1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/kvm.h" 28 #include "qemu/range.h" 29 #include "qapi/qapi-commands-machine-target.h" 30 #include "qapi/error.h" 31 #include "qemu/guest-random.h" 32 #ifdef CONFIG_TCG 33 #include "arm_ldst.h" 34 #include "exec/cpu_ldst.h" 35 #endif 36 37 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 38 39 #ifndef CONFIG_USER_ONLY 40 41 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 42 MMUAccessType access_type, ARMMMUIdx mmu_idx, 43 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 44 target_ulong *page_size_ptr, 45 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 46 #endif 47 48 static void switch_mode(CPUARMState *env, int mode); 49 50 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 51 { 52 int nregs; 53 54 /* VFP data registers are always little-endian. */ 55 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 56 if (reg < nregs) { 57 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 58 return 8; 59 } 60 if (arm_feature(env, ARM_FEATURE_NEON)) { 61 /* Aliases for Q regs. */ 62 nregs += 16; 63 if (reg < nregs) { 64 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 65 stq_le_p(buf, q[0]); 66 stq_le_p(buf + 8, q[1]); 67 return 16; 68 } 69 } 70 switch (reg - nregs) { 71 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 72 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4; 73 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 74 } 75 return 0; 76 } 77 78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 79 { 80 int nregs; 81 82 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 83 if (reg < nregs) { 84 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 85 return 8; 86 } 87 if (arm_feature(env, ARM_FEATURE_NEON)) { 88 nregs += 16; 89 if (reg < nregs) { 90 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 91 q[0] = ldq_le_p(buf); 92 q[1] = ldq_le_p(buf + 8); 93 return 16; 94 } 95 } 96 switch (reg - nregs) { 97 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 98 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 99 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 100 } 101 return 0; 102 } 103 104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 105 { 106 switch (reg) { 107 case 0 ... 31: 108 /* 128 bit FP register */ 109 { 110 uint64_t *q = aa64_vfp_qreg(env, reg); 111 stq_le_p(buf, q[0]); 112 stq_le_p(buf + 8, q[1]); 113 return 16; 114 } 115 case 32: 116 /* FPSR */ 117 stl_p(buf, vfp_get_fpsr(env)); 118 return 4; 119 case 33: 120 /* FPCR */ 121 stl_p(buf, vfp_get_fpcr(env)); 122 return 4; 123 default: 124 return 0; 125 } 126 } 127 128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 129 { 130 switch (reg) { 131 case 0 ... 31: 132 /* 128 bit FP register */ 133 { 134 uint64_t *q = aa64_vfp_qreg(env, reg); 135 q[0] = ldq_le_p(buf); 136 q[1] = ldq_le_p(buf + 8); 137 return 16; 138 } 139 case 32: 140 /* FPSR */ 141 vfp_set_fpsr(env, ldl_p(buf)); 142 return 4; 143 case 33: 144 /* FPCR */ 145 vfp_set_fpcr(env, ldl_p(buf)); 146 return 4; 147 default: 148 return 0; 149 } 150 } 151 152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 153 { 154 assert(ri->fieldoffset); 155 if (cpreg_field_is_64bit(ri)) { 156 return CPREG_FIELD64(env, ri); 157 } else { 158 return CPREG_FIELD32(env, ri); 159 } 160 } 161 162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 163 uint64_t value) 164 { 165 assert(ri->fieldoffset); 166 if (cpreg_field_is_64bit(ri)) { 167 CPREG_FIELD64(env, ri) = value; 168 } else { 169 CPREG_FIELD32(env, ri) = value; 170 } 171 } 172 173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 174 { 175 return (char *)env + ri->fieldoffset; 176 } 177 178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 179 { 180 /* Raw read of a coprocessor register (as needed for migration, etc). */ 181 if (ri->type & ARM_CP_CONST) { 182 return ri->resetvalue; 183 } else if (ri->raw_readfn) { 184 return ri->raw_readfn(env, ri); 185 } else if (ri->readfn) { 186 return ri->readfn(env, ri); 187 } else { 188 return raw_read(env, ri); 189 } 190 } 191 192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 193 uint64_t v) 194 { 195 /* Raw write of a coprocessor register (as needed for migration, etc). 196 * Note that constant registers are treated as write-ignored; the 197 * caller should check for success by whether a readback gives the 198 * value written. 199 */ 200 if (ri->type & ARM_CP_CONST) { 201 return; 202 } else if (ri->raw_writefn) { 203 ri->raw_writefn(env, ri, v); 204 } else if (ri->writefn) { 205 ri->writefn(env, ri, v); 206 } else { 207 raw_write(env, ri, v); 208 } 209 } 210 211 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 212 { 213 ARMCPU *cpu = env_archcpu(env); 214 const ARMCPRegInfo *ri; 215 uint32_t key; 216 217 key = cpu->dyn_xml.cpregs_keys[reg]; 218 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 219 if (ri) { 220 if (cpreg_field_is_64bit(ri)) { 221 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 222 } else { 223 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 224 } 225 } 226 return 0; 227 } 228 229 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 230 { 231 return 0; 232 } 233 234 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 235 { 236 /* Return true if the regdef would cause an assertion if you called 237 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 238 * program bug for it not to have the NO_RAW flag). 239 * NB that returning false here doesn't necessarily mean that calling 240 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 241 * read/write access functions which are safe for raw use" from "has 242 * read/write access functions which have side effects but has forgotten 243 * to provide raw access functions". 244 * The tests here line up with the conditions in read/write_raw_cp_reg() 245 * and assertions in raw_read()/raw_write(). 246 */ 247 if ((ri->type & ARM_CP_CONST) || 248 ri->fieldoffset || 249 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 250 return false; 251 } 252 return true; 253 } 254 255 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 256 { 257 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 258 int i; 259 bool ok = true; 260 261 for (i = 0; i < cpu->cpreg_array_len; i++) { 262 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 263 const ARMCPRegInfo *ri; 264 uint64_t newval; 265 266 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 267 if (!ri) { 268 ok = false; 269 continue; 270 } 271 if (ri->type & ARM_CP_NO_RAW) { 272 continue; 273 } 274 275 newval = read_raw_cp_reg(&cpu->env, ri); 276 if (kvm_sync) { 277 /* 278 * Only sync if the previous list->cpustate sync succeeded. 279 * Rather than tracking the success/failure state for every 280 * item in the list, we just recheck "does the raw write we must 281 * have made in write_list_to_cpustate() read back OK" here. 282 */ 283 uint64_t oldval = cpu->cpreg_values[i]; 284 285 if (oldval == newval) { 286 continue; 287 } 288 289 write_raw_cp_reg(&cpu->env, ri, oldval); 290 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 291 continue; 292 } 293 294 write_raw_cp_reg(&cpu->env, ri, newval); 295 } 296 cpu->cpreg_values[i] = newval; 297 } 298 return ok; 299 } 300 301 bool write_list_to_cpustate(ARMCPU *cpu) 302 { 303 int i; 304 bool ok = true; 305 306 for (i = 0; i < cpu->cpreg_array_len; i++) { 307 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 308 uint64_t v = cpu->cpreg_values[i]; 309 const ARMCPRegInfo *ri; 310 311 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 312 if (!ri) { 313 ok = false; 314 continue; 315 } 316 if (ri->type & ARM_CP_NO_RAW) { 317 continue; 318 } 319 /* Write value and confirm it reads back as written 320 * (to catch read-only registers and partially read-only 321 * registers where the incoming migration value doesn't match) 322 */ 323 write_raw_cp_reg(&cpu->env, ri, v); 324 if (read_raw_cp_reg(&cpu->env, ri) != v) { 325 ok = false; 326 } 327 } 328 return ok; 329 } 330 331 static void add_cpreg_to_list(gpointer key, gpointer opaque) 332 { 333 ARMCPU *cpu = opaque; 334 uint64_t regidx; 335 const ARMCPRegInfo *ri; 336 337 regidx = *(uint32_t *)key; 338 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 339 340 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 341 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 342 /* The value array need not be initialized at this point */ 343 cpu->cpreg_array_len++; 344 } 345 } 346 347 static void count_cpreg(gpointer key, gpointer opaque) 348 { 349 ARMCPU *cpu = opaque; 350 uint64_t regidx; 351 const ARMCPRegInfo *ri; 352 353 regidx = *(uint32_t *)key; 354 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 355 356 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 357 cpu->cpreg_array_len++; 358 } 359 } 360 361 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 362 { 363 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 364 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 365 366 if (aidx > bidx) { 367 return 1; 368 } 369 if (aidx < bidx) { 370 return -1; 371 } 372 return 0; 373 } 374 375 void init_cpreg_list(ARMCPU *cpu) 376 { 377 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 378 * Note that we require cpreg_tuples[] to be sorted by key ID. 379 */ 380 GList *keys; 381 int arraylen; 382 383 keys = g_hash_table_get_keys(cpu->cp_regs); 384 keys = g_list_sort(keys, cpreg_key_compare); 385 386 cpu->cpreg_array_len = 0; 387 388 g_list_foreach(keys, count_cpreg, cpu); 389 390 arraylen = cpu->cpreg_array_len; 391 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 392 cpu->cpreg_values = g_new(uint64_t, arraylen); 393 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 394 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 395 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 396 cpu->cpreg_array_len = 0; 397 398 g_list_foreach(keys, add_cpreg_to_list, cpu); 399 400 assert(cpu->cpreg_array_len == arraylen); 401 402 g_list_free(keys); 403 } 404 405 /* 406 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 407 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 408 * 409 * access_el3_aa32ns: Used to check AArch32 register views. 410 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 411 */ 412 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 413 const ARMCPRegInfo *ri, 414 bool isread) 415 { 416 bool secure = arm_is_secure_below_el3(env); 417 418 assert(!arm_el_is_aa64(env, 3)); 419 if (secure) { 420 return CP_ACCESS_TRAP_UNCATEGORIZED; 421 } 422 return CP_ACCESS_OK; 423 } 424 425 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 426 const ARMCPRegInfo *ri, 427 bool isread) 428 { 429 if (!arm_el_is_aa64(env, 3)) { 430 return access_el3_aa32ns(env, ri, isread); 431 } 432 return CP_ACCESS_OK; 433 } 434 435 /* Some secure-only AArch32 registers trap to EL3 if used from 436 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 437 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 438 * We assume that the .access field is set to PL1_RW. 439 */ 440 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 441 const ARMCPRegInfo *ri, 442 bool isread) 443 { 444 if (arm_current_el(env) == 3) { 445 return CP_ACCESS_OK; 446 } 447 if (arm_is_secure_below_el3(env)) { 448 return CP_ACCESS_TRAP_EL3; 449 } 450 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 451 return CP_ACCESS_TRAP_UNCATEGORIZED; 452 } 453 454 /* Check for traps to "powerdown debug" registers, which are controlled 455 * by MDCR.TDOSA 456 */ 457 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 458 bool isread) 459 { 460 int el = arm_current_el(env); 461 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 462 (env->cp15.mdcr_el2 & MDCR_TDE) || 463 (arm_hcr_el2_eff(env) & HCR_TGE); 464 465 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 466 return CP_ACCESS_TRAP_EL2; 467 } 468 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 469 return CP_ACCESS_TRAP_EL3; 470 } 471 return CP_ACCESS_OK; 472 } 473 474 /* Check for traps to "debug ROM" registers, which are controlled 475 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 476 */ 477 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 478 bool isread) 479 { 480 int el = arm_current_el(env); 481 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 482 (env->cp15.mdcr_el2 & MDCR_TDE) || 483 (arm_hcr_el2_eff(env) & HCR_TGE); 484 485 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 486 return CP_ACCESS_TRAP_EL2; 487 } 488 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 489 return CP_ACCESS_TRAP_EL3; 490 } 491 return CP_ACCESS_OK; 492 } 493 494 /* Check for traps to general debug registers, which are controlled 495 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 496 */ 497 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 498 bool isread) 499 { 500 int el = arm_current_el(env); 501 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 502 (env->cp15.mdcr_el2 & MDCR_TDE) || 503 (arm_hcr_el2_eff(env) & HCR_TGE); 504 505 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 506 return CP_ACCESS_TRAP_EL2; 507 } 508 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 509 return CP_ACCESS_TRAP_EL3; 510 } 511 return CP_ACCESS_OK; 512 } 513 514 /* Check for traps to performance monitor registers, which are controlled 515 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 516 */ 517 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 518 bool isread) 519 { 520 int el = arm_current_el(env); 521 522 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 523 && !arm_is_secure_below_el3(env)) { 524 return CP_ACCESS_TRAP_EL2; 525 } 526 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 527 return CP_ACCESS_TRAP_EL3; 528 } 529 return CP_ACCESS_OK; 530 } 531 532 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 533 { 534 ARMCPU *cpu = env_archcpu(env); 535 536 raw_write(env, ri, value); 537 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 538 } 539 540 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 541 { 542 ARMCPU *cpu = env_archcpu(env); 543 544 if (raw_read(env, ri) != value) { 545 /* Unlike real hardware the qemu TLB uses virtual addresses, 546 * not modified virtual addresses, so this causes a TLB flush. 547 */ 548 tlb_flush(CPU(cpu)); 549 raw_write(env, ri, value); 550 } 551 } 552 553 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 554 uint64_t value) 555 { 556 ARMCPU *cpu = env_archcpu(env); 557 558 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 559 && !extended_addresses_enabled(env)) { 560 /* For VMSA (when not using the LPAE long descriptor page table 561 * format) this register includes the ASID, so do a TLB flush. 562 * For PMSA it is purely a process ID and no action is needed. 563 */ 564 tlb_flush(CPU(cpu)); 565 } 566 raw_write(env, ri, value); 567 } 568 569 /* IS variants of TLB operations must affect all cores */ 570 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 CPUState *cs = env_cpu(env); 574 575 tlb_flush_all_cpus_synced(cs); 576 } 577 578 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 579 uint64_t value) 580 { 581 CPUState *cs = env_cpu(env); 582 583 tlb_flush_all_cpus_synced(cs); 584 } 585 586 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 587 uint64_t value) 588 { 589 CPUState *cs = env_cpu(env); 590 591 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 592 } 593 594 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 595 uint64_t value) 596 { 597 CPUState *cs = env_cpu(env); 598 599 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 600 } 601 602 /* 603 * Non-IS variants of TLB operations are upgraded to 604 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 605 * force broadcast of these operations. 606 */ 607 static bool tlb_force_broadcast(CPUARMState *env) 608 { 609 return (env->cp15.hcr_el2 & HCR_FB) && 610 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 611 } 612 613 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 614 uint64_t value) 615 { 616 /* Invalidate all (TLBIALL) */ 617 ARMCPU *cpu = env_archcpu(env); 618 619 if (tlb_force_broadcast(env)) { 620 tlbiall_is_write(env, NULL, value); 621 return; 622 } 623 624 tlb_flush(CPU(cpu)); 625 } 626 627 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 628 uint64_t value) 629 { 630 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 631 ARMCPU *cpu = env_archcpu(env); 632 633 if (tlb_force_broadcast(env)) { 634 tlbimva_is_write(env, NULL, value); 635 return; 636 } 637 638 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 639 } 640 641 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 642 uint64_t value) 643 { 644 /* Invalidate by ASID (TLBIASID) */ 645 ARMCPU *cpu = env_archcpu(env); 646 647 if (tlb_force_broadcast(env)) { 648 tlbiasid_is_write(env, NULL, value); 649 return; 650 } 651 652 tlb_flush(CPU(cpu)); 653 } 654 655 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 656 uint64_t value) 657 { 658 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 659 ARMCPU *cpu = env_archcpu(env); 660 661 if (tlb_force_broadcast(env)) { 662 tlbimvaa_is_write(env, NULL, value); 663 return; 664 } 665 666 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 667 } 668 669 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 670 uint64_t value) 671 { 672 CPUState *cs = env_cpu(env); 673 674 tlb_flush_by_mmuidx(cs, 675 ARMMMUIdxBit_S12NSE1 | 676 ARMMMUIdxBit_S12NSE0 | 677 ARMMMUIdxBit_S2NS); 678 } 679 680 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 681 uint64_t value) 682 { 683 CPUState *cs = env_cpu(env); 684 685 tlb_flush_by_mmuidx_all_cpus_synced(cs, 686 ARMMMUIdxBit_S12NSE1 | 687 ARMMMUIdxBit_S12NSE0 | 688 ARMMMUIdxBit_S2NS); 689 } 690 691 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 692 uint64_t value) 693 { 694 /* Invalidate by IPA. This has to invalidate any structures that 695 * contain only stage 2 translation information, but does not need 696 * to apply to structures that contain combined stage 1 and stage 2 697 * translation information. 698 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 699 */ 700 CPUState *cs = env_cpu(env); 701 uint64_t pageaddr; 702 703 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 704 return; 705 } 706 707 pageaddr = sextract64(value << 12, 0, 40); 708 709 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 710 } 711 712 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 713 uint64_t value) 714 { 715 CPUState *cs = env_cpu(env); 716 uint64_t pageaddr; 717 718 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 719 return; 720 } 721 722 pageaddr = sextract64(value << 12, 0, 40); 723 724 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 725 ARMMMUIdxBit_S2NS); 726 } 727 728 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 729 uint64_t value) 730 { 731 CPUState *cs = env_cpu(env); 732 733 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 734 } 735 736 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 737 uint64_t value) 738 { 739 CPUState *cs = env_cpu(env); 740 741 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 742 } 743 744 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 745 uint64_t value) 746 { 747 CPUState *cs = env_cpu(env); 748 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 749 750 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 751 } 752 753 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 754 uint64_t value) 755 { 756 CPUState *cs = env_cpu(env); 757 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 758 759 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 760 ARMMMUIdxBit_S1E2); 761 } 762 763 static const ARMCPRegInfo cp_reginfo[] = { 764 /* Define the secure and non-secure FCSE identifier CP registers 765 * separately because there is no secure bank in V8 (no _EL3). This allows 766 * the secure register to be properly reset and migrated. There is also no 767 * v8 EL1 version of the register so the non-secure instance stands alone. 768 */ 769 { .name = "FCSEIDR", 770 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 771 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 772 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 773 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 774 { .name = "FCSEIDR_S", 775 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 776 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 777 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 778 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 779 /* Define the secure and non-secure context identifier CP registers 780 * separately because there is no secure bank in V8 (no _EL3). This allows 781 * the secure register to be properly reset and migrated. In the 782 * non-secure case, the 32-bit register will have reset and migration 783 * disabled during registration as it is handled by the 64-bit instance. 784 */ 785 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 786 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 787 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 788 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 789 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 790 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 791 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 792 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 793 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 794 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 795 REGINFO_SENTINEL 796 }; 797 798 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 799 /* NB: Some of these registers exist in v8 but with more precise 800 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 801 */ 802 /* MMU Domain access control / MPU write buffer control */ 803 { .name = "DACR", 804 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 805 .access = PL1_RW, .resetvalue = 0, 806 .writefn = dacr_write, .raw_writefn = raw_write, 807 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 808 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 809 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 810 * For v6 and v5, these mappings are overly broad. 811 */ 812 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 813 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 814 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 815 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 816 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 817 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 818 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 819 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 820 /* Cache maintenance ops; some of this space may be overridden later. */ 821 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 822 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 823 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 824 REGINFO_SENTINEL 825 }; 826 827 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 828 /* Not all pre-v6 cores implemented this WFI, so this is slightly 829 * over-broad. 830 */ 831 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 832 .access = PL1_W, .type = ARM_CP_WFI }, 833 REGINFO_SENTINEL 834 }; 835 836 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 837 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 838 * is UNPREDICTABLE; we choose to NOP as most implementations do). 839 */ 840 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 841 .access = PL1_W, .type = ARM_CP_WFI }, 842 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 843 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 844 * OMAPCP will override this space. 845 */ 846 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 847 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 848 .resetvalue = 0 }, 849 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 850 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 851 .resetvalue = 0 }, 852 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 853 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 854 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 855 .resetvalue = 0 }, 856 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 857 * implementing it as RAZ means the "debug architecture version" bits 858 * will read as a reserved value, which should cause Linux to not try 859 * to use the debug hardware. 860 */ 861 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 862 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 863 /* MMU TLB control. Note that the wildcarding means we cover not just 864 * the unified TLB ops but also the dside/iside/inner-shareable variants. 865 */ 866 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 867 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 868 .type = ARM_CP_NO_RAW }, 869 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 870 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 871 .type = ARM_CP_NO_RAW }, 872 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 873 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 874 .type = ARM_CP_NO_RAW }, 875 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 876 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 877 .type = ARM_CP_NO_RAW }, 878 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 879 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 880 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 881 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 882 REGINFO_SENTINEL 883 }; 884 885 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 886 uint64_t value) 887 { 888 uint32_t mask = 0; 889 890 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 891 if (!arm_feature(env, ARM_FEATURE_V8)) { 892 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 893 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 894 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 895 */ 896 if (arm_feature(env, ARM_FEATURE_VFP)) { 897 /* VFP coprocessor: cp10 & cp11 [23:20] */ 898 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 899 900 if (!arm_feature(env, ARM_FEATURE_NEON)) { 901 /* ASEDIS [31] bit is RAO/WI */ 902 value |= (1 << 31); 903 } 904 905 /* VFPv3 and upwards with NEON implement 32 double precision 906 * registers (D0-D31). 907 */ 908 if (!arm_feature(env, ARM_FEATURE_NEON) || 909 !arm_feature(env, ARM_FEATURE_VFP3)) { 910 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 911 value |= (1 << 30); 912 } 913 } 914 value &= mask; 915 } 916 917 /* 918 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 919 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 920 */ 921 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 922 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 923 value &= ~(0xf << 20); 924 value |= env->cp15.cpacr_el1 & (0xf << 20); 925 } 926 927 env->cp15.cpacr_el1 = value; 928 } 929 930 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 931 { 932 /* 933 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 934 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 935 */ 936 uint64_t value = env->cp15.cpacr_el1; 937 938 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 939 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 940 value &= ~(0xf << 20); 941 } 942 return value; 943 } 944 945 946 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 947 { 948 /* Call cpacr_write() so that we reset with the correct RAO bits set 949 * for our CPU features. 950 */ 951 cpacr_write(env, ri, 0); 952 } 953 954 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 955 bool isread) 956 { 957 if (arm_feature(env, ARM_FEATURE_V8)) { 958 /* Check if CPACR accesses are to be trapped to EL2 */ 959 if (arm_current_el(env) == 1 && 960 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 961 return CP_ACCESS_TRAP_EL2; 962 /* Check if CPACR accesses are to be trapped to EL3 */ 963 } else if (arm_current_el(env) < 3 && 964 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 965 return CP_ACCESS_TRAP_EL3; 966 } 967 } 968 969 return CP_ACCESS_OK; 970 } 971 972 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 973 bool isread) 974 { 975 /* Check if CPTR accesses are set to trap to EL3 */ 976 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 977 return CP_ACCESS_TRAP_EL3; 978 } 979 980 return CP_ACCESS_OK; 981 } 982 983 static const ARMCPRegInfo v6_cp_reginfo[] = { 984 /* prefetch by MVA in v6, NOP in v7 */ 985 { .name = "MVA_prefetch", 986 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 987 .access = PL1_W, .type = ARM_CP_NOP }, 988 /* We need to break the TB after ISB to execute self-modifying code 989 * correctly and also to take any pending interrupts immediately. 990 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 991 */ 992 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 993 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 994 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 995 .access = PL0_W, .type = ARM_CP_NOP }, 996 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 997 .access = PL0_W, .type = ARM_CP_NOP }, 998 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 999 .access = PL1_RW, 1000 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1001 offsetof(CPUARMState, cp15.ifar_ns) }, 1002 .resetvalue = 0, }, 1003 /* Watchpoint Fault Address Register : should actually only be present 1004 * for 1136, 1176, 11MPCore. 1005 */ 1006 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1007 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1008 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1009 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1010 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1011 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1012 REGINFO_SENTINEL 1013 }; 1014 1015 /* Definitions for the PMU registers */ 1016 #define PMCRN_MASK 0xf800 1017 #define PMCRN_SHIFT 11 1018 #define PMCRLC 0x40 1019 #define PMCRDP 0x10 1020 #define PMCRD 0x8 1021 #define PMCRC 0x4 1022 #define PMCRP 0x2 1023 #define PMCRE 0x1 1024 1025 #define PMXEVTYPER_P 0x80000000 1026 #define PMXEVTYPER_U 0x40000000 1027 #define PMXEVTYPER_NSK 0x20000000 1028 #define PMXEVTYPER_NSU 0x10000000 1029 #define PMXEVTYPER_NSH 0x08000000 1030 #define PMXEVTYPER_M 0x04000000 1031 #define PMXEVTYPER_MT 0x02000000 1032 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1033 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1034 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1035 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1036 PMXEVTYPER_EVTCOUNT) 1037 1038 #define PMCCFILTR 0xf8000000 1039 #define PMCCFILTR_M PMXEVTYPER_M 1040 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1041 1042 static inline uint32_t pmu_num_counters(CPUARMState *env) 1043 { 1044 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1045 } 1046 1047 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1048 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1049 { 1050 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1051 } 1052 1053 typedef struct pm_event { 1054 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1055 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1056 bool (*supported)(CPUARMState *); 1057 /* 1058 * Retrieve the current count of the underlying event. The programmed 1059 * counters hold a difference from the return value from this function 1060 */ 1061 uint64_t (*get_count)(CPUARMState *); 1062 /* 1063 * Return how many nanoseconds it will take (at a minimum) for count events 1064 * to occur. A negative value indicates the counter will never overflow, or 1065 * that the counter has otherwise arranged for the overflow bit to be set 1066 * and the PMU interrupt to be raised on overflow. 1067 */ 1068 int64_t (*ns_per_count)(uint64_t); 1069 } pm_event; 1070 1071 static bool event_always_supported(CPUARMState *env) 1072 { 1073 return true; 1074 } 1075 1076 static uint64_t swinc_get_count(CPUARMState *env) 1077 { 1078 /* 1079 * SW_INCR events are written directly to the pmevcntr's by writes to 1080 * PMSWINC, so there is no underlying count maintained by the PMU itself 1081 */ 1082 return 0; 1083 } 1084 1085 static int64_t swinc_ns_per(uint64_t ignored) 1086 { 1087 return -1; 1088 } 1089 1090 /* 1091 * Return the underlying cycle count for the PMU cycle counters. If we're in 1092 * usermode, simply return 0. 1093 */ 1094 static uint64_t cycles_get_count(CPUARMState *env) 1095 { 1096 #ifndef CONFIG_USER_ONLY 1097 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1098 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1099 #else 1100 return cpu_get_host_ticks(); 1101 #endif 1102 } 1103 1104 #ifndef CONFIG_USER_ONLY 1105 static int64_t cycles_ns_per(uint64_t cycles) 1106 { 1107 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1108 } 1109 1110 static bool instructions_supported(CPUARMState *env) 1111 { 1112 return use_icount == 1 /* Precise instruction counting */; 1113 } 1114 1115 static uint64_t instructions_get_count(CPUARMState *env) 1116 { 1117 return (uint64_t)cpu_get_icount_raw(); 1118 } 1119 1120 static int64_t instructions_ns_per(uint64_t icount) 1121 { 1122 return cpu_icount_to_ns((int64_t)icount); 1123 } 1124 #endif 1125 1126 static const pm_event pm_events[] = { 1127 { .number = 0x000, /* SW_INCR */ 1128 .supported = event_always_supported, 1129 .get_count = swinc_get_count, 1130 .ns_per_count = swinc_ns_per, 1131 }, 1132 #ifndef CONFIG_USER_ONLY 1133 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1134 .supported = instructions_supported, 1135 .get_count = instructions_get_count, 1136 .ns_per_count = instructions_ns_per, 1137 }, 1138 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1139 .supported = event_always_supported, 1140 .get_count = cycles_get_count, 1141 .ns_per_count = cycles_ns_per, 1142 } 1143 #endif 1144 }; 1145 1146 /* 1147 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1148 * events (i.e. the statistical profiling extension), this implementation 1149 * should first be updated to something sparse instead of the current 1150 * supported_event_map[] array. 1151 */ 1152 #define MAX_EVENT_ID 0x11 1153 #define UNSUPPORTED_EVENT UINT16_MAX 1154 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1155 1156 /* 1157 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1158 * of ARM event numbers to indices in our pm_events array. 1159 * 1160 * Note: Events in the 0x40XX range are not currently supported. 1161 */ 1162 void pmu_init(ARMCPU *cpu) 1163 { 1164 unsigned int i; 1165 1166 /* 1167 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1168 * events to them 1169 */ 1170 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1171 supported_event_map[i] = UNSUPPORTED_EVENT; 1172 } 1173 cpu->pmceid0 = 0; 1174 cpu->pmceid1 = 0; 1175 1176 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1177 const pm_event *cnt = &pm_events[i]; 1178 assert(cnt->number <= MAX_EVENT_ID); 1179 /* We do not currently support events in the 0x40xx range */ 1180 assert(cnt->number <= 0x3f); 1181 1182 if (cnt->supported(&cpu->env)) { 1183 supported_event_map[cnt->number] = i; 1184 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1185 if (cnt->number & 0x20) { 1186 cpu->pmceid1 |= event_mask; 1187 } else { 1188 cpu->pmceid0 |= event_mask; 1189 } 1190 } 1191 } 1192 } 1193 1194 /* 1195 * Check at runtime whether a PMU event is supported for the current machine 1196 */ 1197 static bool event_supported(uint16_t number) 1198 { 1199 if (number > MAX_EVENT_ID) { 1200 return false; 1201 } 1202 return supported_event_map[number] != UNSUPPORTED_EVENT; 1203 } 1204 1205 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1206 bool isread) 1207 { 1208 /* Performance monitor registers user accessibility is controlled 1209 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1210 * trapping to EL2 or EL3 for other accesses. 1211 */ 1212 int el = arm_current_el(env); 1213 1214 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1215 return CP_ACCESS_TRAP; 1216 } 1217 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1218 && !arm_is_secure_below_el3(env)) { 1219 return CP_ACCESS_TRAP_EL2; 1220 } 1221 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1222 return CP_ACCESS_TRAP_EL3; 1223 } 1224 1225 return CP_ACCESS_OK; 1226 } 1227 1228 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1229 const ARMCPRegInfo *ri, 1230 bool isread) 1231 { 1232 /* ER: event counter read trap control */ 1233 if (arm_feature(env, ARM_FEATURE_V8) 1234 && arm_current_el(env) == 0 1235 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1236 && isread) { 1237 return CP_ACCESS_OK; 1238 } 1239 1240 return pmreg_access(env, ri, isread); 1241 } 1242 1243 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1244 const ARMCPRegInfo *ri, 1245 bool isread) 1246 { 1247 /* SW: software increment write trap control */ 1248 if (arm_feature(env, ARM_FEATURE_V8) 1249 && arm_current_el(env) == 0 1250 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1251 && !isread) { 1252 return CP_ACCESS_OK; 1253 } 1254 1255 return pmreg_access(env, ri, isread); 1256 } 1257 1258 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1259 const ARMCPRegInfo *ri, 1260 bool isread) 1261 { 1262 /* ER: event counter read trap control */ 1263 if (arm_feature(env, ARM_FEATURE_V8) 1264 && arm_current_el(env) == 0 1265 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1266 return CP_ACCESS_OK; 1267 } 1268 1269 return pmreg_access(env, ri, isread); 1270 } 1271 1272 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1273 const ARMCPRegInfo *ri, 1274 bool isread) 1275 { 1276 /* CR: cycle counter read trap control */ 1277 if (arm_feature(env, ARM_FEATURE_V8) 1278 && arm_current_el(env) == 0 1279 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1280 && isread) { 1281 return CP_ACCESS_OK; 1282 } 1283 1284 return pmreg_access(env, ri, isread); 1285 } 1286 1287 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1288 * the current EL, security state, and register configuration. 1289 */ 1290 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1291 { 1292 uint64_t filter; 1293 bool e, p, u, nsk, nsu, nsh, m; 1294 bool enabled, prohibited, filtered; 1295 bool secure = arm_is_secure(env); 1296 int el = arm_current_el(env); 1297 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1298 1299 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1300 return false; 1301 } 1302 1303 if (!arm_feature(env, ARM_FEATURE_EL2) || 1304 (counter < hpmn || counter == 31)) { 1305 e = env->cp15.c9_pmcr & PMCRE; 1306 } else { 1307 e = env->cp15.mdcr_el2 & MDCR_HPME; 1308 } 1309 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1310 1311 if (!secure) { 1312 if (el == 2 && (counter < hpmn || counter == 31)) { 1313 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1314 } else { 1315 prohibited = false; 1316 } 1317 } else { 1318 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1319 (env->cp15.mdcr_el3 & MDCR_SPME); 1320 } 1321 1322 if (prohibited && counter == 31) { 1323 prohibited = env->cp15.c9_pmcr & PMCRDP; 1324 } 1325 1326 if (counter == 31) { 1327 filter = env->cp15.pmccfiltr_el0; 1328 } else { 1329 filter = env->cp15.c14_pmevtyper[counter]; 1330 } 1331 1332 p = filter & PMXEVTYPER_P; 1333 u = filter & PMXEVTYPER_U; 1334 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1335 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1336 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1337 m = arm_el_is_aa64(env, 1) && 1338 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1339 1340 if (el == 0) { 1341 filtered = secure ? u : u != nsu; 1342 } else if (el == 1) { 1343 filtered = secure ? p : p != nsk; 1344 } else if (el == 2) { 1345 filtered = !nsh; 1346 } else { /* EL3 */ 1347 filtered = m != p; 1348 } 1349 1350 if (counter != 31) { 1351 /* 1352 * If not checking PMCCNTR, ensure the counter is setup to an event we 1353 * support 1354 */ 1355 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1356 if (!event_supported(event)) { 1357 return false; 1358 } 1359 } 1360 1361 return enabled && !prohibited && !filtered; 1362 } 1363 1364 static void pmu_update_irq(CPUARMState *env) 1365 { 1366 ARMCPU *cpu = env_archcpu(env); 1367 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1368 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1369 } 1370 1371 /* 1372 * Ensure c15_ccnt is the guest-visible count so that operations such as 1373 * enabling/disabling the counter or filtering, modifying the count itself, 1374 * etc. can be done logically. This is essentially a no-op if the counter is 1375 * not enabled at the time of the call. 1376 */ 1377 static void pmccntr_op_start(CPUARMState *env) 1378 { 1379 uint64_t cycles = cycles_get_count(env); 1380 1381 if (pmu_counter_enabled(env, 31)) { 1382 uint64_t eff_cycles = cycles; 1383 if (env->cp15.c9_pmcr & PMCRD) { 1384 /* Increment once every 64 processor clock cycles */ 1385 eff_cycles /= 64; 1386 } 1387 1388 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1389 1390 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1391 1ull << 63 : 1ull << 31; 1392 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1393 env->cp15.c9_pmovsr |= (1 << 31); 1394 pmu_update_irq(env); 1395 } 1396 1397 env->cp15.c15_ccnt = new_pmccntr; 1398 } 1399 env->cp15.c15_ccnt_delta = cycles; 1400 } 1401 1402 /* 1403 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1404 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1405 * pmccntr_op_start. 1406 */ 1407 static void pmccntr_op_finish(CPUARMState *env) 1408 { 1409 if (pmu_counter_enabled(env, 31)) { 1410 #ifndef CONFIG_USER_ONLY 1411 /* Calculate when the counter will next overflow */ 1412 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1413 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1414 remaining_cycles = (uint32_t)remaining_cycles; 1415 } 1416 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1417 1418 if (overflow_in > 0) { 1419 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1420 overflow_in; 1421 ARMCPU *cpu = env_archcpu(env); 1422 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1423 } 1424 #endif 1425 1426 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1427 if (env->cp15.c9_pmcr & PMCRD) { 1428 /* Increment once every 64 processor clock cycles */ 1429 prev_cycles /= 64; 1430 } 1431 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1432 } 1433 } 1434 1435 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1436 { 1437 1438 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1439 uint64_t count = 0; 1440 if (event_supported(event)) { 1441 uint16_t event_idx = supported_event_map[event]; 1442 count = pm_events[event_idx].get_count(env); 1443 } 1444 1445 if (pmu_counter_enabled(env, counter)) { 1446 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1447 1448 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1449 env->cp15.c9_pmovsr |= (1 << counter); 1450 pmu_update_irq(env); 1451 } 1452 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1453 } 1454 env->cp15.c14_pmevcntr_delta[counter] = count; 1455 } 1456 1457 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1458 { 1459 if (pmu_counter_enabled(env, counter)) { 1460 #ifndef CONFIG_USER_ONLY 1461 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1462 uint16_t event_idx = supported_event_map[event]; 1463 uint64_t delta = UINT32_MAX - 1464 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1465 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1466 1467 if (overflow_in > 0) { 1468 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1469 overflow_in; 1470 ARMCPU *cpu = env_archcpu(env); 1471 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1472 } 1473 #endif 1474 1475 env->cp15.c14_pmevcntr_delta[counter] -= 1476 env->cp15.c14_pmevcntr[counter]; 1477 } 1478 } 1479 1480 void pmu_op_start(CPUARMState *env) 1481 { 1482 unsigned int i; 1483 pmccntr_op_start(env); 1484 for (i = 0; i < pmu_num_counters(env); i++) { 1485 pmevcntr_op_start(env, i); 1486 } 1487 } 1488 1489 void pmu_op_finish(CPUARMState *env) 1490 { 1491 unsigned int i; 1492 pmccntr_op_finish(env); 1493 for (i = 0; i < pmu_num_counters(env); i++) { 1494 pmevcntr_op_finish(env, i); 1495 } 1496 } 1497 1498 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1499 { 1500 pmu_op_start(&cpu->env); 1501 } 1502 1503 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1504 { 1505 pmu_op_finish(&cpu->env); 1506 } 1507 1508 void arm_pmu_timer_cb(void *opaque) 1509 { 1510 ARMCPU *cpu = opaque; 1511 1512 /* 1513 * Update all the counter values based on the current underlying counts, 1514 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1515 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1516 * counter may expire. 1517 */ 1518 pmu_op_start(&cpu->env); 1519 pmu_op_finish(&cpu->env); 1520 } 1521 1522 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 pmu_op_start(env); 1526 1527 if (value & PMCRC) { 1528 /* The counter has been reset */ 1529 env->cp15.c15_ccnt = 0; 1530 } 1531 1532 if (value & PMCRP) { 1533 unsigned int i; 1534 for (i = 0; i < pmu_num_counters(env); i++) { 1535 env->cp15.c14_pmevcntr[i] = 0; 1536 } 1537 } 1538 1539 /* only the DP, X, D and E bits are writable */ 1540 env->cp15.c9_pmcr &= ~0x39; 1541 env->cp15.c9_pmcr |= (value & 0x39); 1542 1543 pmu_op_finish(env); 1544 } 1545 1546 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1547 uint64_t value) 1548 { 1549 unsigned int i; 1550 for (i = 0; i < pmu_num_counters(env); i++) { 1551 /* Increment a counter's count iff: */ 1552 if ((value & (1 << i)) && /* counter's bit is set */ 1553 /* counter is enabled and not filtered */ 1554 pmu_counter_enabled(env, i) && 1555 /* counter is SW_INCR */ 1556 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1557 pmevcntr_op_start(env, i); 1558 1559 /* 1560 * Detect if this write causes an overflow since we can't predict 1561 * PMSWINC overflows like we can for other events 1562 */ 1563 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1564 1565 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1566 env->cp15.c9_pmovsr |= (1 << i); 1567 pmu_update_irq(env); 1568 } 1569 1570 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1571 1572 pmevcntr_op_finish(env, i); 1573 } 1574 } 1575 } 1576 1577 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1578 { 1579 uint64_t ret; 1580 pmccntr_op_start(env); 1581 ret = env->cp15.c15_ccnt; 1582 pmccntr_op_finish(env); 1583 return ret; 1584 } 1585 1586 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1587 uint64_t value) 1588 { 1589 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1590 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1591 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1592 * accessed. 1593 */ 1594 env->cp15.c9_pmselr = value & 0x1f; 1595 } 1596 1597 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1598 uint64_t value) 1599 { 1600 pmccntr_op_start(env); 1601 env->cp15.c15_ccnt = value; 1602 pmccntr_op_finish(env); 1603 } 1604 1605 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1606 uint64_t value) 1607 { 1608 uint64_t cur_val = pmccntr_read(env, NULL); 1609 1610 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1611 } 1612 1613 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1614 uint64_t value) 1615 { 1616 pmccntr_op_start(env); 1617 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1618 pmccntr_op_finish(env); 1619 } 1620 1621 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1622 uint64_t value) 1623 { 1624 pmccntr_op_start(env); 1625 /* M is not accessible from AArch32 */ 1626 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1627 (value & PMCCFILTR); 1628 pmccntr_op_finish(env); 1629 } 1630 1631 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1632 { 1633 /* M is not visible in AArch32 */ 1634 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1635 } 1636 1637 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1638 uint64_t value) 1639 { 1640 value &= pmu_counter_mask(env); 1641 env->cp15.c9_pmcnten |= value; 1642 } 1643 1644 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1645 uint64_t value) 1646 { 1647 value &= pmu_counter_mask(env); 1648 env->cp15.c9_pmcnten &= ~value; 1649 } 1650 1651 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1652 uint64_t value) 1653 { 1654 value &= pmu_counter_mask(env); 1655 env->cp15.c9_pmovsr &= ~value; 1656 pmu_update_irq(env); 1657 } 1658 1659 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1660 uint64_t value) 1661 { 1662 value &= pmu_counter_mask(env); 1663 env->cp15.c9_pmovsr |= value; 1664 pmu_update_irq(env); 1665 } 1666 1667 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1668 uint64_t value, const uint8_t counter) 1669 { 1670 if (counter == 31) { 1671 pmccfiltr_write(env, ri, value); 1672 } else if (counter < pmu_num_counters(env)) { 1673 pmevcntr_op_start(env, counter); 1674 1675 /* 1676 * If this counter's event type is changing, store the current 1677 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1678 * pmevcntr_op_finish has the correct baseline when it converts back to 1679 * a delta. 