xref: /openbmc/qemu/target/arm/helper.c (revision 663163f0)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33 #include "target/arm/gtimer.h"
34 
35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
36 
37 static void switch_mode(CPUARMState *env, int mode);
38 
39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
40 {
41     assert(ri->fieldoffset);
42     if (cpreg_field_is_64bit(ri)) {
43         return CPREG_FIELD64(env, ri);
44     } else {
45         return CPREG_FIELD32(env, ri);
46     }
47 }
48 
49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
50 {
51     assert(ri->fieldoffset);
52     if (cpreg_field_is_64bit(ri)) {
53         CPREG_FIELD64(env, ri) = value;
54     } else {
55         CPREG_FIELD32(env, ri) = value;
56     }
57 }
58 
59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
60 {
61     return (char *)env + ri->fieldoffset;
62 }
63 
64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
65 {
66     /* Raw read of a coprocessor register (as needed for migration, etc). */
67     if (ri->type & ARM_CP_CONST) {
68         return ri->resetvalue;
69     } else if (ri->raw_readfn) {
70         return ri->raw_readfn(env, ri);
71     } else if (ri->readfn) {
72         return ri->readfn(env, ri);
73     } else {
74         return raw_read(env, ri);
75     }
76 }
77 
78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
79                              uint64_t v)
80 {
81     /*
82      * Raw write of a coprocessor register (as needed for migration, etc).
83      * Note that constant registers are treated as write-ignored; the
84      * caller should check for success by whether a readback gives the
85      * value written.
86      */
87     if (ri->type & ARM_CP_CONST) {
88         return;
89     } else if (ri->raw_writefn) {
90         ri->raw_writefn(env, ri, v);
91     } else if (ri->writefn) {
92         ri->writefn(env, ri, v);
93     } else {
94         raw_write(env, ri, v);
95     }
96 }
97 
98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
99 {
100    /*
101     * Return true if the regdef would cause an assertion if you called
102     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
103     * program bug for it not to have the NO_RAW flag).
104     * NB that returning false here doesn't necessarily mean that calling
105     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
106     * read/write access functions which are safe for raw use" from "has
107     * read/write access functions which have side effects but has forgotten
108     * to provide raw access functions".
109     * The tests here line up with the conditions in read/write_raw_cp_reg()
110     * and assertions in raw_read()/raw_write().
111     */
112     if ((ri->type & ARM_CP_CONST) ||
113         ri->fieldoffset ||
114         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
115         return false;
116     }
117     return true;
118 }
119 
120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
121 {
122     /* Write the coprocessor state from cpu->env to the (index,value) list. */
123     int i;
124     bool ok = true;
125 
126     for (i = 0; i < cpu->cpreg_array_len; i++) {
127         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
128         const ARMCPRegInfo *ri;
129         uint64_t newval;
130 
131         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
132         if (!ri) {
133             ok = false;
134             continue;
135         }
136         if (ri->type & ARM_CP_NO_RAW) {
137             continue;
138         }
139 
140         newval = read_raw_cp_reg(&cpu->env, ri);
141         if (kvm_sync) {
142             /*
143              * Only sync if the previous list->cpustate sync succeeded.
144              * Rather than tracking the success/failure state for every
145              * item in the list, we just recheck "does the raw write we must
146              * have made in write_list_to_cpustate() read back OK" here.
147              */
148             uint64_t oldval = cpu->cpreg_values[i];
149 
150             if (oldval == newval) {
151                 continue;
152             }
153 
154             write_raw_cp_reg(&cpu->env, ri, oldval);
155             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
156                 continue;
157             }
158 
159             write_raw_cp_reg(&cpu->env, ri, newval);
160         }
161         cpu->cpreg_values[i] = newval;
162     }
163     return ok;
164 }
165 
166 bool write_list_to_cpustate(ARMCPU *cpu)
167 {
168     int i;
169     bool ok = true;
170 
171     for (i = 0; i < cpu->cpreg_array_len; i++) {
172         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
173         uint64_t v = cpu->cpreg_values[i];
174         const ARMCPRegInfo *ri;
175 
176         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
177         if (!ri) {
178             ok = false;
179             continue;
180         }
181         if (ri->type & ARM_CP_NO_RAW) {
182             continue;
183         }
184         /*
185          * Write value and confirm it reads back as written
186          * (to catch read-only registers and partially read-only
187          * registers where the incoming migration value doesn't match)
188          */
189         write_raw_cp_reg(&cpu->env, ri, v);
190         if (read_raw_cp_reg(&cpu->env, ri) != v) {
191             ok = false;
192         }
193     }
194     return ok;
195 }
196 
197 static void add_cpreg_to_list(gpointer key, gpointer opaque)
198 {
199     ARMCPU *cpu = opaque;
200     uint32_t regidx = (uintptr_t)key;
201     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
202 
203     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
204         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
205         /* The value array need not be initialized at this point */
206         cpu->cpreg_array_len++;
207     }
208 }
209 
210 static void count_cpreg(gpointer key, gpointer opaque)
211 {
212     ARMCPU *cpu = opaque;
213     const ARMCPRegInfo *ri;
214 
215     ri = g_hash_table_lookup(cpu->cp_regs, key);
216 
217     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
218         cpu->cpreg_array_len++;
219     }
220 }
221 
222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
223 {
224     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
225     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
226 
227     if (aidx > bidx) {
228         return 1;
229     }
230     if (aidx < bidx) {
231         return -1;
232     }
233     return 0;
234 }
235 
236 void init_cpreg_list(ARMCPU *cpu)
237 {
238     /*
239      * Initialise the cpreg_tuples[] array based on the cp_regs hash.
240      * Note that we require cpreg_tuples[] to be sorted by key ID.
241      */
242     GList *keys;
243     int arraylen;
244 
245     keys = g_hash_table_get_keys(cpu->cp_regs);
246     keys = g_list_sort(keys, cpreg_key_compare);
247 
248     cpu->cpreg_array_len = 0;
249 
250     g_list_foreach(keys, count_cpreg, cpu);
251 
252     arraylen = cpu->cpreg_array_len;
253     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
254     cpu->cpreg_values = g_new(uint64_t, arraylen);
255     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
256     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
257     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
258     cpu->cpreg_array_len = 0;
259 
260     g_list_foreach(keys, add_cpreg_to_list, cpu);
261 
262     assert(cpu->cpreg_array_len == arraylen);
263 
264     g_list_free(keys);
265 }
266 
267 static bool arm_pan_enabled(CPUARMState *env)
268 {
269     if (is_a64(env)) {
270         if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
271             return false;
272         }
273         return env->pstate & PSTATE_PAN;
274     } else {
275         return env->uncached_cpsr & CPSR_PAN;
276     }
277 }
278 
279 /*
280  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
281  */
282 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
283                                         const ARMCPRegInfo *ri,
284                                         bool isread)
285 {
286     if (!is_a64(env) && arm_current_el(env) == 3 &&
287         arm_is_secure_below_el3(env)) {
288         return CP_ACCESS_TRAP_UNCATEGORIZED;
289     }
290     return CP_ACCESS_OK;
291 }
292 
293 /*
294  * Some secure-only AArch32 registers trap to EL3 if used from
295  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
296  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
297  * We assume that the .access field is set to PL1_RW.
298  */
299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
300                                             const ARMCPRegInfo *ri,
301                                             bool isread)
302 {
303     if (arm_current_el(env) == 3) {
304         return CP_ACCESS_OK;
305     }
306     if (arm_is_secure_below_el3(env)) {
307         if (env->cp15.scr_el3 & SCR_EEL2) {
308             return CP_ACCESS_TRAP_EL2;
309         }
310         return CP_ACCESS_TRAP_EL3;
311     }
312     /* This will be EL1 NS and EL2 NS, which just UNDEF */
313     return CP_ACCESS_TRAP_UNCATEGORIZED;
314 }
315 
316 /*
317  * Check for traps to performance monitor registers, which are controlled
318  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
319  */
320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
321                                  bool isread)
322 {
323     int el = arm_current_el(env);
324     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
325 
326     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
327         return CP_ACCESS_TRAP_EL2;
328     }
329     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
330         return CP_ACCESS_TRAP_EL3;
331     }
332     return CP_ACCESS_OK;
333 }
334 
335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
337                                bool isread)
338 {
339     if (arm_current_el(env) == 1) {
340         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
341         if (arm_hcr_el2_eff(env) & trap) {
342             return CP_ACCESS_TRAP_EL2;
343         }
344     }
345     return CP_ACCESS_OK;
346 }
347 
348 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
350                                  bool isread)
351 {
352     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
353         return CP_ACCESS_TRAP_EL2;
354     }
355     return CP_ACCESS_OK;
356 }
357 
358 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
360                                   bool isread)
361 {
362     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
363         return CP_ACCESS_TRAP_EL2;
364     }
365     return CP_ACCESS_OK;
366 }
367 
368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
370                                   bool isread)
371 {
372     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
373         return CP_ACCESS_TRAP_EL2;
374     }
375     return CP_ACCESS_OK;
376 }
377 
378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
380                                     bool isread)
381 {
382     if (arm_current_el(env) == 1 &&
383         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
384         return CP_ACCESS_TRAP_EL2;
385     }
386     return CP_ACCESS_OK;
387 }
388 
389 #ifdef TARGET_AARCH64
390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
392                                     bool isread)
393 {
394     if (arm_current_el(env) == 1 &&
395         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
396         return CP_ACCESS_TRAP_EL2;
397     }
398     return CP_ACCESS_OK;
399 }
400 #endif
401 
402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
403 {
404     ARMCPU *cpu = env_archcpu(env);
405 
406     raw_write(env, ri, value);
407     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
408 }
409 
410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
411 {
412     ARMCPU *cpu = env_archcpu(env);
413 
414     if (raw_read(env, ri) != value) {
415         /*
416          * Unlike real hardware the qemu TLB uses virtual addresses,
417          * not modified virtual addresses, so this causes a TLB flush.
418          */
419         tlb_flush(CPU(cpu));
420         raw_write(env, ri, value);
421     }
422 }
423 
424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
425                              uint64_t value)
426 {
427     ARMCPU *cpu = env_archcpu(env);
428 
429     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
430         && !extended_addresses_enabled(env)) {
431         /*
432          * For VMSA (when not using the LPAE long descriptor page table
433          * format) this register includes the ASID, so do a TLB flush.
434          * For PMSA it is purely a process ID and no action is needed.
435          */
436         tlb_flush(CPU(cpu));
437     }
438     raw_write(env, ri, value);
439 }
440 
441 static int alle1_tlbmask(CPUARMState *env)
442 {
443     /*
444      * Note that the 'ALL' scope must invalidate both stage 1 and
445      * stage 2 translations, whereas most other scopes only invalidate
446      * stage 1 translations.
447      */
448     return (ARMMMUIdxBit_E10_1 |
449             ARMMMUIdxBit_E10_1_PAN |
450             ARMMMUIdxBit_E10_0 |
451             ARMMMUIdxBit_Stage2 |
452             ARMMMUIdxBit_Stage2_S);
453 }
454 
455 
456 /* IS variants of TLB operations must affect all cores */
457 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
458                              uint64_t value)
459 {
460     CPUState *cs = env_cpu(env);
461 
462     tlb_flush_all_cpus_synced(cs);
463 }
464 
465 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
466                              uint64_t value)
467 {
468     CPUState *cs = env_cpu(env);
469 
470     tlb_flush_all_cpus_synced(cs);
471 }
472 
473 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
474                              uint64_t value)
475 {
476     CPUState *cs = env_cpu(env);
477 
478     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
479 }
480 
481 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
482                              uint64_t value)
483 {
484     CPUState *cs = env_cpu(env);
485 
486     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
487 }
488 
489 /*
490  * Non-IS variants of TLB operations are upgraded to
491  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
492  * force broadcast of these operations.
493  */
494 static bool tlb_force_broadcast(CPUARMState *env)
495 {
496     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
497 }
498 
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500                           uint64_t value)
501 {
502     /* Invalidate all (TLBIALL) */
503     CPUState *cs = env_cpu(env);
504 
505     if (tlb_force_broadcast(env)) {
506         tlb_flush_all_cpus_synced(cs);
507     } else {
508         tlb_flush(cs);
509     }
510 }
511 
512 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
513                           uint64_t value)
514 {
515     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
516     CPUState *cs = env_cpu(env);
517 
518     value &= TARGET_PAGE_MASK;
519     if (tlb_force_broadcast(env)) {
520         tlb_flush_page_all_cpus_synced(cs, value);
521     } else {
522         tlb_flush_page(cs, value);
523     }
524 }
525 
526 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
527                            uint64_t value)
528 {
529     /* Invalidate by ASID (TLBIASID) */
530     CPUState *cs = env_cpu(env);
531 
532     if (tlb_force_broadcast(env)) {
533         tlb_flush_all_cpus_synced(cs);
534     } else {
535         tlb_flush(cs);
536     }
537 }
538 
539 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
540                            uint64_t value)
541 {
542     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
543     CPUState *cs = env_cpu(env);
544 
545     value &= TARGET_PAGE_MASK;
546     if (tlb_force_broadcast(env)) {
547         tlb_flush_page_all_cpus_synced(cs, value);
548     } else {
549         tlb_flush_page(cs, value);
550     }
551 }
552 
553 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
554                                uint64_t value)
555 {
556     CPUState *cs = env_cpu(env);
557 
558     tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
559 }
560 
561 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
562                                   uint64_t value)
563 {
564     CPUState *cs = env_cpu(env);
565 
566     tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
567 }
568 
569 
570 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
571                               uint64_t value)
572 {
573     CPUState *cs = env_cpu(env);
574 
575     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
576 }
577 
578 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579                                  uint64_t value)
580 {
581     CPUState *cs = env_cpu(env);
582 
583     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
584 }
585 
586 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
587                               uint64_t value)
588 {
589     CPUState *cs = env_cpu(env);
590     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
591 
592     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
593 }
594 
595 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
596                                  uint64_t value)
597 {
598     CPUState *cs = env_cpu(env);
599     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
600 
601     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
602                                              ARMMMUIdxBit_E2);
603 }
604 
605 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
606                                 uint64_t value)
607 {
608     CPUState *cs = env_cpu(env);
609     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
610 
611     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
612 }
613 
614 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
615                                 uint64_t value)
616 {
617     CPUState *cs = env_cpu(env);
618     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
619 
620     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
621 }
622 
623 static const ARMCPRegInfo cp_reginfo[] = {
624     /*
625      * Define the secure and non-secure FCSE identifier CP registers
626      * separately because there is no secure bank in V8 (no _EL3).  This allows
627      * the secure register to be properly reset and migrated. There is also no
628      * v8 EL1 version of the register so the non-secure instance stands alone.
629      */
630     { .name = "FCSEIDR",
631       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
632       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
633       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
634       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
635     { .name = "FCSEIDR_S",
636       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
637       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
638       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
639       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
640     /*
641      * Define the secure and non-secure context identifier CP registers
642      * separately because there is no secure bank in V8 (no _EL3).  This allows
643      * the secure register to be properly reset and migrated.  In the
644      * non-secure case, the 32-bit register will have reset and migration
645      * disabled during registration as it is handled by the 64-bit instance.
646      */
647     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
648       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
649       .access = PL1_RW, .accessfn = access_tvm_trvm,
650       .fgt = FGT_CONTEXTIDR_EL1,
651       .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
652       .secure = ARM_CP_SECSTATE_NS,
653       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
654       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
655     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
656       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
657       .access = PL1_RW, .accessfn = access_tvm_trvm,
658       .secure = ARM_CP_SECSTATE_S,
659       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
660       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
661 };
662 
663 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
664     /*
665      * NB: Some of these registers exist in v8 but with more precise
666      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
667      */
668     /* MMU Domain access control / MPU write buffer control */
669     { .name = "DACR",
670       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
671       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
672       .writefn = dacr_write, .raw_writefn = raw_write,
673       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
674                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
675     /*
676      * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
677      * For v6 and v5, these mappings are overly broad.
678      */
679     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
680       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
681     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
682       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
683     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
684       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
685     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
686       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
687     /* Cache maintenance ops; some of this space may be overridden later. */
688     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
689       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
690       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
691 };
692 
693 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
694     /*
695      * Not all pre-v6 cores implemented this WFI, so this is slightly
696      * over-broad.
697      */
698     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
699       .access = PL1_W, .type = ARM_CP_WFI },
700 };
701 
702 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
703     /*
704      * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
705      * is UNPREDICTABLE; we choose to NOP as most implementations do).
706      */
707     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
708       .access = PL1_W, .type = ARM_CP_WFI },
709     /*
710      * L1 cache lockdown. Not architectural in v6 and earlier but in practice
711      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
712      * OMAPCP will override this space.
713      */
714     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
715       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
716       .resetvalue = 0 },
717     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
718       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
719       .resetvalue = 0 },
720     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
721     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
722       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
723       .resetvalue = 0 },
724     /*
725      * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
726      * implementing it as RAZ means the "debug architecture version" bits
727      * will read as a reserved value, which should cause Linux to not try
728      * to use the debug hardware.
729      */
730     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
731       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
732     /*
733      * MMU TLB control. Note that the wildcarding means we cover not just
734      * the unified TLB ops but also the dside/iside/inner-shareable variants.
735      */
736     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
737       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
738       .type = ARM_CP_NO_RAW },
739     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
740       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
741       .type = ARM_CP_NO_RAW },
742     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
743       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
744       .type = ARM_CP_NO_RAW },
745     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
746       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
747       .type = ARM_CP_NO_RAW },
748     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
749       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
750     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
751       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
752 };
753 
754 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
755                         uint64_t value)
756 {
757     uint32_t mask = 0;
758 
759     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
760     if (!arm_feature(env, ARM_FEATURE_V8)) {
761         /*
762          * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
763          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
764          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
765          */
766         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
767             /* VFP coprocessor: cp10 & cp11 [23:20] */
768             mask |= R_CPACR_ASEDIS_MASK |
769                     R_CPACR_D32DIS_MASK |
770                     R_CPACR_CP11_MASK |
771                     R_CPACR_CP10_MASK;
772 
773             if (!arm_feature(env, ARM_FEATURE_NEON)) {
774                 /* ASEDIS [31] bit is RAO/WI */
775                 value |= R_CPACR_ASEDIS_MASK;
776             }
777 
778             /*
779              * VFPv3 and upwards with NEON implement 32 double precision
780              * registers (D0-D31).
781              */
782             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
783                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
784                 value |= R_CPACR_D32DIS_MASK;
785             }
786         }
787         value &= mask;
788     }
789 
790     /*
791      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
793      */
794     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
795         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
796         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
797         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
798     }
799 
800     env->cp15.cpacr_el1 = value;
801 }
802 
803 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
804 {
805     /*
806      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
807      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
808      */
809     uint64_t value = env->cp15.cpacr_el1;
810 
811     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
812         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
813         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
814     }
815     return value;
816 }
817 
818 
819 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
820 {
821     /*
822      * Call cpacr_write() so that we reset with the correct RAO bits set
823      * for our CPU features.
824      */
825     cpacr_write(env, ri, 0);
826 }
827 
828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
829                                    bool isread)
830 {
831     if (arm_feature(env, ARM_FEATURE_V8)) {
832         /* Check if CPACR accesses are to be trapped to EL2 */
833         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
834             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
835             return CP_ACCESS_TRAP_EL2;
836         /* Check if CPACR accesses are to be trapped to EL3 */
837         } else if (arm_current_el(env) < 3 &&
838                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
839             return CP_ACCESS_TRAP_EL3;
840         }
841     }
842 
843     return CP_ACCESS_OK;
844 }
845 
846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
847                                   bool isread)
848 {
849     /* Check if CPTR accesses are set to trap to EL3 */
850     if (arm_current_el(env) == 2 &&
851         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
852         return CP_ACCESS_TRAP_EL3;
853     }
854 
855     return CP_ACCESS_OK;
856 }
857 
858 static const ARMCPRegInfo v6_cp_reginfo[] = {
859     /* prefetch by MVA in v6, NOP in v7 */
860     { .name = "MVA_prefetch",
861       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
862       .access = PL1_W, .type = ARM_CP_NOP },
863     /*
864      * We need to break the TB after ISB to execute self-modifying code
865      * correctly and also to take any pending interrupts immediately.
866      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
867      */
868     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
869       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
870     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
871       .access = PL0_W, .type = ARM_CP_NOP },
872     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
873       .access = PL0_W, .type = ARM_CP_NOP },
874     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
875       .access = PL1_RW, .accessfn = access_tvm_trvm,
876       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
877                              offsetof(CPUARMState, cp15.ifar_ns) },
878       .resetvalue = 0, },
879     /*
880      * Watchpoint Fault Address Register : should actually only be present
881      * for 1136, 1176, 11MPCore.
