP_NO_RAW,
4349       .writefn = tlbi_aa64_ipas2e1_write },
4350     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4351       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4352       .access = PL2_W, .type = ARM_CP_NO_RAW,
4353       .writefn = tlbi_aa64_ipas2e1_write },
4354     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4355       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4356       .access = PL2_W, .type = ARM_CP_NO_RAW,
4357       .writefn = tlbi_aa64_alle1_write },
4358     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4359       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4360       .access = PL2_W, .type = ARM_CP_NO_RAW,
4361       .writefn = tlbi_aa64_alle1is_write },
4362 #ifndef CONFIG_USER_ONLY
4363     /* 64 bit address translation operations */
4364     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4365       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4366       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4367       .writefn = ats_write64 },
4368     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4369       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4370       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4371       .writefn = ats_write64 },
4372     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4373       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4374       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4375       .writefn = ats_write64 },
4376     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4377       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4378       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4379       .writefn = ats_write64 },
4380     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4381       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4382       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4383       .writefn = ats_write64 },
4384     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4385       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4386       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4387       .writefn = ats_write64 },
4388     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4389       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4390       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4391       .writefn = ats_write64 },
4392     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4393       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4394       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4395       .writefn = ats_write64 },
4396     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4397     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4398       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4399       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4400       .writefn = ats_write64 },
4401     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4402       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4403       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4404       .writefn = ats_write64 },
4405     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4406       .type = ARM_CP_ALIAS,
4407       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4408       .access = PL1_RW, .resetvalue = 0,
4409       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4410       .writefn = par_write },
4411 #endif
4412     /* TLB invalidate last level of translation table walk */
4413     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4414       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4415     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4416       .type = ARM_CP_NO_RAW, .access = PL1_W,
4417       .writefn = tlbimvaa_is_write },
4418     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4419       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4420     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4421       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4422     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4423       .type = ARM_CP_NO_RAW, .access = PL2_W,
4424       .writefn = tlbimva_hyp_write },
4425     { .name = "TLBIMVALHIS",
4426       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4427       .type = ARM_CP_NO_RAW, .access = PL2_W,
4428       .writefn = tlbimva_hyp_is_write },
4429     { .name = "TLBIIPAS2",
4430       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4431       .type = ARM_CP_NO_RAW, .access = PL2_W,
4432       .writefn = tlbiipas2_write },
4433     { .name = "TLBIIPAS2IS",
4434       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4435       .type = ARM_CP_NO_RAW, .access = PL2_W,
4436       .writefn = tlbiipas2_is_write },
4437     { .name = "TLBIIPAS2L",
4438       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4439       .type = ARM_CP_NO_RAW, .access = PL2_W,
4440       .writefn = tlbiipas2_write },
4441     { .name = "TLBIIPAS2LIS",
4442       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4443       .type = ARM_CP_NO_RAW, .access = PL2_W,
4444       .writefn = tlbiipas2_is_write },
4445     /* 32 bit cache operations */
4446     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4447       .type = ARM_CP_NOP, .access = PL1_W },
4448     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4449       .type = ARM_CP_NOP, .access = PL1_W },
4450     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4451       .type = ARM_CP_NOP, .access = PL1_W },
4452     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4453       .type = ARM_CP_NOP, .access = PL1_W },
4454     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4455       .type = ARM_CP_NOP, .access = PL1_W },
4456     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4457       .type = ARM_CP_NOP, .access = PL1_W },
4458     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4459       .type = ARM_CP_NOP, .access = PL1_W },
4460     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4461       .type = ARM_CP_NOP, .access = PL1_W },
4462     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4463       .type = ARM_CP_NOP, .access = PL1_W },
4464     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4465       .type = ARM_CP_NOP, .access = PL1_W },
4466     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4467       .type = ARM_CP_NOP, .access = PL1_W },
4468     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4469       .type = ARM_CP_NOP, .access = PL1_W },
4470     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4471       .type = ARM_CP_NOP, .access = PL1_W },
4472     /* MMU Domain access control / MPU write buffer control */
4473     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4474       .access = PL1_RW, .resetvalue = 0,
4475       .writefn = dacr_write, .raw_writefn = raw_write,
4476       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4477                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4478     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4479       .type = ARM_CP_ALIAS,
4480       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4481       .access = PL1_RW,
4482       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4483     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4484       .type = ARM_CP_ALIAS,
4485       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4486       .access = PL1_RW,
4487       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4488     /* We rely on the access checks not allowing the guest to write to the
4489      * state field when SPSel indicates that it's being used as the stack
4490      * pointer.
4491      */
4492     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4493       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4494       .access = PL1_RW, .accessfn = sp_el0_access,
4495       .type = ARM_CP_ALIAS,
4496       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4497     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4498       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4499       .access = PL2_RW, .type = ARM_CP_ALIAS,
4500       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4501     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4502       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4503       .type = ARM_CP_NO_RAW,
4504       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4505     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4506       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4507       .type = ARM_CP_ALIAS,
4508       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4509       .access = PL2_RW, .accessfn = fpexc32_access },
4510     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4511       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4512       .access = PL2_RW, .resetvalue = 0,
4513       .writefn = dacr_write, .raw_writefn = raw_write,
4514       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4515     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4516       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4517       .access = PL2_RW, .resetvalue = 0,
4518       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4519     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4520       .type = ARM_CP_ALIAS,
4521       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4522       .access = PL2_RW,
4523       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4524     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4525       .type = ARM_CP_ALIAS,
4526       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4527       .access = PL2_RW,
4528       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4529     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4530       .type = ARM_CP_ALIAS,
4531       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4532       .access = PL2_RW,
4533       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4534     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4535       .type = ARM_CP_ALIAS,
4536       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4537       .access = PL2_RW,
4538       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4539     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4540       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4541       .resetvalue = 0,
4542       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4543     { .name = "SDCR", .type = ARM_CP_ALIAS,
4544       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4545       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4546       .writefn = sdcr_write,
4547       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4548     REGINFO_SENTINEL
4549 };
4550 
4551 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
4552 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4553     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4554       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4555       .access = PL2_RW,
4556       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4557     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4558       .type = ARM_CP_NO_RAW,
4559       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4560       .access = PL2_RW,
4561       .type = ARM_CP_CONST, .resetvalue = 0 },
4562     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4563       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4564       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4565     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4566       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4567       .access = PL2_RW,
4568       .type = ARM_CP_CONST, .resetvalue = 0 },
4569     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4570       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4571       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4572     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4573       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4574       .access = PL2_RW, .type = ARM_CP_CONST,
4575       .resetvalue = 0 },
4576     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4577       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4578       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4579     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4580       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4581       .access = PL2_RW, .type = ARM_CP_CONST,
4582       .resetvalue = 0 },
4583     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4584       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4585       .access = PL2_RW, .type = ARM_CP_CONST,
4586       .resetvalue = 0 },
4587     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4588       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4589       .access = PL2_RW, .type = ARM_CP_CONST,
4590       .resetvalue = 0 },
4591     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4592       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4593       .access = PL2_RW, .type = ARM_CP_CONST,
4594       .resetvalue = 0 },
4595     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4596       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4597       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4598     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4599       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4600       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4601       .type = ARM_CP_CONST, .resetvalue = 0 },
4602     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4603       .cp = 15, .opc1 = 6, .crm = 2,
4604       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4605       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4606     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4607       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4608       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4609     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4610       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4611       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4612     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4613       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4614       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4615     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4616       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4617       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4618     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4619       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4620       .resetvalue = 0 },
4621     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4622       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4623       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4624     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4625       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4626       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4627     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4628       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4629       .resetvalue = 0 },
4630     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4631       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4632       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4633     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4634       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4635       .resetvalue = 0 },
4636     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4637       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4638       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4639     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4640       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4641       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4642     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4643       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4644       .access = PL2_RW, .accessfn = access_tda,
4645       .type = ARM_CP_CONST, .resetvalue = 0 },
4646     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4647       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4648       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4649       .type = ARM_CP_CONST, .resetvalue = 0 },
4650     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4651       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4652       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4653     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4654       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4655       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4656     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4657       .type = ARM_CP_CONST,
4658       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4659       .access = PL2_RW, .resetvalue = 0 },
4660     REGINFO_SENTINEL
4661 };
4662 
4663 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4664 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4665     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4666       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4667       .access = PL2_RW,
4668       .type = ARM_CP_CONST, .resetvalue = 0 },
4669     REGINFO_SENTINEL
4670 };
4671 
4672 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4673 {
4674     ARMCPU *cpu = env_archcpu(env);
4675     uint64_t valid_mask = HCR_MASK;
4676 
4677     if (arm_feature(env, ARM_FEATURE_EL3)) {
4678         valid_mask &= ~HCR_HCD;
4679     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4680         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4681          * However, if we're using the SMC PSCI conduit then QEMU is
4682          * effectively acting like EL3 firmware and so the guest at
4683          * EL2 should retain the ability to prevent EL1 from being
4684          * able to make SMC calls into the ersatz firmware, so in
4685          * that case HCR.TSC should be read/write.
4686          */
4687         valid_mask &= ~HCR_TSC;
4688     }
4689     if (cpu_isar_feature(aa64_lor, cpu)) {
4690         valid_mask |= HCR_TLOR;
4691     }
4692     if (cpu_isar_feature(aa64_pauth, cpu)) {
4693         valid_mask |= HCR_API | HCR_APK;
4694     }
4695 
4696     /* Clear RES0 bits.  */
4697     value &= valid_mask;
4698 
4699     /* These bits change the MMU setup:
4700      * HCR_VM enables stage 2 translation
4701      * HCR_PTW forbids certain page-table setups
4702      * HCR_DC Disables stage1 and enables stage2 translation
4703      */
4704     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4705         tlb_flush(CPU(cpu));
4706     }
4707     env->cp15.hcr_el2 = value;
4708 
4709     /*
4710      * Updates to VI and VF require us to update the status of
4711      * virtual interrupts, which are the logical OR of these bits
4712      * and the state of the input lines from the GIC. (This requires
4713      * that we have the iothread lock, which is done by marking the
4714      * reginfo structs as ARM_CP_IO.)
4715      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4716      * possible for it to be taken immediately, because VIRQ and
4717      * VFIQ are masked unless running at EL0 or EL1, and HCR
4718      * can only be written at EL2.
4719      */
4720     g_assert(qemu_mutex_iothread_locked());
4721     arm_cpu_update_virq(cpu);
4722     arm_cpu_update_vfiq(cpu);
4723 }
4724 
4725 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4726                           uint64_t value)
4727 {
4728     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4729     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4730     hcr_write(env, NULL, value);
4731 }
4732 
4733 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4734                          uint64_t value)
4735 {
4736     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4737     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4738     hcr_write(env, NULL, value);
4739 }
4740 
4741 /*
4742  * Return the effective value of HCR_EL2.
4743  * Bits that are not included here:
4744  * RW       (read from SCR_EL3.RW as needed)
4745  */
4746 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4747 {
4748     uint64_t ret = env->cp15.hcr_el2;
4749 
4750     if (arm_is_secure_below_el3(env)) {
4751         /*
4752          * "This register has no effect if EL2 is not enabled in the
4753          * current Security state".  This is ARMv8.4-SecEL2 speak for
4754          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4755          *
4756          * Prior to that, the language was "In an implementation that
4757          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4758          * as if this field is 0 for all purposes other than a direct
4759          * read or write access of HCR_EL2".  With lots of enumeration
4760          * on a per-field basis.  In current QEMU, this is condition
4761          * is arm_is_secure_below_el3.
4762          *
4763          * Since the v8.4 language applies to the entire register, and
4764          * appears to be backward compatible, use that.
4765          */
4766         ret = 0;
4767     } else if (ret & HCR_TGE) {
4768         /* These bits are up-to-date as of ARMv8.4.  */
4769         if (ret & HCR_E2H) {
4770             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4771                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4772                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4773                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4774         } else {
4775             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4776         }
4777         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4778                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4779                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4780                  HCR_TLOR);
4781     }
4782 
4783     return ret;
4784 }
4785 
4786 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4787                            uint64_t value)
4788 {
4789     /*
4790      * For A-profile AArch32 EL3, if NSACR.CP10
4791      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4792      */
4793     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4794         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4795         value &= ~(0x3 << 10);
4796         value |= env->cp15.cptr_el[2] & (0x3 << 10);
4797     }
4798     env->cp15.cptr_el[2] = value;
4799 }
4800 
4801 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
4802 {
4803     /*
4804      * For A-profile AArch32 EL3, if NSACR.CP10
4805      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4806      */
4807     uint64_t value = env->cp15.cptr_el[2];
4808 
4809     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4810         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4811         value |= 0x3 << 10;
4812     }
4813     return value;
4814 }
4815 
4816 static const ARMCPRegInfo el2_cp_reginfo[] = {
4817     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4818       .type = ARM_CP_IO,
4819       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4820       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4821       .writefn = hcr_write },
4822     { .name = "HCR", .state = ARM_CP_STATE_AA32,
4823       .type = ARM_CP_ALIAS | ARM_CP_IO,
4824       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4825       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4826       .writefn = hcr_writelow },
4827     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4828       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4829       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4830     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4831       .type = ARM_CP_ALIAS,
4832       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4833       .access = PL2_RW,
4834       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4835     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4836       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4837       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4838     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4839       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4840       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4841     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4842       .type = ARM_CP_ALIAS,
4843       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4844       .access = PL2_RW,
4845       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4846     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4847       .type = ARM_CP_ALIAS,
4848       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4849       .access = PL2_RW,
4850       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4851     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4852       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4853       .access = PL2_RW, .writefn = vbar_write,
4854       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4855       .resetvalue = 0 },
4856     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4857       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4858       .access = PL3_RW, .type = ARM_CP_ALIAS,
4859       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4860     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4861       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4862       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4863       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
4864       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
4865     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4866       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4867       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4868       .resetvalue = 0 },
4869     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4870       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4871       .access = PL2_RW, .type = ARM_CP_ALIAS,
4872       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4873     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4874       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4875       .access = PL2_RW, .type = ARM_CP_CONST,
4876       .resetvalue = 0 },
4877     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4878     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4879       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4880       .access = PL2_RW, .type = ARM_CP_CONST,
4881       .resetvalue = 0 },
4882     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4883       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4884       .access = PL2_RW, .type = ARM_CP_CONST,
4885       .resetvalue = 0 },
4886     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4887       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4888       .access = PL2_RW, .type = ARM_CP_CONST,
4889       .resetvalue = 0 },
4890     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4891       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4892       .access = PL2_RW,
4893       /* no .writefn needed as this can't cause an ASID change;
4894        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4895        */
4896       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4897     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4898       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4899       .type = ARM_CP_ALIAS,
4900       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4901       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4902     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4903       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4904       .access = PL2_RW,
4905       /* no .writefn needed as this can't cause an ASID change;
4906        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4907        */
4908       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4909     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4910       .cp = 15, .opc1 = 6, .crm = 2,
4911       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4912       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4913       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4914       .writefn = vttbr_write },
4915     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4916       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4917       .access = PL2_RW, .writefn = vttbr_write,
4918       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4919     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4920       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4921       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4922       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4923     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4924       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4925       .access = PL2_RW, .resetvalue = 0,
4926       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4927     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4928       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4929       .access = PL2_RW, .resetvalue = 0,
4930       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4931     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4932       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4933       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4934     { .name = "TLBIALLNSNH",
4935       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4936       .type = ARM_CP_NO_RAW, .access = PL2_W,
4937       .writefn = tlbiall_nsnh_write },
4938     { .name = "TLBIALLNSNHIS",
4939       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4940       .type = ARM_CP_NO_RAW, .access = PL2_W,
4941       .writefn = tlbiall_nsnh_is_write },
4942     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4943       .type = ARM_CP_NO_RAW, .access = PL2_W,
4944       .writefn = tlbiall_hyp_write },
4945     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4946       .type = ARM_CP_NO_RAW, .access = PL2_W,
4947       .writefn = tlbiall_hyp_is_write },
4948     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4949       .type = ARM_CP_NO_RAW, .access = PL2_W,
4950       .writefn = tlbimva_hyp_write },
4951     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4952       .type = ARM_CP_NO_RAW, .access = PL2_W,
4953       .writefn = tlbimva_hyp_is_write },
4954     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4955       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4956       .type = ARM_CP_NO_RAW, .access = PL2_W,
4957       .writefn = tlbi_aa64_alle2_write },
4958     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4959       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4960       .type = ARM_CP_NO_RAW, .access = PL2_W,
4961       .writefn = tlbi_aa64_vae2_write },
4962     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4963       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4964       .access = PL2_W, .type = ARM_CP_NO_RAW,
4965       .writefn = tlbi_aa64_vae2_write },
4966     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4967       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4968       .access = PL2_W, .type = ARM_CP_NO_RAW,
4969       .writefn = tlbi_aa64_alle2is_write },
4970     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4971       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4972       .type = ARM_CP_NO_RAW, .access = PL2_W,
4973       .writefn = tlbi_aa64_vae2is_write },
4974     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4975       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4976       .access = PL2_W, .type = ARM_CP_NO_RAW,
4977       .writefn = tlbi_aa64_vae2is_write },
4978 #ifndef CONFIG_USER_ONLY
4979     /* Unlike the other EL2-related AT operations, these must
4980      * UNDEF from EL3 if EL2 is not implemented, which is why we
4981      * define them here rather than with the rest of the AT ops.
4982      */
4983     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4984       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4985       .access = PL2_W, .accessfn = at_s1e2_access,
4986       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
4987     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4988       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4989       .access = PL2_W, .accessfn = at_s1e2_access,
4990       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
4991     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4992      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4993      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4994      * to behave as if SCR.NS was 1.
4995      */
4996     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4997       .access = PL2_W,
4998       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
4999     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5000       .access = PL2_W,
5001       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5002     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5003       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5004       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5005        * reset values as IMPDEF. We choose to reset to 3 to comply with
5006        * both ARMv7 and ARMv8.
5007        */
5008       .access = PL2_RW, .resetvalue = 3,
5009       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5010     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5011       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5012       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5013       .writefn = gt_cntvoff_write,
5014       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5015     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5016       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5017       .writefn = gt_cntvoff_write,
5018       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5019     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5020       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5021       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5022       .type = ARM_CP_IO, .access = PL2_RW,
5023       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5024     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5025       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5026       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5027       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5028     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5029       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5030       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5031       .resetfn = gt_hyp_timer_reset,
5032       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5033     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5034       .type = ARM_CP_IO,
5035       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5036       .access = PL2_RW,
5037       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5038       .resetvalue = 0,
5039       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5040 #endif
5041     /* The only field of MDCR_EL2 that has a defined architectural reset value
5042      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5043      * don't implement any PMU event counters, so using zero as a reset
5044      * value for MDCR_EL2 is okay
5045      */
5046     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5047       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5048       .access = PL2_RW, .resetvalue = 0,
5049       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5050     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5051       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5052       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5053       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5054     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5055       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5056       .access = PL2_RW,
5057       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5058     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5059       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5060       .access = PL2_RW,
5061       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5062     REGINFO_SENTINEL
5063 };
5064 
5065 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5066     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5067       .type = ARM_CP_ALIAS | ARM_CP_IO,
5068       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5069       .access = PL2_RW,
5070       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5071       .writefn = hcr_writehigh },
5072     REGINFO_SENTINEL
5073 };
5074 
5075 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5076                                    bool isread)
5077 {
5078     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5079      * At Secure EL1 it traps to EL3.
5080      */
5081     if (arm_current_el(env) == 3) {
5082         return CP_ACCESS_OK;
5083     }
5084     if (arm_is_secure_below_el3(env)) {
5085         return CP_ACCESS_TRAP_EL3;
5086     }
5087     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5088     if (isread) {
5089         return CP_ACCESS_OK;
5090     }
5091     return CP_ACCESS_TRAP_UNCATEGORIZED;
5092 }
5093 
5094 static const ARMCPRegInfo el3_cp_reginfo[] = {
5095     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5096       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5097       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5098       .resetvalue = 0, .writefn = scr_write },
5099     { .name = "SCR",  .type = ARM_CP_ALIAS,
5100       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5101       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5102       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5103       .writefn = scr_write },
5104     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5105       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5106       .access = PL3_RW, .resetvalue = 0,
5107       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5108     { .name = "SDER",
5109       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5110       .access = PL3_RW, .resetvalue = 0,
5111       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5112     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5113       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5114       .writefn = vbar_write, .resetvalue = 0,
5115       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5116     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5117       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5118       .access = PL3_RW, .resetvalue = 0,
5119       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5120     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5121       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5122       .access = PL3_RW,
5123       /* no .writefn needed as this can't cause an ASID change;
5124        * we must provide a .raw_writefn and .resetfn because we handle
5125        * reset and migration for the AArch32 TTBCR(S), which might be
5126        * using mask and base_mask.
5127        */
5128       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5129       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5130     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5131       .type = ARM_CP_ALIAS,
5132       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5133       .access = PL3_RW,
5134       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5135     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5136       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5137       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5138     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5139       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5140       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5141     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5142       .type = ARM_CP_ALIAS,
5143       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5144       .access = PL3_RW,
5145       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5146     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5147       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5148       .access = PL3_RW, .writefn = vbar_write,
5149       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5150       .resetvalue = 0 },
5151     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5152       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5153       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5154       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5155     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5156       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5157       .access = PL3_RW, .resetvalue = 0,
5158       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5159     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5160       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5161       .access = PL3_RW, .type = ARM_CP_CONST,
5162       .resetvalue = 0 },
5163     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5164       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5165       .access = PL3_RW, .type = ARM_CP_CONST,
5166       .resetvalue = 0 },
5167     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5168       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5169       .access = PL3_RW, .type = ARM_CP_CONST,
5170       .resetvalue = 0 },
5171     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5172       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5173       .access = PL3_W, .type = ARM_CP_NO_RAW,
5174       .writefn = tlbi_aa64_alle3is_write },
5175     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5176       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5177       .access = PL3_W, .type = ARM_CP_NO_RAW,
5178       .writefn = tlbi_aa64_vae3is_write },
5179     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5180       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5181       .access = PL3_W, .type = ARM_CP_NO_RAW,
5182       .writefn = tlbi_aa64_vae3is_write },
5183     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5184       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5185       .access = PL3_W, .type = ARM_CP_NO_RAW,
5186       .writefn = tlbi_aa64_alle3_write },
5187     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5188       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5189       .access = PL3_W, .type = ARM_CP_NO_RAW,
5190       .writefn = tlbi_aa64_vae3_write },
5191     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5192       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5193       .access = PL3_W, .type = ARM_CP_NO_RAW,
5194       .writefn = tlbi_aa64_vae3_write },
5195     REGINFO_SENTINEL
5196 };
5197 
5198 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5199                                      bool isread)
5200 {
5201     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5202      * but the AArch32 CTR has its own reginfo struct)
5203      */
5204     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5205         return CP_ACCESS_TRAP;
5206     }
5207     return CP_ACCESS_OK;
5208 }
5209 
5210 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5211                         uint64_t value)
5212 {
5213     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5214      * read via a bit in OSLSR_EL1.
5215      */
5216     int oslock;
5217 
5218     if (ri->state == ARM_CP_STATE_AA32) {
5219         oslock = (value == 0xC5ACCE55);
5220     } else {
5221         oslock = value & 1;
5222     }
5223 
5224     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5225 }
5226 
5227 static const ARMCPRegInfo debug_cp_reginfo[] = {
5228     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5229      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5230      * unlike DBGDRAR it is never accessible from EL0.
5231      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5232      * accessor.
5233      */
5234     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5235       .access = PL0_R, .accessfn = access_tdra,
5236       .type = ARM_CP_CONST, .resetvalue = 0 },
5237     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5238       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5239       .access = PL1_R, .accessfn = access_tdra,
5240       .type = ARM_CP_CONST, .resetvalue = 0 },
5241     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5242       .access = PL0_R, .accessfn = access_tdra,
5243       .type = ARM_CP_CONST, .resetvalue = 0 },
5244     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5245     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5246       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5247       .access = PL1_RW, .accessfn = access_tda,
5248       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5249       .resetvalue = 0 },
5250     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5251      * We don't implement the configurable EL0 access.
5252      */
5253     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5254       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5255       .type = ARM_CP_ALIAS,
5256       .access = PL1_R, .accessfn = access_tda,
5257       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5258     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5259       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5260       .access = PL1_W, .type = ARM_CP_NO_RAW,
5261       .accessfn = access_tdosa,
5262       .writefn = oslar_write },
5263     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5264       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5265       .access = PL1_R, .resetvalue = 10,
5266       .accessfn = access_tdosa,
5267       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5268     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5269     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5270       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5271       .access = PL1_RW, .accessfn = access_tdosa,
5272       .type = ARM_CP_NOP },
5273     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5274      * implement vector catch debug events yet.
5275      */
5276     { .name = "DBGVCR",
5277       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5278       .access = PL1_RW, .accessfn = access_tda,
5279       .type = ARM_CP_NOP },
5280     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5281      * to save and restore a 32-bit guest's DBGVCR)
5282      */
5283     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5284       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5285       .access = PL2_RW, .accessfn = access_tda,
5286       .type = ARM_CP_NOP },
5287     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5288      * Channel but Linux may try to access this register. The 32-bit
5289      * alias is DBGDCCINT.
5290      */
5291     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5292       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5293       .access = PL1_RW, .accessfn = access_tda,
5294       .type = ARM_CP_NOP },
5295     REGINFO_SENTINEL
5296 };
5297 
5298 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5299     /* 64 bit access versions of the (dummy) debug registers */
5300     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5301       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5302     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5303       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5304     REGINFO_SENTINEL
5305 };
5306 
5307 /* Return the exception level to which exceptions should be taken
5308  * via SVEAccessTrap.  If an exception should be routed through
5309  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5310  * take care of raising that exception.
5311  * C.f. the ARM pseudocode function CheckSVEEnabled.
5312  */
5313 int sve_exception_el(CPUARMState *env, int el)
5314 {
5315 #ifndef CONFIG_USER_ONLY
5316     if (el <= 1) {
5317         bool disabled = false;
5318 
5319         /* The CPACR.ZEN controls traps to EL1:
5320          * 0, 2 : trap EL0 and EL1 accesses
5321          * 1    : trap only EL0 accesses
5322          * 3    : trap no accesses
5323          */
5324         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5325             disabled = true;
5326         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5327             disabled = el == 0;
5328         }
5329         if (disabled) {
5330             /* route_to_el2 */
5331             return (arm_feature(env, ARM_FEATURE_EL2)
5332                     && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5333         }
5334 
5335         /* Check CPACR.FPEN.  */
5336         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5337             disabled = true;
5338         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5339             disabled = el == 0;
5340         }
5341         if (disabled) {
5342             return 0;
5343         }
5344     }
5345 
5346     /* CPTR_EL2.  Since TZ and TFP are positive,
5347      * they will be zero when EL2 is not present.
5348      */
5349     if (el <= 2 && !arm_is_secure_below_el3(env)) {
5350         if (env->cp15.cptr_el[2] & CPTR_TZ) {
5351             return 2;
5352         }
5353         if (env->cp15.cptr_el[2] & CPTR_TFP) {
5354             return 0;
5355         }
5356     }
5357 
5358     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
5359     if (arm_feature(env, ARM_FEATURE_EL3)
5360         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5361         return 3;
5362     }
5363 #endif
5364     return 0;
5365 }
5366 
5367 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
5368 {
5369     uint32_t end_len;
5370 
5371     end_len = start_len &= 0xf;
5372     if (!test_bit(start_len, cpu->sve_vq_map)) {
5373         end_len = find_last_bit(cpu->sve_vq_map, start_len);
5374         assert(end_len < start_len);
5375     }
5376     return end_len;
5377 }
5378 
5379 /*
5380  * Given that SVE is enabled, return the vector length for EL.