1680 */ 1681 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1682 PMXEVTYPER_EVTCOUNT; 1683 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1684 if (old_event != new_event) { 1685 uint64_t count = 0; 1686 if (event_supported(new_event)) { 1687 uint16_t event_idx = supported_event_map[new_event]; 1688 count = pm_events[event_idx].get_count(env); 1689 } 1690 env->cp15.c14_pmevcntr_delta[counter] = count; 1691 } 1692 1693 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1694 pmevcntr_op_finish(env, counter); 1695 } 1696 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1697 * PMSELR value is equal to or greater than the number of implemented 1698 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1699 */ 1700 } 1701 1702 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1703 const uint8_t counter) 1704 { 1705 if (counter == 31) { 1706 return env->cp15.pmccfiltr_el0; 1707 } else if (counter < pmu_num_counters(env)) { 1708 return env->cp15.c14_pmevtyper[counter]; 1709 } else { 1710 /* 1711 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1712 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1713 */ 1714 return 0; 1715 } 1716 } 1717 1718 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1719 uint64_t value) 1720 { 1721 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1722 pmevtyper_write(env, ri, value, counter); 1723 } 1724 1725 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint64_t value) 1727 { 1728 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1729 env->cp15.c14_pmevtyper[counter] = value; 1730 1731 /* 1732 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1733 * pmu_op_finish calls when loading saved state for a migration. Because 1734 * we're potentially updating the type of event here, the value written to 1735 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1736 * different counter type. Therefore, we need to set this value to the 1737 * current count for the counter type we're writing so that pmu_op_finish 1738 * has the correct count for its calculation. 1739 */ 1740 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1741 if (event_supported(event)) { 1742 uint16_t event_idx = supported_event_map[event]; 1743 env->cp15.c14_pmevcntr_delta[counter] = 1744 pm_events[event_idx].get_count(env); 1745 } 1746 } 1747 1748 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1749 { 1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1751 return pmevtyper_read(env, ri, counter); 1752 } 1753 1754 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1755 uint64_t value) 1756 { 1757 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1758 } 1759 1760 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1761 { 1762 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1763 } 1764 1765 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1766 uint64_t value, uint8_t counter) 1767 { 1768 if (counter < pmu_num_counters(env)) { 1769 pmevcntr_op_start(env, counter); 1770 env->cp15.c14_pmevcntr[counter] = value; 1771 pmevcntr_op_finish(env, counter); 1772 } 1773 /* 1774 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1775 * are CONSTRAINED UNPREDICTABLE. 1776 */ 1777 } 1778 1779 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1780 uint8_t counter) 1781 { 1782 if (counter < pmu_num_counters(env)) { 1783 uint64_t ret; 1784 pmevcntr_op_start(env, counter); 1785 ret = env->cp15.c14_pmevcntr[counter]; 1786 pmevcntr_op_finish(env, counter); 1787 return ret; 1788 } else { 1789 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1790 * are CONSTRAINED UNPREDICTABLE. */ 1791 return 0; 1792 } 1793 } 1794 1795 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1796 uint64_t value) 1797 { 1798 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1799 pmevcntr_write(env, ri, value, counter); 1800 } 1801 1802 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1803 { 1804 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1805 return pmevcntr_read(env, ri, counter); 1806 } 1807 1808 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1809 uint64_t value) 1810 { 1811 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1812 assert(counter < pmu_num_counters(env)); 1813 env->cp15.c14_pmevcntr[counter] = value; 1814 pmevcntr_write(env, ri, value, counter); 1815 } 1816 1817 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1818 { 1819 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1820 assert(counter < pmu_num_counters(env)); 1821 return env->cp15.c14_pmevcntr[counter]; 1822 } 1823 1824 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1825 uint64_t value) 1826 { 1827 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1828 } 1829 1830 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1831 { 1832 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1833 } 1834 1835 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1836 uint64_t value) 1837 { 1838 if (arm_feature(env, ARM_FEATURE_V8)) { 1839 env->cp15.c9_pmuserenr = value & 0xf; 1840 } else { 1841 env->cp15.c9_pmuserenr = value & 1; 1842 } 1843 } 1844 1845 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1846 uint64_t value) 1847 { 1848 /* We have no event counters so only the C bit can be changed */ 1849 value &= pmu_counter_mask(env); 1850 env->cp15.c9_pminten |= value; 1851 pmu_update_irq(env); 1852 } 1853 1854 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1855 uint64_t value) 1856 { 1857 value &= pmu_counter_mask(env); 1858 env->cp15.c9_pminten &= ~value; 1859 pmu_update_irq(env); 1860 } 1861 1862 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1863 uint64_t value) 1864 { 1865 /* Note that even though the AArch64 view of this register has bits 1866 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1867 * architectural requirements for bits which are RES0 only in some 1868 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1869 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1870 */ 1871 raw_write(env, ri, value & ~0x1FULL); 1872 } 1873 1874 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1875 { 1876 /* Begin with base v8.0 state. */ 1877 uint32_t valid_mask = 0x3fff; 1878 ARMCPU *cpu = env_archcpu(env); 1879 1880 if (arm_el_is_aa64(env, 3)) { 1881 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1882 valid_mask &= ~SCR_NET; 1883 } else { 1884 valid_mask &= ~(SCR_RW | SCR_ST); 1885 } 1886 1887 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1888 valid_mask &= ~SCR_HCE; 1889 1890 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1891 * supported if EL2 exists. The bit is UNK/SBZP when 1892 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1893 * when EL2 is unavailable. 1894 * On ARMv8, this bit is always available. 1895 */ 1896 if (arm_feature(env, ARM_FEATURE_V7) && 1897 !arm_feature(env, ARM_FEATURE_V8)) { 1898 valid_mask &= ~SCR_SMD; 1899 } 1900 } 1901 if (cpu_isar_feature(aa64_lor, cpu)) { 1902 valid_mask |= SCR_TLOR; 1903 } 1904 if (cpu_isar_feature(aa64_pauth, cpu)) { 1905 valid_mask |= SCR_API | SCR_APK; 1906 } 1907 1908 /* Clear all-context RES0 bits. */ 1909 value &= valid_mask; 1910 raw_write(env, ri, value); 1911 } 1912 1913 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1914 { 1915 ARMCPU *cpu = env_archcpu(env); 1916 1917 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1918 * bank 1919 */ 1920 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1921 ri->secure & ARM_CP_SECSTATE_S); 1922 1923 return cpu->ccsidr[index]; 1924 } 1925 1926 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1927 uint64_t value) 1928 { 1929 raw_write(env, ri, value & 0xf); 1930 } 1931 1932 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1933 { 1934 CPUState *cs = env_cpu(env); 1935 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1936 uint64_t ret = 0; 1937 bool allow_virt = (arm_current_el(env) == 1 && 1938 (!arm_is_secure_below_el3(env) || 1939 (env->cp15.scr_el3 & SCR_EEL2))); 1940 1941 if (allow_virt && (hcr_el2 & HCR_IMO)) { 1942 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1943 ret |= CPSR_I; 1944 } 1945 } else { 1946 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1947 ret |= CPSR_I; 1948 } 1949 } 1950 1951 if (allow_virt && (hcr_el2 & HCR_FMO)) { 1952 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1953 ret |= CPSR_F; 1954 } 1955 } else { 1956 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1957 ret |= CPSR_F; 1958 } 1959 } 1960 1961 /* External aborts are not possible in QEMU so A bit is always clear */ 1962 return ret; 1963 } 1964 1965 static const ARMCPRegInfo v7_cp_reginfo[] = { 1966 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1967 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1968 .access = PL1_W, .type = ARM_CP_NOP }, 1969 /* Performance monitors are implementation defined in v7, 1970 * but with an ARM recommended set of registers, which we 1971 * follow. 1972 * 1973 * Performance registers fall into three categories: 1974 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1975 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1976 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1977 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1978 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1979 */ 1980 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1981 .access = PL0_RW, .type = ARM_CP_ALIAS, 1982 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1983 .writefn = pmcntenset_write, 1984 .accessfn = pmreg_access, 1985 .raw_writefn = raw_write }, 1986 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1987 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1988 .access = PL0_RW, .accessfn = pmreg_access, 1989 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1990 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1991 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1992 .access = PL0_RW, 1993 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1994 .accessfn = pmreg_access, 1995 .writefn = pmcntenclr_write, 1996 .type = ARM_CP_ALIAS }, 1997 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1998 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1999 .access = PL0_RW, .accessfn = pmreg_access, 2000 .type = ARM_CP_ALIAS, 2001 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2002 .writefn = pmcntenclr_write }, 2003 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2004 .access = PL0_RW, .type = ARM_CP_IO, 2005 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2006 .accessfn = pmreg_access, 2007 .writefn = pmovsr_write, 2008 .raw_writefn = raw_write }, 2009 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2010 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2011 .access = PL0_RW, .accessfn = pmreg_access, 2012 .type = ARM_CP_ALIAS | ARM_CP_IO, 2013 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2014 .writefn = pmovsr_write, 2015 .raw_writefn = raw_write }, 2016 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2017 .access = PL0_W, .accessfn = pmreg_access_swinc, 2018 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2019 .writefn = pmswinc_write }, 2020 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2021 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2022 .access = PL0_W, .accessfn = pmreg_access_swinc, 2023 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2024 .writefn = pmswinc_write }, 2025 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2026 .access = PL0_RW, .type = ARM_CP_ALIAS, 2027 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2028 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2029 .raw_writefn = raw_write}, 2030 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2031 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2032 .access = PL0_RW, .accessfn = pmreg_access_selr, 2033 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2034 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2035 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2036 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2037 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2038 .accessfn = pmreg_access_ccntr }, 2039 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2040 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2041 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2042 .type = ARM_CP_IO, 2043 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2044 .readfn = pmccntr_read, .writefn = pmccntr_write, 2045 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2046 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2047 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2048 .access = PL0_RW, .accessfn = pmreg_access, 2049 .type = ARM_CP_ALIAS | ARM_CP_IO, 2050 .resetvalue = 0, }, 2051 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2052 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2053 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2054 .access = PL0_RW, .accessfn = pmreg_access, 2055 .type = ARM_CP_IO, 2056 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2057 .resetvalue = 0, }, 2058 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2059 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2060 .accessfn = pmreg_access, 2061 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2062 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2063 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2064 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2065 .accessfn = pmreg_access, 2066 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2067 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2068 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2069 .accessfn = pmreg_access_xevcntr, 2070 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2071 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2072 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2073 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2074 .accessfn = pmreg_access_xevcntr, 2075 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2076 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2077 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2078 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2079 .resetvalue = 0, 2080 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2081 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2082 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2083 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2084 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2085 .resetvalue = 0, 2086 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2087 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2088 .access = PL1_RW, .accessfn = access_tpm, 2089 .type = ARM_CP_ALIAS | ARM_CP_IO, 2090 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2091 .resetvalue = 0, 2092 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2093 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2094 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2095 .access = PL1_RW, .accessfn = access_tpm, 2096 .type = ARM_CP_IO, 2097 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2098 .writefn = pmintenset_write, .raw_writefn = raw_write, 2099 .resetvalue = 0x0 }, 2100 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2101 .access = PL1_RW, .accessfn = access_tpm, 2102 .type = ARM_CP_ALIAS | ARM_CP_IO, 2103 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2104 .writefn = pmintenclr_write, }, 2105 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2106 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2107 .access = PL1_RW, .accessfn = access_tpm, 2108 .type = ARM_CP_ALIAS | ARM_CP_IO, 2109 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2110 .writefn = pmintenclr_write }, 2111 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2112 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2113 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2114 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2115 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2116 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 2117 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2118 offsetof(CPUARMState, cp15.csselr_ns) } }, 2119 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2120 * just RAZ for all cores: 2121 */ 2122 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2123 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2124 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 2125 /* Auxiliary fault status registers: these also are IMPDEF, and we 2126 * choose to RAZ/WI for all cores. 2127 */ 2128 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2129 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2130 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2131 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2132 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2133 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2134 /* MAIR can just read-as-written because we don't implement caches 2135 * and so don't need to care about memory attributes. 2136 */ 2137 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2138 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2139 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2140 .resetvalue = 0 }, 2141 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2142 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2143 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2144 .resetvalue = 0 }, 2145 /* For non-long-descriptor page tables these are PRRR and NMRR; 2146 * regardless they still act as reads-as-written for QEMU. 2147 */ 2148 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2149 * allows them to assign the correct fieldoffset based on the endianness 2150 * handled in the field definitions. 2151 */ 2152 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2153 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 2154 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2155 offsetof(CPUARMState, cp15.mair0_ns) }, 2156 .resetfn = arm_cp_reset_ignore }, 2157 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2158 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 2159 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2160 offsetof(CPUARMState, cp15.mair1_ns) }, 2161 .resetfn = arm_cp_reset_ignore }, 2162 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2163 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2164 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2165 /* 32 bit ITLB invalidates */ 2166 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2167 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2168 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2169 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2170 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2171 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2172 /* 32 bit DTLB invalidates */ 2173 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2174 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2175 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2176 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2177 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2178 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2179 /* 32 bit TLB invalidates */ 2180 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2181 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2182 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2183 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2184 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2185 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2186 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2187 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 2188 REGINFO_SENTINEL 2189 }; 2190 2191 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2192 /* 32 bit TLB invalidates, Inner Shareable */ 2193 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2194 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 2195 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2196 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 2197 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2198 .type = ARM_CP_NO_RAW, .access = PL1_W, 2199 .writefn = tlbiasid_is_write }, 2200 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2201 .type = ARM_CP_NO_RAW, .access = PL1_W, 2202 .writefn = tlbimvaa_is_write }, 2203 REGINFO_SENTINEL 2204 }; 2205 2206 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2207 /* PMOVSSET is not implemented in v7 before v7ve */ 2208 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2209 .access = PL0_RW, .accessfn = pmreg_access, 2210 .type = ARM_CP_ALIAS | ARM_CP_IO, 2211 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2212 .writefn = pmovsset_write, 2213 .raw_writefn = raw_write }, 2214 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2215 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2216 .access = PL0_RW, .accessfn = pmreg_access, 2217 .type = ARM_CP_ALIAS | ARM_CP_IO, 2218 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2219 .writefn = pmovsset_write, 2220 .raw_writefn = raw_write }, 2221 REGINFO_SENTINEL 2222 }; 2223 2224 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2225 uint64_t value) 2226 { 2227 value &= 1; 2228 env->teecr = value; 2229 } 2230 2231 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2232 bool isread) 2233 { 2234 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2235 return CP_ACCESS_TRAP; 2236 } 2237 return CP_ACCESS_OK; 2238 } 2239 2240 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2241 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2242 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2243 .resetvalue = 0, 2244 .writefn = teecr_write }, 2245 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2246 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2247 .accessfn = teehbr_access, .resetvalue = 0 }, 2248 REGINFO_SENTINEL 2249 }; 2250 2251 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2252 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2253 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2254 .access = PL0_RW, 2255 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2256 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2257 .access = PL0_RW, 2258 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2259 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2260 .resetfn = arm_cp_reset_ignore }, 2261 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2262 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2263 .access = PL0_R|PL1_W, 2264 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2265 .resetvalue = 0}, 2266 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2267 .access = PL0_R|PL1_W, 2268 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2269 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2270 .resetfn = arm_cp_reset_ignore }, 2271 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2272 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2273 .access = PL1_RW, 2274 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2275 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2276 .access = PL1_RW, 2277 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2278 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2279 .resetvalue = 0 }, 2280 REGINFO_SENTINEL 2281 }; 2282 2283 #ifndef CONFIG_USER_ONLY 2284 2285 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2286 bool isread) 2287 { 2288 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2289 * Writable only at the highest implemented exception level. 2290 */ 2291 int el = arm_current_el(env); 2292 2293 switch (el) { 2294 case 0: 2295 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 2296 return CP_ACCESS_TRAP; 2297 } 2298 break; 2299 case 1: 2300 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2301 arm_is_secure_below_el3(env)) { 2302 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2303 return CP_ACCESS_TRAP_UNCATEGORIZED; 2304 } 2305 break; 2306 case 2: 2307 case 3: 2308 break; 2309 } 2310 2311 if (!isread && el < arm_highest_el(env)) { 2312 return CP_ACCESS_TRAP_UNCATEGORIZED; 2313 } 2314 2315 return CP_ACCESS_OK; 2316 } 2317 2318 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2319 bool isread) 2320 { 2321 unsigned int cur_el = arm_current_el(env); 2322 bool secure = arm_is_secure(env); 2323 2324 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 2325 if (cur_el == 0 && 2326 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2327 return CP_ACCESS_TRAP; 2328 } 2329 2330 if (arm_feature(env, ARM_FEATURE_EL2) && 2331 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2332 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 2333 return CP_ACCESS_TRAP_EL2; 2334 } 2335 return CP_ACCESS_OK; 2336 } 2337 2338 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2339 bool isread) 2340 { 2341 unsigned int cur_el = arm_current_el(env); 2342 bool secure = arm_is_secure(env); 2343 2344 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 2345 * EL0[PV]TEN is zero. 2346 */ 2347 if (cur_el == 0 && 2348 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2349 return CP_ACCESS_TRAP; 2350 } 2351 2352 if (arm_feature(env, ARM_FEATURE_EL2) && 2353 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2354 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2355 return CP_ACCESS_TRAP_EL2; 2356 } 2357 return CP_ACCESS_OK; 2358 } 2359 2360 static CPAccessResult gt_pct_access(CPUARMState *env, 2361 const ARMCPRegInfo *ri, 2362 bool isread) 2363 { 2364 return gt_counter_access(env, GTIMER_PHYS, isread); 2365 } 2366 2367 static CPAccessResult gt_vct_access(CPUARMState *env, 2368 const ARMCPRegInfo *ri, 2369 bool isread) 2370 { 2371 return gt_counter_access(env, GTIMER_VIRT, isread); 2372 } 2373 2374 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2375 bool isread) 2376 { 2377 return gt_timer_access(env, GTIMER_PHYS, isread); 2378 } 2379 2380 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2381 bool isread) 2382 { 2383 return gt_timer_access(env, GTIMER_VIRT, isread); 2384 } 2385 2386 static CPAccessResult gt_stimer_access(CPUARMState *env, 2387 const ARMCPRegInfo *ri, 2388 bool isread) 2389 { 2390 /* The AArch64 register view of the secure physical timer is 2391 * always accessible from EL3, and configurably accessible from 2392 * Secure EL1. 2393 */ 2394 switch (arm_current_el(env)) { 2395 case 1: 2396 if (!arm_is_secure(env)) { 2397 return CP_ACCESS_TRAP; 2398 } 2399 if (!(env->cp15.scr_el3 & SCR_ST)) { 2400 return CP_ACCESS_TRAP_EL3; 2401 } 2402 return CP_ACCESS_OK; 2403 case 0: 2404 case 2: 2405 return CP_ACCESS_TRAP; 2406 case 3: 2407 return CP_ACCESS_OK; 2408 default: 2409 g_assert_not_reached(); 2410 } 2411 } 2412 2413 static uint64_t gt_get_countervalue(CPUARMState *env) 2414 { 2415 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 2416 } 2417 2418 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2419 { 2420 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2421 2422 if (gt->ctl & 1) { 2423 /* Timer enabled: calculate and set current ISTATUS, irq, and 2424 * reset timer to when ISTATUS next has to change 2425 */ 2426 uint64_t offset = timeridx == GTIMER_VIRT ? 2427 cpu->env.cp15.cntvoff_el2 : 0; 2428 uint64_t count = gt_get_countervalue(&cpu->env); 2429 /* Note that this must be unsigned 64 bit arithmetic: */ 2430 int istatus = count - offset >= gt->cval; 2431 uint64_t nexttick; 2432 int irqstate; 2433 2434 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2435 2436 irqstate = (istatus && !(gt->ctl & 2)); 2437 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2438 2439 if (istatus) { 2440 /* Next transition is when count rolls back over to zero */ 2441 nexttick = UINT64_MAX; 2442 } else { 2443 /* Next transition is when we hit cval */ 2444 nexttick = gt->cval + offset; 2445 } 2446 /* Note that the desired next expiry time might be beyond the 2447 * signed-64-bit range of a QEMUTimer -- in this case we just 2448 * set the timer for as far in the future as possible. When the 2449 * timer expires we will reset the timer for any remaining period. 2450 */ 2451 if (nexttick > INT64_MAX / GTIMER_SCALE) { 2452 nexttick = INT64_MAX / GTIMER_SCALE; 2453 } 2454 timer_mod(cpu->gt_timer[timeridx], nexttick); 2455 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2456 } else { 2457 /* Timer disabled: ISTATUS and timer output always clear */ 2458 gt->ctl &= ~4; 2459 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2460 timer_del(cpu->gt_timer[timeridx]); 2461 trace_arm_gt_recalc_disabled(timeridx); 2462 } 2463 } 2464 2465 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2466 int timeridx) 2467 { 2468 ARMCPU *cpu = env_archcpu(env); 2469 2470 timer_del(cpu->gt_timer[timeridx]); 2471 } 2472 2473 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2474 { 2475 return gt_get_countervalue(env); 2476 } 2477 2478 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2479 { 2480 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 2481 } 2482 2483 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2484 int timeridx, 2485 uint64_t value) 2486 { 2487 trace_arm_gt_cval_write(timeridx, value); 2488 env->cp15.c14_timer[timeridx].cval = value; 2489 gt_recalc_timer(env_archcpu(env), timeridx); 2490 } 2491 2492 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2493 int timeridx) 2494 { 2495 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2496 2497 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2498 (gt_get_countervalue(env) - offset)); 2499 } 2500 2501 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2502 int timeridx, 2503 uint64_t value) 2504 { 2505 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2506 2507 trace_arm_gt_tval_write(timeridx, value); 2508 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2509 sextract64(value, 0, 32); 2510 gt_recalc_timer(env_archcpu(env), timeridx); 2511 } 2512 2513 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2514 int timeridx, 2515 uint64_t value) 2516 { 2517 ARMCPU *cpu = env_archcpu(env); 2518 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2519 2520 trace_arm_gt_ctl_write(timeridx, value); 2521 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2522 if ((oldval ^ value) & 1) { 2523 /* Enable toggled */ 2524 gt_recalc_timer(cpu, timeridx); 2525 } else if ((oldval ^ value) & 2) { 2526 /* IMASK toggled: don't need to recalculate, 2527 * just set the interrupt line based on ISTATUS 2528 */ 2529 int irqstate = (oldval & 4) && !(value & 2); 2530 2531 trace_arm_gt_imask_toggle(timeridx, irqstate); 2532 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2533 } 2534 } 2535 2536 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2537 { 2538 gt_timer_reset(env, ri, GTIMER_PHYS); 2539 } 2540 2541 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2542 uint64_t value) 2543 { 2544 gt_cval_write(env, ri, GTIMER_PHYS, value); 2545 } 2546 2547 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2548 { 2549 return gt_tval_read(env, ri, GTIMER_PHYS); 2550 } 2551 2552 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2553 uint64_t value) 2554 { 2555 gt_tval_write(env, ri, GTIMER_PHYS, value); 2556 } 2557 2558 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2559 uint64_t value) 2560 { 2561 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2562 } 2563 2564 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2565 { 2566 gt_timer_reset(env, ri, GTIMER_VIRT); 2567 } 2568 2569 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2570 uint64_t value) 2571 { 2572 gt_cval_write(env, ri, GTIMER_VIRT, value); 2573 } 2574 2575 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2576 { 2577 return gt_tval_read(env, ri, GTIMER_VIRT); 2578 } 2579 2580 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2581 uint64_t value) 2582 { 2583 gt_tval_write(env, ri, GTIMER_VIRT, value); 2584 } 2585 2586 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2587 uint64_t value) 2588 { 2589 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2590 } 2591 2592 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2593 uint64_t value) 2594 { 2595 ARMCPU *cpu = env_archcpu(env); 2596 2597 trace_arm_gt_cntvoff_write(value); 2598 raw_write(env, ri, value); 2599 gt_recalc_timer(cpu, GTIMER_VIRT); 2600 } 2601 2602 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2603 { 2604 gt_timer_reset(env, ri, GTIMER_HYP); 2605 } 2606 2607 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2608 uint64_t value) 2609 { 2610 gt_cval_write(env, ri, GTIMER_HYP, value); 2611 } 2612 2613 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2614 { 2615 return gt_tval_read(env, ri, GTIMER_HYP); 2616 } 2617 2618 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2619 uint64_t value) 2620 { 2621 gt_tval_write(env, ri, GTIMER_HYP, value); 2622 } 2623 2624 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2625 uint64_t value) 2626 { 2627 gt_ctl_write(env, ri, GTIMER_HYP, value); 2628 } 2629 2630 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2631 { 2632 gt_timer_reset(env, ri, GTIMER_SEC); 2633 } 2634 2635 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2636 uint64_t value) 2637 { 2638 gt_cval_write(env, ri, GTIMER_SEC, value); 2639 } 2640 2641 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2642 { 2643 return gt_tval_read(env, ri, GTIMER_SEC); 2644 } 2645 2646 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2647 uint64_t value) 2648 { 2649 gt_tval_write(env, ri, GTIMER_SEC, value); 2650 } 2651 2652 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2653 uint64_t value) 2654 { 2655 gt_ctl_write(env, ri, GTIMER_SEC, value); 2656 } 2657 2658 void arm_gt_ptimer_cb(void *opaque) 2659 { 2660 ARMCPU *cpu = opaque; 2661 2662 gt_recalc_timer(cpu, GTIMER_PHYS); 2663 } 2664 2665 void arm_gt_vtimer_cb(void *opaque) 2666 { 2667 ARMCPU *cpu = opaque; 2668 2669 gt_recalc_timer(cpu, GTIMER_VIRT); 2670 } 2671 2672 void arm_gt_htimer_cb(void *opaque) 2673 { 2674 ARMCPU *cpu = opaque; 2675 2676 gt_recalc_timer(cpu, GTIMER_HYP); 2677 } 2678 2679 void arm_gt_stimer_cb(void *opaque) 2680 { 2681 ARMCPU *cpu = opaque; 2682 2683 gt_recalc_timer(cpu, GTIMER_SEC); 2684 } 2685 2686 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2687 /* Note that CNTFRQ is purely reads-as-written for the benefit 2688 * of software; writing it doesn't actually change the timer frequency. 2689 * Our reset value matches the fixed frequency we implement the timer at. 2690 */ 2691 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2692 .type = ARM_CP_ALIAS, 2693 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2694 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2695 }, 2696 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2697 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2698 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2699 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2700 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 2701 }, 2702 /* overall control: mostly access permissions */ 2703 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2704 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2705 .access = PL1_RW, 2706 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2707 .resetvalue = 0, 2708 }, 2709 /* per-timer control */ 2710 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2711 .secure = ARM_CP_SECSTATE_NS, 2712 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2713 .accessfn = gt_ptimer_access, 2714 .fieldoffset = offsetoflow32(CPUARMState, 2715 cp15.c14_timer[GTIMER_PHYS].ctl), 2716 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2717 }, 2718 { .name = "CNTP_CTL_S", 2719 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2720 .secure = ARM_CP_SECSTATE_S, 2721 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2722 .accessfn = gt_ptimer_access, 2723 .fieldoffset = offsetoflow32(CPUARMState, 2724 cp15.c14_timer[GTIMER_SEC].ctl), 2725 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2726 }, 2727 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2728 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2729 .type = ARM_CP_IO, .access = PL0_RW, 2730 .accessfn = gt_ptimer_access, 2731 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2732 .resetvalue = 0, 2733 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2734 }, 2735 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2736 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2737 .accessfn = gt_vtimer_access, 2738 .fieldoffset = offsetoflow32(CPUARMState, 2739 cp15.c14_timer[GTIMER_VIRT].ctl), 2740 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2741 }, 2742 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2743 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2744 .type = ARM_CP_IO, .access = PL0_RW, 2745 .accessfn = gt_vtimer_access, 2746 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2747 .resetvalue = 0, 2748 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2749 }, 2750 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2751 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2752 .secure = ARM_CP_SECSTATE_NS, 2753 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2754 .accessfn = gt_ptimer_access, 2755 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2756 }, 2757 { .name = "CNTP_TVAL_S", 2758 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2759 .secure = ARM_CP_SECSTATE_S, 2760 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2761 .accessfn = gt_ptimer_access, 2762 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2763 }, 2764 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2765 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2766 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2767 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2768 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2769 }, 2770 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2771 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2772 .accessfn = gt_vtimer_access, 2773 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2774 }, 2775 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2776 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2777 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2778 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2779 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2780 }, 2781 /* The counter itself */ 2782 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2783 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2784 .accessfn = gt_pct_access, 2785 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2786 }, 2787 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2788 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2789 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2790 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2791 }, 2792 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2793 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2794 .accessfn = gt_vct_access, 2795 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2796 }, 2797 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2798 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2799 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2800 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2801 }, 2802 /* Comparison value, indicating when the timer goes off */ 2803 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2804 .secure = ARM_CP_SECSTATE_NS, 2805 .access = PL0_RW, 2806 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2807 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2808 .accessfn = gt_ptimer_access, 2809 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2810 }, 2811 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 2812 .secure = ARM_CP_SECSTATE_S, 2813 .access = PL0_RW, 2814 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2815 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2816 .accessfn = gt_ptimer_access, 2817 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2818 }, 2819 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2820 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2821 .access = PL0_RW, 2822 .type = ARM_CP_IO, 2823 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2824 .resetvalue = 0, .accessfn = gt_ptimer_access, 2825 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2826 }, 2827 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2828 .access = PL0_RW, 2829 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2830 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2831 .accessfn = gt_vtimer_access, 2832 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2833 }, 2834 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2835 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2836 .access = PL0_RW, 2837 .type = ARM_CP_IO, 2838 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2839 .resetvalue = 0, .accessfn = gt_vtimer_access, 2840 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2841 }, 2842 /* Secure timer -- this is actually restricted to only EL3 2843 * and configurably Secure-EL1 via the accessfn. 2844 */ 2845 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2846 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2847 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2848 .accessfn = gt_stimer_access, 2849 .readfn = gt_sec_tval_read, 2850 .writefn = gt_sec_tval_write, 2851 .resetfn = gt_sec_timer_reset, 2852 }, 2853 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2854 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2855 .type = ARM_CP_IO, .access = PL1_RW, 2856 .accessfn = gt_stimer_access, 2857 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2858 .resetvalue = 0, 2859 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2860 }, 2861 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2862 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2863 .type = ARM_CP_IO, .access = PL1_RW, 2864 .accessfn = gt_stimer_access, 2865 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2866 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2867 }, 2868 REGINFO_SENTINEL 2869 }; 2870 2871 #else 2872 2873 /* In user-mode most of the generic timer registers are inaccessible 2874 * however modern kernels (4.12+) allow access to cntvct_el0 2875 */ 2876 2877 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2878 { 2879 /* Currently we have no support for QEMUTimer in linux-user so we 2880 * can't call gt_get_countervalue(env), instead we directly 2881 * call the lower level functions. 2882 */ 2883 return cpu_get_clock() / GTIMER_SCALE; 2884 } 2885 2886 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2887 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2888 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2889 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 2890 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2891 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 2892 }, 2893 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2894 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2895 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2896 .readfn = gt_virt_cnt_read, 2897 }, 2898 REGINFO_SENTINEL 2899 }; 2900 2901 #endif 2902 2903 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2904 { 2905 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2906 raw_write(env, ri, value); 2907 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2908 raw_write(env, ri, value & 0xfffff6ff); 2909 } else { 2910 raw_write(env, ri, value & 0xfffff1ff); 2911 } 2912 } 2913 2914 #ifndef CONFIG_USER_ONLY 2915 /* get_phys_addr() isn't present for user-mode-only targets */ 2916 2917 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2918 bool isread) 2919 { 2920 if (ri->opc2 & 4) { 2921 /* The ATS12NSO* operations must trap to EL3 if executed in 2922 * Secure EL1 (which can only happen if EL3 is AArch64). 2923 * They are simply UNDEF if executed from NS EL1. 2924 * They function normally from EL2 or EL3. 2925 */ 2926 if (arm_current_el(env) == 1) { 2927 if (arm_is_secure_below_el3(env)) { 2928 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2929 } 2930 return CP_ACCESS_TRAP_UNCATEGORIZED; 2931 } 2932 } 2933 return CP_ACCESS_OK; 2934 } 2935 2936 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2937 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2938 { 2939 hwaddr phys_addr; 2940 target_ulong page_size; 2941 int prot; 2942 bool ret; 2943 uint64_t par64; 2944 bool format64 = false; 2945 MemTxAttrs attrs = {}; 2946 ARMMMUFaultInfo fi = {}; 2947 ARMCacheAttrs cacheattrs = {}; 2948 2949 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2950 &prot, &page_size, &fi, &cacheattrs); 2951 2952 if (ret) { 2953 /* 2954 * Some kinds of translation fault must cause exceptions rather 2955 * than being reported in the PAR. 2956 */ 2957 int current_el = arm_current_el(env); 2958 int target_el; 2959 uint32_t syn, fsr, fsc; 2960 bool take_exc = false; 2961 2962 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) 2963 && (mmu_idx == ARMMMUIdx_S1NSE1 || mmu_idx == ARMMMUIdx_S1NSE0)) { 2964 /* 2965 * Synchronous stage 2 fault on an access made as part of the 2966 * translation table walk for AT S1E0* or AT S1E1* insn 2967 * executed from NS EL1. If this is a synchronous external abort 2968 * and SCR_EL3.EA == 1, then we take a synchronous external abort 2969 * to EL3. Otherwise the fault is taken as an exception to EL2, 2970 * and HPFAR_EL2 holds the faulting IPA. 2971 */ 2972 if (fi.type == ARMFault_SyncExternalOnWalk && 2973 (env->cp15.scr_el3 & SCR_EA)) { 2974 target_el = 3; 2975 } else { 2976 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 2977 target_el = 2; 2978 } 2979 take_exc = true; 2980 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 2981 /* 2982 * Synchronous external aborts during a translation table walk 2983 * are taken as Data Abort exceptions. 2984 */ 2985 if (fi.stage2) { 2986 if (current_el == 3) { 2987 target_el = 3; 2988 } else { 2989 target_el = 2; 2990 } 2991 } else { 2992 target_el = exception_target_el(env); 2993 } 2994 take_exc = true; 2995 } 2996 2997 if (take_exc) { 2998 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 2999 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3000 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3001 fsr = arm_fi_to_lfsc(&fi); 3002 fsc = extract32(fsr, 0, 6); 3003 } else { 3004 fsr = arm_fi_to_sfsc(&fi); 3005 fsc = 0x3f; 3006 } 3007 /* 3008 * Report exception with ESR indicating a fault due to a 3009 * translation table walk for a cache maintenance instruction. 3010 */ 3011 syn = syn_data_abort_no_iss(current_el == target_el, 3012 fi.ea, 1, fi.s1ptw, 1, fsc); 3013 env->exception.vaddress = value; 3014 env->exception.fsr = fsr; 3015 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3016 } 3017 } 3018 3019 if (is_a64(env)) { 3020 format64 = true; 3021 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3022 /* 3023 * ATS1Cxx: 3024 * * TTBCR.EAE determines whether the result is returned using the 3025 * 32-bit or the 64-bit PAR format 3026 * * Instructions executed in Hyp mode always use the 64bit format 3027 * 3028 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3029 * * The Non-secure TTBCR.EAE bit is set to 1 3030 * * The implementation includes EL2, and the value of HCR.VM is 1 3031 * 3032 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3033 * 3034 * ATS1Hx always uses the 64bit format. 3035 */ 3036 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3037 3038 if (arm_feature(env, ARM_FEATURE_EL2)) { 3039 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 3040 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3041 } else { 3042 format64 |= arm_current_el(env) == 2; 3043 } 3044 } 3045 } 3046 3047 if (format64) { 3048 /* Create a 64-bit PAR */ 3049 par64 = (1 << 11); /* LPAE bit always set */ 3050 if (!ret) { 3051 par64 |= phys_addr & ~0xfffULL; 3052 if (!attrs.secure) { 3053 par64 |= (1 << 9); /* NS */ 3054 } 3055 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3056 par64 |= cacheattrs.shareability << 7; /* SH */ 3057 } else { 3058 uint32_t fsr = arm_fi_to_lfsc(&fi); 3059 3060 par64 |= 1; /* F */ 3061 par64 |= (fsr & 0x3f) << 1; /* FS */ 3062 if (fi.stage2) { 3063 par64 |= (1 << 9); /* S */ 3064 } 3065 if (fi.s1ptw) { 3066 par64 |= (1 << 8); /* PTW */ 3067 } 3068 } 3069 } else { 3070 /* fsr is a DFSR/IFSR value for the short descriptor 3071 * translation table format (with WnR always clear). 