882      */
883     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
884       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
885     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
886       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
887       .fgt = FGT_CPACR_EL1,
888       .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
889       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
890       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
891 };
892 
893 typedef struct pm_event {
894     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
895     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
896     bool (*supported)(CPUARMState *);
897     /*
898      * Retrieve the current count of the underlying event. The programmed
899      * counters hold a difference from the return value from this function
900      */
901     uint64_t (*get_count)(CPUARMState *);
902     /*
903      * Return how many nanoseconds it will take (at a minimum) for count events
904      * to occur. A negative value indicates the counter will never overflow, or
905      * that the counter has otherwise arranged for the overflow bit to be set
906      * and the PMU interrupt to be raised on overflow.
907      */
908     int64_t (*ns_per_count)(uint64_t);
909 } pm_event;
910 
911 static bool event_always_supported(CPUARMState *env)
912 {
913     return true;
914 }
915 
916 static uint64_t swinc_get_count(CPUARMState *env)
917 {
918     /*
919      * SW_INCR events are written directly to the pmevcntr's by writes to
920      * PMSWINC, so there is no underlying count maintained by the PMU itself
921      */
922     return 0;
923 }
924 
925 static int64_t swinc_ns_per(uint64_t ignored)
926 {
927     return -1;
928 }
929 
930 /*
931  * Return the underlying cycle count for the PMU cycle counters. If we're in
932  * usermode, simply return 0.
933  */
934 static uint64_t cycles_get_count(CPUARMState *env)
935 {
936 #ifndef CONFIG_USER_ONLY
937     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
938                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
939 #else
940     return cpu_get_host_ticks();
941 #endif
942 }
943 
944 #ifndef CONFIG_USER_ONLY
945 static int64_t cycles_ns_per(uint64_t cycles)
946 {
947     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
948 }
949 
950 static bool instructions_supported(CPUARMState *env)
951 {
952     /* Precise instruction counting */
953     return icount_enabled() == ICOUNT_PRECISE;
954 }
955 
956 static uint64_t instructions_get_count(CPUARMState *env)
957 {
958     assert(icount_enabled() == ICOUNT_PRECISE);
959     return (uint64_t)icount_get_raw();
960 }
961 
962 static int64_t instructions_ns_per(uint64_t icount)
963 {
964     assert(icount_enabled() == ICOUNT_PRECISE);
965     return icount_to_ns((int64_t)icount);
966 }
967 #endif
968 
969 static bool pmuv3p1_events_supported(CPUARMState *env)
970 {
971     /* For events which are supported in any v8.1 PMU */
972     return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
973 }
974 
975 static bool pmuv3p4_events_supported(CPUARMState *env)
976 {
977     /* For events which are supported in any v8.1 PMU */
978     return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
979 }
980 
981 static uint64_t zero_event_get_count(CPUARMState *env)
982 {
983     /* For events which on QEMU never fire, so their count is always zero */
984     return 0;
985 }
986 
987 static int64_t zero_event_ns_per(uint64_t cycles)
988 {
989     /* An event which never fires can never overflow */
990     return -1;
991 }
992 
993 static const pm_event pm_events[] = {
994     { .number = 0x000, /* SW_INCR */
995       .supported = event_always_supported,
996       .get_count = swinc_get_count,
997       .ns_per_count = swinc_ns_per,
998     },
999 #ifndef CONFIG_USER_ONLY
1000     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1001       .supported = instructions_supported,
1002       .get_count = instructions_get_count,
1003       .ns_per_count = instructions_ns_per,
1004     },
1005     { .number = 0x011, /* CPU_CYCLES, Cycle */
1006       .supported = event_always_supported,
1007       .get_count = cycles_get_count,
1008       .ns_per_count = cycles_ns_per,
1009     },
1010 #endif
1011     { .number = 0x023, /* STALL_FRONTEND */
1012       .supported = pmuv3p1_events_supported,
1013       .get_count = zero_event_get_count,
1014       .ns_per_count = zero_event_ns_per,
1015     },
1016     { .number = 0x024, /* STALL_BACKEND */
1017       .supported = pmuv3p1_events_supported,
1018       .get_count = zero_event_get_count,
1019       .ns_per_count = zero_event_ns_per,
1020     },
1021     { .number = 0x03c, /* STALL */
1022       .supported = pmuv3p4_events_supported,
1023       .get_count = zero_event_get_count,
1024       .ns_per_count = zero_event_ns_per,
1025     },
1026 };
1027 
1028 /*
1029  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1030  * events (i.e. the statistical profiling extension), this implementation
1031  * should first be updated to something sparse instead of the current
1032  * supported_event_map[] array.
1033  */
1034 #define MAX_EVENT_ID 0x3c
1035 #define UNSUPPORTED_EVENT UINT16_MAX
1036 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1037 
1038 /*
1039  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1040  * of ARM event numbers to indices in our pm_events array.
1041  *
1042  * Note: Events in the 0x40XX range are not currently supported.
1043  */
1044 void pmu_init(ARMCPU *cpu)
1045 {
1046     unsigned int i;
1047 
1048     /*
1049      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1050      * events to them
1051      */
1052     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1053         supported_event_map[i] = UNSUPPORTED_EVENT;
1054     }
1055     cpu->pmceid0 = 0;
1056     cpu->pmceid1 = 0;
1057 
1058     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1059         const pm_event *cnt = &pm_events[i];
1060         assert(cnt->number <= MAX_EVENT_ID);
1061         /* We do not currently support events in the 0x40xx range */
1062         assert(cnt->number <= 0x3f);
1063 
1064         if (cnt->supported(&cpu->env)) {
1065             supported_event_map[cnt->number] = i;
1066             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1067             if (cnt->number & 0x20) {
1068                 cpu->pmceid1 |= event_mask;
1069             } else {
1070                 cpu->pmceid0 |= event_mask;
1071             }
1072         }
1073     }
1074 }
1075 
1076 /*
1077  * Check at runtime whether a PMU event is supported for the current machine
1078  */
1079 static bool event_supported(uint16_t number)
1080 {
1081     if (number > MAX_EVENT_ID) {
1082         return false;
1083     }
1084     return supported_event_map[number] != UNSUPPORTED_EVENT;
1085 }
1086 
1087 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1088                                    bool isread)
1089 {
1090     /*
1091      * Performance monitor registers user accessibility is controlled
1092      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1093      * trapping to EL2 or EL3 for other accesses.
1094      */
1095     int el = arm_current_el(env);
1096     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1097 
1098     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1099         return CP_ACCESS_TRAP;
1100     }
1101     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1102         return CP_ACCESS_TRAP_EL2;
1103     }
1104     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1105         return CP_ACCESS_TRAP_EL3;
1106     }
1107 
1108     return CP_ACCESS_OK;
1109 }
1110 
1111 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1112                                            const ARMCPRegInfo *ri,
1113                                            bool isread)
1114 {
1115     /* ER: event counter read trap control */
1116     if (arm_feature(env, ARM_FEATURE_V8)
1117         && arm_current_el(env) == 0
1118         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1119         && isread) {
1120         return CP_ACCESS_OK;
1121     }
1122 
1123     return pmreg_access(env, ri, isread);
1124 }
1125 
1126 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1127                                          const ARMCPRegInfo *ri,
1128                                          bool isread)
1129 {
1130     /* SW: software increment write trap control */
1131     if (arm_feature(env, ARM_FEATURE_V8)
1132         && arm_current_el(env) == 0
1133         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1134         && !isread) {
1135         return CP_ACCESS_OK;
1136     }
1137 
1138     return pmreg_access(env, ri, isread);
1139 }
1140 
1141 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1142                                         const ARMCPRegInfo *ri,
1143                                         bool isread)
1144 {
1145     /* ER: event counter read trap control */
1146     if (arm_feature(env, ARM_FEATURE_V8)
1147         && arm_current_el(env) == 0
1148         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1149         return CP_ACCESS_OK;
1150     }
1151 
1152     return pmreg_access(env, ri, isread);
1153 }
1154 
1155 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1156                                          const ARMCPRegInfo *ri,
1157                                          bool isread)
1158 {
1159     /* CR: cycle counter read trap control */
1160     if (arm_feature(env, ARM_FEATURE_V8)
1161         && arm_current_el(env) == 0
1162         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1163         && isread) {
1164         return CP_ACCESS_OK;
1165     }
1166 
1167     return pmreg_access(env, ri, isread);
1168 }
1169 
1170 /*
1171  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1172  * We use these to decide whether we need to wrap a write to MDCR_EL2
1173  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1174  */
1175 #define MDCR_EL2_PMU_ENABLE_BITS \
1176     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1177 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1178 
1179 /*
1180  * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1181  * the current EL, security state, and register configuration.
1182  */
1183 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1184 {
1185     uint64_t filter;
1186     bool e, p, u, nsk, nsu, nsh, m;
1187     bool enabled, prohibited = false, filtered;
1188     bool secure = arm_is_secure(env);
1189     int el = arm_current_el(env);
1190     uint64_t mdcr_el2;
1191     uint8_t hpmn;
1192 
1193     /*
1194      * We might be called for M-profile cores where MDCR_EL2 doesn't
1195      * exist and arm_mdcr_el2_eff() will assert, so this early-exit check
1196      * must be before we read that value.
1197      */
1198     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1199         return false;
1200     }
1201 
1202     mdcr_el2 = arm_mdcr_el2_eff(env);
1203     hpmn = mdcr_el2 & MDCR_HPMN;
1204 
1205     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1206             (counter < hpmn || counter == 31)) {
1207         e = env->cp15.c9_pmcr & PMCRE;
1208     } else {
1209         e = mdcr_el2 & MDCR_HPME;
1210     }
1211     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1212 
1213     /* Is event counting prohibited? */
1214     if (el == 2 && (counter < hpmn || counter == 31)) {
1215         prohibited = mdcr_el2 & MDCR_HPMD;
1216     }
1217     if (secure) {
1218         prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1219     }
1220 
1221     if (counter == 31) {
1222         /*
1223          * The cycle counter defaults to running. PMCR.DP says "disable
1224          * the cycle counter when event counting is prohibited".
1225          * Some MDCR bits disable the cycle counter specifically.
1226          */
1227         prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1228         if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1229             if (secure) {
1230                 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1231             }
1232             if (el == 2) {
1233                 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1234             }
1235         }
1236     }
1237 
1238     if (counter == 31) {
1239         filter = env->cp15.pmccfiltr_el0;
1240     } else {
1241         filter = env->cp15.c14_pmevtyper[counter];
1242     }
1243 
1244     p   = filter & PMXEVTYPER_P;
1245     u   = filter & PMXEVTYPER_U;
1246     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1247     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1248     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1249     m   = arm_el_is_aa64(env, 1) &&
1250               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1251 
1252     if (el == 0) {
1253         filtered = secure ? u : u != nsu;
1254     } else if (el == 1) {
1255         filtered = secure ? p : p != nsk;
1256     } else if (el == 2) {
1257         filtered = !nsh;
1258     } else { /* EL3 */
1259         filtered = m != p;
1260     }
1261 
1262     if (counter != 31) {
1263         /*
1264          * If not checking PMCCNTR, ensure the counter is setup to an event we
1265          * support
1266          */
1267         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1268         if (!event_supported(event)) {
1269             return false;
1270         }
1271     }
1272 
1273     return enabled && !prohibited && !filtered;
1274 }
1275 
1276 static void pmu_update_irq(CPUARMState *env)
1277 {
1278     ARMCPU *cpu = env_archcpu(env);
1279     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1280             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1281 }
1282 
1283 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1284 {
1285     /*
1286      * Return true if the clock divider is enabled and the cycle counter
1287      * is supposed to tick only once every 64 clock cycles. This is
1288      * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1289      * (64-bit) cycle counter PMCR.D has no effect.
1290      */
1291     return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1292 }
1293 
1294 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1295 {
1296     /* Return true if the specified event counter is configured to be 64 bit */
1297 
1298     /* This isn't intended to be used with the cycle counter */
1299     assert(counter < 31);
1300 
1301     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1302         return false;
1303     }
1304 
1305     if (arm_feature(env, ARM_FEATURE_EL2)) {
1306         /*
1307          * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1308          * current security state, so we don't use arm_mdcr_el2_eff() here.
1309          */
1310         bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1311         int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1312 
1313         if (counter >= hpmn) {
1314             return hlp;
1315         }
1316     }
1317     return env->cp15.c9_pmcr & PMCRLP;
1318 }
1319 
1320 /*
1321  * Ensure c15_ccnt is the guest-visible count so that operations such as
1322  * enabling/disabling the counter or filtering, modifying the count itself,
1323  * etc. can be done logically. This is essentially a no-op if the counter is
1324  * not enabled at the time of the call.
1325  */
1326 static void pmccntr_op_start(CPUARMState *env)
1327 {
1328     uint64_t cycles = cycles_get_count(env);
1329 
1330     if (pmu_counter_enabled(env, 31)) {
1331         uint64_t eff_cycles = cycles;
1332         if (pmccntr_clockdiv_enabled(env)) {
1333             eff_cycles /= 64;
1334         }
1335 
1336         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1337 
1338         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1339                                  1ull << 63 : 1ull << 31;
1340         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1341             env->cp15.c9_pmovsr |= (1ULL << 31);
1342             pmu_update_irq(env);
1343         }
1344 
1345         env->cp15.c15_ccnt = new_pmccntr;
1346     }
1347     env->cp15.c15_ccnt_delta = cycles;
1348 }
1349 
1350 /*
1351  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1352  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1353  * pmccntr_op_start.
1354  */
1355 static void pmccntr_op_finish(CPUARMState *env)
1356 {
1357     if (pmu_counter_enabled(env, 31)) {
1358 #ifndef CONFIG_USER_ONLY
1359         /* Calculate when the counter will next overflow */
1360         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1361         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1362             remaining_cycles = (uint32_t)remaining_cycles;
1363         }
1364         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1365 
1366         if (overflow_in > 0) {
1367             int64_t overflow_at;
1368 
1369             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1370                                  overflow_in, &overflow_at)) {
1371                 ARMCPU *cpu = env_archcpu(env);
1372                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1373             }
1374         }
1375 #endif
1376 
1377         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1378         if (pmccntr_clockdiv_enabled(env)) {
1379             prev_cycles /= 64;
1380         }
1381         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1382     }
1383 }
1384 
1385 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1386 {
1387 
1388     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1389     uint64_t count = 0;
1390     if (event_supported(event)) {
1391         uint16_t event_idx = supported_event_map[event];
1392         count = pm_events[event_idx].get_count(env);
1393     }
1394 
1395     if (pmu_counter_enabled(env, counter)) {
1396         uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1397         uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1398             1ULL << 63 : 1ULL << 31;
1399 
1400         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1401             env->cp15.c9_pmovsr |= (1 << counter);
1402             pmu_update_irq(env);
1403         }
1404         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1405     }
1406     env->cp15.c14_pmevcntr_delta[counter] = count;
1407 }
1408 
1409 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1410 {
1411     if (pmu_counter_enabled(env, counter)) {
1412 #ifndef CONFIG_USER_ONLY
1413         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1414         uint16_t event_idx = supported_event_map[event];
1415         uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1416         int64_t overflow_in;
1417 
1418         if (!pmevcntr_is_64_bit(env, counter)) {
1419             delta = (uint32_t)delta;
1420         }
1421         overflow_in = pm_events[event_idx].ns_per_count(delta);
1422 
1423         if (overflow_in > 0) {
1424             int64_t overflow_at;
1425 
1426             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1427                                  overflow_in, &overflow_at)) {
1428                 ARMCPU *cpu = env_archcpu(env);
1429                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1430             }
1431         }
1432 #endif
1433 
1434         env->cp15.c14_pmevcntr_delta[counter] -=
1435             env->cp15.c14_pmevcntr[counter];
1436     }
1437 }
1438 
1439 void pmu_op_start(CPUARMState *env)
1440 {
1441     unsigned int i;
1442     pmccntr_op_start(env);
1443     for (i = 0; i < pmu_num_counters(env); i++) {
1444         pmevcntr_op_start(env, i);
1445     }
1446 }
1447 
1448 void pmu_op_finish(CPUARMState *env)
1449 {
1450     unsigned int i;
1451     pmccntr_op_finish(env);
1452     for (i = 0; i < pmu_num_counters(env); i++) {
1453         pmevcntr_op_finish(env, i);
1454     }
1455 }
1456 
1457 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1458 {
1459     pmu_op_start(&cpu->env);
1460 }
1461 
1462 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1463 {
1464     pmu_op_finish(&cpu->env);
1465 }
1466 
1467 void arm_pmu_timer_cb(void *opaque)
1468 {
1469     ARMCPU *cpu = opaque;
1470 
1471     /*
1472      * Update all the counter values based on the current underlying counts,
1473      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1474      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1475      * counter may expire.
1476      */
1477     pmu_op_start(&cpu->env);
1478     pmu_op_finish(&cpu->env);
1479 }
1480 
1481 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1482                        uint64_t value)
1483 {
1484     pmu_op_start(env);
1485 
1486     if (value & PMCRC) {
1487         /* The counter has been reset */
1488         env->cp15.c15_ccnt = 0;
1489     }
1490 
1491     if (value & PMCRP) {
1492         unsigned int i;
1493         for (i = 0; i < pmu_num_counters(env); i++) {
1494             env->cp15.c14_pmevcntr[i] = 0;
1495         }
1496     }
1497 
1498     env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1499     env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1500 
1501     pmu_op_finish(env);
1502 }
1503 
1504 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1505 {
1506     uint64_t pmcr = env->cp15.c9_pmcr;
1507 
1508     /*
1509      * If EL2 is implemented and enabled for the current security state, reads
1510      * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
1511      */
1512     if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
1513         pmcr &= ~PMCRN_MASK;
1514         pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
1515     }
1516 
1517     return pmcr;
1518 }
1519 
1520 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1521                           uint64_t value)
1522 {
1523     unsigned int i;
1524     uint64_t overflow_mask, new_pmswinc;
1525 
1526     for (i = 0; i < pmu_num_counters(env); i++) {
1527         /* Increment a counter's count iff: */
1528         if ((value & (1 << i)) && /* counter's bit is set */
1529                 /* counter is enabled and not filtered */
1530                 pmu_counter_enabled(env, i) &&
1531                 /* counter is SW_INCR */
1532                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1533             pmevcntr_op_start(env, i);
1534 
1535             /*
1536              * Detect if this write causes an overflow since we can't predict
1537              * PMSWINC overflows like we can for other events
1538              */
1539             new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1540 
1541             overflow_mask = pmevcntr_is_64_bit(env, i) ?
1542                 1ULL << 63 : 1ULL << 31;
1543 
1544             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1545                 env->cp15.c9_pmovsr |= (1 << i);
1546                 pmu_update_irq(env);
1547             }
1548 
1549             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1550 
1551             pmevcntr_op_finish(env, i);
1552         }
1553     }
1554 }
1555 
1556 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1557 {
1558     uint64_t ret;
1559     pmccntr_op_start(env);
1560     ret = env->cp15.c15_ccnt;
1561     pmccntr_op_finish(env);
1562     return ret;
1563 }
1564 
1565 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1566                          uint64_t value)
1567 {
1568     /*
1569      * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1570      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1571      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1572      * accessed.