5381  */
5382 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5383 {
5384     ARMCPU *cpu = env_archcpu(env);
5385     uint32_t zcr_len = cpu->sve_max_vq - 1;
5386 
5387     if (el <= 1) {
5388         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5389     }
5390     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5391         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5392     }
5393     if (arm_feature(env, ARM_FEATURE_EL3)) {
5394         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5395     }
5396 
5397     return sve_zcr_get_valid_len(cpu, zcr_len);
5398 }
5399 
5400 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5401                       uint64_t value)
5402 {
5403     int cur_el = arm_current_el(env);
5404     int old_len = sve_zcr_len_for_el(env, cur_el);
5405     int new_len;
5406 
5407     /* Bits other than [3:0] are RAZ/WI.  */
5408     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
5409     raw_write(env, ri, value & 0xf);
5410 
5411     /*
5412      * Because we arrived here, we know both FP and SVE are enabled;
5413      * otherwise we would have trapped access to the ZCR_ELn register.
5414      */
5415     new_len = sve_zcr_len_for_el(env, cur_el);
5416     if (new_len < old_len) {
5417         aarch64_sve_narrow_vq(env, new_len + 1);
5418     }
5419 }
5420 
5421 static const ARMCPRegInfo zcr_el1_reginfo = {
5422     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5423     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5424     .access = PL1_RW, .type = ARM_CP_SVE,
5425     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5426     .writefn = zcr_write, .raw_writefn = raw_write
5427 };
5428 
5429 static const ARMCPRegInfo zcr_el2_reginfo = {
5430     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5431     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5432     .access = PL2_RW, .type = ARM_CP_SVE,
5433     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5434     .writefn = zcr_write, .raw_writefn = raw_write
5435 };
5436 
5437 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5438     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5439     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5440     .access = PL2_RW, .type = ARM_CP_SVE,
5441     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5442 };
5443 
5444 static const ARMCPRegInfo zcr_el3_reginfo = {
5445     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5446     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5447     .access = PL3_RW, .type = ARM_CP_SVE,
5448     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5449     .writefn = zcr_write, .raw_writefn = raw_write
5450 };
5451 
5452 void hw_watchpoint_update(ARMCPU *cpu, int n)
5453 {
5454     CPUARMState *env = &cpu->env;
5455     vaddr len = 0;
5456     vaddr wvr = env->cp15.dbgwvr[n];
5457     uint64_t wcr = env->cp15.dbgwcr[n];
5458     int mask;
5459     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5460 
5461     if (env->cpu_watchpoint[n]) {
5462         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5463         env->cpu_watchpoint[n] = NULL;
5464     }
5465 
5466     if (!extract64(wcr, 0, 1)) {
5467         /* E bit clear : watchpoint disabled */
5468         return;
5469     }
5470 
5471     switch (extract64(wcr, 3, 2)) {
5472     case 0:
5473         /* LSC 00 is reserved and must behave as if the wp is disabled */
5474         return;
5475     case 1:
5476         flags |= BP_MEM_READ;
5477         break;
5478     case 2:
5479         flags |= BP_MEM_WRITE;
5480         break;
5481     case 3:
5482         flags |= BP_MEM_ACCESS;
5483         break;
5484     }
5485 
5486     /* Attempts to use both MASK and BAS fields simultaneously are
5487      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5488      * thus generating a watchpoint for every byte in the masked region.
5489      */
5490     mask = extract64(wcr, 24, 4);
5491     if (mask == 1 || mask == 2) {
5492         /* Reserved values of MASK; we must act as if the mask value was
5493          * some non-reserved value, or as if the watchpoint were disabled.
5494          * We choose the latter.
5495          */
5496         return;
5497     } else if (mask) {
5498         /* Watchpoint covers an aligned area up to 2GB in size */
5499         len = 1ULL << mask;
5500         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5501          * whether the watchpoint fires when the unmasked bits match; we opt
5502          * to generate the exceptions.
5503          */
5504         wvr &= ~(len - 1);
5505     } else {
5506         /* Watchpoint covers bytes defined by the byte address select bits */
5507         int bas = extract64(wcr, 5, 8);
5508         int basstart;
5509 
5510         if (bas == 0) {
5511             /* This must act as if the watchpoint is disabled */
5512             return;
5513         }
5514 
5515         if (extract64(wvr, 2, 1)) {
5516             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5517              * ignored, and BAS[3:0] define which bytes to watch.
5518              */
5519             bas &= 0xf;
5520         }
5521         /* The BAS bits are supposed to be programmed to indicate a contiguous
5522          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5523          * we fire for each byte in the word/doubleword addressed by the WVR.
5524          * We choose to ignore any non-zero bits after the first range of 1s.
5525          */
5526         basstart = ctz32(bas);
5527         len = cto32(bas >> basstart);
5528         wvr += basstart;
5529     }
5530 
5531     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5532                           &env->cpu_watchpoint[n]);
5533 }
5534 
5535 void hw_watchpoint_update_all(ARMCPU *cpu)
5536 {
5537     int i;
5538     CPUARMState *env = &cpu->env;
5539 
5540     /* Completely clear out existing QEMU watchpoints and our array, to
5541      * avoid possible stale entries following migration load.
5542      */
5543     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5544     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5545 
5546     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5547         hw_watchpoint_update(cpu, i);
5548     }
5549 }
5550 
5551 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5552                          uint64_t value)
5553 {
5554     ARMCPU *cpu = env_archcpu(env);
5555     int i = ri->crm;
5556 
5557     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5558      * register reads and behaves as if values written are sign extended.
5559      * Bits [1:0] are RES0.
5560      */
5561     value = sextract64(value, 0, 49) & ~3ULL;
5562 
5563     raw_write(env, ri, value);
5564     hw_watchpoint_update(cpu, i);
5565 }
5566 
5567 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5568                          uint64_t value)
5569 {
5570     ARMCPU *cpu = env_archcpu(env);
5571     int i = ri->crm;
5572 
5573     raw_write(env, ri, value);
5574     hw_watchpoint_update(cpu, i);
5575 }
5576 
5577 void hw_breakpoint_update(ARMCPU *cpu, int n)
5578 {
5579     CPUARMState *env = &cpu->env;
5580     uint64_t bvr = env->cp15.dbgbvr[n];
5581     uint64_t bcr = env->cp15.dbgbcr[n];
5582     vaddr addr;
5583     int bt;
5584     int flags = BP_CPU;
5585 
5586     if (env->cpu_breakpoint[n]) {
5587         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5588         env->cpu_breakpoint[n] = NULL;
5589     }
5590 
5591     if (!extract64(bcr, 0, 1)) {
5592         /* E bit clear : watchpoint disabled */
5593         return;
5594     }
5595 
5596     bt = extract64(bcr, 20, 4);
5597 
5598     switch (bt) {
5599     case 4: /* unlinked address mismatch (reserved if AArch64) */
5600     case 5: /* linked address mismatch (reserved if AArch64) */
5601         qemu_log_mask(LOG_UNIMP,
5602                       "arm: address mismatch breakpoint types not implemented\n");
5603         return;
5604     case 0: /* unlinked address match */
5605     case 1: /* linked address match */
5606     {
5607         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5608          * we behave as if the register was sign extended. Bits [1:0] are
5609          * RES0. The BAS field is used to allow setting breakpoints on 16
5610          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5611          * a bp will fire if the addresses covered by the bp and the addresses
5612          * covered by the insn overlap but the insn doesn't start at the
5613          * start of the bp address range. We choose to require the insn and
5614          * the bp to have the same address. The constraints on writing to
5615          * BAS enforced in dbgbcr_write mean we have only four cases:
5616          *  0b0000  => no breakpoint
5617          *  0b0011  => breakpoint on addr
5618          *  0b1100  => breakpoint on addr + 2
5619          *  0b1111  => breakpoint on addr
5620          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5621          */
5622         int bas = extract64(bcr, 5, 4);
5623         addr = sextract64(bvr, 0, 49) & ~3ULL;
5624         if (bas == 0) {
5625             return;
5626         }
5627         if (bas == 0xc) {
5628             addr += 2;
5629         }
5630         break;
5631     }
5632     case 2: /* unlinked context ID match */
5633     case 8: /* unlinked VMID match (reserved if no EL2) */
5634     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5635         qemu_log_mask(LOG_UNIMP,
5636                       "arm: unlinked context breakpoint types not implemented\n");
5637         return;
5638     case 9: /* linked VMID match (reserved if no EL2) */
5639     case 11: /* linked context ID and VMID match (reserved if no EL2) */
5640     case 3: /* linked context ID match */
5641     default:
5642         /* We must generate no events for Linked context matches (unless
5643          * they are linked to by some other bp/wp, which is handled in
5644          * updates for the linking bp/wp). We choose to also generate no events
5645          * for reserved values.
5646          */
5647         return;
5648     }
5649 
5650     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5651 }
5652 
5653 void hw_breakpoint_update_all(ARMCPU *cpu)
5654 {
5655     int i;
5656     CPUARMState *env = &cpu->env;
5657 
5658     /* Completely clear out existing QEMU breakpoints and our array, to
5659      * avoid possible stale entries following migration load.
5660      */
5661     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5662     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5663 
5664     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5665         hw_breakpoint_update(cpu, i);
5666     }
5667 }
5668 
5669 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5670                          uint64_t value)
5671 {
5672     ARMCPU *cpu = env_archcpu(env);
5673     int i = ri->crm;
5674 
5675     raw_write(env, ri, value);
5676     hw_breakpoint_update(cpu, i);
5677 }
5678 
5679 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5680                          uint64_t value)
5681 {
5682     ARMCPU *cpu = env_archcpu(env);
5683     int i = ri->crm;
5684 
5685     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5686      * copy of BAS[0].
5687      */
5688     value = deposit64(value, 6, 1, extract64(value, 5, 1));
5689     value = deposit64(value, 8, 1, extract64(value, 7, 1));
5690 
5691     raw_write(env, ri, value);
5692     hw_breakpoint_update(cpu, i);
5693 }
5694 
5695 static void define_debug_regs(ARMCPU *cpu)
5696 {
5697     /* Define v7 and v8 architectural debug registers.
5698      * These are just dummy implementations for now.
5699      */
5700     int i;
5701     int wrps, brps, ctx_cmps;
5702     ARMCPRegInfo dbgdidr = {
5703         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5704         .access = PL0_R, .accessfn = access_tda,
5705         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5706     };
5707 
5708     /* Note that all these register fields hold "number of Xs minus 1". */
5709     brps = extract32(cpu->dbgdidr, 24, 4);
5710     wrps = extract32(cpu->dbgdidr, 28, 4);
5711     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5712 
5713     assert(ctx_cmps <= brps);
5714 
5715     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5716      * of the debug registers such as number of breakpoints;
5717      * check that if they both exist then they agree.
5718      */
5719     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5720         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5721         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5722         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5723     }
5724 
5725     define_one_arm_cp_reg(cpu, &dbgdidr);
5726     define_arm_cp_regs(cpu, debug_cp_reginfo);
5727 
5728     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5729         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5730     }
5731 
5732     for (i = 0; i < brps + 1; i++) {
5733         ARMCPRegInfo dbgregs[] = {
5734             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5735               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5736               .access = PL1_RW, .accessfn = access_tda,
5737               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5738               .writefn = dbgbvr_write, .raw_writefn = raw_write
5739             },
5740             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5741               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5742               .access = PL1_RW, .accessfn = access_tda,
5743               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5744               .writefn = dbgbcr_write, .raw_writefn = raw_write
5745             },
5746             REGINFO_SENTINEL
5747         };
5748         define_arm_cp_regs(cpu, dbgregs);
5749     }
5750 
5751     for (i = 0; i < wrps + 1; i++) {
5752         ARMCPRegInfo dbgregs[] = {
5753             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5754               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5755               .access = PL1_RW, .accessfn = access_tda,
5756               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5757               .writefn = dbgwvr_write, .raw_writefn = raw_write
5758             },
5759             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5760               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5761               .access = PL1_RW, .accessfn = access_tda,
5762               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5763               .writefn = dbgwcr_write, .raw_writefn = raw_write
5764             },
5765             REGINFO_SENTINEL
5766         };
5767         define_arm_cp_regs(cpu, dbgregs);
5768     }
5769 }
5770 
5771 /* We don't know until after realize whether there's a GICv3
5772  * attached, and that is what registers the gicv3 sysregs.
5773  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5774  * at runtime.
5775  */
5776 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5777 {
5778     ARMCPU *cpu = env_archcpu(env);
5779     uint64_t pfr1 = cpu->id_pfr1;
5780 
5781     if (env->gicv3state) {
5782         pfr1 |= 1 << 28;
5783     }
5784     return pfr1;
5785 }
5786 
5787 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5788 {
5789     ARMCPU *cpu = env_archcpu(env);
5790     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5791 
5792     if (env->gicv3state) {
5793         pfr0 |= 1 << 24;
5794     }
5795     return pfr0;
5796 }
5797 
5798 /* Shared logic between LORID and the rest of the LOR* registers.
5799  * Secure state has already been delt with.
5800  */
5801 static CPAccessResult access_lor_ns(CPUARMState *env)
5802 {
5803     int el = arm_current_el(env);
5804 
5805     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5806         return CP_ACCESS_TRAP_EL2;
5807     }
5808     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5809         return CP_ACCESS_TRAP_EL3;
5810     }
5811     return CP_ACCESS_OK;
5812 }
5813 
5814 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5815                                    bool isread)
5816 {
5817     if (arm_is_secure_below_el3(env)) {
5818         /* Access ok in secure mode.  */
5819         return CP_ACCESS_OK;
5820     }
5821     return access_lor_ns(env);
5822 }
5823 
5824 static CPAccessResult access_lor_other(CPUARMState *env,
5825                                        const ARMCPRegInfo *ri, bool isread)
5826 {
5827     if (arm_is_secure_below_el3(env)) {
5828         /* Access denied in secure mode.  */
5829         return CP_ACCESS_TRAP;
5830     }
5831     return access_lor_ns(env);
5832 }
5833 
5834 #ifdef TARGET_AARCH64
5835 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5836                                    bool isread)
5837 {
5838     int el = arm_current_el(env);
5839 
5840     if (el < 2 &&
5841         arm_feature(env, ARM_FEATURE_EL2) &&
5842         !(arm_hcr_el2_eff(env) & HCR_APK)) {
5843         return CP_ACCESS_TRAP_EL2;
5844     }
5845     if (el < 3 &&
5846         arm_feature(env, ARM_FEATURE_EL3) &&
5847         !(env->cp15.scr_el3 & SCR_APK)) {
5848         return CP_ACCESS_TRAP_EL3;
5849     }
5850     return CP_ACCESS_OK;
5851 }
5852 
5853 static const ARMCPRegInfo pauth_reginfo[] = {
5854     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5855       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5856       .access = PL1_RW, .accessfn = access_pauth,
5857       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
5858     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5859       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5860       .access = PL1_RW, .accessfn = access_pauth,
5861       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
5862     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5863       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5864       .access = PL1_RW, .accessfn = access_pauth,
5865       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
5866     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5867       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5868       .access = PL1_RW, .accessfn = access_pauth,
5869       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
5870     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5871       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5872       .access = PL1_RW, .accessfn = access_pauth,
5873       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
5874     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5875       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5876       .access = PL1_RW, .accessfn = access_pauth,
5877       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
5878     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5879       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5880       .access = PL1_RW, .accessfn = access_pauth,
5881       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
5882     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5883       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5884       .access = PL1_RW, .accessfn = access_pauth,
5885       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
5886     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5887       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5888       .access = PL1_RW, .accessfn = access_pauth,
5889       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
5890     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5891       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5892       .access = PL1_RW, .accessfn = access_pauth,
5893       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
5894     REGINFO_SENTINEL
5895 };
5896 
5897 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
5898 {
5899     Error *err = NULL;
5900     uint64_t ret;
5901 
5902     /* Success sets NZCV = 0000.  */
5903     env->NF = env->CF = env->VF = 0, env->ZF = 1;
5904 
5905     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
5906         /*
5907          * ??? Failed, for unknown reasons in the crypto subsystem.
5908          * The best we can do is log the reason and return the
5909          * timed-out indication to the guest.  There is no reason
5910          * we know to expect this failure to be transitory, so the
5911          * guest may well hang retrying the operation.
5912          */
5913         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
5914                       ri->name, error_get_pretty(err));
5915         error_free(err);
5916 
5917         env->ZF = 0; /* NZCF = 0100 */
5918         return 0;
5919     }
5920     return ret;
5921 }
5922 
5923 /* We do not support re-seeding, so the two registers operate the same.  */
5924 static const ARMCPRegInfo rndr_reginfo[] = {
5925     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
5926       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5927       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
5928       .access = PL0_R, .readfn = rndr_readfn },
5929     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
5930       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5931       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
5932       .access = PL0_R, .readfn = rndr_readfn },
5933     REGINFO_SENTINEL
5934 };
5935 #endif
5936 
5937 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
5938                                      bool isread)
5939 {
5940     int el = arm_current_el(env);
5941 
5942     if (el == 0) {
5943         uint64_t sctlr = arm_sctlr(env, el);
5944         if (!(sctlr & SCTLR_EnRCTX)) {
5945             return CP_ACCESS_TRAP;
5946         }
5947     } else if (el == 1) {
5948         uint64_t hcr = arm_hcr_el2_eff(env);
5949         if (hcr & HCR_NV) {
5950             return CP_ACCESS_TRAP_EL2;
5951         }
5952     }
5953     return CP_ACCESS_OK;
5954 }
5955 
5956 static const ARMCPRegInfo predinv_reginfo[] = {
5957     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
5958       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
5959       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5960     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
5961       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
5962       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5963     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
5964       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
5965       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5966     /*
5967      * Note the AArch32 opcodes have a different OPC1.
5968      */
5969     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
5970       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
5971       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5972     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
5973       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
5974       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5975     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
5976       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
5977       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5978     REGINFO_SENTINEL
5979 };
5980 
5981 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
5982                                        bool isread)
5983 {
5984     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
5985         return CP_ACCESS_TRAP_EL2;
5986     }
5987 
5988     return CP_ACCESS_OK;
5989 }
5990 
5991 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
5992                                        bool isread)
5993 {
5994     if (arm_feature(env, ARM_FEATURE_V8)) {
5995         return access_aa64_tid3(env, ri, isread);
5996     }
5997 
5998     return CP_ACCESS_OK;
5999 }
6000 
6001 void register_cp_regs_for_features(ARMCPU *cpu)
6002 {
6003     /* Register all the coprocessor registers based on feature bits */
6004     CPUARMState *env = &cpu->env;
6005     if (arm_feature(env, ARM_FEATURE_M)) {
6006         /* M profile has no coprocessor registers */
6007         return;
6008     }
6009 
6010     define_arm_cp_regs(cpu, cp_reginfo);
6011     if (!arm_feature(env, ARM_FEATURE_V8)) {
6012         /* Must go early as it is full of wildcards that may be
6013          * overridden by later definitions.
6014          */
6015         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
6016     }
6017 
6018     if (arm_feature(env, ARM_FEATURE_V6)) {
6019         /* The ID registers all have impdef reset values */
6020         ARMCPRegInfo v6_idregs[] = {
6021             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
6022               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6023               .access = PL1_R, .type = ARM_CP_CONST,
6024               .accessfn = access_aa32_tid3,
6025               .resetvalue = cpu->id_pfr0 },
6026             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
6027              * the value of the GIC field until after we define these regs.
6028              */
6029             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
6030               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
6031               .access = PL1_R, .type = ARM_CP_NO_RAW,
6032               .accessfn = access_aa32_tid3,
6033               .readfn = id_pfr1_read,
6034               .writefn = arm_cp_write_ignore },
6035             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
6036               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
6037               .access = PL1_R, .type = ARM_CP_CONST,
6038               .accessfn = access_aa32_tid3,
6039               .resetvalue = cpu->id_dfr0 },
6040             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
6041               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
6042               .access = PL1_R, .type = ARM_CP_CONST,
6043               .accessfn = access_aa32_tid3,
6044               .resetvalue = cpu->id_afr0 },
6045             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
6046               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
6047               .access = PL1_R, .type = ARM_CP_CONST,
6048               .accessfn = access_aa32_tid3,
6049               .resetvalue = cpu->id_mmfr0 },
6050             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
6051               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
6052               .access = PL1_R, .type = ARM_CP_CONST,
6053               .accessfn = access_aa32_tid3,
6054               .resetvalue = cpu->id_mmfr1 },
6055             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
6056               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
6057               .access = PL1_R, .type = ARM_CP_CONST,
6058               .accessfn = access_aa32_tid3,
6059               .resetvalue = cpu->id_mmfr2 },
6060             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
6061               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
6062               .access = PL1_R, .type = ARM_CP_CONST,
6063               .accessfn = access_aa32_tid3,
6064               .resetvalue = cpu->id_mmfr3 },
6065             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
6066               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6067               .access = PL1_R, .type = ARM_CP_CONST,
6068               .accessfn = access_aa32_tid3,
6069               .resetvalue = cpu->isar.id_isar0 },
6070             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
6071               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
6072               .access = PL1_R, .type = ARM_CP_CONST,
6073               .accessfn = access_aa32_tid3,
6074               .resetvalue = cpu->isar.id_isar1 },
6075             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
6076               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6077               .access = PL1_R, .type = ARM_CP_CONST,
6078               .accessfn = access_aa32_tid3,
6079               .resetvalue = cpu->isar.id_isar2 },
6080             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
6081               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
6082               .access = PL1_R, .type = ARM_CP_CONST,
6083               .accessfn = access_aa32_tid3,
6084               .resetvalue = cpu->isar.id_isar3 },
6085             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
6086               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
6087               .access = PL1_R, .type = ARM_CP_CONST,
6088               .accessfn = access_aa32_tid3,
6089               .resetvalue = cpu->isar.id_isar4 },
6090             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
6091               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
6092               .access = PL1_R, .type = ARM_CP_CONST,
6093               .accessfn = access_aa32_tid3,
6094               .resetvalue = cpu->isar.id_isar5 },
6095             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
6096               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
6097               .access = PL1_R, .type = ARM_CP_CONST,
6098               .accessfn = access_aa32_tid3,
6099               .resetvalue = cpu->id_mmfr4 },
6100             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
6101               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
6102               .access = PL1_R, .type = ARM_CP_CONST,
6103               .accessfn = access_aa32_tid3,
6104               .resetvalue = cpu->isar.id_isar6 },
6105             REGINFO_SENTINEL
6106         };
6107         define_arm_cp_regs(cpu, v6_idregs);
6108         define_arm_cp_regs(cpu, v6_cp_reginfo);
6109     } else {
6110         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
6111     }
6112     if (arm_feature(env, ARM_FEATURE_V6K)) {
6113         define_arm_cp_regs(cpu, v6k_cp_reginfo);
6114     }
6115     if (arm_feature(env, ARM_FEATURE_V7MP) &&
6116         !arm_feature(env, ARM_FEATURE_PMSA)) {
6117         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
6118     }
6119     if (arm_feature(env, ARM_FEATURE_V7VE)) {
6120         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
6121     }
6122     if (arm_feature(env, ARM_FEATURE_V7)) {
6123         /* v7 performance monitor control register: same implementor
6124          * field as main ID register, and we implement four counters in
6125          * addition to the cycle count register.
6126          */
6127         unsigned int i, pmcrn = 4;
6128         ARMCPRegInfo pmcr = {
6129             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6130             .access = PL0_RW,
6131             .type = ARM_CP_IO | ARM_CP_ALIAS,
6132             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6133             .accessfn = pmreg_access, .writefn = pmcr_write,
6134             .raw_writefn = raw_write,
6135         };
6136         ARMCPRegInfo pmcr64 = {
6137             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6138             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6139             .access = PL0_RW, .accessfn = pmreg_access,
6140             .type = ARM_CP_IO,
6141             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6142             .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
6143             .writefn = pmcr_write, .raw_writefn = raw_write,
6144         };
6145         define_one_arm_cp_reg(cpu, &pmcr);
6146         define_one_arm_cp_reg(cpu, &pmcr64);
6147         for (i = 0; i < pmcrn; i++) {
6148             char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6149             char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6150             char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6151             char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6152             ARMCPRegInfo pmev_regs[] = {
6153                 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6154                   .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6155                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6156                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6157                   .accessfn = pmreg_access },
6158                 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6159                   .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6160                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6161                   .type = ARM_CP_IO,
6162                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6163                   .raw_readfn = pmevcntr_rawread,
6164                   .raw_writefn = pmevcntr_rawwrite },
6165                 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6166                   .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6167                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6168                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6169                   .accessfn = pmreg_access },
6170                 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6171                   .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6172                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6173                   .type = ARM_CP_IO,
6174                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6175                   .raw_writefn = pmevtyper_rawwrite },
6176                 REGINFO_SENTINEL
6177             };
6178             define_arm_cp_regs(cpu, pmev_regs);
6179             g_free(pmevcntr_name);
6180             g_free(pmevcntr_el0_name);
6181             g_free(pmevtyper_name);
6182             g_free(pmevtyper_el0_name);
6183         }
6184         ARMCPRegInfo clidr = {
6185             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
6186             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
6187             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
6188         };
6189         define_one_arm_cp_reg(cpu, &clidr);
6190         define_arm_cp_regs(cpu, v7_cp_reginfo);
6191         define_debug_regs(cpu);
6192     } else {
6193         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
6194     }
6195     if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
6196             FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
6197         ARMCPRegInfo v81_pmu_regs[] = {
6198             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6199               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6200               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6201               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6202             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6203               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6204               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6205               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6206             REGINFO_SENTINEL
6207         };
6208         define_arm_cp_regs(cpu, v81_pmu_regs);
6209     }
6210     if (arm_feature(env, ARM_FEATURE_V8)) {
6211         /* AArch64 ID registers, which all have impdef reset values.
6212          * Note that within the ID register ranges the unused slots
6213          * must all RAZ, not UNDEF; future architecture versions may
6214          * define new registers here.
6215          */
6216         ARMCPRegInfo v8_idregs[] = {
6217             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
6218              * know the right value for the GIC field until after we
6219              * define these regs.