3072 * Convert it to a 32-bit PAR. 3073 */ 3074 if (!ret) { 3075 /* We do not set any attribute bits in the PAR */ 3076 if (page_size == (1 << 24) 3077 && arm_feature(env, ARM_FEATURE_V7)) { 3078 par64 = (phys_addr & 0xff000000) | (1 << 1); 3079 } else { 3080 par64 = phys_addr & 0xfffff000; 3081 } 3082 if (!attrs.secure) { 3083 par64 |= (1 << 9); /* NS */ 3084 } 3085 } else { 3086 uint32_t fsr = arm_fi_to_sfsc(&fi); 3087 3088 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3089 ((fsr & 0xf) << 1) | 1; 3090 } 3091 } 3092 return par64; 3093 } 3094 3095 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3096 { 3097 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3098 uint64_t par64; 3099 ARMMMUIdx mmu_idx; 3100 int el = arm_current_el(env); 3101 bool secure = arm_is_secure_below_el3(env); 3102 3103 switch (ri->opc2 & 6) { 3104 case 0: 3105 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 3106 switch (el) { 3107 case 3: 3108 mmu_idx = ARMMMUIdx_S1E3; 3109 break; 3110 case 2: 3111 mmu_idx = ARMMMUIdx_S1NSE1; 3112 break; 3113 case 1: 3114 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3115 break; 3116 default: 3117 g_assert_not_reached(); 3118 } 3119 break; 3120 case 2: 3121 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3122 switch (el) { 3123 case 3: 3124 mmu_idx = ARMMMUIdx_S1SE0; 3125 break; 3126 case 2: 3127 mmu_idx = ARMMMUIdx_S1NSE0; 3128 break; 3129 case 1: 3130 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3131 break; 3132 default: 3133 g_assert_not_reached(); 3134 } 3135 break; 3136 case 4: 3137 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3138 mmu_idx = ARMMMUIdx_S12NSE1; 3139 break; 3140 case 6: 3141 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3142 mmu_idx = ARMMMUIdx_S12NSE0; 3143 break; 3144 default: 3145 g_assert_not_reached(); 3146 } 3147 3148 par64 = do_ats_write(env, value, access_type, mmu_idx); 3149 3150 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3151 } 3152 3153 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3154 uint64_t value) 3155 { 3156 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3157 uint64_t par64; 3158 3159 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2); 3160 3161 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3162 } 3163 3164 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3165 bool isread) 3166 { 3167 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3168 return CP_ACCESS_TRAP; 3169 } 3170 return CP_ACCESS_OK; 3171 } 3172 3173 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3174 uint64_t value) 3175 { 3176 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3177 ARMMMUIdx mmu_idx; 3178 int secure = arm_is_secure_below_el3(env); 3179 3180 switch (ri->opc2 & 6) { 3181 case 0: 3182 switch (ri->opc1) { 3183 case 0: /* AT S1E1R, AT S1E1W */ 3184 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3185 break; 3186 case 4: /* AT S1E2R, AT S1E2W */ 3187 mmu_idx = ARMMMUIdx_S1E2; 3188 break; 3189 case 6: /* AT S1E3R, AT S1E3W */ 3190 mmu_idx = ARMMMUIdx_S1E3; 3191 break; 3192 default: 3193 g_assert_not_reached(); 3194 } 3195 break; 3196 case 2: /* AT S1E0R, AT S1E0W */ 3197 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3198 break; 3199 case 4: /* AT S12E1R, AT S12E1W */ 3200 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 3201 break; 3202 case 6: /* AT S12E0R, AT S12E0W */ 3203 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 3204 break; 3205 default: 3206 g_assert_not_reached(); 3207 } 3208 3209 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3210 } 3211 #endif 3212 3213 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3214 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3215 .access = PL1_RW, .resetvalue = 0, 3216 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3217 offsetoflow32(CPUARMState, cp15.par_ns) }, 3218 .writefn = par_write }, 3219 #ifndef CONFIG_USER_ONLY 3220 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3221 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3222 .access = PL1_W, .accessfn = ats_access, 3223 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3224 #endif 3225 REGINFO_SENTINEL 3226 }; 3227 3228 /* Return basic MPU access permission bits. */ 3229 static uint32_t simple_mpu_ap_bits(uint32_t val) 3230 { 3231 uint32_t ret; 3232 uint32_t mask; 3233 int i; 3234 ret = 0; 3235 mask = 3; 3236 for (i = 0; i < 16; i += 2) { 3237 ret |= (val >> i) & mask; 3238 mask <<= 2; 3239 } 3240 return ret; 3241 } 3242 3243 /* Pad basic MPU access permission bits to extended format. */ 3244 static uint32_t extended_mpu_ap_bits(uint32_t val) 3245 { 3246 uint32_t ret; 3247 uint32_t mask; 3248 int i; 3249 ret = 0; 3250 mask = 3; 3251 for (i = 0; i < 16; i += 2) { 3252 ret |= (val & mask) << i; 3253 mask <<= 2; 3254 } 3255 return ret; 3256 } 3257 3258 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3259 uint64_t value) 3260 { 3261 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3262 } 3263 3264 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3265 { 3266 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3267 } 3268 3269 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3270 uint64_t value) 3271 { 3272 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3273 } 3274 3275 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3276 { 3277 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3278 } 3279 3280 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3281 { 3282 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3283 3284 if (!u32p) { 3285 return 0; 3286 } 3287 3288 u32p += env->pmsav7.rnr[M_REG_NS]; 3289 return *u32p; 3290 } 3291 3292 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3293 uint64_t value) 3294 { 3295 ARMCPU *cpu = env_archcpu(env); 3296 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3297 3298 if (!u32p) { 3299 return; 3300 } 3301 3302 u32p += env->pmsav7.rnr[M_REG_NS]; 3303 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3304 *u32p = value; 3305 } 3306 3307 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3308 uint64_t value) 3309 { 3310 ARMCPU *cpu = env_archcpu(env); 3311 uint32_t nrgs = cpu->pmsav7_dregion; 3312 3313 if (value >= nrgs) { 3314 qemu_log_mask(LOG_GUEST_ERROR, 3315 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3316 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3317 return; 3318 } 3319 3320 raw_write(env, ri, value); 3321 } 3322 3323 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3324 /* Reset for all these registers is handled in arm_cpu_reset(), 3325 * because the PMSAv7 is also used by M-profile CPUs, which do 3326 * not register cpregs but still need the state to be reset. 3327 */ 3328 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3329 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3330 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3331 .readfn = pmsav7_read, .writefn = pmsav7_write, 3332 .resetfn = arm_cp_reset_ignore }, 3333 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3334 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3335 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3336 .readfn = pmsav7_read, .writefn = pmsav7_write, 3337 .resetfn = arm_cp_reset_ignore }, 3338 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3339 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3340 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3341 .readfn = pmsav7_read, .writefn = pmsav7_write, 3342 .resetfn = arm_cp_reset_ignore }, 3343 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3344 .access = PL1_RW, 3345 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3346 .writefn = pmsav7_rgnr_write, 3347 .resetfn = arm_cp_reset_ignore }, 3348 REGINFO_SENTINEL 3349 }; 3350 3351 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3352 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3353 .access = PL1_RW, .type = ARM_CP_ALIAS, 3354 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3355 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3356 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3357 .access = PL1_RW, .type = ARM_CP_ALIAS, 3358 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3359 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3360 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3361 .access = PL1_RW, 3362 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3363 .resetvalue = 0, }, 3364 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3365 .access = PL1_RW, 3366 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3367 .resetvalue = 0, }, 3368 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3369 .access = PL1_RW, 3370 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3371 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3372 .access = PL1_RW, 3373 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3374 /* Protection region base and size registers */ 3375 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3376 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3377 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3378 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3379 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3380 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3381 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3382 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3383 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3384 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3385 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3386 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3387 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3388 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3389 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3390 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3391 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3392 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3393 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3394 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3395 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3396 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3397 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3398 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3399 REGINFO_SENTINEL 3400 }; 3401 3402 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3403 uint64_t value) 3404 { 3405 TCR *tcr = raw_ptr(env, ri); 3406 int maskshift = extract32(value, 0, 3); 3407 3408 if (!arm_feature(env, ARM_FEATURE_V8)) { 3409 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3410 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3411 * using Long-desciptor translation table format */ 3412 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3413 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3414 /* In an implementation that includes the Security Extensions 3415 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3416 * Short-descriptor translation table format. 3417 */ 3418 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3419 } else { 3420 value &= TTBCR_N; 3421 } 3422 } 3423 3424 /* Update the masks corresponding to the TCR bank being written 3425 * Note that we always calculate mask and base_mask, but 3426 * they are only used for short-descriptor tables (ie if EAE is 0); 3427 * for long-descriptor tables the TCR fields are used differently 3428 * and the mask and base_mask values are meaningless. 3429 */ 3430 tcr->raw_tcr = value; 3431 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3432 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3433 } 3434 3435 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3436 uint64_t value) 3437 { 3438 ARMCPU *cpu = env_archcpu(env); 3439 TCR *tcr = raw_ptr(env, ri); 3440 3441 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3442 /* With LPAE the TTBCR could result in a change of ASID 3443 * via the TTBCR.A1 bit, so do a TLB flush. 3444 */ 3445 tlb_flush(CPU(cpu)); 3446 } 3447 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3448 value = deposit64(tcr->raw_tcr, 0, 32, value); 3449 vmsa_ttbcr_raw_write(env, ri, value); 3450 } 3451 3452 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3453 { 3454 TCR *tcr = raw_ptr(env, ri); 3455 3456 /* Reset both the TCR as well as the masks corresponding to the bank of 3457 * the TCR being reset. 3458 */ 3459 tcr->raw_tcr = 0; 3460 tcr->mask = 0; 3461 tcr->base_mask = 0xffffc000u; 3462 } 3463 3464 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3465 uint64_t value) 3466 { 3467 ARMCPU *cpu = env_archcpu(env); 3468 TCR *tcr = raw_ptr(env, ri); 3469 3470 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3471 tlb_flush(CPU(cpu)); 3472 tcr->raw_tcr = value; 3473 } 3474 3475 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3476 uint64_t value) 3477 { 3478 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3479 if (cpreg_field_is_64bit(ri) && 3480 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3481 ARMCPU *cpu = env_archcpu(env); 3482 tlb_flush(CPU(cpu)); 3483 } 3484 raw_write(env, ri, value); 3485 } 3486 3487 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3488 uint64_t value) 3489 { 3490 ARMCPU *cpu = env_archcpu(env); 3491 CPUState *cs = CPU(cpu); 3492 3493 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 3494 if (raw_read(env, ri) != value) { 3495 tlb_flush_by_mmuidx(cs, 3496 ARMMMUIdxBit_S12NSE1 | 3497 ARMMMUIdxBit_S12NSE0 | 3498 ARMMMUIdxBit_S2NS); 3499 raw_write(env, ri, value); 3500 } 3501 } 3502 3503 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3504 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3505 .access = PL1_RW, .type = ARM_CP_ALIAS, 3506 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3507 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3508 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3509 .access = PL1_RW, .resetvalue = 0, 3510 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3511 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3512 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3513 .access = PL1_RW, .resetvalue = 0, 3514 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3515 offsetof(CPUARMState, cp15.dfar_ns) } }, 3516 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3517 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3518 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3519 .resetvalue = 0, }, 3520 REGINFO_SENTINEL 3521 }; 3522 3523 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3524 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3525 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3526 .access = PL1_RW, 3527 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3528 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3529 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3530 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3531 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3532 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3533 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3534 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3535 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3536 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3537 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3538 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3539 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3540 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 3541 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3542 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3543 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3544 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3545 .raw_writefn = vmsa_ttbcr_raw_write, 3546 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3547 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3548 REGINFO_SENTINEL 3549 }; 3550 3551 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3552 * qemu tlbs nor adjusting cached masks. 3553 */ 3554 static const ARMCPRegInfo ttbcr2_reginfo = { 3555 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3556 .access = PL1_RW, .type = ARM_CP_ALIAS, 3557 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3558 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 3559 }; 3560 3561 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3562 uint64_t value) 3563 { 3564 env->cp15.c15_ticonfig = value & 0xe7; 3565 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3566 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3567 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3568 } 3569 3570 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3571 uint64_t value) 3572 { 3573 env->cp15.c15_threadid = value & 0xffff; 3574 } 3575 3576 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3577 uint64_t value) 3578 { 3579 /* Wait-for-interrupt (deprecated) */ 3580 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3581 } 3582 3583 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3584 uint64_t value) 3585 { 3586 /* On OMAP there are registers indicating the max/min index of dcache lines 3587 * containing a dirty line; cache flush operations have to reset these. 3588 */ 3589 env->cp15.c15_i_max = 0x000; 3590 env->cp15.c15_i_min = 0xff0; 3591 } 3592 3593 static const ARMCPRegInfo omap_cp_reginfo[] = { 3594 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3595 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3596 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3597 .resetvalue = 0, }, 3598 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3599 .access = PL1_RW, .type = ARM_CP_NOP }, 3600 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3601 .access = PL1_RW, 3602 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3603 .writefn = omap_ticonfig_write }, 3604 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3605 .access = PL1_RW, 3606 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3607 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3608 .access = PL1_RW, .resetvalue = 0xff0, 3609 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3610 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3611 .access = PL1_RW, 3612 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3613 .writefn = omap_threadid_write }, 3614 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3615 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3616 .type = ARM_CP_NO_RAW, 3617 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3618 /* TODO: Peripheral port remap register: 3619 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3620 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3621 * when MMU is off. 3622 */ 3623 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3624 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3625 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3626 .writefn = omap_cachemaint_write }, 3627 { .name = "C9", .cp = 15, .crn = 9, 3628 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3629 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3630 REGINFO_SENTINEL 3631 }; 3632 3633 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3634 uint64_t value) 3635 { 3636 env->cp15.c15_cpar = value & 0x3fff; 3637 } 3638 3639 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3640 { .name = "XSCALE_CPAR", 3641 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3642 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3643 .writefn = xscale_cpar_write, }, 3644 { .name = "XSCALE_AUXCR", 3645 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3646 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3647 .resetvalue = 0, }, 3648 /* XScale specific cache-lockdown: since we have no cache we NOP these 3649 * and hope the guest does not really rely on cache behaviour. 3650 */ 3651 { .name = "XSCALE_LOCK_ICACHE_LINE", 3652 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3653 .access = PL1_W, .type = ARM_CP_NOP }, 3654 { .name = "XSCALE_UNLOCK_ICACHE", 3655 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3656 .access = PL1_W, .type = ARM_CP_NOP }, 3657 { .name = "XSCALE_DCACHE_LOCK", 3658 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3659 .access = PL1_RW, .type = ARM_CP_NOP }, 3660 { .name = "XSCALE_UNLOCK_DCACHE", 3661 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3662 .access = PL1_W, .type = ARM_CP_NOP }, 3663 REGINFO_SENTINEL 3664 }; 3665 3666 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3667 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3668 * implementation of this implementation-defined space. 3669 * Ideally this should eventually disappear in favour of actually 3670 * implementing the correct behaviour for all cores. 3671 */ 3672 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3673 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3674 .access = PL1_RW, 3675 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3676 .resetvalue = 0 }, 3677 REGINFO_SENTINEL 3678 }; 3679 3680 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3681 /* Cache status: RAZ because we have no cache so it's always clean */ 3682 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3683 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3684 .resetvalue = 0 }, 3685 REGINFO_SENTINEL 3686 }; 3687 3688 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3689 /* We never have a a block transfer operation in progress */ 3690 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3691 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3692 .resetvalue = 0 }, 3693 /* The cache ops themselves: these all NOP for QEMU */ 3694 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3695 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3696 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3697 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3698 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 3699 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3700 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 3701 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3702 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 3703 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3704 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 3705 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3706 REGINFO_SENTINEL 3707 }; 3708 3709 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 3710 /* The cache test-and-clean instructions always return (1 << 30) 3711 * to indicate that there are no dirty cache lines. 3712 */ 3713 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 3714 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3715 .resetvalue = (1 << 30) }, 3716 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 3717 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3718 .resetvalue = (1 << 30) }, 3719 REGINFO_SENTINEL 3720 }; 3721 3722 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 3723 /* Ignore ReadBuffer accesses */ 3724 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 3725 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3726 .access = PL1_RW, .resetvalue = 0, 3727 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 3728 REGINFO_SENTINEL 3729 }; 3730 3731 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3732 { 3733 ARMCPU *cpu = env_archcpu(env); 3734 unsigned int cur_el = arm_current_el(env); 3735 bool secure = arm_is_secure(env); 3736 3737 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3738 return env->cp15.vpidr_el2; 3739 } 3740 return raw_read(env, ri); 3741 } 3742 3743 static uint64_t mpidr_read_val(CPUARMState *env) 3744 { 3745 ARMCPU *cpu = env_archcpu(env); 3746 uint64_t mpidr = cpu->mp_affinity; 3747 3748 if (arm_feature(env, ARM_FEATURE_V7MP)) { 3749 mpidr |= (1U << 31); 3750 /* Cores which are uniprocessor (non-coherent) 3751 * but still implement the MP extensions set 3752 * bit 30. (For instance, Cortex-R5). 3753 */ 3754 if (cpu->mp_is_up) { 3755 mpidr |= (1u << 30); 3756 } 3757 } 3758 return mpidr; 3759 } 3760 3761 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3762 { 3763 unsigned int cur_el = arm_current_el(env); 3764 bool secure = arm_is_secure(env); 3765 3766 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3767 return env->cp15.vmpidr_el2; 3768 } 3769 return mpidr_read_val(env); 3770 } 3771 3772 static const ARMCPRegInfo lpae_cp_reginfo[] = { 3773 /* NOP AMAIR0/1 */ 3774 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 3775 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 3776 .access = PL1_RW, .type = ARM_CP_CONST, 3777 .resetvalue = 0 }, 3778 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 3779 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 3780 .access = PL1_RW, .type = ARM_CP_CONST, 3781 .resetvalue = 0 }, 3782 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 3783 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 3784 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 3785 offsetof(CPUARMState, cp15.par_ns)} }, 3786 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 3787 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3788 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3789 offsetof(CPUARMState, cp15.ttbr0_ns) }, 3790 .writefn = vmsa_ttbr_write, }, 3791 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 3792 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3793 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3794 offsetof(CPUARMState, cp15.ttbr1_ns) }, 3795 .writefn = vmsa_ttbr_write, }, 3796 REGINFO_SENTINEL 3797 }; 3798 3799 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3800 { 3801 return vfp_get_fpcr(env); 3802 } 3803 3804 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3805 uint64_t value) 3806 { 3807 vfp_set_fpcr(env, value); 3808 } 3809 3810 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3811 { 3812 return vfp_get_fpsr(env); 3813 } 3814 3815 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3816 uint64_t value) 3817 { 3818 vfp_set_fpsr(env, value); 3819 } 3820 3821 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 3822 bool isread) 3823 { 3824 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 3825 return CP_ACCESS_TRAP; 3826 } 3827 return CP_ACCESS_OK; 3828 } 3829 3830 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3831 uint64_t value) 3832 { 3833 env->daif = value & PSTATE_DAIF; 3834 } 3835 3836 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3837 const ARMCPRegInfo *ri, 3838 bool isread) 3839 { 3840 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3841 * SCTLR_EL1.UCI is set. 3842 */ 3843 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3844 return CP_ACCESS_TRAP; 3845 } 3846 return CP_ACCESS_OK; 3847 } 3848 3849 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3850 * Page D4-1736 (DDI0487A.b) 3851 */ 3852 3853 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3854 uint64_t value) 3855 { 3856 CPUState *cs = env_cpu(env); 3857 bool sec = arm_is_secure_below_el3(env); 3858 3859 if (sec) { 3860 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3861 ARMMMUIdxBit_S1SE1 | 3862 ARMMMUIdxBit_S1SE0); 3863 } else { 3864 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3865 ARMMMUIdxBit_S12NSE1 | 3866 ARMMMUIdxBit_S12NSE0); 3867 } 3868 } 3869 3870 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3871 uint64_t value) 3872 { 3873 CPUState *cs = env_cpu(env); 3874 3875 if (tlb_force_broadcast(env)) { 3876 tlbi_aa64_vmalle1is_write(env, NULL, value); 3877 return; 3878 } 3879 3880 if (arm_is_secure_below_el3(env)) { 3881 tlb_flush_by_mmuidx(cs, 3882 ARMMMUIdxBit_S1SE1 | 3883 ARMMMUIdxBit_S1SE0); 3884 } else { 3885 tlb_flush_by_mmuidx(cs, 3886 ARMMMUIdxBit_S12NSE1 | 3887 ARMMMUIdxBit_S12NSE0); 3888 } 3889 } 3890 3891 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3892 uint64_t value) 3893 { 3894 /* Note that the 'ALL' scope must invalidate both stage 1 and 3895 * stage 2 translations, whereas most other scopes only invalidate 3896 * stage 1 translations. 3897 */ 3898 ARMCPU *cpu = env_archcpu(env); 3899 CPUState *cs = CPU(cpu); 3900 3901 if (arm_is_secure_below_el3(env)) { 3902 tlb_flush_by_mmuidx(cs, 3903 ARMMMUIdxBit_S1SE1 | 3904 ARMMMUIdxBit_S1SE0); 3905 } else { 3906 if (arm_feature(env, ARM_FEATURE_EL2)) { 3907 tlb_flush_by_mmuidx(cs, 3908 ARMMMUIdxBit_S12NSE1 | 3909 ARMMMUIdxBit_S12NSE0 | 3910 ARMMMUIdxBit_S2NS); 3911 } else { 3912 tlb_flush_by_mmuidx(cs, 3913 ARMMMUIdxBit_S12NSE1 | 3914 ARMMMUIdxBit_S12NSE0); 3915 } 3916 } 3917 } 3918 3919 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3920 uint64_t value) 3921 { 3922 ARMCPU *cpu = env_archcpu(env); 3923 CPUState *cs = CPU(cpu); 3924 3925 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3926 } 3927 3928 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3929 uint64_t value) 3930 { 3931 ARMCPU *cpu = env_archcpu(env); 3932 CPUState *cs = CPU(cpu); 3933 3934 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3935 } 3936 3937 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3938 uint64_t value) 3939 { 3940 /* Note that the 'ALL' scope must invalidate both stage 1 and 3941 * stage 2 translations, whereas most other scopes only invalidate 3942 * stage 1 translations. 3943 */ 3944 CPUState *cs = env_cpu(env); 3945 bool sec = arm_is_secure_below_el3(env); 3946 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3947 3948 if (sec) { 3949 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3950 ARMMMUIdxBit_S1SE1 | 3951 ARMMMUIdxBit_S1SE0); 3952 } else if (has_el2) { 3953 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3954 ARMMMUIdxBit_S12NSE1 | 3955 ARMMMUIdxBit_S12NSE0 | 3956 ARMMMUIdxBit_S2NS); 3957 } else { 3958 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3959 ARMMMUIdxBit_S12NSE1 | 3960 ARMMMUIdxBit_S12NSE0); 3961 } 3962 } 3963 3964 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3965 uint64_t value) 3966 { 3967 CPUState *cs = env_cpu(env); 3968 3969 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3970 } 3971 3972 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3973 uint64_t value) 3974 { 3975 CPUState *cs = env_cpu(env); 3976 3977 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3978 } 3979 3980 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3981 uint64_t value) 3982 { 3983 /* Invalidate by VA, EL2 3984 * Currently handles both VAE2 and VALE2, since we don't support 3985 * flush-last-level-only. 3986 */ 3987 ARMCPU *cpu = env_archcpu(env); 3988 CPUState *cs = CPU(cpu); 3989 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3990 3991 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3992 } 3993 3994 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3995 uint64_t value) 3996 { 3997 /* Invalidate by VA, EL3 3998 * Currently handles both VAE3 and VALE3, since we don't support 3999 * flush-last-level-only. 4000 */ 4001 ARMCPU *cpu = env_archcpu(env); 4002 CPUState *cs = CPU(cpu); 4003 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4004 4005 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 4006 } 4007 4008 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4009 uint64_t value) 4010 { 4011 ARMCPU *cpu = env_archcpu(env); 4012 CPUState *cs = CPU(cpu); 4013 bool sec = arm_is_secure_below_el3(env); 4014 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4015 4016 if (sec) { 4017 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4018 ARMMMUIdxBit_S1SE1 | 4019 ARMMMUIdxBit_S1SE0); 4020 } else { 4021 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4022 ARMMMUIdxBit_S12NSE1 | 4023 ARMMMUIdxBit_S12NSE0); 4024 } 4025 } 4026 4027 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4028 uint64_t value) 4029 { 4030 /* Invalidate by VA, EL1&0 (AArch64 version). 4031 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4032 * since we don't support flush-for-specific-ASID-only or 4033 * flush-last-level-only. 4034 */ 4035 ARMCPU *cpu = env_archcpu(env); 4036 CPUState *cs = CPU(cpu); 4037 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4038 4039 if (tlb_force_broadcast(env)) { 4040 tlbi_aa64_vae1is_write(env, NULL, value); 4041 return; 4042 } 4043 4044 if (arm_is_secure_below_el3(env)) { 4045 tlb_flush_page_by_mmuidx(cs, pageaddr, 4046 ARMMMUIdxBit_S1SE1 | 4047 ARMMMUIdxBit_S1SE0); 4048 } else { 4049 tlb_flush_page_by_mmuidx(cs, pageaddr, 4050 ARMMMUIdxBit_S12NSE1 | 4051 ARMMMUIdxBit_S12NSE0); 4052 } 4053 } 4054 4055 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4056 uint64_t value) 4057 { 4058 CPUState *cs = env_cpu(env); 4059 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4060 4061 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4062 ARMMMUIdxBit_S1E2); 4063 } 4064 4065 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4066 uint64_t value) 4067 { 4068 CPUState *cs = env_cpu(env); 4069 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4070 4071 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4072 ARMMMUIdxBit_S1E3); 4073 } 4074 4075 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4076 uint64_t value) 4077 { 4078 /* Invalidate by IPA. This has to invalidate any structures that 4079 * contain only stage 2 translation information, but does not need 4080 * to apply to structures that contain combined stage 1 and stage 2 4081 * translation information. 4082 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 4083 */ 4084 ARMCPU *cpu = env_archcpu(env); 4085 CPUState *cs = CPU(cpu); 4086 uint64_t pageaddr; 4087 4088 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4089 return; 4090 } 4091 4092 pageaddr = sextract64(value << 12, 0, 48); 4093 4094 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 4095 } 4096 4097 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4098 uint64_t value) 4099 { 4100 CPUState *cs = env_cpu(env); 4101 uint64_t pageaddr; 4102 4103 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4104 return; 4105 } 4106 4107 pageaddr = sextract64(value << 12, 0, 48); 4108 4109 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4110 ARMMMUIdxBit_S2NS); 4111 } 4112 4113 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4114 bool isread) 4115 { 4116 /* We don't implement EL2, so the only control on DC ZVA is the 4117 * bit in the SCTLR which can prohibit access for EL0. 4118 */ 4119 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4120 return CP_ACCESS_TRAP; 4121 } 4122 return CP_ACCESS_OK; 4123 } 4124 4125 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4126 { 4127 ARMCPU *cpu = env_archcpu(env); 4128 int dzp_bit = 1 << 4; 4129 4130 /* DZP indicates whether DC ZVA access is allowed */ 4131 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4132 dzp_bit = 0; 4133 } 4134 return cpu->dcz_blocksize | dzp_bit; 4135 } 4136 4137 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4138 bool isread) 4139 { 4140 if (!(env->pstate & PSTATE_SP)) { 4141 /* Access to SP_EL0 is undefined if it's being used as 4142 * the stack pointer. 4143 */ 4144 return CP_ACCESS_TRAP_UNCATEGORIZED; 4145 } 4146 return CP_ACCESS_OK; 4147 } 4148 4149 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4150 { 4151 return env->pstate & PSTATE_SP; 4152 } 4153 4154 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4155 { 4156 update_spsel(env, val); 4157 } 4158 4159 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4160 uint64_t value) 4161 { 4162 ARMCPU *cpu = env_archcpu(env); 4163 4164 if (raw_read(env, ri) == value) { 4165 /* Skip the TLB flush if nothing actually changed; Linux likes 4166 * to do a lot of pointless SCTLR writes. 4167 */ 4168 return; 4169 } 4170 4171 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4172 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4173 value &= ~SCTLR_M; 4174 } 4175 4176 raw_write(env, ri, value); 4177 /* ??? Lots of these bits are not implemented. */ 4178 /* This may enable/disable the MMU, so do a TLB flush. */ 4179 tlb_flush(CPU(cpu)); 4180 4181 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4182 /* 4183 * Normally we would always end the TB on an SCTLR write; see the 4184 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4185 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4186 * of hflags from the translator, so do it here. 4187 */ 4188 arm_rebuild_hflags(env); 4189 } 4190 } 4191 4192 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4193 bool isread) 4194 { 4195 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4196 return CP_ACCESS_TRAP_FP_EL2; 4197 } 4198 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4199 return CP_ACCESS_TRAP_FP_EL3; 4200 } 4201 return CP_ACCESS_OK; 4202 } 4203 4204 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4205 uint64_t value) 4206 { 4207 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4208 } 4209 4210 static const ARMCPRegInfo v8_cp_reginfo[] = { 4211 /* Minimal set of EL0-visible registers. This will need to be expanded 4212 * significantly for system emulation of AArch64 CPUs. 4213 */ 4214 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4215 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4216 .access = PL0_RW, .type = ARM_CP_NZCV }, 4217 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4218 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4219 .type = ARM_CP_NO_RAW, 4220 .access = PL0_RW, .accessfn = aa64_daif_access, 4221 .fieldoffset = offsetof(CPUARMState, daif), 4222 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4223 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4224 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4225 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4226 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4227 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4228 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4229 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4230 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4231 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4232 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4233 .access = PL0_R, .type = ARM_CP_NO_RAW, 4234 .readfn = aa64_dczid_read }, 4235 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4236 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4237 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4238 #ifndef CONFIG_USER_ONLY 4239 /* Avoid overhead of an access check that always passes in user-mode */ 4240 .accessfn = aa64_zva_access, 4241 #endif 4242 }, 4243 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4244 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4245 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4246 /* Cache ops: all NOPs since we don't emulate caches */ 4247 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4248 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4249 .access = PL1_W, .type = ARM_CP_NOP }, 4250 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4251 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4252 .access = PL1_W, .type = ARM_CP_NOP }, 4253 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4254 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4255 .access = PL0_W, .type = ARM_CP_NOP, 4256 .accessfn = aa64_cacheop_access }, 4257 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4258 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4259 .access = PL1_W, .type = ARM_CP_NOP }, 4260 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4261 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4262 .access = PL1_W, .type = ARM_CP_NOP }, 4263 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4264 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4265 .access = PL0_W, .type = ARM_CP_NOP, 4266 .accessfn = aa64_cacheop_access }, 4267 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4268 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4269 .access = PL1_W, .type = ARM_CP_NOP }, 4270 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4271 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4272 .access = PL0_W, .type = ARM_CP_NOP, 4273 .accessfn = aa64_cacheop_access }, 4274 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4275 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4276 .access = PL0_W, .type = ARM_CP_NOP, 4277 .accessfn = aa64_cacheop_access }, 4278 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4279 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4280 .access = PL1_W, .type = ARM_CP_NOP }, 4281 /* TLBI operations */ 4282 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4283 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4284 .access = PL1_W, .type = ARM_CP_NO_RAW, 4285 .writefn = tlbi_aa64_vmalle1is_write }, 4286 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4287 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4288 .access = PL1_W, .type = ARM_CP_NO_RAW, 4289 .writefn = tlbi_aa64_vae1is_write }, 4290 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4291 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4292 .access = PL1_W, .type = ARM_CP_NO_RAW, 4293 .writefn = tlbi_aa64_vmalle1is_write }, 4294 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4295 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4296 .access = PL1_W, .type = ARM_CP_NO_RAW, 4297 .writefn = tlbi_aa64_vae1is_write }, 4298 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4299 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4300 .access = PL1_W, .type = ARM_CP_NO_RAW, 4301 .writefn = tlbi_aa64_vae1is_write }, 4302 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4303 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4304 .access = PL1_W, .type = ARM_CP_NO_RAW, 4305 .writefn = tlbi_aa64_vae1is_write }, 4306 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4307 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4308 .access = PL1_W, .type = ARM_CP_NO_RAW, 4309 .writefn = tlbi_aa64_vmalle1_write }, 4310 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4311 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4312 .access = PL1_W, .type = ARM_CP_NO_RAW, 4313 .writefn = tlbi_aa64_vae1_write }, 4314 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4315 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4316 .access = PL1_W, .type = ARM_CP_NO_RAW, 4317 .writefn = tlbi_aa64_vmalle1_write }, 4318 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4319 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4320 .access = PL1_W, .type = ARM_CP_NO_RAW, 4321 .writefn = tlbi_aa64_vae1_write }, 4322 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4323 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4324 .access = PL1_W, .type = ARM_CP_NO_RAW, 4325 .writefn = tlbi_aa64_vae1_write }, 4326 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4327 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4328 .access = PL1_W, .type = ARM_CP_NO_RAW, 4329 .writefn = tlbi_aa64_vae1_write }, 4330 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4331 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4332 .access = PL2_W, .type = ARM_CP_NO_RAW, 4333 .writefn = tlbi_aa64_ipas2e1is_write }, 4334 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4335 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4336 .access = PL2_W, .type = ARM_CP_NO_RAW, 4337 .writefn = tlbi_aa64_ipas2e1is_write }, 4338 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4339 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4340 .access = PL2_W, .type = ARM_CP_NO_RAW, 4341 .writefn = tlbi_aa64_alle1is_write }, 4342 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4343 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4344 .access = PL2_W, .type = ARM_CP_NO_RAW, 4345 .writefn = tlbi_aa64_alle1is_write }, 4346 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4347 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4348 .access = PL2_W, .type = ARM_CP_NO_RAW, 4349 .writefn = tlbi_aa64_ipas2e1_write }, 4350 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4351 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4352 .access = PL2_W, .type = ARM_CP_NO_RAW, 4353 .writefn = tlbi_aa64_ipas2e1_write }, 4354 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4355 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4356 .access = PL2_W, .type = ARM_CP_NO_RAW, 4357 .writefn = tlbi_aa64_alle1_write }, 4358 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4359 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4360 .access = PL2_W, .type = ARM_CP_NO_RAW, 4361 .writefn = tlbi_aa64_alle1is_write }, 4362 #ifndef CONFIG_USER_ONLY 4363 /* 64 bit address translation operations */ 4364 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4365 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4366 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4367 .writefn = ats_write64 }, 4368 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4369 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4370 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4371 .writefn = ats_write64 }, 4372 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4373 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4374 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4375 .writefn = ats_write64 }, 4376 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4377 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4378 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4379 .writefn = ats_write64 }, 4380 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4381 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4382 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4383 .writefn = ats_write64 }, 4384 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4385 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4386 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4387 .writefn = ats_write64 }, 4388 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4389 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4390 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4391 .writefn = ats_write64 }, 4392 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4393 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4394 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4395 .writefn = ats_write64 }, 4396 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4397 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4398 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4399 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4400 .writefn = ats_write64 }, 4401 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4402 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4403 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4404 .writefn = ats_write64 }, 4405 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4406 .type = ARM_CP_ALIAS, 4407 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4408 .access = PL1_RW, .resetvalue = 0, 4409 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4410 .writefn = par_write }, 4411 #endif 4412 /* TLB invalidate last level of translation table walk */ 4413 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4414 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 4415 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4416 .type = ARM_CP_NO_RAW, .access = PL1_W, 4417 .writefn = tlbimvaa_is_write }, 4418 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4419 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 4420 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4421 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 4422 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4423 .type = ARM_CP_NO_RAW, .access = PL2_W, 4424 .writefn = tlbimva_hyp_write }, 4425 { .name = "TLBIMVALHIS", 4426 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4427 .type = ARM_CP_NO_RAW, .access = PL2_W, 4428 .writefn = tlbimva_hyp_is_write }, 4429 { .name = "TLBIIPAS2", 4430 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4431 .type = ARM_CP_NO_RAW, .access = PL2_W, 4432 .writefn = tlbiipas2_write }, 4433 { .name = "TLBIIPAS2IS", 4434 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4435 .type = ARM_CP_NO_RAW, .access = PL2_W, 4436 .writefn = tlbiipas2_is_write }, 4437 { .name = "TLBIIPAS2L", 4438 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4439 .type = ARM_CP_NO_RAW, .access = PL2_W, 4440 .writefn = tlbiipas2_write }, 4441 { .name = "TLBIIPAS2LIS", 4442 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4443 .type = ARM_CP_NO_RAW, .access = PL2_W, 4444 .writefn = tlbiipas2_is_write }, 4445 /* 32 bit cache operations */ 4446 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4447 .type = ARM_CP_NOP, .access = PL1_W }, 4448 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4449 .type = ARM_CP_NOP, .access = PL1_W }, 4450 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4451 .type = ARM_CP_NOP, .access = PL1_W }, 4452 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 4453 .type = ARM_CP_NOP, .access = PL1_W }, 4454 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 4455 .type = ARM_CP_NOP, .access = PL1_W }, 4456 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 4457 .type = ARM_CP_NOP, .access = PL1_W }, 4458 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4459 .type = ARM_CP_NOP, .access = PL1_W }, 4460 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4461 .type = ARM_CP_NOP, .access = PL1_W }, 4462 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 4463 .type = ARM_CP_NOP, .access = PL1_W }, 4464 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4465 .type = ARM_CP_NOP, .access = PL1_W }, 4466 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 4467 .type = ARM_CP_NOP, .access = PL1_W }, 4468 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 4469 .type = ARM_CP_NOP, .access = PL1_W }, 4470 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4471 .type = ARM_CP_NOP, .access = PL1_W }, 4472 /* MMU Domain access control / MPU write buffer control */ 4473 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 4474 .access = PL1_RW, .resetvalue = 0, 4475 .writefn = dacr_write, .raw_writefn = raw_write, 4476 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 4477 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 4478 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 4479 .type = ARM_CP_ALIAS, 4480 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 4481 .access = PL1_RW, 4482 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 4483 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 4484 .type = ARM_CP_ALIAS, 4485 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 4486 .access = PL1_RW, 4487 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 4488 /* We rely on the access checks not allowing the guest to write to the 4489 * state field when SPSel indicates that it's being used as the stack 4490 * pointer. 