1573      */
1574     env->cp15.c9_pmselr = value & 0x1f;
1575 }
1576 
1577 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1578                         uint64_t value)
1579 {
1580     pmccntr_op_start(env);
1581     env->cp15.c15_ccnt = value;
1582     pmccntr_op_finish(env);
1583 }
1584 
1585 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1586                             uint64_t value)
1587 {
1588     uint64_t cur_val = pmccntr_read(env, NULL);
1589 
1590     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1591 }
1592 
1593 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594                             uint64_t value)
1595 {
1596     pmccntr_op_start(env);
1597     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1598     pmccntr_op_finish(env);
1599 }
1600 
1601 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1602                             uint64_t value)
1603 {
1604     pmccntr_op_start(env);
1605     /* M is not accessible from AArch32 */
1606     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1607         (value & PMCCFILTR);
1608     pmccntr_op_finish(env);
1609 }
1610 
1611 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1612 {
1613     /* M is not visible in AArch32 */
1614     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1615 }
1616 
1617 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1618                             uint64_t value)
1619 {
1620     pmu_op_start(env);
1621     value &= pmu_counter_mask(env);
1622     env->cp15.c9_pmcnten |= value;
1623     pmu_op_finish(env);
1624 }
1625 
1626 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1627                              uint64_t value)
1628 {
1629     pmu_op_start(env);
1630     value &= pmu_counter_mask(env);
1631     env->cp15.c9_pmcnten &= ~value;
1632     pmu_op_finish(env);
1633 }
1634 
1635 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1636                          uint64_t value)
1637 {
1638     value &= pmu_counter_mask(env);
1639     env->cp15.c9_pmovsr &= ~value;
1640     pmu_update_irq(env);
1641 }
1642 
1643 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1644                          uint64_t value)
1645 {
1646     value &= pmu_counter_mask(env);
1647     env->cp15.c9_pmovsr |= value;
1648     pmu_update_irq(env);
1649 }
1650 
1651 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1652                              uint64_t value, const uint8_t counter)
1653 {
1654     if (counter == 31) {
1655         pmccfiltr_write(env, ri, value);
1656     } else if (counter < pmu_num_counters(env)) {
1657         pmevcntr_op_start(env, counter);
1658 
1659         /*
1660          * If this counter's event type is changing, store the current
1661          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1662          * pmevcntr_op_finish has the correct baseline when it converts back to
1663          * a delta.
1664          */
1665         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1666             PMXEVTYPER_EVTCOUNT;
1667         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1668         if (old_event != new_event) {
1669             uint64_t count = 0;
1670             if (event_supported(new_event)) {
1671                 uint16_t event_idx = supported_event_map[new_event];
1672                 count = pm_events[event_idx].get_count(env);
1673             }
1674             env->cp15.c14_pmevcntr_delta[counter] = count;
1675         }
1676 
1677         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1678         pmevcntr_op_finish(env, counter);
1679     }
1680     /*
1681      * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1682      * PMSELR value is equal to or greater than the number of implemented
1683      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1684      */
1685 }
1686 
1687 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1688                                const uint8_t counter)
1689 {
1690     if (counter == 31) {
1691         return env->cp15.pmccfiltr_el0;
1692     } else if (counter < pmu_num_counters(env)) {
1693         return env->cp15.c14_pmevtyper[counter];
1694     } else {
1695       /*
1696        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1697        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1698        */
1699         return 0;
1700     }
1701 }
1702 
1703 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1704                               uint64_t value)
1705 {
1706     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1707     pmevtyper_write(env, ri, value, counter);
1708 }
1709 
1710 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1711                                uint64_t value)
1712 {
1713     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1714     env->cp15.c14_pmevtyper[counter] = value;
1715 
1716     /*
1717      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1718      * pmu_op_finish calls when loading saved state for a migration. Because
1719      * we're potentially updating the type of event here, the value written to
1720      * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1721      * different counter type. Therefore, we need to set this value to the
1722      * current count for the counter type we're writing so that pmu_op_finish
1723      * has the correct count for its calculation.
1724      */
1725     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1726     if (event_supported(event)) {
1727         uint16_t event_idx = supported_event_map[event];
1728         env->cp15.c14_pmevcntr_delta[counter] =
1729             pm_events[event_idx].get_count(env);
1730     }
1731 }
1732 
1733 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1734 {
1735     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1736     return pmevtyper_read(env, ri, counter);
1737 }
1738 
1739 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1740                              uint64_t value)
1741 {
1742     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1743 }
1744 
1745 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1746 {
1747     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1748 }
1749 
1750 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1751                              uint64_t value, uint8_t counter)
1752 {
1753     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1754         /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1755         value &= MAKE_64BIT_MASK(0, 32);
1756     }
1757     if (counter < pmu_num_counters(env)) {
1758         pmevcntr_op_start(env, counter);
1759         env->cp15.c14_pmevcntr[counter] = value;
1760         pmevcntr_op_finish(env, counter);
1761     }
1762     /*
1763      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1764      * are CONSTRAINED UNPREDICTABLE.
1765      */
1766 }
1767 
1768 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1769                               uint8_t counter)
1770 {
1771     if (counter < pmu_num_counters(env)) {
1772         uint64_t ret;
1773         pmevcntr_op_start(env, counter);
1774         ret = env->cp15.c14_pmevcntr[counter];
1775         pmevcntr_op_finish(env, counter);
1776         if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1777             /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1778             ret &= MAKE_64BIT_MASK(0, 32);
1779         }
1780         return ret;
1781     } else {
1782       /*
1783        * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1784        * are CONSTRAINED UNPREDICTABLE.
1785        */
1786         return 0;
1787     }
1788 }
1789 
1790 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1791                              uint64_t value)
1792 {
1793     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1794     pmevcntr_write(env, ri, value, counter);
1795 }
1796 
1797 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1798 {
1799     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1800     return pmevcntr_read(env, ri, counter);
1801 }
1802 
1803 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1804                              uint64_t value)
1805 {
1806     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1807     assert(counter < pmu_num_counters(env));
1808     env->cp15.c14_pmevcntr[counter] = value;
1809     pmevcntr_write(env, ri, value, counter);
1810 }
1811 
1812 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1813 {
1814     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1815     assert(counter < pmu_num_counters(env));
1816     return env->cp15.c14_pmevcntr[counter];
1817 }
1818 
1819 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1820                              uint64_t value)
1821 {
1822     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1823 }
1824 
1825 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1826 {
1827     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1828 }
1829 
1830 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1831                             uint64_t value)
1832 {
1833     if (arm_feature(env, ARM_FEATURE_V8)) {
1834         env->cp15.c9_pmuserenr = value & 0xf;
1835     } else {
1836         env->cp15.c9_pmuserenr = value & 1;
1837     }
1838 }
1839 
1840 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841                              uint64_t value)
1842 {
1843     /* We have no event counters so only the C bit can be changed */
1844     value &= pmu_counter_mask(env);
1845     env->cp15.c9_pminten |= value;
1846     pmu_update_irq(env);
1847 }
1848 
1849 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850                              uint64_t value)
1851 {
1852     value &= pmu_counter_mask(env);
1853     env->cp15.c9_pminten &= ~value;
1854     pmu_update_irq(env);
1855 }
1856 
1857 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858                        uint64_t value)
1859 {
1860     /*
1861      * Note that even though the AArch64 view of this register has bits
1862      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1863      * architectural requirements for bits which are RES0 only in some
1864      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1865      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1866      */
1867     raw_write(env, ri, value & ~0x1FULL);
1868 }
1869 
1870 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1871 {
1872     /* Begin with base v8.0 state.  */
1873     uint64_t valid_mask = 0x3fff;
1874     ARMCPU *cpu = env_archcpu(env);
1875     uint64_t changed;
1876 
1877     /*
1878      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1879      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1880      * Instead, choose the format based on the mode of EL3.
1881      */
1882     if (arm_el_is_aa64(env, 3)) {
1883         value |= SCR_FW | SCR_AW;      /* RES1 */
1884         valid_mask &= ~SCR_NET;        /* RES0 */
1885 
1886         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1887             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1888             value |= SCR_RW;           /* RAO/WI */
1889         }
1890         if (cpu_isar_feature(aa64_ras, cpu)) {
1891             valid_mask |= SCR_TERR;
1892         }
1893         if (cpu_isar_feature(aa64_lor, cpu)) {
1894             valid_mask |= SCR_TLOR;
1895         }
1896         if (cpu_isar_feature(aa64_pauth, cpu)) {
1897             valid_mask |= SCR_API | SCR_APK;
1898         }
1899         if (cpu_isar_feature(aa64_sel2, cpu)) {
1900             valid_mask |= SCR_EEL2;
1901         } else if (cpu_isar_feature(aa64_rme, cpu)) {
1902             /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1903             value |= SCR_NS;
1904         }
1905         if (cpu_isar_feature(aa64_mte, cpu)) {
1906             valid_mask |= SCR_ATA;
1907         }
1908         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1909             valid_mask |= SCR_ENSCXT;
1910         }
1911         if (cpu_isar_feature(aa64_doublefault, cpu)) {
1912             valid_mask |= SCR_EASE | SCR_NMEA;
1913         }
1914         if (cpu_isar_feature(aa64_sme, cpu)) {
1915             valid_mask |= SCR_ENTP2;
1916         }
1917         if (cpu_isar_feature(aa64_hcx, cpu)) {
1918             valid_mask |= SCR_HXEN;
1919         }
1920         if (cpu_isar_feature(aa64_fgt, cpu)) {
1921             valid_mask |= SCR_FGTEN;
1922         }
1923         if (cpu_isar_feature(aa64_rme, cpu)) {
1924             valid_mask |= SCR_NSE | SCR_GPF;
1925         }
1926         if (cpu_isar_feature(aa64_ecv, cpu)) {
1927             valid_mask |= SCR_ECVEN;
1928         }
1929     } else {
1930         valid_mask &= ~(SCR_RW | SCR_ST);
1931         if (cpu_isar_feature(aa32_ras, cpu)) {
1932             valid_mask |= SCR_TERR;
1933         }
1934     }
1935 
1936     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1937         valid_mask &= ~SCR_HCE;
1938 
1939         /*
1940          * On ARMv7, SMD (or SCD as it is called in v7) is only
1941          * supported if EL2 exists. The bit is UNK/SBZP when
1942          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1943          * when EL2 is unavailable.
1944          * On ARMv8, this bit is always available.
1945          */
1946         if (arm_feature(env, ARM_FEATURE_V7) &&
1947             !arm_feature(env, ARM_FEATURE_V8)) {
1948             valid_mask &= ~SCR_SMD;
1949         }
1950     }
1951 
1952     /* Clear all-context RES0 bits.  */
1953     value &= valid_mask;
1954     changed = env->cp15.scr_el3 ^ value;
1955     env->cp15.scr_el3 = value;
1956 
1957     /*
1958      * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1959      * we must invalidate all TLBs below EL3.
1960      */
1961     if (changed & (SCR_NS | SCR_NSE)) {
1962         tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1963                                            ARMMMUIdxBit_E20_0 |
1964                                            ARMMMUIdxBit_E10_1 |
1965                                            ARMMMUIdxBit_E20_2 |
1966                                            ARMMMUIdxBit_E10_1_PAN |
1967                                            ARMMMUIdxBit_E20_2_PAN |
1968                                            ARMMMUIdxBit_E2));
1969     }
1970 }
1971 
1972 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1973 {
1974     /*
1975      * scr_write will set the RES1 bits on an AArch64-only CPU.
1976      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1977      */
1978     scr_write(env, ri, 0);
1979 }
1980 
1981 static CPAccessResult access_tid4(CPUARMState *env,
1982                                   const ARMCPRegInfo *ri,
1983                                   bool isread)
1984 {
1985     if (arm_current_el(env) == 1 &&
1986         (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1987         return CP_ACCESS_TRAP_EL2;
1988     }
1989 
1990     return CP_ACCESS_OK;
1991 }
1992 
1993 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1994 {
1995     ARMCPU *cpu = env_archcpu(env);
1996 
1997     /*
1998      * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1999      * bank
2000      */
2001     uint32_t index = A32_BANKED_REG_GET(env, csselr,
2002                                         ri->secure & ARM_CP_SECSTATE_S);
2003 
2004     return cpu->ccsidr[index];
2005 }
2006 
2007 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2008                          uint64_t value)
2009 {
2010     raw_write(env, ri, value & 0xf);
2011 }
2012 
2013 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2014 {
2015     CPUState *cs = env_cpu(env);
2016     bool el1 = arm_current_el(env) == 1;
2017     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2018     uint64_t ret = 0;
2019 
2020     if (hcr_el2 & HCR_IMO) {
2021         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2022             ret |= CPSR_I;
2023         }
2024         if (cs->interrupt_request & CPU_INTERRUPT_VINMI) {
2025             ret |= ISR_IS;
2026             ret |= CPSR_I;
2027         }
2028     } else {
2029         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2030             ret |= CPSR_I;
2031         }
2032 
2033         if (cs->interrupt_request & CPU_INTERRUPT_NMI) {
2034             ret |= ISR_IS;
2035             ret |= CPSR_I;
2036         }
2037     }
2038 
2039     if (hcr_el2 & HCR_FMO) {
2040         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2041             ret |= CPSR_F;
2042         }
2043         if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) {
2044             ret |= ISR_FS;
2045             ret |= CPSR_F;
2046         }
2047     } else {
2048         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2049             ret |= CPSR_F;
2050         }
2051     }
2052 
2053     if (hcr_el2 & HCR_AMO) {
2054         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
2055             ret |= CPSR_A;
2056         }
2057     }
2058 
2059     return ret;
2060 }
2061 
2062 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2063                                        bool isread)
2064 {
2065     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2066         return CP_ACCESS_TRAP_EL2;
2067     }
2068 
2069     return CP_ACCESS_OK;
2070 }
2071 
2072 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2073                                        bool isread)
2074 {
2075     if (arm_feature(env, ARM_FEATURE_V8)) {
2076         return access_aa64_tid1(env, ri, isread);
2077     }
2078 
2079     return CP_ACCESS_OK;
2080 }
2081 
2082 static const ARMCPRegInfo v7_cp_reginfo[] = {
2083     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2084     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2085       .access = PL1_W, .type = ARM_CP_NOP },
2086     /*
2087      * Performance monitors are implementation defined in v7,
2088      * but with an ARM recommended set of registers, which we
2089      * follow.
2090      *
2091      * Performance registers fall into three categories:
2092      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2093      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2094      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2095      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2096      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2097      */
2098     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2099       .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2100       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2101       .writefn = pmcntenset_write,
2102       .accessfn = pmreg_access,
2103       .fgt = FGT_PMCNTEN,
2104       .raw_writefn = raw_write },
2105     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2106       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2107       .access = PL0_RW, .accessfn = pmreg_access,
2108       .fgt = FGT_PMCNTEN,
2109       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2110       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2111     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2112       .access = PL0_RW,
2113       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2114       .accessfn = pmreg_access,
2115       .fgt = FGT_PMCNTEN,
2116       .writefn = pmcntenclr_write,
2117       .type = ARM_CP_ALIAS | ARM_CP_IO },
2118     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2119       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2120       .access = PL0_RW, .accessfn = pmreg_access,
2121       .fgt = FGT_PMCNTEN,
2122       .type = ARM_CP_ALIAS | ARM_CP_IO,
2123       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2124       .writefn = pmcntenclr_write },
2125     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2126       .access = PL0_RW, .type = ARM_CP_IO,
2127       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2128       .accessfn = pmreg_access,
2129       .fgt = FGT_PMOVS,
2130       .writefn = pmovsr_write,
2131       .raw_writefn = raw_write },
2132     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2133       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2134       .access = PL0_RW, .accessfn = pmreg_access,
2135       .fgt = FGT_PMOVS,
2136       .type = ARM_CP_ALIAS | ARM_CP_IO,
2137       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2138       .writefn = pmovsr_write,
2139       .raw_writefn = raw_write },
2140     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2141       .access = PL0_W, .accessfn = pmreg_access_swinc,
2142       .fgt = FGT_PMSWINC_EL0,
2143       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2144       .writefn = pmswinc_write },
2145     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2146       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2147       .access = PL0_W, .accessfn = pmreg_access_swinc,
2148       .fgt = FGT_PMSWINC_EL0,
2149       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2150       .writefn = pmswinc_write },
2151     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2152       .access = PL0_RW, .type = ARM_CP_ALIAS,
2153       .fgt = FGT_PMSELR_EL0,
2154       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2155       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2156       .raw_writefn = raw_write},
2157     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2158       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2159       .access = PL0_RW, .accessfn = pmreg_access_selr,
2160       .fgt = FGT_PMSELR_EL0,
2161       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2162       .writefn = pmselr_write, .raw_writefn = raw_write, },
2163     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2164       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2165       .fgt = FGT_PMCCNTR_EL0,
2166       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2167       .accessfn = pmreg_access_ccntr },
2168     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2169       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2170       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2171       .fgt = FGT_PMCCNTR_EL0,
2172       .type = ARM_CP_IO,
2173       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2174       .readfn = pmccntr_read, .writefn = pmccntr_write,
2175       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2176     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2177       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2178       .access = PL0_RW, .accessfn = pmreg_access,
2179       .fgt = FGT_PMCCFILTR_EL0,
2180       .type = ARM_CP_ALIAS | ARM_CP_IO,
2181       .resetvalue = 0, },
2182     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2183       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2184       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2185       .access = PL0_RW, .accessfn = pmreg_access,
2186       .fgt = FGT_PMCCFILTR_EL0,
2187       .type = ARM_CP_IO,
2188       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2189       .resetvalue = 0, },
2190     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2191       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2192       .accessfn = pmreg_access,
2193       .fgt = FGT_PMEVTYPERN_EL0,
2194       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2195     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2196       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2197       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2198       .accessfn = pmreg_access,
2199       .fgt = FGT_PMEVTYPERN_EL0,
2200       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2201     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2202       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2203       .accessfn = pmreg_access_xevcntr,
2204       .fgt = FGT_PMEVCNTRN_EL0,
2205       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2206     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2207       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2208       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2209       .accessfn = pmreg_access_xevcntr,
2210       .fgt = FGT_PMEVCNTRN_EL0,
2211       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2212     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2213       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2214       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2215       .resetvalue = 0,
2216       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2217     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2218       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2219       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2220       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2221       .resetvalue = 0,
2222       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2223     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2224       .access = PL1_RW, .accessfn = access_tpm,
2225       .fgt = FGT_PMINTEN,
2226       .type = ARM_CP_ALIAS | ARM_CP_IO,
2227       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2228       .resetvalue = 0,
2229       .writefn = pmintenset_write, .raw_writefn = raw_write },
2230     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2231       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2232       .access = PL1_RW, .accessfn = access_tpm,
2233       .fgt = FGT_PMINTEN,
2234       .type = ARM_CP_IO,
2235       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2236       .writefn = pmintenset_write, .raw_writefn = raw_write,
2237       .resetvalue = 0x0 },
2238     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2239       .access = PL1_RW, .accessfn = access_tpm,
2240       .fgt = FGT_PMINTEN,
2241       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2242       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2243       .writefn = pmintenclr_write, },
2244     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2245       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2246       .access = PL1_RW, .accessfn = access_tpm,
2247       .fgt = FGT_PMINTEN,
2248       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2249       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2250       .writefn = pmintenclr_write },
2251     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2252       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2253       .access = PL1_R,
2254       .accessfn = access_tid4,
2255       .fgt = FGT_CCSIDR_EL1,
2256       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2257     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2258       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2259       .access = PL1_RW,
2260       .accessfn = access_tid4,
2261       .fgt = FGT_CSSELR_EL1,
2262       .writefn = csselr_write, .resetvalue = 0,
2263       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2264                              offsetof(CPUARMState, cp15.csselr_ns) } },
2265     /*
2266      * Auxiliary ID register: this actually has an IMPDEF value but for now
2267      * just RAZ for all cores:
2268      */
2269     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2270       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2271       .access = PL1_R, .type = ARM_CP_CONST,
2272       .accessfn = access_aa64_tid1,
2273       .fgt = FGT_AIDR_EL1,
2274       .resetvalue = 0 },
2275     /*
2276      * Auxiliary fault status registers: these also are IMPDEF, and we
2277      * choose to RAZ/WI for all cores.
2278      */
2279     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2280       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2281       .access = PL1_RW, .accessfn = access_tvm_trvm,
2282       .fgt = FGT_AFSR0_EL1,
2283       .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
2284       .type = ARM_CP_CONST, .resetvalue = 0 },
2285     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2286       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2287       .access = PL1_RW, .accessfn = access_tvm_trvm,
2288       .fgt = FGT_AFSR1_EL1,
2289       .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
2290       .type = ARM_CP_CONST, .resetvalue = 0 },
2291     /*
2292      * MAIR can just read-as-written because we don't implement caches
2293      * and so don't need to care about memory attributes.
2294      */
2295     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2296       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2297       .access = PL1_RW, .accessfn = access_tvm_trvm,
2298       .fgt = FGT_MAIR_EL1,
2299       .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
2300       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2301       .resetvalue = 0 },
2302     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2303       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2304       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2305       .resetvalue = 0 },
2306     /*
2307      * For non-long-descriptor page tables these are PRRR and NMRR;
2308      * regardless they still act as reads-as-written for QEMU.
2309      */
2310      /*
2311       * MAIR0/1 are defined separately from their 64-bit counterpart which
2312       * allows them to assign the correct fieldoffset based on the endianness
2313       * handled in the field definitions.