6220              */
6221             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
6222               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
6223               .access = PL1_R, .type = ARM_CP_NO_RAW,
6224               .accessfn = access_aa64_tid3,
6225               .readfn = id_aa64pfr0_read,
6226               .writefn = arm_cp_write_ignore },
6227             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
6228               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
6229               .access = PL1_R, .type = ARM_CP_CONST,
6230               .accessfn = access_aa64_tid3,
6231               .resetvalue = cpu->isar.id_aa64pfr1},
6232             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6233               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
6234               .access = PL1_R, .type = ARM_CP_CONST,
6235               .accessfn = access_aa64_tid3,
6236               .resetvalue = 0 },
6237             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6238               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
6239               .access = PL1_R, .type = ARM_CP_CONST,
6240               .accessfn = access_aa64_tid3,
6241               .resetvalue = 0 },
6242             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
6243               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
6244               .access = PL1_R, .type = ARM_CP_CONST,
6245               .accessfn = access_aa64_tid3,
6246               /* At present, only SVEver == 0 is defined anyway.  */
6247               .resetvalue = 0 },
6248             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6249               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
6250               .access = PL1_R, .type = ARM_CP_CONST,
6251               .accessfn = access_aa64_tid3,
6252               .resetvalue = 0 },
6253             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6254               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6255               .access = PL1_R, .type = ARM_CP_CONST,
6256               .accessfn = access_aa64_tid3,
6257               .resetvalue = 0 },
6258             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6259               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6260               .access = PL1_R, .type = ARM_CP_CONST,
6261               .accessfn = access_aa64_tid3,
6262               .resetvalue = 0 },
6263             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6264               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6265               .access = PL1_R, .type = ARM_CP_CONST,
6266               .accessfn = access_aa64_tid3,
6267               .resetvalue = cpu->id_aa64dfr0 },
6268             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6269               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6270               .access = PL1_R, .type = ARM_CP_CONST,
6271               .accessfn = access_aa64_tid3,
6272               .resetvalue = cpu->id_aa64dfr1 },
6273             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6274               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6275               .access = PL1_R, .type = ARM_CP_CONST,
6276               .accessfn = access_aa64_tid3,
6277               .resetvalue = 0 },
6278             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6279               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6280               .access = PL1_R, .type = ARM_CP_CONST,
6281               .accessfn = access_aa64_tid3,
6282               .resetvalue = 0 },
6283             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6284               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6285               .access = PL1_R, .type = ARM_CP_CONST,
6286               .accessfn = access_aa64_tid3,
6287               .resetvalue = cpu->id_aa64afr0 },
6288             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6289               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6290               .access = PL1_R, .type = ARM_CP_CONST,
6291               .accessfn = access_aa64_tid3,
6292               .resetvalue = cpu->id_aa64afr1 },
6293             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6294               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6295               .access = PL1_R, .type = ARM_CP_CONST,
6296               .accessfn = access_aa64_tid3,
6297               .resetvalue = 0 },
6298             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6299               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6300               .access = PL1_R, .type = ARM_CP_CONST,
6301               .accessfn = access_aa64_tid3,
6302               .resetvalue = 0 },
6303             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6304               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6305               .access = PL1_R, .type = ARM_CP_CONST,
6306               .accessfn = access_aa64_tid3,
6307               .resetvalue = cpu->isar.id_aa64isar0 },
6308             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6309               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6310               .access = PL1_R, .type = ARM_CP_CONST,
6311               .accessfn = access_aa64_tid3,
6312               .resetvalue = cpu->isar.id_aa64isar1 },
6313             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6314               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6315               .access = PL1_R, .type = ARM_CP_CONST,
6316               .accessfn = access_aa64_tid3,
6317               .resetvalue = 0 },
6318             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6319               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6320               .access = PL1_R, .type = ARM_CP_CONST,
6321               .accessfn = access_aa64_tid3,
6322               .resetvalue = 0 },
6323             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6324               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6325               .access = PL1_R, .type = ARM_CP_CONST,
6326               .accessfn = access_aa64_tid3,
6327               .resetvalue = 0 },
6328             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6329               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6330               .access = PL1_R, .type = ARM_CP_CONST,
6331               .accessfn = access_aa64_tid3,
6332               .resetvalue = 0 },
6333             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6334               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6335               .access = PL1_R, .type = ARM_CP_CONST,
6336               .accessfn = access_aa64_tid3,
6337               .resetvalue = 0 },
6338             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6339               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6340               .access = PL1_R, .type = ARM_CP_CONST,
6341               .accessfn = access_aa64_tid3,
6342               .resetvalue = 0 },
6343             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6344               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6345               .access = PL1_R, .type = ARM_CP_CONST,
6346               .accessfn = access_aa64_tid3,
6347               .resetvalue = cpu->isar.id_aa64mmfr0 },
6348             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6349               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6350               .access = PL1_R, .type = ARM_CP_CONST,
6351               .accessfn = access_aa64_tid3,
6352               .resetvalue = cpu->isar.id_aa64mmfr1 },
6353             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6354               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6355               .access = PL1_R, .type = ARM_CP_CONST,
6356               .accessfn = access_aa64_tid3,
6357               .resetvalue = 0 },
6358             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6359               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6360               .access = PL1_R, .type = ARM_CP_CONST,
6361               .accessfn = access_aa64_tid3,
6362               .resetvalue = 0 },
6363             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6364               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6365               .access = PL1_R, .type = ARM_CP_CONST,
6366               .accessfn = access_aa64_tid3,
6367               .resetvalue = 0 },
6368             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6369               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6370               .access = PL1_R, .type = ARM_CP_CONST,
6371               .accessfn = access_aa64_tid3,
6372               .resetvalue = 0 },
6373             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6374               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6375               .access = PL1_R, .type = ARM_CP_CONST,
6376               .accessfn = access_aa64_tid3,
6377               .resetvalue = 0 },
6378             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6379               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6380               .access = PL1_R, .type = ARM_CP_CONST,
6381               .accessfn = access_aa64_tid3,
6382               .resetvalue = 0 },
6383             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6384               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6385               .access = PL1_R, .type = ARM_CP_CONST,
6386               .accessfn = access_aa64_tid3,
6387               .resetvalue = cpu->isar.mvfr0 },
6388             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6389               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6390               .access = PL1_R, .type = ARM_CP_CONST,
6391               .accessfn = access_aa64_tid3,
6392               .resetvalue = cpu->isar.mvfr1 },
6393             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6394               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6395               .access = PL1_R, .type = ARM_CP_CONST,
6396               .accessfn = access_aa64_tid3,
6397               .resetvalue = cpu->isar.mvfr2 },
6398             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6399               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6400               .access = PL1_R, .type = ARM_CP_CONST,
6401               .accessfn = access_aa64_tid3,
6402               .resetvalue = 0 },
6403             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6404               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6405               .access = PL1_R, .type = ARM_CP_CONST,
6406               .accessfn = access_aa64_tid3,
6407               .resetvalue = 0 },
6408             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6409               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6410               .access = PL1_R, .type = ARM_CP_CONST,
6411               .accessfn = access_aa64_tid3,
6412               .resetvalue = 0 },
6413             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6414               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6415               .access = PL1_R, .type = ARM_CP_CONST,
6416               .accessfn = access_aa64_tid3,
6417               .resetvalue = 0 },
6418             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6419               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6420               .access = PL1_R, .type = ARM_CP_CONST,
6421               .accessfn = access_aa64_tid3,
6422               .resetvalue = 0 },
6423             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6424               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6425               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6426               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6427             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6428               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6429               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6430               .resetvalue = cpu->pmceid0 },
6431             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6432               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6433               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6434               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6435             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6436               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6437               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6438               .resetvalue = cpu->pmceid1 },
6439             REGINFO_SENTINEL
6440         };
6441 #ifdef CONFIG_USER_ONLY
6442         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6443             { .name = "ID_AA64PFR0_EL1",
6444               .exported_bits = 0x000f000f00ff0000,
6445               .fixed_bits    = 0x0000000000000011 },
6446             { .name = "ID_AA64PFR1_EL1",
6447               .exported_bits = 0x00000000000000f0 },
6448             { .name = "ID_AA64PFR*_EL1_RESERVED",
6449               .is_glob = true                     },
6450             { .name = "ID_AA64ZFR0_EL1"           },
6451             { .name = "ID_AA64MMFR0_EL1",
6452               .fixed_bits    = 0x00000000ff000000 },
6453             { .name = "ID_AA64MMFR1_EL1"          },
6454             { .name = "ID_AA64MMFR*_EL1_RESERVED",
6455               .is_glob = true                     },
6456             { .name = "ID_AA64DFR0_EL1",
6457               .fixed_bits    = 0x0000000000000006 },
6458             { .name = "ID_AA64DFR1_EL1"           },
6459             { .name = "ID_AA64DFR*_EL1_RESERVED",
6460               .is_glob = true                     },
6461             { .name = "ID_AA64AFR*",
6462               .is_glob = true                     },
6463             { .name = "ID_AA64ISAR0_EL1",
6464               .exported_bits = 0x00fffffff0fffff0 },
6465             { .name = "ID_AA64ISAR1_EL1",
6466               .exported_bits = 0x000000f0ffffffff },
6467             { .name = "ID_AA64ISAR*_EL1_RESERVED",
6468               .is_glob = true                     },
6469             REGUSERINFO_SENTINEL
6470         };
6471         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6472 #endif
6473         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6474         if (!arm_feature(env, ARM_FEATURE_EL3) &&
6475             !arm_feature(env, ARM_FEATURE_EL2)) {
6476             ARMCPRegInfo rvbar = {
6477                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6478                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6479                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6480             };
6481             define_one_arm_cp_reg(cpu, &rvbar);
6482         }
6483         define_arm_cp_regs(cpu, v8_idregs);
6484         define_arm_cp_regs(cpu, v8_cp_reginfo);
6485     }
6486     if (arm_feature(env, ARM_FEATURE_EL2)) {
6487         uint64_t vmpidr_def = mpidr_read_val(env);
6488         ARMCPRegInfo vpidr_regs[] = {
6489             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6490               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6491               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6492               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6493               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6494             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6495               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6496               .access = PL2_RW, .resetvalue = cpu->midr,
6497               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6498             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6499               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6500               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6501               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6502               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6503             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6504               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6505               .access = PL2_RW,
6506               .resetvalue = vmpidr_def,
6507               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6508             REGINFO_SENTINEL
6509         };
6510         define_arm_cp_regs(cpu, vpidr_regs);
6511         define_arm_cp_regs(cpu, el2_cp_reginfo);
6512         if (arm_feature(env, ARM_FEATURE_V8)) {
6513             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6514         }
6515         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6516         if (!arm_feature(env, ARM_FEATURE_EL3)) {
6517             ARMCPRegInfo rvbar = {
6518                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6519                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6520                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6521             };
6522             define_one_arm_cp_reg(cpu, &rvbar);
6523         }
6524     } else {
6525         /* If EL2 is missing but higher ELs are enabled, we need to
6526          * register the no_el2 reginfos.
6527          */
6528         if (arm_feature(env, ARM_FEATURE_EL3)) {
6529             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6530              * of MIDR_EL1 and MPIDR_EL1.
6531              */
6532             ARMCPRegInfo vpidr_regs[] = {
6533                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6534                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6535                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6536                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6537                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6538                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6539                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6540                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6541                   .type = ARM_CP_NO_RAW,
6542                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6543                 REGINFO_SENTINEL
6544             };
6545             define_arm_cp_regs(cpu, vpidr_regs);
6546             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6547             if (arm_feature(env, ARM_FEATURE_V8)) {
6548                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6549             }
6550         }
6551     }
6552     if (arm_feature(env, ARM_FEATURE_EL3)) {
6553         define_arm_cp_regs(cpu, el3_cp_reginfo);
6554         ARMCPRegInfo el3_regs[] = {
6555             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6556               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6557               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6558             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6559               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6560               .access = PL3_RW,
6561               .raw_writefn = raw_write, .writefn = sctlr_write,
6562               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6563               .resetvalue = cpu->reset_sctlr },
6564             REGINFO_SENTINEL
6565         };
6566 
6567         define_arm_cp_regs(cpu, el3_regs);
6568     }
6569     /* The behaviour of NSACR is sufficiently various that we don't
6570      * try to describe it in a single reginfo:
6571      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
6572      *     reads as constant 0xc00 from NS EL1 and NS EL2
6573      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6574      *  if v7 without EL3, register doesn't exist
6575      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6576      */
6577     if (arm_feature(env, ARM_FEATURE_EL3)) {
6578         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6579             ARMCPRegInfo nsacr = {
6580                 .name = "NSACR", .type = ARM_CP_CONST,
6581                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6582                 .access = PL1_RW, .accessfn = nsacr_access,
6583                 .resetvalue = 0xc00
6584             };
6585             define_one_arm_cp_reg(cpu, &nsacr);
6586         } else {
6587             ARMCPRegInfo nsacr = {
6588                 .name = "NSACR",
6589                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6590                 .access = PL3_RW | PL1_R,
6591                 .resetvalue = 0,
6592                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6593             };
6594             define_one_arm_cp_reg(cpu, &nsacr);
6595         }
6596     } else {
6597         if (arm_feature(env, ARM_FEATURE_V8)) {
6598             ARMCPRegInfo nsacr = {
6599                 .name = "NSACR", .type = ARM_CP_CONST,
6600                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6601                 .access = PL1_R,
6602                 .resetvalue = 0xc00
6603             };
6604             define_one_arm_cp_reg(cpu, &nsacr);
6605         }
6606     }
6607 
6608     if (arm_feature(env, ARM_FEATURE_PMSA)) {
6609         if (arm_feature(env, ARM_FEATURE_V6)) {
6610             /* PMSAv6 not implemented */
6611             assert(arm_feature(env, ARM_FEATURE_V7));
6612             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6613             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6614         } else {
6615             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6616         }
6617     } else {
6618         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6619         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6620         /* TTCBR2 is introduced with ARMv8.2-A32HPD.  */
6621         if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6622             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6623         }
6624     }
6625     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6626         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6627     }
6628     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6629         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6630     }
6631     if (arm_feature(env, ARM_FEATURE_VAPA)) {
6632         define_arm_cp_regs(cpu, vapa_cp_reginfo);
6633     }
6634     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6635         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6636     }
6637     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6638         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6639     }
6640     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6641         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6642     }
6643     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6644         define_arm_cp_regs(cpu, omap_cp_reginfo);
6645     }
6646     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6647         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6648     }
6649     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6650         define_arm_cp_regs(cpu, xscale_cp_reginfo);
6651     }
6652     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6653         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6654     }
6655     if (arm_feature(env, ARM_FEATURE_LPAE)) {
6656         define_arm_cp_regs(cpu, lpae_cp_reginfo);
6657     }
6658     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6659      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6660      * be read-only (ie write causes UNDEF exception).
6661      */
6662     {
6663         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6664             /* Pre-v8 MIDR space.
6665              * Note that the MIDR isn't a simple constant register because
6666              * of the TI925 behaviour where writes to another register can
6667              * cause the MIDR value to change.
6668              *
6669              * Unimplemented registers in the c15 0 0 0 space default to
6670              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6671              * and friends override accordingly.
6672              */
6673             { .name = "MIDR",
6674               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6675               .access = PL1_R, .resetvalue = cpu->midr,
6676               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6677               .readfn = midr_read,
6678               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6679               .type = ARM_CP_OVERRIDE },
6680             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6681             { .name = "DUMMY",
6682               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6683               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6684             { .name = "DUMMY",
6685               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6686               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6687             { .name = "DUMMY",
6688               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6689               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6690             { .name = "DUMMY",
6691               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6692               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6693             { .name = "DUMMY",
6694               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6695               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6696             REGINFO_SENTINEL
6697         };
6698         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6699             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6700               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6701               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6702               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6703               .readfn = midr_read },
6704             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6705             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6706               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6707               .access = PL1_R, .resetvalue = cpu->midr },
6708             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6709               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6710               .access = PL1_R, .resetvalue = cpu->midr },
6711             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6712               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6713               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6714             REGINFO_SENTINEL
6715         };
6716         ARMCPRegInfo id_cp_reginfo[] = {
6717             /* These are common to v8 and pre-v8 */
6718             { .name = "CTR",
6719               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6720               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6721             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6722               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6723               .access = PL0_R, .accessfn = ctr_el0_access,
6724               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6725             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6726             { .name = "TCMTR",
6727               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6728               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6729             REGINFO_SENTINEL
6730         };
6731         /* TLBTR is specific to VMSA */
6732         ARMCPRegInfo id_tlbtr_reginfo = {
6733               .name = "TLBTR",
6734               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6735               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6736         };
6737         /* MPUIR is specific to PMSA V6+ */
6738         ARMCPRegInfo id_mpuir_reginfo = {
6739               .name = "MPUIR",
6740               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6741               .access = PL1_R, .type = ARM_CP_CONST,
6742               .resetvalue = cpu->pmsav7_dregion << 8
6743         };
6744         ARMCPRegInfo crn0_wi_reginfo = {
6745             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6746             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6747             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6748         };
6749 #ifdef CONFIG_USER_ONLY
6750         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6751             { .name = "MIDR_EL1",
6752               .exported_bits = 0x00000000ffffffff },
6753             { .name = "REVIDR_EL1"                },
6754             REGUSERINFO_SENTINEL
6755         };
6756         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6757 #endif
6758         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6759             arm_feature(env, ARM_FEATURE_STRONGARM)) {
6760             ARMCPRegInfo *r;
6761             /* Register the blanket "writes ignored" value first to cover the
6762              * whole space. Then update the specific ID registers to allow write
6763              * access, so that they ignore writes rather than causing them to
6764              * UNDEF.
6765              */
6766             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6767             for (r = id_pre_v8_midr_cp_reginfo;
6768                  r->type != ARM_CP_SENTINEL; r++) {
6769                 r->access = PL1_RW;
6770             }
6771             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6772                 r->access = PL1_RW;
6773             }
6774             id_mpuir_reginfo.access = PL1_RW;
6775             id_tlbtr_reginfo.access = PL1_RW;
6776         }
6777         if (arm_feature(env, ARM_FEATURE_V8)) {
6778             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6779         } else {
6780             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6781         }
6782         define_arm_cp_regs(cpu, id_cp_reginfo);
6783         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6784             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6785         } else if (arm_feature(env, ARM_FEATURE_V7)) {
6786             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6787         }
6788     }
6789 
6790     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6791         ARMCPRegInfo mpidr_cp_reginfo[] = {
6792             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6793               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6794               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6795             REGINFO_SENTINEL
6796         };
6797 #ifdef CONFIG_USER_ONLY
6798         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6799             { .name = "MPIDR_EL1",
6800               .fixed_bits = 0x0000000080000000 },
6801             REGUSERINFO_SENTINEL
6802         };
6803         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6804 #endif
6805         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6806     }
6807 
6808     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6809         ARMCPRegInfo auxcr_reginfo[] = {
6810             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6811               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6812               .access = PL1_RW, .type = ARM_CP_CONST,
6813               .resetvalue = cpu->reset_auxcr },
6814             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6815               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6816               .access = PL2_RW, .type = ARM_CP_CONST,
6817               .resetvalue = 0 },
6818             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6819               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6820               .access = PL3_RW, .type = ARM_CP_CONST,
6821               .resetvalue = 0 },
6822             REGINFO_SENTINEL
6823         };
6824         define_arm_cp_regs(cpu, auxcr_reginfo);
6825         if (arm_feature(env, ARM_FEATURE_V8)) {
6826             /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6827             ARMCPRegInfo hactlr2_reginfo = {
6828                 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6829                 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6830                 .access = PL2_RW, .type = ARM_CP_CONST,
6831                 .resetvalue = 0
6832             };
6833             define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6834         }
6835     }
6836 
6837     if (arm_feature(env, ARM_FEATURE_CBAR)) {
6838         /*
6839          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
6840          * There are two flavours:
6841          *  (1) older 32-bit only cores have a simple 32-bit CBAR
6842          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
6843          *      32-bit register visible to AArch32 at a different encoding
6844          *      to the "flavour 1" register and with the bits rearranged to
6845          *      be able to squash a 64-bit address into the 32-bit view.
6846          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
6847          * in future if we support AArch32-only configs of some of the
6848          * AArch64 cores we might need to add a specific feature flag
6849          * to indicate cores with "flavour 2" CBAR.
6850          */
6851         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6852             /* 32 bit view is [31:18] 0...0 [43:32]. */
6853             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6854                 | extract64(cpu->reset_cbar, 32, 12);
6855             ARMCPRegInfo cbar_reginfo[] = {
6856                 { .name = "CBAR",
6857                   .type = ARM_CP_CONST,
6858                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
6859                   .access = PL1_R, .resetvalue = cbar32 },
6860                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6861                   .type = ARM_CP_CONST,
6862                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6863                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
6864                 REGINFO_SENTINEL
6865             };
6866             /* We don't implement a r/w 64 bit CBAR currently */
6867             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6868             define_arm_cp_regs(cpu, cbar_reginfo);
6869         } else {
6870             ARMCPRegInfo cbar = {
6871                 .name = "CBAR",
6872                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6873                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6874                 .fieldoffset = offsetof(CPUARMState,
6875                                         cp15.c15_config_base_address)
6876             };
6877             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6878                 cbar.access = PL1_R;
6879                 cbar.fieldoffset = 0;
6880                 cbar.type = ARM_CP_CONST;
6881             }
6882             define_one_arm_cp_reg(cpu, &cbar);
6883         }
6884     }
6885 
6886     if (arm_feature(env, ARM_FEATURE_VBAR)) {
6887         ARMCPRegInfo vbar_cp_reginfo[] = {
6888             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6889               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6890               .access = PL1_RW, .writefn = vbar_write,
6891               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6892                                      offsetof(CPUARMState, cp15.vbar_ns) },
6893               .resetvalue = 0 },
6894             REGINFO_SENTINEL
6895         };
6896         define_arm_cp_regs(cpu, vbar_cp_reginfo);
6897     }
6898 
6899     /* Generic registers whose values depend on the implementation */
6900     {
6901         ARMCPRegInfo sctlr = {
6902             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6903             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6904             .access = PL1_RW,
6905             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6906                                    offsetof(CPUARMState, cp15.sctlr_ns) },
6907             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6908             .raw_writefn = raw_write,
6909         };
6910         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6911             /* Normally we would always end the TB on an SCTLR write, but Linux
6912              * arch/arm/mach-pxa/sleep.S expects two instructions following
6913              * an MMU enable to execute from cache.  Imitate this behaviour.
6914              */
6915             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6916         }
6917         define_one_arm_cp_reg(cpu, &sctlr);
6918     }
6919 
6920     if (cpu_isar_feature(aa64_lor, cpu)) {
6921         /*
6922          * A trivial implementation of ARMv8.1-LOR leaves all of these
6923          * registers fixed at 0, which indicates that there are zero
6924          * supported Limited Ordering regions.
6925          */
6926         static const ARMCPRegInfo lor_reginfo[] = {
6927             { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6928               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6929               .access = PL1_RW, .accessfn = access_lor_other,
6930               .type = ARM_CP_CONST, .resetvalue = 0 },
6931             { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6932               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6933               .access = PL1_RW, .accessfn = access_lor_other,
6934               .type = ARM_CP_CONST, .resetvalue = 0 },
6935             { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6936               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6937               .access = PL1_RW, .accessfn = access_lor_other,
6938               .type = ARM_CP_CONST, .resetvalue = 0 },
6939             { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6940               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6941               .access = PL1_RW, .accessfn = access_lor_other,
6942               .type = ARM_CP_CONST, .resetvalue = 0 },
6943             { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6944               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6945               .access = PL1_R, .accessfn = access_lorid,
6946               .type = ARM_CP_CONST, .resetvalue = 0 },
6947             REGINFO_SENTINEL
6948         };
6949         define_arm_cp_regs(cpu, lor_reginfo);
6950     }
6951 
6952     if (cpu_isar_feature(aa64_sve, cpu)) {
6953         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6954         if (arm_feature(env, ARM_FEATURE_EL2)) {
6955             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6956         } else {
6957             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6958         }
6959         if (arm_feature(env, ARM_FEATURE_EL3)) {
6960             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6961         }
6962     }
6963 
6964 #ifdef TARGET_AARCH64
6965     if (cpu_isar_feature(aa64_pauth, cpu)) {
6966         define_arm_cp_regs(cpu, pauth_reginfo);
6967     }
6968     if (cpu_isar_feature(aa64_rndr, cpu)) {
6969         define_arm_cp_regs(cpu, rndr_reginfo);
6970     }
6971 #endif
6972 
6973     /*
6974      * While all v8.0 cpus support aarch64, QEMU does have configurations
6975      * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
6976      * which will set ID_ISAR6.
6977      */
6978     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
6979         ? cpu_isar_feature(aa64_predinv, cpu)
6980         : cpu_isar_feature(aa32_predinv, cpu)) {
6981         define_arm_cp_regs(cpu, predinv_reginfo);
6982     }
6983 }
6984 
6985 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6986 {
6987     CPUState *cs = CPU(cpu);
6988     CPUARMState *env = &cpu->env;
6989 
6990     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6991         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6992                                  aarch64_fpu_gdb_set_reg,
6993                                  34, "aarch64-fpu.xml", 0);
6994     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6995         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6996                                  51, "arm-neon.xml", 0);
6997     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6998         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6999                                  35, "arm-vfp3.xml", 0);
7000     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
7001         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
7002                                  19, "arm-vfp.xml", 0);
7003     }
7004     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
7005                              arm_gen_dynamic_xml(cs),
7006                              "system-registers.xml", 0);
7007 }
7008 
7009 /* Sort alphabetically by type name, except for "any". */
7010 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
7011 {
7012     ObjectClass *class_a = (ObjectClass *)a;
7013     ObjectClass *class_b = (ObjectClass *)b;
7014     const char *name_a, *name_b;
7015 
7016     name_a = object_class_get_name(class_a);
7017     name_b = object_class_get_name(class_b);
7018     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
7019         return 1;
7020     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
7021         return -1;
7022     } else {
7023         return strcmp(name_a, name_b);
7024     }
7025 }
7026 
7027 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
7028 {
7029     ObjectClass *oc = data;
7030     const char *typename;
7031     char *name;
7032 
7033     typename = object_class_get_name(oc);
7034     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
7035     qemu_printf("  %s\n", name);
7036     g_free(name);
7037 }
7038 
7039 void arm_cpu_list(void)
7040 {
7041     GSList *list;
7042 
7043     list = object_class_get_list(TYPE_ARM_CPU, false);
7044     list = g_slist_sort(list, arm_cpu_list_compare);
7045     qemu_printf("Available CPUs:\n");
7046     g_slist_foreach(list, arm_cpu_list_entry, NULL);
7047     g_slist_free(list);
7048 }
7049 
7050 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
7051 {
7052     ObjectClass *oc = data;
7053     CpuDefinitionInfoList **cpu_list = user_data;
7054     CpuDefinitionInfoList *entry;
7055     CpuDefinitionInfo *info;
7056     const char *typename;
7057 
7058     typename = object_class_get_name(oc);
7059     info = g_malloc0(sizeof(*info));
7060     info->name = g_strndup(typename,
7061                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
7062     info->q_typename = g_strdup(typename);
7063 
7064     entry = g_malloc0(sizeof(*entry));
7065     entry->value = info;
7066     entry->next = *cpu_list;
7067     *cpu_list = entry;
7068 }
7069 
7070 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
7071 {
7072     CpuDefinitionInfoList *cpu_list = NULL;
7073     GSList *list;
7074 
7075     list = object_class_get_list(TYPE_ARM_CPU, false);
7076     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
7077     g_slist_free(list);
7078 
7079     return cpu_list;
7080 }
7081 
7082 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
7083                                    void *opaque, int state, int secstate,
7084                                    int crm, int opc1, int opc2,
7085                                    const char *name)
7086 {
7087     /* Private utility function for define_one_arm_cp_reg_with_opaque():
7088      * add a single reginfo struct to the hash table.
7089      */
7090     uint32_t *key = g_new(uint32_t, 1);
7091     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
7092     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
7093     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
7094 
7095     r2->name = g_strdup(name);
7096     /* Reset the secure state to the specific incoming state.  This is
7097      * necessary as the register may have been defined with both states.