4491 */ 4492 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 4493 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 4494 .access = PL1_RW, .accessfn = sp_el0_access, 4495 .type = ARM_CP_ALIAS, 4496 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 4497 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 4498 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 4499 .access = PL2_RW, .type = ARM_CP_ALIAS, 4500 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 4501 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 4502 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 4503 .type = ARM_CP_NO_RAW, 4504 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 4505 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 4506 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 4507 .type = ARM_CP_ALIAS, 4508 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 4509 .access = PL2_RW, .accessfn = fpexc32_access }, 4510 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 4511 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 4512 .access = PL2_RW, .resetvalue = 0, 4513 .writefn = dacr_write, .raw_writefn = raw_write, 4514 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 4515 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 4516 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 4517 .access = PL2_RW, .resetvalue = 0, 4518 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 4519 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 4520 .type = ARM_CP_ALIAS, 4521 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 4522 .access = PL2_RW, 4523 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 4524 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 4525 .type = ARM_CP_ALIAS, 4526 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 4527 .access = PL2_RW, 4528 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 4529 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 4530 .type = ARM_CP_ALIAS, 4531 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 4532 .access = PL2_RW, 4533 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 4534 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 4535 .type = ARM_CP_ALIAS, 4536 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 4537 .access = PL2_RW, 4538 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 4539 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 4540 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 4541 .resetvalue = 0, 4542 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 4543 { .name = "SDCR", .type = ARM_CP_ALIAS, 4544 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 4545 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4546 .writefn = sdcr_write, 4547 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 4548 REGINFO_SENTINEL 4549 }; 4550 4551 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 4552 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 4553 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4554 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4555 .access = PL2_RW, 4556 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 4557 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 4558 .type = ARM_CP_NO_RAW, 4559 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4560 .access = PL2_RW, 4561 .type = ARM_CP_CONST, .resetvalue = 0 }, 4562 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4563 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4564 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4565 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4566 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4567 .access = PL2_RW, 4568 .type = ARM_CP_CONST, .resetvalue = 0 }, 4569 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4570 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4571 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4572 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4573 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4574 .access = PL2_RW, .type = ARM_CP_CONST, 4575 .resetvalue = 0 }, 4576 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4577 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4578 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4579 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4580 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4581 .access = PL2_RW, .type = ARM_CP_CONST, 4582 .resetvalue = 0 }, 4583 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4584 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4585 .access = PL2_RW, .type = ARM_CP_CONST, 4586 .resetvalue = 0 }, 4587 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4588 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4589 .access = PL2_RW, .type = ARM_CP_CONST, 4590 .resetvalue = 0 }, 4591 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4592 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4593 .access = PL2_RW, .type = ARM_CP_CONST, 4594 .resetvalue = 0 }, 4595 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4596 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4597 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4598 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 4599 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4600 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4601 .type = ARM_CP_CONST, .resetvalue = 0 }, 4602 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4603 .cp = 15, .opc1 = 6, .crm = 2, 4604 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4605 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 4606 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4607 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4608 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4609 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4610 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4611 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4612 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4613 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4614 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4615 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4616 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4617 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4618 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4619 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4620 .resetvalue = 0 }, 4621 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4622 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4623 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4624 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4625 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4626 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4627 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4628 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4629 .resetvalue = 0 }, 4630 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4631 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4632 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4633 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4634 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4635 .resetvalue = 0 }, 4636 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4637 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4638 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4639 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4640 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4641 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4642 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4643 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4644 .access = PL2_RW, .accessfn = access_tda, 4645 .type = ARM_CP_CONST, .resetvalue = 0 }, 4646 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 4647 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4648 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4649 .type = ARM_CP_CONST, .resetvalue = 0 }, 4650 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4651 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4652 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4653 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4654 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4655 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4656 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4657 .type = ARM_CP_CONST, 4658 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4659 .access = PL2_RW, .resetvalue = 0 }, 4660 REGINFO_SENTINEL 4661 }; 4662 4663 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 4664 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 4665 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4666 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4667 .access = PL2_RW, 4668 .type = ARM_CP_CONST, .resetvalue = 0 }, 4669 REGINFO_SENTINEL 4670 }; 4671 4672 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 4673 { 4674 ARMCPU *cpu = env_archcpu(env); 4675 uint64_t valid_mask = HCR_MASK; 4676 4677 if (arm_feature(env, ARM_FEATURE_EL3)) { 4678 valid_mask &= ~HCR_HCD; 4679 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 4680 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 4681 * However, if we're using the SMC PSCI conduit then QEMU is 4682 * effectively acting like EL3 firmware and so the guest at 4683 * EL2 should retain the ability to prevent EL1 from being 4684 * able to make SMC calls into the ersatz firmware, so in 4685 * that case HCR.TSC should be read/write. 4686 */ 4687 valid_mask &= ~HCR_TSC; 4688 } 4689 if (cpu_isar_feature(aa64_lor, cpu)) { 4690 valid_mask |= HCR_TLOR; 4691 } 4692 if (cpu_isar_feature(aa64_pauth, cpu)) { 4693 valid_mask |= HCR_API | HCR_APK; 4694 } 4695 4696 /* Clear RES0 bits. */ 4697 value &= valid_mask; 4698 4699 /* These bits change the MMU setup: 4700 * HCR_VM enables stage 2 translation 4701 * HCR_PTW forbids certain page-table setups 4702 * HCR_DC Disables stage1 and enables stage2 translation 4703 */ 4704 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 4705 tlb_flush(CPU(cpu)); 4706 } 4707 env->cp15.hcr_el2 = value; 4708 4709 /* 4710 * Updates to VI and VF require us to update the status of 4711 * virtual interrupts, which are the logical OR of these bits 4712 * and the state of the input lines from the GIC. (This requires 4713 * that we have the iothread lock, which is done by marking the 4714 * reginfo structs as ARM_CP_IO.) 4715 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 4716 * possible for it to be taken immediately, because VIRQ and 4717 * VFIQ are masked unless running at EL0 or EL1, and HCR 4718 * can only be written at EL2. 4719 */ 4720 g_assert(qemu_mutex_iothread_locked()); 4721 arm_cpu_update_virq(cpu); 4722 arm_cpu_update_vfiq(cpu); 4723 } 4724 4725 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 4726 uint64_t value) 4727 { 4728 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 4729 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 4730 hcr_write(env, NULL, value); 4731 } 4732 4733 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 4734 uint64_t value) 4735 { 4736 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 4737 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 4738 hcr_write(env, NULL, value); 4739 } 4740 4741 /* 4742 * Return the effective value of HCR_EL2. 4743 * Bits that are not included here: 4744 * RW (read from SCR_EL3.RW as needed) 4745 */ 4746 uint64_t arm_hcr_el2_eff(CPUARMState *env) 4747 { 4748 uint64_t ret = env->cp15.hcr_el2; 4749 4750 if (arm_is_secure_below_el3(env)) { 4751 /* 4752 * "This register has no effect if EL2 is not enabled in the 4753 * current Security state". This is ARMv8.4-SecEL2 speak for 4754 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 4755 * 4756 * Prior to that, the language was "In an implementation that 4757 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 4758 * as if this field is 0 for all purposes other than a direct 4759 * read or write access of HCR_EL2". With lots of enumeration 4760 * on a per-field basis. In current QEMU, this is condition 4761 * is arm_is_secure_below_el3. 4762 * 4763 * Since the v8.4 language applies to the entire register, and 4764 * appears to be backward compatible, use that. 4765 */ 4766 ret = 0; 4767 } else if (ret & HCR_TGE) { 4768 /* These bits are up-to-date as of ARMv8.4. */ 4769 if (ret & HCR_E2H) { 4770 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 4771 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 4772 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 4773 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE); 4774 } else { 4775 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 4776 } 4777 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 4778 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 4779 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 4780 HCR_TLOR); 4781 } 4782 4783 return ret; 4784 } 4785 4786 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4787 uint64_t value) 4788 { 4789 /* 4790 * For A-profile AArch32 EL3, if NSACR.CP10 4791 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 4792 */ 4793 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 4794 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 4795 value &= ~(0x3 << 10); 4796 value |= env->cp15.cptr_el[2] & (0x3 << 10); 4797 } 4798 env->cp15.cptr_el[2] = value; 4799 } 4800 4801 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 4802 { 4803 /* 4804 * For A-profile AArch32 EL3, if NSACR.CP10 4805 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 4806 */ 4807 uint64_t value = env->cp15.cptr_el[2]; 4808 4809 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 4810 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 4811 value |= 0x3 << 10; 4812 } 4813 return value; 4814 } 4815 4816 static const ARMCPRegInfo el2_cp_reginfo[] = { 4817 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 4818 .type = ARM_CP_IO, 4819 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4820 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4821 .writefn = hcr_write }, 4822 { .name = "HCR", .state = ARM_CP_STATE_AA32, 4823 .type = ARM_CP_ALIAS | ARM_CP_IO, 4824 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4825 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4826 .writefn = hcr_writelow }, 4827 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4828 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4829 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4830 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 4831 .type = ARM_CP_ALIAS, 4832 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 4833 .access = PL2_RW, 4834 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 4835 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4836 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4837 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 4838 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4839 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4840 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 4841 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4842 .type = ARM_CP_ALIAS, 4843 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4844 .access = PL2_RW, 4845 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 4846 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 4847 .type = ARM_CP_ALIAS, 4848 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 4849 .access = PL2_RW, 4850 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 4851 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4852 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4853 .access = PL2_RW, .writefn = vbar_write, 4854 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 4855 .resetvalue = 0 }, 4856 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 4857 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 4858 .access = PL3_RW, .type = ARM_CP_ALIAS, 4859 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 4860 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4861 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4862 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 4863 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 4864 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 4865 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4866 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4867 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 4868 .resetvalue = 0 }, 4869 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4870 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4871 .access = PL2_RW, .type = ARM_CP_ALIAS, 4872 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 4873 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4874 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4875 .access = PL2_RW, .type = ARM_CP_CONST, 4876 .resetvalue = 0 }, 4877 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 4878 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4879 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4880 .access = PL2_RW, .type = ARM_CP_CONST, 4881 .resetvalue = 0 }, 4882 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4883 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4884 .access = PL2_RW, .type = ARM_CP_CONST, 4885 .resetvalue = 0 }, 4886 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4887 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4888 .access = PL2_RW, .type = ARM_CP_CONST, 4889 .resetvalue = 0 }, 4890 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4891 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4892 .access = PL2_RW, 4893 /* no .writefn needed as this can't cause an ASID change; 4894 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4895 */ 4896 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 4897 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 4898 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4899 .type = ARM_CP_ALIAS, 4900 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4901 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4902 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 4903 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4904 .access = PL2_RW, 4905 /* no .writefn needed as this can't cause an ASID change; 4906 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4907 */ 4908 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4909 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4910 .cp = 15, .opc1 = 6, .crm = 2, 4911 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4912 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4913 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 4914 .writefn = vttbr_write }, 4915 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4916 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4917 .access = PL2_RW, .writefn = vttbr_write, 4918 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 4919 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4920 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4921 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 4922 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 4923 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4924 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4925 .access = PL2_RW, .resetvalue = 0, 4926 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 4927 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4929 .access = PL2_RW, .resetvalue = 0, 4930 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4931 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4932 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4933 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4934 { .name = "TLBIALLNSNH", 4935 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4936 .type = ARM_CP_NO_RAW, .access = PL2_W, 4937 .writefn = tlbiall_nsnh_write }, 4938 { .name = "TLBIALLNSNHIS", 4939 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4940 .type = ARM_CP_NO_RAW, .access = PL2_W, 4941 .writefn = tlbiall_nsnh_is_write }, 4942 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4943 .type = ARM_CP_NO_RAW, .access = PL2_W, 4944 .writefn = tlbiall_hyp_write }, 4945 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4946 .type = ARM_CP_NO_RAW, .access = PL2_W, 4947 .writefn = tlbiall_hyp_is_write }, 4948 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4949 .type = ARM_CP_NO_RAW, .access = PL2_W, 4950 .writefn = tlbimva_hyp_write }, 4951 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4952 .type = ARM_CP_NO_RAW, .access = PL2_W, 4953 .writefn = tlbimva_hyp_is_write }, 4954 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 4955 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4956 .type = ARM_CP_NO_RAW, .access = PL2_W, 4957 .writefn = tlbi_aa64_alle2_write }, 4958 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 4959 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4960 .type = ARM_CP_NO_RAW, .access = PL2_W, 4961 .writefn = tlbi_aa64_vae2_write }, 4962 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 4963 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4964 .access = PL2_W, .type = ARM_CP_NO_RAW, 4965 .writefn = tlbi_aa64_vae2_write }, 4966 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 4967 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4968 .access = PL2_W, .type = ARM_CP_NO_RAW, 4969 .writefn = tlbi_aa64_alle2is_write }, 4970 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 4971 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4972 .type = ARM_CP_NO_RAW, .access = PL2_W, 4973 .writefn = tlbi_aa64_vae2is_write }, 4974 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 4975 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4976 .access = PL2_W, .type = ARM_CP_NO_RAW, 4977 .writefn = tlbi_aa64_vae2is_write }, 4978 #ifndef CONFIG_USER_ONLY 4979 /* Unlike the other EL2-related AT operations, these must 4980 * UNDEF from EL3 if EL2 is not implemented, which is why we 4981 * define them here rather than with the rest of the AT ops. 4982 */ 4983 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 4984 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4985 .access = PL2_W, .accessfn = at_s1e2_access, 4986 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 4987 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 4988 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4989 .access = PL2_W, .accessfn = at_s1e2_access, 4990 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 4991 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 4992 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 4993 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 4994 * to behave as if SCR.NS was 1. 4995 */ 4996 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4997 .access = PL2_W, 4998 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 4999 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5000 .access = PL2_W, 5001 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5002 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5003 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5004 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5005 * reset values as IMPDEF. We choose to reset to 3 to comply with 5006 * both ARMv7 and ARMv8. 5007 */ 5008 .access = PL2_RW, .resetvalue = 3, 5009 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5010 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5011 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5012 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5013 .writefn = gt_cntvoff_write, 5014 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5015 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5016 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5017 .writefn = gt_cntvoff_write, 5018 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5019 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5020 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5021 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5022 .type = ARM_CP_IO, .access = PL2_RW, 5023 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5024 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5025 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5026 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5027 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5028 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5029 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5030 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5031 .resetfn = gt_hyp_timer_reset, 5032 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5033 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5034 .type = ARM_CP_IO, 5035 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5036 .access = PL2_RW, 5037 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5038 .resetvalue = 0, 5039 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5040 #endif 5041 /* The only field of MDCR_EL2 that has a defined architectural reset value 5042 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5043 * don't implement any PMU event counters, so using zero as a reset 5044 * value for MDCR_EL2 is okay 5045 */ 5046 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5047 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5048 .access = PL2_RW, .resetvalue = 0, 5049 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5050 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5051 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5052 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5053 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5054 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5055 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5056 .access = PL2_RW, 5057 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5058 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5059 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5060 .access = PL2_RW, 5061 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5062 REGINFO_SENTINEL 5063 }; 5064 5065 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5066 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5067 .type = ARM_CP_ALIAS | ARM_CP_IO, 5068 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5069 .access = PL2_RW, 5070 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5071 .writefn = hcr_writehigh }, 5072 REGINFO_SENTINEL 5073 }; 5074 5075 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5076 bool isread) 5077 { 5078 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5079 * At Secure EL1 it traps to EL3. 5080 */ 5081 if (arm_current_el(env) == 3) { 5082 return CP_ACCESS_OK; 5083 } 5084 if (arm_is_secure_below_el3(env)) { 5085 return CP_ACCESS_TRAP_EL3; 5086 } 5087 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5088 if (isread) { 5089 return CP_ACCESS_OK; 5090 } 5091 return CP_ACCESS_TRAP_UNCATEGORIZED; 5092 } 5093 5094 static const ARMCPRegInfo el3_cp_reginfo[] = { 5095 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5096 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5097 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5098 .resetvalue = 0, .writefn = scr_write }, 5099 { .name = "SCR", .type = ARM_CP_ALIAS, 5100 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5101 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5102 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5103 .writefn = scr_write }, 5104 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5105 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5106 .access = PL3_RW, .resetvalue = 0, 5107 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5108 { .name = "SDER", 5109 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5110 .access = PL3_RW, .resetvalue = 0, 5111 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5112 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5113 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5114 .writefn = vbar_write, .resetvalue = 0, 5115 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5116 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5117 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5118 .access = PL3_RW, .resetvalue = 0, 5119 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5120 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5121 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5122 .access = PL3_RW, 5123 /* no .writefn needed as this can't cause an ASID change; 5124 * we must provide a .raw_writefn and .resetfn because we handle 5125 * reset and migration for the AArch32 TTBCR(S), which might be 5126 * using mask and base_mask. 5127 */ 5128 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5129 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5130 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5131 .type = ARM_CP_ALIAS, 5132 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5133 .access = PL3_RW, 5134 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5135 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5136 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5137 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5138 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5139 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5140 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5141 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5142 .type = ARM_CP_ALIAS, 5143 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5144 .access = PL3_RW, 5145 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5146 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5147 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5148 .access = PL3_RW, .writefn = vbar_write, 5149 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5150 .resetvalue = 0 }, 5151 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5152 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5153 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5154 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5155 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5156 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5157 .access = PL3_RW, .resetvalue = 0, 5158 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5159 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5160 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5161 .access = PL3_RW, .type = ARM_CP_CONST, 5162 .resetvalue = 0 }, 5163 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5164 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5165 .access = PL3_RW, .type = ARM_CP_CONST, 5166 .resetvalue = 0 }, 5167 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5168 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5169 .access = PL3_RW, .type = ARM_CP_CONST, 5170 .resetvalue = 0 }, 5171 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5172 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5173 .access = PL3_W, .type = ARM_CP_NO_RAW, 5174 .writefn = tlbi_aa64_alle3is_write }, 5175 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5176 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5177 .access = PL3_W, .type = ARM_CP_NO_RAW, 5178 .writefn = tlbi_aa64_vae3is_write }, 5179 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5180 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5181 .access = PL3_W, .type = ARM_CP_NO_RAW, 5182 .writefn = tlbi_aa64_vae3is_write }, 5183 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5184 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5185 .access = PL3_W, .type = ARM_CP_NO_RAW, 5186 .writefn = tlbi_aa64_alle3_write }, 5187 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5188 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5189 .access = PL3_W, .type = ARM_CP_NO_RAW, 5190 .writefn = tlbi_aa64_vae3_write }, 5191 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5192 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5193 .access = PL3_W, .type = ARM_CP_NO_RAW, 5194 .writefn = tlbi_aa64_vae3_write }, 5195 REGINFO_SENTINEL 5196 }; 5197 5198 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5199 bool isread) 5200 { 5201 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 5202 * but the AArch32 CTR has its own reginfo struct) 5203 */ 5204 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5205 return CP_ACCESS_TRAP; 5206 } 5207 return CP_ACCESS_OK; 5208 } 5209 5210 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5211 uint64_t value) 5212 { 5213 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5214 * read via a bit in OSLSR_EL1. 5215 */ 5216 int oslock; 5217 5218 if (ri->state == ARM_CP_STATE_AA32) { 5219 oslock = (value == 0xC5ACCE55); 5220 } else { 5221 oslock = value & 1; 5222 } 5223 5224 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5225 } 5226 5227 static const ARMCPRegInfo debug_cp_reginfo[] = { 5228 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5229 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5230 * unlike DBGDRAR it is never accessible from EL0. 5231 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5232 * accessor. 5233 */ 5234 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5235 .access = PL0_R, .accessfn = access_tdra, 5236 .type = ARM_CP_CONST, .resetvalue = 0 }, 5237 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5238 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5239 .access = PL1_R, .accessfn = access_tdra, 5240 .type = ARM_CP_CONST, .resetvalue = 0 }, 5241 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5242 .access = PL0_R, .accessfn = access_tdra, 5243 .type = ARM_CP_CONST, .resetvalue = 0 }, 5244 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5245 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5246 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5247 .access = PL1_RW, .accessfn = access_tda, 5248 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5249 .resetvalue = 0 }, 5250 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 5251 * We don't implement the configurable EL0 access. 5252 */ 5253 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 5254 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5255 .type = ARM_CP_ALIAS, 5256 .access = PL1_R, .accessfn = access_tda, 5257 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 5258 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 5259 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 5260 .access = PL1_W, .type = ARM_CP_NO_RAW, 5261 .accessfn = access_tdosa, 5262 .writefn = oslar_write }, 5263 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 5264 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 5265 .access = PL1_R, .resetvalue = 10, 5266 .accessfn = access_tdosa, 5267 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 5268 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 5269 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 5270 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 5271 .access = PL1_RW, .accessfn = access_tdosa, 5272 .type = ARM_CP_NOP }, 5273 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 5274 * implement vector catch debug events yet. 5275 */ 5276 { .name = "DBGVCR", 5277 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5278 .access = PL1_RW, .accessfn = access_tda, 5279 .type = ARM_CP_NOP }, 5280 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 5281 * to save and restore a 32-bit guest's DBGVCR) 5282 */ 5283 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 5284 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 5285 .access = PL2_RW, .accessfn = access_tda, 5286 .type = ARM_CP_NOP }, 5287 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 5288 * Channel but Linux may try to access this register. The 32-bit 5289 * alias is DBGDCCINT. 5290 */ 5291 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 5292 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5293 .access = PL1_RW, .accessfn = access_tda, 5294 .type = ARM_CP_NOP }, 5295 REGINFO_SENTINEL 5296 }; 5297 5298 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 5299 /* 64 bit access versions of the (dummy) debug registers */ 5300 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 5301 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5302 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 5303 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5304 REGINFO_SENTINEL 5305 }; 5306 5307 /* Return the exception level to which exceptions should be taken 5308 * via SVEAccessTrap. If an exception should be routed through 5309 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 5310 * take care of raising that exception. 5311 * C.f. the ARM pseudocode function CheckSVEEnabled. 5312 */ 5313 int sve_exception_el(CPUARMState *env, int el) 5314 { 5315 #ifndef CONFIG_USER_ONLY 5316 if (el <= 1) { 5317 bool disabled = false; 5318 5319 /* The CPACR.ZEN controls traps to EL1: 5320 * 0, 2 : trap EL0 and EL1 accesses 5321 * 1 : trap only EL0 accesses 5322 * 3 : trap no accesses 5323 */ 5324 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 5325 disabled = true; 5326 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 5327 disabled = el == 0; 5328 } 5329 if (disabled) { 5330 /* route_to_el2 */ 5331 return (arm_feature(env, ARM_FEATURE_EL2) 5332 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1); 5333 } 5334 5335 /* Check CPACR.FPEN. */ 5336 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 5337 disabled = true; 5338 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 5339 disabled = el == 0; 5340 } 5341 if (disabled) { 5342 return 0; 5343 } 5344 } 5345 5346 /* CPTR_EL2. Since TZ and TFP are positive, 5347 * they will be zero when EL2 is not present. 5348 */ 5349 if (el <= 2 && !arm_is_secure_below_el3(env)) { 5350 if (env->cp15.cptr_el[2] & CPTR_TZ) { 5351 return 2; 5352 } 5353 if (env->cp15.cptr_el[2] & CPTR_TFP) { 5354 return 0; 5355 } 5356 } 5357 5358 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 5359 if (arm_feature(env, ARM_FEATURE_EL3) 5360 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 5361 return 3; 5362 } 5363 #endif 5364 return 0; 5365 } 5366 5367 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 5368 { 5369 uint32_t end_len; 5370 5371 end_len = start_len &= 0xf; 5372 if (!test_bit(start_len, cpu->sve_vq_map)) { 5373 end_len = find_last_bit(cpu->sve_vq_map, start_len); 5374 assert(end_len < start_len); 5375 } 5376 return end_len; 5377 } 5378 5379 /* 5380 * Given that SVE is enabled, return the vector length for EL. 5381 */ 5382 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 5383 { 5384 ARMCPU *cpu = env_archcpu(env); 5385 uint32_t zcr_len = cpu->sve_max_vq - 1; 5386 5387 if (el <= 1) { 5388 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 5389 } 5390 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 5391 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 5392 } 5393 if (arm_feature(env, ARM_FEATURE_EL3)) { 5394 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 5395 } 5396 5397 return sve_zcr_get_valid_len(cpu, zcr_len); 5398 } 5399 5400 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5401 uint64_t value) 5402 { 5403 int cur_el = arm_current_el(env); 5404 int old_len = sve_zcr_len_for_el(env, cur_el); 5405 int new_len; 5406 5407 /* Bits other than [3:0] are RAZ/WI. */ 5408 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 5409 raw_write(env, ri, value & 0xf); 5410 5411 /* 5412 * Because we arrived here, we know both FP and SVE are enabled; 5413 * otherwise we would have trapped access to the ZCR_ELn register. 5414 */ 5415 new_len = sve_zcr_len_for_el(env, cur_el); 5416 if (new_len < old_len) { 5417 aarch64_sve_narrow_vq(env, new_len + 1); 5418 } 5419 } 5420 5421 static const ARMCPRegInfo zcr_el1_reginfo = { 5422 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 5423 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 5424 .access = PL1_RW, .type = ARM_CP_SVE, 5425 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 5426 .writefn = zcr_write, .raw_writefn = raw_write 5427 }; 5428 5429 static const ARMCPRegInfo zcr_el2_reginfo = { 5430 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5431 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5432 .access = PL2_RW, .type = ARM_CP_SVE, 5433 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 5434 .writefn = zcr_write, .raw_writefn = raw_write 5435 }; 5436 5437 static const ARMCPRegInfo zcr_no_el2_reginfo = { 5438 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5439 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5440 .access = PL2_RW, .type = ARM_CP_SVE, 5441 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 5442 }; 5443 5444 static const ARMCPRegInfo zcr_el3_reginfo = { 5445 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 5446 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 5447 .access = PL3_RW, .type = ARM_CP_SVE, 5448 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 5449 .writefn = zcr_write, .raw_writefn = raw_write 5450 }; 5451 5452 void hw_watchpoint_update(ARMCPU *cpu, int n) 5453 { 5454 CPUARMState *env = &cpu->env; 5455 vaddr len = 0; 5456 vaddr wvr = env->cp15.dbgwvr[n]; 5457 uint64_t wcr = env->cp15.dbgwcr[n]; 5458 int mask; 5459 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 5460 5461 if (env->cpu_watchpoint[n]) { 5462 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 5463 env->cpu_watchpoint[n] = NULL; 5464 } 5465 5466 if (!extract64(wcr, 0, 1)) { 5467 /* E bit clear : watchpoint disabled */ 5468 return; 5469 } 5470 5471 switch (extract64(wcr, 3, 2)) { 5472 case 0: 5473 /* LSC 00 is reserved and must behave as if the wp is disabled */ 5474 return; 5475 case 1: 5476 flags |= BP_MEM_READ; 5477 break; 5478 case 2: 5479 flags |= BP_MEM_WRITE; 5480 break; 5481 case 3: 5482 flags |= BP_MEM_ACCESS; 5483 break; 5484 } 5485 5486 /* Attempts to use both MASK and BAS fields simultaneously are 5487 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 5488 * thus generating a watchpoint for every byte in the masked region. 5489 */ 5490 mask = extract64(wcr, 24, 4); 5491 if (mask == 1 || mask == 2) { 5492 /* Reserved values of MASK; we must act as if the mask value was 5493 * some non-reserved value, or as if the watchpoint were disabled. 5494 * We choose the latter. 5495 */ 5496 return; 5497 } else if (mask) { 5498 /* Watchpoint covers an aligned area up to 2GB in size */ 5499 len = 1ULL << mask; 5500 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 5501 * whether the watchpoint fires when the unmasked bits match; we opt 5502 * to generate the exceptions. 5503 */ 5504 wvr &= ~(len - 1); 5505 } else { 5506 /* Watchpoint covers bytes defined by the byte address select bits */ 5507 int bas = extract64(wcr, 5, 8); 5508 int basstart; 5509 5510 if (bas == 0) { 5511 /* This must act as if the watchpoint is disabled */ 5512 return; 5513 } 5514 5515 if (extract64(wvr, 2, 1)) { 5516 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 5517 * ignored, and BAS[3:0] define which bytes to watch. 5518 */ 5519 bas &= 0xf; 5520 } 5521 /* The BAS bits are supposed to be programmed to indicate a contiguous 5522 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 5523 * we fire for each byte in the word/doubleword addressed by the WVR. 5524 * We choose to ignore any non-zero bits after the first range of 1s. 5525 */ 5526 basstart = ctz32(bas); 5527 len = cto32(bas >> basstart); 5528 wvr += basstart; 5529 } 5530 5531 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 5532 &env->cpu_watchpoint[n]); 5533 } 5534 5535 void hw_watchpoint_update_all(ARMCPU *cpu) 5536 { 5537 int i; 5538 CPUARMState *env = &cpu->env; 5539 5540 /* Completely clear out existing QEMU watchpoints and our array, to 5541 * avoid possible stale entries following migration load. 5542 */ 5543 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 5544 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 5545 5546 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 5547 hw_watchpoint_update(cpu, i); 5548 } 5549 } 5550 5551 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5552 uint64_t value) 5553 { 5554 ARMCPU *cpu = env_archcpu(env); 5555 int i = ri->crm; 5556 5557 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 5558 * register reads and behaves as if values written are sign extended. 5559 * Bits [1:0] are RES0. 5560 */ 5561 value = sextract64(value, 0, 49) & ~3ULL; 5562 5563 raw_write(env, ri, value); 5564 hw_watchpoint_update(cpu, i); 5565 } 5566 5567 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5568 uint64_t value) 5569 { 5570 ARMCPU *cpu = env_archcpu(env); 5571 int i = ri->crm; 5572 5573 raw_write(env, ri, value); 5574 hw_watchpoint_update(cpu, i); 5575 } 5576 5577 void hw_breakpoint_update(ARMCPU *cpu, int n) 5578 { 5579 CPUARMState *env = &cpu->env; 5580 uint64_t bvr = env->cp15.dbgbvr[n]; 5581 uint64_t bcr = env->cp15.dbgbcr[n]; 5582 vaddr addr; 5583 int bt; 5584 int flags = BP_CPU; 5585 5586 if (env->cpu_breakpoint[n]) { 5587 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 5588 env->cpu_breakpoint[n] = NULL; 5589 } 5590 5591 if (!extract64(bcr, 0, 1)) { 5592 /* E bit clear : watchpoint disabled */ 5593 return; 5594 } 5595 5596 bt = extract64(bcr, 20, 4); 5597 5598 switch (bt) { 5599 case 4: /* unlinked address mismatch (reserved if AArch64) */ 5600 case 5: /* linked address mismatch (reserved if AArch64) */ 5601 qemu_log_mask(LOG_UNIMP, 5602 "arm: address mismatch breakpoint types not implemented\n"); 5603 return; 5604 case 0: /* unlinked address match */ 5605 case 1: /* linked address match */ 5606 { 5607 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 5608 * we behave as if the register was sign extended. Bits [1:0] are 5609 * RES0. The BAS field is used to allow setting breakpoints on 16 5610 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 5611 * a bp will fire if the addresses covered by the bp and the addresses 5612 * covered by the insn overlap but the insn doesn't start at the 5613 * start of the bp address range. We choose to require the insn and 5614 * the bp to have the same address. The constraints on writing to 5615 * BAS enforced in dbgbcr_write mean we have only four cases: 5616 * 0b0000 => no breakpoint 5617 * 0b0011 => breakpoint on addr 5618 * 0b1100 => breakpoint on addr + 2 5619 * 0b1111 => breakpoint on addr 5620 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 5621 */ 5622 int bas = extract64(bcr, 5, 4); 5623 addr = sextract64(bvr, 0, 49) & ~3ULL; 5624 if (bas == 0) { 5625 return; 5626 } 5627 if (bas == 0xc) { 5628 addr += 2; 5629 } 5630 break; 5631 } 5632 case 2: /* unlinked context ID match */ 5633 case 8: /* unlinked VMID match (reserved if no EL2) */ 5634 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 5635 qemu_log_mask(LOG_UNIMP, 5636 "arm: unlinked context breakpoint types not implemented\n"); 5637 return; 5638 case 9: /* linked VMID match (reserved if no EL2) */ 5639 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 5640 case 3: /* linked context ID match */ 5641 default: 5642 /* We must generate no events for Linked context matches (unless 5643 * they are linked to by some other bp/wp, which is handled in 5644 * updates for the linking bp/wp). We choose to also generate no events 5645 * for reserved values. 