2314       */
2315     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2316       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2317       .access = PL1_RW, .accessfn = access_tvm_trvm,
2318       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2319                              offsetof(CPUARMState, cp15.mair0_ns) },
2320       .resetfn = arm_cp_reset_ignore },
2321     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2322       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2323       .access = PL1_RW, .accessfn = access_tvm_trvm,
2324       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2325                              offsetof(CPUARMState, cp15.mair1_ns) },
2326       .resetfn = arm_cp_reset_ignore },
2327     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2328       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2329       .fgt = FGT_ISR_EL1,
2330       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2331     /* 32 bit ITLB invalidates */
2332     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2333       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2334       .writefn = tlbiall_write },
2335     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2336       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2337       .writefn = tlbimva_write },
2338     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2339       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2340       .writefn = tlbiasid_write },
2341     /* 32 bit DTLB invalidates */
2342     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2343       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2344       .writefn = tlbiall_write },
2345     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2346       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2347       .writefn = tlbimva_write },
2348     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2349       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2350       .writefn = tlbiasid_write },
2351     /* 32 bit TLB invalidates */
2352     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2353       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2354       .writefn = tlbiall_write },
2355     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2356       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2357       .writefn = tlbimva_write },
2358     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2359       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2360       .writefn = tlbiasid_write },
2361     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2362       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2363       .writefn = tlbimvaa_write },
2364 };
2365 
2366 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2367     /* 32 bit TLB invalidates, Inner Shareable */
2368     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2369       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2370       .writefn = tlbiall_is_write },
2371     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2372       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2373       .writefn = tlbimva_is_write },
2374     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2375       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2376       .writefn = tlbiasid_is_write },
2377     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2378       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2379       .writefn = tlbimvaa_is_write },
2380 };
2381 
2382 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2383     /* PMOVSSET is not implemented in v7 before v7ve */
2384     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2385       .access = PL0_RW, .accessfn = pmreg_access,
2386       .fgt = FGT_PMOVS,
2387       .type = ARM_CP_ALIAS | ARM_CP_IO,
2388       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2389       .writefn = pmovsset_write,
2390       .raw_writefn = raw_write },
2391     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2392       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2393       .access = PL0_RW, .accessfn = pmreg_access,
2394       .fgt = FGT_PMOVS,
2395       .type = ARM_CP_ALIAS | ARM_CP_IO,
2396       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2397       .writefn = pmovsset_write,
2398       .raw_writefn = raw_write },
2399 };
2400 
2401 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2402                         uint64_t value)
2403 {
2404     value &= 1;
2405     env->teecr = value;
2406 }
2407 
2408 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2409                                    bool isread)
2410 {
2411     /*
2412      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2413      * at all, so we don't need to check whether we're v8A.
2414      */
2415     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2416         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2417         return CP_ACCESS_TRAP_EL2;
2418     }
2419     return CP_ACCESS_OK;
2420 }
2421 
2422 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2423                                     bool isread)
2424 {
2425     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2426         return CP_ACCESS_TRAP;
2427     }
2428     return teecr_access(env, ri, isread);
2429 }
2430 
2431 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2432     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2433       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2434       .resetvalue = 0,
2435       .writefn = teecr_write, .accessfn = teecr_access },
2436     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2437       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2438       .accessfn = teehbr_access, .resetvalue = 0 },
2439 };
2440 
2441 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2442     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2443       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2444       .access = PL0_RW,
2445       .fgt = FGT_TPIDR_EL0,
2446       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2447     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2448       .access = PL0_RW,
2449       .fgt = FGT_TPIDR_EL0,
2450       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2451                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2452       .resetfn = arm_cp_reset_ignore },
2453     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2454       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2455       .access = PL0_R | PL1_W,
2456       .fgt = FGT_TPIDRRO_EL0,
2457       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2458       .resetvalue = 0},
2459     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2460       .access = PL0_R | PL1_W,
2461       .fgt = FGT_TPIDRRO_EL0,
2462       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2463                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2464       .resetfn = arm_cp_reset_ignore },
2465     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2466       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2467       .access = PL1_RW,
2468       .fgt = FGT_TPIDR_EL1,
2469       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2470     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2471       .access = PL1_RW,
2472       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2473                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2474       .resetvalue = 0 },
2475 };
2476 
2477 #ifndef CONFIG_USER_ONLY
2478 
2479 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2480                                        bool isread)
2481 {
2482     /*
2483      * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2484      * Writable only at the highest implemented exception level.
2485      */
2486     int el = arm_current_el(env);
2487     uint64_t hcr;
2488     uint32_t cntkctl;
2489 
2490     switch (el) {
2491     case 0:
2492         hcr = arm_hcr_el2_eff(env);
2493         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2494             cntkctl = env->cp15.cnthctl_el2;
2495         } else {
2496             cntkctl = env->cp15.c14_cntkctl;
2497         }
2498         if (!extract32(cntkctl, 0, 2)) {
2499             return CP_ACCESS_TRAP;
2500         }
2501         break;
2502     case 1:
2503         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2504             arm_is_secure_below_el3(env)) {
2505             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2506             return CP_ACCESS_TRAP_UNCATEGORIZED;
2507         }
2508         break;
2509     case 2:
2510     case 3:
2511         break;
2512     }
2513 
2514     if (!isread && el < arm_highest_el(env)) {
2515         return CP_ACCESS_TRAP_UNCATEGORIZED;
2516     }
2517 
2518     return CP_ACCESS_OK;
2519 }
2520 
2521 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2522                                         bool isread)
2523 {
2524     unsigned int cur_el = arm_current_el(env);
2525     bool has_el2 = arm_is_el2_enabled(env);
2526     uint64_t hcr = arm_hcr_el2_eff(env);
2527 
2528     switch (cur_el) {
2529     case 0:
2530         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2531         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2532             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2533                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2534         }
2535 
2536         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2537         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2538             return CP_ACCESS_TRAP;
2539         }
2540         /* fall through */
2541     case 1:
2542         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2543         if (has_el2 && timeridx == GTIMER_PHYS &&
2544             (hcr & HCR_E2H
2545              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2546              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2547             return CP_ACCESS_TRAP_EL2;
2548         }
2549         if (has_el2 && timeridx == GTIMER_VIRT) {
2550             if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) {
2551                 return CP_ACCESS_TRAP_EL2;
2552             }
2553         }
2554         break;
2555     }
2556     return CP_ACCESS_OK;
2557 }
2558 
2559 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2560                                       bool isread)
2561 {
2562     unsigned int cur_el = arm_current_el(env);
2563     bool has_el2 = arm_is_el2_enabled(env);
2564     uint64_t hcr = arm_hcr_el2_eff(env);
2565 
2566     switch (cur_el) {
2567     case 0:
2568         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2569             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2570             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2571                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2572         }
2573 
2574         /*
2575          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2576          * EL0 if EL0[PV]TEN is zero.
2577          */
2578         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2579             return CP_ACCESS_TRAP;
2580         }
2581         /* fall through */
2582 
2583     case 1:
2584         if (has_el2 && timeridx == GTIMER_PHYS) {
2585             if (hcr & HCR_E2H) {
2586                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2587                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2588                     return CP_ACCESS_TRAP_EL2;
2589                 }
2590             } else {
2591                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2592                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2593                     return CP_ACCESS_TRAP_EL2;
2594                 }
2595             }
2596         }
2597         if (has_el2 && timeridx == GTIMER_VIRT) {
2598             if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) {
2599                 return CP_ACCESS_TRAP_EL2;
2600             }
2601         }
2602         break;
2603     }
2604     return CP_ACCESS_OK;
2605 }
2606 
2607 static CPAccessResult gt_pct_access(CPUARMState *env,
2608                                     const ARMCPRegInfo *ri,
2609                                     bool isread)
2610 {
2611     return gt_counter_access(env, GTIMER_PHYS, isread);
2612 }
2613 
2614 static CPAccessResult gt_vct_access(CPUARMState *env,
2615                                     const ARMCPRegInfo *ri,
2616                                     bool isread)
2617 {
2618     return gt_counter_access(env, GTIMER_VIRT, isread);
2619 }
2620 
2621 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2622                                        bool isread)
2623 {
2624     return gt_timer_access(env, GTIMER_PHYS, isread);
2625 }
2626 
2627 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2628                                        bool isread)
2629 {
2630     return gt_timer_access(env, GTIMER_VIRT, isread);
2631 }
2632 
2633 static CPAccessResult gt_stimer_access(CPUARMState *env,
2634                                        const ARMCPRegInfo *ri,
2635                                        bool isread)
2636 {
2637     /*
2638      * The AArch64 register view of the secure physical timer is
2639      * always accessible from EL3, and configurably accessible from
2640      * Secure EL1.
2641      */
2642     switch (arm_current_el(env)) {
2643     case 1:
2644         if (!arm_is_secure(env)) {
2645             return CP_ACCESS_TRAP;
2646         }
2647         if (!(env->cp15.scr_el3 & SCR_ST)) {
2648             return CP_ACCESS_TRAP_EL3;
2649         }
2650         return CP_ACCESS_OK;
2651     case 0:
2652     case 2:
2653         return CP_ACCESS_TRAP;
2654     case 3:
2655         return CP_ACCESS_OK;
2656     default:
2657         g_assert_not_reached();
2658     }
2659 }
2660 
2661 static uint64_t gt_get_countervalue(CPUARMState *env)
2662 {
2663     ARMCPU *cpu = env_archcpu(env);
2664 
2665     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2666 }
2667 
2668 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2669 {
2670     CPUARMState *env = &cpu->env;
2671     uint64_t cnthctl = env->cp15.cnthctl_el2;
2672     ARMSecuritySpace ss = arm_security_space(env);
2673     /* ISTATUS && !IMASK */
2674     int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2675 
2676     /*
2677      * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2678      * It is RES0 in Secure and NonSecure state.
2679      */
2680     if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2681         ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) ||
2682          (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) {
2683         irqstate = 0;
2684     }
2685 
2686     qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2687     trace_arm_gt_update_irq(timeridx, irqstate);
2688 }
2689 
2690 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2691 {
2692     /*
2693      * Changing security state between Root and Secure/NonSecure, which may
2694      * happen when switching EL, can change the effective value of CNTHCTL_EL2
2695      * mask bits. Update the IRQ state accordingly.
2696      */
2697     gt_update_irq(cpu, GTIMER_VIRT);
2698     gt_update_irq(cpu, GTIMER_PHYS);
2699 }
2700 
2701 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env)
2702 {
2703     if ((env->cp15.scr_el3 & SCR_ECVEN) &&
2704         FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) &&
2705         arm_is_el2_enabled(env) &&
2706         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
2707         return env->cp15.cntpoff_el2;
2708     }
2709     return 0;
2710 }
2711 
2712 static uint64_t gt_phys_cnt_offset(CPUARMState *env)
2713 {
2714     if (arm_current_el(env) >= 2) {
2715         return 0;
2716     }
2717     return gt_phys_raw_cnt_offset(env);
2718 }
2719 
2720 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2721 {
2722     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2723 
2724     if (gt->ctl & 1) {
2725         /*
2726          * Timer enabled: calculate and set current ISTATUS, irq, and
2727          * reset timer to when ISTATUS next has to change
2728          */
2729         uint64_t offset = timeridx == GTIMER_VIRT ?
2730             cpu->env.cp15.cntvoff_el2 : gt_phys_raw_cnt_offset(&cpu->env);
2731         uint64_t count = gt_get_countervalue(&cpu->env);
2732         /* Note that this must be unsigned 64 bit arithmetic: */
2733         int istatus = count - offset >= gt->cval;
2734         uint64_t nexttick;
2735 
2736         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2737 
2738         if (istatus) {
2739             /*
2740              * Next transition is when (count - offset) rolls back over to 0.
2741              * If offset > count then this is when count == offset;
2742              * if offset <= count then this is when count == offset + 2^64
2743              * For the latter case we set nexttick to an "as far in future
2744              * as possible" value and let the code below handle it.
2745              */
2746             if (offset > count) {
2747                 nexttick = offset;
2748             } else {
2749                 nexttick = UINT64_MAX;
2750             }
2751         } else {
2752             /*
2753              * Next transition is when (count - offset) == cval, i.e.
2754              * when count == (cval + offset).
2755              * If that would overflow, then again we set up the next interrupt
2756              * for "as far in the future as possible" for the code below.
2757              */
2758             if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2759                 nexttick = UINT64_MAX;
2760             }
2761         }
2762         /*
2763          * Note that the desired next expiry time might be beyond the
2764          * signed-64-bit range of a QEMUTimer -- in this case we just
2765          * set the timer for as far in the future as possible. When the
2766          * timer expires we will reset the timer for any remaining period.
2767          */
2768         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2769             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2770         } else {
2771             timer_mod(cpu->gt_timer[timeridx], nexttick);
2772         }
2773         trace_arm_gt_recalc(timeridx, nexttick);
2774     } else {
2775         /* Timer disabled: ISTATUS and timer output always clear */
2776         gt->ctl &= ~4;
2777         timer_del(cpu->gt_timer[timeridx]);
2778         trace_arm_gt_recalc_disabled(timeridx);
2779     }
2780     gt_update_irq(cpu, timeridx);
2781 }
2782 
2783 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2784                            int timeridx)
2785 {
2786     ARMCPU *cpu = env_archcpu(env);
2787 
2788     timer_del(cpu->gt_timer[timeridx]);
2789 }
2790 
2791 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2792 {
2793     return gt_get_countervalue(env) - gt_phys_cnt_offset(env);
2794 }
2795 
2796 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2797 {
2798     uint64_t hcr;
2799 
2800     switch (arm_current_el(env)) {
2801     case 2:
2802         hcr = arm_hcr_el2_eff(env);
2803         if (hcr & HCR_E2H) {
2804             return 0;
2805         }
2806         break;
2807     case 0:
2808         hcr = arm_hcr_el2_eff(env);
2809         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2810             return 0;
2811         }
2812         break;
2813     }
2814 
2815     return env->cp15.cntvoff_el2;
2816 }
2817 
2818 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2819 {
2820     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2821 }
2822 
2823 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2824                           int timeridx,
2825                           uint64_t value)
2826 {
2827     trace_arm_gt_cval_write(timeridx, value);
2828     env->cp15.c14_timer[timeridx].cval = value;
2829     gt_recalc_timer(env_archcpu(env), timeridx);
2830 }
2831 
2832 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2833                              int timeridx)
2834 {
2835     uint64_t offset = 0;
2836 
2837     switch (timeridx) {
2838     case GTIMER_VIRT:
2839     case GTIMER_HYPVIRT:
2840         offset = gt_virt_cnt_offset(env);
2841         break;
2842     case GTIMER_PHYS:
2843         offset = gt_phys_cnt_offset(env);
2844         break;
2845     }
2846 
2847     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2848                       (gt_get_countervalue(env) - offset));
2849 }
2850 
2851 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2852                           int timeridx,
2853                           uint64_t value)
2854 {
2855     uint64_t offset = 0;
2856 
2857     switch (timeridx) {
2858     case GTIMER_VIRT:
2859     case GTIMER_HYPVIRT:
2860         offset = gt_virt_cnt_offset(env);
2861         break;
2862     case GTIMER_PHYS:
2863         offset = gt_phys_cnt_offset(env);
2864         break;
2865     }
2866 
2867     trace_arm_gt_tval_write(timeridx, value);
2868     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2869                                          sextract64(value, 0, 32);
2870     gt_recalc_timer(env_archcpu(env), timeridx);
2871 }
2872 
2873 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2874                          int timeridx,
2875                          uint64_t value)
2876 {
2877     ARMCPU *cpu = env_archcpu(env);
2878     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2879 
2880     trace_arm_gt_ctl_write(timeridx, value);
2881     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2882     if ((oldval ^ value) & 1) {
2883         /* Enable toggled */
2884         gt_recalc_timer(cpu, timeridx);
2885     } else if ((oldval ^ value) & 2) {
2886         /*
2887          * IMASK toggled: don't need to recalculate,
2888          * just set the interrupt line based on ISTATUS
2889          */
2890         trace_arm_gt_imask_toggle(timeridx);
2891         gt_update_irq(cpu, timeridx);
2892     }
2893 }
2894 
2895 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2896 {
2897     gt_timer_reset(env, ri, GTIMER_PHYS);
2898 }
2899 
2900 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2901                                uint64_t value)
2902 {
2903     gt_cval_write(env, ri, GTIMER_PHYS, value);
2904 }
2905 
2906 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2907 {
2908     return gt_tval_read(env, ri, GTIMER_PHYS);
2909 }
2910 
2911 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2912                                uint64_t value)
2913 {
2914     gt_tval_write(env, ri, GTIMER_PHYS, value);
2915 }
2916 
2917 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2918                               uint64_t value)
2919 {
2920     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2921 }
2922 
2923 static int gt_phys_redir_timeridx(CPUARMState *env)
2924 {
2925     switch (arm_mmu_idx(env)) {
2926     case ARMMMUIdx_E20_0:
2927     case ARMMMUIdx_E20_2:
2928     case ARMMMUIdx_E20_2_PAN:
2929         return GTIMER_HYP;
2930     default:
2931         return GTIMER_PHYS;
2932     }
2933 }
2934 
2935 static int gt_virt_redir_timeridx(CPUARMState *env)
2936 {
2937     switch (arm_mmu_idx(env)) {
2938     case ARMMMUIdx_E20_0:
2939     case ARMMMUIdx_E20_2:
2940     case ARMMMUIdx_E20_2_PAN:
2941         return GTIMER_HYPVIRT;
2942     default:
2943         return GTIMER_VIRT;
2944     }
2945 }
2946 
2947 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2948                                         const ARMCPRegInfo *ri)
2949 {
2950     int timeridx = gt_phys_redir_timeridx(env);
2951     return env->cp15.c14_timer[timeridx].cval;
2952 }
2953 
2954 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2955                                      uint64_t value)
2956 {
2957     int timeridx = gt_phys_redir_timeridx(env);
2958     gt_cval_write(env, ri, timeridx, value);
2959 }
2960 
2961 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2962                                         const ARMCPRegInfo *ri)
2963 {
2964     int timeridx = gt_phys_redir_timeridx(env);
2965     return gt_tval_read(env, ri, timeridx);
2966 }
2967 
2968 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2969                                      uint64_t value)
2970 {
2971     int timeridx = gt_phys_redir_timeridx(env);
2972     gt_tval_write(env, ri, timeridx, value);
2973 }
2974 
2975 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2976                                        const ARMCPRegInfo *ri)
2977 {
2978     int timeridx = gt_phys_redir_timeridx(env);
2979     return env->cp15.c14_timer[timeridx].ctl;
2980 }
2981 
2982 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2983                                     uint64_t value)
2984 {
2985     int timeridx = gt_phys_redir_timeridx(env);
2986     gt_ctl_write(env, ri, timeridx, value);
2987 }
2988 
2989 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2990 {
2991     gt_timer_reset(env, ri, GTIMER_VIRT);
2992 }
2993 
2994 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2995                                uint64_t value)
2996 {
2997     gt_cval_write(env, ri, GTIMER_VIRT, value);
2998 }
2999 
3000 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3001 {
3002     return gt_tval_read(env, ri, GTIMER_VIRT);
3003 }
3004 
3005 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3006                                uint64_t value)
3007 {
3008     gt_tval_write(env, ri, GTIMER_VIRT, value);
3009 }
3010 
3011 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3012                               uint64_t value)
3013 {
3014     gt_ctl_write(env, ri, GTIMER_VIRT, value);
3015 }
3016 
3017 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3018                              uint64_t value)
3019 {
3020     ARMCPU *cpu = env_archcpu(env);
3021     uint32_t oldval = env->cp15.cnthctl_el2;
3022     uint32_t valid_mask =
3023         R_CNTHCTL_EL0PCTEN_E2H1_MASK |
3024         R_CNTHCTL_EL0VCTEN_E2H1_MASK |
3025         R_CNTHCTL_EVNTEN_MASK |
3026         R_CNTHCTL_EVNTDIR_MASK |
3027         R_CNTHCTL_EVNTI_MASK |
3028         R_CNTHCTL_EL0VTEN_MASK |
3029         R_CNTHCTL_EL0PTEN_MASK |
3030         R_CNTHCTL_EL1PCTEN_E2H1_MASK |
3031         R_CNTHCTL_EL1PTEN_MASK;
3032 
3033     if (cpu_isar_feature(aa64_rme, cpu)) {
3034         valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK;
3035     }
3036     if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
3037         valid_mask |=
3038             R_CNTHCTL_EL1TVT_MASK |
3039             R_CNTHCTL_EL1TVCT_MASK |
3040             R_CNTHCTL_EL1NVPCT_MASK |
3041             R_CNTHCTL_EL1NVVCT_MASK |
3042             R_CNTHCTL_EVNTIS_MASK;
3043     }
3044     if (cpu_isar_feature(aa64_ecv, cpu)) {
3045         valid_mask |= R_CNTHCTL_ECV_MASK;
3046     }
3047 
3048     /* Clear RES0 bits */
3049     value &= valid_mask;
3050 
3051     raw_write(env, ri, value);
3052 
3053     if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) {
3054         gt_update_irq(cpu, GTIMER_VIRT);
3055     } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) {
3056         gt_update_irq(cpu, GTIMER_PHYS);
3057     }
3058 }
3059 
3060 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3061                               uint64_t value)
3062 {
3063     ARMCPU *cpu = env_archcpu(env);
3064 
3065     trace_arm_gt_cntvoff_write(value);
3066     raw_write(env, ri, value);
3067     gt_recalc_timer(cpu, GTIMER_VIRT);
3068 }
3069 
3070 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
3071                                         const ARMCPRegInfo *ri)
3072 {
3073     int timeridx = gt_virt_redir_timeridx(env);
3074     return env->cp15.c14_timer[timeridx].cval;
3075 }
3076 
3077 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3078                                      uint64_t value)
3079 {
3080     int timeridx = gt_virt_redir_timeridx(env);
3081     gt_cval_write(env, ri, timeridx, value);
3082 }
3083 
3084 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3085                                         const ARMCPRegInfo *ri)
3086 {
3087     int timeridx = gt_virt_redir_timeridx(env);
3088     return gt_tval_read(env, ri, timeridx);
3089 }
3090 
3091 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3092                                      uint64_t value)
3093 {
3094     int timeridx = gt_virt_redir_timeridx(env);
3095     gt_tval_write(env, ri, timeridx, value);
3096 }
3097 
3098 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3099                                        const ARMCPRegInfo *ri)
3100 {
3101     int timeridx = gt_virt_redir_timeridx(env);
3102     return env->cp15.c14_timer[timeridx].ctl;
3103 }
3104 
3105 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3106                                     uint64_t value)
3107 {
3108     int timeridx = gt_virt_redir_timeridx(env);
3109     gt_ctl_write(env, ri, timeridx, value);
3110 }
3111 
3112 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3113 {
3114     gt_timer_reset(env, ri, GTIMER_HYP);
3115 }
3116 
3117 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3118                               uint64_t value)
3119 {
3120     gt_cval_write(env, ri, GTIMER_HYP, value);
3121 }
3122 
3123 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3124 {
3125     return gt_tval_read(env, ri, GTIMER_HYP);
3126 }
3127 
3128 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3129                               uint64_t value)
3130 {
3131     gt_tval_write(env, ri, GTIMER_HYP, value);
3132 }
3133 
3134 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3135                               uint64_t value)
3136 {
3137     gt_ctl_write(env, ri, GTIMER_HYP, value);
3138 }
3139 
3140 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3141 {
3142     gt_timer_reset(env, ri, GTIMER_SEC);
3143 }
3144 
3145 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3146                               uint64_t value)
3147 {
3148     gt_cval_write(env, ri, GTIMER_SEC, value);
3149 }
3150 
3151 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3152 {
3153     return gt_tval_read(env, ri, GTIMER_SEC);
3154 }
3155 
3156 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3157                               uint64_t value)
3158 {
3159     gt_tval_write(env, ri, GTIMER_SEC, value);
3160 }
3161 
3162 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3163                               uint64_t value)
3164 {
3165     gt_ctl_write(env, ri, GTIMER_SEC, value);
3166 }
3167 
3168 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3169 {
3170     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3171 }
3172 
3173 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3174                              uint64_t value)
3175 {
3176     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3177 }
3178 
3179 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3180 {
3181     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3182 }
3183 
3184 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3185                              uint64_t value)
3186 {
3187     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3188 }
3189 
3190 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3191                             uint64_t value)
3192 {
3193     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3194 }
3195 
3196 void arm_gt_ptimer_cb(void *opaque)
3197 {
3198     ARMCPU *cpu = opaque;
3199 
3200     gt_recalc_timer(cpu, GTIMER_PHYS);
3201 }
3202 
3203 void arm_gt_vtimer_cb(void *opaque)
3204 {
3205     ARMCPU *cpu = opaque;
3206 
3207     gt_recalc_timer(cpu, GTIMER_VIRT);
3208 }
3209 
3210 void arm_gt_htimer_cb(void *opaque)
3211 {
3212     ARMCPU *cpu = opaque;
3213 
3214     gt_recalc_timer(cpu, GTIMER_HYP);
3215 }
3216 
3217 void arm_gt_stimer_cb(void *opaque)
3218 {
3219     ARMCPU *cpu = opaque;
3220 
3221     gt_recalc_timer(cpu, GTIMER_SEC);
3222 }
3223 
3224 void arm_gt_hvtimer_cb(void *opaque)
3225 {
3226     ARMCPU *cpu = opaque;
3227 
3228     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3229 }
3230 
3231 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3232 {
3233     ARMCPU *cpu = env_archcpu(env);
3234 
3235     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3236 }
3237 
3238 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3239     /*
3240      * Note that CNTFRQ is purely reads-as-written for the benefit
3241      * of software; writing it doesn't actually change the timer frequency.