7098      */
7099     r2->secure = secstate;
7100 
7101     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7102         /* Register is banked (using both entries in array).
7103          * Overwriting fieldoffset as the array is only used to define
7104          * banked registers but later only fieldoffset is used.
7105          */
7106         r2->fieldoffset = r->bank_fieldoffsets[ns];
7107     }
7108 
7109     if (state == ARM_CP_STATE_AA32) {
7110         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7111             /* If the register is banked then we don't need to migrate or
7112              * reset the 32-bit instance in certain cases:
7113              *
7114              * 1) If the register has both 32-bit and 64-bit instances then we
7115              *    can count on the 64-bit instance taking care of the
7116              *    non-secure bank.
7117              * 2) If ARMv8 is enabled then we can count on a 64-bit version
7118              *    taking care of the secure bank.  This requires that separate
7119              *    32 and 64-bit definitions are provided.
7120              */
7121             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
7122                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7123                 r2->type |= ARM_CP_ALIAS;
7124             }
7125         } else if ((secstate != r->secure) && !ns) {
7126             /* The register is not banked so we only want to allow migration of
7127              * the non-secure instance.
7128              */
7129             r2->type |= ARM_CP_ALIAS;
7130         }
7131 
7132         if (r->state == ARM_CP_STATE_BOTH) {
7133             /* We assume it is a cp15 register if the .cp field is left unset.
7134              */
7135             if (r2->cp == 0) {
7136                 r2->cp = 15;
7137             }
7138 
7139 #ifdef HOST_WORDS_BIGENDIAN
7140             if (r2->fieldoffset) {
7141                 r2->fieldoffset += sizeof(uint32_t);
7142             }
7143 #endif
7144         }
7145     }
7146     if (state == ARM_CP_STATE_AA64) {
7147         /* To allow abbreviation of ARMCPRegInfo
7148          * definitions, we treat cp == 0 as equivalent to
7149          * the value for "standard guest-visible sysreg".
7150          * STATE_BOTH definitions are also always "standard
7151          * sysreg" in their AArch64 view (the .cp value may
7152          * be non-zero for the benefit of the AArch32 view).
7153          */
7154         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
7155             r2->cp = CP_REG_ARM64_SYSREG_CP;
7156         }
7157         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
7158                                   r2->opc0, opc1, opc2);
7159     } else {
7160         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
7161     }
7162     if (opaque) {
7163         r2->opaque = opaque;
7164     }
7165     /* reginfo passed to helpers is correct for the actual access,
7166      * and is never ARM_CP_STATE_BOTH:
7167      */
7168     r2->state = state;
7169     /* Make sure reginfo passed to helpers for wildcarded regs
7170      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
7171      */
7172     r2->crm = crm;
7173     r2->opc1 = opc1;
7174     r2->opc2 = opc2;
7175     /* By convention, for wildcarded registers only the first
7176      * entry is used for migration; the others are marked as
7177      * ALIAS so we don't try to transfer the register
7178      * multiple times. Special registers (ie NOP/WFI) are
7179      * never migratable and not even raw-accessible.
7180      */
7181     if ((r->type & ARM_CP_SPECIAL)) {
7182         r2->type |= ARM_CP_NO_RAW;
7183     }
7184     if (((r->crm == CP_ANY) && crm != 0) ||
7185         ((r->opc1 == CP_ANY) && opc1 != 0) ||
7186         ((r->opc2 == CP_ANY) && opc2 != 0)) {
7187         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
7188     }
7189 
7190     /* Check that raw accesses are either forbidden or handled. Note that
7191      * we can't assert this earlier because the setup of fieldoffset for
7192      * banked registers has to be done first.
7193      */
7194     if (!(r2->type & ARM_CP_NO_RAW)) {
7195         assert(!raw_accessors_invalid(r2));
7196     }
7197 
7198     /* Overriding of an existing definition must be explicitly
7199      * requested.
7200      */
7201     if (!(r->type & ARM_CP_OVERRIDE)) {
7202         ARMCPRegInfo *oldreg;
7203         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
7204         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
7205             fprintf(stderr, "Register redefined: cp=%d %d bit "
7206                     "crn=%d crm=%d opc1=%d opc2=%d, "
7207                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
7208                     r2->crn, r2->crm, r2->opc1, r2->opc2,
7209                     oldreg->name, r2->name);
7210             g_assert_not_reached();
7211         }
7212     }
7213     g_hash_table_insert(cpu->cp_regs, key, r2);
7214 }
7215 
7216 
7217 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
7218                                        const ARMCPRegInfo *r, void *opaque)
7219 {
7220     /* Define implementations of coprocessor registers.
7221      * We store these in a hashtable because typically
7222      * there are less than 150 registers in a space which
7223      * is 16*16*16*8*8 = 262144 in size.
7224      * Wildcarding is supported for the crm, opc1 and opc2 fields.
7225      * If a register is defined twice then the second definition is
7226      * used, so this can be used to define some generic registers and
7227      * then override them with implementation specific variations.
7228      * At least one of the original and the second definition should
7229      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
7230      * against accidental use.
7231      *
7232      * The state field defines whether the register is to be
7233      * visible in the AArch32 or AArch64 execution state. If the
7234      * state is set to ARM_CP_STATE_BOTH then we synthesise a
7235      * reginfo structure for the AArch32 view, which sees the lower
7236      * 32 bits of the 64 bit register.
7237      *
7238      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
7239      * be wildcarded. AArch64 registers are always considered to be 64
7240      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
7241      * the register, if any.
7242      */
7243     int crm, opc1, opc2, state;
7244     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
7245     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
7246     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
7247     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
7248     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
7249     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
7250     /* 64 bit registers have only CRm and Opc1 fields */
7251     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
7252     /* op0 only exists in the AArch64 encodings */
7253     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
7254     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
7255     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
7256     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
7257      * encodes a minimum access level for the register. We roll this
7258      * runtime check into our general permission check code, so check
7259      * here that the reginfo's specified permissions are strict enough
7260      * to encompass the generic architectural permission check.
7261      */
7262     if (r->state != ARM_CP_STATE_AA32) {
7263         int mask = 0;
7264         switch (r->opc1) {
7265         case 0:
7266             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
7267             mask = PL0U_R | PL1_RW;
7268             break;
7269         case 1: case 2:
7270             /* min_EL EL1 */
7271             mask = PL1_RW;
7272             break;
7273         case 3:
7274             /* min_EL EL0 */
7275             mask = PL0_RW;
7276             break;
7277         case 4:
7278             /* min_EL EL2 */
7279             mask = PL2_RW;
7280             break;
7281         case 5:
7282             /* unallocated encoding, so not possible */
7283             assert(false);
7284             break;
7285         case 6:
7286             /* min_EL EL3 */
7287             mask = PL3_RW;
7288             break;
7289         case 7:
7290             /* min_EL EL1, secure mode only (we don't check the latter) */
7291             mask = PL1_RW;
7292             break;
7293         default:
7294             /* broken reginfo with out-of-range opc1 */
7295             assert(false);
7296             break;
7297         }
7298         /* assert our permissions are not too lax (stricter is fine) */
7299         assert((r->access & ~mask) == 0);
7300     }
7301 
7302     /* Check that the register definition has enough info to handle
7303      * reads and writes if they are permitted.
7304      */
7305     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7306         if (r->access & PL3_R) {
7307             assert((r->fieldoffset ||
7308                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7309                    r->readfn);
7310         }
7311         if (r->access & PL3_W) {
7312             assert((r->fieldoffset ||
7313                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7314                    r->writefn);
7315         }
7316     }
7317     /* Bad type field probably means missing sentinel at end of reg list */
7318     assert(cptype_valid(r->type));
7319     for (crm = crmmin; crm <= crmmax; crm++) {
7320         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7321             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
7322                 for (state = ARM_CP_STATE_AA32;
7323                      state <= ARM_CP_STATE_AA64; state++) {
7324                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7325                         continue;
7326                     }
7327                     if (state == ARM_CP_STATE_AA32) {
7328                         /* Under AArch32 CP registers can be common
7329                          * (same for secure and non-secure world) or banked.
7330                          */
7331                         char *name;
7332 
7333                         switch (r->secure) {
7334                         case ARM_CP_SECSTATE_S:
7335                         case ARM_CP_SECSTATE_NS:
7336                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7337                                                    r->secure, crm, opc1, opc2,
7338                                                    r->name);
7339                             break;
7340                         default:
7341                             name = g_strdup_printf("%s_S", r->name);
7342                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7343                                                    ARM_CP_SECSTATE_S,
7344                                                    crm, opc1, opc2, name);
7345                             g_free(name);
7346                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7347                                                    ARM_CP_SECSTATE_NS,
7348                                                    crm, opc1, opc2, r->name);
7349                             break;
7350                         }
7351                     } else {
7352                         /* AArch64 registers get mapped to non-secure instance
7353                          * of AArch32 */
7354                         add_cpreg_to_hashtable(cpu, r, opaque, state,
7355                                                ARM_CP_SECSTATE_NS,
7356                                                crm, opc1, opc2, r->name);
7357                     }
7358                 }
7359             }
7360         }
7361     }
7362 }
7363 
7364 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7365                                     const ARMCPRegInfo *regs, void *opaque)
7366 {
7367     /* Define a whole list of registers */
7368     const ARMCPRegInfo *r;
7369     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7370         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7371     }
7372 }
7373 
7374 /*
7375  * Modify ARMCPRegInfo for access from userspace.
7376  *
7377  * This is a data driven modification directed by
7378  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7379  * user-space cannot alter any values and dynamic values pertaining to
7380  * execution state are hidden from user space view anyway.
7381  */
7382 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7383 {
7384     const ARMCPRegUserSpaceInfo *m;
7385     ARMCPRegInfo *r;
7386 
7387     for (m = mods; m->name; m++) {
7388         GPatternSpec *pat = NULL;
7389         if (m->is_glob) {
7390             pat = g_pattern_spec_new(m->name);
7391         }
7392         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7393             if (pat && g_pattern_match_string(pat, r->name)) {
7394                 r->type = ARM_CP_CONST;
7395                 r->access = PL0U_R;
7396                 r->resetvalue = 0;
7397                 /* continue */
7398             } else if (strcmp(r->name, m->name) == 0) {
7399                 r->type = ARM_CP_CONST;
7400                 r->access = PL0U_R;
7401                 r->resetvalue &= m->exported_bits;
7402                 r->resetvalue |= m->fixed_bits;
7403                 break;
7404             }
7405         }
7406         if (pat) {
7407             g_pattern_spec_free(pat);
7408         }
7409     }
7410 }
7411 
7412 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7413 {
7414     return g_hash_table_lookup(cpregs, &encoded_cp);
7415 }
7416 
7417 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7418                          uint64_t value)
7419 {
7420     /* Helper coprocessor write function for write-ignore registers */
7421 }
7422 
7423 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7424 {
7425     /* Helper coprocessor write function for read-as-zero registers */
7426     return 0;
7427 }
7428 
7429 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7430 {
7431     /* Helper coprocessor reset function for do-nothing-on-reset registers */
7432 }
7433 
7434 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7435 {
7436     /* Return true if it is not valid for us to switch to
7437      * this CPU mode (ie all the UNPREDICTABLE cases in
7438      * the ARM ARM CPSRWriteByInstr pseudocode).
7439      */
7440 
7441     /* Changes to or from Hyp via MSR and CPS are illegal. */
7442     if (write_type == CPSRWriteByInstr &&
7443         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7444          mode == ARM_CPU_MODE_HYP)) {
7445         return 1;
7446     }
7447 
7448     switch (mode) {
7449     case ARM_CPU_MODE_USR:
7450         return 0;
7451     case ARM_CPU_MODE_SYS:
7452     case ARM_CPU_MODE_SVC:
7453     case ARM_CPU_MODE_ABT:
7454     case ARM_CPU_MODE_UND:
7455     case ARM_CPU_MODE_IRQ:
7456     case ARM_CPU_MODE_FIQ:
7457         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7458          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7459          */
7460         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7461          * and CPS are treated as illegal mode changes.
7462          */
7463         if (write_type == CPSRWriteByInstr &&
7464             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7465             (arm_hcr_el2_eff(env) & HCR_TGE)) {
7466             return 1;
7467         }
7468         return 0;
7469     case ARM_CPU_MODE_HYP:
7470         return !arm_feature(env, ARM_FEATURE_EL2)
7471             || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7472     case ARM_CPU_MODE_MON:
7473         return arm_current_el(env) < 3;
7474     default:
7475         return 1;
7476     }
7477 }
7478 
7479 uint32_t cpsr_read(CPUARMState *env)
7480 {
7481     int ZF;
7482     ZF = (env->ZF == 0);
7483     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7484         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7485         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7486         | ((env->condexec_bits & 0xfc) << 8)
7487         | (env->GE << 16) | (env->daif & CPSR_AIF);
7488 }
7489 
7490 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7491                 CPSRWriteType write_type)
7492 {
7493     uint32_t changed_daif;
7494 
7495     if (mask & CPSR_NZCV) {
7496         env->ZF = (~val) & CPSR_Z;
7497         env->NF = val;
7498         env->CF = (val >> 29) & 1;
7499         env->VF = (val << 3) & 0x80000000;
7500     }
7501     if (mask & CPSR_Q)
7502         env->QF = ((val & CPSR_Q) != 0);
7503     if (mask & CPSR_T)
7504         env->thumb = ((val & CPSR_T) != 0);
7505     if (mask & CPSR_IT_0_1) {
7506         env->condexec_bits &= ~3;
7507         env->condexec_bits |= (val >> 25) & 3;
7508     }
7509     if (mask & CPSR_IT_2_7) {
7510         env->condexec_bits &= 3;
7511         env->condexec_bits |= (val >> 8) & 0xfc;
7512     }
7513     if (mask & CPSR_GE) {
7514         env->GE = (val >> 16) & 0xf;
7515     }
7516 
7517     /* In a V7 implementation that includes the security extensions but does
7518      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7519      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7520      * bits respectively.
7521      *
7522      * In a V8 implementation, it is permitted for privileged software to
7523      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7524      */
7525     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7526         arm_feature(env, ARM_FEATURE_EL3) &&
7527         !arm_feature(env, ARM_FEATURE_EL2) &&
7528         !arm_is_secure(env)) {
7529 
7530         changed_daif = (env->daif ^ val) & mask;
7531 
7532         if (changed_daif & CPSR_A) {
7533             /* Check to see if we are allowed to change the masking of async
7534              * abort exceptions from a non-secure state.
7535              */
7536             if (!(env->cp15.scr_el3 & SCR_AW)) {
7537                 qemu_log_mask(LOG_GUEST_ERROR,
7538                               "Ignoring attempt to switch CPSR_A flag from "
7539                               "non-secure world with SCR.AW bit clear\n");
7540                 mask &= ~CPSR_A;
7541             }
7542         }
7543 
7544         if (changed_daif & CPSR_F) {
7545             /* Check to see if we are allowed to change the masking of FIQ
7546              * exceptions from a non-secure state.
7547              */
7548             if (!(env->cp15.scr_el3 & SCR_FW)) {
7549                 qemu_log_mask(LOG_GUEST_ERROR,
7550                               "Ignoring attempt to switch CPSR_F flag from "
7551                               "non-secure world with SCR.FW bit clear\n");
7552                 mask &= ~CPSR_F;
7553             }
7554 
7555             /* Check whether non-maskable FIQ (NMFI) support is enabled.
7556              * If this bit is set software is not allowed to mask
7557              * FIQs, but is allowed to set CPSR_F to 0.
7558              */
7559             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7560                 (val & CPSR_F)) {
7561                 qemu_log_mask(LOG_GUEST_ERROR,
7562                               "Ignoring attempt to enable CPSR_F flag "
7563                               "(non-maskable FIQ [NMFI] support enabled)\n");
7564                 mask &= ~CPSR_F;
7565             }
7566         }
7567     }
7568 
7569     env->daif &= ~(CPSR_AIF & mask);
7570     env->daif |= val & CPSR_AIF & mask;
7571 
7572     if (write_type != CPSRWriteRaw &&
7573         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7574         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7575             /* Note that we can only get here in USR mode if this is a
7576              * gdb stub write; for this case we follow the architectural
7577              * behaviour for guest writes in USR mode of ignoring an attempt
7578              * to switch mode. (Those are caught by translate.c for writes
7579              * triggered by guest instructions.)
7580              */
7581             mask &= ~CPSR_M;
7582         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7583             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7584              * v7, and has defined behaviour in v8:
7585              *  + leave CPSR.M untouched
7586              *  + allow changes to the other CPSR fields
7587              *  + set PSTATE.IL
7588              * For user changes via the GDB stub, we don't set PSTATE.IL,
7589              * as this would be unnecessarily harsh for a user error.
7590              */
7591             mask &= ~CPSR_M;
7592             if (write_type != CPSRWriteByGDBStub &&
7593                 arm_feature(env, ARM_FEATURE_V8)) {
7594                 mask |= CPSR_IL;
7595                 val |= CPSR_IL;
7596             }
7597             qemu_log_mask(LOG_GUEST_ERROR,
7598                           "Illegal AArch32 mode switch attempt from %s to %s\n",
7599                           aarch32_mode_name(env->uncached_cpsr),
7600                           aarch32_mode_name(val));
7601         } else {
7602             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7603                           write_type == CPSRWriteExceptionReturn ?
7604                           "Exception return from AArch32" :
7605                           "AArch32 mode switch from",
7606                           aarch32_mode_name(env->uncached_cpsr),
7607                           aarch32_mode_name(val), env->regs[15]);
7608             switch_mode(env, val & CPSR_M);
7609         }
7610     }
7611     mask &= ~CACHED_CPSR_BITS;
7612     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7613 }
7614 
7615 /* Sign/zero extend */
7616 uint32_t HELPER(sxtb16)(uint32_t x)
7617 {
7618     uint32_t res;
7619     res = (uint16_t)(int8_t)x;
7620     res |= (uint32_t)(int8_t)(x >> 16) << 16;
7621     return res;
7622 }
7623 
7624 uint32_t HELPER(uxtb16)(uint32_t x)
7625 {
7626     uint32_t res;
7627     res = (uint16_t)(uint8_t)x;
7628     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7629     return res;
7630 }
7631 
7632 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7633 {
7634     if (den == 0)
7635       return 0;
7636     if (num == INT_MIN && den == -1)
7637       return INT_MIN;
7638     return num / den;
7639 }
7640 
7641 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7642 {
7643     if (den == 0)
7644       return 0;
7645     return num / den;
7646 }
7647 
7648 uint32_t HELPER(rbit)(uint32_t x)
7649 {
7650     return revbit32(x);
7651 }
7652 
7653 #ifdef CONFIG_USER_ONLY
7654 
7655 static void switch_mode(CPUARMState *env, int mode)
7656 {
7657     ARMCPU *cpu = env_archcpu(env);
7658 
7659     if (mode != ARM_CPU_MODE_USR) {
7660         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7661     }
7662 }
7663 
7664 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7665                                  uint32_t cur_el, bool secure)
7666 {
7667     return 1;
7668 }
7669 
7670 void aarch64_sync_64_to_32(CPUARMState *env)
7671 {
7672     g_assert_not_reached();
7673 }
7674 
7675 #else
7676 
7677 static void switch_mode(CPUARMState *env, int mode)
7678 {
7679     int old_mode;
7680     int i;
7681 
7682     old_mode = env->uncached_cpsr & CPSR_M;
7683     if (mode == old_mode)
7684         return;
7685 
7686     if (old_mode == ARM_CPU_MODE_FIQ) {
7687         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7688         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7689     } else if (mode == ARM_CPU_MODE_FIQ) {
7690         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7691         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7692     }
7693 
7694     i = bank_number(old_mode);
7695     env->banked_r13[i] = env->regs[13];
7696     env->banked_spsr[i] = env->spsr;
7697 
7698     i = bank_number(mode);
7699     env->regs[13] = env->banked_r13[i];
7700     env->spsr = env->banked_spsr[i];
7701 
7702     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7703     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7704 }
7705 
7706 /* Physical Interrupt Target EL Lookup Table
7707  *
7708  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7709  *
7710  * The below multi-dimensional table is used for looking up the target
7711  * exception level given numerous condition criteria.  Specifically, the
7712  * target EL is based on SCR and HCR routing controls as well as the
7713  * currently executing EL and secure state.
7714  *
7715  *    Dimensions:
7716  *    target_el_table[2][2][2][2][2][4]
7717  *                    |  |  |  |  |  +--- Current EL
7718  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
7719  *                    |  |  |  +--------- HCR mask override
7720  *                    |  |  +------------ SCR exec state control
7721  *                    |  +--------------- SCR mask override
7722  *                    +------------------ 32-bit(0)/64-bit(1) EL3
7723  *
7724  *    The table values are as such:
7725  *    0-3 = EL0-EL3
7726  *     -1 = Cannot occur
7727  *
7728  * The ARM ARM target EL table includes entries indicating that an "exception
7729  * is not taken".  The two cases where this is applicable are:
7730  *    1) An exception is taken from EL3 but the SCR does not have the exception
7731  *    routed to EL3.
7732  *    2) An exception is taken from EL2 but the HCR does not have the exception
7733  *    routed to EL2.
7734  * In these two cases, the below table contain a target of EL1.  This value is
7735  * returned as it is expected that the consumer of the table data will check
7736  * for "target EL >= current EL" to ensure the exception is not taken.
7737  *
7738  *            SCR     HCR
7739  *         64  EA     AMO                 From
7740  *        BIT IRQ     IMO      Non-secure         Secure
7741  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
7742  */
7743 static const int8_t target_el_table[2][2][2][2][2][4] = {
7744     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7745        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
7746       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7747        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
7748      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7749        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
7750       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7751        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
7752     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
7753        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
7754       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
7755        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
7756      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7757        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
7758       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7759        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
7760 };
7761 
7762 /*
7763  * Determine the target EL for physical exceptions
7764  */
7765 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7766                                  uint32_t cur_el, bool secure)
7767 {
7768     CPUARMState *env = cs->env_ptr;
7769     bool rw;
7770     bool scr;
7771     bool hcr;
7772     int target_el;
7773     /* Is the highest EL AArch64? */
7774     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7775     uint64_t hcr_el2;
7776 
7777     if (arm_feature(env, ARM_FEATURE_EL3)) {
7778         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7779     } else {
7780         /* Either EL2 is the highest EL (and so the EL2 register width
7781          * is given by is64); or there is no EL2 or EL3, in which case
7782          * the value of 'rw' does not affect the table lookup anyway.
7783          */
7784         rw = is64;
7785     }
7786 
7787     hcr_el2 = arm_hcr_el2_eff(env);
7788     switch (excp_idx) {
7789     case EXCP_IRQ:
7790         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7791         hcr = hcr_el2 & HCR_IMO;
7792         break;
7793     case EXCP_FIQ:
7794         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7795         hcr = hcr_el2 & HCR_FMO;
7796         break;
7797     default:
7798         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7799         hcr = hcr_el2 & HCR_AMO;
7800         break;
7801     };
7802 
7803     /* Perform a table-lookup for the target EL given the current state */
7804     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7805 
7806     assert(target_el > 0);
7807 
7808     return target_el;
7809 }
7810 
7811 void arm_log_exception(int idx)
7812 {
7813     if (qemu_loglevel_mask(CPU_LOG_INT)) {
7814         const char *exc = NULL;
7815         static const char * const excnames[] = {
7816             [EXCP_UDEF] = "Undefined Instruction",
7817             [EXCP_SWI] = "SVC",
7818             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7819             [EXCP_DATA_ABORT] = "Data Abort",
7820             [EXCP_IRQ] = "IRQ",
7821             [EXCP_FIQ] = "FIQ",
7822             [EXCP_BKPT] = "Breakpoint",
7823             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7824             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7825             [EXCP_HVC] = "Hypervisor Call",
7826             [EXCP_HYP_TRAP] = "Hypervisor Trap",
7827             [EXCP_SMC] = "Secure Monitor Call",
7828             [EXCP_VIRQ] = "Virtual IRQ",
7829             [EXCP_VFIQ] = "Virtual FIQ",
7830             [EXCP_SEMIHOST] = "Semihosting call",
7831             [EXCP_NOCP] = "v7M NOCP UsageFault",
7832             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7833             [EXCP_STKOF] = "v8M STKOF UsageFault",
7834             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
7835             [EXCP_LSERR] = "v8M LSERR UsageFault",
7836             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
7837         };
7838 
7839         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7840             exc = excnames[idx];
7841         }
7842         if (!exc) {
7843             exc = "unknown";
7844         }
7845         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7846     }
7847 }
7848 
7849 /*
7850  * Function used to synchronize QEMU's AArch64 register set with AArch32
7851  * register set.  This is necessary when switching between AArch32 and AArch64
7852  * execution state.
7853  */
7854 void aarch64_sync_32_to_64(CPUARMState *env)
7855 {
7856     int i;
7857     uint32_t mode = env->uncached_cpsr & CPSR_M;
7858 
7859     /* We can blanket copy R[0:7] to X[0:7] */
7860     for (i = 0; i < 8; i++) {
7861         env->xregs[i] = env->regs[i];
7862     }
7863 
7864     /*
7865      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7866      * Otherwise, they come from the banked user regs.
7867      */
7868     if (mode == ARM_CPU_MODE_FIQ) {
7869         for (i = 8; i < 13; i++) {
7870             env->xregs[i] = env->usr_regs[i - 8];
7871         }
7872     } else {
7873         for (i = 8; i < 13; i++) {
7874             env->xregs[i] = env->regs[i];
7875         }
7876     }
7877 
7878     /*
7879      * Registers x13-x23 are the various mode SP and FP registers. Registers
7880      * r13 and r14 are only copied if we are in that mode, otherwise we copy
7881      * from the mode banked register.
7882      */
7883     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7884         env->xregs[13] = env->regs[13];
7885         env->xregs[14] = env->regs[14];
7886     } else {
7887         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7888         /* HYP is an exception in that it is copied from r14 */
7889         if (mode == ARM_CPU_MODE_HYP) {
7890             env->xregs[14] = env->regs[14];
7891         } else {
7892             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
7893         }
7894     }
7895 
7896     if (mode == ARM_CPU_MODE_HYP) {
7897         env->xregs[15] = env->regs[13];
7898     } else {
7899         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7900     }
7901 
7902     if (mode == ARM_CPU_MODE_IRQ) {
7903         env->xregs[16] = env->regs[14];
7904         env->xregs[17] = env->regs[13];
7905     } else {
7906         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
7907         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7908     }
7909 
7910     if (mode == ARM_CPU_MODE_SVC) {
7911         env->xregs[18] = env->regs[14];
7912         env->xregs[19] = env->regs[13];
7913     } else {
7914         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
7915         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7916     }
7917 
7918     if (mode == ARM_CPU_MODE_ABT) {
7919         env->xregs[20] = env->regs[14];
7920         env->xregs[21] = env->regs[13];
7921     } else {
7922         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
7923         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7924     }
7925 
7926     if (mode == ARM_CPU_MODE_UND) {
7927         env->xregs[22] = env->regs[14];
7928         env->xregs[23] = env->regs[13];
7929     } else {
7930         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
7931         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7932     }
7933 
7934     /*
7935      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7936      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
7937      * FIQ bank for r8-r14.