5646 */ 5647 return; 5648 } 5649 5650 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 5651 } 5652 5653 void hw_breakpoint_update_all(ARMCPU *cpu) 5654 { 5655 int i; 5656 CPUARMState *env = &cpu->env; 5657 5658 /* Completely clear out existing QEMU breakpoints and our array, to 5659 * avoid possible stale entries following migration load. 5660 */ 5661 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 5662 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 5663 5664 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 5665 hw_breakpoint_update(cpu, i); 5666 } 5667 } 5668 5669 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5670 uint64_t value) 5671 { 5672 ARMCPU *cpu = env_archcpu(env); 5673 int i = ri->crm; 5674 5675 raw_write(env, ri, value); 5676 hw_breakpoint_update(cpu, i); 5677 } 5678 5679 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5680 uint64_t value) 5681 { 5682 ARMCPU *cpu = env_archcpu(env); 5683 int i = ri->crm; 5684 5685 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 5686 * copy of BAS[0]. 5687 */ 5688 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 5689 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 5690 5691 raw_write(env, ri, value); 5692 hw_breakpoint_update(cpu, i); 5693 } 5694 5695 static void define_debug_regs(ARMCPU *cpu) 5696 { 5697 /* Define v7 and v8 architectural debug registers. 5698 * These are just dummy implementations for now. 5699 */ 5700 int i; 5701 int wrps, brps, ctx_cmps; 5702 ARMCPRegInfo dbgdidr = { 5703 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 5704 .access = PL0_R, .accessfn = access_tda, 5705 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 5706 }; 5707 5708 /* Note that all these register fields hold "number of Xs minus 1". */ 5709 brps = extract32(cpu->dbgdidr, 24, 4); 5710 wrps = extract32(cpu->dbgdidr, 28, 4); 5711 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 5712 5713 assert(ctx_cmps <= brps); 5714 5715 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 5716 * of the debug registers such as number of breakpoints; 5717 * check that if they both exist then they agree. 5718 */ 5719 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 5720 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 5721 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 5722 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 5723 } 5724 5725 define_one_arm_cp_reg(cpu, &dbgdidr); 5726 define_arm_cp_regs(cpu, debug_cp_reginfo); 5727 5728 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 5729 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 5730 } 5731 5732 for (i = 0; i < brps + 1; i++) { 5733 ARMCPRegInfo dbgregs[] = { 5734 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 5735 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 5736 .access = PL1_RW, .accessfn = access_tda, 5737 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 5738 .writefn = dbgbvr_write, .raw_writefn = raw_write 5739 }, 5740 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 5741 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 5742 .access = PL1_RW, .accessfn = access_tda, 5743 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 5744 .writefn = dbgbcr_write, .raw_writefn = raw_write 5745 }, 5746 REGINFO_SENTINEL 5747 }; 5748 define_arm_cp_regs(cpu, dbgregs); 5749 } 5750 5751 for (i = 0; i < wrps + 1; i++) { 5752 ARMCPRegInfo dbgregs[] = { 5753 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 5754 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 5755 .access = PL1_RW, .accessfn = access_tda, 5756 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 5757 .writefn = dbgwvr_write, .raw_writefn = raw_write 5758 }, 5759 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 5760 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 5761 .access = PL1_RW, .accessfn = access_tda, 5762 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 5763 .writefn = dbgwcr_write, .raw_writefn = raw_write 5764 }, 5765 REGINFO_SENTINEL 5766 }; 5767 define_arm_cp_regs(cpu, dbgregs); 5768 } 5769 } 5770 5771 /* We don't know until after realize whether there's a GICv3 5772 * attached, and that is what registers the gicv3 sysregs. 5773 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 5774 * at runtime. 5775 */ 5776 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 5777 { 5778 ARMCPU *cpu = env_archcpu(env); 5779 uint64_t pfr1 = cpu->id_pfr1; 5780 5781 if (env->gicv3state) { 5782 pfr1 |= 1 << 28; 5783 } 5784 return pfr1; 5785 } 5786 5787 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 5788 { 5789 ARMCPU *cpu = env_archcpu(env); 5790 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 5791 5792 if (env->gicv3state) { 5793 pfr0 |= 1 << 24; 5794 } 5795 return pfr0; 5796 } 5797 5798 /* Shared logic between LORID and the rest of the LOR* registers. 5799 * Secure state has already been delt with. 5800 */ 5801 static CPAccessResult access_lor_ns(CPUARMState *env) 5802 { 5803 int el = arm_current_el(env); 5804 5805 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 5806 return CP_ACCESS_TRAP_EL2; 5807 } 5808 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 5809 return CP_ACCESS_TRAP_EL3; 5810 } 5811 return CP_ACCESS_OK; 5812 } 5813 5814 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 5815 bool isread) 5816 { 5817 if (arm_is_secure_below_el3(env)) { 5818 /* Access ok in secure mode. */ 5819 return CP_ACCESS_OK; 5820 } 5821 return access_lor_ns(env); 5822 } 5823 5824 static CPAccessResult access_lor_other(CPUARMState *env, 5825 const ARMCPRegInfo *ri, bool isread) 5826 { 5827 if (arm_is_secure_below_el3(env)) { 5828 /* Access denied in secure mode. */ 5829 return CP_ACCESS_TRAP; 5830 } 5831 return access_lor_ns(env); 5832 } 5833 5834 #ifdef TARGET_AARCH64 5835 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 5836 bool isread) 5837 { 5838 int el = arm_current_el(env); 5839 5840 if (el < 2 && 5841 arm_feature(env, ARM_FEATURE_EL2) && 5842 !(arm_hcr_el2_eff(env) & HCR_APK)) { 5843 return CP_ACCESS_TRAP_EL2; 5844 } 5845 if (el < 3 && 5846 arm_feature(env, ARM_FEATURE_EL3) && 5847 !(env->cp15.scr_el3 & SCR_APK)) { 5848 return CP_ACCESS_TRAP_EL3; 5849 } 5850 return CP_ACCESS_OK; 5851 } 5852 5853 static const ARMCPRegInfo pauth_reginfo[] = { 5854 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5855 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 5856 .access = PL1_RW, .accessfn = access_pauth, 5857 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 5858 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5859 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 5860 .access = PL1_RW, .accessfn = access_pauth, 5861 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 5862 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5863 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 5864 .access = PL1_RW, .accessfn = access_pauth, 5865 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 5866 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5867 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 5868 .access = PL1_RW, .accessfn = access_pauth, 5869 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 5870 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5871 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 5872 .access = PL1_RW, .accessfn = access_pauth, 5873 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 5874 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5875 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 5876 .access = PL1_RW, .accessfn = access_pauth, 5877 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 5878 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5879 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 5880 .access = PL1_RW, .accessfn = access_pauth, 5881 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 5882 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5883 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 5884 .access = PL1_RW, .accessfn = access_pauth, 5885 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 5886 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5887 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 5888 .access = PL1_RW, .accessfn = access_pauth, 5889 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 5890 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5891 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 5892 .access = PL1_RW, .accessfn = access_pauth, 5893 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 5894 REGINFO_SENTINEL 5895 }; 5896 5897 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 5898 { 5899 Error *err = NULL; 5900 uint64_t ret; 5901 5902 /* Success sets NZCV = 0000. */ 5903 env->NF = env->CF = env->VF = 0, env->ZF = 1; 5904 5905 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 5906 /* 5907 * ??? Failed, for unknown reasons in the crypto subsystem. 5908 * The best we can do is log the reason and return the 5909 * timed-out indication to the guest. There is no reason 5910 * we know to expect this failure to be transitory, so the 5911 * guest may well hang retrying the operation. 5912 */ 5913 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 5914 ri->name, error_get_pretty(err)); 5915 error_free(err); 5916 5917 env->ZF = 0; /* NZCF = 0100 */ 5918 return 0; 5919 } 5920 return ret; 5921 } 5922 5923 /* We do not support re-seeding, so the two registers operate the same. */ 5924 static const ARMCPRegInfo rndr_reginfo[] = { 5925 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 5926 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5927 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 5928 .access = PL0_R, .readfn = rndr_readfn }, 5929 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 5930 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5931 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 5932 .access = PL0_R, .readfn = rndr_readfn }, 5933 REGINFO_SENTINEL 5934 }; 5935 #endif 5936 5937 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 5938 bool isread) 5939 { 5940 int el = arm_current_el(env); 5941 5942 if (el == 0) { 5943 uint64_t sctlr = arm_sctlr(env, el); 5944 if (!(sctlr & SCTLR_EnRCTX)) { 5945 return CP_ACCESS_TRAP; 5946 } 5947 } else if (el == 1) { 5948 uint64_t hcr = arm_hcr_el2_eff(env); 5949 if (hcr & HCR_NV) { 5950 return CP_ACCESS_TRAP_EL2; 5951 } 5952 } 5953 return CP_ACCESS_OK; 5954 } 5955 5956 static const ARMCPRegInfo predinv_reginfo[] = { 5957 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 5958 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 5959 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5960 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 5961 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 5962 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5963 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 5964 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 5965 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5966 /* 5967 * Note the AArch32 opcodes have a different OPC1. 5968 */ 5969 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 5970 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 5971 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5972 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 5973 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 5974 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5975 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 5976 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 5977 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5978 REGINFO_SENTINEL 5979 }; 5980 5981 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 5982 bool isread) 5983 { 5984 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 5985 return CP_ACCESS_TRAP_EL2; 5986 } 5987 5988 return CP_ACCESS_OK; 5989 } 5990 5991 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 5992 bool isread) 5993 { 5994 if (arm_feature(env, ARM_FEATURE_V8)) { 5995 return access_aa64_tid3(env, ri, isread); 5996 } 5997 5998 return CP_ACCESS_OK; 5999 } 6000 6001 void register_cp_regs_for_features(ARMCPU *cpu) 6002 { 6003 /* Register all the coprocessor registers based on feature bits */ 6004 CPUARMState *env = &cpu->env; 6005 if (arm_feature(env, ARM_FEATURE_M)) { 6006 /* M profile has no coprocessor registers */ 6007 return; 6008 } 6009 6010 define_arm_cp_regs(cpu, cp_reginfo); 6011 if (!arm_feature(env, ARM_FEATURE_V8)) { 6012 /* Must go early as it is full of wildcards that may be 6013 * overridden by later definitions. 6014 */ 6015 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 6016 } 6017 6018 if (arm_feature(env, ARM_FEATURE_V6)) { 6019 /* The ID registers all have impdef reset values */ 6020 ARMCPRegInfo v6_idregs[] = { 6021 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 6022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6023 .access = PL1_R, .type = ARM_CP_CONST, 6024 .accessfn = access_aa32_tid3, 6025 .resetvalue = cpu->id_pfr0 }, 6026 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 6027 * the value of the GIC field until after we define these regs. 6028 */ 6029 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 6030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 6031 .access = PL1_R, .type = ARM_CP_NO_RAW, 6032 .accessfn = access_aa32_tid3, 6033 .readfn = id_pfr1_read, 6034 .writefn = arm_cp_write_ignore }, 6035 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 6036 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 6037 .access = PL1_R, .type = ARM_CP_CONST, 6038 .accessfn = access_aa32_tid3, 6039 .resetvalue = cpu->id_dfr0 }, 6040 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 6041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 6042 .access = PL1_R, .type = ARM_CP_CONST, 6043 .accessfn = access_aa32_tid3, 6044 .resetvalue = cpu->id_afr0 }, 6045 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 6046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 6047 .access = PL1_R, .type = ARM_CP_CONST, 6048 .accessfn = access_aa32_tid3, 6049 .resetvalue = cpu->id_mmfr0 }, 6050 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 6051 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 6052 .access = PL1_R, .type = ARM_CP_CONST, 6053 .accessfn = access_aa32_tid3, 6054 .resetvalue = cpu->id_mmfr1 }, 6055 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 6056 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 6057 .access = PL1_R, .type = ARM_CP_CONST, 6058 .accessfn = access_aa32_tid3, 6059 .resetvalue = cpu->id_mmfr2 }, 6060 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 6061 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 6062 .access = PL1_R, .type = ARM_CP_CONST, 6063 .accessfn = access_aa32_tid3, 6064 .resetvalue = cpu->id_mmfr3 }, 6065 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 6066 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6067 .access = PL1_R, .type = ARM_CP_CONST, 6068 .accessfn = access_aa32_tid3, 6069 .resetvalue = cpu->isar.id_isar0 }, 6070 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 6071 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 6072 .access = PL1_R, .type = ARM_CP_CONST, 6073 .accessfn = access_aa32_tid3, 6074 .resetvalue = cpu->isar.id_isar1 }, 6075 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 6076 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6077 .access = PL1_R, .type = ARM_CP_CONST, 6078 .accessfn = access_aa32_tid3, 6079 .resetvalue = cpu->isar.id_isar2 }, 6080 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 6081 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 6082 .access = PL1_R, .type = ARM_CP_CONST, 6083 .accessfn = access_aa32_tid3, 6084 .resetvalue = cpu->isar.id_isar3 }, 6085 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 6086 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 6087 .access = PL1_R, .type = ARM_CP_CONST, 6088 .accessfn = access_aa32_tid3, 6089 .resetvalue = cpu->isar.id_isar4 }, 6090 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 6091 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 6092 .access = PL1_R, .type = ARM_CP_CONST, 6093 .accessfn = access_aa32_tid3, 6094 .resetvalue = cpu->isar.id_isar5 }, 6095 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 6096 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 6097 .access = PL1_R, .type = ARM_CP_CONST, 6098 .accessfn = access_aa32_tid3, 6099 .resetvalue = cpu->id_mmfr4 }, 6100 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 6101 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 6102 .access = PL1_R, .type = ARM_CP_CONST, 6103 .accessfn = access_aa32_tid3, 6104 .resetvalue = cpu->isar.id_isar6 }, 6105 REGINFO_SENTINEL 6106 }; 6107 define_arm_cp_regs(cpu, v6_idregs); 6108 define_arm_cp_regs(cpu, v6_cp_reginfo); 6109 } else { 6110 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 6111 } 6112 if (arm_feature(env, ARM_FEATURE_V6K)) { 6113 define_arm_cp_regs(cpu, v6k_cp_reginfo); 6114 } 6115 if (arm_feature(env, ARM_FEATURE_V7MP) && 6116 !arm_feature(env, ARM_FEATURE_PMSA)) { 6117 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 6118 } 6119 if (arm_feature(env, ARM_FEATURE_V7VE)) { 6120 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 6121 } 6122 if (arm_feature(env, ARM_FEATURE_V7)) { 6123 /* v7 performance monitor control register: same implementor 6124 * field as main ID register, and we implement four counters in 6125 * addition to the cycle count register. 6126 */ 6127 unsigned int i, pmcrn = 4; 6128 ARMCPRegInfo pmcr = { 6129 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6130 .access = PL0_RW, 6131 .type = ARM_CP_IO | ARM_CP_ALIAS, 6132 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6133 .accessfn = pmreg_access, .writefn = pmcr_write, 6134 .raw_writefn = raw_write, 6135 }; 6136 ARMCPRegInfo pmcr64 = { 6137 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6138 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6139 .access = PL0_RW, .accessfn = pmreg_access, 6140 .type = ARM_CP_IO, 6141 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6142 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT), 6143 .writefn = pmcr_write, .raw_writefn = raw_write, 6144 }; 6145 define_one_arm_cp_reg(cpu, &pmcr); 6146 define_one_arm_cp_reg(cpu, &pmcr64); 6147 for (i = 0; i < pmcrn; i++) { 6148 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6149 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6150 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6151 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6152 ARMCPRegInfo pmev_regs[] = { 6153 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6154 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6155 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6156 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6157 .accessfn = pmreg_access }, 6158 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6159 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6160 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6161 .type = ARM_CP_IO, 6162 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6163 .raw_readfn = pmevcntr_rawread, 6164 .raw_writefn = pmevcntr_rawwrite }, 6165 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6166 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6167 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6168 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6169 .accessfn = pmreg_access }, 6170 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6171 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6172 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6173 .type = ARM_CP_IO, 6174 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6175 .raw_writefn = pmevtyper_rawwrite }, 6176 REGINFO_SENTINEL 6177 }; 6178 define_arm_cp_regs(cpu, pmev_regs); 6179 g_free(pmevcntr_name); 6180 g_free(pmevcntr_el0_name); 6181 g_free(pmevtyper_name); 6182 g_free(pmevtyper_el0_name); 6183 } 6184 ARMCPRegInfo clidr = { 6185 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 6186 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 6187 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 6188 }; 6189 define_one_arm_cp_reg(cpu, &clidr); 6190 define_arm_cp_regs(cpu, v7_cp_reginfo); 6191 define_debug_regs(cpu); 6192 } else { 6193 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 6194 } 6195 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 && 6196 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) { 6197 ARMCPRegInfo v81_pmu_regs[] = { 6198 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6199 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6200 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6201 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6202 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6203 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6204 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6205 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6206 REGINFO_SENTINEL 6207 }; 6208 define_arm_cp_regs(cpu, v81_pmu_regs); 6209 } 6210 if (arm_feature(env, ARM_FEATURE_V8)) { 6211 /* AArch64 ID registers, which all have impdef reset values. 6212 * Note that within the ID register ranges the unused slots 6213 * must all RAZ, not UNDEF; future architecture versions may 6214 * define new registers here. 6215 */ 6216 ARMCPRegInfo v8_idregs[] = { 6217 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 6218 * know the right value for the GIC field until after we 6219 * define these regs. 6220 */ 6221 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 6222 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 6223 .access = PL1_R, .type = ARM_CP_NO_RAW, 6224 .accessfn = access_aa64_tid3, 6225 .readfn = id_aa64pfr0_read, 6226 .writefn = arm_cp_write_ignore }, 6227 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 6228 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 6229 .access = PL1_R, .type = ARM_CP_CONST, 6230 .accessfn = access_aa64_tid3, 6231 .resetvalue = cpu->isar.id_aa64pfr1}, 6232 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6233 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 6234 .access = PL1_R, .type = ARM_CP_CONST, 6235 .accessfn = access_aa64_tid3, 6236 .resetvalue = 0 }, 6237 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6238 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 6239 .access = PL1_R, .type = ARM_CP_CONST, 6240 .accessfn = access_aa64_tid3, 6241 .resetvalue = 0 }, 6242 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 6243 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 6244 .access = PL1_R, .type = ARM_CP_CONST, 6245 .accessfn = access_aa64_tid3, 6246 /* At present, only SVEver == 0 is defined anyway. */ 6247 .resetvalue = 0 }, 6248 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6249 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 6250 .access = PL1_R, .type = ARM_CP_CONST, 6251 .accessfn = access_aa64_tid3, 6252 .resetvalue = 0 }, 6253 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6254 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 6255 .access = PL1_R, .type = ARM_CP_CONST, 6256 .accessfn = access_aa64_tid3, 6257 .resetvalue = 0 }, 6258 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6259 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 6260 .access = PL1_R, .type = ARM_CP_CONST, 6261 .accessfn = access_aa64_tid3, 6262 .resetvalue = 0 }, 6263 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 6264 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 6265 .access = PL1_R, .type = ARM_CP_CONST, 6266 .accessfn = access_aa64_tid3, 6267 .resetvalue = cpu->id_aa64dfr0 }, 6268 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 6269 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 6270 .access = PL1_R, .type = ARM_CP_CONST, 6271 .accessfn = access_aa64_tid3, 6272 .resetvalue = cpu->id_aa64dfr1 }, 6273 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6274 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 6275 .access = PL1_R, .type = ARM_CP_CONST, 6276 .accessfn = access_aa64_tid3, 6277 .resetvalue = 0 }, 6278 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6279 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 6280 .access = PL1_R, .type = ARM_CP_CONST, 6281 .accessfn = access_aa64_tid3, 6282 .resetvalue = 0 }, 6283 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 6284 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 6285 .access = PL1_R, .type = ARM_CP_CONST, 6286 .accessfn = access_aa64_tid3, 6287 .resetvalue = cpu->id_aa64afr0 }, 6288 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 6289 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 6290 .access = PL1_R, .type = ARM_CP_CONST, 6291 .accessfn = access_aa64_tid3, 6292 .resetvalue = cpu->id_aa64afr1 }, 6293 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6294 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 6295 .access = PL1_R, .type = ARM_CP_CONST, 6296 .accessfn = access_aa64_tid3, 6297 .resetvalue = 0 }, 6298 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6299 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 6300 .access = PL1_R, .type = ARM_CP_CONST, 6301 .accessfn = access_aa64_tid3, 6302 .resetvalue = 0 }, 6303 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 6304 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 6305 .access = PL1_R, .type = ARM_CP_CONST, 6306 .accessfn = access_aa64_tid3, 6307 .resetvalue = cpu->isar.id_aa64isar0 }, 6308 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 6309 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 6310 .access = PL1_R, .type = ARM_CP_CONST, 6311 .accessfn = access_aa64_tid3, 6312 .resetvalue = cpu->isar.id_aa64isar1 }, 6313 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6314 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 6315 .access = PL1_R, .type = ARM_CP_CONST, 6316 .accessfn = access_aa64_tid3, 6317 .resetvalue = 0 }, 6318 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6319 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 6320 .access = PL1_R, .type = ARM_CP_CONST, 6321 .accessfn = access_aa64_tid3, 6322 .resetvalue = 0 }, 6323 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6324 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 6325 .access = PL1_R, .type = ARM_CP_CONST, 6326 .accessfn = access_aa64_tid3, 6327 .resetvalue = 0 }, 6328 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6329 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 6330 .access = PL1_R, .type = ARM_CP_CONST, 6331 .accessfn = access_aa64_tid3, 6332 .resetvalue = 0 }, 6333 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6334 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 6335 .access = PL1_R, .type = ARM_CP_CONST, 6336 .accessfn = access_aa64_tid3, 6337 .resetvalue = 0 }, 6338 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6339 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 6340 .access = PL1_R, .type = ARM_CP_CONST, 6341 .accessfn = access_aa64_tid3, 6342 .resetvalue = 0 }, 6343 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 6344 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6345 .access = PL1_R, .type = ARM_CP_CONST, 6346 .accessfn = access_aa64_tid3, 6347 .resetvalue = cpu->isar.id_aa64mmfr0 }, 6348 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 6349 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 6350 .access = PL1_R, .type = ARM_CP_CONST, 6351 .accessfn = access_aa64_tid3, 6352 .resetvalue = cpu->isar.id_aa64mmfr1 }, 6353 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6354 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 6355 .access = PL1_R, .type = ARM_CP_CONST, 6356 .accessfn = access_aa64_tid3, 6357 .resetvalue = 0 }, 6358 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6359 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 6360 .access = PL1_R, .type = ARM_CP_CONST, 6361 .accessfn = access_aa64_tid3, 6362 .resetvalue = 0 }, 6363 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6364 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 6365 .access = PL1_R, .type = ARM_CP_CONST, 6366 .accessfn = access_aa64_tid3, 6367 .resetvalue = 0 }, 6368 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6369 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 6370 .access = PL1_R, .type = ARM_CP_CONST, 6371 .accessfn = access_aa64_tid3, 6372 .resetvalue = 0 }, 6373 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6374 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 6375 .access = PL1_R, .type = ARM_CP_CONST, 6376 .accessfn = access_aa64_tid3, 6377 .resetvalue = 0 }, 6378 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6379 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 6380 .access = PL1_R, .type = ARM_CP_CONST, 6381 .accessfn = access_aa64_tid3, 6382 .resetvalue = 0 }, 6383 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 6384 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 6385 .access = PL1_R, .type = ARM_CP_CONST, 6386 .accessfn = access_aa64_tid3, 6387 .resetvalue = cpu->isar.mvfr0 }, 6388 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 6389 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 6390 .access = PL1_R, .type = ARM_CP_CONST, 6391 .accessfn = access_aa64_tid3, 6392 .resetvalue = cpu->isar.mvfr1 }, 6393 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 6394 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 6395 .access = PL1_R, .type = ARM_CP_CONST, 6396 .accessfn = access_aa64_tid3, 6397 .resetvalue = cpu->isar.mvfr2 }, 6398 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6399 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 6400 .access = PL1_R, .type = ARM_CP_CONST, 6401 .accessfn = access_aa64_tid3, 6402 .resetvalue = 0 }, 6403 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6404 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 6405 .access = PL1_R, .type = ARM_CP_CONST, 6406 .accessfn = access_aa64_tid3, 6407 .resetvalue = 0 }, 6408 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6409 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 6410 .access = PL1_R, .type = ARM_CP_CONST, 6411 .accessfn = access_aa64_tid3, 6412 .resetvalue = 0 }, 6413 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6414 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 6415 .access = PL1_R, .type = ARM_CP_CONST, 6416 .accessfn = access_aa64_tid3, 6417 .resetvalue = 0 }, 6418 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6419 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 6420 .access = PL1_R, .type = ARM_CP_CONST, 6421 .accessfn = access_aa64_tid3, 6422 .resetvalue = 0 }, 6423 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 6424 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 6425 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6426 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 6427 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 6428 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 6429 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6430 .resetvalue = cpu->pmceid0 }, 6431 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 6432 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 6433 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6434 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 6435 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 6436 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 6437 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6438 .resetvalue = cpu->pmceid1 }, 6439 REGINFO_SENTINEL 6440 }; 6441 #ifdef CONFIG_USER_ONLY 6442 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 6443 { .name = "ID_AA64PFR0_EL1", 6444 .exported_bits = 0x000f000f00ff0000, 6445 .fixed_bits = 0x0000000000000011 }, 6446 { .name = "ID_AA64PFR1_EL1", 6447 .exported_bits = 0x00000000000000f0 }, 6448 { .name = "ID_AA64PFR*_EL1_RESERVED", 6449 .is_glob = true }, 6450 { .name = "ID_AA64ZFR0_EL1" }, 6451 { .name = "ID_AA64MMFR0_EL1", 6452 .fixed_bits = 0x00000000ff000000 }, 6453 { .name = "ID_AA64MMFR1_EL1" }, 6454 { .name = "ID_AA64MMFR*_EL1_RESERVED", 6455 .is_glob = true }, 6456 { .name = "ID_AA64DFR0_EL1", 6457 .fixed_bits = 0x0000000000000006 }, 6458 { .name = "ID_AA64DFR1_EL1" }, 6459 { .name = "ID_AA64DFR*_EL1_RESERVED", 6460 .is_glob = true }, 6461 { .name = "ID_AA64AFR*", 6462 .is_glob = true }, 6463 { .name = "ID_AA64ISAR0_EL1", 6464 .exported_bits = 0x00fffffff0fffff0 }, 6465 { .name = "ID_AA64ISAR1_EL1", 6466 .exported_bits = 0x000000f0ffffffff }, 6467 { .name = "ID_AA64ISAR*_EL1_RESERVED", 6468 .is_glob = true }, 6469 REGUSERINFO_SENTINEL 6470 }; 6471 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 6472 #endif 6473 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 6474 if (!arm_feature(env, ARM_FEATURE_EL3) && 6475 !arm_feature(env, ARM_FEATURE_EL2)) { 6476 ARMCPRegInfo rvbar = { 6477 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 6478 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6479 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 6480 }; 6481 define_one_arm_cp_reg(cpu, &rvbar); 6482 } 6483 define_arm_cp_regs(cpu, v8_idregs); 6484 define_arm_cp_regs(cpu, v8_cp_reginfo); 6485 } 6486 if (arm_feature(env, ARM_FEATURE_EL2)) { 6487 uint64_t vmpidr_def = mpidr_read_val(env); 6488 ARMCPRegInfo vpidr_regs[] = { 6489 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 6490 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6491 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6492 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 6493 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 6494 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 6495 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6496 .access = PL2_RW, .resetvalue = cpu->midr, 6497 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6498 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 6499 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6500 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6501 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 6502 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 6503 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 6504 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6505 .access = PL2_RW, 6506 .resetvalue = vmpidr_def, 6507 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 6508 REGINFO_SENTINEL 6509 }; 6510 define_arm_cp_regs(cpu, vpidr_regs); 6511 define_arm_cp_regs(cpu, el2_cp_reginfo); 6512 if (arm_feature(env, ARM_FEATURE_V8)) { 6513 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 6514 } 6515 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 6516 if (!arm_feature(env, ARM_FEATURE_EL3)) { 6517 ARMCPRegInfo rvbar = { 6518 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 6519 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 6520 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 6521 }; 6522 define_one_arm_cp_reg(cpu, &rvbar); 6523 } 6524 } else { 6525 /* If EL2 is missing but higher ELs are enabled, we need to 6526 * register the no_el2 reginfos. 6527 */ 6528 if (arm_feature(env, ARM_FEATURE_EL3)) { 6529 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 6530 * of MIDR_EL1 and MPIDR_EL1. 6531 */ 6532 ARMCPRegInfo vpidr_regs[] = { 6533 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6534 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6535 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6536 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 6537 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6538 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6539 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6540 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6541 .type = ARM_CP_NO_RAW, 6542 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 6543 REGINFO_SENTINEL 6544 }; 6545 define_arm_cp_regs(cpu, vpidr_regs); 6546 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 6547 if (arm_feature(env, ARM_FEATURE_V8)) { 6548 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 6549 } 6550 } 6551 } 6552 if (arm_feature(env, ARM_FEATURE_EL3)) { 6553 define_arm_cp_regs(cpu, el3_cp_reginfo); 6554 ARMCPRegInfo el3_regs[] = { 6555 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 6556 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 6557 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 6558 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 6559 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 6560 .access = PL3_RW, 6561 .raw_writefn = raw_write, .writefn = sctlr_write, 6562 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 6563 .resetvalue = cpu->reset_sctlr }, 6564 REGINFO_SENTINEL 6565 }; 6566 6567 define_arm_cp_regs(cpu, el3_regs); 6568 } 6569 /* The behaviour of NSACR is sufficiently various that we don't 6570 * try to describe it in a single reginfo: 6571 * if EL3 is 64 bit, then trap to EL3 from S EL1, 6572 * reads as constant 0xc00 from NS EL1 and NS EL2 6573 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 6574 * if v7 without EL3, register doesn't exist 6575 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 6576 */ 6577 if (arm_feature(env, ARM_FEATURE_EL3)) { 6578 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6579 ARMCPRegInfo nsacr = { 6580 .name = "NSACR", .type = ARM_CP_CONST, 6581 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6582 .access = PL1_RW, .accessfn = nsacr_access, 6583 .resetvalue = 0xc00 6584 }; 6585 define_one_arm_cp_reg(cpu, &nsacr); 6586 } else { 6587 ARMCPRegInfo nsacr = { 6588 .name = "NSACR", 6589 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6590 .access = PL3_RW | PL1_R, 6591 .resetvalue = 0, 6592 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 6593 }; 6594 define_one_arm_cp_reg(cpu, &nsacr); 6595 } 6596 } else { 6597 if (arm_feature(env, ARM_FEATURE_V8)) { 6598 ARMCPRegInfo nsacr = { 6599 .name = "NSACR", .type = ARM_CP_CONST, 6600 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6601 .access = PL1_R, 6602 .resetvalue = 0xc00 6603 }; 6604 define_one_arm_cp_reg(cpu, &nsacr); 6605 } 6606 } 6607 6608 if (arm_feature(env, ARM_FEATURE_PMSA)) { 6609 if (arm_feature(env, ARM_FEATURE_V6)) { 6610 /* PMSAv6 not implemented */ 6611 assert(arm_feature(env, ARM_FEATURE_V7)); 6612 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6613 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 6614 } else { 6615 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 6616 } 6617 } else { 6618 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6619 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 6620 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */ 6621 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) { 6622 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 6623 } 6624 } 6625 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 6626 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 6627 } 6628 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 6629 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 6630 } 6631 if (arm_feature(env, ARM_FEATURE_VAPA)) { 6632 define_arm_cp_regs(cpu, vapa_cp_reginfo); 6633 } 6634 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 6635 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 6636 } 6637 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 6638 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 6639 } 6640 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 6641 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 6642 } 6643 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 6644 define_arm_cp_regs(cpu, omap_cp_reginfo); 6645 } 6646 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 6647 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 6648 } 6649 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6650 define_arm_cp_regs(cpu, xscale_cp_reginfo); 6651 } 6652 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 6653 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 6654 } 6655 if (arm_feature(env, ARM_FEATURE_LPAE)) { 6656 define_arm_cp_regs(cpu, lpae_cp_reginfo); 6657 } 6658 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 6659 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 6660 * be read-only (ie write causes UNDEF exception). 6661 */ 6662 { 6663 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 6664 /* Pre-v8 MIDR space. 6665 * Note that the MIDR isn't a simple constant register because 6666 * of the TI925 behaviour where writes to another register can 6667 * cause the MIDR value to change. 6668 * 6669 * Unimplemented registers in the c15 0 0 0 space default to 6670 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 6671 * and friends override accordingly. 6672 */ 6673 { .name = "MIDR", 6674 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 6675 .access = PL1_R, .resetvalue = cpu->midr, 6676 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 6677 .readfn = midr_read, 6678 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6679 .type = ARM_CP_OVERRIDE }, 6680 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 6681 { .name = "DUMMY", 6682 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 6683 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6684 { .name = "DUMMY", 6685 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 6686 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6687 { .name = "DUMMY", 6688 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 6689 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6690 { .name = "DUMMY", 6691 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 6692 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6693 { .name = "DUMMY", 6694 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 6695 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6696 REGINFO_SENTINEL 6697 }; 6698 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 6699 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 6700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 6701 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 6702 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6703 .readfn = midr_read }, 6704 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 6705 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6706 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6707 .access = PL1_R, .resetvalue = cpu->midr }, 6708 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6709 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 6710 .access = PL1_R, .resetvalue = cpu->midr }, 6711 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 6712 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 6713 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 6714 REGINFO_SENTINEL 6715 }; 6716 ARMCPRegInfo id_cp_reginfo[] = { 6717 /* These are common to v8 and pre-v8 */ 6718 { .name = "CTR", 6719 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 6720 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6721 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 6722 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 6723 .access = PL0_R, .accessfn = ctr_el0_access, 6724 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6725 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 6726 { .name = "TCMTR", 6727 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 6728 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6729 REGINFO_SENTINEL 6730 }; 6731 /* TLBTR is specific to VMSA */ 6732 ARMCPRegInfo id_tlbtr_reginfo = { 6733 .name = "TLBTR", 6734 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 6735 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 6736 }; 6737 /* MPUIR is specific to PMSA V6+ */ 6738 ARMCPRegInfo id_mpuir_reginfo = { 6739 .name = "MPUIR", 6740 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6741 .access = PL1_R, .type = ARM_CP_CONST, 6742 .resetvalue = cpu->pmsav7_dregion << 8 6743 }; 6744 ARMCPRegInfo crn0_wi_reginfo = { 6745 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 6746 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 6747 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 6748 }; 6749 #ifdef CONFIG_USER_ONLY 6750 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 6751 { .name = "MIDR_EL1", 6752 .exported_bits = 0x00000000ffffffff }, 6753 { .name = "REVIDR_EL1" }, 6754 REGUSERINFO_SENTINEL 6755 }; 6756 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 6757 #endif 6758 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 6759 arm_feature(env, ARM_FEATURE_STRONGARM)) { 6760 ARMCPRegInfo *r; 6761 /* Register the blanket "writes ignored" value first to cover the 6762 * whole space. Then update the specific ID registers to allow write 6763 * access, so that they ignore writes rather than causing them to 6764 * UNDEF. 6765 */ 6766 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 6767 for (r = id_pre_v8_midr_cp_reginfo; 6768 r->type != ARM_CP_SENTINEL; r++) { 6769 r->access = PL1_RW; 6770 } 6771 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 6772 r->access = PL1_RW; 6773 } 6774 id_mpuir_reginfo.access = PL1_RW; 6775 id_tlbtr_reginfo.access = PL1_RW; 6776 } 6777 if (arm_feature(env, ARM_FEATURE_V8)) { 6778 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 6779 } else { 6780 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 6781 } 6782 define_arm_cp_regs(cpu, id_cp_reginfo); 6783 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 6784 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 6785 } else if (arm_feature(env, ARM_FEATURE_V7)) { 6786 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 6787 } 6788 } 6789 6790 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 6791 ARMCPRegInfo mpidr_cp_reginfo[] = { 6792 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 6793 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 6794 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 6795 REGINFO_SENTINEL 6796 }; 6797 #ifdef CONFIG_USER_ONLY 6798 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 6799 { .name = "MPIDR_EL1", 6800 .fixed_bits = 0x0000000080000000 }, 6801 REGUSERINFO_SENTINEL 6802 }; 6803 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 6804 #endif 6805 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 6806 } 6807 6808 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 6809 ARMCPRegInfo auxcr_reginfo[] = { 6810 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 6811 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 6812 .access = PL1_RW, .type = ARM_CP_CONST, 6813 .resetvalue = cpu->reset_auxcr }, 6814 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 6815 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 6816 .access = PL2_RW, .type = ARM_CP_CONST, 6817 .resetvalue = 0 }, 6818 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 6819 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 6820 .access = PL3_RW, .type = ARM_CP_CONST, 6821 .resetvalue = 0 }, 6822 REGINFO_SENTINEL 6823 }; 6824 define_arm_cp_regs(cpu, auxcr_reginfo); 6825 if (arm_feature(env, ARM_FEATURE_V8)) { 6826 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ 6827 ARMCPRegInfo hactlr2_reginfo = { 6828 .