3242      * Our reset value matches the fixed frequency we implement the timer at.
3243      */
3244     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3245       .type = ARM_CP_ALIAS,
3246       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3247       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3248     },
3249     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3250       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3251       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3252       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3253       .resetfn = arm_gt_cntfrq_reset,
3254     },
3255     /* overall control: mostly access permissions */
3256     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3257       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3258       .access = PL1_RW,
3259       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3260       .resetvalue = 0,
3261     },
3262     /* per-timer control */
3263     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3264       .secure = ARM_CP_SECSTATE_NS,
3265       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3266       .accessfn = gt_ptimer_access,
3267       .fieldoffset = offsetoflow32(CPUARMState,
3268                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3269       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3270       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3271     },
3272     { .name = "CNTP_CTL_S",
3273       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3274       .secure = ARM_CP_SECSTATE_S,
3275       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3276       .accessfn = gt_ptimer_access,
3277       .fieldoffset = offsetoflow32(CPUARMState,
3278                                    cp15.c14_timer[GTIMER_SEC].ctl),
3279       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3280     },
3281     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3282       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3283       .type = ARM_CP_IO, .access = PL0_RW,
3284       .accessfn = gt_ptimer_access,
3285       .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
3286       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3287       .resetvalue = 0,
3288       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3289       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3290     },
3291     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3292       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3293       .accessfn = gt_vtimer_access,
3294       .fieldoffset = offsetoflow32(CPUARMState,
3295                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3296       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3297       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3298     },
3299     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3300       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3301       .type = ARM_CP_IO, .access = PL0_RW,
3302       .accessfn = gt_vtimer_access,
3303       .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
3304       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3305       .resetvalue = 0,
3306       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3307       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3308     },
3309     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3310     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3311       .secure = ARM_CP_SECSTATE_NS,
3312       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3313       .accessfn = gt_ptimer_access,
3314       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3315     },
3316     { .name = "CNTP_TVAL_S",
3317       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3318       .secure = ARM_CP_SECSTATE_S,
3319       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3320       .accessfn = gt_ptimer_access,
3321       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3322     },
3323     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3324       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3325       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3326       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3327       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3328     },
3329     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3330       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3331       .accessfn = gt_vtimer_access,
3332       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3333     },
3334     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3335       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3336       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3337       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3338       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3339     },
3340     /* The counter itself */
3341     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3342       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3343       .accessfn = gt_pct_access,
3344       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3345     },
3346     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3347       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3348       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3349       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3350     },
3351     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3352       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3353       .accessfn = gt_vct_access,
3354       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3355     },
3356     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3357       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3358       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3359       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3360     },
3361     /* Comparison value, indicating when the timer goes off */
3362     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3363       .secure = ARM_CP_SECSTATE_NS,
3364       .access = PL0_RW,
3365       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3366       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3367       .accessfn = gt_ptimer_access,
3368       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3369       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3370     },
3371     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3372       .secure = ARM_CP_SECSTATE_S,
3373       .access = PL0_RW,
3374       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3375       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3376       .accessfn = gt_ptimer_access,
3377       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3378     },
3379     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3380       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3381       .access = PL0_RW,
3382       .type = ARM_CP_IO,
3383       .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
3384       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3385       .resetvalue = 0, .accessfn = gt_ptimer_access,
3386       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3387       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3388     },
3389     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3390       .access = PL0_RW,
3391       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3392       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3393       .accessfn = gt_vtimer_access,
3394       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3395       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3396     },
3397     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3398       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3399       .access = PL0_RW,
3400       .type = ARM_CP_IO,
3401       .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
3402       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3403       .resetvalue = 0, .accessfn = gt_vtimer_access,
3404       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3405       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3406     },
3407     /*
3408      * Secure timer -- this is actually restricted to only EL3
3409      * and configurably Secure-EL1 via the accessfn.
3410      */
3411     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3412       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3413       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3414       .accessfn = gt_stimer_access,
3415       .readfn = gt_sec_tval_read,
3416       .writefn = gt_sec_tval_write,
3417       .resetfn = gt_sec_timer_reset,
3418     },
3419     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3420       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3421       .type = ARM_CP_IO, .access = PL1_RW,
3422       .accessfn = gt_stimer_access,
3423       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3424       .resetvalue = 0,
3425       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3426     },
3427     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3428       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3429       .type = ARM_CP_IO, .access = PL1_RW,
3430       .accessfn = gt_stimer_access,
3431       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3432       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3433     },
3434 };
3435 
3436 /*
3437  * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which
3438  * are "self-synchronizing". For QEMU all sysregs are self-synchronizing,
3439  * so our implementations here are identical to the normal registers.
3440  */
3441 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3442     { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9,
3443       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3444       .accessfn = gt_vct_access,
3445       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3446     },
3447     { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3448       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3449       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3450       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3451     },
3452     { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8,
3453       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3454       .accessfn = gt_pct_access,
3455       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3456     },
3457     { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64,
3458       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5,
3459       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3460       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3461     },
3462 };
3463 
3464 static CPAccessResult gt_cntpoff_access(CPUARMState *env,
3465                                         const ARMCPRegInfo *ri,
3466                                         bool isread)
3467 {
3468     if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) &&
3469         !(env->cp15.scr_el3 & SCR_ECVEN)) {
3470         return CP_ACCESS_TRAP_EL3;
3471     }
3472     return CP_ACCESS_OK;
3473 }
3474 
3475 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3476                               uint64_t value)
3477 {
3478     ARMCPU *cpu = env_archcpu(env);
3479 
3480     trace_arm_gt_cntpoff_write(value);
3481     raw_write(env, ri, value);
3482     gt_recalc_timer(cpu, GTIMER_PHYS);
3483 }
3484 
3485 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = {
3486     .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64,
3487     .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6,
3488     .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3489     .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write,
3490     .nv2_redirect_offset = 0x1a8,
3491     .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2),
3492 };
3493 #else
3494 
3495 /*
3496  * In user-mode most of the generic timer registers are inaccessible
3497  * however modern kernels (4.12+) allow access to cntvct_el0
3498  */
3499 
3500 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3501 {
3502     ARMCPU *cpu = env_archcpu(env);
3503 
3504     /*
3505      * Currently we have no support for QEMUTimer in linux-user so we
3506      * can't call gt_get_countervalue(env), instead we directly
3507      * call the lower level functions.
3508      */
3509     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3510 }
3511 
3512 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3513     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3514       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3515       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3516       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3517       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3518     },
3519     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3520       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3521       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3522       .readfn = gt_virt_cnt_read,
3523     },
3524 };
3525 
3526 /*
3527  * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also
3528  * is exposed to userspace by Linux.
3529  */
3530 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3531     { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3532       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3533       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3534       .readfn = gt_virt_cnt_read,
3535     },
3536 };
3537 
3538 #endif
3539 
3540 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3541 {
3542     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3543         raw_write(env, ri, value);
3544     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3545         raw_write(env, ri, value & 0xfffff6ff);
3546     } else {
3547         raw_write(env, ri, value & 0xfffff1ff);
3548     }
3549 }
3550 
3551 #ifndef CONFIG_USER_ONLY
3552 /* get_phys_addr() isn't present for user-mode-only targets */
3553 
3554 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3555                                  bool isread)
3556 {
3557     if (ri->opc2 & 4) {
3558         /*
3559          * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3560          * Secure EL1 (which can only happen if EL3 is AArch64).
3561          * They are simply UNDEF if executed from NS EL1.
3562          * They function normally from EL2 or EL3.
3563          */
3564         if (arm_current_el(env) == 1) {
3565             if (arm_is_secure_below_el3(env)) {
3566                 if (env->cp15.scr_el3 & SCR_EEL2) {
3567                     return CP_ACCESS_TRAP_EL2;
3568                 }
3569                 return CP_ACCESS_TRAP_EL3;
3570             }
3571             return CP_ACCESS_TRAP_UNCATEGORIZED;
3572         }
3573     }
3574     return CP_ACCESS_OK;
3575 }
3576 
3577 #ifdef CONFIG_TCG
3578 static int par_el1_shareability(GetPhysAddrResult *res)
3579 {
3580     /*
3581      * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3582      * memory -- see pseudocode PAREncodeShareability().
3583      */
3584     if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3585         res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3586         return 2;
3587     }
3588     return res->cacheattrs.shareability;
3589 }
3590 
3591 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3592                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
3593                              ARMSecuritySpace ss)
3594 {
3595     bool ret;
3596     uint64_t par64;
3597     bool format64 = false;
3598     ARMMMUFaultInfo fi = {};
3599     GetPhysAddrResult res = {};
3600 
3601     /*
3602      * I_MXTJT: Granule protection checks are not performed on the final address
3603      * of a successful translation.
3604      */
3605     ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3606                                          &res, &fi);
3607 
3608     /*
3609      * ATS operations only do S1 or S1+S2 translations, so we never
3610      * have to deal with the ARMCacheAttrs format for S2 only.
3611      */
3612     assert(!res.cacheattrs.is_s2_format);
3613 
3614     if (ret) {
3615         /*
3616          * Some kinds of translation fault must cause exceptions rather
3617          * than being reported in the PAR.
3618          */
3619         int current_el = arm_current_el(env);
3620         int target_el;
3621         uint32_t syn, fsr, fsc;
3622         bool take_exc = false;
3623 
3624         if (fi.s1ptw && current_el == 1
3625             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3626             /*
3627              * Synchronous stage 2 fault on an access made as part of the
3628              * translation table walk for AT S1E0* or AT S1E1* insn
3629              * executed from NS EL1. If this is a synchronous external abort
3630              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3631              * to EL3. Otherwise the fault is taken as an exception to EL2,
3632              * and HPFAR_EL2 holds the faulting IPA.
3633              */
3634             if (fi.type == ARMFault_SyncExternalOnWalk &&
3635                 (env->cp15.scr_el3 & SCR_EA)) {
3636                 target_el = 3;
3637             } else {
3638                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3639                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3640                     env->cp15.hpfar_el2 |= HPFAR_NS;
3641                 }
3642                 target_el = 2;
3643             }
3644             take_exc = true;
3645         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3646             /*
3647              * Synchronous external aborts during a translation table walk
3648              * are taken as Data Abort exceptions.
3649              */
3650             if (fi.stage2) {
3651                 if (current_el == 3) {
3652                     target_el = 3;
3653                 } else {
3654                     target_el = 2;
3655                 }
3656             } else {
3657                 target_el = exception_target_el(env);
3658             }
3659             take_exc = true;
3660         }
3661 
3662         if (take_exc) {
3663             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3664             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3665                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3666                 fsr = arm_fi_to_lfsc(&fi);
3667                 fsc = extract32(fsr, 0, 6);
3668             } else {
3669                 fsr = arm_fi_to_sfsc(&fi);
3670                 fsc = 0x3f;
3671             }
3672             /*
3673              * Report exception with ESR indicating a fault due to a
3674              * translation table walk for a cache maintenance instruction.
3675              */
3676             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3677                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3678             env->exception.vaddress = value;
3679             env->exception.fsr = fsr;
3680             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3681         }
3682     }
3683 
3684     if (is_a64(env)) {
3685         format64 = true;
3686     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3687         /*
3688          * ATS1Cxx:
3689          * * TTBCR.EAE determines whether the result is returned using the
3690          *   32-bit or the 64-bit PAR format
3691          * * Instructions executed in Hyp mode always use the 64bit format
3692          *
3693          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3694          * * The Non-secure TTBCR.EAE bit is set to 1
3695          * * The implementation includes EL2, and the value of HCR.VM is 1
3696          *
3697          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3698          *
3699          * ATS1Hx always uses the 64bit format.
3700          */
3701         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3702 
3703         if (arm_feature(env, ARM_FEATURE_EL2)) {
3704             if (mmu_idx == ARMMMUIdx_E10_0 ||
3705                 mmu_idx == ARMMMUIdx_E10_1 ||
3706                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3707                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3708             } else {
3709                 format64 |= arm_current_el(env) == 2;
3710             }
3711         }
3712     }
3713 
3714     if (format64) {
3715         /* Create a 64-bit PAR */
3716         par64 = (1 << 11); /* LPAE bit always set */
3717         if (!ret) {
3718             par64 |= res.f.phys_addr & ~0xfffULL;
3719             if (!res.f.attrs.secure) {
3720                 par64 |= (1 << 9); /* NS */
3721             }
3722             par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3723             par64 |= par_el1_shareability(&res) << 7; /* SH */
3724         } else {
3725             uint32_t fsr = arm_fi_to_lfsc(&fi);
3726 
3727             par64 |= 1; /* F */
3728             par64 |= (fsr & 0x3f) << 1; /* FS */
3729             if (fi.stage2) {
3730                 par64 |= (1 << 9); /* S */
3731             }
3732             if (fi.s1ptw) {
3733                 par64 |= (1 << 8); /* PTW */
3734             }
3735         }
3736     } else {
3737         /*
3738          * fsr is a DFSR/IFSR value for the short descriptor
3739          * translation table format (with WnR always clear).
3740          * Convert it to a 32-bit PAR.
3741          */
3742         if (!ret) {
3743             /* We do not set any attribute bits in the PAR */
3744             if (res.f.lg_page_size == 24
3745                 && arm_feature(env, ARM_FEATURE_V7)) {
3746                 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3747             } else {
3748                 par64 = res.f.phys_addr & 0xfffff000;
3749             }
3750             if (!res.f.attrs.secure) {
3751                 par64 |= (1 << 9); /* NS */
3752             }
3753         } else {
3754             uint32_t fsr = arm_fi_to_sfsc(&fi);
3755 
3756             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3757                     ((fsr & 0xf) << 1) | 1;
3758         }
3759     }
3760     return par64;
3761 }
3762 #endif /* CONFIG_TCG */
3763 
3764 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3765 {
3766 #ifdef CONFIG_TCG
3767     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3768     uint64_t par64;
3769     ARMMMUIdx mmu_idx;
3770     int el = arm_current_el(env);
3771     ARMSecuritySpace ss = arm_security_space(env);
3772 
3773     switch (ri->opc2 & 6) {
3774     case 0:
3775         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3776         switch (el) {
3777         case 3:
3778             mmu_idx = ARMMMUIdx_E3;
3779             break;
3780         case 2:
3781             g_assert(ss != ARMSS_Secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3782             /* fall through */
3783         case 1:
3784             if (ri->crm == 9 && arm_pan_enabled(env)) {
3785                 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3786             } else {
3787                 mmu_idx = ARMMMUIdx_Stage1_E1;
3788             }
3789             break;
3790         default:
3791             g_assert_not_reached();
3792         }
3793         break;
3794     case 2:
3795         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3796         switch (el) {
3797         case 3:
3798             mmu_idx = ARMMMUIdx_E10_0;
3799             break;
3800         case 2:
3801             g_assert(ss != ARMSS_Secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3802             mmu_idx = ARMMMUIdx_Stage1_E0;
3803             break;
3804         case 1:
3805             mmu_idx = ARMMMUIdx_Stage1_E0;
3806             break;
3807         default:
3808             g_assert_not_reached();
3809         }
3810         break;
3811     case 4:
3812         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3813         mmu_idx = ARMMMUIdx_E10_1;
3814         ss = ARMSS_NonSecure;
3815         break;
3816     case 6:
3817         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3818         mmu_idx = ARMMMUIdx_E10_0;
3819         ss = ARMSS_NonSecure;
3820         break;
3821     default:
3822         g_assert_not_reached();
3823     }
3824 
3825     par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3826 
3827     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3828 #else
3829     /* Handled by hardware accelerator. */
3830     g_assert_not_reached();
3831 #endif /* CONFIG_TCG */
3832 }
3833 
3834 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3835                         uint64_t value)
3836 {
3837 #ifdef CONFIG_TCG
3838     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3839     uint64_t par64;
3840 
3841     /* There is no SecureEL2 for AArch32. */
3842     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3843                          ARMSS_NonSecure);
3844 
3845     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3846 #else
3847     /* Handled by hardware accelerator. */
3848     g_assert_not_reached();
3849 #endif /* CONFIG_TCG */
3850 }
3851 
3852 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3853                                      bool isread)
3854 {
3855     /*
3856      * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3857      * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3858      * only happen when executing at EL3 because that combination also causes an
3859      * illegal exception return. We don't need to check FEAT_RME either, because
3860      * scr_write() ensures that the NSE bit is not set otherwise.