7938      */
7939     if (mode == ARM_CPU_MODE_FIQ) {
7940         for (i = 24; i < 31; i++) {
7941             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
7942         }
7943     } else {
7944         for (i = 24; i < 29; i++) {
7945             env->xregs[i] = env->fiq_regs[i - 24];
7946         }
7947         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7948         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
7949     }
7950 
7951     env->pc = env->regs[15];
7952 }
7953 
7954 /*
7955  * Function used to synchronize QEMU's AArch32 register set with AArch64
7956  * register set.  This is necessary when switching between AArch32 and AArch64
7957  * execution state.
7958  */
7959 void aarch64_sync_64_to_32(CPUARMState *env)
7960 {
7961     int i;
7962     uint32_t mode = env->uncached_cpsr & CPSR_M;
7963 
7964     /* We can blanket copy X[0:7] to R[0:7] */
7965     for (i = 0; i < 8; i++) {
7966         env->regs[i] = env->xregs[i];
7967     }
7968 
7969     /*
7970      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7971      * Otherwise, we copy x8-x12 into the banked user regs.
7972      */
7973     if (mode == ARM_CPU_MODE_FIQ) {
7974         for (i = 8; i < 13; i++) {
7975             env->usr_regs[i - 8] = env->xregs[i];
7976         }
7977     } else {
7978         for (i = 8; i < 13; i++) {
7979             env->regs[i] = env->xregs[i];
7980         }
7981     }
7982 
7983     /*
7984      * Registers r13 & r14 depend on the current mode.
7985      * If we are in a given mode, we copy the corresponding x registers to r13
7986      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
7987      * for the mode.
7988      */
7989     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7990         env->regs[13] = env->xregs[13];
7991         env->regs[14] = env->xregs[14];
7992     } else {
7993         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7994 
7995         /*
7996          * HYP is an exception in that it does not have its own banked r14 but
7997          * shares the USR r14
7998          */
7999         if (mode == ARM_CPU_MODE_HYP) {
8000             env->regs[14] = env->xregs[14];
8001         } else {
8002             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
8003         }
8004     }
8005 
8006     if (mode == ARM_CPU_MODE_HYP) {
8007         env->regs[13] = env->xregs[15];
8008     } else {
8009         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
8010     }
8011 
8012     if (mode == ARM_CPU_MODE_IRQ) {
8013         env->regs[14] = env->xregs[16];
8014         env->regs[13] = env->xregs[17];
8015     } else {
8016         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
8017         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
8018     }
8019 
8020     if (mode == ARM_CPU_MODE_SVC) {
8021         env->regs[14] = env->xregs[18];
8022         env->regs[13] = env->xregs[19];
8023     } else {
8024         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
8025         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
8026     }
8027 
8028     if (mode == ARM_CPU_MODE_ABT) {
8029         env->regs[14] = env->xregs[20];
8030         env->regs[13] = env->xregs[21];
8031     } else {
8032         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
8033         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
8034     }
8035 
8036     if (mode == ARM_CPU_MODE_UND) {
8037         env->regs[14] = env->xregs[22];
8038         env->regs[13] = env->xregs[23];
8039     } else {
8040         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
8041         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
8042     }
8043 
8044     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
8045      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
8046      * FIQ bank for r8-r14.
8047      */
8048     if (mode == ARM_CPU_MODE_FIQ) {
8049         for (i = 24; i < 31; i++) {
8050             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
8051         }
8052     } else {
8053         for (i = 24; i < 29; i++) {
8054             env->fiq_regs[i - 24] = env->xregs[i];
8055         }
8056         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
8057         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
8058     }
8059 
8060     env->regs[15] = env->pc;
8061 }
8062 
8063 static void take_aarch32_exception(CPUARMState *env, int new_mode,
8064                                    uint32_t mask, uint32_t offset,
8065                                    uint32_t newpc)
8066 {
8067     /* Change the CPU state so as to actually take the exception. */
8068     switch_mode(env, new_mode);
8069     /*
8070      * For exceptions taken to AArch32 we must clear the SS bit in both
8071      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8072      */
8073     env->uncached_cpsr &= ~PSTATE_SS;
8074     env->spsr = cpsr_read(env);
8075     /* Clear IT bits.  */
8076     env->condexec_bits = 0;
8077     /* Switch to the new mode, and to the correct instruction set.  */
8078     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8079     /* Set new mode endianness */
8080     env->uncached_cpsr &= ~CPSR_E;
8081     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8082         env->uncached_cpsr |= CPSR_E;
8083     }
8084     /* J and IL must always be cleared for exception entry */
8085     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
8086     env->daif |= mask;
8087 
8088     if (new_mode == ARM_CPU_MODE_HYP) {
8089         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
8090         env->elr_el[2] = env->regs[15];
8091     } else {
8092         /*
8093          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
8094          * and we should just guard the thumb mode on V4
8095          */
8096         if (arm_feature(env, ARM_FEATURE_V4T)) {
8097             env->thumb =
8098                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8099         }
8100         env->regs[14] = env->regs[15] + offset;
8101     }
8102     env->regs[15] = newpc;
8103     arm_rebuild_hflags(env);
8104 }
8105 
8106 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
8107 {
8108     /*
8109      * Handle exception entry to Hyp mode; this is sufficiently
8110      * different to entry to other AArch32 modes that we handle it
8111      * separately here.
8112      *
8113      * The vector table entry used is always the 0x14 Hyp mode entry point,
8114      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
8115      * The offset applied to the preferred return address is always zero
8116      * (see DDI0487C.a section G1.12.3).
8117      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8118      */
8119     uint32_t addr, mask;
8120     ARMCPU *cpu = ARM_CPU(cs);
8121     CPUARMState *env = &cpu->env;
8122 
8123     switch (cs->exception_index) {
8124     case EXCP_UDEF:
8125         addr = 0x04;
8126         break;
8127     case EXCP_SWI:
8128         addr = 0x14;
8129         break;
8130     case EXCP_BKPT:
8131         /* Fall through to prefetch abort.  */
8132     case EXCP_PREFETCH_ABORT:
8133         env->cp15.ifar_s = env->exception.vaddress;
8134         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
8135                       (uint32_t)env->exception.vaddress);
8136         addr = 0x0c;
8137         break;
8138     case EXCP_DATA_ABORT:
8139         env->cp15.dfar_s = env->exception.vaddress;
8140         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
8141                       (uint32_t)env->exception.vaddress);
8142         addr = 0x10;
8143         break;
8144     case EXCP_IRQ:
8145         addr = 0x18;
8146         break;
8147     case EXCP_FIQ:
8148         addr = 0x1c;
8149         break;
8150     case EXCP_HVC:
8151         addr = 0x08;
8152         break;
8153     case EXCP_HYP_TRAP:
8154         addr = 0x14;
8155         break;
8156     default:
8157         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8158     }
8159 
8160     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
8161         if (!arm_feature(env, ARM_FEATURE_V8)) {
8162             /*
8163              * QEMU syndrome values are v8-style. v7 has the IL bit
8164              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
8165              * If this is a v7 CPU, squash the IL bit in those cases.
8166              */
8167             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
8168                 (cs->exception_index == EXCP_DATA_ABORT &&
8169                  !(env->exception.syndrome & ARM_EL_ISV)) ||
8170                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
8171                 env->exception.syndrome &= ~ARM_EL_IL;
8172             }
8173         }
8174         env->cp15.esr_el[2] = env->exception.syndrome;
8175     }
8176 
8177     if (arm_current_el(env) != 2 && addr < 0x14) {
8178         addr = 0x14;
8179     }
8180 
8181     mask = 0;
8182     if (!(env->cp15.scr_el3 & SCR_EA)) {
8183         mask |= CPSR_A;
8184     }
8185     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
8186         mask |= CPSR_I;
8187     }
8188     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
8189         mask |= CPSR_F;
8190     }
8191 
8192     addr += env->cp15.hvbar;
8193 
8194     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
8195 }
8196 
8197 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
8198 {
8199     ARMCPU *cpu = ARM_CPU(cs);
8200     CPUARMState *env = &cpu->env;
8201     uint32_t addr;
8202     uint32_t mask;
8203     int new_mode;
8204     uint32_t offset;
8205     uint32_t moe;
8206 
8207     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8208     switch (syn_get_ec(env->exception.syndrome)) {
8209     case EC_BREAKPOINT:
8210     case EC_BREAKPOINT_SAME_EL:
8211         moe = 1;
8212         break;
8213     case EC_WATCHPOINT:
8214     case EC_WATCHPOINT_SAME_EL:
8215         moe = 10;
8216         break;
8217     case EC_AA32_BKPT:
8218         moe = 3;
8219         break;
8220     case EC_VECTORCATCH:
8221         moe = 5;
8222         break;
8223     default:
8224         moe = 0;
8225         break;
8226     }
8227 
8228     if (moe) {
8229         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
8230     }
8231 
8232     if (env->exception.target_el == 2) {
8233         arm_cpu_do_interrupt_aarch32_hyp(cs);
8234         return;
8235     }
8236 
8237     switch (cs->exception_index) {
8238     case EXCP_UDEF:
8239         new_mode = ARM_CPU_MODE_UND;
8240         addr = 0x04;
8241         mask = CPSR_I;
8242         if (env->thumb)
8243             offset = 2;
8244         else
8245             offset = 4;
8246         break;
8247     case EXCP_SWI:
8248         new_mode = ARM_CPU_MODE_SVC;
8249         addr = 0x08;
8250         mask = CPSR_I;
8251         /* The PC already points to the next instruction.  */
8252         offset = 0;
8253         break;
8254     case EXCP_BKPT:
8255         /* Fall through to prefetch abort.  */
8256     case EXCP_PREFETCH_ABORT:
8257         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8258         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8259         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8260                       env->exception.fsr, (uint32_t)env->exception.vaddress);
8261         new_mode = ARM_CPU_MODE_ABT;
8262         addr = 0x0c;
8263         mask = CPSR_A | CPSR_I;
8264         offset = 4;
8265         break;
8266     case EXCP_DATA_ABORT:
8267         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8268         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8269         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8270                       env->exception.fsr,
8271                       (uint32_t)env->exception.vaddress);
8272         new_mode = ARM_CPU_MODE_ABT;
8273         addr = 0x10;
8274         mask = CPSR_A | CPSR_I;
8275         offset = 8;
8276         break;
8277     case EXCP_IRQ:
8278         new_mode = ARM_CPU_MODE_IRQ;
8279         addr = 0x18;
8280         /* Disable IRQ and imprecise data aborts.  */
8281         mask = CPSR_A | CPSR_I;
8282         offset = 4;
8283         if (env->cp15.scr_el3 & SCR_IRQ) {
8284             /* IRQ routed to monitor mode */
8285             new_mode = ARM_CPU_MODE_MON;
8286             mask |= CPSR_F;
8287         }
8288         break;
8289     case EXCP_FIQ:
8290         new_mode = ARM_CPU_MODE_FIQ;
8291         addr = 0x1c;
8292         /* Disable FIQ, IRQ and imprecise data aborts.  */
8293         mask = CPSR_A | CPSR_I | CPSR_F;
8294         if (env->cp15.scr_el3 & SCR_FIQ) {
8295             /* FIQ routed to monitor mode */
8296             new_mode = ARM_CPU_MODE_MON;
8297         }
8298         offset = 4;
8299         break;
8300     case EXCP_VIRQ:
8301         new_mode = ARM_CPU_MODE_IRQ;
8302         addr = 0x18;
8303         /* Disable IRQ and imprecise data aborts.  */
8304         mask = CPSR_A | CPSR_I;
8305         offset = 4;
8306         break;
8307     case EXCP_VFIQ:
8308         new_mode = ARM_CPU_MODE_FIQ;
8309         addr = 0x1c;
8310         /* Disable FIQ, IRQ and imprecise data aborts.  */
8311         mask = CPSR_A | CPSR_I | CPSR_F;
8312         offset = 4;
8313         break;
8314     case EXCP_SMC:
8315         new_mode = ARM_CPU_MODE_MON;
8316         addr = 0x08;
8317         mask = CPSR_A | CPSR_I | CPSR_F;
8318         offset = 0;
8319         break;
8320     default:
8321         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8322         return; /* Never happens.  Keep compiler happy.  */
8323     }
8324 
8325     if (new_mode == ARM_CPU_MODE_MON) {
8326         addr += env->cp15.mvbar;
8327     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8328         /* High vectors. When enabled, base address cannot be remapped. */
8329         addr += 0xffff0000;
8330     } else {
8331         /* ARM v7 architectures provide a vector base address register to remap
8332          * the interrupt vector table.
8333          * This register is only followed in non-monitor mode, and is banked.
8334          * Note: only bits 31:5 are valid.
8335          */
8336         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8337     }
8338 
8339     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8340         env->cp15.scr_el3 &= ~SCR_NS;
8341     }
8342 
8343     take_aarch32_exception(env, new_mode, mask, offset, addr);
8344 }
8345 
8346 /* Handle exception entry to a target EL which is using AArch64 */
8347 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8348 {
8349     ARMCPU *cpu = ARM_CPU(cs);
8350     CPUARMState *env = &cpu->env;
8351     unsigned int new_el = env->exception.target_el;
8352     target_ulong addr = env->cp15.vbar_el[new_el];
8353     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8354     unsigned int cur_el = arm_current_el(env);
8355 
8356     /*
8357      * Note that new_el can never be 0.  If cur_el is 0, then
8358      * el0_a64 is is_a64(), else el0_a64 is ignored.
8359      */
8360     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
8361 
8362     if (cur_el < new_el) {
8363         /* Entry vector offset depends on whether the implemented EL
8364          * immediately lower than the target level is using AArch32 or AArch64
8365          */
8366         bool is_aa64;
8367 
8368         switch (new_el) {
8369         case 3:
8370             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8371             break;
8372         case 2:
8373             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8374             break;
8375         case 1:
8376             is_aa64 = is_a64(env);
8377             break;
8378         default:
8379             g_assert_not_reached();
8380         }
8381 
8382         if (is_aa64) {
8383             addr += 0x400;
8384         } else {
8385             addr += 0x600;
8386         }
8387     } else if (pstate_read(env) & PSTATE_SP) {
8388         addr += 0x200;
8389     }
8390 
8391     switch (cs->exception_index) {
8392     case EXCP_PREFETCH_ABORT:
8393     case EXCP_DATA_ABORT:
8394         env->cp15.far_el[new_el] = env->exception.vaddress;
8395         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8396                       env->cp15.far_el[new_el]);
8397         /* fall through */
8398     case EXCP_BKPT:
8399     case EXCP_UDEF:
8400     case EXCP_SWI:
8401     case EXCP_HVC:
8402     case EXCP_HYP_TRAP:
8403     case EXCP_SMC:
8404         if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
8405             /*
8406              * QEMU internal FP/SIMD syndromes from AArch32 include the
8407              * TA and coproc fields which are only exposed if the exception
8408              * is taken to AArch32 Hyp mode. Mask them out to get a valid
8409              * AArch64 format syndrome.
8410              */
8411             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
8412         }
8413         env->cp15.esr_el[new_el] = env->exception.syndrome;
8414         break;
8415     case EXCP_IRQ:
8416     case EXCP_VIRQ:
8417         addr += 0x80;
8418         break;
8419     case EXCP_FIQ:
8420     case EXCP_VFIQ:
8421         addr += 0x100;
8422         break;
8423     case EXCP_SEMIHOST:
8424         qemu_log_mask(CPU_LOG_INT,
8425                       "...handling as semihosting call 0x%" PRIx64 "\n",
8426                       env->xregs[0]);
8427         env->xregs[0] = do_arm_semihosting(env);
8428         return;
8429     default:
8430         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8431     }
8432 
8433     if (is_a64(env)) {
8434         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8435         aarch64_save_sp(env, arm_current_el(env));
8436         env->elr_el[new_el] = env->pc;
8437     } else {
8438         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8439         env->elr_el[new_el] = env->regs[15];
8440 
8441         aarch64_sync_32_to_64(env);
8442 
8443         env->condexec_bits = 0;
8444     }
8445     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8446                   env->elr_el[new_el]);
8447 
8448     pstate_write(env, PSTATE_DAIF | new_mode);
8449     env->aarch64 = 1;
8450     aarch64_restore_sp(env, new_el);
8451     helper_rebuild_hflags_a64(env, new_el);
8452 
8453     env->pc = addr;
8454 
8455     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8456                   new_el, env->pc, pstate_read(env));
8457 }
8458 
8459 /*
8460  * Do semihosting call and set the appropriate return value. All the
8461  * permission and validity checks have been done at translate time.
8462  *
8463  * We only see semihosting exceptions in TCG only as they are not
8464  * trapped to the hypervisor in KVM.
8465  */
8466 #ifdef CONFIG_TCG
8467 static void handle_semihosting(CPUState *cs)
8468 {
8469     ARMCPU *cpu = ARM_CPU(cs);
8470     CPUARMState *env = &cpu->env;
8471 
8472     if (is_a64(env)) {
8473         qemu_log_mask(CPU_LOG_INT,
8474                       "...handling as semihosting call 0x%" PRIx64 "\n",
8475                       env->xregs[0]);
8476         env->xregs[0] = do_arm_semihosting(env);
8477     } else {
8478         qemu_log_mask(CPU_LOG_INT,
8479                       "...handling as semihosting call 0x%x\n",
8480                       env->regs[0]);
8481         env->regs[0] = do_arm_semihosting(env);
8482     }
8483 }
8484 #endif
8485 
8486 /* Handle a CPU exception for A and R profile CPUs.
8487  * Do any appropriate logging, handle PSCI calls, and then hand off
8488  * to the AArch64-entry or AArch32-entry function depending on the
8489  * target exception level's register width.
8490  */
8491 void arm_cpu_do_interrupt(CPUState *cs)
8492 {
8493     ARMCPU *cpu = ARM_CPU(cs);
8494     CPUARMState *env = &cpu->env;
8495     unsigned int new_el = env->exception.target_el;
8496 
8497     assert(!arm_feature(env, ARM_FEATURE_M));
8498 
8499     arm_log_exception(cs->exception_index);
8500     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8501                   new_el);
8502     if (qemu_loglevel_mask(CPU_LOG_INT)
8503         && !excp_is_internal(cs->exception_index)) {
8504         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8505                       syn_get_ec(env->exception.syndrome),
8506                       env->exception.syndrome);
8507     }
8508 
8509     if (arm_is_psci_call(cpu, cs->exception_index)) {
8510         arm_handle_psci_call(cpu);
8511         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8512         return;
8513     }
8514 
8515     /*
8516      * Semihosting semantics depend on the register width of the code
8517      * that caused the exception, not the target exception level, so
8518      * must be handled here.
8519      */
8520 #ifdef CONFIG_TCG
8521     if (cs->exception_index == EXCP_SEMIHOST) {
8522         handle_semihosting(cs);
8523         return;
8524     }
8525 #endif
8526 
8527     /* Hooks may change global state so BQL should be held, also the
8528      * BQL needs to be held for any modification of
8529      * cs->interrupt_request.
8530      */
8531     g_assert(qemu_mutex_iothread_locked());
8532 
8533     arm_call_pre_el_change_hook(cpu);
8534 
8535     assert(!excp_is_internal(cs->exception_index));
8536     if (arm_el_is_aa64(env, new_el)) {
8537         arm_cpu_do_interrupt_aarch64(cs);
8538     } else {
8539         arm_cpu_do_interrupt_aarch32(cs);
8540     }
8541 
8542     arm_call_el_change_hook(cpu);
8543 
8544     if (!kvm_enabled()) {
8545         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8546     }
8547 }
8548 #endif /* !CONFIG_USER_ONLY */
8549 
8550 /* Return the exception level which controls this address translation regime */
8551 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8552 {
8553     switch (mmu_idx) {
8554     case ARMMMUIdx_S2NS:
8555     case ARMMMUIdx_S1E2:
8556         return 2;
8557     case ARMMMUIdx_S1E3:
8558         return 3;
8559     case ARMMMUIdx_S1SE0:
8560         return arm_el_is_aa64(env, 3) ? 1 : 3;
8561     case ARMMMUIdx_S1SE1:
8562     case ARMMMUIdx_S1NSE0:
8563     case ARMMMUIdx_S1NSE1:
8564     case ARMMMUIdx_MPrivNegPri:
8565     case ARMMMUIdx_MUserNegPri:
8566     case ARMMMUIdx_MPriv:
8567     case ARMMMUIdx_MUser:
8568     case ARMMMUIdx_MSPrivNegPri:
8569     case ARMMMUIdx_MSUserNegPri:
8570     case ARMMMUIdx_MSPriv:
8571     case ARMMMUIdx_MSUser:
8572         return 1;
8573     default:
8574         g_assert_not_reached();
8575     }
8576 }
8577 
8578 #ifndef CONFIG_USER_ONLY
8579 
8580 /* Return the SCTLR value which controls this address translation regime */
8581 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8582 {
8583     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8584 }
8585 
8586 /* Return true if the specified stage of address translation is disabled */
8587 static inline bool regime_translation_disabled(CPUARMState *env,
8588                                                ARMMMUIdx mmu_idx)
8589 {
8590     if (arm_feature(env, ARM_FEATURE_M)) {
8591         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8592                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8593         case R_V7M_MPU_CTRL_ENABLE_MASK:
8594             /* Enabled, but not for HardFault and NMI */
8595             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8596         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8597             /* Enabled for all cases */
8598             return false;
8599         case 0:
8600         default:
8601             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8602              * we warned about that in armv7m_nvic.c when the guest set it.
8603              */
8604             return true;
8605         }
8606     }
8607 
8608     if (mmu_idx == ARMMMUIdx_S2NS) {
8609         /* HCR.DC means HCR.VM behaves as 1 */
8610         return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
8611     }
8612 
8613     if (env->cp15.hcr_el2 & HCR_TGE) {
8614         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8615         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
8616             return true;
8617         }
8618     }
8619 
8620     if ((env->cp15.hcr_el2 & HCR_DC) &&
8621         (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
8622         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
8623         return true;
8624     }
8625 
8626     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8627 }
8628 
8629 static inline bool regime_translation_big_endian(CPUARMState *env,
8630                                                  ARMMMUIdx mmu_idx)
8631 {
8632     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8633 }
8634 
8635 /* Return the TTBR associated with this translation regime */
8636 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8637                                    int ttbrn)
8638 {
8639     if (mmu_idx == ARMMMUIdx_S2NS) {
8640         return env->cp15.vttbr_el2;
8641     }
8642     if (ttbrn == 0) {
8643         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8644     } else {
8645         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8646     }
8647 }
8648 
8649 #endif /* !CONFIG_USER_ONLY */
8650 
8651 /* Return the TCR controlling this translation regime */
8652 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8653 {
8654     if (mmu_idx == ARMMMUIdx_S2NS) {
8655         return &env->cp15.vtcr_el2;
8656     }
8657     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8658 }
8659 
8660 /* Convert a possible stage1+2 MMU index into the appropriate
8661  * stage 1 MMU index
8662  */
8663 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8664 {
8665     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8666         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8667     }
8668     return mmu_idx;
8669 }
8670 
8671 /* Return true if the translation regime is using LPAE format page tables */
8672 static inline bool regime_using_lpae_format(CPUARMState *env,
8673                                             ARMMMUIdx mmu_idx)
8674 {
8675     int el = regime_el(env, mmu_idx);
8676     if (el == 2 || arm_el_is_aa64(env, el)) {
8677         return true;
8678     }
8679     if (arm_feature(env, ARM_FEATURE_LPAE)
8680         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8681         return true;
8682     }
8683     return false;
8684 }
8685 
8686 /* Returns true if the stage 1 translation regime is using LPAE format page
8687  * tables. Used when raising alignment exceptions, whose FSR changes depending
8688  * on whether the long or short descriptor format is in use. */
8689 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8690 {
8691     mmu_idx = stage_1_mmu_idx(mmu_idx);
8692 
8693     return regime_using_lpae_format(env, mmu_idx);
8694 }
8695 
8696 #ifndef CONFIG_USER_ONLY
8697 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8698 {
8699     switch (mmu_idx) {
8700     case ARMMMUIdx_S1SE0:
8701     case ARMMMUIdx_S1NSE0:
8702     case ARMMMUIdx_MUser:
8703     case ARMMMUIdx_MSUser:
8704     case ARMMMUIdx_MUserNegPri:
8705     case ARMMMUIdx_MSUserNegPri:
8706         return true;
8707     default:
8708         return false;
8709     case ARMMMUIdx_S12NSE0:
8710     case ARMMMUIdx_S12NSE1:
8711         g_assert_not_reached();
8712     }
8713 }
8714 
8715 /* Translate section/page access permissions to page
8716  * R/W protection flags
8717  *
8718  * @env:         CPUARMState
8719  * @mmu_idx:     MMU index indicating required translation regime
8720  * @ap:          The 3-bit access permissions (AP[2:0])
8721  * @domain_prot: The 2-bit domain access permissions
8722  */
8723 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8724                                 int ap, int domain_prot)
8725 {
8726     bool is_user = regime_is_user(env, mmu_idx);
8727 
8728     if (domain_prot == 3) {
8729         return PAGE_READ | PAGE_WRITE;
8730     }
8731 
8732     switch (ap) {
8733     case 0:
8734         if (arm_feature(env, ARM_FEATURE_V7)) {
8735             return 0;
8736         }
8737         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8738         case SCTLR_S:
8739             return is_user ? 0 : PAGE_READ;
8740         case SCTLR_R:
8741             return PAGE_READ;
8742         default:
8743             return 0;
8744         }
8745     case 1:
8746         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8747     case 2:
8748         if (is_user) {
8749             return PAGE_READ;
8750         } else {
8751             return PAGE_READ | PAGE_WRITE;
8752         }
8753     case 3:
8754         return PAGE_READ | PAGE_WRITE;
8755     case 4: /* Reserved.  */
8756         return 0;
8757     case 5:
8758         return is_user ? 0 : PAGE_READ;
8759     case 6:
8760         return PAGE_READ;
8761     case 7:
8762         if (!arm_feature(env, ARM_FEATURE_V6K)) {
8763             return 0;
8764         }
8765         return PAGE_READ;
8766     default:
8767         g_assert_not_reached();
8768     }
8769 }
8770 
8771 /* Translate section/page access permissions to page
8772  * R/W protection flags.
8773  *
8774  * @ap:      The 2-bit simple AP (AP[2:1])
8775  * @is_user: TRUE if accessing from PL0
8776  */
8777 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8778 {
8779     switch (ap) {
8780     case 0:
8781         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8782     case 1:
8783         return PAGE_READ | PAGE_WRITE;
8784     case 2:
8785         return is_user ? 0 : PAGE_READ;
8786     case 3:
8787         return PAGE_READ;
8788     default:
8789         g_assert_not_reached();
8790     }
8791 }
8792 
8793 static inline int
8794 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8795 {
8796     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8797 }
8798 
8799 /* Translate S2 section/page access permissions to protection flags
8800  *
8801  * @env:     CPUARMState
8802  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
8803  * @xn:      XN (execute-never) bit
8804  */
8805 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8806 {
8807     int prot = 0;
8808 
8809     if (s2ap & 1) {
8810         prot |= PAGE_READ;
8811     }
8812     if (s2ap & 2) {
8813         prot |= PAGE_WRITE;
8814     }
8815     if (!xn) {
8816         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8817             prot |= PAGE_EXEC;
8818         }
8819     }
8820     return prot;
8821 }
8822 
8823 /* Translate section/page access permissions to protection flags
8824  *
8825  * @env:     CPUARMState
8826  * @mmu_idx: MMU index indicating required translation regime
8827  * @is_aa64: TRUE if AArch64
8828  * @ap:      The 2-bit simple AP (AP[2:1])
8829  * @ns:      NS (non-secure) bit
8830  * @xn:      XN (execute-never) bit
8831  * @pxn:     PXN (privileged execute-never) bit
8832  */
8833 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8834                       int ap, int ns, int xn, int pxn)
8835 {
8836     bool is_user = regime_is_user(env, mmu_idx);
8837     int prot_rw, user_rw;
8838     bool have_wxn;
8839     int wxn = 0;
8840 
8841     assert(mmu_idx != ARMMMUIdx_S2NS);
8842 
8843     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8844     if (is_user) {
8845         prot_rw = user_rw;
8846     } else {
8847         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8848     }
8849 
8850     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8851         return prot_rw;
8852     }
8853 
8854     /* TODO have_wxn should be replaced with
8855      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8856      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8857      * compatible processors have EL2, which is required for [U]WXN.