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 6829 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 6830 .access = PL2_RW, .type = ARM_CP_CONST, 6831 .resetvalue = 0 6832 }; 6833 define_one_arm_cp_reg(cpu, &hactlr2_reginfo); 6834 } 6835 } 6836 6837 if (arm_feature(env, ARM_FEATURE_CBAR)) { 6838 /* 6839 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 6840 * There are two flavours: 6841 * (1) older 32-bit only cores have a simple 32-bit CBAR 6842 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 6843 * 32-bit register visible to AArch32 at a different encoding 6844 * to the "flavour 1" register and with the bits rearranged to 6845 * be able to squash a 64-bit address into the 32-bit view. 6846 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 6847 * in future if we support AArch32-only configs of some of the 6848 * AArch64 cores we might need to add a specific feature flag 6849 * to indicate cores with "flavour 2" CBAR. 6850 */ 6851 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6852 /* 32 bit view is [31:18] 0...0 [43:32]. */ 6853 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 6854 | extract64(cpu->reset_cbar, 32, 12); 6855 ARMCPRegInfo cbar_reginfo[] = { 6856 { .name = "CBAR", 6857 .type = ARM_CP_CONST, 6858 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 6859 .access = PL1_R, .resetvalue = cbar32 }, 6860 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 6861 .type = ARM_CP_CONST, 6862 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 6863 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 6864 REGINFO_SENTINEL 6865 }; 6866 /* We don't implement a r/w 64 bit CBAR currently */ 6867 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 6868 define_arm_cp_regs(cpu, cbar_reginfo); 6869 } else { 6870 ARMCPRegInfo cbar = { 6871 .name = "CBAR", 6872 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 6873 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 6874 .fieldoffset = offsetof(CPUARMState, 6875 cp15.c15_config_base_address) 6876 }; 6877 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 6878 cbar.access = PL1_R; 6879 cbar.fieldoffset = 0; 6880 cbar.type = ARM_CP_CONST; 6881 } 6882 define_one_arm_cp_reg(cpu, &cbar); 6883 } 6884 } 6885 6886 if (arm_feature(env, ARM_FEATURE_VBAR)) { 6887 ARMCPRegInfo vbar_cp_reginfo[] = { 6888 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 6889 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 6890 .access = PL1_RW, .writefn = vbar_write, 6891 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 6892 offsetof(CPUARMState, cp15.vbar_ns) }, 6893 .resetvalue = 0 }, 6894 REGINFO_SENTINEL 6895 }; 6896 define_arm_cp_regs(cpu, vbar_cp_reginfo); 6897 } 6898 6899 /* Generic registers whose values depend on the implementation */ 6900 { 6901 ARMCPRegInfo sctlr = { 6902 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 6903 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6904 .access = PL1_RW, 6905 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 6906 offsetof(CPUARMState, cp15.sctlr_ns) }, 6907 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 6908 .raw_writefn = raw_write, 6909 }; 6910 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6911 /* Normally we would always end the TB on an SCTLR write, but Linux 6912 * arch/arm/mach-pxa/sleep.S expects two instructions following 6913 * an MMU enable to execute from cache. Imitate this behaviour. 6914 */ 6915 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 6916 } 6917 define_one_arm_cp_reg(cpu, &sctlr); 6918 } 6919 6920 if (cpu_isar_feature(aa64_lor, cpu)) { 6921 /* 6922 * A trivial implementation of ARMv8.1-LOR leaves all of these 6923 * registers fixed at 0, which indicates that there are zero 6924 * supported Limited Ordering regions. 6925 */ 6926 static const ARMCPRegInfo lor_reginfo[] = { 6927 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6928 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6929 .access = PL1_RW, .accessfn = access_lor_other, 6930 .type = ARM_CP_CONST, .resetvalue = 0 }, 6931 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6932 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6933 .access = PL1_RW, .accessfn = access_lor_other, 6934 .type = ARM_CP_CONST, .resetvalue = 0 }, 6935 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6936 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6937 .access = PL1_RW, .accessfn = access_lor_other, 6938 .type = ARM_CP_CONST, .resetvalue = 0 }, 6939 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6940 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6941 .access = PL1_RW, .accessfn = access_lor_other, 6942 .type = ARM_CP_CONST, .resetvalue = 0 }, 6943 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6944 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6945 .access = PL1_R, .accessfn = access_lorid, 6946 .type = ARM_CP_CONST, .resetvalue = 0 }, 6947 REGINFO_SENTINEL 6948 }; 6949 define_arm_cp_regs(cpu, lor_reginfo); 6950 } 6951 6952 if (cpu_isar_feature(aa64_sve, cpu)) { 6953 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 6954 if (arm_feature(env, ARM_FEATURE_EL2)) { 6955 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 6956 } else { 6957 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 6958 } 6959 if (arm_feature(env, ARM_FEATURE_EL3)) { 6960 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 6961 } 6962 } 6963 6964 #ifdef TARGET_AARCH64 6965 if (cpu_isar_feature(aa64_pauth, cpu)) { 6966 define_arm_cp_regs(cpu, pauth_reginfo); 6967 } 6968 if (cpu_isar_feature(aa64_rndr, cpu)) { 6969 define_arm_cp_regs(cpu, rndr_reginfo); 6970 } 6971 #endif 6972 6973 /* 6974 * While all v8.0 cpus support aarch64, QEMU does have configurations 6975 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max, 6976 * which will set ID_ISAR6. 6977 */ 6978 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) 6979 ? cpu_isar_feature(aa64_predinv, cpu) 6980 : cpu_isar_feature(aa32_predinv, cpu)) { 6981 define_arm_cp_regs(cpu, predinv_reginfo); 6982 } 6983 } 6984 6985 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 6986 { 6987 CPUState *cs = CPU(cpu); 6988 CPUARMState *env = &cpu->env; 6989 6990 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6991 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 6992 aarch64_fpu_gdb_set_reg, 6993 34, "aarch64-fpu.xml", 0); 6994 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 6995 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6996 51, "arm-neon.xml", 0); 6997 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 6998 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6999 35, "arm-vfp3.xml", 0); 7000 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 7001 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 7002 19, "arm-vfp.xml", 0); 7003 } 7004 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 7005 arm_gen_dynamic_xml(cs), 7006 "system-registers.xml", 0); 7007 } 7008 7009 /* Sort alphabetically by type name, except for "any". */ 7010 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 7011 { 7012 ObjectClass *class_a = (ObjectClass *)a; 7013 ObjectClass *class_b = (ObjectClass *)b; 7014 const char *name_a, *name_b; 7015 7016 name_a = object_class_get_name(class_a); 7017 name_b = object_class_get_name(class_b); 7018 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 7019 return 1; 7020 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 7021 return -1; 7022 } else { 7023 return strcmp(name_a, name_b); 7024 } 7025 } 7026 7027 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 7028 { 7029 ObjectClass *oc = data; 7030 const char *typename; 7031 char *name; 7032 7033 typename = object_class_get_name(oc); 7034 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 7035 qemu_printf(" %s\n", name); 7036 g_free(name); 7037 } 7038 7039 void arm_cpu_list(void) 7040 { 7041 GSList *list; 7042 7043 list = object_class_get_list(TYPE_ARM_CPU, false); 7044 list = g_slist_sort(list, arm_cpu_list_compare); 7045 qemu_printf("Available CPUs:\n"); 7046 g_slist_foreach(list, arm_cpu_list_entry, NULL); 7047 g_slist_free(list); 7048 } 7049 7050 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 7051 { 7052 ObjectClass *oc = data; 7053 CpuDefinitionInfoList **cpu_list = user_data; 7054 CpuDefinitionInfoList *entry; 7055 CpuDefinitionInfo *info; 7056 const char *typename; 7057 7058 typename = object_class_get_name(oc); 7059 info = g_malloc0(sizeof(*info)); 7060 info->name = g_strndup(typename, 7061 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 7062 info->q_typename = g_strdup(typename); 7063 7064 entry = g_malloc0(sizeof(*entry)); 7065 entry->value = info; 7066 entry->next = *cpu_list; 7067 *cpu_list = entry; 7068 } 7069 7070 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 7071 { 7072 CpuDefinitionInfoList *cpu_list = NULL; 7073 GSList *list; 7074 7075 list = object_class_get_list(TYPE_ARM_CPU, false); 7076 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 7077 g_slist_free(list); 7078 7079 return cpu_list; 7080 } 7081 7082 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 7083 void *opaque, int state, int secstate, 7084 int crm, int opc1, int opc2, 7085 const char *name) 7086 { 7087 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 7088 * add a single reginfo struct to the hash table. 7089 */ 7090 uint32_t *key = g_new(uint32_t, 1); 7091 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 7092 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 7093 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 7094 7095 r2->name = g_strdup(name); 7096 /* Reset the secure state to the specific incoming state. This is 7097 * necessary as the register may have been defined with both states. 7098 */ 7099 r2->secure = secstate; 7100 7101 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 7102 /* Register is banked (using both entries in array). 7103 * Overwriting fieldoffset as the array is only used to define 7104 * banked registers but later only fieldoffset is used. 7105 */ 7106 r2->fieldoffset = r->bank_fieldoffsets[ns]; 7107 } 7108 7109 if (state == ARM_CP_STATE_AA32) { 7110 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 7111 /* If the register is banked then we don't need to migrate or 7112 * reset the 32-bit instance in certain cases: 7113 * 7114 * 1) If the register has both 32-bit and 64-bit instances then we 7115 * can count on the 64-bit instance taking care of the 7116 * non-secure bank. 7117 * 2) If ARMv8 is enabled then we can count on a 64-bit version 7118 * taking care of the secure bank. This requires that separate 7119 * 32 and 64-bit definitions are provided. 7120 */ 7121 if ((r->state == ARM_CP_STATE_BOTH && ns) || 7122 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 7123 r2->type |= ARM_CP_ALIAS; 7124 } 7125 } else if ((secstate != r->secure) && !ns) { 7126 /* The register is not banked so we only want to allow migration of 7127 * the non-secure instance. 7128 */ 7129 r2->type |= ARM_CP_ALIAS; 7130 } 7131 7132 if (r->state == ARM_CP_STATE_BOTH) { 7133 /* We assume it is a cp15 register if the .cp field is left unset. 7134 */ 7135 if (r2->cp == 0) { 7136 r2->cp = 15; 7137 } 7138 7139 #ifdef HOST_WORDS_BIGENDIAN 7140 if (r2->fieldoffset) { 7141 r2->fieldoffset += sizeof(uint32_t); 7142 } 7143 #endif 7144 } 7145 } 7146 if (state == ARM_CP_STATE_AA64) { 7147 /* To allow abbreviation of ARMCPRegInfo 7148 * definitions, we treat cp == 0 as equivalent to 7149 * the value for "standard guest-visible sysreg". 7150 * STATE_BOTH definitions are also always "standard 7151 * sysreg" in their AArch64 view (the .cp value may 7152 * be non-zero for the benefit of the AArch32 view). 7153 */ 7154 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 7155 r2->cp = CP_REG_ARM64_SYSREG_CP; 7156 } 7157 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 7158 r2->opc0, opc1, opc2); 7159 } else { 7160 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 7161 } 7162 if (opaque) { 7163 r2->opaque = opaque; 7164 } 7165 /* reginfo passed to helpers is correct for the actual access, 7166 * and is never ARM_CP_STATE_BOTH: 7167 */ 7168 r2->state = state; 7169 /* Make sure reginfo passed to helpers for wildcarded regs 7170 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 7171 */ 7172 r2->crm = crm; 7173 r2->opc1 = opc1; 7174 r2->opc2 = opc2; 7175 /* By convention, for wildcarded registers only the first 7176 * entry is used for migration; the others are marked as 7177 * ALIAS so we don't try to transfer the register 7178 * multiple times. Special registers (ie NOP/WFI) are 7179 * never migratable and not even raw-accessible. 7180 */ 7181 if ((r->type & ARM_CP_SPECIAL)) { 7182 r2->type |= ARM_CP_NO_RAW; 7183 } 7184 if (((r->crm == CP_ANY) && crm != 0) || 7185 ((r->opc1 == CP_ANY) && opc1 != 0) || 7186 ((r->opc2 == CP_ANY) && opc2 != 0)) { 7187 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 7188 } 7189 7190 /* Check that raw accesses are either forbidden or handled. Note that 7191 * we can't assert this earlier because the setup of fieldoffset for 7192 * banked registers has to be done first. 7193 */ 7194 if (!(r2->type & ARM_CP_NO_RAW)) { 7195 assert(!raw_accessors_invalid(r2)); 7196 } 7197 7198 /* Overriding of an existing definition must be explicitly 7199 * requested. 7200 */ 7201 if (!(r->type & ARM_CP_OVERRIDE)) { 7202 ARMCPRegInfo *oldreg; 7203 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 7204 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 7205 fprintf(stderr, "Register redefined: cp=%d %d bit " 7206 "crn=%d crm=%d opc1=%d opc2=%d, " 7207 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 7208 r2->crn, r2->crm, r2->opc1, r2->opc2, 7209 oldreg->name, r2->name); 7210 g_assert_not_reached(); 7211 } 7212 } 7213 g_hash_table_insert(cpu->cp_regs, key, r2); 7214 } 7215 7216 7217 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 7218 const ARMCPRegInfo *r, void *opaque) 7219 { 7220 /* Define implementations of coprocessor registers. 7221 * We store these in a hashtable because typically 7222 * there are less than 150 registers in a space which 7223 * is 16*16*16*8*8 = 262144 in size. 7224 * Wildcarding is supported for the crm, opc1 and opc2 fields. 7225 * If a register is defined twice then the second definition is 7226 * used, so this can be used to define some generic registers and 7227 * then override them with implementation specific variations. 7228 * At least one of the original and the second definition should 7229 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 7230 * against accidental use. 7231 * 7232 * The state field defines whether the register is to be 7233 * visible in the AArch32 or AArch64 execution state. If the 7234 * state is set to ARM_CP_STATE_BOTH then we synthesise a 7235 * reginfo structure for the AArch32 view, which sees the lower 7236 * 32 bits of the 64 bit register. 7237 * 7238 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 7239 * be wildcarded. AArch64 registers are always considered to be 64 7240 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 7241 * the register, if any. 7242 */ 7243 int crm, opc1, opc2, state; 7244 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 7245 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 7246 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 7247 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 7248 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 7249 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 7250 /* 64 bit registers have only CRm and Opc1 fields */ 7251 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 7252 /* op0 only exists in the AArch64 encodings */ 7253 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 7254 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 7255 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 7256 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 7257 * encodes a minimum access level for the register. We roll this 7258 * runtime check into our general permission check code, so check 7259 * here that the reginfo's specified permissions are strict enough 7260 * to encompass the generic architectural permission check. 7261 */ 7262 if (r->state != ARM_CP_STATE_AA32) { 7263 int mask = 0; 7264 switch (r->opc1) { 7265 case 0: 7266 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 7267 mask = PL0U_R | PL1_RW; 7268 break; 7269 case 1: case 2: 7270 /* min_EL EL1 */ 7271 mask = PL1_RW; 7272 break; 7273 case 3: 7274 /* min_EL EL0 */ 7275 mask = PL0_RW; 7276 break; 7277 case 4: 7278 /* min_EL EL2 */ 7279 mask = PL2_RW; 7280 break; 7281 case 5: 7282 /* unallocated encoding, so not possible */ 7283 assert(false); 7284 break; 7285 case 6: 7286 /* min_EL EL3 */ 7287 mask = PL3_RW; 7288 break; 7289 case 7: 7290 /* min_EL EL1, secure mode only (we don't check the latter) */ 7291 mask = PL1_RW; 7292 break; 7293 default: 7294 /* broken reginfo with out-of-range opc1 */ 7295 assert(false); 7296 break; 7297 } 7298 /* assert our permissions are not too lax (stricter is fine) */ 7299 assert((r->access & ~mask) == 0); 7300 } 7301 7302 /* Check that the register definition has enough info to handle 7303 * reads and writes if they are permitted. 7304 */ 7305 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 7306 if (r->access & PL3_R) { 7307 assert((r->fieldoffset || 7308 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7309 r->readfn); 7310 } 7311 if (r->access & PL3_W) { 7312 assert((r->fieldoffset || 7313 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7314 r->writefn); 7315 } 7316 } 7317 /* Bad type field probably means missing sentinel at end of reg list */ 7318 assert(cptype_valid(r->type)); 7319 for (crm = crmmin; crm <= crmmax; crm++) { 7320 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 7321 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 7322 for (state = ARM_CP_STATE_AA32; 7323 state <= ARM_CP_STATE_AA64; state++) { 7324 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 7325 continue; 7326 } 7327 if (state == ARM_CP_STATE_AA32) { 7328 /* Under AArch32 CP registers can be common 7329 * (same for secure and non-secure world) or banked. 7330 */ 7331 char *name; 7332 7333 switch (r->secure) { 7334 case ARM_CP_SECSTATE_S: 7335 case ARM_CP_SECSTATE_NS: 7336 add_cpreg_to_hashtable(cpu, r, opaque, state, 7337 r->secure, crm, opc1, opc2, 7338 r->name); 7339 break; 7340 default: 7341 name = g_strdup_printf("%s_S", r->name); 7342 add_cpreg_to_hashtable(cpu, r, opaque, state, 7343 ARM_CP_SECSTATE_S, 7344 crm, opc1, opc2, name); 7345 g_free(name); 7346 add_cpreg_to_hashtable(cpu, r, opaque, state, 7347 ARM_CP_SECSTATE_NS, 7348 crm, opc1, opc2, r->name); 7349 break; 7350 } 7351 } else { 7352 /* AArch64 registers get mapped to non-secure instance 7353 * of AArch32 */ 7354 add_cpreg_to_hashtable(cpu, r, opaque, state, 7355 ARM_CP_SECSTATE_NS, 7356 crm, opc1, opc2, r->name); 7357 } 7358 } 7359 } 7360 } 7361 } 7362 } 7363 7364 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 7365 const ARMCPRegInfo *regs, void *opaque) 7366 { 7367 /* Define a whole list of registers */ 7368 const ARMCPRegInfo *r; 7369 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7370 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 7371 } 7372 } 7373 7374 /* 7375 * Modify ARMCPRegInfo for access from userspace. 7376 * 7377 * This is a data driven modification directed by 7378 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 7379 * user-space cannot alter any values and dynamic values pertaining to 7380 * execution state are hidden from user space view anyway. 7381 */ 7382 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 7383 { 7384 const ARMCPRegUserSpaceInfo *m; 7385 ARMCPRegInfo *r; 7386 7387 for (m = mods; m->name; m++) { 7388 GPatternSpec *pat = NULL; 7389 if (m->is_glob) { 7390 pat = g_pattern_spec_new(m->name); 7391 } 7392 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7393 if (pat && g_pattern_match_string(pat, r->name)) { 7394 r->type = ARM_CP_CONST; 7395 r->access = PL0U_R; 7396 r->resetvalue = 0; 7397 /* continue */ 7398 } else if (strcmp(r->name, m->name) == 0) { 7399 r->type = ARM_CP_CONST; 7400 r->access = PL0U_R; 7401 r->resetvalue &= m->exported_bits; 7402 r->resetvalue |= m->fixed_bits; 7403 break; 7404 } 7405 } 7406 if (pat) { 7407 g_pattern_spec_free(pat); 7408 } 7409 } 7410 } 7411 7412 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 7413 { 7414 return g_hash_table_lookup(cpregs, &encoded_cp); 7415 } 7416 7417 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 7418 uint64_t value) 7419 { 7420 /* Helper coprocessor write function for write-ignore registers */ 7421 } 7422 7423 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 7424 { 7425 /* Helper coprocessor write function for read-as-zero registers */ 7426 return 0; 7427 } 7428 7429 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 7430 { 7431 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 7432 } 7433 7434 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 7435 { 7436 /* Return true if it is not valid for us to switch to 7437 * this CPU mode (ie all the UNPREDICTABLE cases in 7438 * the ARM ARM CPSRWriteByInstr pseudocode). 7439 */ 7440 7441 /* Changes to or from Hyp via MSR and CPS are illegal. */ 7442 if (write_type == CPSRWriteByInstr && 7443 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 7444 mode == ARM_CPU_MODE_HYP)) { 7445 return 1; 7446 } 7447 7448 switch (mode) { 7449 case ARM_CPU_MODE_USR: 7450 return 0; 7451 case ARM_CPU_MODE_SYS: 7452 case ARM_CPU_MODE_SVC: 7453 case ARM_CPU_MODE_ABT: 7454 case ARM_CPU_MODE_UND: 7455 case ARM_CPU_MODE_IRQ: 7456 case ARM_CPU_MODE_FIQ: 7457 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 7458 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 7459 */ 7460 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 7461 * and CPS are treated as illegal mode changes. 7462 */ 7463 if (write_type == CPSRWriteByInstr && 7464 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 7465 (arm_hcr_el2_eff(env) & HCR_TGE)) { 7466 return 1; 7467 } 7468 return 0; 7469 case ARM_CPU_MODE_HYP: 7470 return !arm_feature(env, ARM_FEATURE_EL2) 7471 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 7472 case ARM_CPU_MODE_MON: 7473 return arm_current_el(env) < 3; 7474 default: 7475 return 1; 7476 } 7477 } 7478 7479 uint32_t cpsr_read(CPUARMState *env) 7480 { 7481 int ZF; 7482 ZF = (env->ZF == 0); 7483 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 7484 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 7485 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 7486 | ((env->condexec_bits & 0xfc) << 8) 7487 | (env->GE << 16) | (env->daif & CPSR_AIF); 7488 } 7489 7490 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 7491 CPSRWriteType write_type) 7492 { 7493 uint32_t changed_daif; 7494 7495 if (mask & CPSR_NZCV) { 7496 env->ZF = (~val) & CPSR_Z; 7497 env->NF = val; 7498 env->CF = (val >> 29) & 1; 7499 env->VF = (val << 3) & 0x80000000; 7500 } 7501 if (mask & CPSR_Q) 7502 env->QF = ((val & CPSR_Q) != 0); 7503 if (mask & CPSR_T) 7504 env->thumb = ((val & CPSR_T) != 0); 7505 if (mask & CPSR_IT_0_1) { 7506 env->condexec_bits &= ~3; 7507 env->condexec_bits |= (val >> 25) & 3; 7508 } 7509 if (mask & CPSR_IT_2_7) { 7510 env->condexec_bits &= 3; 7511 env->condexec_bits |= (val >> 8) & 0xfc; 7512 } 7513 if (mask & CPSR_GE) { 7514 env->GE = (val >> 16) & 0xf; 7515 } 7516 7517 /* In a V7 implementation that includes the security extensions but does 7518 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 7519 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 7520 * bits respectively. 7521 * 7522 * In a V8 implementation, it is permitted for privileged software to 7523 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 7524 */ 7525 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 7526 arm_feature(env, ARM_FEATURE_EL3) && 7527 !arm_feature(env, ARM_FEATURE_EL2) && 7528 !arm_is_secure(env)) { 7529 7530 changed_daif = (env->daif ^ val) & mask; 7531 7532 if (changed_daif & CPSR_A) { 7533 /* Check to see if we are allowed to change the masking of async 7534 * abort exceptions from a non-secure state. 7535 */ 7536 if (!(env->cp15.scr_el3 & SCR_AW)) { 7537 qemu_log_mask(LOG_GUEST_ERROR, 7538 "Ignoring attempt to switch CPSR_A flag from " 7539 "non-secure world with SCR.AW bit clear\n"); 7540 mask &= ~CPSR_A; 7541 } 7542 } 7543 7544 if (changed_daif & CPSR_F) { 7545 /* Check to see if we are allowed to change the masking of FIQ 7546 * exceptions from a non-secure state. 7547 */ 7548 if (!(env->cp15.scr_el3 & SCR_FW)) { 7549 qemu_log_mask(LOG_GUEST_ERROR, 7550 "Ignoring attempt to switch CPSR_F flag from " 7551 "non-secure world with SCR.FW bit clear\n"); 7552 mask &= ~CPSR_F; 7553 } 7554 7555 /* Check whether non-maskable FIQ (NMFI) support is enabled. 7556 * If this bit is set software is not allowed to mask 7557 * FIQs, but is allowed to set CPSR_F to 0. 7558 */ 7559 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 7560 (val & CPSR_F)) { 7561 qemu_log_mask(LOG_GUEST_ERROR, 7562 "Ignoring attempt to enable CPSR_F flag " 7563 "(non-maskable FIQ [NMFI] support enabled)\n"); 7564 mask &= ~CPSR_F; 7565 } 7566 } 7567 } 7568 7569 env->daif &= ~(CPSR_AIF & mask); 7570 env->daif |= val & CPSR_AIF & mask; 7571 7572 if (write_type != CPSRWriteRaw && 7573 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 7574 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 7575 /* Note that we can only get here in USR mode if this is a 7576 * gdb stub write; for this case we follow the architectural 7577 * behaviour for guest writes in USR mode of ignoring an attempt 7578 * to switch mode. (Those are caught by translate.c for writes 7579 * triggered by guest instructions.) 7580 */ 7581 mask &= ~CPSR_M; 7582 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 7583 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 7584 * v7, and has defined behaviour in v8: 7585 * + leave CPSR.M untouched 7586 * + allow changes to the other CPSR fields 7587 * + set PSTATE.IL 7588 * For user changes via the GDB stub, we don't set PSTATE.IL, 7589 * as this would be unnecessarily harsh for a user error. 7590 */ 7591 mask &= ~CPSR_M; 7592 if (write_type != CPSRWriteByGDBStub && 7593 arm_feature(env, ARM_FEATURE_V8)) { 7594 mask |= CPSR_IL; 7595 val |= CPSR_IL; 7596 } 7597 qemu_log_mask(LOG_GUEST_ERROR, 7598 "Illegal AArch32 mode switch attempt from %s to %s\n", 7599 aarch32_mode_name(env->uncached_cpsr), 7600 aarch32_mode_name(val)); 7601 } else { 7602 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 7603 write_type == CPSRWriteExceptionReturn ? 7604 "Exception return from AArch32" : 7605 "AArch32 mode switch from", 7606 aarch32_mode_name(env->uncached_cpsr), 7607 aarch32_mode_name(val), env->regs[15]); 7608 switch_mode(env, val & CPSR_M); 7609 } 7610 } 7611 mask &= ~CACHED_CPSR_BITS; 7612 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 7613 } 7614 7615 /* Sign/zero extend */ 7616 uint32_t HELPER(sxtb16)(uint32_t x) 7617 { 7618 uint32_t res; 7619 res = (uint16_t)(int8_t)x; 7620 res |= (uint32_t)(int8_t)(x >> 16) << 16; 7621 return res; 7622 } 7623 7624 uint32_t HELPER(uxtb16)(uint32_t x) 7625 { 7626 uint32_t res; 7627 res = (uint16_t)(uint8_t)x; 7628 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 7629 return res; 7630 } 7631 7632 int32_t HELPER(sdiv)(int32_t num, int32_t den) 7633 { 7634 if (den == 0) 7635 return 0; 7636 if (num == INT_MIN && den == -1) 7637 return INT_MIN; 7638 return num / den; 7639 } 7640 7641 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 7642 { 7643 if (den == 0) 7644 return 0; 7645 return num / den; 7646 } 7647 7648 uint32_t HELPER(rbit)(uint32_t x) 7649 { 7650 return revbit32(x); 7651 } 7652 7653 #ifdef CONFIG_USER_ONLY 7654 7655 static void switch_mode(CPUARMState *env, int mode) 7656 { 7657 ARMCPU *cpu = env_archcpu(env); 7658 7659 if (mode != ARM_CPU_MODE_USR) { 7660 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 7661 } 7662 } 7663 7664 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7665 uint32_t cur_el, bool secure) 7666 { 7667 return 1; 7668 } 7669 7670 void aarch64_sync_64_to_32(CPUARMState *env) 7671 { 7672 g_assert_not_reached(); 7673 } 7674 7675 #else 7676 7677 static void switch_mode(CPUARMState *env, int mode) 7678 { 7679 int old_mode; 7680 int i; 7681 7682 old_mode = env->uncached_cpsr & CPSR_M; 7683 if (mode == old_mode) 7684 return; 7685 7686 if (old_mode == ARM_CPU_MODE_FIQ) { 7687 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7688 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 7689 } else if (mode == ARM_CPU_MODE_FIQ) { 7690 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7691 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 7692 } 7693 7694 i = bank_number(old_mode); 7695 env->banked_r13[i] = env->regs[13]; 7696 env->banked_spsr[i] = env->spsr; 7697 7698 i = bank_number(mode); 7699 env->regs[13] = env->banked_r13[i]; 7700 env->spsr = env->banked_spsr[i]; 7701 7702 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 7703 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 7704 } 7705 7706 /* Physical Interrupt Target EL Lookup Table 7707 * 7708 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 7709 * 7710 * The below multi-dimensional table is used for looking up the target 7711 * exception level given numerous condition criteria. Specifically, the 7712 * target EL is based on SCR and HCR routing controls as well as the 7713 * currently executing EL and secure state. 7714 * 7715 * Dimensions: 7716 * target_el_table[2][2][2][2][2][4] 7717 * | | | | | +--- Current EL 7718 * | | | | +------ Non-secure(0)/Secure(1) 7719 * | | | +--------- HCR mask override 7720 * | | +------------ SCR exec state control 7721 * | +--------------- SCR mask override 7722 * +------------------ 32-bit(0)/64-bit(1) EL3 7723 * 7724 * The table values are as such: 7725 * 0-3 = EL0-EL3 7726 * -1 = Cannot occur 7727 * 7728 * The ARM ARM target EL table includes entries indicating that an "exception 7729 * is not taken". The two cases where this is applicable are: 7730 * 1) An exception is taken from EL3 but the SCR does not have the exception 7731 * routed to EL3. 7732 * 2) An exception is taken from EL2 but the HCR does not have the exception 7733 * routed to EL2. 7734 * In these two cases, the below table contain a target of EL1. This value is 7735 * returned as it is expected that the consumer of the table data will check 7736 * for "target EL >= current EL" to ensure the exception is not taken. 7737 * 7738 * SCR HCR 7739 * 64 EA AMO From 7740 * BIT IRQ IMO Non-secure Secure 7741 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 7742 */ 7743 static const int8_t target_el_table[2][2][2][2][2][4] = { 7744 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7745 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 7746 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7747 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 7748 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7749 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 7750 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7751 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 7752 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 7753 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 7754 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 7755 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 7756 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7757 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 7758 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7759 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 7760 }; 7761 7762 /* 7763 * Determine the target EL for physical exceptions 7764 */ 7765 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7766 uint32_t cur_el, bool secure) 7767 { 7768 CPUARMState *env = cs->env_ptr; 7769 bool rw; 7770 bool scr; 7771 bool hcr; 7772 int target_el; 7773 /* Is the highest EL AArch64? */ 7774 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 7775 uint64_t hcr_el2; 7776 7777 if (arm_feature(env, ARM_FEATURE_EL3)) { 7778 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 7779 } else { 7780 /* Either EL2 is the highest EL (and so the EL2 register width 7781 * is given by is64); or there is no EL2 or EL3, in which case 7782 * the value of 'rw' does not affect the table lookup anyway. 7783 */ 7784 rw = is64; 7785 } 7786 7787 hcr_el2 = arm_hcr_el2_eff(env); 7788 switch (excp_idx) { 7789 case EXCP_IRQ: 7790 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 7791 hcr = hcr_el2 & HCR_IMO; 7792 break; 7793 case EXCP_FIQ: 7794 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 7795 hcr = hcr_el2 & HCR_FMO; 7796 break; 7797 default: 7798 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 7799 hcr = hcr_el2 & HCR_AMO; 7800 break; 7801 }; 7802 7803 /* Perform a table-lookup for the target EL given the current state */ 7804 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 7805 7806 assert(target_el > 0); 7807 7808 return target_el; 7809 } 7810 7811 void arm_log_exception(int idx) 7812 { 7813 if (qemu_loglevel_mask(CPU_LOG_INT)) { 7814 const char *exc = NULL; 7815 static const char * const excnames[] = { 7816 [EXCP_UDEF] = "Undefined Instruction", 7817 [EXCP_SWI] = "SVC", 7818 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 7819 [EXCP_DATA_ABORT] = "Data Abort", 7820 [EXCP_IRQ] = "IRQ", 7821 [EXCP_FIQ] = "FIQ", 7822 [EXCP_BKPT] = "Breakpoint", 7823 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 7824 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 7825 [EXCP_HVC] = "Hypervisor Call", 7826 [EXCP_HYP_TRAP] = "Hypervisor Trap", 7827 [EXCP_SMC] = "Secure Monitor Call", 7828 [EXCP_VIRQ] = "Virtual IRQ", 7829 [EXCP_VFIQ] = "Virtual FIQ", 7830 [EXCP_SEMIHOST] = "Semihosting call", 7831 [EXCP_NOCP] = "v7M NOCP UsageFault", 7832 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 7833 [EXCP_STKOF] = "v8M STKOF UsageFault", 7834 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 7835 [EXCP_LSERR] = "v8M LSERR UsageFault", 7836 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 7837 }; 7838 7839 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 7840 exc = excnames[idx]; 7841 } 7842 if (!exc) { 7843 exc = "unknown"; 7844 } 7845 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 7846 } 7847 } 7848 7849 /* 7850 * Function used to synchronize QEMU's AArch64 register set with AArch32 7851 * register set. This is necessary when switching between AArch32 and AArch64 7852 * execution state. 7853 */ 7854 void aarch64_sync_32_to_64(CPUARMState *env) 7855 { 7856 int i; 7857 uint32_t mode = env->uncached_cpsr & CPSR_M; 7858 7859 /* We can blanket copy R[0:7] to X[0:7] */ 7860 for (i = 0; i < 8; i++) { 7861 env->xregs[i] = env->regs[i]; 7862 } 7863 7864 /* 7865 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7866 * Otherwise, they come from the banked user regs. 7867 */ 7868 if (mode == ARM_CPU_MODE_FIQ) { 7869 for (i = 8; i < 13; i++) { 7870 env->xregs[i] = env->usr_regs[i - 8]; 7871 } 7872 } else { 7873 for (i = 8; i < 13; i++) { 7874 env->xregs[i] = env->regs[i]; 7875 } 7876 } 7877 7878 /* 7879 * Registers x13-x23 are the various mode SP and FP registers. Registers 7880 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7881 * from the mode banked register. 7882 */ 7883 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7884 env->xregs[13] = env->regs[13]; 7885 env->xregs[14] = env->regs[14]; 7886 } else { 7887 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7888 /* HYP is an exception in that it is copied from r14 */ 7889 if (mode == ARM_CPU_MODE_HYP) { 7890 env->xregs[14] = env->regs[14]; 7891 } else { 7892 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 7893 } 7894 } 7895 7896 if (mode == ARM_CPU_MODE_HYP) { 7897 env->xregs[15] = env->regs[13]; 7898 } else { 7899 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7900 } 7901 7902 if (mode == ARM_CPU_MODE_IRQ) { 7903 env->xregs[16] = env->regs[14]; 7904 env->xregs[17] = env->regs[13]; 7905 } else { 7906 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 7907 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7908 } 7909 7910 if (mode == ARM_CPU_MODE_SVC) { 7911 env->xregs[18] = env->regs[14]; 7912 env->xregs[19] = env->regs[13]; 7913 } else { 7914 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 7915 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7916 } 7917 7918 if (mode == ARM_CPU_MODE_ABT) { 7919 env->xregs[20] = env->regs[14]; 7920 env->xregs[21] = env->regs[13]; 7921 } else { 7922 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 7923 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7924 } 7925 7926 if (mode == ARM_CPU_MODE_UND) { 7927 env->xregs[22] = env->regs[14]; 7928 env->xregs[23] = env->regs[13]; 7929 } else { 7930 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 7931 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7932 } 7933 7934 /* 7935 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7936 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7937 * FIQ bank for r8-r14. 7938 */ 7939 if (mode == ARM_CPU_MODE_FIQ) { 7940 for (i = 24; i < 31; i++) { 7941 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7942 } 7943 } else { 7944 for (i = 24; i < 29; i++) { 7945 env->xregs[i] = env->fiq_regs[i - 24]; 7946 } 7947 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7948 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 7949 } 7950 7951 env->pc = env->regs[15]; 7952 } 7953 7954 /* 7955 * Function used to synchronize QEMU's AArch32 register set with AArch64 7956 * register set. This is necessary when switching between AArch32 and AArch64 7957 * execution state. 7958 */ 7959 void aarch64_sync_64_to_32(CPUARMState *env) 7960 { 7961 int i; 7962 uint32_t mode = env->uncached_cpsr & CPSR_M; 7963 7964 /* We can blanket copy X[0:7] to R[0:7] */ 7965 for (i = 0; i < 8; i++) { 7966 env->regs[i] = env->xregs[i]; 7967 } 7968 7969 /* 7970 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 7971 * Otherwise, we copy x8-x12 into the banked user regs. 7972 */ 7973 if (mode == ARM_CPU_MODE_FIQ) { 7974 for (i = 8; i < 13; i++) { 7975 env->usr_regs[i - 8] = env->xregs[i]; 7976 } 7977 } else { 7978 for (i = 8; i < 13; i++) { 7979 env->regs[i] = env->xregs[i]; 7980 } 7981 } 7982 7983 /* 7984 * Registers r13 & r14 depend on the current mode. 7985 * If we are in a given mode, we copy the corresponding x registers to r13 7986 * and r14. Otherwise, we copy the x register to the banked r13 and r14 7987 * for the mode. 7988 */ 7989 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7990 env->regs[13] = env->xregs[13]; 7991 env->regs[14] = env->xregs[14]; 7992 } else { 7993 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 7994 7995 /* 7996 * HYP is an exception in that it does not have its own banked r14 but 7997 * shares the USR r14 7998 */ 7999 if (mode == ARM_CPU_MODE_HYP) { 8000 env->regs[14] = env->xregs[14]; 8001 } else { 8002 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 8003 } 8004 } 8005 8006 if (mode == ARM_CPU_MODE_HYP) { 8007 env->regs[13] = env->xregs[15]; 8008 } else { 8009 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 8010 } 8011 8012 if (mode == ARM_CPU_MODE_IRQ) { 8013 env->regs[14] = env->xregs[16]; 8014 env->regs[13] = env->xregs[17]; 8015 } else { 8016 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 8017 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 8018 } 8019 8020 if (mode == ARM_CPU_MODE_SVC) { 8021 env->regs[14] = env->xregs[18]; 8022 env->regs[13] = env->xregs[19]; 8023 } else { 8024 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 8025 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 8026 } 8027 8028 if (mode == ARM_CPU_MODE_ABT) { 8029 env->regs[14] = env->xregs[20]; 8030 env->regs[13] = env->xregs[21]; 8031 } else { 8032 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 8033 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 8034 } 8035 8036 if (mode == ARM_CPU_MODE_UND) { 8037 env->regs[14] = env->xregs[22]; 8038 env->regs[13] = env->xregs[23]; 8039 } else { 8040 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 8041 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 8042 } 8043 8044 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 8045 * mode, then we can copy to r8-r14. Otherwise, we copy to the 8046 * FIQ bank for r8-r14. 8047 */ 8048 if (mode == ARM_CPU_MODE_FIQ) { 8049 for (i = 24; i < 31; i++) { 8050 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 8051 } 8052 } else { 8053 for (i = 24; i < 29; i++) { 8054 env->fiq_regs[i - 24] = env->xregs[i]; 8055 } 8056 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 8057 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 8058 } 8059 8060 env->regs[15] = env->pc; 8061 } 8062 8063 static void take_aarch32_exception(CPUARMState *env, int new_mode, 8064 uint32_t mask, uint32_t offset, 8065 uint32_t newpc) 8066 { 8067 /* Change the CPU state so as to actually take the exception. */ 8068 switch_mode(env, new_mode); 8069 /* 8070 * For exceptions taken to AArch32 we must clear the SS bit in both 8071 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 8072 */ 8073 env->uncached_cpsr &= ~PSTATE_SS; 8074 env->spsr = cpsr_read(env); 8075 /* Clear IT bits. */ 8076 env->condexec_bits = 0; 8077 /* Switch to the new mode, and to the correct instruction set. */ 8078 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 8079 /* Set new mode endianness */ 8080 env->uncached_cpsr &= ~CPSR_E; 8081 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 8082 env->uncached_cpsr |= CPSR_E; 8083 } 8084 /* J and IL must always be cleared for exception entry */ 8085 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 8086 env->daif |= mask; 8087 8088 if (new_mode == ARM_CPU_MODE_HYP) { 8089 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 8090 env->elr_el[2] = env->regs[15]; 8091 } else { 8092 /* 8093 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 8094 * and we should just guard the thumb mode on V4 8095 */ 8096 if (arm_feature(env, ARM_FEATURE_V4T)) { 8097 env->thumb = 8098 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 8099 } 8100 env->regs[14] = env->regs[15] + offset; 8101 } 8102 env->regs[15] = newpc; 8103 arm_rebuild_hflags(env); 8104 } 8105 8106 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 8107 { 8108 /* 8109 * Handle exception entry to Hyp mode; this is sufficiently 8110 * different to entry to other AArch32 modes that we handle it 8111 * separately here. 8112 * 8113 * The vector table entry used is always the 0x14 Hyp mode entry point, 8114 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 8115 * The offset applied to the preferred return address is always zero 8116 * (see DDI0487C.a section G1.12.3). 8117 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 8118 */ 8119 uint32_t addr, mask; 8120 ARMCPU *cpu = ARM_CPU(cs); 8121 CPUARMState *env = &cpu->env; 8122 8123 switch (cs->exception_index) { 8124 case EXCP_UDEF: 8125 addr = 0x04; 8126 break; 8127 case EXCP_SWI: 8128 addr = 0x14; 8129 break; 8130 case EXCP_BKPT: 8131 /* Fall through to prefetch abort. */ 8132 case EXCP_PREFETCH_ABORT: 8133 env->cp15.ifar_s = env->exception.vaddress; 8134 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 8135 (uint32_t)env->exception.vaddress); 8136 addr = 0x0c; 8137 break; 8138 case EXCP_DATA_ABORT: 8139 env->cp15.dfar_s = env->exception.vaddress; 8140 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 8141 (uint32_t)env->exception.vaddress); 8142 addr = 0x10; 8143 break; 8144 case EXCP_IRQ: 8145 addr = 0x18; 8146 break; 8147 case EXCP_FIQ: 8148 addr = 0x1c; 8149 break; 8150 case EXCP_HVC: 8151 addr = 0x08; 8152 break; 8153 case EXCP_HYP_TRAP: 8154 addr = 0x14; 8155 break; 8156 default: 8157 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8158 } 8159 8160 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 8161 if (!arm_feature(env, ARM_FEATURE_V8)) { 8162 /* 8163 * QEMU syndrome values are v8-style. v7 has the IL bit 8164 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 8165 * If this is a v7 CPU, squash the IL bit in those cases. 8166 */ 8167 if (cs->exception_index == EXCP_PREFETCH_ABORT || 8168 (cs->exception_index == EXCP_DATA_ABORT && 8169 !(env->exception.syndrome & ARM_EL_ISV)) || 8170 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 8171 env->exception.syndrome &= ~ARM_EL_IL; 8172 } 8173 } 8174 env->cp15.esr_el[2] = env->exception.syndrome; 8175 } 8176 8177 if (arm_current_el(env) != 2 && addr < 0x14) { 8178 addr = 0x14; 8179 } 8180 8181 mask = 0; 8182 if (!(env->cp15.scr_el3 & SCR_EA)) { 8183 mask |= CPSR_A; 8184 } 8185 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 8186 mask |= CPSR_I; 8187 } 8188 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 8189 mask |= CPSR_F; 8190 } 8191 8192 addr += env->cp15.hvbar; 8193 8194 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 8195 } 8196 8197 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 8198 { 8199 ARMCPU *cpu = ARM_CPU(cs); 8200 CPUARMState *env = &cpu->env; 8201 uint32_t addr; 8202 uint32_t mask; 8203 int new_mode; 8204 uint32_t offset; 8205 uint32_t moe; 8206 8207 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 8208 switch (syn_get_ec(env->exception.syndrome)) { 8209 case EC_BREAKPOINT: 8210 case EC_BREAKPOINT_SAME_EL: 8211 moe = 1; 8212 break; 8213 case EC_WATCHPOINT: 8214 case EC_WATCHPOINT_SAME_EL: 8215 moe = 10; 8216 break; 8217 case EC_AA32_BKPT: 8218 moe = 3; 8219 break; 8220 case EC_VECTORCATCH: 8221 moe = 5; 8222 break; 8223 default: 8224 moe = 0; 8225 break; 8226 } 8227 8228 if (moe) { 8229 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 8230 } 8231 8232 if (env->exception.target_el == 2) { 8233 arm_cpu_do_interrupt_aarch32_hyp(cs); 8234 return; 8235 } 8236 8237 switch (cs->exception_index) { 8238 case EXCP_UDEF: 8239 new_mode = ARM_CPU_MODE_UND; 8240 addr = 0x04; 8241 mask = CPSR_I; 8242 if (env->thumb) 8243 offset = 2; 8244 else 8245 offset = 4; 8246 break; 8247 case EXCP_SWI: 8248 new_mode = ARM_CPU_MODE_SVC; 8249 addr = 0x08; 8250 mask = CPSR_I; 8251 /* The PC already points to the next instruction. */ 8252 offset = 0; 8253 break; 8254 case EXCP_BKPT: 8255 /* Fall through to prefetch abort. */ 8256 case EXCP_PREFETCH_ABORT: 8257 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 8258 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 8259 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 8260 env->exception.fsr, (uint32_t)env->exception.vaddress); 8261 new_mode = ARM_CPU_MODE_ABT; 8262 addr = 0x0c; 8263 mask = CPSR_A | CPSR_I; 8264 offset = 4; 8265 break; 8266 case EXCP_DATA_ABORT: 8267 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 8268 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 8269 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 8270 env->exception.fsr, 8271 (uint32_t)env->exception.vaddress); 8272 new_mode = ARM_CPU_MODE_ABT; 8273 addr = 0x10; 8274 mask = CPSR_A | CPSR_I; 8275 offset = 8; 8276 break; 8277 case EXCP_IRQ: 8278 new_mode = ARM_CPU_MODE_IRQ; 8279 addr = 0x18; 8280 /* Disable IRQ and imprecise data aborts. */ 8281 mask = CPSR_A | CPSR_I; 8282 offset = 4; 8283 if (env->cp15.scr_el3 & SCR_IRQ) { 8284 /* IRQ routed to monitor mode */ 8285 new_mode = ARM_CPU_MODE_MON; 8286 mask |= CPSR_F; 8287 } 8288 break; 8289 case EXCP_FIQ: 8290 new_mode = ARM_CPU_MODE_FIQ; 8291 addr = 0x1c; 8292 /* Disable FIQ, IRQ and imprecise data aborts. */ 8293 mask = CPSR_A | CPSR_I | CPSR_F; 8294 if (env->cp15.scr_el3 & SCR_FIQ) { 8295 /* FIQ routed to monitor mode */ 8296 new_mode = ARM_CPU_MODE_MON; 8297 } 8298 offset = 4; 8299 break; 8300 case EXCP_VIRQ: 8301 new_mode = ARM_CPU_MODE_IRQ; 8302 addr = 0x18; 8303 /* Disable IRQ and imprecise data aborts. */ 8304 mask = CPSR_A | CPSR_I; 8305 offset = 4; 8306 break; 8307 case EXCP_VFIQ: 8308 new_mode = ARM_CPU_MODE_FIQ; 8309 addr = 0x1c; 8310 /* Disable FIQ, IRQ and imprecise data aborts. */ 8311 mask = CPSR_A | CPSR_I | CPSR_F; 8312 offset = 4; 8313 break; 8314 case EXCP_SMC: 8315 new_mode = ARM_CPU_MODE_MON; 8316 addr = 0x08; 8317 mask = CPSR_A | CPSR_I | CPSR_F; 8318 offset = 0; 8319 break; 8320 default: 8321 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8322 return; /* Never happens. Keep compiler happy. */ 8323 } 8324 8325 if (new_mode == ARM_CPU_MODE_MON) { 8326 addr += env->cp15.mvbar; 8327 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 8328 /* High vectors. When enabled, base address cannot be remapped. */ 8329 addr += 0xffff0000; 8330 } else { 8331 /* ARM v7 architectures provide a vector base address register to remap 8332 * the interrupt vector table. 8333 * This register is only followed in non-monitor mode, and is banked. 