3861      */
3862     if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3863         return CP_ACCESS_TRAP;
3864     }
3865     return CP_ACCESS_OK;
3866 }
3867 
3868 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3869                                      bool isread)
3870 {
3871     if (arm_current_el(env) == 3 &&
3872         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3873         return CP_ACCESS_TRAP;
3874     }
3875     return at_e012_access(env, ri, isread);
3876 }
3877 
3878 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
3879                                       bool isread)
3880 {
3881     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
3882         return CP_ACCESS_TRAP_EL2;
3883     }
3884     return at_e012_access(env, ri, isread);
3885 }
3886 
3887 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3888                         uint64_t value)
3889 {
3890 #ifdef CONFIG_TCG
3891     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3892     ARMMMUIdx mmu_idx;
3893     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3894     bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3895     bool for_el3 = false;
3896     ARMSecuritySpace ss;
3897 
3898     switch (ri->opc2 & 6) {
3899     case 0:
3900         switch (ri->opc1) {
3901         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3902             if (ri->crm == 9 && arm_pan_enabled(env)) {
3903                 mmu_idx = regime_e20 ?
3904                           ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3905             } else {
3906                 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3907             }
3908             break;
3909         case 4: /* AT S1E2R, AT S1E2W */
3910             mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3911             break;
3912         case 6: /* AT S1E3R, AT S1E3W */
3913             mmu_idx = ARMMMUIdx_E3;
3914             for_el3 = true;
3915             break;
3916         default:
3917             g_assert_not_reached();
3918         }
3919         break;
3920     case 2: /* AT S1E0R, AT S1E0W */
3921         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3922         break;
3923     case 4: /* AT S12E1R, AT S12E1W */
3924         mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3925         break;
3926     case 6: /* AT S12E0R, AT S12E0W */
3927         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3928         break;
3929     default:
3930         g_assert_not_reached();
3931     }
3932 
3933     ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env);
3934     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss);
3935 #else
3936     /* Handled by hardware accelerator. */
3937     g_assert_not_reached();
3938 #endif /* CONFIG_TCG */
3939 }
3940 #endif
3941 
3942 /* Return basic MPU access permission bits.  */
3943 static uint32_t simple_mpu_ap_bits(uint32_t val)
3944 {
3945     uint32_t ret;
3946     uint32_t mask;
3947     int i;
3948     ret = 0;
3949     mask = 3;
3950     for (i = 0; i < 16; i += 2) {
3951         ret |= (val >> i) & mask;
3952         mask <<= 2;
3953     }
3954     return ret;
3955 }
3956 
3957 /* Pad basic MPU access permission bits to extended format.  */
3958 static uint32_t extended_mpu_ap_bits(uint32_t val)
3959 {
3960     uint32_t ret;
3961     uint32_t mask;
3962     int i;
3963     ret = 0;
3964     mask = 3;
3965     for (i = 0; i < 16; i += 2) {
3966         ret |= (val & mask) << i;
3967         mask <<= 2;
3968     }
3969     return ret;
3970 }
3971 
3972 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3973                                  uint64_t value)
3974 {
3975     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3976 }
3977 
3978 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3979 {
3980     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3981 }
3982 
3983 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3984                                  uint64_t value)
3985 {
3986     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3987 }
3988 
3989 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3990 {
3991     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3992 }
3993 
3994 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3995 {
3996     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3997 
3998     if (!u32p) {
3999         return 0;
4000     }
4001 
4002     u32p += env->pmsav7.rnr[M_REG_NS];
4003     return *u32p;
4004 }
4005 
4006 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
4007                          uint64_t value)
4008 {
4009     ARMCPU *cpu = env_archcpu(env);
4010     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
4011 
4012     if (!u32p) {
4013         return;
4014     }
4015 
4016     u32p += env->pmsav7.rnr[M_REG_NS];
4017     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4018     *u32p = value;
4019 }
4020 
4021 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4022                               uint64_t value)
4023 {
4024     ARMCPU *cpu = env_archcpu(env);
4025     uint32_t nrgs = cpu->pmsav7_dregion;
4026 
4027     if (value >= nrgs) {
4028         qemu_log_mask(LOG_GUEST_ERROR,
4029                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
4030                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
4031         return;
4032     }
4033 
4034     raw_write(env, ri, value);
4035 }
4036 
4037 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4038                           uint64_t value)
4039 {
4040     ARMCPU *cpu = env_archcpu(env);
4041 
4042     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4043     env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
4044 }
4045 
4046 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4047 {
4048     return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
4049 }
4050 
4051 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4052                           uint64_t value)
4053 {
4054     ARMCPU *cpu = env_archcpu(env);
4055 
4056     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4057     env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
4058 }
4059 
4060 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4061 {
4062     return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
4063 }
4064 
4065 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4066                            uint64_t value)
4067 {
4068     ARMCPU *cpu = env_archcpu(env);
4069 
4070     /*
4071      * Ignore writes that would select not implemented region.
4072      * This is architecturally UNPREDICTABLE.
4073      */
4074     if (value >= cpu->pmsav7_dregion) {
4075         return;
4076     }
4077 
4078     env->pmsav7.rnr[M_REG_NS] = value;
4079 }
4080 
4081 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4082                           uint64_t value)
4083 {
4084     ARMCPU *cpu = env_archcpu(env);
4085 
4086     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4087     env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
4088 }
4089 
4090 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4091 {
4092     return env->pmsav8.hprbar[env->pmsav8.hprselr];
4093 }
4094 
4095 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4096                           uint64_t value)
4097 {
4098     ARMCPU *cpu = env_archcpu(env);
4099 
4100     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4101     env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
4102 }
4103 
4104 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4105 {
4106     return env->pmsav8.hprlar[env->pmsav8.hprselr];
4107 }
4108 
4109 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4110                           uint64_t value)
4111 {
4112     uint32_t n;
4113     uint32_t bit;
4114     ARMCPU *cpu = env_archcpu(env);
4115 
4116     /* Ignore writes to unimplemented regions */
4117     int rmax = MIN(cpu->pmsav8r_hdregion, 32);
4118     value &= MAKE_64BIT_MASK(0, rmax);
4119 
4120     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4121 
4122     /* Register alias is only valid for first 32 indexes */
4123     for (n = 0; n < rmax; ++n) {
4124         bit = extract32(value, n, 1);
4125         env->pmsav8.hprlar[n] = deposit32(
4126                     env->pmsav8.hprlar[n], 0, 1, bit);
4127     }
4128 }
4129 
4130 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4131 {
4132     uint32_t n;
4133     uint32_t result = 0x0;
4134     ARMCPU *cpu = env_archcpu(env);
4135 
4136     /* Register alias is only valid for first 32 indexes */
4137     for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
4138         if (env->pmsav8.hprlar[n] & 0x1) {
4139             result |= (0x1 << n);
4140         }
4141     }
4142     return result;
4143 }
4144 
4145 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4146                            uint64_t value)
4147 {
4148     ARMCPU *cpu = env_archcpu(env);
4149 
4150     /*
4151      * Ignore writes that would select not implemented region.
4152      * This is architecturally UNPREDICTABLE.
4153      */
4154     if (value >= cpu->pmsav8r_hdregion) {
4155         return;
4156     }
4157 
4158     env->pmsav8.hprselr = value;
4159 }
4160 
4161 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
4162                           uint64_t value)
4163 {
4164     ARMCPU *cpu = env_archcpu(env);
4165     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4166                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4167 
4168     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4169 
4170     if (ri->opc1 & 4) {
4171         if (index >= cpu->pmsav8r_hdregion) {
4172             return;
4173         }
4174         if (ri->opc2 & 0x1) {
4175             env->pmsav8.hprlar[index] = value;
4176         } else {
4177             env->pmsav8.hprbar[index] = value;
4178         }
4179     } else {
4180         if (index >= cpu->pmsav7_dregion) {
4181             return;
4182         }
4183         if (ri->opc2 & 0x1) {
4184             env->pmsav8.rlar[M_REG_NS][index] = value;
4185         } else {
4186             env->pmsav8.rbar[M_REG_NS][index] = value;
4187         }
4188     }
4189 }
4190 
4191 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4192 {
4193     ARMCPU *cpu = env_archcpu(env);
4194     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4195                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4196 
4197     if (ri->opc1 & 4) {
4198         if (index >= cpu->pmsav8r_hdregion) {
4199             return 0x0;
4200         }
4201         if (ri->opc2 & 0x1) {
4202             return env->pmsav8.hprlar[index];
4203         } else {
4204             return env->pmsav8.hprbar[index];
4205         }
4206     } else {
4207         if (index >= cpu->pmsav7_dregion) {
4208             return 0x0;
4209         }
4210         if (ri->opc2 & 0x1) {
4211             return env->pmsav8.rlar[M_REG_NS][index];
4212         } else {
4213             return env->pmsav8.rbar[M_REG_NS][index];
4214         }
4215     }
4216 }
4217 
4218 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4219     { .name = "PRBAR",
4220       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4221       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4222       .accessfn = access_tvm_trvm,
4223       .readfn = prbar_read, .writefn = prbar_write },
4224     { .name = "PRLAR",
4225       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4226       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4227       .accessfn = access_tvm_trvm,
4228       .readfn = prlar_read, .writefn = prlar_write },
4229     { .name = "PRSELR", .resetvalue = 0,
4230       .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4231       .access = PL1_RW, .accessfn = access_tvm_trvm,
4232       .writefn = prselr_write,
4233       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4234     { .name = "HPRBAR", .resetvalue = 0,
4235       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4236       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4237       .readfn = hprbar_read, .writefn = hprbar_write },
4238     { .name = "HPRLAR",
4239       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4240       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4241       .readfn = hprlar_read, .writefn = hprlar_write },
4242     { .name = "HPRSELR", .resetvalue = 0,
4243       .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4244       .access = PL2_RW,
4245       .writefn = hprselr_write,
4246       .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4247     { .name = "HPRENR",
4248       .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4249       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4250       .readfn = hprenr_read, .writefn = hprenr_write },
4251 };
4252 
4253 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4254     /*
4255      * Reset for all these registers is handled in arm_cpu_reset(),
4256      * because the PMSAv7 is also used by M-profile CPUs, which do
4257      * not register cpregs but still need the state to be reset.
4258      */
4259     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4260       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4261       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4262       .readfn = pmsav7_read, .writefn = pmsav7_write,
4263       .resetfn = arm_cp_reset_ignore },
4264     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4265       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4266       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4267       .readfn = pmsav7_read, .writefn = pmsav7_write,
4268       .resetfn = arm_cp_reset_ignore },
4269     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4270       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4271       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4272       .readfn = pmsav7_read, .writefn = pmsav7_write,
4273       .resetfn = arm_cp_reset_ignore },
4274     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4275       .access = PL1_RW,
4276       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4277       .writefn = pmsav7_rgnr_write,
4278       .resetfn = arm_cp_reset_ignore },
4279 };
4280 
4281 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4282     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4283       .access = PL1_RW, .type = ARM_CP_ALIAS,
4284       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4285       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4286     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4287       .access = PL1_RW, .type = ARM_CP_ALIAS,
4288       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4289       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4290     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4291       .access = PL1_RW,
4292       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4293       .resetvalue = 0, },
4294     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4295       .access = PL1_RW,
4296       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4297       .resetvalue = 0, },
4298     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4299       .access = PL1_RW,
4300       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4301     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4302       .access = PL1_RW,
4303       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4304     /* Protection region base and size registers */
4305     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4306       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4307       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4308     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4309       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4310       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4311     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4312       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4313       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4314     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4315       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4316       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4317     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4318       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4319       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4320     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4321       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4322       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4323     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4324       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4325       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4326     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4327       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4328       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4329 };
4330 
4331 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4332                              uint64_t value)
4333 {
4334     ARMCPU *cpu = env_archcpu(env);
4335 
4336     if (!arm_feature(env, ARM_FEATURE_V8)) {
4337         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4338             /*
4339              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4340              * using Long-descriptor translation table format
4341              */
4342             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4343         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4344             /*
4345              * In an implementation that includes the Security Extensions
4346              * TTBCR has additional fields PD0 [4] and PD1 [5] for
4347              * Short-descriptor translation table format.
4348              */
4349             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4350         } else {
4351             value &= TTBCR_N;
4352         }
4353     }
4354 
4355     if (arm_feature(env, ARM_FEATURE_LPAE)) {
4356         /*
4357          * With LPAE the TTBCR could result in a change of ASID
4358          * via the TTBCR.A1 bit, so do a TLB flush.
4359          */
4360         tlb_flush(CPU(cpu));
4361     }
4362     raw_write(env, ri, value);
4363 }
4364 
4365 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4366                                uint64_t value)
4367 {
4368     ARMCPU *cpu = env_archcpu(env);
4369 
4370     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4371     tlb_flush(CPU(cpu));
4372     raw_write(env, ri, value);
4373 }
4374 
4375 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4376                             uint64_t value)
4377 {
4378     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4379     if (cpreg_field_is_64bit(ri) &&
4380         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4381         ARMCPU *cpu = env_archcpu(env);
4382         tlb_flush(CPU(cpu));
4383     }
4384     raw_write(env, ri, value);
4385 }
4386 
4387 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4388                                     uint64_t value)
4389 {
4390     /*
4391      * If we are running with E2&0 regime, then an ASID is active.
4392      * Flush if that might be changing.  Note we're not checking
4393      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4394      * holds the active ASID, only checking the field that might.
4395      */
4396     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4397         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4398         uint16_t mask = ARMMMUIdxBit_E20_2 |
4399                         ARMMMUIdxBit_E20_2_PAN |
4400                         ARMMMUIdxBit_E20_0;
4401         tlb_flush_by_mmuidx(env_cpu(env), mask);
4402     }
4403     raw_write(env, ri, value);
4404 }
4405 
4406 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4407                         uint64_t value)
4408 {
4409     ARMCPU *cpu = env_archcpu(env);
4410     CPUState *cs = CPU(cpu);
4411 
4412     /*
4413      * A change in VMID to the stage2 page table (Stage2) invalidates
4414      * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4415      */
4416     if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4417         tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4418     }
4419     raw_write(env, ri, value);
4420 }
4421 
4422 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4423     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4424       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4425       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4426                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4427     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4428       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4429       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4430                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4431     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4432       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4433       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4434                              offsetof(CPUARMState, cp15.dfar_ns) } },
4435     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4436       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4437       .access = PL1_RW, .accessfn = access_tvm_trvm,
4438       .fgt = FGT_FAR_EL1,
4439       .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
4440       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4441       .resetvalue = 0, },
4442 };
4443 
4444 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4445     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4446       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4447       .access = PL1_RW, .accessfn = access_tvm_trvm,
4448       .fgt = FGT_ESR_EL1,
4449       .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
4450       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4451     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4452       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4453       .access = PL1_RW, .accessfn = access_tvm_trvm,
4454       .fgt = FGT_TTBR0_EL1,
4455       .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
4456       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4457       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4458                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4459     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4460       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4461       .access = PL1_RW, .accessfn = access_tvm_trvm,
4462       .fgt = FGT_TTBR1_EL1,
4463       .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
4464       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4465       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4466                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4467     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4468       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4469       .access = PL1_RW, .accessfn = access_tvm_trvm,
4470       .fgt = FGT_TCR_EL1,
4471       .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
4472       .writefn = vmsa_tcr_el12_write,
4473       .raw_writefn = raw_write,
4474       .resetvalue = 0,
4475       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4476     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4477       .access = PL1_RW, .accessfn = access_tvm_trvm,
4478       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4479       .raw_writefn = raw_write,
4480       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4481                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4482 };
4483 
4484 /*
4485  * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4486  * qemu tlbs nor adjusting cached masks.
4487  */
4488 static const ARMCPRegInfo ttbcr2_reginfo = {
4489     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4490     .access = PL1_RW, .accessfn = access_tvm_trvm,
4491     .type = ARM_CP_ALIAS,
4492     .bank_fieldoffsets = {
4493         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4494         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4495     },
4496 };
4497 
4498 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4499                                 uint64_t value)
4500 {
4501     env->cp15.c15_ticonfig = value & 0xe7;
4502     /* The OS_TYPE bit in this register changes the reported CPUID! */
4503     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4504         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4505 }
4506 
4507 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4508                                 uint64_t value)
4509 {
4510     env->cp15.c15_threadid = value & 0xffff;
4511 }
4512 
4513 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4514                            uint64_t value)
4515 {
4516     /* Wait-for-interrupt (deprecated) */
4517     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4518 }
4519 
4520 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4521                                   uint64_t value)
4522 {
4523     /*
4524      * On OMAP there are registers indicating the max/min index of dcache lines
4525      * containing a dirty line; cache flush operations have to reset these.
4526      */
4527     env->cp15.c15_i_max = 0x000;
4528     env->cp15.c15_i_min = 0xff0;
4529 }
4530 
4531 static const ARMCPRegInfo omap_cp_reginfo[] = {
4532     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4533       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4534       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4535       .resetvalue = 0, },
4536     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4537       .access = PL1_RW, .type = ARM_CP_NOP },
4538     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4539       .access = PL1_RW,
4540       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4541       .writefn = omap_ticonfig_write },
4542     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4543       .access = PL1_RW,
4544       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4545     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4546       .access = PL1_RW, .resetvalue = 0xff0,
4547       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4548     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4549       .access = PL1_RW,
4550       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4551       .writefn = omap_threadid_write },
4552     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4553       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4554       .type = ARM_CP_NO_RAW,
4555       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4556     /*
4557      * TODO: Peripheral port remap register:
4558      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4559      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4560      * when MMU is off.
4561      */
4562     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4563       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4564       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4565       .writefn = omap_cachemaint_write },
4566     { .name = "C9", .cp = 15, .crn = 9,
4567       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4568       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4569 };
4570 
4571 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4572                               uint64_t value)
4573 {
4574     env->cp15.c15_cpar = value & 0x3fff;
4575 }
4576 
4577 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4578     { .name = "XSCALE_CPAR",
4579       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4580       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4581       .writefn = xscale_cpar_write, },
4582     { .name = "XSCALE_AUXCR",
4583       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4584       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4585       .resetvalue = 0, },
4586     /*
4587      * XScale specific cache-lockdown: since we have no cache we NOP these
4588      * and hope the guest does not really rely on cache behaviour.
4589      */
4590     { .name = "XSCALE_LOCK_ICACHE_LINE",
4591       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4592       .access = PL1_W, .type = ARM_CP_NOP },
4593     { .name = "XSCALE_UNLOCK_ICACHE",
4594       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4595       .access = PL1_W, .type = ARM_CP_NOP },
4596     { .name = "XSCALE_DCACHE_LOCK",
4597       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4598       .access = PL1_RW, .type = ARM_CP_NOP },
4599     { .name = "XSCALE_UNLOCK_DCACHE",
4600       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4601       .access = PL1_W, .type = ARM_CP_NOP },
4602 };
4603 
4604 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4605     /*
4606      * RAZ/WI the whole crn=15 space, when we don't have a more specific
4607      * implementation of this implementation-defined space.
4608      * Ideally this should eventually disappear in favour of actually
4609      * implementing the correct behaviour for all cores.
4610      */
4611     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4612       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4613       .access = PL1_RW,
4614       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4615       .resetvalue = 0 },
4616 };
4617 
4618 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4619     /* Cache status: RAZ because we have no cache so it's always clean */
4620     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4621       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4622       .resetvalue = 0 },
4623 };
4624 
4625 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4626     /* We never have a block transfer operation in progress */
4627     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4628       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4629       .resetvalue = 0 },
4630     /* The cache ops themselves: these all NOP for QEMU */
4631     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4632       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4633     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4634       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4635     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4636       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4637     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4638       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4639     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4640       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4641     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4642       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4643 };
4644 
4645 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4646     /*
4647      * The cache test-and-clean instructions always return (1 << 30)
4648      * to indicate that there are no dirty cache lines.