8858      */
8859     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8860 
8861     if (have_wxn) {
8862         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8863     }
8864 
8865     if (is_aa64) {
8866         switch (regime_el(env, mmu_idx)) {
8867         case 1:
8868             if (!is_user) {
8869                 xn = pxn || (user_rw & PAGE_WRITE);
8870             }
8871             break;
8872         case 2:
8873         case 3:
8874             break;
8875         }
8876     } else if (arm_feature(env, ARM_FEATURE_V7)) {
8877         switch (regime_el(env, mmu_idx)) {
8878         case 1:
8879         case 3:
8880             if (is_user) {
8881                 xn = xn || !(user_rw & PAGE_READ);
8882             } else {
8883                 int uwxn = 0;
8884                 if (have_wxn) {
8885                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8886                 }
8887                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8888                      (uwxn && (user_rw & PAGE_WRITE));
8889             }
8890             break;
8891         case 2:
8892             break;
8893         }
8894     } else {
8895         xn = wxn = 0;
8896     }
8897 
8898     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8899         return prot_rw;
8900     }
8901     return prot_rw | PAGE_EXEC;
8902 }
8903 
8904 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8905                                      uint32_t *table, uint32_t address)
8906 {
8907     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8908     TCR *tcr = regime_tcr(env, mmu_idx);
8909 
8910     if (address & tcr->mask) {
8911         if (tcr->raw_tcr & TTBCR_PD1) {
8912             /* Translation table walk disabled for TTBR1 */
8913             return false;
8914         }
8915         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8916     } else {
8917         if (tcr->raw_tcr & TTBCR_PD0) {
8918             /* Translation table walk disabled for TTBR0 */
8919             return false;
8920         }
8921         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8922     }
8923     *table |= (address >> 18) & 0x3ffc;
8924     return true;
8925 }
8926 
8927 /* Translate a S1 pagetable walk through S2 if needed.  */
8928 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8929                                hwaddr addr, MemTxAttrs txattrs,
8930                                ARMMMUFaultInfo *fi)
8931 {
8932     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8933         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8934         target_ulong s2size;
8935         hwaddr s2pa;
8936         int s2prot;
8937         int ret;
8938         ARMCacheAttrs cacheattrs = {};
8939         ARMCacheAttrs *pcacheattrs = NULL;
8940 
8941         if (env->cp15.hcr_el2 & HCR_PTW) {
8942             /*
8943              * PTW means we must fault if this S1 walk touches S2 Device
8944              * memory; otherwise we don't care about the attributes and can
8945              * save the S2 translation the effort of computing them.
8946              */
8947             pcacheattrs = &cacheattrs;
8948         }
8949 
8950         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8951                                  &txattrs, &s2prot, &s2size, fi, pcacheattrs);
8952         if (ret) {
8953             assert(fi->type != ARMFault_None);
8954             fi->s2addr = addr;
8955             fi->stage2 = true;
8956             fi->s1ptw = true;
8957             return ~0;
8958         }
8959         if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
8960             /* Access was to Device memory: generate Permission fault */
8961             fi->type = ARMFault_Permission;
8962             fi->s2addr = addr;
8963             fi->stage2 = true;
8964             fi->s1ptw = true;
8965             return ~0;
8966         }
8967         addr = s2pa;
8968     }
8969     return addr;
8970 }
8971 
8972 /* All loads done in the course of a page table walk go through here. */
8973 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8974                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8975 {
8976     ARMCPU *cpu = ARM_CPU(cs);
8977     CPUARMState *env = &cpu->env;
8978     MemTxAttrs attrs = {};
8979     MemTxResult result = MEMTX_OK;
8980     AddressSpace *as;
8981     uint32_t data;
8982 
8983     attrs.secure = is_secure;
8984     as = arm_addressspace(cs, attrs);
8985     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8986     if (fi->s1ptw) {
8987         return 0;
8988     }
8989     if (regime_translation_big_endian(env, mmu_idx)) {
8990         data = address_space_ldl_be(as, addr, attrs, &result);
8991     } else {
8992         data = address_space_ldl_le(as, addr, attrs, &result);
8993     }
8994     if (result == MEMTX_OK) {
8995         return data;
8996     }
8997     fi->type = ARMFault_SyncExternalOnWalk;
8998     fi->ea = arm_extabort_type(result);
8999     return 0;
9000 }
9001 
9002 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9003                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9004 {
9005     ARMCPU *cpu = ARM_CPU(cs);
9006     CPUARMState *env = &cpu->env;
9007     MemTxAttrs attrs = {};
9008     MemTxResult result = MEMTX_OK;
9009     AddressSpace *as;
9010     uint64_t data;
9011 
9012     attrs.secure = is_secure;
9013     as = arm_addressspace(cs, attrs);
9014     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9015     if (fi->s1ptw) {
9016         return 0;
9017     }
9018     if (regime_translation_big_endian(env, mmu_idx)) {
9019         data = address_space_ldq_be(as, addr, attrs, &result);
9020     } else {
9021         data = address_space_ldq_le(as, addr, attrs, &result);
9022     }
9023     if (result == MEMTX_OK) {
9024         return data;
9025     }
9026     fi->type = ARMFault_SyncExternalOnWalk;
9027     fi->ea = arm_extabort_type(result);
9028     return 0;
9029 }
9030 
9031 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
9032                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
9033                              hwaddr *phys_ptr, int *prot,
9034                              target_ulong *page_size,
9035                              ARMMMUFaultInfo *fi)
9036 {
9037     CPUState *cs = env_cpu(env);
9038     int level = 1;
9039     uint32_t table;
9040     uint32_t desc;
9041     int type;
9042     int ap;
9043     int domain = 0;
9044     int domain_prot;
9045     hwaddr phys_addr;
9046     uint32_t dacr;
9047 
9048     /* Pagetable walk.  */
9049     /* Lookup l1 descriptor.  */
9050     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9051         /* Section translation fault if page walk is disabled by PD0 or PD1 */
9052         fi->type = ARMFault_Translation;
9053         goto do_fault;
9054     }
9055     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9056                        mmu_idx, fi);
9057     if (fi->type != ARMFault_None) {
9058         goto do_fault;
9059     }
9060     type = (desc & 3);
9061     domain = (desc >> 5) & 0x0f;
9062     if (regime_el(env, mmu_idx) == 1) {
9063         dacr = env->cp15.dacr_ns;
9064     } else {
9065         dacr = env->cp15.dacr_s;
9066     }
9067     domain_prot = (dacr >> (domain * 2)) & 3;
9068     if (type == 0) {
9069         /* Section translation fault.  */
9070         fi->type = ARMFault_Translation;
9071         goto do_fault;
9072     }
9073     if (type != 2) {
9074         level = 2;
9075     }
9076     if (domain_prot == 0 || domain_prot == 2) {
9077         fi->type = ARMFault_Domain;
9078         goto do_fault;
9079     }
9080     if (type == 2) {
9081         /* 1Mb section.  */
9082         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9083         ap = (desc >> 10) & 3;
9084         *page_size = 1024 * 1024;
9085     } else {
9086         /* Lookup l2 entry.  */
9087         if (type == 1) {
9088             /* Coarse pagetable.  */
9089             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9090         } else {
9091             /* Fine pagetable.  */
9092             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
9093         }
9094         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9095                            mmu_idx, fi);
9096         if (fi->type != ARMFault_None) {
9097             goto do_fault;
9098         }
9099         switch (desc & 3) {
9100         case 0: /* Page translation fault.  */
9101             fi->type = ARMFault_Translation;
9102             goto do_fault;
9103         case 1: /* 64k page.  */
9104             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9105             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
9106             *page_size = 0x10000;
9107             break;
9108         case 2: /* 4k page.  */
9109             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9110             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
9111             *page_size = 0x1000;
9112             break;
9113         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
9114             if (type == 1) {
9115                 /* ARMv6/XScale extended small page format */
9116                 if (arm_feature(env, ARM_FEATURE_XSCALE)
9117                     || arm_feature(env, ARM_FEATURE_V6)) {
9118                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9119                     *page_size = 0x1000;
9120                 } else {
9121                     /* UNPREDICTABLE in ARMv5; we choose to take a
9122                      * page translation fault.
9123                      */
9124                     fi->type = ARMFault_Translation;
9125                     goto do_fault;
9126                 }
9127             } else {
9128                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
9129                 *page_size = 0x400;
9130             }
9131             ap = (desc >> 4) & 3;
9132             break;
9133         default:
9134             /* Never happens, but compiler isn't smart enough to tell.  */
9135             abort();
9136         }
9137     }
9138     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9139     *prot |= *prot ? PAGE_EXEC : 0;
9140     if (!(*prot & (1 << access_type))) {
9141         /* Access permission fault.  */
9142         fi->type = ARMFault_Permission;
9143         goto do_fault;
9144     }
9145     *phys_ptr = phys_addr;
9146     return false;
9147 do_fault:
9148     fi->domain = domain;
9149     fi->level = level;
9150     return true;
9151 }
9152 
9153 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
9154                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
9155                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9156                              target_ulong *page_size, ARMMMUFaultInfo *fi)
9157 {
9158     CPUState *cs = env_cpu(env);
9159     int level = 1;
9160     uint32_t table;
9161     uint32_t desc;
9162     uint32_t xn;
9163     uint32_t pxn = 0;
9164     int type;
9165     int ap;
9166     int domain = 0;
9167     int domain_prot;
9168     hwaddr phys_addr;
9169     uint32_t dacr;
9170     bool ns;
9171 
9172     /* Pagetable walk.  */
9173     /* Lookup l1 descriptor.  */
9174     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9175         /* Section translation fault if page walk is disabled by PD0 or PD1 */
9176         fi->type = ARMFault_Translation;
9177         goto do_fault;
9178     }
9179     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9180                        mmu_idx, fi);
9181     if (fi->type != ARMFault_None) {
9182         goto do_fault;
9183     }
9184     type = (desc & 3);
9185     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9186         /* Section translation fault, or attempt to use the encoding
9187          * which is Reserved on implementations without PXN.
9188          */
9189         fi->type = ARMFault_Translation;
9190         goto do_fault;
9191     }
9192     if ((type == 1) || !(desc & (1 << 18))) {
9193         /* Page or Section.  */
9194         domain = (desc >> 5) & 0x0f;
9195     }
9196     if (regime_el(env, mmu_idx) == 1) {
9197         dacr = env->cp15.dacr_ns;
9198     } else {
9199         dacr = env->cp15.dacr_s;
9200     }
9201     if (type == 1) {
9202         level = 2;
9203     }
9204     domain_prot = (dacr >> (domain * 2)) & 3;
9205     if (domain_prot == 0 || domain_prot == 2) {
9206         /* Section or Page domain fault */
9207         fi->type = ARMFault_Domain;
9208         goto do_fault;
9209     }
9210     if (type != 1) {
9211         if (desc & (1 << 18)) {
9212             /* Supersection.  */
9213             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
9214             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9215             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
9216             *page_size = 0x1000000;
9217         } else {
9218             /* Section.  */
9219             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9220             *page_size = 0x100000;
9221         }
9222         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9223         xn = desc & (1 << 4);
9224         pxn = desc & 1;
9225         ns = extract32(desc, 19, 1);
9226     } else {
9227         if (arm_feature(env, ARM_FEATURE_PXN)) {
9228             pxn = (desc >> 2) & 1;
9229         }
9230         ns = extract32(desc, 3, 1);
9231         /* Lookup l2 entry.  */
9232         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9233         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9234                            mmu_idx, fi);
9235         if (fi->type != ARMFault_None) {
9236             goto do_fault;
9237         }
9238         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9239         switch (desc & 3) {
9240         case 0: /* Page translation fault.  */
9241             fi->type = ARMFault_Translation;
9242             goto do_fault;
9243         case 1: /* 64k page.  */
9244             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9245             xn = desc & (1 << 15);
9246             *page_size = 0x10000;
9247             break;
9248         case 2: case 3: /* 4k page.  */
9249             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9250             xn = desc & 1;
9251             *page_size = 0x1000;
9252             break;
9253         default:
9254             /* Never happens, but compiler isn't smart enough to tell.  */
9255             abort();
9256         }
9257     }
9258     if (domain_prot == 3) {
9259         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9260     } else {
9261         if (pxn && !regime_is_user(env, mmu_idx)) {
9262             xn = 1;
9263         }
9264         if (xn && access_type == MMU_INST_FETCH) {
9265             fi->type = ARMFault_Permission;
9266             goto do_fault;
9267         }
9268 
9269         if (arm_feature(env, ARM_FEATURE_V6K) &&
9270                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9271             /* The simplified model uses AP[0] as an access control bit.  */
9272             if ((ap & 1) == 0) {
9273                 /* Access flag fault.  */
9274                 fi->type = ARMFault_AccessFlag;
9275                 goto do_fault;
9276             }
9277             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9278         } else {
9279             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9280         }
9281         if (*prot && !xn) {
9282             *prot |= PAGE_EXEC;
9283         }
9284         if (!(*prot & (1 << access_type))) {
9285             /* Access permission fault.  */
9286             fi->type = ARMFault_Permission;
9287             goto do_fault;
9288         }
9289     }
9290     if (ns) {
9291         /* The NS bit will (as required by the architecture) have no effect if
9292          * the CPU doesn't support TZ or this is a non-secure translation
9293          * regime, because the attribute will already be non-secure.
9294          */
9295         attrs->secure = false;
9296     }
9297     *phys_ptr = phys_addr;
9298     return false;
9299 do_fault:
9300     fi->domain = domain;
9301     fi->level = level;
9302     return true;
9303 }
9304 
9305 /*
9306  * check_s2_mmu_setup
9307  * @cpu:        ARMCPU
9308  * @is_aa64:    True if the translation regime is in AArch64 state
9309  * @startlevel: Suggested starting level
9310  * @inputsize:  Bitsize of IPAs
9311  * @stride:     Page-table stride (See the ARM ARM)
9312  *
9313  * Returns true if the suggested S2 translation parameters are OK and
9314  * false otherwise.
9315  */
9316 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9317                                int inputsize, int stride)
9318 {
9319     const int grainsize = stride + 3;
9320     int startsizecheck;
9321 
9322     /* Negative levels are never allowed.  */
9323     if (level < 0) {
9324         return false;
9325     }
9326 
9327     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9328     if (startsizecheck < 1 || startsizecheck > stride + 4) {
9329         return false;
9330     }
9331 
9332     if (is_aa64) {
9333         CPUARMState *env = &cpu->env;
9334         unsigned int pamax = arm_pamax(cpu);
9335 
9336         switch (stride) {
9337         case 13: /* 64KB Pages.  */
9338             if (level == 0 || (level == 1 && pamax <= 42)) {
9339                 return false;
9340             }
9341             break;
9342         case 11: /* 16KB Pages.  */
9343             if (level == 0 || (level == 1 && pamax <= 40)) {
9344                 return false;
9345             }
9346             break;
9347         case 9: /* 4KB Pages.  */
9348             if (level == 0 && pamax <= 42) {
9349                 return false;
9350             }
9351             break;
9352         default:
9353             g_assert_not_reached();
9354         }
9355 
9356         /* Inputsize checks.  */
9357         if (inputsize > pamax &&
9358             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9359             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
9360             return false;
9361         }
9362     } else {
9363         /* AArch32 only supports 4KB pages. Assert on that.  */
9364         assert(stride == 9);
9365 
9366         if (level == 0) {
9367             return false;
9368         }
9369     }
9370     return true;
9371 }
9372 
9373 /* Translate from the 4-bit stage 2 representation of
9374  * memory attributes (without cache-allocation hints) to
9375  * the 8-bit representation of the stage 1 MAIR registers
9376  * (which includes allocation hints).
9377  *
9378  * ref: shared/translation/attrs/S2AttrDecode()
9379  *      .../S2ConvertAttrsHints()
9380  */
9381 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9382 {
9383     uint8_t hiattr = extract32(s2attrs, 2, 2);
9384     uint8_t loattr = extract32(s2attrs, 0, 2);
9385     uint8_t hihint = 0, lohint = 0;
9386 
9387     if (hiattr != 0) { /* normal memory */
9388         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9389             hiattr = loattr = 1; /* non-cacheable */
9390         } else {
9391             if (hiattr != 1) { /* Write-through or write-back */
9392                 hihint = 3; /* RW allocate */
9393             }
9394             if (loattr != 1) { /* Write-through or write-back */
9395                 lohint = 3; /* RW allocate */
9396             }
9397         }
9398     }
9399 
9400     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9401 }
9402 #endif /* !CONFIG_USER_ONLY */
9403 
9404 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
9405                                         ARMMMUIdx mmu_idx)
9406 {
9407     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9408     uint32_t el = regime_el(env, mmu_idx);
9409     bool tbi, tbid, epd, hpd, using16k, using64k;
9410     int select, tsz;
9411 
9412     /*
9413      * Bit 55 is always between the two regions, and is canonical for
9414      * determining if address tagging is enabled.
9415      */
9416     select = extract64(va, 55, 1);
9417 
9418     if (el > 1) {
9419         tsz = extract32(tcr, 0, 6);
9420         using64k = extract32(tcr, 14, 1);
9421         using16k = extract32(tcr, 15, 1);
9422         if (mmu_idx == ARMMMUIdx_S2NS) {
9423             /* VTCR_EL2 */
9424             tbi = tbid = hpd = false;
9425         } else {
9426             tbi = extract32(tcr, 20, 1);
9427             hpd = extract32(tcr, 24, 1);
9428             tbid = extract32(tcr, 29, 1);
9429         }
9430         epd = false;
9431     } else if (!select) {
9432         tsz = extract32(tcr, 0, 6);
9433         epd = extract32(tcr, 7, 1);
9434         using64k = extract32(tcr, 14, 1);
9435         using16k = extract32(tcr, 15, 1);
9436         tbi = extract64(tcr, 37, 1);
9437         hpd = extract64(tcr, 41, 1);
9438         tbid = extract64(tcr, 51, 1);
9439     } else {
9440         int tg = extract32(tcr, 30, 2);
9441         using16k = tg == 1;
9442         using64k = tg == 3;
9443         tsz = extract32(tcr, 16, 6);
9444         epd = extract32(tcr, 23, 1);
9445         tbi = extract64(tcr, 38, 1);
9446         hpd = extract64(tcr, 42, 1);
9447         tbid = extract64(tcr, 52, 1);
9448     }
9449     tsz = MIN(tsz, 39);  /* TODO: ARMv8.4-TTST */
9450     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
9451 
9452     return (ARMVAParameters) {
9453         .tsz = tsz,
9454         .select = select,
9455         .tbi = tbi,
9456         .tbid = tbid,
9457         .epd = epd,
9458         .hpd = hpd,
9459         .using16k = using16k,
9460         .using64k = using64k,
9461     };
9462 }
9463 
9464 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
9465                                    ARMMMUIdx mmu_idx, bool data)
9466 {
9467     ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
9468 
9469     /* Present TBI as a composite with TBID.  */
9470     ret.tbi &= (data || !ret.tbid);
9471     return ret;
9472 }
9473 
9474 #ifndef CONFIG_USER_ONLY
9475 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
9476                                           ARMMMUIdx mmu_idx)
9477 {
9478     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9479     uint32_t el = regime_el(env, mmu_idx);
9480     int select, tsz;
9481     bool epd, hpd;
9482 
9483     if (mmu_idx == ARMMMUIdx_S2NS) {
9484         /* VTCR */
9485         bool sext = extract32(tcr, 4, 1);
9486         bool sign = extract32(tcr, 3, 1);
9487 
9488         /*
9489          * If the sign-extend bit is not the same as t0sz[3], the result
9490          * is unpredictable. Flag this as a guest error.
9491          */
9492         if (sign != sext) {
9493             qemu_log_mask(LOG_GUEST_ERROR,
9494                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9495         }
9496         tsz = sextract32(tcr, 0, 4) + 8;
9497         select = 0;
9498         hpd = false;
9499         epd = false;
9500     } else if (el == 2) {
9501         /* HTCR */
9502         tsz = extract32(tcr, 0, 3);
9503         select = 0;
9504         hpd = extract64(tcr, 24, 1);
9505         epd = false;
9506     } else {
9507         int t0sz = extract32(tcr, 0, 3);
9508         int t1sz = extract32(tcr, 16, 3);
9509 
9510         if (t1sz == 0) {
9511             select = va > (0xffffffffu >> t0sz);
9512         } else {
9513             /* Note that we will detect errors later.  */
9514             select = va >= ~(0xffffffffu >> t1sz);
9515         }
9516         if (!select) {
9517             tsz = t0sz;
9518             epd = extract32(tcr, 7, 1);
9519             hpd = extract64(tcr, 41, 1);
9520         } else {
9521             tsz = t1sz;
9522             epd = extract32(tcr, 23, 1);
9523             hpd = extract64(tcr, 42, 1);
9524         }
9525         /* For aarch32, hpd0 is not enabled without t2e as well.  */
9526         hpd &= extract32(tcr, 6, 1);
9527     }
9528 
9529     return (ARMVAParameters) {
9530         .tsz = tsz,
9531         .select = select,
9532         .epd = epd,
9533         .hpd = hpd,
9534     };
9535 }
9536 
9537 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9538                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
9539                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9540                                target_ulong *page_size_ptr,
9541                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9542 {
9543     ARMCPU *cpu = env_archcpu(env);
9544     CPUState *cs = CPU(cpu);
9545     /* Read an LPAE long-descriptor translation table. */
9546     ARMFaultType fault_type = ARMFault_Translation;
9547     uint32_t level;
9548     ARMVAParameters param;
9549     uint64_t ttbr;
9550     hwaddr descaddr, indexmask, indexmask_grainsize;
9551     uint32_t tableattrs;
9552     target_ulong page_size;
9553     uint32_t attrs;
9554     int32_t stride;
9555     int addrsize, inputsize;
9556     TCR *tcr = regime_tcr(env, mmu_idx);
9557     int ap, ns, xn, pxn;
9558     uint32_t el = regime_el(env, mmu_idx);
9559     bool ttbr1_valid;
9560     uint64_t descaddrmask;
9561     bool aarch64 = arm_el_is_aa64(env, el);
9562     bool guarded = false;
9563 
9564     /* TODO:
9565      * This code does not handle the different format TCR for VTCR_EL2.
9566      * This code also does not support shareability levels.
9567      * Attribute and permission bit handling should also be checked when adding
9568      * support for those page table walks.
9569      */
9570     if (aarch64) {
9571         param = aa64_va_parameters(env, address, mmu_idx,
9572                                    access_type != MMU_INST_FETCH);
9573         level = 0;
9574         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9575          * invalid.
9576          */
9577         ttbr1_valid = (el < 2);
9578         addrsize = 64 - 8 * param.tbi;
9579         inputsize = 64 - param.tsz;
9580     } else {
9581         param = aa32_va_parameters(env, address, mmu_idx);
9582         level = 1;
9583         /* There is no TTBR1 for EL2 */
9584         ttbr1_valid = (el != 2);
9585         addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
9586         inputsize = addrsize - param.tsz;
9587     }
9588 
9589     /*
9590      * We determined the region when collecting the parameters, but we
9591      * have not yet validated that the address is valid for the region.
9592      * Extract the top bits and verify that they all match select.
9593      *
9594      * For aa32, if inputsize == addrsize, then we have selected the
9595      * region by exclusion in aa32_va_parameters and there is no more
9596      * validation to do here.
9597      */
9598     if (inputsize < addrsize) {
9599         target_ulong top_bits = sextract64(address, inputsize,
9600                                            addrsize - inputsize);
9601         if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
9602             /* The gap between the two regions is a Translation fault */
9603             fault_type = ARMFault_Translation;
9604             goto do_fault;
9605         }
9606     }
9607 
9608     if (param.using64k) {
9609         stride = 13;
9610     } else if (param.using16k) {
9611         stride = 11;
9612     } else {
9613         stride = 9;
9614     }
9615 
9616     /* Note that QEMU ignores shareability and cacheability attributes,
9617      * so we don't need to do anything with the SH, ORGN, IRGN fields
9618      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
9619      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9620      * implement any ASID-like capability so we can ignore it (instead
9621      * we will always flush the TLB any time the ASID is changed).
9622      */
9623     ttbr = regime_ttbr(env, mmu_idx, param.select);
9624 
9625     /* Here we should have set up all the parameters for the translation:
9626      * inputsize, ttbr, epd, stride, tbi
9627      */
9628 
9629     if (param.epd) {
9630         /* Translation table walk disabled => Translation fault on TLB miss
9631          * Note: This is always 0 on 64-bit EL2 and EL3.
9632          */
9633         goto do_fault;
9634     }
9635 
9636     if (mmu_idx != ARMMMUIdx_S2NS) {
9637         /* The starting level depends on the virtual address size (which can
9638          * be up to 48 bits) and the translation granule size. It indicates
9639          * the number of strides (stride bits at a time) needed to
9640          * consume the bits of the input address. In the pseudocode this is:
9641          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
9642          * where their 'inputsize' is our 'inputsize', 'grainsize' is
9643          * our 'stride + 3' and 'stride' is our 'stride'.
9644          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9645          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9646          * = 4 - (inputsize - 4) / stride;
9647          */
9648         level = 4 - (inputsize - 4) / stride;
9649     } else {
9650         /* For stage 2 translations the starting level is specified by the
9651          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9652          */
9653         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9654         uint32_t startlevel;
9655         bool ok;
9656 
9657         if (!aarch64 || stride == 9) {
9658             /* AArch32 or 4KB pages */
9659             startlevel = 2 - sl0;
9660         } else {
9661             /* 16KB or 64KB pages */
9662             startlevel = 3 - sl0;
9663         }
9664 
9665         /* Check that the starting level is valid. */
9666         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9667                                 inputsize, stride);
9668         if (!ok) {
9669             fault_type = ARMFault_Translation;
9670             goto do_fault;
9671         }
9672         level = startlevel;
9673     }
9674 
9675     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9676     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9677 
9678     /* Now we can extract the actual base address from the TTBR */
9679     descaddr = extract64(ttbr, 0, 48);
9680     descaddr &= ~indexmask;
9681 
9682     /* The address field in the descriptor goes up to bit 39 for ARMv7
9683      * but up to bit 47 for ARMv8, but we use the descaddrmask
9684      * up to bit 39 for AArch32, because we don't need other bits in that case
9685      * to construct next descriptor address (anyway they should be all zeroes).