8334 * Note: only bits 31:5 are valid. 8335 */ 8336 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 8337 } 8338 8339 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 8340 env->cp15.scr_el3 &= ~SCR_NS; 8341 } 8342 8343 take_aarch32_exception(env, new_mode, mask, offset, addr); 8344 } 8345 8346 /* Handle exception entry to a target EL which is using AArch64 */ 8347 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 8348 { 8349 ARMCPU *cpu = ARM_CPU(cs); 8350 CPUARMState *env = &cpu->env; 8351 unsigned int new_el = env->exception.target_el; 8352 target_ulong addr = env->cp15.vbar_el[new_el]; 8353 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 8354 unsigned int cur_el = arm_current_el(env); 8355 8356 /* 8357 * Note that new_el can never be 0. If cur_el is 0, then 8358 * el0_a64 is is_a64(), else el0_a64 is ignored. 8359 */ 8360 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 8361 8362 if (cur_el < new_el) { 8363 /* Entry vector offset depends on whether the implemented EL 8364 * immediately lower than the target level is using AArch32 or AArch64 8365 */ 8366 bool is_aa64; 8367 8368 switch (new_el) { 8369 case 3: 8370 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 8371 break; 8372 case 2: 8373 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 8374 break; 8375 case 1: 8376 is_aa64 = is_a64(env); 8377 break; 8378 default: 8379 g_assert_not_reached(); 8380 } 8381 8382 if (is_aa64) { 8383 addr += 0x400; 8384 } else { 8385 addr += 0x600; 8386 } 8387 } else if (pstate_read(env) & PSTATE_SP) { 8388 addr += 0x200; 8389 } 8390 8391 switch (cs->exception_index) { 8392 case EXCP_PREFETCH_ABORT: 8393 case EXCP_DATA_ABORT: 8394 env->cp15.far_el[new_el] = env->exception.vaddress; 8395 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 8396 env->cp15.far_el[new_el]); 8397 /* fall through */ 8398 case EXCP_BKPT: 8399 case EXCP_UDEF: 8400 case EXCP_SWI: 8401 case EXCP_HVC: 8402 case EXCP_HYP_TRAP: 8403 case EXCP_SMC: 8404 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 8405 /* 8406 * QEMU internal FP/SIMD syndromes from AArch32 include the 8407 * TA and coproc fields which are only exposed if the exception 8408 * is taken to AArch32 Hyp mode. Mask them out to get a valid 8409 * AArch64 format syndrome. 8410 */ 8411 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 8412 } 8413 env->cp15.esr_el[new_el] = env->exception.syndrome; 8414 break; 8415 case EXCP_IRQ: 8416 case EXCP_VIRQ: 8417 addr += 0x80; 8418 break; 8419 case EXCP_FIQ: 8420 case EXCP_VFIQ: 8421 addr += 0x100; 8422 break; 8423 case EXCP_SEMIHOST: 8424 qemu_log_mask(CPU_LOG_INT, 8425 "...handling as semihosting call 0x%" PRIx64 "\n", 8426 env->xregs[0]); 8427 env->xregs[0] = do_arm_semihosting(env); 8428 return; 8429 default: 8430 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8431 } 8432 8433 if (is_a64(env)) { 8434 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 8435 aarch64_save_sp(env, arm_current_el(env)); 8436 env->elr_el[new_el] = env->pc; 8437 } else { 8438 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 8439 env->elr_el[new_el] = env->regs[15]; 8440 8441 aarch64_sync_32_to_64(env); 8442 8443 env->condexec_bits = 0; 8444 } 8445 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 8446 env->elr_el[new_el]); 8447 8448 pstate_write(env, PSTATE_DAIF | new_mode); 8449 env->aarch64 = 1; 8450 aarch64_restore_sp(env, new_el); 8451 helper_rebuild_hflags_a64(env, new_el); 8452 8453 env->pc = addr; 8454 8455 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 8456 new_el, env->pc, pstate_read(env)); 8457 } 8458 8459 /* 8460 * Do semihosting call and set the appropriate return value. All the 8461 * permission and validity checks have been done at translate time. 8462 * 8463 * We only see semihosting exceptions in TCG only as they are not 8464 * trapped to the hypervisor in KVM. 8465 */ 8466 #ifdef CONFIG_TCG 8467 static void handle_semihosting(CPUState *cs) 8468 { 8469 ARMCPU *cpu = ARM_CPU(cs); 8470 CPUARMState *env = &cpu->env; 8471 8472 if (is_a64(env)) { 8473 qemu_log_mask(CPU_LOG_INT, 8474 "...handling as semihosting call 0x%" PRIx64 "\n", 8475 env->xregs[0]); 8476 env->xregs[0] = do_arm_semihosting(env); 8477 } else { 8478 qemu_log_mask(CPU_LOG_INT, 8479 "...handling as semihosting call 0x%x\n", 8480 env->regs[0]); 8481 env->regs[0] = do_arm_semihosting(env); 8482 } 8483 } 8484 #endif 8485 8486 /* Handle a CPU exception for A and R profile CPUs. 8487 * Do any appropriate logging, handle PSCI calls, and then hand off 8488 * to the AArch64-entry or AArch32-entry function depending on the 8489 * target exception level's register width. 8490 */ 8491 void arm_cpu_do_interrupt(CPUState *cs) 8492 { 8493 ARMCPU *cpu = ARM_CPU(cs); 8494 CPUARMState *env = &cpu->env; 8495 unsigned int new_el = env->exception.target_el; 8496 8497 assert(!arm_feature(env, ARM_FEATURE_M)); 8498 8499 arm_log_exception(cs->exception_index); 8500 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 8501 new_el); 8502 if (qemu_loglevel_mask(CPU_LOG_INT) 8503 && !excp_is_internal(cs->exception_index)) { 8504 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 8505 syn_get_ec(env->exception.syndrome), 8506 env->exception.syndrome); 8507 } 8508 8509 if (arm_is_psci_call(cpu, cs->exception_index)) { 8510 arm_handle_psci_call(cpu); 8511 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 8512 return; 8513 } 8514 8515 /* 8516 * Semihosting semantics depend on the register width of the code 8517 * that caused the exception, not the target exception level, so 8518 * must be handled here. 8519 */ 8520 #ifdef CONFIG_TCG 8521 if (cs->exception_index == EXCP_SEMIHOST) { 8522 handle_semihosting(cs); 8523 return; 8524 } 8525 #endif 8526 8527 /* Hooks may change global state so BQL should be held, also the 8528 * BQL needs to be held for any modification of 8529 * cs->interrupt_request. 8530 */ 8531 g_assert(qemu_mutex_iothread_locked()); 8532 8533 arm_call_pre_el_change_hook(cpu); 8534 8535 assert(!excp_is_internal(cs->exception_index)); 8536 if (arm_el_is_aa64(env, new_el)) { 8537 arm_cpu_do_interrupt_aarch64(cs); 8538 } else { 8539 arm_cpu_do_interrupt_aarch32(cs); 8540 } 8541 8542 arm_call_el_change_hook(cpu); 8543 8544 if (!kvm_enabled()) { 8545 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 8546 } 8547 } 8548 #endif /* !CONFIG_USER_ONLY */ 8549 8550 /* Return the exception level which controls this address translation regime */ 8551 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 8552 { 8553 switch (mmu_idx) { 8554 case ARMMMUIdx_S2NS: 8555 case ARMMMUIdx_S1E2: 8556 return 2; 8557 case ARMMMUIdx_S1E3: 8558 return 3; 8559 case ARMMMUIdx_S1SE0: 8560 return arm_el_is_aa64(env, 3) ? 1 : 3; 8561 case ARMMMUIdx_S1SE1: 8562 case ARMMMUIdx_S1NSE0: 8563 case ARMMMUIdx_S1NSE1: 8564 case ARMMMUIdx_MPrivNegPri: 8565 case ARMMMUIdx_MUserNegPri: 8566 case ARMMMUIdx_MPriv: 8567 case ARMMMUIdx_MUser: 8568 case ARMMMUIdx_MSPrivNegPri: 8569 case ARMMMUIdx_MSUserNegPri: 8570 case ARMMMUIdx_MSPriv: 8571 case ARMMMUIdx_MSUser: 8572 return 1; 8573 default: 8574 g_assert_not_reached(); 8575 } 8576 } 8577 8578 #ifndef CONFIG_USER_ONLY 8579 8580 /* Return the SCTLR value which controls this address translation regime */ 8581 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 8582 { 8583 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 8584 } 8585 8586 /* Return true if the specified stage of address translation is disabled */ 8587 static inline bool regime_translation_disabled(CPUARMState *env, 8588 ARMMMUIdx mmu_idx) 8589 { 8590 if (arm_feature(env, ARM_FEATURE_M)) { 8591 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 8592 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 8593 case R_V7M_MPU_CTRL_ENABLE_MASK: 8594 /* Enabled, but not for HardFault and NMI */ 8595 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 8596 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 8597 /* Enabled for all cases */ 8598 return false; 8599 case 0: 8600 default: 8601 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 8602 * we warned about that in armv7m_nvic.c when the guest set it. 8603 */ 8604 return true; 8605 } 8606 } 8607 8608 if (mmu_idx == ARMMMUIdx_S2NS) { 8609 /* HCR.DC means HCR.VM behaves as 1 */ 8610 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 8611 } 8612 8613 if (env->cp15.hcr_el2 & HCR_TGE) { 8614 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 8615 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 8616 return true; 8617 } 8618 } 8619 8620 if ((env->cp15.hcr_el2 & HCR_DC) && 8621 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) { 8622 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 8623 return true; 8624 } 8625 8626 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 8627 } 8628 8629 static inline bool regime_translation_big_endian(CPUARMState *env, 8630 ARMMMUIdx mmu_idx) 8631 { 8632 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 8633 } 8634 8635 /* Return the TTBR associated with this translation regime */ 8636 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8637 int ttbrn) 8638 { 8639 if (mmu_idx == ARMMMUIdx_S2NS) { 8640 return env->cp15.vttbr_el2; 8641 } 8642 if (ttbrn == 0) { 8643 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8644 } else { 8645 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8646 } 8647 } 8648 8649 #endif /* !CONFIG_USER_ONLY */ 8650 8651 /* Return the TCR controlling this translation regime */ 8652 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 8653 { 8654 if (mmu_idx == ARMMMUIdx_S2NS) { 8655 return &env->cp15.vtcr_el2; 8656 } 8657 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 8658 } 8659 8660 /* Convert a possible stage1+2 MMU index into the appropriate 8661 * stage 1 MMU index 8662 */ 8663 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 8664 { 8665 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8666 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 8667 } 8668 return mmu_idx; 8669 } 8670 8671 /* Return true if the translation regime is using LPAE format page tables */ 8672 static inline bool regime_using_lpae_format(CPUARMState *env, 8673 ARMMMUIdx mmu_idx) 8674 { 8675 int el = regime_el(env, mmu_idx); 8676 if (el == 2 || arm_el_is_aa64(env, el)) { 8677 return true; 8678 } 8679 if (arm_feature(env, ARM_FEATURE_LPAE) 8680 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8681 return true; 8682 } 8683 return false; 8684 } 8685 8686 /* Returns true if the stage 1 translation regime is using LPAE format page 8687 * tables. Used when raising alignment exceptions, whose FSR changes depending 8688 * on whether the long or short descriptor format is in use. */ 8689 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8690 { 8691 mmu_idx = stage_1_mmu_idx(mmu_idx); 8692 8693 return regime_using_lpae_format(env, mmu_idx); 8694 } 8695 8696 #ifndef CONFIG_USER_ONLY 8697 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8698 { 8699 switch (mmu_idx) { 8700 case ARMMMUIdx_S1SE0: 8701 case ARMMMUIdx_S1NSE0: 8702 case ARMMMUIdx_MUser: 8703 case ARMMMUIdx_MSUser: 8704 case ARMMMUIdx_MUserNegPri: 8705 case ARMMMUIdx_MSUserNegPri: 8706 return true; 8707 default: 8708 return false; 8709 case ARMMMUIdx_S12NSE0: 8710 case ARMMMUIdx_S12NSE1: 8711 g_assert_not_reached(); 8712 } 8713 } 8714 8715 /* Translate section/page access permissions to page 8716 * R/W protection flags 8717 * 8718 * @env: CPUARMState 8719 * @mmu_idx: MMU index indicating required translation regime 8720 * @ap: The 3-bit access permissions (AP[2:0]) 8721 * @domain_prot: The 2-bit domain access permissions 8722 */ 8723 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8724 int ap, int domain_prot) 8725 { 8726 bool is_user = regime_is_user(env, mmu_idx); 8727 8728 if (domain_prot == 3) { 8729 return PAGE_READ | PAGE_WRITE; 8730 } 8731 8732 switch (ap) { 8733 case 0: 8734 if (arm_feature(env, ARM_FEATURE_V7)) { 8735 return 0; 8736 } 8737 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8738 case SCTLR_S: 8739 return is_user ? 0 : PAGE_READ; 8740 case SCTLR_R: 8741 return PAGE_READ; 8742 default: 8743 return 0; 8744 } 8745 case 1: 8746 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8747 case 2: 8748 if (is_user) { 8749 return PAGE_READ; 8750 } else { 8751 return PAGE_READ | PAGE_WRITE; 8752 } 8753 case 3: 8754 return PAGE_READ | PAGE_WRITE; 8755 case 4: /* Reserved. */ 8756 return 0; 8757 case 5: 8758 return is_user ? 0 : PAGE_READ; 8759 case 6: 8760 return PAGE_READ; 8761 case 7: 8762 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8763 return 0; 8764 } 8765 return PAGE_READ; 8766 default: 8767 g_assert_not_reached(); 8768 } 8769 } 8770 8771 /* Translate section/page access permissions to page 8772 * R/W protection flags. 8773 * 8774 * @ap: The 2-bit simple AP (AP[2:1]) 8775 * @is_user: TRUE if accessing from PL0 8776 */ 8777 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8778 { 8779 switch (ap) { 8780 case 0: 8781 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8782 case 1: 8783 return PAGE_READ | PAGE_WRITE; 8784 case 2: 8785 return is_user ? 0 : PAGE_READ; 8786 case 3: 8787 return PAGE_READ; 8788 default: 8789 g_assert_not_reached(); 8790 } 8791 } 8792 8793 static inline int 8794 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8795 { 8796 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8797 } 8798 8799 /* Translate S2 section/page access permissions to protection flags 8800 * 8801 * @env: CPUARMState 8802 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8803 * @xn: XN (execute-never) bit 8804 */ 8805 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8806 { 8807 int prot = 0; 8808 8809 if (s2ap & 1) { 8810 prot |= PAGE_READ; 8811 } 8812 if (s2ap & 2) { 8813 prot |= PAGE_WRITE; 8814 } 8815 if (!xn) { 8816 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8817 prot |= PAGE_EXEC; 8818 } 8819 } 8820 return prot; 8821 } 8822 8823 /* Translate section/page access permissions to protection flags 8824 * 8825 * @env: CPUARMState 8826 * @mmu_idx: MMU index indicating required translation regime 8827 * @is_aa64: TRUE if AArch64 8828 * @ap: The 2-bit simple AP (AP[2:1]) 8829 * @ns: NS (non-secure) bit 8830 * @xn: XN (execute-never) bit 8831 * @pxn: PXN (privileged execute-never) bit 8832 */ 8833 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8834 int ap, int ns, int xn, int pxn) 8835 { 8836 bool is_user = regime_is_user(env, mmu_idx); 8837 int prot_rw, user_rw; 8838 bool have_wxn; 8839 int wxn = 0; 8840 8841 assert(mmu_idx != ARMMMUIdx_S2NS); 8842 8843 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8844 if (is_user) { 8845 prot_rw = user_rw; 8846 } else { 8847 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8848 } 8849 8850 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8851 return prot_rw; 8852 } 8853 8854 /* TODO have_wxn should be replaced with 8855 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8856 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8857 * compatible processors have EL2, which is required for [U]WXN. 8858 */ 8859 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8860 8861 if (have_wxn) { 8862 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8863 } 8864 8865 if (is_aa64) { 8866 switch (regime_el(env, mmu_idx)) { 8867 case 1: 8868 if (!is_user) { 8869 xn = pxn || (user_rw & PAGE_WRITE); 8870 } 8871 break; 8872 case 2: 8873 case 3: 8874 break; 8875 } 8876 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8877 switch (regime_el(env, mmu_idx)) { 8878 case 1: 8879 case 3: 8880 if (is_user) { 8881 xn = xn || !(user_rw & PAGE_READ); 8882 } else { 8883 int uwxn = 0; 8884 if (have_wxn) { 8885 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8886 } 8887 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8888 (uwxn && (user_rw & PAGE_WRITE)); 8889 } 8890 break; 8891 case 2: 8892 break; 8893 } 8894 } else { 8895 xn = wxn = 0; 8896 } 8897 8898 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8899 return prot_rw; 8900 } 8901 return prot_rw | PAGE_EXEC; 8902 } 8903 8904 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8905 uint32_t *table, uint32_t address) 8906 { 8907 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8908 TCR *tcr = regime_tcr(env, mmu_idx); 8909 8910 if (address & tcr->mask) { 8911 if (tcr->raw_tcr & TTBCR_PD1) { 8912 /* Translation table walk disabled for TTBR1 */ 8913 return false; 8914 } 8915 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 8916 } else { 8917 if (tcr->raw_tcr & TTBCR_PD0) { 8918 /* Translation table walk disabled for TTBR0 */ 8919 return false; 8920 } 8921 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 8922 } 8923 *table |= (address >> 18) & 0x3ffc; 8924 return true; 8925 } 8926 8927 /* Translate a S1 pagetable walk through S2 if needed. */ 8928 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 8929 hwaddr addr, MemTxAttrs txattrs, 8930 ARMMMUFaultInfo *fi) 8931 { 8932 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 8933 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8934 target_ulong s2size; 8935 hwaddr s2pa; 8936 int s2prot; 8937 int ret; 8938 ARMCacheAttrs cacheattrs = {}; 8939 ARMCacheAttrs *pcacheattrs = NULL; 8940 8941 if (env->cp15.hcr_el2 & HCR_PTW) { 8942 /* 8943 * PTW means we must fault if this S1 walk touches S2 Device 8944 * memory; otherwise we don't care about the attributes and can 8945 * save the S2 translation the effort of computing them. 8946 */ 8947 pcacheattrs = &cacheattrs; 8948 } 8949 8950 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 8951 &txattrs, &s2prot, &s2size, fi, pcacheattrs); 8952 if (ret) { 8953 assert(fi->type != ARMFault_None); 8954 fi->s2addr = addr; 8955 fi->stage2 = true; 8956 fi->s1ptw = true; 8957 return ~0; 8958 } 8959 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 8960 /* Access was to Device memory: generate Permission fault */ 8961 fi->type = ARMFault_Permission; 8962 fi->s2addr = addr; 8963 fi->stage2 = true; 8964 fi->s1ptw = true; 8965 return ~0; 8966 } 8967 addr = s2pa; 8968 } 8969 return addr; 8970 } 8971 8972 /* All loads done in the course of a page table walk go through here. */ 8973 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8974 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8975 { 8976 ARMCPU *cpu = ARM_CPU(cs); 8977 CPUARMState *env = &cpu->env; 8978 MemTxAttrs attrs = {}; 8979 MemTxResult result = MEMTX_OK; 8980 AddressSpace *as; 8981 uint32_t data; 8982 8983 attrs.secure = is_secure; 8984 as = arm_addressspace(cs, attrs); 8985 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8986 if (fi->s1ptw) { 8987 return 0; 8988 } 8989 if (regime_translation_big_endian(env, mmu_idx)) { 8990 data = address_space_ldl_be(as, addr, attrs, &result); 8991 } else { 8992 data = address_space_ldl_le(as, addr, attrs, &result); 8993 } 8994 if (result == MEMTX_OK) { 8995 return data; 8996 } 8997 fi->type = ARMFault_SyncExternalOnWalk; 8998 fi->ea = arm_extabort_type(result); 8999 return 0; 9000 } 9001 9002 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 9003 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 9004 { 9005 ARMCPU *cpu = ARM_CPU(cs); 9006 CPUARMState *env = &cpu->env; 9007 MemTxAttrs attrs = {}; 9008 MemTxResult result = MEMTX_OK; 9009 AddressSpace *as; 9010 uint64_t data; 9011 9012 attrs.secure = is_secure; 9013 as = arm_addressspace(cs, attrs); 9014 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 9015 if (fi->s1ptw) { 9016 return 0; 9017 } 9018 if (regime_translation_big_endian(env, mmu_idx)) { 9019 data = address_space_ldq_be(as, addr, attrs, &result); 9020 } else { 9021 data = address_space_ldq_le(as, addr, attrs, &result); 9022 } 9023 if (result == MEMTX_OK) { 9024 return data; 9025 } 9026 fi->type = ARMFault_SyncExternalOnWalk; 9027 fi->ea = arm_extabort_type(result); 9028 return 0; 9029 } 9030 9031 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 9032 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9033 hwaddr *phys_ptr, int *prot, 9034 target_ulong *page_size, 9035 ARMMMUFaultInfo *fi) 9036 { 9037 CPUState *cs = env_cpu(env); 9038 int level = 1; 9039 uint32_t table; 9040 uint32_t desc; 9041 int type; 9042 int ap; 9043 int domain = 0; 9044 int domain_prot; 9045 hwaddr phys_addr; 9046 uint32_t dacr; 9047 9048 /* Pagetable walk. */ 9049 /* Lookup l1 descriptor. */ 9050 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9051 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9052 fi->type = ARMFault_Translation; 9053 goto do_fault; 9054 } 9055 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9056 mmu_idx, fi); 9057 if (fi->type != ARMFault_None) { 9058 goto do_fault; 9059 } 9060 type = (desc & 3); 9061 domain = (desc >> 5) & 0x0f; 9062 if (regime_el(env, mmu_idx) == 1) { 9063 dacr = env->cp15.dacr_ns; 9064 } else { 9065 dacr = env->cp15.dacr_s; 9066 } 9067 domain_prot = (dacr >> (domain * 2)) & 3; 9068 if (type == 0) { 9069 /* Section translation fault. */ 9070 fi->type = ARMFault_Translation; 9071 goto do_fault; 9072 } 9073 if (type != 2) { 9074 level = 2; 9075 } 9076 if (domain_prot == 0 || domain_prot == 2) { 9077 fi->type = ARMFault_Domain; 9078 goto do_fault; 9079 } 9080 if (type == 2) { 9081 /* 1Mb section. */ 9082 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9083 ap = (desc >> 10) & 3; 9084 *page_size = 1024 * 1024; 9085 } else { 9086 /* Lookup l2 entry. */ 9087 if (type == 1) { 9088 /* Coarse pagetable. */ 9089 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9090 } else { 9091 /* Fine pagetable. */ 9092 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 9093 } 9094 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9095 mmu_idx, fi); 9096 if (fi->type != ARMFault_None) { 9097 goto do_fault; 9098 } 9099 switch (desc & 3) { 9100 case 0: /* Page translation fault. */ 9101 fi->type = ARMFault_Translation; 9102 goto do_fault; 9103 case 1: /* 64k page. */ 9104 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9105 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 9106 *page_size = 0x10000; 9107 break; 9108 case 2: /* 4k page. */ 9109 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9110 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 9111 *page_size = 0x1000; 9112 break; 9113 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 9114 if (type == 1) { 9115 /* ARMv6/XScale extended small page format */ 9116 if (arm_feature(env, ARM_FEATURE_XSCALE) 9117 || arm_feature(env, ARM_FEATURE_V6)) { 9118 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9119 *page_size = 0x1000; 9120 } else { 9121 /* UNPREDICTABLE in ARMv5; we choose to take a 9122 * page translation fault. 9123 */ 9124 fi->type = ARMFault_Translation; 9125 goto do_fault; 9126 } 9127 } else { 9128 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 9129 *page_size = 0x400; 9130 } 9131 ap = (desc >> 4) & 3; 9132 break; 9133 default: 9134 /* Never happens, but compiler isn't smart enough to tell. */ 9135 abort(); 9136 } 9137 } 9138 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9139 *prot |= *prot ? PAGE_EXEC : 0; 9140 if (!(*prot & (1 << access_type))) { 9141 /* Access permission fault. */ 9142 fi->type = ARMFault_Permission; 9143 goto do_fault; 9144 } 9145 *phys_ptr = phys_addr; 9146 return false; 9147 do_fault: 9148 fi->domain = domain; 9149 fi->level = level; 9150 return true; 9151 } 9152 9153 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 9154 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9155 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 9156 target_ulong *page_size, ARMMMUFaultInfo *fi) 9157 { 9158 CPUState *cs = env_cpu(env); 9159 int level = 1; 9160 uint32_t table; 9161 uint32_t desc; 9162 uint32_t xn; 9163 uint32_t pxn = 0; 9164 int type; 9165 int ap; 9166 int domain = 0; 9167 int domain_prot; 9168 hwaddr phys_addr; 9169 uint32_t dacr; 9170 bool ns; 9171 9172 /* Pagetable walk. */ 9173 /* Lookup l1 descriptor. */ 9174 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9175 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9176 fi->type = ARMFault_Translation; 9177 goto do_fault; 9178 } 9179 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9180 mmu_idx, fi); 9181 if (fi->type != ARMFault_None) { 9182 goto do_fault; 9183 } 9184 type = (desc & 3); 9185 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 9186 /* Section translation fault, or attempt to use the encoding 9187 * which is Reserved on implementations without PXN. 9188 */ 9189 fi->type = ARMFault_Translation; 9190 goto do_fault; 9191 } 9192 if ((type == 1) || !(desc & (1 << 18))) { 9193 /* Page or Section. */ 9194 domain = (desc >> 5) & 0x0f; 9195 } 9196 if (regime_el(env, mmu_idx) == 1) { 9197 dacr = env->cp15.dacr_ns; 9198 } else { 9199 dacr = env->cp15.dacr_s; 9200 } 9201 if (type == 1) { 9202 level = 2; 9203 } 9204 domain_prot = (dacr >> (domain * 2)) & 3; 9205 if (domain_prot == 0 || domain_prot == 2) { 9206 /* Section or Page domain fault */ 9207 fi->type = ARMFault_Domain; 9208 goto do_fault; 9209 } 9210 if (type != 1) { 9211 if (desc & (1 << 18)) { 9212 /* Supersection. */ 9213 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 9214 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 9215 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 9216 *page_size = 0x1000000; 9217 } else { 9218 /* Section. */ 9219 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9220 *page_size = 0x100000; 9221 } 9222 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 9223 xn = desc & (1 << 4); 9224 pxn = desc & 1; 9225 ns = extract32(desc, 19, 1); 9226 } else { 9227 if (arm_feature(env, ARM_FEATURE_PXN)) { 9228 pxn = (desc >> 2) & 1; 9229 } 9230 ns = extract32(desc, 3, 1); 9231 /* Lookup l2 entry. */ 9232 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9233 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9234 mmu_idx, fi); 9235 if (fi->type != ARMFault_None) { 9236 goto do_fault; 9237 } 9238 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 9239 switch (desc & 3) { 9240 case 0: /* Page translation fault. */ 9241 fi->type = ARMFault_Translation; 9242 goto do_fault; 9243 case 1: /* 64k page. */ 9244 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9245 xn = desc & (1 << 15); 9246 *page_size = 0x10000; 9247 break; 9248 case 2: case 3: /* 4k page. */ 9249 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9250 xn = desc & 1; 9251 *page_size = 0x1000; 9252 break; 9253 default: 9254 /* Never happens, but compiler isn't smart enough to tell. */ 9255 abort(); 9256 } 9257 } 9258 if (domain_prot == 3) { 9259 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9260 } else { 9261 if (pxn && !regime_is_user(env, mmu_idx)) { 9262 xn = 1; 9263 } 9264 if (xn && access_type == MMU_INST_FETCH) { 9265 fi->type = ARMFault_Permission; 9266 goto do_fault; 9267 } 9268 9269 if (arm_feature(env, ARM_FEATURE_V6K) && 9270 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 9271 /* The simplified model uses AP[0] as an access control bit. */ 9272 if ((ap & 1) == 0) { 9273 /* Access flag fault. */ 9274 fi->type = ARMFault_AccessFlag; 9275 goto do_fault; 9276 } 9277 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 9278 } else { 9279 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9280 } 9281 if (*prot && !xn) { 9282 *prot |= PAGE_EXEC; 9283 } 9284 if (!(*prot & (1 << access_type))) { 9285 /* Access permission fault. */ 9286 fi->type = ARMFault_Permission; 9287 goto do_fault; 9288 } 9289 } 9290 if (ns) { 9291 /* The NS bit will (as required by the architecture) have no effect if 9292 * the CPU doesn't support TZ or this is a non-secure translation 9293 * regime, because the attribute will already be non-secure. 9294 */ 9295 attrs->secure = false; 9296 } 9297 *phys_ptr = phys_addr; 9298 return false; 9299 do_fault: 9300 fi->domain = domain; 9301 fi->level = level; 9302 return true; 9303 } 9304 9305 /* 9306 * check_s2_mmu_setup 9307 * @cpu: ARMCPU 9308 * @is_aa64: True if the translation regime is in AArch64 state 9309 * @startlevel: Suggested starting level 9310 * @inputsize: Bitsize of IPAs 9311 * @stride: Page-table stride (See the ARM ARM) 9312 * 9313 * Returns true if the suggested S2 translation parameters are OK and 9314 * false otherwise. 9315 */ 9316 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 9317 int inputsize, int stride) 9318 { 9319 const int grainsize = stride + 3; 9320 int startsizecheck; 9321 9322 /* Negative levels are never allowed. */ 9323 if (level < 0) { 9324 return false; 9325 } 9326 9327 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 9328 if (startsizecheck < 1 || startsizecheck > stride + 4) { 9329 return false; 9330 } 9331 9332 if (is_aa64) { 9333 CPUARMState *env = &cpu->env; 9334 unsigned int pamax = arm_pamax(cpu); 9335 9336 switch (stride) { 9337 case 13: /* 64KB Pages. */ 9338 if (level == 0 || (level == 1 && pamax <= 42)) { 9339 return false; 9340 } 9341 break; 9342 case 11: /* 16KB Pages. */ 9343 if (level == 0 || (level == 1 && pamax <= 40)) { 9344 return false; 9345 } 9346 break; 9347 case 9: /* 4KB Pages. */ 9348 if (level == 0 && pamax <= 42) { 9349 return false; 9350 } 9351 break; 9352 default: 9353 g_assert_not_reached(); 9354 } 9355 9356 /* Inputsize checks. */ 9357 if (inputsize > pamax && 9358 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 9359 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 9360 return false; 9361 } 9362 } else { 9363 /* AArch32 only supports 4KB pages. Assert on that. */ 9364 assert(stride == 9); 9365 9366 if (level == 0) { 9367 return false; 9368 } 9369 } 9370 return true; 9371 } 9372 9373 /* Translate from the 4-bit stage 2 representation of 9374 * memory attributes (without cache-allocation hints) to 9375 * the 8-bit representation of the stage 1 MAIR registers 9376 * (which includes allocation hints). 9377 * 9378 * ref: shared/translation/attrs/S2AttrDecode() 9379 * .../S2ConvertAttrsHints() 9380 */ 9381 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 9382 { 9383 uint8_t hiattr = extract32(s2attrs, 2, 2); 9384 uint8_t loattr = extract32(s2attrs, 0, 2); 9385 uint8_t hihint = 0, lohint = 0; 9386 9387 if (hiattr != 0) { /* normal memory */ 9388 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 9389 hiattr = loattr = 1; /* non-cacheable */ 9390 } else { 9391 if (hiattr != 1) { /* Write-through or write-back */ 9392 hihint = 3; /* RW allocate */ 9393 } 9394 if (loattr != 1) { /* Write-through or write-back */ 9395 lohint = 3; /* RW allocate */ 9396 } 9397 } 9398 } 9399 9400 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 9401 } 9402 #endif /* !CONFIG_USER_ONLY */ 9403 9404 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va, 9405 ARMMMUIdx mmu_idx) 9406 { 9407 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 9408 uint32_t el = regime_el(env, mmu_idx); 9409 bool tbi, tbid, epd, hpd, using16k, using64k; 9410 int select, tsz; 9411 9412 /* 9413 * Bit 55 is always between the two regions, and is canonical for 9414 * determining if address tagging is enabled. 9415 */ 9416 select = extract64(va, 55, 1); 9417 9418 if (el > 1) { 9419 tsz = extract32(tcr, 0, 6); 9420 using64k = extract32(tcr, 14, 1); 9421 using16k = extract32(tcr, 15, 1); 9422 if (mmu_idx == ARMMMUIdx_S2NS) { 9423 /* VTCR_EL2 */ 9424 tbi = tbid = hpd = false; 9425 } else { 9426 tbi = extract32(tcr, 20, 1); 9427 hpd = extract32(tcr, 24, 1); 9428 tbid = extract32(tcr, 29, 1); 9429 } 9430 epd = false; 9431 } else if (!select) { 9432 tsz = extract32(tcr, 0, 6); 9433 epd = extract32(tcr, 7, 1); 9434 using64k = extract32(tcr, 14, 1); 9435 using16k = extract32(tcr, 15, 1); 9436 tbi = extract64(tcr, 37, 1); 9437 hpd = extract64(tcr, 41, 1); 9438 tbid = extract64(tcr, 51, 1); 9439 } else { 9440 int tg = extract32(tcr, 30, 2); 9441 using16k = tg == 1; 9442 using64k = tg == 3; 9443 tsz = extract32(tcr, 16, 6); 9444 epd = extract32(tcr, 23, 1); 9445 tbi = extract64(tcr, 38, 1); 9446 hpd = extract64(tcr, 42, 1); 9447 tbid = extract64(tcr, 52, 1); 9448 } 9449 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 9450 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 9451 9452 return (ARMVAParameters) { 9453 .tsz = tsz, 9454 .select = select, 9455 .tbi = tbi, 9456 .tbid = tbid, 9457 .epd = epd, 9458 .hpd = hpd, 9459 .using16k = using16k, 9460 .using64k = using64k, 9461 }; 9462 } 9463 9464 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 9465 ARMMMUIdx mmu_idx, bool data) 9466 { 9467 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx); 9468 9469 /* Present TBI as a composite with TBID. */ 9470 ret.tbi &= (data || !ret.tbid); 9471 return ret; 9472 } 9473 9474 #ifndef CONFIG_USER_ONLY 9475 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 9476 ARMMMUIdx mmu_idx) 9477 { 9478 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 9479 uint32_t el = regime_el(env, mmu_idx); 9480 int select, tsz; 9481 bool epd, hpd; 9482 9483 if (mmu_idx == ARMMMUIdx_S2NS) { 9484 /* VTCR */ 9485 bool sext = extract32(tcr, 4, 1); 9486 bool sign = extract32(tcr, 3, 1); 9487 9488 /* 9489 * If the sign-extend bit is not the same as t0sz[3], the result 9490 * is unpredictable. Flag this as a guest error. 9491 */ 9492 if (sign != sext) { 9493 qemu_log_mask(LOG_GUEST_ERROR, 9494 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 9495 } 9496 tsz = sextract32(tcr, 0, 4) + 8; 9497 select = 0; 9498 hpd = false; 9499 epd = false; 9500 } else if (el == 2) { 9501 /* HTCR */ 9502 tsz = extract32(tcr, 0, 3); 9503 select = 0; 9504 hpd = extract64(tcr, 24, 1); 9505 epd = false; 9506 } else { 9507 int t0sz = extract32(tcr, 0, 3); 9508 int t1sz = extract32(tcr, 16, 3); 9509 9510 if (t1sz == 0) { 9511 select = va > (0xffffffffu >> t0sz); 9512 } else { 9513 /* Note that we will detect errors later. */ 9514 select = va >= ~(0xffffffffu >> t1sz); 9515 } 9516 if (!select) { 9517 tsz = t0sz; 9518 epd = extract32(tcr, 7, 1); 9519 hpd = extract64(tcr, 41, 1); 9520 } else { 9521 tsz = t1sz; 9522 epd = extract32(tcr, 23, 1); 9523 hpd = extract64(tcr, 42, 1); 9524 } 9525 /* For aarch32, hpd0 is not enabled without t2e as well. */ 9526 hpd &= extract32(tcr, 6, 1); 9527 } 9528 9529 return (ARMVAParameters) { 9530 .tsz = tsz, 9531 .select = select, 9532 .epd = epd, 9533 .hpd = hpd, 9534 }; 9535 } 9536 9537 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 9538 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9539 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 9540 target_ulong *page_size_ptr, 9541 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9542 { 9543 ARMCPU *cpu = env_archcpu(env); 9544 CPUState *cs = CPU(cpu); 9545 /* Read an LPAE long-descriptor translation table. */ 9546 ARMFaultType fault_type = ARMFault_Translation; 9547 uint32_t level; 9548 ARMVAParameters param; 9549 uint64_t ttbr; 9550 hwaddr descaddr, indexmask, indexmask_grainsize; 9551 uint32_t tableattrs; 9552 target_ulong page_size; 9553 uint32_t attrs; 9554 int32_t stride; 9555 int addrsize, inputsize; 9556 TCR *tcr = regime_tcr(env, mmu_idx); 9557 int ap, ns, xn, pxn; 9558 uint32_t el = regime_el(env, mmu_idx); 9559 bool ttbr1_valid; 9560 uint64_t descaddrmask; 9561 bool aarch64 = arm_el_is_aa64(env, el); 9562 bool guarded = false; 9563 9564 /* TODO: 9565 * This code does not handle the different format TCR for VTCR_EL2. 9566 * This code also does not support shareability levels. 9567 * Attribute and permission bit handling should also be checked when adding 9568 * support for those page table walks. 9569 */ 9570 if (aarch64) { 9571 param = aa64_va_parameters(env, address, mmu_idx, 9572 access_type != MMU_INST_FETCH); 9573 level = 0; 9574 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 9575 * invalid. 9576 */ 9577 ttbr1_valid = (el < 2); 9578 addrsize = 64 - 8 * param.tbi; 9579 inputsize = 64 - param.tsz; 9580 } else { 9581 param = aa32_va_parameters(env, address, mmu_idx); 9582 level = 1; 9583 /* There is no TTBR1 for EL2 */ 9584 ttbr1_valid = (el != 2); 9585 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32); 9586 inputsize = addrsize - param.tsz; 9587 } 9588 9589 /* 9590 * We determined the region when collecting the parameters, but we 9591 * have not yet validated that the address is valid for the region. 9592 * Extract the top bits and verify that they all match select. 9593 * 9594 * For aa32, if inputsize == addrsize, then we have selected the 9595 * region by exclusion in aa32_va_parameters and there is no more 9596 * validation to do here. 9597 */ 9598 if (inputsize < addrsize) { 9599 target_ulong top_bits = sextract64(address, inputsize, 9600 addrsize - inputsize); 9601 if (-top_bits != param.select || (param.select && !ttbr1_valid)) { 9602 /* The gap between the two regions is a Translation fault */ 9603 fault_type = ARMFault_Translation; 9604 goto do_fault; 9605 } 9606 } 9607 9608 if (param.using64k) { 9609 stride = 13; 9610 } else if (param.using16k) { 9611 stride = 11; 9612 } else { 9613 stride = 9; 9614 } 9615 9616 /* Note that QEMU ignores shareability and cacheability attributes, 9617 * so we don't need to do anything with the SH, ORGN, IRGN fields 9618 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 9619 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 9620 * implement any ASID-like capability so we can ignore it (instead 9621 * we will always flush the TLB any time the ASID is changed). 9622 */ 9623 ttbr = regime_ttbr(env, mmu_idx, param.select); 9624 9625 /* Here we should have set up all the parameters for the translation: 9626 * inputsize, ttbr, epd, stride, tbi 9627 */ 9628 9629 if (param.epd) { 9630 /* Translation table walk disabled => Translation fault on TLB miss 9631 * Note: This is always 0 on 64-bit EL2 and EL3. 9632 */ 9633 goto do_fault; 9634 } 9635 9636 if (mmu_idx != ARMMMUIdx_S2NS) { 9637 /* The starting level depends on the virtual address size (which can 9638 * be up to 48 bits) and the translation granule size. It indicates 9639 * the number of strides (stride bits at a time) needed to 9640 * consume the bits of the input address. In the pseudocode this is: 9641 * level = 4 - RoundUp((inputsize - grainsize) / stride) 9642 * where their 'inputsize' is our 'inputsize', 'grainsize' is 9643 * our 'stride + 3' and 'stride' is our 'stride'. 9644 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 9645 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 9646 * = 4 - (inputsize - 4) / stride; 9647 */ 9648 level = 4 - (inputsize - 4) / stride; 9649 } else { 9650 /* For stage 2 translations the starting level is specified by the 9651 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 9652 */ 9653 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 9654 uint32_t startlevel; 9655 bool ok; 9656 9657 if (!aarch64 || stride == 9) { 9658 /* AArch32 or 4KB pages */ 9659 startlevel = 2 - sl0; 9660 } else { 9661 /* 16KB or 64KB pages */ 9662 startlevel = 3 - sl0; 9663 } 9664 9665 /* Check that the starting level is valid. */ 9666 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 9667 inputsize, stride); 9668 if (!ok) { 9669 fault_type = ARMFault_Translation; 9670 goto do_fault; 9671 } 9672 level = startlevel; 9673 } 9674 9675 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 9676 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 9677 9678 /* Now we can extract the actual base address from the TTBR */ 9679 descaddr = extract64(ttbr, 0, 48); 9680 descaddr &= ~indexmask; 9681 9682 /* The address field in the descriptor goes up to bit 39 for ARMv7 9683 * but up to bit 47 for ARMv8, but we use the descaddrmask 9684 * up to bit 39 for AArch32, because we don't need other bits in that case 9685 * to construct next descriptor address (anyway they should be all zeroes). 9686 */ 9687 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 9688 ~indexmask_grainsize; 9689 9690 /* Secure accesses start with the page table in secure memory and 9691 * can be downgraded to non-secure at any step. Non-secure accesses 9692 * remain non-secure. We implement this by just ORing in the NSTable/NS 9693 * bits at each step. 9694 */ 9695 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 9696 for (;;) { 9697 uint64_t descriptor; 9698 bool nstable; 9699 9700 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9701 descaddr &= ~7ULL; 9702 nstable = extract32(tableattrs, 4, 1); 9703 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 9704 if (fi->type != ARMFault_None) { 9705 goto do_fault; 9706 } 9707 9708 if (!(descriptor & 1) || 9709 (!(descriptor & 2) && (level == 3))) { 9710 /* Invalid, or the Reserved level 3 encoding */ 9711 goto do_fault; 9712 } 9713 descaddr = descriptor & descaddrmask; 9714 9715 if ((descriptor & 2) && (level < 3)) { 9716 /* Table entry. The top five bits are attributes which may 9717 * propagate down through lower levels of the table (and 9718 * which are all arranged so that 0 means "no effect", so 9719 * we can gather them up by ORing in the bits at each level). 9720 */ 9721 tableattrs |= extract64(descriptor, 59, 5); 9722 level++; 9723 indexmask = indexmask_grainsize; 9724 continue; 9725 } 9726 /* Block entry at level 1 or 2, or page entry at level 3. 9727 * These are basically the same thing, although the number 9728 * of bits we pull in from the vaddr varies. 9729 */ 9730 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9731 descaddr |= (address & (page_size - 1)); 9732 /* Extract attributes from the descriptor */ 9733 attrs = extract64(descriptor, 2, 10) 9734 | (extract64(descriptor, 52, 12) << 10); 9735 9736 if (mmu_idx == ARMMMUIdx_S2NS) { 9737 /* Stage 2 table descriptors do not include any attribute fields */ 9738 break; 9739 } 9740 /* Merge in attributes from table descriptors */ 9741 attrs |= nstable << 3; /* NS */ 9742 guarded = extract64(descriptor, 50, 1); /* GP */ 9743 if (param.hpd) { 9744 /* HPD disables all the table attributes except NSTable. */ 9745 break; 9746 } 9747 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9748 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9749 * means "force PL1 access only", which means forcing AP[1] to 0. 9750 */ 9751 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 9752 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 9753 break; 9754 } 9755 /* Here descaddr is the final physical address, and attributes 9756 * are all in attrs. 9757 */ 9758 fault_type = ARMFault_AccessFlag; 9759 if ((attrs & (1 << 8)) == 0) { 9760 /* Access flag */ 9761 goto do_fault; 9762 } 9763 9764 ap = extract32(attrs, 4, 2); 9765 xn = extract32(attrs, 12, 1); 9766 9767 if (mmu_idx == ARMMMUIdx_S2NS) { 9768 ns = true; 9769 *prot = get_S2prot(env, ap, xn); 9770 } else { 9771 ns = extract32(attrs, 3, 1); 9772 pxn = extract32(attrs, 11, 1); 9773 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9774 } 9775 9776 fault_type = ARMFault_Permission; 9777 if (!(*prot & (1 << access_type))) { 9778 goto do_fault; 9779 } 9780 9781 if (ns) { 9782 /* The NS bit will (as required by the architecture) have no effect if 9783 * the CPU doesn't support TZ or this is a non-secure translation 9784 * regime, because the attribute will already be non-secure. 9785 */ 9786 txattrs->secure = false; 9787 } 9788 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 9789 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 9790 txattrs->target_tlb_bit0 = true; 9791 } 9792 9793 if (cacheattrs != NULL) { 9794 if (mmu_idx == ARMMMUIdx_S2NS) { 9795 cacheattrs->attrs = convert_stage2_attrs(env, 9796 extract32(attrs, 0, 4)); 9797 } else { 9798 /* Index into MAIR registers for cache attributes */ 9799 uint8_t attrindx = extract32(attrs, 0, 3); 9800 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9801 assert(attrindx <= 7); 9802 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9803 } 9804 cacheattrs->shareability = extract32(attrs, 6, 2); 9805 } 9806 9807 *phys_ptr = descaddr; 9808 *page_size_ptr = page_size; 9809 return false; 9810 9811 do_fault: 9812 fi->type = fault_type; 9813 fi->level = level; 9814 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9815 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9816 return true; 9817 } 9818 9819 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9820 ARMMMUIdx mmu_idx, 9821 int32_t address, int *prot) 9822 { 9823 if (!arm_feature(env, ARM_FEATURE_M)) { 9824 *prot = PAGE_READ | PAGE_WRITE; 9825 switch (address) { 9826 case 0xF0000000 ... 0xFFFFFFFF: 9827 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9828 /* hivecs execing is ok */ 9829 *prot |= PAGE_EXEC; 9830 } 9831 break; 9832 case 0x00000000 ... 0x7FFFFFFF: 9833 *prot |= PAGE_EXEC; 9834 break; 9835 } 9836 } else { 9837 /* Default system address map for M profile cores. 9838 * The architecture specifies which regions are execute-never; 9839 * at the MPU level no other checks are defined. 9840 */ 9841 switch (address) { 9842 case 0x00000000 ... 0x1fffffff: /* ROM */ 9843 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9844 case 0x60000000 ... 0x7fffffff: /* RAM */ 9845 case 0x80000000 ... 0x9fffffff: /* RAM */ 9846 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9847 break; 9848 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9849 case 0xa0000000 ... 0xbfffffff: /* Device */ 9850 case 0xc0000000 ... 0xdfffffff: /* Device */ 9851 case 0xe0000000 ... 0xffffffff: /* System */ 9852 *prot = PAGE_READ | PAGE_WRITE; 9853 break; 9854 default: 9855 g_assert_not_reached(); 9856 } 9857 } 9858 } 9859 9860 static bool pmsav7_use_background_region(ARMCPU *cpu, 9861 ARMMMUIdx mmu_idx, bool is_user) 9862 { 9863 /* Return true if we should use the default memory map as a 9864 * "background" region if there are no hits against any MPU regions. 9865 */ 9866 CPUARMState *env = &cpu->env; 9867 9868 if (is_user) { 9869 return false; 9870 } 9871 9872 if (arm_feature(env, ARM_FEATURE_M)) { 9873 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 9874 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9875 } else { 9876 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9877 } 9878 } 9879 9880 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9881 { 9882 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9883 return arm_feature(env, ARM_FEATURE_M) && 9884 extract32(address, 20, 12) == 0xe00; 9885 } 9886 9887 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9888 { 9889 /* True if address is in the M profile system region 9890 * 0xe0000000 - 0xffffffff 9891 */ 9892 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9893 } 9894 9895 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9896 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9897 hwaddr *phys_ptr, int *prot, 9898 target_ulong *page_size, 9899 ARMMMUFaultInfo *fi) 9900 { 9901 ARMCPU *cpu = env_archcpu(env); 9902 int n; 9903 bool is_user = regime_is_user(env, mmu_idx); 9904 9905 *phys_ptr = address; 9906 *page_size = TARGET_PAGE_SIZE; 9907 *prot = 0; 9908 9909 if (regime_translation_disabled(env, mmu_idx) || 9910 m_is_ppb_region(env, address)) { 9911 /* MPU disabled or M profile PPB access: use default memory map. 9912 * The other case which uses the default memory map in the 9913 * v7M ARM ARM pseudocode is exception vector reads from the vector 9914 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9915 * which always does a direct read using address_space_ldl(), rather 9916 * than going via this function, so we don't need to check that here. 9917 */ 9918 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9919 } else { /* MPU enabled */ 9920 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9921 /* region search */ 9922 uint32_t base = env->pmsav7.drbar[n]; 9923 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9924 uint32_t rmask; 9925 bool srdis = false; 9926 9927 if (!(env->pmsav7.drsr[n] & 0x1)) { 9928 continue; 9929 } 9930 9931 if (!rsize) { 9932 qemu_log_mask(LOG_GUEST_ERROR, 9933 "DRSR[%d]: Rsize field cannot be 0\n", n); 9934 continue; 9935 } 9936 rsize++; 9937 rmask = (1ull << rsize) - 1; 9938 9939 if (base & rmask) { 9940 qemu_log_mask(LOG_GUEST_ERROR, 9941 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9942 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9943 n, base, rmask); 9944 continue; 9945 } 9946 9947 if (address < base || address > base + rmask) { 9948 /* 9949 * Address not in this region. We must check whether the 9950 * region covers addresses in the same page as our address. 9951 * In that case we must not report a size that covers the 9952 * whole page for a subsequent hit against a different MPU 9953 * region or the background region, because it would result in 9954 * incorrect TLB hits for subsequent accesses to addresses that 9955 * are in this MPU region. 