4649      */
4650     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4651       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4652       .resetvalue = (1 << 30) },
4653     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4654       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4655       .resetvalue = (1 << 30) },
4656 };
4657 
4658 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4659     /* Ignore ReadBuffer accesses */
4660     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4661       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4662       .access = PL1_RW, .resetvalue = 0,
4663       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4664 };
4665 
4666 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4667 {
4668     unsigned int cur_el = arm_current_el(env);
4669 
4670     if (arm_is_el2_enabled(env) && cur_el == 1) {
4671         return env->cp15.vpidr_el2;
4672     }
4673     return raw_read(env, ri);
4674 }
4675 
4676 static uint64_t mpidr_read_val(CPUARMState *env)
4677 {
4678     ARMCPU *cpu = env_archcpu(env);
4679     uint64_t mpidr = cpu->mp_affinity;
4680 
4681     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4682         mpidr |= (1U << 31);
4683         /*
4684          * Cores which are uniprocessor (non-coherent)
4685          * but still implement the MP extensions set
4686          * bit 30. (For instance, Cortex-R5).
4687          */
4688         if (cpu->mp_is_up) {
4689             mpidr |= (1u << 30);
4690         }
4691     }
4692     return mpidr;
4693 }
4694 
4695 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4696 {
4697     unsigned int cur_el = arm_current_el(env);
4698 
4699     if (arm_is_el2_enabled(env) && cur_el == 1) {
4700         return env->cp15.vmpidr_el2;
4701     }
4702     return mpidr_read_val(env);
4703 }
4704 
4705 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4706     /* NOP AMAIR0/1 */
4707     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4708       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4709       .access = PL1_RW, .accessfn = access_tvm_trvm,
4710       .fgt = FGT_AMAIR_EL1,
4711       .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
4712       .type = ARM_CP_CONST, .resetvalue = 0 },
4713     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4714     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4715       .access = PL1_RW, .accessfn = access_tvm_trvm,
4716       .type = ARM_CP_CONST, .resetvalue = 0 },
4717     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4718       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4719       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4720                              offsetof(CPUARMState, cp15.par_ns)} },
4721     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4722       .access = PL1_RW, .accessfn = access_tvm_trvm,
4723       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4724       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4725                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4726       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4727     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4728       .access = PL1_RW, .accessfn = access_tvm_trvm,
4729       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4730       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4731                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4732       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4733 };
4734 
4735 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4736 {
4737     return vfp_get_fpcr(env);
4738 }
4739 
4740 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4741                             uint64_t value)
4742 {
4743     vfp_set_fpcr(env, value);
4744 }
4745 
4746 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4747 {
4748     return vfp_get_fpsr(env);
4749 }
4750 
4751 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4752                             uint64_t value)
4753 {
4754     vfp_set_fpsr(env, value);
4755 }
4756 
4757 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4758                                        bool isread)
4759 {
4760     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4761         return CP_ACCESS_TRAP;
4762     }
4763     return CP_ACCESS_OK;
4764 }
4765 
4766 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4767                             uint64_t value)
4768 {
4769     env->daif = value & PSTATE_DAIF;
4770 }
4771 
4772 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4773 {
4774     return env->pstate & PSTATE_PAN;
4775 }
4776 
4777 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4778                            uint64_t value)
4779 {
4780     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4781 }
4782 
4783 static const ARMCPRegInfo pan_reginfo = {
4784     .name = "PAN", .state = ARM_CP_STATE_AA64,
4785     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4786     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4787     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4788 };
4789 
4790 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4791 {
4792     return env->pstate & PSTATE_UAO;
4793 }
4794 
4795 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4796                            uint64_t value)
4797 {
4798     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4799 }
4800 
4801 static const ARMCPRegInfo uao_reginfo = {
4802     .name = "UAO", .state = ARM_CP_STATE_AA64,
4803     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4804     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4805     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4806 };
4807 
4808 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4809 {
4810     return env->pstate & PSTATE_DIT;
4811 }
4812 
4813 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4814                            uint64_t value)
4815 {
4816     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4817 }
4818 
4819 static const ARMCPRegInfo dit_reginfo = {
4820     .name = "DIT", .state = ARM_CP_STATE_AA64,
4821     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4822     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4823     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4824 };
4825 
4826 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4827 {
4828     return env->pstate & PSTATE_SSBS;
4829 }
4830 
4831 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4832                            uint64_t value)
4833 {
4834     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4835 }
4836 
4837 static const ARMCPRegInfo ssbs_reginfo = {
4838     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4839     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4840     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4841     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4842 };
4843 
4844 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4845                                               const ARMCPRegInfo *ri,
4846                                               bool isread)
4847 {
4848     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4849     switch (arm_current_el(env)) {
4850     case 0:
4851         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4852         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4853             return CP_ACCESS_TRAP;
4854         }
4855         /* fall through */
4856     case 1:
4857         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4858         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4859             return CP_ACCESS_TRAP_EL2;
4860         }
4861         break;
4862     }
4863     return CP_ACCESS_OK;
4864 }
4865 
4866 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4867 {
4868     /* Cache invalidate/clean to Point of Unification... */
4869     switch (arm_current_el(env)) {
4870     case 0:
4871         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4872         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4873             return CP_ACCESS_TRAP;
4874         }
4875         /* fall through */
4876     case 1:
4877         /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
4878         if (arm_hcr_el2_eff(env) & hcrflags) {
4879             return CP_ACCESS_TRAP_EL2;
4880         }
4881         break;
4882     }
4883     return CP_ACCESS_OK;
4884 }
4885 
4886 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4887                                    bool isread)
4888 {
4889     return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4890 }
4891 
4892 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4893                                   bool isread)
4894 {
4895     return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4896 }
4897 
4898 /*
4899  * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4900  * Page D4-1736 (DDI0487A.b)
4901  */
4902 
4903 static int vae1_tlbmask(CPUARMState *env)
4904 {
4905     uint64_t hcr = arm_hcr_el2_eff(env);
4906     uint16_t mask;
4907 
4908     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4909         mask = ARMMMUIdxBit_E20_2 |
4910                ARMMMUIdxBit_E20_2_PAN |
4911                ARMMMUIdxBit_E20_0;
4912     } else {
4913         mask = ARMMMUIdxBit_E10_1 |
4914                ARMMMUIdxBit_E10_1_PAN |
4915                ARMMMUIdxBit_E10_0;
4916     }
4917     return mask;
4918 }
4919 
4920 static int vae2_tlbmask(CPUARMState *env)
4921 {
4922     uint64_t hcr = arm_hcr_el2_eff(env);
4923     uint16_t mask;
4924 
4925     if (hcr & HCR_E2H) {
4926         mask = ARMMMUIdxBit_E20_2 |
4927                ARMMMUIdxBit_E20_2_PAN |
4928                ARMMMUIdxBit_E20_0;
4929     } else {
4930         mask = ARMMMUIdxBit_E2;
4931     }
4932     return mask;
4933 }
4934 
4935 /* Return 56 if TBI is enabled, 64 otherwise. */
4936 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4937                               uint64_t addr)
4938 {
4939     uint64_t tcr = regime_tcr(env, mmu_idx);
4940     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4941     int select = extract64(addr, 55, 1);
4942 
4943     return (tbi >> select) & 1 ? 56 : 64;
4944 }
4945 
4946 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4947 {
4948     uint64_t hcr = arm_hcr_el2_eff(env);
4949     ARMMMUIdx mmu_idx;
4950 
4951     /* Only the regime of the mmu_idx below is significant. */
4952     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4953         mmu_idx = ARMMMUIdx_E20_0;
4954     } else {
4955         mmu_idx = ARMMMUIdx_E10_0;
4956     }
4957 
4958     return tlbbits_for_regime(env, mmu_idx, addr);
4959 }
4960 
4961 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4962 {
4963     uint64_t hcr = arm_hcr_el2_eff(env);
4964     ARMMMUIdx mmu_idx;
4965 
4966     /*
4967      * Only the regime of the mmu_idx below is significant.
4968      * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4969      * only has one.
4970      */
4971     if (hcr & HCR_E2H) {
4972         mmu_idx = ARMMMUIdx_E20_2;
4973     } else {
4974         mmu_idx = ARMMMUIdx_E2;
4975     }
4976 
4977     return tlbbits_for_regime(env, mmu_idx, addr);
4978 }
4979 
4980 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4981                                       uint64_t value)
4982 {
4983     CPUState *cs = env_cpu(env);
4984     int mask = vae1_tlbmask(env);
4985 
4986     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4987 }
4988 
4989 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4990                                     uint64_t value)
4991 {
4992     CPUState *cs = env_cpu(env);
4993     int mask = vae1_tlbmask(env);
4994 
4995     if (tlb_force_broadcast(env)) {
4996         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4997     } else {
4998         tlb_flush_by_mmuidx(cs, mask);
4999     }
5000 }
5001 
5002 static int e2_tlbmask(CPUARMState *env)
5003 {
5004     return (ARMMMUIdxBit_E20_0 |
5005             ARMMMUIdxBit_E20_2 |
5006             ARMMMUIdxBit_E20_2_PAN |
5007             ARMMMUIdxBit_E2);
5008 }
5009 
5010 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5011                                   uint64_t value)
5012 {
5013     CPUState *cs = env_cpu(env);
5014     int mask = alle1_tlbmask(env);
5015 
5016     tlb_flush_by_mmuidx(cs, mask);
5017 }
5018 
5019 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5020                                   uint64_t value)
5021 {
5022     CPUState *cs = env_cpu(env);
5023     int mask = e2_tlbmask(env);
5024 
5025     tlb_flush_by_mmuidx(cs, mask);
5026 }
5027 
5028 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5029                                   uint64_t value)
5030 {
5031     ARMCPU *cpu = env_archcpu(env);
5032     CPUState *cs = CPU(cpu);
5033 
5034     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
5035 }
5036 
5037 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5038                                     uint64_t value)
5039 {
5040     CPUState *cs = env_cpu(env);
5041     int mask = alle1_tlbmask(env);
5042 
5043     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5044 }
5045 
5046 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5047                                     uint64_t value)
5048 {
5049     CPUState *cs = env_cpu(env);
5050     int mask = e2_tlbmask(env);
5051 
5052     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5053 }
5054 
5055 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5056                                     uint64_t value)
5057 {
5058     CPUState *cs = env_cpu(env);
5059 
5060     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
5061 }
5062 
5063 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5064                                  uint64_t value)
5065 {
5066     /*
5067      * Invalidate by VA, EL2
5068      * Currently handles both VAE2 and VALE2, since we don't support
5069      * flush-last-level-only.
5070      */
5071     CPUState *cs = env_cpu(env);
5072     int mask = vae2_tlbmask(env);
5073     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5074     int bits = vae2_tlbbits(env, pageaddr);
5075 
5076     tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5077 }
5078 
5079 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5080                                  uint64_t value)
5081 {
5082     /*
5083      * Invalidate by VA, EL3
5084      * Currently handles both VAE3 and VALE3, since we don't support
5085      * flush-last-level-only.
5086      */
5087     ARMCPU *cpu = env_archcpu(env);
5088     CPUState *cs = CPU(cpu);
5089     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5090 
5091     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
5092 }
5093 
5094 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5095                                    uint64_t value)
5096 {
5097     CPUState *cs = env_cpu(env);
5098     int mask = vae1_tlbmask(env);
5099     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5100     int bits = vae1_tlbbits(env, pageaddr);
5101 
5102     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5103 }
5104 
5105 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5106                                  uint64_t value)
5107 {
5108     /*
5109      * Invalidate by VA, EL1&0 (AArch64 version).
5110      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
5111      * since we don't support flush-for-specific-ASID-only or
5112      * flush-last-level-only.
5113      */
5114     CPUState *cs = env_cpu(env);
5115     int mask = vae1_tlbmask(env);
5116     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5117     int bits = vae1_tlbbits(env, pageaddr);
5118 
5119     if (tlb_force_broadcast(env)) {
5120         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5121     } else {
5122         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5123     }
5124 }
5125 
5126 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5127                                    uint64_t value)
5128 {
5129     CPUState *cs = env_cpu(env);
5130     int mask = vae2_tlbmask(env);
5131     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5132     int bits = vae2_tlbbits(env, pageaddr);
5133 
5134     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5135 }
5136 
5137 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5138                                    uint64_t value)
5139 {
5140     CPUState *cs = env_cpu(env);
5141     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5142     int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
5143 
5144     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
5145                                                   ARMMMUIdxBit_E3, bits);
5146 }
5147 
5148 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
5149 {
5150     /*
5151      * The MSB of value is the NS field, which only applies if SEL2
5152      * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
5153      */
5154     return (value >= 0
5155             && cpu_isar_feature(aa64_sel2, env_archcpu(env))
5156             && arm_is_secure_below_el3(env)
5157             ? ARMMMUIdxBit_Stage2_S
5158             : ARMMMUIdxBit_Stage2);
5159 }
5160 
5161 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5162                                     uint64_t value)
5163 {
5164     CPUState *cs = env_cpu(env);
5165     int mask = ipas2e1_tlbmask(env, value);
5166     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5167 
5168     if (tlb_force_broadcast(env)) {
5169         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5170     } else {
5171         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
5172     }
5173 }
5174 
5175 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5176                                       uint64_t value)
5177 {
5178     CPUState *cs = env_cpu(env);
5179     int mask = ipas2e1_tlbmask(env, value);
5180     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5181 
5182     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5183 }
5184 
5185 #ifdef TARGET_AARCH64
5186 typedef struct {
5187     uint64_t base;
5188     uint64_t length;
5189 } TLBIRange;
5190 
5191 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
5192 {
5193     /*
5194      * Note that the TLBI range TG field encoding differs from both
5195      * TG0 and TG1 encodings.
5196      */
5197     switch (tg) {
5198     case 1:
5199         return Gran4K;
5200     case 2:
5201         return Gran16K;
5202     case 3:
5203         return Gran64K;
5204     default:
5205         return GranInvalid;
5206     }
5207 }
5208 
5209 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5210                                      uint64_t value)
5211 {
5212     unsigned int page_size_granule, page_shift, num, scale, exponent;
5213     /* Extract one bit to represent the va selector in use. */
5214     uint64_t select = sextract64(value, 36, 1);
5215     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5216     TLBIRange ret = { };
5217     ARMGranuleSize gran;
5218 
5219     page_size_granule = extract64(value, 46, 2);
5220     gran = tlbi_range_tg_to_gran_size(page_size_granule);
5221 
5222     /* The granule encoded in value must match the granule in use. */
5223     if (gran != param.gran) {
5224         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5225                       page_size_granule);
5226         return ret;
5227     }
5228 
5229     page_shift = arm_granule_bits(gran);
5230     num = extract64(value, 39, 5);
5231     scale = extract64(value, 44, 2);
5232     exponent = (5 * scale) + 1;
5233 
5234     ret.length = (num + 1) << (exponent + page_shift);
5235 
5236     if (param.select) {
5237         ret.base = sextract64(value, 0, 37);
5238     } else {
5239         ret.base = extract64(value, 0, 37);
5240     }
5241     if (param.ds) {
5242         /*
5243          * With DS=1, BaseADDR is always shifted 16 so that it is able
5244          * to address all 52 va bits.  The input address is perforce
5245          * aligned on a 64k boundary regardless of translation granule.
5246          */
5247         page_shift = 16;
5248     }
5249     ret.base <<= page_shift;
5250 
5251     return ret;
5252 }
5253 
5254 static void do_rvae_write(CPUARMState *env, uint64_t value,
5255                           int idxmap, bool synced)
5256 {
5257     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5258     TLBIRange range;
5259     int bits;
5260 
5261     range = tlbi_aa64_get_range(env, one_idx, value);
5262     bits = tlbbits_for_regime(env, one_idx, range.base);
5263 
5264     if (synced) {
5265         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5266                                                   range.base,
5267                                                   range.length,
5268                                                   idxmap,
5269                                                   bits);
5270     } else {
5271         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5272                                   range.length, idxmap, bits);
5273     }
5274 }
5275 
5276 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5277                                   const ARMCPRegInfo *ri,
5278                                   uint64_t value)
5279 {
5280     /*
5281      * Invalidate by VA range, EL1&0.
5282      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5283      * since we don't support flush-for-specific-ASID-only or
5284      * flush-last-level-only.
5285      */
5286 
5287     do_rvae_write(env, value, vae1_tlbmask(env),
5288                   tlb_force_broadcast(env));
5289 }
5290 
5291 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5292                                     const ARMCPRegInfo *ri,
5293                                     uint64_t value)
5294 {
5295     /*
5296      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5297      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5298      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5299      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5300      * shareable specific flushes.
5301      */
5302 
5303     do_rvae_write(env, value, vae1_tlbmask(env), true);
5304 }
5305 
5306 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5307                                   const ARMCPRegInfo *ri,
5308                                   uint64_t value)
5309 {
5310     /*
5311      * Invalidate by VA range, EL2.
5312      * Currently handles all of RVAE2 and RVALE2,
5313      * since we don't support flush-for-specific-ASID-only or
5314      * flush-last-level-only.
5315      */
5316 
5317     do_rvae_write(env, value, vae2_tlbmask(env),
5318                   tlb_force_broadcast(env));
5319 
5320 
5321 }
5322 
5323 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5324                                     const ARMCPRegInfo *ri,
5325                                     uint64_t value)
5326 {
5327     /*
5328      * Invalidate by VA range, Inner/Outer Shareable, EL2.
5329      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5330      * since we don't support flush-for-specific-ASID-only,
5331      * flush-last-level-only or inner/outer shareable specific flushes.
5332      */
5333 
5334     do_rvae_write(env, value, vae2_tlbmask(env), true);
5335 
5336 }
5337 
5338 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5339                                   const ARMCPRegInfo *ri,
5340                                   uint64_t value)
5341 {
5342     /*
5343      * Invalidate by VA range, EL3.
5344      * Currently handles all of RVAE3 and RVALE3,
5345      * since we don't support flush-for-specific-ASID-only or
5346      * flush-last-level-only.
5347      */
5348 
5349     do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5350 }
5351 
5352 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5353                                     const ARMCPRegInfo *ri,
5354                                     uint64_t value)
5355 {
5356     /*
5357      * Invalidate by VA range, EL3, Inner/Outer Shareable.
5358      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5359      * since we don't support flush-for-specific-ASID-only,
5360      * flush-last-level-only or inner/outer specific flushes.
5361      */
5362 
5363     do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5364 }
5365 
5366 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5367                                      uint64_t value)
5368 {
5369     do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5370                   tlb_force_broadcast(env));
5371 }
5372 
5373 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5374                                        const ARMCPRegInfo *ri,
5375                                        uint64_t value)
5376 {
5377     do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5378 }
5379 #endif
5380 
5381 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5382                                       bool isread)
5383 {
5384     int cur_el = arm_current_el(env);
5385 
5386     if (cur_el < 2) {
5387         uint64_t hcr = arm_hcr_el2_eff(env);
5388 
5389         if (cur_el == 0) {
5390             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5391                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5392                     return CP_ACCESS_TRAP_EL2;
5393                 }
5394             } else {
5395                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5396                     return CP_ACCESS_TRAP;
5397                 }
5398                 if (hcr & HCR_TDZ) {
5399                     return CP_ACCESS_TRAP_EL2;
5400                 }
5401             }
5402         } else if (hcr & HCR_TDZ) {
5403             return CP_ACCESS_TRAP_EL2;
5404         }
5405     }
5406     return CP_ACCESS_OK;
5407 }
5408 
5409 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5410 {
5411     ARMCPU *cpu = env_archcpu(env);
5412     int dzp_bit = 1 << 4;
5413 
5414     /* DZP indicates whether DC ZVA access is allowed */
5415     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5416         dzp_bit = 0;
5417     }
5418     return cpu->dcz_blocksize | dzp_bit;
5419 }
5420 
5421 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5422                                     bool isread)
5423 {
5424     if (!(env->pstate & PSTATE_SP)) {
5425         /*
5426          * Access to SP_EL0 is undefined if it's being used as
5427          * the stack pointer.