9686      */
9687     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9688                    ~indexmask_grainsize;
9689 
9690     /* Secure accesses start with the page table in secure memory and
9691      * can be downgraded to non-secure at any step. Non-secure accesses
9692      * remain non-secure. We implement this by just ORing in the NSTable/NS
9693      * bits at each step.
9694      */
9695     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9696     for (;;) {
9697         uint64_t descriptor;
9698         bool nstable;
9699 
9700         descaddr |= (address >> (stride * (4 - level))) & indexmask;
9701         descaddr &= ~7ULL;
9702         nstable = extract32(tableattrs, 4, 1);
9703         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9704         if (fi->type != ARMFault_None) {
9705             goto do_fault;
9706         }
9707 
9708         if (!(descriptor & 1) ||
9709             (!(descriptor & 2) && (level == 3))) {
9710             /* Invalid, or the Reserved level 3 encoding */
9711             goto do_fault;
9712         }
9713         descaddr = descriptor & descaddrmask;
9714 
9715         if ((descriptor & 2) && (level < 3)) {
9716             /* Table entry. The top five bits are attributes which may
9717              * propagate down through lower levels of the table (and
9718              * which are all arranged so that 0 means "no effect", so
9719              * we can gather them up by ORing in the bits at each level).
9720              */
9721             tableattrs |= extract64(descriptor, 59, 5);
9722             level++;
9723             indexmask = indexmask_grainsize;
9724             continue;
9725         }
9726         /* Block entry at level 1 or 2, or page entry at level 3.
9727          * These are basically the same thing, although the number
9728          * of bits we pull in from the vaddr varies.
9729          */
9730         page_size = (1ULL << ((stride * (4 - level)) + 3));
9731         descaddr |= (address & (page_size - 1));
9732         /* Extract attributes from the descriptor */
9733         attrs = extract64(descriptor, 2, 10)
9734             | (extract64(descriptor, 52, 12) << 10);
9735 
9736         if (mmu_idx == ARMMMUIdx_S2NS) {
9737             /* Stage 2 table descriptors do not include any attribute fields */
9738             break;
9739         }
9740         /* Merge in attributes from table descriptors */
9741         attrs |= nstable << 3; /* NS */
9742         guarded = extract64(descriptor, 50, 1);  /* GP */
9743         if (param.hpd) {
9744             /* HPD disables all the table attributes except NSTable.  */
9745             break;
9746         }
9747         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
9748         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9749          * means "force PL1 access only", which means forcing AP[1] to 0.
9750          */
9751         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
9752         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
9753         break;
9754     }
9755     /* Here descaddr is the final physical address, and attributes
9756      * are all in attrs.
9757      */
9758     fault_type = ARMFault_AccessFlag;
9759     if ((attrs & (1 << 8)) == 0) {
9760         /* Access flag */
9761         goto do_fault;
9762     }
9763 
9764     ap = extract32(attrs, 4, 2);
9765     xn = extract32(attrs, 12, 1);
9766 
9767     if (mmu_idx == ARMMMUIdx_S2NS) {
9768         ns = true;
9769         *prot = get_S2prot(env, ap, xn);
9770     } else {
9771         ns = extract32(attrs, 3, 1);
9772         pxn = extract32(attrs, 11, 1);
9773         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9774     }
9775 
9776     fault_type = ARMFault_Permission;
9777     if (!(*prot & (1 << access_type))) {
9778         goto do_fault;
9779     }
9780 
9781     if (ns) {
9782         /* The NS bit will (as required by the architecture) have no effect if
9783          * the CPU doesn't support TZ or this is a non-secure translation
9784          * regime, because the attribute will already be non-secure.
9785          */
9786         txattrs->secure = false;
9787     }
9788     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
9789     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
9790         txattrs->target_tlb_bit0 = true;
9791     }
9792 
9793     if (cacheattrs != NULL) {
9794         if (mmu_idx == ARMMMUIdx_S2NS) {
9795             cacheattrs->attrs = convert_stage2_attrs(env,
9796                                                      extract32(attrs, 0, 4));
9797         } else {
9798             /* Index into MAIR registers for cache attributes */
9799             uint8_t attrindx = extract32(attrs, 0, 3);
9800             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9801             assert(attrindx <= 7);
9802             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9803         }
9804         cacheattrs->shareability = extract32(attrs, 6, 2);
9805     }
9806 
9807     *phys_ptr = descaddr;
9808     *page_size_ptr = page_size;
9809     return false;
9810 
9811 do_fault:
9812     fi->type = fault_type;
9813     fi->level = level;
9814     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
9815     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9816     return true;
9817 }
9818 
9819 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9820                                                 ARMMMUIdx mmu_idx,
9821                                                 int32_t address, int *prot)
9822 {
9823     if (!arm_feature(env, ARM_FEATURE_M)) {
9824         *prot = PAGE_READ | PAGE_WRITE;
9825         switch (address) {
9826         case 0xF0000000 ... 0xFFFFFFFF:
9827             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9828                 /* hivecs execing is ok */
9829                 *prot |= PAGE_EXEC;
9830             }
9831             break;
9832         case 0x00000000 ... 0x7FFFFFFF:
9833             *prot |= PAGE_EXEC;
9834             break;
9835         }
9836     } else {
9837         /* Default system address map for M profile cores.
9838          * The architecture specifies which regions are execute-never;
9839          * at the MPU level no other checks are defined.
9840          */
9841         switch (address) {
9842         case 0x00000000 ... 0x1fffffff: /* ROM */
9843         case 0x20000000 ... 0x3fffffff: /* SRAM */
9844         case 0x60000000 ... 0x7fffffff: /* RAM */
9845         case 0x80000000 ... 0x9fffffff: /* RAM */
9846             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9847             break;
9848         case 0x40000000 ... 0x5fffffff: /* Peripheral */
9849         case 0xa0000000 ... 0xbfffffff: /* Device */
9850         case 0xc0000000 ... 0xdfffffff: /* Device */
9851         case 0xe0000000 ... 0xffffffff: /* System */
9852             *prot = PAGE_READ | PAGE_WRITE;
9853             break;
9854         default:
9855             g_assert_not_reached();
9856         }
9857     }
9858 }
9859 
9860 static bool pmsav7_use_background_region(ARMCPU *cpu,
9861                                          ARMMMUIdx mmu_idx, bool is_user)
9862 {
9863     /* Return true if we should use the default memory map as a
9864      * "background" region if there are no hits against any MPU regions.
9865      */
9866     CPUARMState *env = &cpu->env;
9867 
9868     if (is_user) {
9869         return false;
9870     }
9871 
9872     if (arm_feature(env, ARM_FEATURE_M)) {
9873         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9874             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9875     } else {
9876         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9877     }
9878 }
9879 
9880 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9881 {
9882     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9883     return arm_feature(env, ARM_FEATURE_M) &&
9884         extract32(address, 20, 12) == 0xe00;
9885 }
9886 
9887 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9888 {
9889     /* True if address is in the M profile system region
9890      * 0xe0000000 - 0xffffffff
9891      */
9892     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9893 }
9894 
9895 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9896                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9897                                  hwaddr *phys_ptr, int *prot,
9898                                  target_ulong *page_size,
9899                                  ARMMMUFaultInfo *fi)
9900 {
9901     ARMCPU *cpu = env_archcpu(env);
9902     int n;
9903     bool is_user = regime_is_user(env, mmu_idx);
9904 
9905     *phys_ptr = address;
9906     *page_size = TARGET_PAGE_SIZE;
9907     *prot = 0;
9908 
9909     if (regime_translation_disabled(env, mmu_idx) ||
9910         m_is_ppb_region(env, address)) {
9911         /* MPU disabled or M profile PPB access: use default memory map.
9912          * The other case which uses the default memory map in the
9913          * v7M ARM ARM pseudocode is exception vector reads from the vector
9914          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9915          * which always does a direct read using address_space_ldl(), rather
9916          * than going via this function, so we don't need to check that here.
9917          */
9918         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9919     } else { /* MPU enabled */
9920         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9921             /* region search */
9922             uint32_t base = env->pmsav7.drbar[n];
9923             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9924             uint32_t rmask;
9925             bool srdis = false;
9926 
9927             if (!(env->pmsav7.drsr[n] & 0x1)) {
9928                 continue;
9929             }
9930 
9931             if (!rsize) {
9932                 qemu_log_mask(LOG_GUEST_ERROR,
9933                               "DRSR[%d]: Rsize field cannot be 0\n", n);
9934                 continue;
9935             }
9936             rsize++;
9937             rmask = (1ull << rsize) - 1;
9938 
9939             if (base & rmask) {
9940                 qemu_log_mask(LOG_GUEST_ERROR,
9941                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9942                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
9943                               n, base, rmask);
9944                 continue;
9945             }
9946 
9947             if (address < base || address > base + rmask) {
9948                 /*
9949                  * Address not in this region. We must check whether the
9950                  * region covers addresses in the same page as our address.
9951                  * In that case we must not report a size that covers the
9952                  * whole page for a subsequent hit against a different MPU
9953                  * region or the background region, because it would result in
9954                  * incorrect TLB hits for subsequent accesses to addresses that
9955                  * are in this MPU region.
9956                  */
9957                 if (ranges_overlap(base, rmask,
9958                                    address & TARGET_PAGE_MASK,
9959                                    TARGET_PAGE_SIZE)) {
9960                     *page_size = 1;
9961                 }
9962                 continue;
9963             }
9964 
9965             /* Region matched */
9966 
9967             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9968                 int i, snd;
9969                 uint32_t srdis_mask;
9970 
9971                 rsize -= 3; /* sub region size (power of 2) */
9972                 snd = ((address - base) >> rsize) & 0x7;
9973                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9974 
9975                 srdis_mask = srdis ? 0x3 : 0x0;
9976                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9977                     /* This will check in groups of 2, 4 and then 8, whether
9978                      * the subregion bits are consistent. rsize is incremented
9979                      * back up to give the region size, considering consistent
9980                      * adjacent subregions as one region. Stop testing if rsize
9981                      * is already big enough for an entire QEMU page.
9982                      */
9983                     int snd_rounded = snd & ~(i - 1);
9984                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9985                                                      snd_rounded + 8, i);
9986                     if (srdis_mask ^ srdis_multi) {
9987                         break;
9988                     }
9989                     srdis_mask = (srdis_mask << i) | srdis_mask;
9990                     rsize++;
9991                 }
9992             }
9993             if (srdis) {
9994                 continue;
9995             }
9996             if (rsize < TARGET_PAGE_BITS) {
9997                 *page_size = 1 << rsize;
9998             }
9999             break;
10000         }
10001 
10002         if (n == -1) { /* no hits */
10003             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10004                 /* background fault */
10005                 fi->type = ARMFault_Background;
10006                 return true;
10007             }
10008             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10009         } else { /* a MPU hit! */
10010             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
10011             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
10012 
10013             if (m_is_system_region(env, address)) {
10014                 /* System space is always execute never */
10015                 xn = 1;
10016             }
10017 
10018             if (is_user) { /* User mode AP bit decoding */
10019                 switch (ap) {
10020                 case 0:
10021                 case 1:
10022                 case 5:
10023                     break; /* no access */
10024                 case 3:
10025                     *prot |= PAGE_WRITE;
10026                     /* fall through */
10027                 case 2:
10028                 case 6:
10029                     *prot |= PAGE_READ | PAGE_EXEC;
10030                     break;
10031                 case 7:
10032                     /* for v7M, same as 6; for R profile a reserved value */
10033                     if (arm_feature(env, ARM_FEATURE_M)) {
10034                         *prot |= PAGE_READ | PAGE_EXEC;
10035                         break;
10036                     }
10037                     /* fall through */
10038                 default:
10039                     qemu_log_mask(LOG_GUEST_ERROR,
10040                                   "DRACR[%d]: Bad value for AP bits: 0x%"
10041                                   PRIx32 "\n", n, ap);
10042                 }
10043             } else { /* Priv. mode AP bits decoding */
10044                 switch (ap) {
10045                 case 0:
10046                     break; /* no access */
10047                 case 1:
10048                 case 2:
10049                 case 3:
10050                     *prot |= PAGE_WRITE;
10051                     /* fall through */
10052                 case 5:
10053                 case 6:
10054                     *prot |= PAGE_READ | PAGE_EXEC;
10055                     break;
10056                 case 7:
10057                     /* for v7M, same as 6; for R profile a reserved value */
10058                     if (arm_feature(env, ARM_FEATURE_M)) {
10059                         *prot |= PAGE_READ | PAGE_EXEC;
10060                         break;
10061                     }
10062                     /* fall through */
10063                 default:
10064                     qemu_log_mask(LOG_GUEST_ERROR,
10065                                   "DRACR[%d]: Bad value for AP bits: 0x%"
10066                                   PRIx32 "\n", n, ap);
10067                 }
10068             }
10069 
10070             /* execute never */
10071             if (xn) {
10072                 *prot &= ~PAGE_EXEC;
10073             }
10074         }
10075     }
10076 
10077     fi->type = ARMFault_Permission;
10078     fi->level = 1;
10079     return !(*prot & (1 << access_type));
10080 }
10081 
10082 static bool v8m_is_sau_exempt(CPUARMState *env,
10083                               uint32_t address, MMUAccessType access_type)
10084 {
10085     /* The architecture specifies that certain address ranges are
10086      * exempt from v8M SAU/IDAU checks.
10087      */
10088     return
10089         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
10090         (address >= 0xe0000000 && address <= 0xe0002fff) ||
10091         (address >= 0xe000e000 && address <= 0xe000efff) ||
10092         (address >= 0xe002e000 && address <= 0xe002efff) ||
10093         (address >= 0xe0040000 && address <= 0xe0041fff) ||
10094         (address >= 0xe00ff000 && address <= 0xe00fffff);
10095 }
10096 
10097 void v8m_security_lookup(CPUARMState *env, uint32_t address,
10098                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10099                                 V8M_SAttributes *sattrs)
10100 {
10101     /* Look up the security attributes for this address. Compare the
10102      * pseudocode SecurityCheck() function.
10103      * We assume the caller has zero-initialized *sattrs.
10104      */
10105     ARMCPU *cpu = env_archcpu(env);
10106     int r;
10107     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
10108     int idau_region = IREGION_NOTVALID;
10109     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10110     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10111 
10112     if (cpu->idau) {
10113         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
10114         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
10115 
10116         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
10117                    &idau_nsc);
10118     }
10119 
10120     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
10121         /* 0xf0000000..0xffffffff is always S for insn fetches */
10122         return;
10123     }
10124 
10125     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
10126         sattrs->ns = !regime_is_secure(env, mmu_idx);
10127         return;
10128     }
10129 
10130     if (idau_region != IREGION_NOTVALID) {
10131         sattrs->irvalid = true;
10132         sattrs->iregion = idau_region;
10133     }
10134 
10135     switch (env->sau.ctrl & 3) {
10136     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
10137         break;
10138     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
10139         sattrs->ns = true;
10140         break;
10141     default: /* SAU.ENABLE == 1 */
10142         for (r = 0; r < cpu->sau_sregion; r++) {
10143             if (env->sau.rlar[r] & 1) {
10144                 uint32_t base = env->sau.rbar[r] & ~0x1f;
10145                 uint32_t limit = env->sau.rlar[r] | 0x1f;
10146 
10147                 if (base <= address && limit >= address) {
10148                     if (base > addr_page_base || limit < addr_page_limit) {
10149                         sattrs->subpage = true;
10150                     }
10151                     if (sattrs->srvalid) {
10152                         /* If we hit in more than one region then we must report
10153                          * as Secure, not NS-Callable, with no valid region
10154                          * number info.
10155                          */
10156                         sattrs->ns = false;
10157                         sattrs->nsc = false;
10158                         sattrs->sregion = 0;
10159                         sattrs->srvalid = false;
10160                         break;
10161                     } else {
10162                         if (env->sau.rlar[r] & 2) {
10163                             sattrs->nsc = true;
10164                         } else {
10165                             sattrs->ns = true;
10166                         }
10167                         sattrs->srvalid = true;
10168                         sattrs->sregion = r;
10169                     }
10170                 } else {
10171                     /*
10172                      * Address not in this region. We must check whether the
10173                      * region covers addresses in the same page as our address.
10174                      * In that case we must not report a size that covers the
10175                      * whole page for a subsequent hit against a different MPU
10176                      * region or the background region, because it would result
10177                      * in incorrect TLB hits for subsequent accesses to
10178                      * addresses that are in this MPU region.
10179                      */
10180                     if (limit >= base &&
10181                         ranges_overlap(base, limit - base + 1,
10182                                        addr_page_base,
10183                                        TARGET_PAGE_SIZE)) {
10184                         sattrs->subpage = true;
10185                     }
10186                 }
10187             }
10188         }
10189         break;
10190     }
10191 
10192     /*
10193      * The IDAU will override the SAU lookup results if it specifies
10194      * higher security than the SAU does.
10195      */
10196     if (!idau_ns) {
10197         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
10198             sattrs->ns = false;
10199             sattrs->nsc = idau_nsc;
10200         }
10201     }
10202 }
10203 
10204 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
10205                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
10206                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
10207                               int *prot, bool *is_subpage,
10208                               ARMMMUFaultInfo *fi, uint32_t *mregion)
10209 {
10210     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
10211      * that a full phys-to-virt translation does).
10212      * mregion is (if not NULL) set to the region number which matched,
10213      * or -1 if no region number is returned (MPU off, address did not
10214      * hit a region, address hit in multiple regions).
10215      * We set is_subpage to true if the region hit doesn't cover the
10216      * entire TARGET_PAGE the address is within.
10217      */
10218     ARMCPU *cpu = env_archcpu(env);
10219     bool is_user = regime_is_user(env, mmu_idx);
10220     uint32_t secure = regime_is_secure(env, mmu_idx);
10221     int n;
10222     int matchregion = -1;
10223     bool hit = false;
10224     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10225     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10226 
10227     *is_subpage = false;
10228     *phys_ptr = address;
10229     *prot = 0;
10230     if (mregion) {
10231         *mregion = -1;
10232     }
10233 
10234     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10235      * was an exception vector read from the vector table (which is always
10236      * done using the default system address map), because those accesses
10237      * are done in arm_v7m_load_vector(), which always does a direct
10238      * read using address_space_ldl(), rather than going via this function.
10239      */
10240     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
10241         hit = true;
10242     } else if (m_is_ppb_region(env, address)) {
10243         hit = true;
10244     } else {
10245         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10246             hit = true;
10247         }
10248 
10249         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10250             /* region search */
10251             /* Note that the base address is bits [31:5] from the register
10252              * with bits [4:0] all zeroes, but the limit address is bits
10253              * [31:5] from the register with bits [4:0] all ones.
10254              */
10255             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10256             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
10257 
10258             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
10259                 /* Region disabled */
10260                 continue;
10261             }
10262 
10263             if (address < base || address > limit) {
10264                 /*
10265                  * Address not in this region. We must check whether the
10266                  * region covers addresses in the same page as our address.
10267                  * In that case we must not report a size that covers the
10268                  * whole page for a subsequent hit against a different MPU
10269                  * region or the background region, because it would result in
10270                  * incorrect TLB hits for subsequent accesses to addresses that
10271                  * are in this MPU region.
10272                  */
10273                 if (limit >= base &&
10274                     ranges_overlap(base, limit - base + 1,
10275                                    addr_page_base,
10276                                    TARGET_PAGE_SIZE)) {
10277                     *is_subpage = true;
10278                 }
10279                 continue;
10280             }
10281 
10282             if (base > addr_page_base || limit < addr_page_limit) {
10283                 *is_subpage = true;
10284             }
10285 
10286             if (matchregion != -1) {
10287                 /* Multiple regions match -- always a failure (unlike
10288                  * PMSAv7 where highest-numbered-region wins)
10289                  */
10290                 fi->type = ARMFault_Permission;
10291                 fi->level = 1;
10292                 return true;
10293             }
10294 
10295             matchregion = n;
10296             hit = true;
10297         }
10298     }
10299 
10300     if (!hit) {
10301         /* background fault */
10302         fi->type = ARMFault_Background;
10303         return true;
10304     }
10305 
10306     if (matchregion == -1) {
10307         /* hit using the background region */
10308         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10309     } else {
10310         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10311         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
10312 
10313         if (m_is_system_region(env, address)) {
10314             /* System space is always execute never */
10315             xn = 1;
10316         }
10317 
10318         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10319         if (*prot && !xn) {
10320             *prot |= PAGE_EXEC;
10321         }
10322         /* We don't need to look the attribute up in the MAIR0/MAIR1
10323          * registers because that only tells us about cacheability.
10324          */
10325         if (mregion) {
10326             *mregion = matchregion;
10327         }
10328     }
10329 
10330     fi->type = ARMFault_Permission;
10331     fi->level = 1;
10332     return !(*prot & (1 << access_type));
10333 }
10334 
10335 
10336 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10337                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10338                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
10339                                  int *prot, target_ulong *page_size,
10340                                  ARMMMUFaultInfo *fi)
10341 {
10342     uint32_t secure = regime_is_secure(env, mmu_idx);
10343     V8M_SAttributes sattrs = {};
10344     bool ret;
10345     bool mpu_is_subpage;
10346 
10347     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10348         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10349         if (access_type == MMU_INST_FETCH) {
10350             /* Instruction fetches always use the MMU bank and the
10351              * transaction attribute determined by the fetch address,
10352              * regardless of CPU state. This is painful for QEMU
10353              * to handle, because it would mean we need to encode
10354              * into the mmu_idx not just the (user, negpri) information
10355              * for the current security state but also that for the
10356              * other security state, which would balloon the number
10357              * of mmu_idx values needed alarmingly.
10358              * Fortunately we can avoid this because it's not actually
10359              * possible to arbitrarily execute code from memory with
10360              * the wrong security attribute: it will always generate
10361              * an exception of some kind or another, apart from the
10362              * special case of an NS CPU executing an SG instruction
10363              * in S&NSC memory. So we always just fail the translation
10364              * here and sort things out in the exception handler
10365              * (including possibly emulating an SG instruction).
10366              */
10367             if (sattrs.ns != !secure) {
10368                 if (sattrs.nsc) {
10369                     fi->type = ARMFault_QEMU_NSCExec;
10370                 } else {
10371                     fi->type = ARMFault_QEMU_SFault;
10372                 }
10373                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10374                 *phys_ptr = address;
10375                 *prot = 0;
10376                 return true;
10377             }
10378         } else {
10379             /* For data accesses we always use the MMU bank indicated
10380              * by the current CPU state, but the security attributes
10381              * might downgrade a secure access to nonsecure.
10382              */
10383             if (sattrs.ns) {
10384                 txattrs->secure = false;
10385             } else if (!secure) {
10386                 /* NS access to S memory must fault.
10387                  * Architecturally we should first check whether the
10388                  * MPU information for this address indicates that we
10389                  * are doing an unaligned access to Device memory, which
10390                  * should generate a UsageFault instead. QEMU does not
10391                  * currently check for that kind of unaligned access though.
10392                  * If we added it we would need to do so as a special case
10393                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10394                  */
10395                 fi->type = ARMFault_QEMU_SFault;
10396                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10397                 *phys_ptr = address;
10398                 *prot = 0;
10399                 return true;
10400             }
10401         }
10402     }
10403 
10404     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10405                             txattrs, prot, &mpu_is_subpage, fi, NULL);
10406     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
10407     return ret;
10408 }
10409 
10410 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10411                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10412                                  hwaddr *phys_ptr, int *prot,
10413                                  ARMMMUFaultInfo *fi)
10414 {
10415     int n;
10416     uint32_t mask;
10417     uint32_t base;
10418     bool is_user = regime_is_user(env, mmu_idx);
10419 
10420     if (regime_translation_disabled(env, mmu_idx)) {
10421         /* MPU disabled.  */
10422         *phys_ptr = address;
10423         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10424         return false;
10425     }
10426 
10427     *phys_ptr = address;
10428     for (n = 7; n >= 0; n--) {
10429         base = env->cp15.c6_region[n];
10430         if ((base & 1) == 0) {
10431             continue;
10432         }
10433         mask = 1 << ((base >> 1) & 0x1f);
10434         /* Keep this shift separate from the above to avoid an
10435            (undefined) << 32.  */
10436         mask = (mask << 1) - 1;
10437         if (((base ^ address) & ~mask) == 0) {
10438             break;
10439         }
10440     }
10441     if (n < 0) {
10442         fi->type = ARMFault_Background;
10443         return true;
10444     }
10445 
10446     if (access_type == MMU_INST_FETCH) {
10447         mask = env->cp15.pmsav5_insn_ap;
10448     } else {
10449         mask = env->cp15.pmsav5_data_ap;
10450     }
10451     mask = (mask >> (n * 4)) & 0xf;
10452     switch (mask) {
10453     case 0:
10454         fi->type = ARMFault_Permission;
10455         fi->level = 1;
10456         return true;
10457     case 1:
10458         if (is_user) {
10459             fi->type = ARMFault_Permission;
10460             fi->level = 1;
10461             return true;
10462         }
10463         *prot = PAGE_READ | PAGE_WRITE;
10464         break;
10465     case 2:
10466         *prot = PAGE_READ;
10467         if (!is_user) {
10468             *prot |= PAGE_WRITE;
10469         }
10470         break;
10471     case 3:
10472         *prot = PAGE_READ | PAGE_WRITE;
10473         break;
10474     case 5:
10475         if (is_user) {
10476             fi->type = ARMFault_Permission;
10477             fi->level = 1;
10478             return true;
10479         }
10480         *prot = PAGE_READ;
10481         break;
10482     case 6:
10483         *prot = PAGE_READ;
10484         break;
10485     default:
10486         /* Bad permission.  */
10487         fi->type = ARMFault_Permission;
10488         fi->level = 1;
10489         return true;
10490     }
10491     *prot |= PAGE_EXEC;
10492     return false;
10493 }
10494 
10495 /* Combine either inner or outer cacheability attributes for normal
10496  * memory, according to table D4-42 and pseudocode procedure
10497  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10498  *
10499  * NB: only stage 1 includes allocation hints (RW bits), leading to
10500  * some asymmetry.
10501  */
10502 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10503 {
10504     if (s1 == 4 || s2 == 4) {
10505         /* non-cacheable has precedence */
10506         return 4;
10507     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10508         /* stage 1 write-through takes precedence */
10509         return s1;
10510     } else if (extract32(s2, 2, 2) == 2) {
10511         /* stage 2 write-through takes precedence, but the allocation hint
10512          * is still taken from stage 1
10513          */
10514         return (2 << 2) | extract32(s1, 0, 2);
10515     } else { /* write-back */
10516         return s1;
10517     }
10518 }
10519 
10520 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10521  * and CombineS1S2Desc()
10522  *
10523  * @s1:      Attributes from stage 1 walk
10524  * @s2:      Attributes from stage 2 walk
10525  */
10526 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10527 {
10528     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10529     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10530     ARMCacheAttrs ret;
10531 
10532     /* Combine shareability attributes (table D4-43) */
10533     if (s1.shareability == 2 || s2.shareability == 2) {
10534         /* if either are outer-shareable, the result is outer-shareable */
10535         ret.shareability = 2;
10536     } else if (s1.shareability == 3 || s2.shareability == 3) {
10537         /* if either are inner-shareable, the result is inner-shareable */
10538         ret.shareability = 3;
10539     } else {
10540         /* both non-shareable */
10541         ret.shareability = 0;
10542     }
10543 
10544     /* Combine memory type and cacheability attributes */
10545     if (s1hi == 0 || s2hi == 0) {
10546         /* Device has precedence over normal */
10547         if (s1lo == 0 || s2lo == 0) {
10548             /* nGnRnE has precedence over anything */
10549             ret.attrs = 0;
10550         } else if (s1lo == 4 || s2lo == 4) {
10551             /* non-Reordering has precedence over Reordering */
10552             ret.attrs = 4;  /* nGnRE */
10553         } else if (s1lo == 8 || s2lo == 8) {
10554             /* non-Gathering has precedence over Gathering */
10555             ret.attrs = 8;  /* nGRE */
10556         } else {
10557             ret.attrs = 0xc; /* GRE */
10558         }
10559 
10560         /* Any location for which the resultant memory type is any
10561          * type of Device memory is always treated as Outer Shareable.