9956 */ 9957 if (ranges_overlap(base, rmask, 9958 address & TARGET_PAGE_MASK, 9959 TARGET_PAGE_SIZE)) { 9960 *page_size = 1; 9961 } 9962 continue; 9963 } 9964 9965 /* Region matched */ 9966 9967 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9968 int i, snd; 9969 uint32_t srdis_mask; 9970 9971 rsize -= 3; /* sub region size (power of 2) */ 9972 snd = ((address - base) >> rsize) & 0x7; 9973 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9974 9975 srdis_mask = srdis ? 0x3 : 0x0; 9976 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9977 /* This will check in groups of 2, 4 and then 8, whether 9978 * the subregion bits are consistent. rsize is incremented 9979 * back up to give the region size, considering consistent 9980 * adjacent subregions as one region. Stop testing if rsize 9981 * is already big enough for an entire QEMU page. 9982 */ 9983 int snd_rounded = snd & ~(i - 1); 9984 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9985 snd_rounded + 8, i); 9986 if (srdis_mask ^ srdis_multi) { 9987 break; 9988 } 9989 srdis_mask = (srdis_mask << i) | srdis_mask; 9990 rsize++; 9991 } 9992 } 9993 if (srdis) { 9994 continue; 9995 } 9996 if (rsize < TARGET_PAGE_BITS) { 9997 *page_size = 1 << rsize; 9998 } 9999 break; 10000 } 10001 10002 if (n == -1) { /* no hits */ 10003 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10004 /* background fault */ 10005 fi->type = ARMFault_Background; 10006 return true; 10007 } 10008 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10009 } else { /* a MPU hit! */ 10010 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 10011 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 10012 10013 if (m_is_system_region(env, address)) { 10014 /* System space is always execute never */ 10015 xn = 1; 10016 } 10017 10018 if (is_user) { /* User mode AP bit decoding */ 10019 switch (ap) { 10020 case 0: 10021 case 1: 10022 case 5: 10023 break; /* no access */ 10024 case 3: 10025 *prot |= PAGE_WRITE; 10026 /* fall through */ 10027 case 2: 10028 case 6: 10029 *prot |= PAGE_READ | PAGE_EXEC; 10030 break; 10031 case 7: 10032 /* for v7M, same as 6; for R profile a reserved value */ 10033 if (arm_feature(env, ARM_FEATURE_M)) { 10034 *prot |= PAGE_READ | PAGE_EXEC; 10035 break; 10036 } 10037 /* fall through */ 10038 default: 10039 qemu_log_mask(LOG_GUEST_ERROR, 10040 "DRACR[%d]: Bad value for AP bits: 0x%" 10041 PRIx32 "\n", n, ap); 10042 } 10043 } else { /* Priv. mode AP bits decoding */ 10044 switch (ap) { 10045 case 0: 10046 break; /* no access */ 10047 case 1: 10048 case 2: 10049 case 3: 10050 *prot |= PAGE_WRITE; 10051 /* fall through */ 10052 case 5: 10053 case 6: 10054 *prot |= PAGE_READ | PAGE_EXEC; 10055 break; 10056 case 7: 10057 /* for v7M, same as 6; for R profile a reserved value */ 10058 if (arm_feature(env, ARM_FEATURE_M)) { 10059 *prot |= PAGE_READ | PAGE_EXEC; 10060 break; 10061 } 10062 /* fall through */ 10063 default: 10064 qemu_log_mask(LOG_GUEST_ERROR, 10065 "DRACR[%d]: Bad value for AP bits: 0x%" 10066 PRIx32 "\n", n, ap); 10067 } 10068 } 10069 10070 /* execute never */ 10071 if (xn) { 10072 *prot &= ~PAGE_EXEC; 10073 } 10074 } 10075 } 10076 10077 fi->type = ARMFault_Permission; 10078 fi->level = 1; 10079 return !(*prot & (1 << access_type)); 10080 } 10081 10082 static bool v8m_is_sau_exempt(CPUARMState *env, 10083 uint32_t address, MMUAccessType access_type) 10084 { 10085 /* The architecture specifies that certain address ranges are 10086 * exempt from v8M SAU/IDAU checks. 10087 */ 10088 return 10089 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 10090 (address >= 0xe0000000 && address <= 0xe0002fff) || 10091 (address >= 0xe000e000 && address <= 0xe000efff) || 10092 (address >= 0xe002e000 && address <= 0xe002efff) || 10093 (address >= 0xe0040000 && address <= 0xe0041fff) || 10094 (address >= 0xe00ff000 && address <= 0xe00fffff); 10095 } 10096 10097 void v8m_security_lookup(CPUARMState *env, uint32_t address, 10098 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10099 V8M_SAttributes *sattrs) 10100 { 10101 /* Look up the security attributes for this address. Compare the 10102 * pseudocode SecurityCheck() function. 10103 * We assume the caller has zero-initialized *sattrs. 10104 */ 10105 ARMCPU *cpu = env_archcpu(env); 10106 int r; 10107 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 10108 int idau_region = IREGION_NOTVALID; 10109 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10110 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10111 10112 if (cpu->idau) { 10113 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 10114 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 10115 10116 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 10117 &idau_nsc); 10118 } 10119 10120 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 10121 /* 0xf0000000..0xffffffff is always S for insn fetches */ 10122 return; 10123 } 10124 10125 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 10126 sattrs->ns = !regime_is_secure(env, mmu_idx); 10127 return; 10128 } 10129 10130 if (idau_region != IREGION_NOTVALID) { 10131 sattrs->irvalid = true; 10132 sattrs->iregion = idau_region; 10133 } 10134 10135 switch (env->sau.ctrl & 3) { 10136 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 10137 break; 10138 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 10139 sattrs->ns = true; 10140 break; 10141 default: /* SAU.ENABLE == 1 */ 10142 for (r = 0; r < cpu->sau_sregion; r++) { 10143 if (env->sau.rlar[r] & 1) { 10144 uint32_t base = env->sau.rbar[r] & ~0x1f; 10145 uint32_t limit = env->sau.rlar[r] | 0x1f; 10146 10147 if (base <= address && limit >= address) { 10148 if (base > addr_page_base || limit < addr_page_limit) { 10149 sattrs->subpage = true; 10150 } 10151 if (sattrs->srvalid) { 10152 /* If we hit in more than one region then we must report 10153 * as Secure, not NS-Callable, with no valid region 10154 * number info. 10155 */ 10156 sattrs->ns = false; 10157 sattrs->nsc = false; 10158 sattrs->sregion = 0; 10159 sattrs->srvalid = false; 10160 break; 10161 } else { 10162 if (env->sau.rlar[r] & 2) { 10163 sattrs->nsc = true; 10164 } else { 10165 sattrs->ns = true; 10166 } 10167 sattrs->srvalid = true; 10168 sattrs->sregion = r; 10169 } 10170 } else { 10171 /* 10172 * Address not in this region. We must check whether the 10173 * region covers addresses in the same page as our address. 10174 * In that case we must not report a size that covers the 10175 * whole page for a subsequent hit against a different MPU 10176 * region or the background region, because it would result 10177 * in incorrect TLB hits for subsequent accesses to 10178 * addresses that are in this MPU region. 10179 */ 10180 if (limit >= base && 10181 ranges_overlap(base, limit - base + 1, 10182 addr_page_base, 10183 TARGET_PAGE_SIZE)) { 10184 sattrs->subpage = true; 10185 } 10186 } 10187 } 10188 } 10189 break; 10190 } 10191 10192 /* 10193 * The IDAU will override the SAU lookup results if it specifies 10194 * higher security than the SAU does. 10195 */ 10196 if (!idau_ns) { 10197 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 10198 sattrs->ns = false; 10199 sattrs->nsc = idau_nsc; 10200 } 10201 } 10202 } 10203 10204 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 10205 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10206 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10207 int *prot, bool *is_subpage, 10208 ARMMMUFaultInfo *fi, uint32_t *mregion) 10209 { 10210 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 10211 * that a full phys-to-virt translation does). 10212 * mregion is (if not NULL) set to the region number which matched, 10213 * or -1 if no region number is returned (MPU off, address did not 10214 * hit a region, address hit in multiple regions). 10215 * We set is_subpage to true if the region hit doesn't cover the 10216 * entire TARGET_PAGE the address is within. 10217 */ 10218 ARMCPU *cpu = env_archcpu(env); 10219 bool is_user = regime_is_user(env, mmu_idx); 10220 uint32_t secure = regime_is_secure(env, mmu_idx); 10221 int n; 10222 int matchregion = -1; 10223 bool hit = false; 10224 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10225 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10226 10227 *is_subpage = false; 10228 *phys_ptr = address; 10229 *prot = 0; 10230 if (mregion) { 10231 *mregion = -1; 10232 } 10233 10234 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 10235 * was an exception vector read from the vector table (which is always 10236 * done using the default system address map), because those accesses 10237 * are done in arm_v7m_load_vector(), which always does a direct 10238 * read using address_space_ldl(), rather than going via this function. 10239 */ 10240 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 10241 hit = true; 10242 } else if (m_is_ppb_region(env, address)) { 10243 hit = true; 10244 } else { 10245 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10246 hit = true; 10247 } 10248 10249 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10250 /* region search */ 10251 /* Note that the base address is bits [31:5] from the register 10252 * with bits [4:0] all zeroes, but the limit address is bits 10253 * [31:5] from the register with bits [4:0] all ones. 10254 */ 10255 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 10256 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 10257 10258 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 10259 /* Region disabled */ 10260 continue; 10261 } 10262 10263 if (address < base || address > limit) { 10264 /* 10265 * Address not in this region. We must check whether the 10266 * region covers addresses in the same page as our address. 10267 * In that case we must not report a size that covers the 10268 * whole page for a subsequent hit against a different MPU 10269 * region or the background region, because it would result in 10270 * incorrect TLB hits for subsequent accesses to addresses that 10271 * are in this MPU region. 10272 */ 10273 if (limit >= base && 10274 ranges_overlap(base, limit - base + 1, 10275 addr_page_base, 10276 TARGET_PAGE_SIZE)) { 10277 *is_subpage = true; 10278 } 10279 continue; 10280 } 10281 10282 if (base > addr_page_base || limit < addr_page_limit) { 10283 *is_subpage = true; 10284 } 10285 10286 if (matchregion != -1) { 10287 /* Multiple regions match -- always a failure (unlike 10288 * PMSAv7 where highest-numbered-region wins) 10289 */ 10290 fi->type = ARMFault_Permission; 10291 fi->level = 1; 10292 return true; 10293 } 10294 10295 matchregion = n; 10296 hit = true; 10297 } 10298 } 10299 10300 if (!hit) { 10301 /* background fault */ 10302 fi->type = ARMFault_Background; 10303 return true; 10304 } 10305 10306 if (matchregion == -1) { 10307 /* hit using the background region */ 10308 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10309 } else { 10310 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 10311 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 10312 10313 if (m_is_system_region(env, address)) { 10314 /* System space is always execute never */ 10315 xn = 1; 10316 } 10317 10318 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 10319 if (*prot && !xn) { 10320 *prot |= PAGE_EXEC; 10321 } 10322 /* We don't need to look the attribute up in the MAIR0/MAIR1 10323 * registers because that only tells us about cacheability. 10324 */ 10325 if (mregion) { 10326 *mregion = matchregion; 10327 } 10328 } 10329 10330 fi->type = ARMFault_Permission; 10331 fi->level = 1; 10332 return !(*prot & (1 << access_type)); 10333 } 10334 10335 10336 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 10337 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10338 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10339 int *prot, target_ulong *page_size, 10340 ARMMMUFaultInfo *fi) 10341 { 10342 uint32_t secure = regime_is_secure(env, mmu_idx); 10343 V8M_SAttributes sattrs = {}; 10344 bool ret; 10345 bool mpu_is_subpage; 10346 10347 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10348 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 10349 if (access_type == MMU_INST_FETCH) { 10350 /* Instruction fetches always use the MMU bank and the 10351 * transaction attribute determined by the fetch address, 10352 * regardless of CPU state. This is painful for QEMU 10353 * to handle, because it would mean we need to encode 10354 * into the mmu_idx not just the (user, negpri) information 10355 * for the current security state but also that for the 10356 * other security state, which would balloon the number 10357 * of mmu_idx values needed alarmingly. 10358 * Fortunately we can avoid this because it's not actually 10359 * possible to arbitrarily execute code from memory with 10360 * the wrong security attribute: it will always generate 10361 * an exception of some kind or another, apart from the 10362 * special case of an NS CPU executing an SG instruction 10363 * in S&NSC memory. So we always just fail the translation 10364 * here and sort things out in the exception handler 10365 * (including possibly emulating an SG instruction). 10366 */ 10367 if (sattrs.ns != !secure) { 10368 if (sattrs.nsc) { 10369 fi->type = ARMFault_QEMU_NSCExec; 10370 } else { 10371 fi->type = ARMFault_QEMU_SFault; 10372 } 10373 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10374 *phys_ptr = address; 10375 *prot = 0; 10376 return true; 10377 } 10378 } else { 10379 /* For data accesses we always use the MMU bank indicated 10380 * by the current CPU state, but the security attributes 10381 * might downgrade a secure access to nonsecure. 10382 */ 10383 if (sattrs.ns) { 10384 txattrs->secure = false; 10385 } else if (!secure) { 10386 /* NS access to S memory must fault. 10387 * Architecturally we should first check whether the 10388 * MPU information for this address indicates that we 10389 * are doing an unaligned access to Device memory, which 10390 * should generate a UsageFault instead. QEMU does not 10391 * currently check for that kind of unaligned access though. 10392 * If we added it we would need to do so as a special case 10393 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 10394 */ 10395 fi->type = ARMFault_QEMU_SFault; 10396 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10397 *phys_ptr = address; 10398 *prot = 0; 10399 return true; 10400 } 10401 } 10402 } 10403 10404 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 10405 txattrs, prot, &mpu_is_subpage, fi, NULL); 10406 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 10407 return ret; 10408 } 10409 10410 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 10411 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10412 hwaddr *phys_ptr, int *prot, 10413 ARMMMUFaultInfo *fi) 10414 { 10415 int n; 10416 uint32_t mask; 10417 uint32_t base; 10418 bool is_user = regime_is_user(env, mmu_idx); 10419 10420 if (regime_translation_disabled(env, mmu_idx)) { 10421 /* MPU disabled. */ 10422 *phys_ptr = address; 10423 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10424 return false; 10425 } 10426 10427 *phys_ptr = address; 10428 for (n = 7; n >= 0; n--) { 10429 base = env->cp15.c6_region[n]; 10430 if ((base & 1) == 0) { 10431 continue; 10432 } 10433 mask = 1 << ((base >> 1) & 0x1f); 10434 /* Keep this shift separate from the above to avoid an 10435 (undefined) << 32. */ 10436 mask = (mask << 1) - 1; 10437 if (((base ^ address) & ~mask) == 0) { 10438 break; 10439 } 10440 } 10441 if (n < 0) { 10442 fi->type = ARMFault_Background; 10443 return true; 10444 } 10445 10446 if (access_type == MMU_INST_FETCH) { 10447 mask = env->cp15.pmsav5_insn_ap; 10448 } else { 10449 mask = env->cp15.pmsav5_data_ap; 10450 } 10451 mask = (mask >> (n * 4)) & 0xf; 10452 switch (mask) { 10453 case 0: 10454 fi->type = ARMFault_Permission; 10455 fi->level = 1; 10456 return true; 10457 case 1: 10458 if (is_user) { 10459 fi->type = ARMFault_Permission; 10460 fi->level = 1; 10461 return true; 10462 } 10463 *prot = PAGE_READ | PAGE_WRITE; 10464 break; 10465 case 2: 10466 *prot = PAGE_READ; 10467 if (!is_user) { 10468 *prot |= PAGE_WRITE; 10469 } 10470 break; 10471 case 3: 10472 *prot = PAGE_READ | PAGE_WRITE; 10473 break; 10474 case 5: 10475 if (is_user) { 10476 fi->type = ARMFault_Permission; 10477 fi->level = 1; 10478 return true; 10479 } 10480 *prot = PAGE_READ; 10481 break; 10482 case 6: 10483 *prot = PAGE_READ; 10484 break; 10485 default: 10486 /* Bad permission. */ 10487 fi->type = ARMFault_Permission; 10488 fi->level = 1; 10489 return true; 10490 } 10491 *prot |= PAGE_EXEC; 10492 return false; 10493 } 10494 10495 /* Combine either inner or outer cacheability attributes for normal 10496 * memory, according to table D4-42 and pseudocode procedure 10497 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 10498 * 10499 * NB: only stage 1 includes allocation hints (RW bits), leading to 10500 * some asymmetry. 10501 */ 10502 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 10503 { 10504 if (s1 == 4 || s2 == 4) { 10505 /* non-cacheable has precedence */ 10506 return 4; 10507 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 10508 /* stage 1 write-through takes precedence */ 10509 return s1; 10510 } else if (extract32(s2, 2, 2) == 2) { 10511 /* stage 2 write-through takes precedence, but the allocation hint 10512 * is still taken from stage 1 10513 */ 10514 return (2 << 2) | extract32(s1, 0, 2); 10515 } else { /* write-back */ 10516 return s1; 10517 } 10518 } 10519 10520 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 10521 * and CombineS1S2Desc() 10522 * 10523 * @s1: Attributes from stage 1 walk 10524 * @s2: Attributes from stage 2 walk 10525 */ 10526 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 10527 { 10528 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 10529 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 10530 ARMCacheAttrs ret; 10531 10532 /* Combine shareability attributes (table D4-43) */ 10533 if (s1.shareability == 2 || s2.shareability == 2) { 10534 /* if either are outer-shareable, the result is outer-shareable */ 10535 ret.shareability = 2; 10536 } else if (s1.shareability == 3 || s2.shareability == 3) { 10537 /* if either are inner-shareable, the result is inner-shareable */ 10538 ret.shareability = 3; 10539 } else { 10540 /* both non-shareable */ 10541 ret.shareability = 0; 10542 } 10543 10544 /* Combine memory type and cacheability attributes */ 10545 if (s1hi == 0 || s2hi == 0) { 10546 /* Device has precedence over normal */ 10547 if (s1lo == 0 || s2lo == 0) { 10548 /* nGnRnE has precedence over anything */ 10549 ret.attrs = 0; 10550 } else if (s1lo == 4 || s2lo == 4) { 10551 /* non-Reordering has precedence over Reordering */ 10552 ret.attrs = 4; /* nGnRE */ 10553 } else if (s1lo == 8 || s2lo == 8) { 10554 /* non-Gathering has precedence over Gathering */ 10555 ret.attrs = 8; /* nGRE */ 10556 } else { 10557 ret.attrs = 0xc; /* GRE */ 10558 } 10559 10560 /* Any location for which the resultant memory type is any 10561 * type of Device memory is always treated as Outer Shareable. 10562 */ 10563 ret.shareability = 2; 10564 } else { /* Normal memory */ 10565 /* Outer/inner cacheability combine independently */ 10566 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 10567 | combine_cacheattr_nibble(s1lo, s2lo); 10568 10569 if (ret.attrs == 0x44) { 10570 /* Any location for which the resultant memory type is Normal 10571 * Inner Non-cacheable, Outer Non-cacheable is always treated 10572 * as Outer Shareable. 10573 */ 10574 ret.shareability = 2; 10575 } 10576 } 10577 10578 return ret; 10579 } 10580 10581 10582 /* get_phys_addr - get the physical address for this virtual address 10583 * 10584 * Find the physical address corresponding to the given virtual address, 10585 * by doing a translation table walk on MMU based systems or using the 10586 * MPU state on MPU based systems. 10587 * 10588 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10589 * prot and page_size may not be filled in, and the populated fsr value provides 10590 * information on why the translation aborted, in the format of a 10591 * DFSR/IFSR fault register, with the following caveats: 10592 * * we honour the short vs long DFSR format differences. 10593 * * the WnR bit is never set (the caller must do this). 10594 * * for PSMAv5 based systems we don't bother to return a full FSR format 10595 * value. 10596 * 10597 * @env: CPUARMState 10598 * @address: virtual address to get physical address for 10599 * @access_type: 0 for read, 1 for write, 2 for execute 10600 * @mmu_idx: MMU index indicating required translation regime 10601 * @phys_ptr: set to the physical address corresponding to the virtual address 10602 * @attrs: set to the memory transaction attributes to use 10603 * @prot: set to the permissions for the page containing phys_ptr 10604 * @page_size: set to the size of the page containing phys_ptr 10605 * @fi: set to fault info if the translation fails 10606 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10607 */ 10608 bool get_phys_addr(CPUARMState *env, target_ulong address, 10609 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10610 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10611 target_ulong *page_size, 10612 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10613 { 10614 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10615 /* Call ourselves recursively to do the stage 1 and then stage 2 10616 * translations. 10617 */ 10618 if (arm_feature(env, ARM_FEATURE_EL2)) { 10619 hwaddr ipa; 10620 int s2_prot; 10621 int ret; 10622 ARMCacheAttrs cacheattrs2 = {}; 10623 10624 ret = get_phys_addr(env, address, access_type, 10625 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 10626 prot, page_size, fi, cacheattrs); 10627 10628 /* If S1 fails or S2 is disabled, return early. */ 10629 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10630 *phys_ptr = ipa; 10631 return ret; 10632 } 10633 10634 /* S1 is done. Now do S2 translation. */ 10635 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 10636 phys_ptr, attrs, &s2_prot, 10637 page_size, fi, 10638 cacheattrs != NULL ? &cacheattrs2 : NULL); 10639 fi->s2addr = ipa; 10640 /* Combine the S1 and S2 perms. */ 10641 *prot &= s2_prot; 10642 10643 /* Combine the S1 and S2 cache attributes, if needed */ 10644 if (!ret && cacheattrs != NULL) { 10645 if (env->cp15.hcr_el2 & HCR_DC) { 10646 /* 10647 * HCR.DC forces the first stage attributes to 10648 * Normal Non-Shareable, 10649 * Inner Write-Back Read-Allocate Write-Allocate, 10650 * Outer Write-Back Read-Allocate Write-Allocate. 10651 */ 10652 cacheattrs->attrs = 0xff; 10653 cacheattrs->shareability = 0; 10654 } 10655 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 10656 } 10657 10658 return ret; 10659 } else { 10660 /* 10661 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 10662 */ 10663 mmu_idx = stage_1_mmu_idx(mmu_idx); 10664 } 10665 } 10666 10667 /* The page table entries may downgrade secure to non-secure, but 10668 * cannot upgrade an non-secure translation regime's attributes 10669 * to secure. 10670 */ 10671 attrs->secure = regime_is_secure(env, mmu_idx); 10672 attrs->user = regime_is_user(env, mmu_idx); 10673 10674 /* Fast Context Switch Extension. This doesn't exist at all in v8. 10675 * In v7 and earlier it affects all stage 1 translations. 10676 */ 10677 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 10678 && !arm_feature(env, ARM_FEATURE_V8)) { 10679 if (regime_el(env, mmu_idx) == 3) { 10680 address += env->cp15.fcseidr_s; 10681 } else { 10682 address += env->cp15.fcseidr_ns; 10683 } 10684 } 10685 10686 if (arm_feature(env, ARM_FEATURE_PMSA)) { 10687 bool ret; 10688 *page_size = TARGET_PAGE_SIZE; 10689 10690 if (arm_feature(env, ARM_FEATURE_V8)) { 10691 /* PMSAv8 */ 10692 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 10693 phys_ptr, attrs, prot, page_size, fi); 10694 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10695 /* PMSAv7 */ 10696 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 10697 phys_ptr, prot, page_size, fi); 10698 } else { 10699 /* Pre-v7 MPU */ 10700 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 10701 phys_ptr, prot, fi); 10702 } 10703 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 10704 " mmu_idx %u -> %s (prot %c%c%c)\n", 10705 access_type == MMU_DATA_LOAD ? "reading" : 10706 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 10707 (uint32_t)address, mmu_idx, 10708 ret ? "Miss" : "Hit", 10709 *prot & PAGE_READ ? 'r' : '-', 10710 *prot & PAGE_WRITE ? 'w' : '-', 10711 *prot & PAGE_EXEC ? 'x' : '-'); 10712 10713 return ret; 10714 } 10715 10716 /* Definitely a real MMU, not an MPU */ 10717 10718 if (regime_translation_disabled(env, mmu_idx)) { 10719 /* MMU disabled. */ 10720 *phys_ptr = address; 10721 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10722 *page_size = TARGET_PAGE_SIZE; 10723 return 0; 10724 } 10725 10726 if (regime_using_lpae_format(env, mmu_idx)) { 10727 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 10728 phys_ptr, attrs, prot, page_size, 10729 fi, cacheattrs); 10730 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 10731 return get_phys_addr_v6(env, address, access_type, mmu_idx, 10732 phys_ptr, attrs, prot, page_size, fi); 10733 } else { 10734 return get_phys_addr_v5(env, address, access_type, mmu_idx, 10735 phys_ptr, prot, page_size, fi); 10736 } 10737 } 10738 10739 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 10740 MemTxAttrs *attrs) 10741 { 10742 ARMCPU *cpu = ARM_CPU(cs); 10743 CPUARMState *env = &cpu->env; 10744 hwaddr phys_addr; 10745 target_ulong page_size; 10746 int prot; 10747 bool ret; 10748 ARMMMUFaultInfo fi = {}; 10749 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 10750 10751 *attrs = (MemTxAttrs) {}; 10752 10753 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 10754 attrs, &prot, &page_size, &fi, NULL); 10755 10756 if (ret) { 10757 return -1; 10758 } 10759 return phys_addr; 10760 } 10761 10762 #endif 10763 10764 /* Note that signed overflow is undefined in C. The following routines are 10765 careful to use unsigned types where modulo arithmetic is required. 10766 Failure to do so _will_ break on newer gcc. */ 10767 10768 /* Signed saturating arithmetic. */ 10769 10770 /* Perform 16-bit signed saturating addition. */ 10771 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10772 { 10773 uint16_t res; 10774 10775 res = a + b; 10776 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10777 if (a & 0x8000) 10778 res = 0x8000; 10779 else 10780 res = 0x7fff; 10781 } 10782 return res; 10783 } 10784 10785 /* Perform 8-bit signed saturating addition. */ 10786 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10787 { 10788 uint8_t res; 10789 10790 res = a + b; 10791 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10792 if (a & 0x80) 10793 res = 0x80; 10794 else 10795 res = 0x7f; 10796 } 10797 return res; 10798 } 10799 10800 /* Perform 16-bit signed saturating subtraction. */ 10801 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10802 { 10803 uint16_t res; 10804 10805 res = a - b; 10806 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10807 if (a & 0x8000) 10808 res = 0x8000; 10809 else 10810 res = 0x7fff; 10811 } 10812 return res; 10813 } 10814 10815 /* Perform 8-bit signed saturating subtraction. */ 10816 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10817 { 10818 uint8_t res; 10819 10820 res = a - b; 10821 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10822 if (a & 0x80) 10823 res = 0x80; 10824 else 10825 res = 0x7f; 10826 } 10827 return res; 10828 } 10829 10830 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10831 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10832 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10833 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10834 #define PFX q 10835 10836 #include "op_addsub.h" 10837 10838 /* Unsigned saturating arithmetic. */ 10839 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10840 { 10841 uint16_t res; 10842 res = a + b; 10843 if (res < a) 10844 res = 0xffff; 10845 return res; 10846 } 10847 10848 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10849 { 10850 if (a > b) 10851 return a - b; 10852 else 10853 return 0; 10854 } 10855 10856 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10857 { 10858 uint8_t res; 10859 res = a + b; 10860 if (res < a) 10861 res = 0xff; 10862 return res; 10863 } 10864 10865 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10866 { 10867 if (a > b) 10868 return a - b; 10869 else 10870 return 0; 10871 } 10872 10873 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10874 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10875 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10876 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10877 #define PFX uq 10878 10879 #include "op_addsub.h" 10880 10881 /* Signed modulo arithmetic. */ 10882 #define SARITH16(a, b, n, op) do { \ 10883 int32_t sum; \ 10884 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10885 RESULT(sum, n, 16); \ 10886 if (sum >= 0) \ 10887 ge |= 3 << (n * 2); \ 10888 } while(0) 10889 10890 #define SARITH8(a, b, n, op) do { \ 10891 int32_t sum; \ 10892 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10893 RESULT(sum, n, 8); \ 10894 if (sum >= 0) \ 10895 ge |= 1 << n; \ 10896 } while(0) 10897 10898 10899 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10900 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10901 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10902 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10903 #define PFX s 10904 #define ARITH_GE 10905 10906 #include "op_addsub.h" 10907 10908 /* Unsigned modulo arithmetic. */ 10909 #define ADD16(a, b, n) do { \ 10910 uint32_t sum; \ 10911 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10912 RESULT(sum, n, 16); \ 10913 if ((sum >> 16) == 1) \ 10914 ge |= 3 << (n * 2); \ 10915 } while(0) 10916 10917 #define ADD8(a, b, n) do { \ 10918 uint32_t sum; \ 10919 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10920 RESULT(sum, n, 8); \ 10921 if ((sum >> 8) == 1) \ 10922 ge |= 1 << n; \ 10923 } while(0) 10924 10925 #define SUB16(a, b, n) do { \ 10926 uint32_t sum; \ 10927 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10928 RESULT(sum, n, 16); \ 10929 if ((sum >> 16) == 0) \ 10930 ge |= 3 << (n * 2); \ 10931 } while(0) 10932 10933 #define SUB8(a, b, n) do { \ 10934 uint32_t sum; \ 10935 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10936 RESULT(sum, n, 8); \ 10937 if ((sum >> 8) == 0) \ 10938 ge |= 1 << n; \ 10939 } while(0) 10940 10941 #define PFX u 10942 #define ARITH_GE 10943 10944 #include "op_addsub.h" 10945 10946 /* Halved signed arithmetic. */ 10947 #define ADD16(a, b, n) \ 10948 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10949 #define SUB16(a, b, n) \ 10950 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10951 #define ADD8(a, b, n) \ 10952 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10953 #define SUB8(a, b, n) \ 10954 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10955 #define PFX sh 10956 10957 #include "op_addsub.h" 10958 10959 /* Halved unsigned arithmetic. */ 10960 #define ADD16(a, b, n) \ 10961 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10962 #define SUB16(a, b, n) \ 10963 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10964 #define ADD8(a, b, n) \ 10965 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10966 #define SUB8(a, b, n) \ 10967 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10968 #define PFX uh 10969 10970 #include "op_addsub.h" 10971 10972 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10973 { 10974 if (a > b) 10975 return a - b; 10976 else 10977 return b - a; 10978 } 10979 10980 /* Unsigned sum of absolute byte differences. */ 10981 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10982 { 10983 uint32_t sum; 10984 sum = do_usad(a, b); 10985 sum += do_usad(a >> 8, b >> 8); 10986 sum += do_usad(a >> 16, b >>16); 10987 sum += do_usad(a >> 24, b >> 24); 10988 return sum; 10989 } 10990 10991 /* For ARMv6 SEL instruction. */ 10992 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10993 { 10994 uint32_t mask; 10995 10996 mask = 0; 10997 if (flags & 1) 10998 mask |= 0xff; 10999 if (flags & 2) 11000 mask |= 0xff00; 11001 if (flags & 4) 11002 mask |= 0xff0000; 11003 if (flags & 8) 11004 mask |= 0xff000000; 11005 return (a & mask) | (b & ~mask); 11006 } 11007 11008 /* CRC helpers. 11009 * The upper bytes of val (above the number specified by 'bytes') must have 11010 * been zeroed out by the caller. 11011 */ 11012 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11013 { 11014 uint8_t buf[4]; 11015 11016 stl_le_p(buf, val); 11017 11018 /* zlib crc32 converts the accumulator and output to one's complement. */ 11019 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11020 } 11021 11022 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11023 { 11024 uint8_t buf[4]; 11025 11026 stl_le_p(buf, val); 11027 11028 /* Linux crc32c converts the output to one's complement. */ 11029 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11030 } 11031 11032 /* Return the exception level to which FP-disabled exceptions should 11033 * be taken, or 0 if FP is enabled. 11034 */ 11035 int fp_exception_el(CPUARMState *env, int cur_el) 11036 { 11037 #ifndef CONFIG_USER_ONLY 11038 int fpen; 11039 11040 /* CPACR and the CPTR registers don't exist before v6, so FP is 11041 * always accessible 11042 */ 11043 if (!arm_feature(env, ARM_FEATURE_V6)) { 11044 return 0; 11045 } 11046 11047 if (arm_feature(env, ARM_FEATURE_M)) { 11048 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11049 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11050 return 1; 11051 } 11052 11053 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11054 if (!extract32(env->v7m.nsacr, 10, 1)) { 11055 /* FP insns cause a NOCP UsageFault taken to Secure */ 11056 return 3; 11057 } 11058 } 11059 11060 return 0; 11061 } 11062 11063 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11064 * 0, 2 : trap EL0 and EL1/PL1 accesses 11065 * 1 : trap only EL0 accesses 11066 * 3 : trap no accesses 11067 */ 11068 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 11069 switch (fpen) { 11070 case 0: 11071 case 2: 11072 if (cur_el == 0 || cur_el == 1) { 11073 /* Trap to PL1, which might be EL1 or EL3 */ 11074 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 11075 return 3; 11076 } 11077 return 1; 11078 } 11079 if (cur_el == 3 && !is_a64(env)) { 11080 /* Secure PL1 running at EL3 */ 11081 return 3; 11082 } 11083 break; 11084 case 1: 11085 if (cur_el == 0) { 11086 return 1; 11087 } 11088 break; 11089 case 3: 11090 break; 11091 } 11092 11093 /* 11094 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11095 * to control non-secure access to the FPU. It doesn't have any 11096 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11097 */ 11098 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11099 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11100 if (!extract32(env->cp15.nsacr, 10, 1)) { 11101 /* FP insns act as UNDEF */ 11102 return cur_el == 2 ? 2 : 1; 11103 } 11104 } 11105 11106 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 11107 * check because zero bits in the registers mean "don't trap". 11108 */ 11109 11110 /* CPTR_EL2 : present in v7VE or v8 */ 11111 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 11112 && !arm_is_secure_below_el3(env)) { 11113 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 11114 return 2; 11115 } 11116 11117 /* CPTR_EL3 : present in v8 */ 11118 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 11119 /* Trap all FP ops to EL3 */ 11120 return 3; 11121 } 11122 #endif 11123 return 0; 11124 } 11125 11126 #ifndef CONFIG_TCG 11127 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11128 { 11129 g_assert_not_reached(); 11130 } 11131 #endif 11132 11133 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11134 { 11135 if (arm_feature(env, ARM_FEATURE_M)) { 11136 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11137 } 11138 11139 if (el < 2 && arm_is_secure_below_el3(env)) { 11140 return ARMMMUIdx_S1SE0 + el; 11141 } else { 11142 return ARMMMUIdx_S12NSE0 + el; 11143 } 11144 } 11145 11146 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11147 { 11148 return arm_mmu_idx_el(env, arm_current_el(env)); 11149 } 11150 11151 int cpu_mmu_index(CPUARMState *env, bool ifetch) 11152 { 11153 return arm_to_core_mmu_idx(arm_mmu_idx(env)); 11154 } 11155 11156 #ifndef CONFIG_USER_ONLY 11157 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 11158 { 11159 return stage_1_mmu_idx(arm_mmu_idx(env)); 11160 } 11161 #endif 11162 11163 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 11164 ARMMMUIdx mmu_idx, uint32_t flags) 11165 { 11166 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 11167 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 11168 arm_to_core_mmu_idx(mmu_idx)); 11169 11170 if (arm_singlestep_active(env)) { 11171 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 11172 } 11173 return flags; 11174 } 11175 11176 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 11177 ARMMMUIdx mmu_idx, uint32_t flags) 11178 { 11179 bool sctlr_b = arm_sctlr_b(env); 11180 11181 if (sctlr_b) { 11182 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 11183 } 11184 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 11185 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 11186 } 11187 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 11188 11189 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11190 } 11191 11192 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 11193 ARMMMUIdx mmu_idx) 11194 { 11195 uint32_t flags = 0; 11196 11197 /* v8M always enables the fpu. */ 11198 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 11199 11200 if (arm_v7m_is_handler_mode(env)) { 11201 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1); 11202 } 11203 11204 /* 11205 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 11206 * is suppressing them because the requested execution priority 11207 * is less than 0. 11208 */ 11209 if (arm_feature(env, ARM_FEATURE_V8) && 11210 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 11211 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 11212 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1); 11213 } 11214 11215 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11216 } 11217 11218 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 11219 { 11220 int flags = 0; 11221 11222 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 11223 arm_debug_target_el(env)); 11224 return flags; 11225 } 11226 11227 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 11228 ARMMMUIdx mmu_idx) 11229 { 11230 uint32_t flags = rebuild_hflags_aprofile(env); 11231 11232 if (arm_el_is_aa64(env, 1)) { 11233 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 11234 } 11235 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11236 } 11237 11238 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 11239 ARMMMUIdx mmu_idx) 11240 { 11241 uint32_t flags = rebuild_hflags_aprofile(env); 11242 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 11243 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1); 11244 uint64_t sctlr; 11245 int tbii, tbid; 11246 11247 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 11248 11249 /* FIXME: ARMv8.1-VHE S2 translation regime. */ 11250 if (regime_el(env, stage1) < 2) { 11251 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1); 11252 tbid = (p1.tbi << 1) | p0.tbi; 11253 tbii = tbid & ~((p1.tbid << 1) | p0.tbid); 11254 } else { 11255 tbid = p0.tbi; 11256 tbii = tbid & !p0.tbid; 11257 } 11258 11259 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 11260 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 11261 11262 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 11263 int sve_el = sve_exception_el(env, el); 11264 uint32_t zcr_len; 11265 11266 /* 11267 * If SVE is disabled, but FP is enabled, 11268 * then the effective len is 0. 11269 */ 11270 if (sve_el != 0 && fp_el == 0) { 11271 zcr_len = 0; 11272 } else { 11273 zcr_len = sve_zcr_len_for_el(env, el); 11274 } 11275 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 11276 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 11277 } 11278 11279 sctlr = arm_sctlr(env, el); 11280 11281 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 11282 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 11283 } 11284 11285 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 11286 /* 11287 * In order to save space in flags, we record only whether 11288 * pauth is "inactive", meaning all insns are implemented as 11289 * a nop, or "active" when some action must be performed. 11290 * The decision of which action to take is left to a helper. 11291 */ 11292 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 11293 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 11294 } 11295 } 11296 11297 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11298 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 11299 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 11300 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 11301 } 11302 } 11303 11304 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11305 } 11306 11307 static uint32_t rebuild_hflags_internal(CPUARMState *env) 11308 { 11309 int el = arm_current_el(env); 11310 int fp_el = fp_exception_el(env, el); 11311 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11312 11313 if (is_a64(env)) { 11314 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11315 } else if (arm_feature(env, ARM_FEATURE_M)) { 11316 return rebuild_hflags_m32(env, fp_el, mmu_idx); 11317 } else { 11318 return rebuild_hflags_a32(env, fp_el, mmu_idx); 11319 } 11320 } 11321 11322 void arm_rebuild_hflags(CPUARMState *env) 11323 { 11324 env->hflags = rebuild_hflags_internal(env); 11325 } 11326 11327 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 11328 { 11329 int fp_el = fp_exception_el(env, el); 11330 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11331 11332 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11333 } 11334 11335 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 11336 { 11337 int fp_el = fp_exception_el(env, el); 11338 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11339 11340 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11341 } 11342 11343 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 11344 { 11345 int fp_el = fp_exception_el(env, el); 11346 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11347 11348 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11349 } 11350 11351 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11352 target_ulong *cs_base, uint32_t *pflags) 11353 { 11354 uint32_t flags = env->hflags; 11355 uint32_t pstate_for_ss; 11356 11357 *cs_base = 0; 11358 #ifdef CONFIG_DEBUG_TCG 11359 assert(flags == rebuild_hflags_internal(env)); 11360 #endif 11361 11362 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 11363 *pc = env->pc; 11364 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11365 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 11366 } 11367 pstate_for_ss = env->pstate; 11368 } else { 11369 *pc = env->regs[15]; 11370 11371 if (arm_feature(env, ARM_FEATURE_M)) { 11372 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11373 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11374 != env->v7m.secure) { 11375 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1); 11376 } 11377 11378 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11379 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11380 (env->v7m.secure && 11381 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11382 /* 11383 * ASPEN is set, but FPCA/SFPA indicate that there is no 11384 * active FP context; we must create a new FP context before 11385 * executing any FP insn. 11386 */ 11387 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1); 11388 } 11389 11390 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11391 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11392 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1); 11393 } 11394 } else { 11395 /* 11396 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11397 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11398 */ 11399 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11400 flags = FIELD_DP32(flags, TBFLAG_A32, 11401 XSCALE_CPAR, env->cp15.c15_cpar); 11402 } else { 11403 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 11404 env->vfp.vec_len); 11405 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 11406 env->vfp.vec_stride); 11407 } 11408 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11409 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 11410 } 11411 } 11412 11413 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb); 11414 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits); 11415 pstate_for_ss = env->uncached_cpsr; 11416 } 11417 11418 /* 11419 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11420 * states defined in the ARM ARM for software singlestep: 11421 * SS_ACTIVE PSTATE.SS State 11422 * 0 x Inactive (the TB flag for SS is always 0) 11423 * 1 0 Active-pending 11424 * 1 1 Active-not-pending 11425 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 11426 */ 11427 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 11428 (pstate_for_ss & PSTATE_SS)) { 11429 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 11430 } 11431 11432 *pflags = flags; 11433 } 11434 11435 #ifdef TARGET_AARCH64 11436 /* 11437 * The manual says that when SVE is enabled and VQ is widened the 11438 * implementation is allowed to zero the previously inaccessible 11439 * portion of the registers. The corollary to that is that when 11440 * SVE is enabled and VQ is narrowed we are also allowed to zero 11441 * the now inaccessible portion of the registers. 11442 * 11443 * The intent of this is that no predicate bit beyond VQ is ever set. 11444 * Which means that some operations on predicate registers themselves 11445 * may operate on full uint64_t or even unrolled across the maximum 11446 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11447 * may well be cheaper than conditionals to restrict the operation 11448 * to the relevant portion of a uint16_t[16]. 11449 */ 11450 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11451 { 11452 int i, j; 11453 uint64_t pmask; 11454 11455 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11456 assert(vq <= env_archcpu(env)->sve_max_vq); 11457 11458 /* Zap the high bits of the zregs. */ 11459 for (i = 0; i < 32; i++) { 11460 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11461 } 11462 11463 /* Zap the high bits of the pregs and ffr. */ 11464 pmask = 0; 11465 if (vq & 3) { 11466 pmask = ~(-1ULL << (16 * (vq & 3))); 11467 } 11468 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11469 for (i = 0; i < 17; ++i) { 11470 env->vfp.pregs[i].p[j] &= pmask; 11471 } 11472 pmask = 0; 11473 } 11474 } 11475 11476 /* 11477 * Notice a change in SVE vector size when changing EL. 11478 */ 11479 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11480 int new_el, bool el0_a64) 11481 { 11482 ARMCPU *cpu = env_archcpu(env); 11483 int old_len, new_len; 11484 bool old_a64, new_a64; 11485 11486 /* Nothing to do if no SVE. */ 11487 if (!cpu_isar_feature(aa64_sve, cpu)) { 11488 return; 11489 } 11490 11491 /* Nothing to do if FP is disabled in either EL. */ 11492 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11493 return; 11494 } 11495 11496 /* 11497 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11498 * at ELx, or not available because the EL is in AArch32 state, then 11499 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11500 * has an effective value of 0". 11501 * 11502 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11503 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11504 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11505 * we already have the correct register contents when encountering the 11506 * vq0->vq0 transition between EL0->EL1. 11507 */ 11508 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11509 old_len = (old_a64 && !sve_exception_el(env, old_el) 11510 ? sve_zcr_len_for_el(env, old_el) : 0); 11511 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11512 new_len = (new_a64 && !sve_exception_el(env, new_el) 11513 ? sve_zcr_len_for_el(env, new_el) : 0); 11514 11515 /* When changing vector length, clear inaccessible state. */ 11516 if (new_len < old_len) { 11517 aarch64_sve_narrow_vq(env, new_len + 1); 11518 } 11519 } 11520 #endif 11521