10562          */
10563         ret.shareability = 2;
10564     } else { /* Normal memory */
10565         /* Outer/inner cacheability combine independently */
10566         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10567                   | combine_cacheattr_nibble(s1lo, s2lo);
10568 
10569         if (ret.attrs == 0x44) {
10570             /* Any location for which the resultant memory type is Normal
10571              * Inner Non-cacheable, Outer Non-cacheable is always treated
10572              * as Outer Shareable.
10573              */
10574             ret.shareability = 2;
10575         }
10576     }
10577 
10578     return ret;
10579 }
10580 
10581 
10582 /* get_phys_addr - get the physical address for this virtual address
10583  *
10584  * Find the physical address corresponding to the given virtual address,
10585  * by doing a translation table walk on MMU based systems or using the
10586  * MPU state on MPU based systems.
10587  *
10588  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10589  * prot and page_size may not be filled in, and the populated fsr value provides
10590  * information on why the translation aborted, in the format of a
10591  * DFSR/IFSR fault register, with the following caveats:
10592  *  * we honour the short vs long DFSR format differences.
10593  *  * the WnR bit is never set (the caller must do this).
10594  *  * for PSMAv5 based systems we don't bother to return a full FSR format
10595  *    value.
10596  *
10597  * @env: CPUARMState
10598  * @address: virtual address to get physical address for
10599  * @access_type: 0 for read, 1 for write, 2 for execute
10600  * @mmu_idx: MMU index indicating required translation regime
10601  * @phys_ptr: set to the physical address corresponding to the virtual address
10602  * @attrs: set to the memory transaction attributes to use
10603  * @prot: set to the permissions for the page containing phys_ptr
10604  * @page_size: set to the size of the page containing phys_ptr
10605  * @fi: set to fault info if the translation fails
10606  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10607  */
10608 bool get_phys_addr(CPUARMState *env, target_ulong address,
10609                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
10610                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10611                    target_ulong *page_size,
10612                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10613 {
10614     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10615         /* Call ourselves recursively to do the stage 1 and then stage 2
10616          * translations.
10617          */
10618         if (arm_feature(env, ARM_FEATURE_EL2)) {
10619             hwaddr ipa;
10620             int s2_prot;
10621             int ret;
10622             ARMCacheAttrs cacheattrs2 = {};
10623 
10624             ret = get_phys_addr(env, address, access_type,
10625                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10626                                 prot, page_size, fi, cacheattrs);
10627 
10628             /* If S1 fails or S2 is disabled, return early.  */
10629             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10630                 *phys_ptr = ipa;
10631                 return ret;
10632             }
10633 
10634             /* S1 is done. Now do S2 translation.  */
10635             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10636                                      phys_ptr, attrs, &s2_prot,
10637                                      page_size, fi,
10638                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
10639             fi->s2addr = ipa;
10640             /* Combine the S1 and S2 perms.  */
10641             *prot &= s2_prot;
10642 
10643             /* Combine the S1 and S2 cache attributes, if needed */
10644             if (!ret && cacheattrs != NULL) {
10645                 if (env->cp15.hcr_el2 & HCR_DC) {
10646                     /*
10647                      * HCR.DC forces the first stage attributes to
10648                      *  Normal Non-Shareable,
10649                      *  Inner Write-Back Read-Allocate Write-Allocate,
10650                      *  Outer Write-Back Read-Allocate Write-Allocate.
10651                      */
10652                     cacheattrs->attrs = 0xff;
10653                     cacheattrs->shareability = 0;
10654                 }
10655                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10656             }
10657 
10658             return ret;
10659         } else {
10660             /*
10661              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10662              */
10663             mmu_idx = stage_1_mmu_idx(mmu_idx);
10664         }
10665     }
10666 
10667     /* The page table entries may downgrade secure to non-secure, but
10668      * cannot upgrade an non-secure translation regime's attributes
10669      * to secure.
10670      */
10671     attrs->secure = regime_is_secure(env, mmu_idx);
10672     attrs->user = regime_is_user(env, mmu_idx);
10673 
10674     /* Fast Context Switch Extension. This doesn't exist at all in v8.
10675      * In v7 and earlier it affects all stage 1 translations.
10676      */
10677     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10678         && !arm_feature(env, ARM_FEATURE_V8)) {
10679         if (regime_el(env, mmu_idx) == 3) {
10680             address += env->cp15.fcseidr_s;
10681         } else {
10682             address += env->cp15.fcseidr_ns;
10683         }
10684     }
10685 
10686     if (arm_feature(env, ARM_FEATURE_PMSA)) {
10687         bool ret;
10688         *page_size = TARGET_PAGE_SIZE;
10689 
10690         if (arm_feature(env, ARM_FEATURE_V8)) {
10691             /* PMSAv8 */
10692             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10693                                        phys_ptr, attrs, prot, page_size, fi);
10694         } else if (arm_feature(env, ARM_FEATURE_V7)) {
10695             /* PMSAv7 */
10696             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10697                                        phys_ptr, prot, page_size, fi);
10698         } else {
10699             /* Pre-v7 MPU */
10700             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10701                                        phys_ptr, prot, fi);
10702         }
10703         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10704                       " mmu_idx %u -> %s (prot %c%c%c)\n",
10705                       access_type == MMU_DATA_LOAD ? "reading" :
10706                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10707                       (uint32_t)address, mmu_idx,
10708                       ret ? "Miss" : "Hit",
10709                       *prot & PAGE_READ ? 'r' : '-',
10710                       *prot & PAGE_WRITE ? 'w' : '-',
10711                       *prot & PAGE_EXEC ? 'x' : '-');
10712 
10713         return ret;
10714     }
10715 
10716     /* Definitely a real MMU, not an MPU */
10717 
10718     if (regime_translation_disabled(env, mmu_idx)) {
10719         /* MMU disabled. */
10720         *phys_ptr = address;
10721         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10722         *page_size = TARGET_PAGE_SIZE;
10723         return 0;
10724     }
10725 
10726     if (regime_using_lpae_format(env, mmu_idx)) {
10727         return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10728                                   phys_ptr, attrs, prot, page_size,
10729                                   fi, cacheattrs);
10730     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10731         return get_phys_addr_v6(env, address, access_type, mmu_idx,
10732                                 phys_ptr, attrs, prot, page_size, fi);
10733     } else {
10734         return get_phys_addr_v5(env, address, access_type, mmu_idx,
10735                                     phys_ptr, prot, page_size, fi);
10736     }
10737 }
10738 
10739 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10740                                          MemTxAttrs *attrs)
10741 {
10742     ARMCPU *cpu = ARM_CPU(cs);
10743     CPUARMState *env = &cpu->env;
10744     hwaddr phys_addr;
10745     target_ulong page_size;
10746     int prot;
10747     bool ret;
10748     ARMMMUFaultInfo fi = {};
10749     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
10750 
10751     *attrs = (MemTxAttrs) {};
10752 
10753     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10754                         attrs, &prot, &page_size, &fi, NULL);
10755 
10756     if (ret) {
10757         return -1;
10758     }
10759     return phys_addr;
10760 }
10761 
10762 #endif
10763 
10764 /* Note that signed overflow is undefined in C.  The following routines are
10765    careful to use unsigned types where modulo arithmetic is required.
10766    Failure to do so _will_ break on newer gcc.  */
10767 
10768 /* Signed saturating arithmetic.  */
10769 
10770 /* Perform 16-bit signed saturating addition.  */
10771 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10772 {
10773     uint16_t res;
10774 
10775     res = a + b;
10776     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10777         if (a & 0x8000)
10778             res = 0x8000;
10779         else
10780             res = 0x7fff;
10781     }
10782     return res;
10783 }
10784 
10785 /* Perform 8-bit signed saturating addition.  */
10786 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10787 {
10788     uint8_t res;
10789 
10790     res = a + b;
10791     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10792         if (a & 0x80)
10793             res = 0x80;
10794         else
10795             res = 0x7f;
10796     }
10797     return res;
10798 }
10799 
10800 /* Perform 16-bit signed saturating subtraction.  */
10801 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10802 {
10803     uint16_t res;
10804 
10805     res = a - b;
10806     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10807         if (a & 0x8000)
10808             res = 0x8000;
10809         else
10810             res = 0x7fff;
10811     }
10812     return res;
10813 }
10814 
10815 /* Perform 8-bit signed saturating subtraction.  */
10816 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10817 {
10818     uint8_t res;
10819 
10820     res = a - b;
10821     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10822         if (a & 0x80)
10823             res = 0x80;
10824         else
10825             res = 0x7f;
10826     }
10827     return res;
10828 }
10829 
10830 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10831 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10832 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
10833 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
10834 #define PFX q
10835 
10836 #include "op_addsub.h"
10837 
10838 /* Unsigned saturating arithmetic.  */
10839 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10840 {
10841     uint16_t res;
10842     res = a + b;
10843     if (res < a)
10844         res = 0xffff;
10845     return res;
10846 }
10847 
10848 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10849 {
10850     if (a > b)
10851         return a - b;
10852     else
10853         return 0;
10854 }
10855 
10856 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10857 {
10858     uint8_t res;
10859     res = a + b;
10860     if (res < a)
10861         res = 0xff;
10862     return res;
10863 }
10864 
10865 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10866 {
10867     if (a > b)
10868         return a - b;
10869     else
10870         return 0;
10871 }
10872 
10873 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10874 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10875 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
10876 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
10877 #define PFX uq
10878 
10879 #include "op_addsub.h"
10880 
10881 /* Signed modulo arithmetic.  */
10882 #define SARITH16(a, b, n, op) do { \
10883     int32_t sum; \
10884     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10885     RESULT(sum, n, 16); \
10886     if (sum >= 0) \
10887         ge |= 3 << (n * 2); \
10888     } while(0)
10889 
10890 #define SARITH8(a, b, n, op) do { \
10891     int32_t sum; \
10892     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10893     RESULT(sum, n, 8); \
10894     if (sum >= 0) \
10895         ge |= 1 << n; \
10896     } while(0)
10897 
10898 
10899 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10900 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10901 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
10902 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
10903 #define PFX s
10904 #define ARITH_GE
10905 
10906 #include "op_addsub.h"
10907 
10908 /* Unsigned modulo arithmetic.  */
10909 #define ADD16(a, b, n) do { \
10910     uint32_t sum; \
10911     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10912     RESULT(sum, n, 16); \
10913     if ((sum >> 16) == 1) \
10914         ge |= 3 << (n * 2); \
10915     } while(0)
10916 
10917 #define ADD8(a, b, n) do { \
10918     uint32_t sum; \
10919     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10920     RESULT(sum, n, 8); \
10921     if ((sum >> 8) == 1) \
10922         ge |= 1 << n; \
10923     } while(0)
10924 
10925 #define SUB16(a, b, n) do { \
10926     uint32_t sum; \
10927     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10928     RESULT(sum, n, 16); \
10929     if ((sum >> 16) == 0) \
10930         ge |= 3 << (n * 2); \
10931     } while(0)
10932 
10933 #define SUB8(a, b, n) do { \
10934     uint32_t sum; \
10935     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10936     RESULT(sum, n, 8); \
10937     if ((sum >> 8) == 0) \
10938         ge |= 1 << n; \
10939     } while(0)
10940 
10941 #define PFX u
10942 #define ARITH_GE
10943 
10944 #include "op_addsub.h"
10945 
10946 /* Halved signed arithmetic.  */
10947 #define ADD16(a, b, n) \
10948   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10949 #define SUB16(a, b, n) \
10950   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10951 #define ADD8(a, b, n) \
10952   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10953 #define SUB8(a, b, n) \
10954   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10955 #define PFX sh
10956 
10957 #include "op_addsub.h"
10958 
10959 /* Halved unsigned arithmetic.  */
10960 #define ADD16(a, b, n) \
10961   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10962 #define SUB16(a, b, n) \
10963   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10964 #define ADD8(a, b, n) \
10965   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10966 #define SUB8(a, b, n) \
10967   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10968 #define PFX uh
10969 
10970 #include "op_addsub.h"
10971 
10972 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10973 {
10974     if (a > b)
10975         return a - b;
10976     else
10977         return b - a;
10978 }
10979 
10980 /* Unsigned sum of absolute byte differences.  */
10981 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10982 {
10983     uint32_t sum;
10984     sum = do_usad(a, b);
10985     sum += do_usad(a >> 8, b >> 8);
10986     sum += do_usad(a >> 16, b >>16);
10987     sum += do_usad(a >> 24, b >> 24);
10988     return sum;
10989 }
10990 
10991 /* For ARMv6 SEL instruction.  */
10992 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10993 {
10994     uint32_t mask;
10995 
10996     mask = 0;
10997     if (flags & 1)
10998         mask |= 0xff;
10999     if (flags & 2)
11000         mask |= 0xff00;
11001     if (flags & 4)
11002         mask |= 0xff0000;
11003     if (flags & 8)
11004         mask |= 0xff000000;
11005     return (a & mask) | (b & ~mask);
11006 }
11007 
11008 /* CRC helpers.
11009  * The upper bytes of val (above the number specified by 'bytes') must have
11010  * been zeroed out by the caller.
11011  */
11012 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11013 {
11014     uint8_t buf[4];
11015 
11016     stl_le_p(buf, val);
11017 
11018     /* zlib crc32 converts the accumulator and output to one's complement.  */
11019     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11020 }
11021 
11022 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11023 {
11024     uint8_t buf[4];
11025 
11026     stl_le_p(buf, val);
11027 
11028     /* Linux crc32c converts the output to one's complement.  */
11029     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11030 }
11031 
11032 /* Return the exception level to which FP-disabled exceptions should
11033  * be taken, or 0 if FP is enabled.
11034  */
11035 int fp_exception_el(CPUARMState *env, int cur_el)
11036 {
11037 #ifndef CONFIG_USER_ONLY
11038     int fpen;
11039 
11040     /* CPACR and the CPTR registers don't exist before v6, so FP is
11041      * always accessible
11042      */
11043     if (!arm_feature(env, ARM_FEATURE_V6)) {
11044         return 0;
11045     }
11046 
11047     if (arm_feature(env, ARM_FEATURE_M)) {
11048         /* CPACR can cause a NOCP UsageFault taken to current security state */
11049         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11050             return 1;
11051         }
11052 
11053         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11054             if (!extract32(env->v7m.nsacr, 10, 1)) {
11055                 /* FP insns cause a NOCP UsageFault taken to Secure */
11056                 return 3;
11057             }
11058         }
11059 
11060         return 0;
11061     }
11062 
11063     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11064      * 0, 2 : trap EL0 and EL1/PL1 accesses
11065      * 1    : trap only EL0 accesses
11066      * 3    : trap no accesses
11067      */
11068     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
11069     switch (fpen) {
11070     case 0:
11071     case 2:
11072         if (cur_el == 0 || cur_el == 1) {
11073             /* Trap to PL1, which might be EL1 or EL3 */
11074             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
11075                 return 3;
11076             }
11077             return 1;
11078         }
11079         if (cur_el == 3 && !is_a64(env)) {
11080             /* Secure PL1 running at EL3 */
11081             return 3;
11082         }
11083         break;
11084     case 1:
11085         if (cur_el == 0) {
11086             return 1;
11087         }
11088         break;
11089     case 3:
11090         break;
11091     }
11092 
11093     /*
11094      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11095      * to control non-secure access to the FPU. It doesn't have any
11096      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11097      */
11098     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11099          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11100         if (!extract32(env->cp15.nsacr, 10, 1)) {
11101             /* FP insns act as UNDEF */
11102             return cur_el == 2 ? 2 : 1;
11103         }
11104     }
11105 
11106     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
11107      * check because zero bits in the registers mean "don't trap".
11108      */
11109 
11110     /* CPTR_EL2 : present in v7VE or v8 */
11111     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
11112         && !arm_is_secure_below_el3(env)) {
11113         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
11114         return 2;
11115     }
11116 
11117     /* CPTR_EL3 : present in v8 */
11118     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
11119         /* Trap all FP ops to EL3 */
11120         return 3;
11121     }
11122 #endif
11123     return 0;
11124 }
11125 
11126 #ifndef CONFIG_TCG
11127 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11128 {
11129     g_assert_not_reached();
11130 }
11131 #endif
11132 
11133 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11134 {
11135     if (arm_feature(env, ARM_FEATURE_M)) {
11136         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11137     }
11138 
11139     if (el < 2 && arm_is_secure_below_el3(env)) {
11140         return ARMMMUIdx_S1SE0 + el;
11141     } else {
11142         return ARMMMUIdx_S12NSE0 + el;
11143     }
11144 }
11145 
11146 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11147 {
11148     return arm_mmu_idx_el(env, arm_current_el(env));
11149 }
11150 
11151 int cpu_mmu_index(CPUARMState *env, bool ifetch)
11152 {
11153     return arm_to_core_mmu_idx(arm_mmu_idx(env));
11154 }
11155 
11156 #ifndef CONFIG_USER_ONLY
11157 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
11158 {
11159     return stage_1_mmu_idx(arm_mmu_idx(env));
11160 }
11161 #endif
11162 
11163 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
11164                                       ARMMMUIdx mmu_idx, uint32_t flags)
11165 {
11166     flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
11167     flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
11168                        arm_to_core_mmu_idx(mmu_idx));
11169 
11170     if (arm_singlestep_active(env)) {
11171         flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
11172     }
11173     return flags;
11174 }
11175 
11176 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
11177                                          ARMMMUIdx mmu_idx, uint32_t flags)
11178 {
11179     bool sctlr_b = arm_sctlr_b(env);
11180 
11181     if (sctlr_b) {
11182         flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
11183     }
11184     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
11185         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
11186     }
11187     flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
11188 
11189     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11190 }
11191 
11192 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
11193                                    ARMMMUIdx mmu_idx)
11194 {
11195     uint32_t flags = 0;
11196 
11197     /* v8M always enables the fpu.  */
11198     flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11199 
11200     if (arm_v7m_is_handler_mode(env)) {
11201         flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
11202     }
11203 
11204     /*
11205      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
11206      * is suppressing them because the requested execution priority
11207      * is less than 0.
11208      */
11209     if (arm_feature(env, ARM_FEATURE_V8) &&
11210         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
11211           (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
11212         flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
11213     }
11214 
11215     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11216 }
11217 
11218 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
11219 {
11220     int flags = 0;
11221 
11222     flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
11223                        arm_debug_target_el(env));
11224     return flags;
11225 }
11226 
11227 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
11228                                    ARMMMUIdx mmu_idx)
11229 {
11230     uint32_t flags = rebuild_hflags_aprofile(env);
11231 
11232     if (arm_el_is_aa64(env, 1)) {
11233         flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11234     }
11235     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11236 }
11237 
11238 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
11239                                    ARMMMUIdx mmu_idx)
11240 {
11241     uint32_t flags = rebuild_hflags_aprofile(env);
11242     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
11243     ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
11244     uint64_t sctlr;
11245     int tbii, tbid;
11246 
11247     flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
11248 
11249     /* FIXME: ARMv8.1-VHE S2 translation regime.  */
11250     if (regime_el(env, stage1) < 2) {
11251         ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
11252         tbid = (p1.tbi << 1) | p0.tbi;
11253         tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
11254     } else {
11255         tbid = p0.tbi;
11256         tbii = tbid & !p0.tbid;
11257     }
11258 
11259     flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
11260     flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
11261 
11262     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
11263         int sve_el = sve_exception_el(env, el);
11264         uint32_t zcr_len;
11265 
11266         /*
11267          * If SVE is disabled, but FP is enabled,
11268          * then the effective len is 0.
11269          */
11270         if (sve_el != 0 && fp_el == 0) {
11271             zcr_len = 0;
11272         } else {
11273             zcr_len = sve_zcr_len_for_el(env, el);
11274         }
11275         flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
11276         flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
11277     }
11278 
11279     sctlr = arm_sctlr(env, el);
11280 
11281     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
11282         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
11283     }
11284 
11285     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
11286         /*
11287          * In order to save space in flags, we record only whether
11288          * pauth is "inactive", meaning all insns are implemented as
11289          * a nop, or "active" when some action must be performed.
11290          * The decision of which action to take is left to a helper.
11291          */
11292         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
11293             flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
11294         }
11295     }
11296 
11297     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11298         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
11299         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
11300             flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
11301         }
11302     }
11303 
11304     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11305 }
11306 
11307 static uint32_t rebuild_hflags_internal(CPUARMState *env)
11308 {
11309     int el = arm_current_el(env);
11310     int fp_el = fp_exception_el(env, el);
11311     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11312 
11313     if (is_a64(env)) {
11314         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11315     } else if (arm_feature(env, ARM_FEATURE_M)) {
11316         return rebuild_hflags_m32(env, fp_el, mmu_idx);
11317     } else {
11318         return rebuild_hflags_a32(env, fp_el, mmu_idx);
11319     }
11320 }
11321 
11322 void arm_rebuild_hflags(CPUARMState *env)
11323 {
11324     env->hflags = rebuild_hflags_internal(env);
11325 }
11326 
11327 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
11328 {
11329     int fp_el = fp_exception_el(env, el);
11330     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11331 
11332     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11333 }
11334 
11335 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
11336 {
11337     int fp_el = fp_exception_el(env, el);
11338     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11339 
11340     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11341 }
11342 
11343 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
11344 {
11345     int fp_el = fp_exception_el(env, el);
11346     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11347 
11348     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11349 }
11350 
11351 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11352                           target_ulong *cs_base, uint32_t *pflags)
11353 {
11354     uint32_t flags = env->hflags;
11355     uint32_t pstate_for_ss;
11356 
11357     *cs_base = 0;
11358 #ifdef CONFIG_DEBUG_TCG
11359     assert(flags == rebuild_hflags_internal(env));
11360 #endif
11361 
11362     if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
11363         *pc = env->pc;
11364         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11365             flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
11366         }
11367         pstate_for_ss = env->pstate;
11368     } else {
11369         *pc = env->regs[15];
11370 
11371         if (arm_feature(env, ARM_FEATURE_M)) {
11372             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11373                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11374                 != env->v7m.secure) {
11375                 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1);
11376             }
11377 
11378             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11379                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11380                  (env->v7m.secure &&
11381                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11382                 /*
11383                  * ASPEN is set, but FPCA/SFPA indicate that there is no
11384                  * active FP context; we must create a new FP context before
11385                  * executing any FP insn.
11386                  */
11387                 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1);
11388             }
11389 
11390             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11391             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11392                 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1);
11393             }
11394         } else {
11395             /*
11396              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11397              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11398              */
11399             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11400                 flags = FIELD_DP32(flags, TBFLAG_A32,
11401                                    XSCALE_CPAR, env->cp15.c15_cpar);
11402             } else {
11403                 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
11404                                    env->vfp.vec_len);
11405                 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
11406                                    env->vfp.vec_stride);
11407             }
11408             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
11409                 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11410             }
11411         }
11412 
11413         flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
11414         flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
11415         pstate_for_ss = env->uncached_cpsr;
11416     }
11417 
11418     /*
11419      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11420      * states defined in the ARM ARM for software singlestep:
11421      *  SS_ACTIVE   PSTATE.SS   State
11422      *     0            x       Inactive (the TB flag for SS is always 0)
11423      *     1            0       Active-pending
11424      *     1            1       Active-not-pending
11425      * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
11426      */
11427     if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
11428         (pstate_for_ss & PSTATE_SS)) {
11429         flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
11430     }
11431 
11432     *pflags = flags;
11433 }
11434 
11435 #ifdef TARGET_AARCH64
11436 /*
11437  * The manual says that when SVE is enabled and VQ is widened the
11438  * implementation is allowed to zero the previously inaccessible
11439  * portion of the registers.  The corollary to that is that when
11440  * SVE is enabled and VQ is narrowed we are also allowed to zero
11441  * the now inaccessible portion of the registers.
11442  *
11443  * The intent of this is that no predicate bit beyond VQ is ever set.
11444  * Which means that some operations on predicate registers themselves
11445  * may operate on full uint64_t or even unrolled across the maximum
11446  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
11447  * may well be cheaper than conditionals to restrict the operation
11448  * to the relevant portion of a uint16_t[16].
11449  */
11450 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11451 {
11452     int i, j;
11453     uint64_t pmask;
11454 
11455     assert(vq >= 1 && vq <= ARM_MAX_VQ);
11456     assert(vq <= env_archcpu(env)->sve_max_vq);
11457 
11458     /* Zap the high bits of the zregs.  */
11459     for (i = 0; i < 32; i++) {
11460         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11461     }
11462 
11463     /* Zap the high bits of the pregs and ffr.  */
11464     pmask = 0;
11465     if (vq & 3) {
11466         pmask = ~(-1ULL << (16 * (vq & 3)));
11467     }
11468     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11469         for (i = 0; i < 17; ++i) {
11470             env->vfp.pregs[i].p[j] &= pmask;
11471         }
11472         pmask = 0;
11473     }
11474 }
11475 
11476 /*
11477  * Notice a change in SVE vector size when changing EL.
11478  */
11479 void aarch64_sve_change_el(CPUARMState *env, int old_el,
11480                            int new_el, bool el0_a64)
11481 {
11482     ARMCPU *cpu = env_archcpu(env);
11483     int old_len, new_len;
11484     bool old_a64, new_a64;
11485 
11486     /* Nothing to do if no SVE.  */
11487     if (!cpu_isar_feature(aa64_sve, cpu)) {
11488         return;
11489     }
11490 
11491     /* Nothing to do if FP is disabled in either EL.  */
11492     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
11493         return;
11494     }
11495 
11496     /*
11497      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
11498      * at ELx, or not available because the EL is in AArch32 state, then
11499      * for all purposes other than a direct read, the ZCR_ELx.LEN field
11500      * has an effective value of 0".
11501      *
11502      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
11503      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
11504      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
11505      * we already have the correct register contents when encountering the
11506      * vq0->vq0 transition between EL0->EL1.
11507      */
11508     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
11509     old_len = (old_a64 && !sve_exception_el(env, old_el)
11510                ? sve_zcr_len_for_el(env, old_el) : 0);
11511     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
11512     new_len = (new_a64 && !sve_exception_el(env, new_el)
11513                ? sve_zcr_len_for_el(env, new_el) : 0);
11514 
11515     /* When changing vector length, clear inaccessible state.  */
11516     if (new_len < old_len) {
11517         aarch64_sve_narrow_vq(env, new_len + 1);
11518     }
11519 }
11520 #endif
11521