5428          */
5429         return CP_ACCESS_TRAP_UNCATEGORIZED;
5430     }
5431     return CP_ACCESS_OK;
5432 }
5433 
5434 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5435 {
5436     return env->pstate & PSTATE_SP;
5437 }
5438 
5439 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5440 {
5441     update_spsel(env, val);
5442 }
5443 
5444 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5445                         uint64_t value)
5446 {
5447     ARMCPU *cpu = env_archcpu(env);
5448 
5449     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5450         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5451         value &= ~SCTLR_M;
5452     }
5453 
5454     /* ??? Lots of these bits are not implemented.  */
5455 
5456     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5457         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5458             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5459         } else {
5460             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5461                        SCTLR_ATA0 | SCTLR_ATA);
5462         }
5463     }
5464 
5465     if (raw_read(env, ri) == value) {
5466         /*
5467          * Skip the TLB flush if nothing actually changed; Linux likes
5468          * to do a lot of pointless SCTLR writes.
5469          */
5470         return;
5471     }
5472 
5473     raw_write(env, ri, value);
5474 
5475     /* This may enable/disable the MMU, so do a TLB flush.  */
5476     tlb_flush(CPU(cpu));
5477 
5478     if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5479         /*
5480          * Normally we would always end the TB on an SCTLR write; see the
5481          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5482          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5483          * of hflags from the translator, so do it here.
5484          */
5485         arm_rebuild_hflags(env);
5486     }
5487 }
5488 
5489 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5490                            uint64_t value)
5491 {
5492     /*
5493      * Some MDCR_EL3 bits affect whether PMU counters are running:
5494      * if we are trying to change any of those then we must
5495      * bracket this update with PMU start/finish calls.
5496      */
5497     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5498 
5499     if (pmu_op) {
5500         pmu_op_start(env);
5501     }
5502     env->cp15.mdcr_el3 = value;
5503     if (pmu_op) {
5504         pmu_op_finish(env);
5505     }
5506 }
5507 
5508 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5509                        uint64_t value)
5510 {
5511     /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5512     mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5513 }
5514 
5515 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5516                            uint64_t value)
5517 {
5518     /*
5519      * Some MDCR_EL2 bits affect whether PMU counters are running:
5520      * if we are trying to change any of those then we must
5521      * bracket this update with PMU start/finish calls.
5522      */
5523     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5524 
5525     if (pmu_op) {
5526         pmu_op_start(env);
5527     }
5528     env->cp15.mdcr_el2 = value;
5529     if (pmu_op) {
5530         pmu_op_finish(env);
5531     }
5532 }
5533 
5534 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
5535                                  bool isread)
5536 {
5537     if (arm_current_el(env) == 1) {
5538         uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
5539 
5540         if (hcr_nv == (HCR_NV | HCR_NV1)) {
5541             return CP_ACCESS_TRAP_EL2;
5542         }
5543     }
5544     return CP_ACCESS_OK;
5545 }
5546 
5547 #ifdef CONFIG_USER_ONLY
5548 /*
5549  * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5550  * code to get around W^X restrictions, where one region is writable and the
5551  * other is executable.
5552  *
5553  * Since the executable region is never written to we cannot detect code
5554  * changes when running in user mode, and rely on the emulated JIT telling us
5555  * that the code has changed by executing this instruction.
5556  */
5557 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5558                           uint64_t value)
5559 {
5560     uint64_t icache_line_mask, start_address, end_address;
5561     const ARMCPU *cpu;
5562 
5563     cpu = env_archcpu(env);
5564 
5565     icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5566     start_address = value & ~icache_line_mask;
5567     end_address = value | icache_line_mask;
5568 
5569     mmap_lock();
5570 
5571     tb_invalidate_phys_range(start_address, end_address);
5572 
5573     mmap_unlock();
5574 }
5575 #endif
5576 
5577 static const ARMCPRegInfo v8_cp_reginfo[] = {
5578     /*
5579      * Minimal set of EL0-visible registers. This will need to be expanded
5580      * significantly for system emulation of AArch64 CPUs.
5581      */
5582     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5583       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5584       .access = PL0_RW, .type = ARM_CP_NZCV },
5585     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5586       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5587       .type = ARM_CP_NO_RAW,
5588       .access = PL0_RW, .accessfn = aa64_daif_access,
5589       .fieldoffset = offsetof(CPUARMState, daif),
5590       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5591     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5592       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5593       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5594       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5595     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5596       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5597       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5598       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5599     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5600       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5601       .access = PL0_R, .type = ARM_CP_NO_RAW,
5602       .fgt = FGT_DCZID_EL0,
5603       .readfn = aa64_dczid_read },
5604     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5605       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5606       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5607 #ifndef CONFIG_USER_ONLY
5608       /* Avoid overhead of an access check that always passes in user-mode */
5609       .accessfn = aa64_zva_access,
5610       .fgt = FGT_DCZVA,
5611 #endif
5612     },
5613     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5614       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5615       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5616     /*
5617      * Instruction cache ops. All of these except `IC IVAU` NOP because we
5618      * don't emulate caches.
5619      */
5620     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5621       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5622       .access = PL1_W, .type = ARM_CP_NOP,
5623       .fgt = FGT_ICIALLUIS,
5624       .accessfn = access_ticab },
5625     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5626       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5627       .access = PL1_W, .type = ARM_CP_NOP,
5628       .fgt = FGT_ICIALLU,
5629       .accessfn = access_tocu },
5630     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5631       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5632       .access = PL0_W,
5633       .fgt = FGT_ICIVAU,
5634       .accessfn = access_tocu,
5635 #ifdef CONFIG_USER_ONLY
5636       .type = ARM_CP_NO_RAW,
5637       .writefn = ic_ivau_write
5638 #else
5639       .type = ARM_CP_NOP
5640 #endif
5641     },
5642     /* Cache ops: all NOPs since we don't emulate caches */
5643     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5644       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5645       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5646       .fgt = FGT_DCIVAC,
5647       .type = ARM_CP_NOP },
5648     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5649       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5650       .fgt = FGT_DCISW,
5651       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5652     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5653       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5654       .access = PL0_W, .type = ARM_CP_NOP,
5655       .fgt = FGT_DCCVAC,
5656       .accessfn = aa64_cacheop_poc_access },
5657     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5658       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5659       .fgt = FGT_DCCSW,
5660       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5661     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5662       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5663       .access = PL0_W, .type = ARM_CP_NOP,
5664       .fgt = FGT_DCCVAU,
5665       .accessfn = access_tocu },
5666     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5667       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5668       .access = PL0_W, .type = ARM_CP_NOP,
5669       .fgt = FGT_DCCIVAC,
5670       .accessfn = aa64_cacheop_poc_access },
5671     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5672       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5673       .fgt = FGT_DCCISW,
5674       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5675     /* TLBI operations */
5676     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5677       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5678       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5679       .fgt = FGT_TLBIVMALLE1IS,
5680       .writefn = tlbi_aa64_vmalle1is_write },
5681     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5682       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5683       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5684       .fgt = FGT_TLBIVAE1IS,
5685       .writefn = tlbi_aa64_vae1is_write },
5686     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5687       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5688       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5689       .fgt = FGT_TLBIASIDE1IS,
5690       .writefn = tlbi_aa64_vmalle1is_write },
5691     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5692       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5693       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5694       .fgt = FGT_TLBIVAAE1IS,
5695       .writefn = tlbi_aa64_vae1is_write },
5696     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5697       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5698       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5699       .fgt = FGT_TLBIVALE1IS,
5700       .writefn = tlbi_aa64_vae1is_write },
5701     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5702       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5703       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5704       .fgt = FGT_TLBIVAALE1IS,
5705       .writefn = tlbi_aa64_vae1is_write },
5706     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5707       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5708       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5709       .fgt = FGT_TLBIVMALLE1,
5710       .writefn = tlbi_aa64_vmalle1_write },
5711     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5712       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5713       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5714       .fgt = FGT_TLBIVAE1,
5715       .writefn = tlbi_aa64_vae1_write },
5716     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5717       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5718       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5719       .fgt = FGT_TLBIASIDE1,
5720       .writefn = tlbi_aa64_vmalle1_write },
5721     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5722       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5723       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5724       .fgt = FGT_TLBIVAAE1,
5725       .writefn = tlbi_aa64_vae1_write },
5726     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5727       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5728       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5729       .fgt = FGT_TLBIVALE1,
5730       .writefn = tlbi_aa64_vae1_write },
5731     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5732       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5733       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5734       .fgt = FGT_TLBIVAALE1,
5735       .writefn = tlbi_aa64_vae1_write },
5736     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5737       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5738       .access = PL2_W, .type = ARM_CP_NO_RAW,
5739       .writefn = tlbi_aa64_ipas2e1is_write },
5740     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5741       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5742       .access = PL2_W, .type = ARM_CP_NO_RAW,
5743       .writefn = tlbi_aa64_ipas2e1is_write },
5744     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5745       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5746       .access = PL2_W, .type = ARM_CP_NO_RAW,
5747       .writefn = tlbi_aa64_alle1is_write },
5748     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5749       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5750       .access = PL2_W, .type = ARM_CP_NO_RAW,
5751       .writefn = tlbi_aa64_alle1is_write },
5752     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5753       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5754       .access = PL2_W, .type = ARM_CP_NO_RAW,
5755       .writefn = tlbi_aa64_ipas2e1_write },
5756     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5757       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5758       .access = PL2_W, .type = ARM_CP_NO_RAW,
5759       .writefn = tlbi_aa64_ipas2e1_write },
5760     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5761       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5762       .access = PL2_W, .type = ARM_CP_NO_RAW,
5763       .writefn = tlbi_aa64_alle1_write },
5764     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5765       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5766       .access = PL2_W, .type = ARM_CP_NO_RAW,
5767       .writefn = tlbi_aa64_alle1is_write },
5768 #ifndef CONFIG_USER_ONLY
5769     /* 64 bit address translation operations */
5770     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5771       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5772       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5773       .fgt = FGT_ATS1E1R,
5774       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5775     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5776       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5777       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5778       .fgt = FGT_ATS1E1W,
5779       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5780     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5781       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5782       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5783       .fgt = FGT_ATS1E0R,
5784       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5785     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5786       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5787       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5788       .fgt = FGT_ATS1E0W,
5789       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5790     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5791       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5792       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5793       .accessfn = at_e012_access, .writefn = ats_write64 },
5794     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5795       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5796       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5797       .accessfn = at_e012_access, .writefn = ats_write64 },
5798     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5799       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5800       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5801       .accessfn = at_e012_access, .writefn = ats_write64 },
5802     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5803       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5804       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5805       .accessfn = at_e012_access, .writefn = ats_write64 },
5806     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5807     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5808       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5809       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5810       .writefn = ats_write64 },
5811     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5812       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5813       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5814       .writefn = ats_write64 },
5815     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5816       .type = ARM_CP_ALIAS,
5817       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5818       .access = PL1_RW, .resetvalue = 0,
5819       .fgt = FGT_PAR_EL1,
5820       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5821       .writefn = par_write },
5822 #endif
5823     /* TLB invalidate last level of translation table walk */
5824     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5825       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5826       .writefn = tlbimva_is_write },
5827     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5828       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5829       .writefn = tlbimvaa_is_write },
5830     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5831       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5832       .writefn = tlbimva_write },
5833     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5834       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5835       .writefn = tlbimvaa_write },
5836     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5837       .type = ARM_CP_NO_RAW, .access = PL2_W,
5838       .writefn = tlbimva_hyp_write },
5839     { .name = "TLBIMVALHIS",
5840       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5841       .type = ARM_CP_NO_RAW, .access = PL2_W,
5842       .writefn = tlbimva_hyp_is_write },
5843     { .name = "TLBIIPAS2",
5844       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5845       .type = ARM_CP_NO_RAW, .access = PL2_W,
5846       .writefn = tlbiipas2_hyp_write },
5847     { .name = "TLBIIPAS2IS",
5848       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5849       .type = ARM_CP_NO_RAW, .access = PL2_W,
5850       .writefn = tlbiipas2is_hyp_write },
5851     { .name = "TLBIIPAS2L",
5852       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5853       .type = ARM_CP_NO_RAW, .access = PL2_W,
5854       .writefn = tlbiipas2_hyp_write },
5855     { .name = "TLBIIPAS2LIS",
5856       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5857       .type = ARM_CP_NO_RAW, .access = PL2_W,
5858       .writefn = tlbiipas2is_hyp_write },
5859     /* 32 bit cache operations */
5860     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5861       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5862     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5863       .type = ARM_CP_NOP, .access = PL1_W },
5864     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5865       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5866     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5867       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5868     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5869       .type = ARM_CP_NOP, .access = PL1_W },
5870     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5871       .type = ARM_CP_NOP, .access = PL1_W },
5872     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5873       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5874     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5875       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5876     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5877       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5878     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5879       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5880     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5881       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5882     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5883       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5884     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5885       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5886     /* MMU Domain access control / MPU write buffer control */
5887     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5888       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5889       .writefn = dacr_write, .raw_writefn = raw_write,
5890       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5891                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5892     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5893       .type = ARM_CP_ALIAS,
5894       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5895       .access = PL1_RW, .accessfn = access_nv1,
5896       .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
5897       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5898     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5899       .type = ARM_CP_ALIAS,
5900       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5901       .access = PL1_RW, .accessfn = access_nv1,
5902       .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
5903       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5904     /*
5905      * We rely on the access checks not allowing the guest to write to the
5906      * state field when SPSel indicates that it's being used as the stack
5907      * pointer.
5908      */
5909     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5910       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5911       .access = PL1_RW, .accessfn = sp_el0_access,
5912       .type = ARM_CP_ALIAS,
5913       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5914     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5915       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5916       .nv2_redirect_offset = 0x240,
5917       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5918       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5919     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5920       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5921       .type = ARM_CP_NO_RAW,
5922       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5923     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5924       .type = ARM_CP_ALIAS,
5925       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5926       .access = PL2_RW,
5927       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5928     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5929       .type = ARM_CP_ALIAS,
5930       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5931       .access = PL2_RW,
5932       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5933     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5934       .type = ARM_CP_ALIAS,
5935       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5936       .access = PL2_RW,
5937       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5938     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5939       .type = ARM_CP_ALIAS,
5940       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5941       .access = PL2_RW,
5942       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5943     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5944       .type = ARM_CP_IO,
5945       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5946       .resetvalue = 0,
5947       .access = PL3_RW,
5948       .writefn = mdcr_el3_write,
5949       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5950     { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5951       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5952       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5953       .writefn = sdcr_write,
5954       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5955 };
5956 
5957 /* These are present only when EL1 supports AArch32 */
5958 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5959     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5960       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5961       .access = PL2_RW,
5962       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5963       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5964     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5965       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5966       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5967       .writefn = dacr_write, .raw_writefn = raw_write,
5968       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5969     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5970       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5971       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5972       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5973 };
5974 
5975 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5976 {
5977     ARMCPU *cpu = env_archcpu(env);
5978 
5979     if (arm_feature(env, ARM_FEATURE_V8)) {
5980         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5981     } else {
5982         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5983     }
5984 
5985     if (arm_feature(env, ARM_FEATURE_EL3)) {
5986         valid_mask &= ~HCR_HCD;
5987     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5988         /*
5989          * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5990          * However, if we're using the SMC PSCI conduit then QEMU is
5991          * effectively acting like EL3 firmware and so the guest at
5992          * EL2 should retain the ability to prevent EL1 from being
5993          * able to make SMC calls into the ersatz firmware, so in
5994          * that case HCR.TSC should be read/write.
5995          */
5996         valid_mask &= ~HCR_TSC;
5997     }
5998 
5999     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6000         if (cpu_isar_feature(aa64_vh, cpu)) {
6001             valid_mask |= HCR_E2H;
6002         }
6003         if (cpu_isar_feature(aa64_ras, cpu)) {
6004             valid_mask |= HCR_TERR | HCR_TEA;
6005         }
6006         if (cpu_isar_feature(aa64_lor, cpu)) {
6007             valid_mask |= HCR_TLOR;
6008         }
6009         if (cpu_isar_feature(aa64_pauth, cpu)) {
6010             valid_mask |= HCR_API | HCR_APK;
6011         }
6012         if (cpu_isar_feature(aa64_mte, cpu)) {
6013             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
6014         }
6015         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
6016             valid_mask |= HCR_ENSCXT;
6017         }
6018         if (cpu_isar_feature(aa64_fwb, cpu)) {
6019             valid_mask |= HCR_FWB;
6020         }
6021         if (cpu_isar_feature(aa64_rme, cpu)) {
6022             valid_mask |= HCR_GPF;
6023         }
6024         if (cpu_isar_feature(aa64_nv, cpu)) {
6025             valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
6026         }
6027         if (cpu_isar_feature(aa64_nv2, cpu)) {
6028             valid_mask |= HCR_NV2;
6029         }
6030     }
6031 
6032     if (cpu_isar_feature(any_evt, cpu)) {
6033         valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
6034     } else if (cpu_isar_feature(any_half_evt, cpu)) {
6035         valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
6036     }
6037 
6038     /* Clear RES0 bits.  */
6039     value &= valid_mask;
6040 
6041     /*
6042      * These bits change the MMU setup:
6043      * HCR_VM enables stage 2 translation
6044      * HCR_PTW forbids certain page-table setups
6045      * HCR_DC disables stage1 and enables stage2 translation
6046      * HCR_DCT enables tagging on (disabled) stage1 translation
6047      * HCR_FWB changes the interpretation of stage2 descriptor bits
6048      * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
6049      */
6050     if ((env->cp15.hcr_el2 ^ value) &
6051         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
6052         tlb_flush(CPU(cpu));
6053     }
6054     env->cp15.hcr_el2 = value;
6055 
6056     /*
6057      * Updates to VI and VF require us to update the status of
6058      * virtual interrupts, which are the logical OR of these bits
6059      * and the state of the input lines from the GIC. (This requires
6060      * that we have the BQL, which is done by marking the
6061      * reginfo structs as ARM_CP_IO.)
6062      * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or
6063      * VFNMI, it is never possible for it to be taken immediately
6064      * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running
6065      * at EL0 or EL1, and HCR can only be written at EL2.
6066      */
6067     g_assert(bql_locked());
6068     arm_cpu_update_virq(cpu);
6069     arm_cpu_update_vfiq(cpu);
6070     arm_cpu_update_vserr(cpu);
6071     if (cpu_isar_feature(aa64_nmi, cpu)) {
6072         arm_cpu_update_vinmi(cpu);
6073         arm_cpu_update_vfnmi(cpu);
6074     }
6075 }
6076 
6077 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
6078 {
6079     do_hcr_write(env, value, 0);
6080 }
6081 
6082 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
6083                           uint64_t value)
6084 {
6085     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
6086     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
6087     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
6088 }
6089 
6090 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
6091                          uint64_t value)
6092 {
6093     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
6094     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
6095     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
6096 }
6097 
6098 /*
6099  * Return the effective value of HCR_EL2, at the given security state.
6100  * Bits that are not included here:
6101  * RW       (read from SCR_EL3.RW as needed)
6102  */
6103 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
6104 {
6105     uint64_t ret = env->cp15.hcr_el2;
6106 
6107     assert(space != ARMSS_Root);
6108 
6109     if (!arm_is_el2_enabled_secstate(env, space)) {
6110         /*
6111          * "This register has no effect if EL2 is not enabled in the
6112          * current Security state".  This is ARMv8.4-SecEL2 speak for
6113          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
6114          *
6115          * Prior to that, the language was "In an implementation that
6116          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
6117          * as if this field is 0 for all purposes other than a direct
6118          * read or write access of HCR_EL2".  With lots of enumeration
6119          * on a per-field basis.  In current QEMU, this is condition
6120          * is arm_is_secure_below_el3.
6121          *
6122          * Since the v8.4 language applies to the entire register, and
6123          * appears to be backward compatible, use that.
6124          */
6125         return 0;
6126     }
6127 
6128     /*
6129      * For a cpu that supports both aarch64 and aarch32, we can set bits
6130      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
6131      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
6132      */
6133     if (!arm_el_is_aa64(env, 2)) {
6134         uint64_t aa32_valid;
6135 
6136         /*
6137          * These bits are up-to-date as of ARMv8.6.
6138          * For HCR, it's easiest to list just the 2 bits that are invalid.
6139          * For HCR2, list those that are valid.
6140          */
6141         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
6142         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
6143                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
6144         ret &= aa32_valid;
6145     }
6146 
6147     if (ret & HCR_TGE) {
6148         /* These bits are up-to-date as of ARMv8.6.  */
6149         if (ret & HCR_E2H) {
6150             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
6151                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
6152                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
6153                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
6154                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
6155                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
6156         } else {
6157             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
6158         }
6159         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
6160                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
6161                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
6162                  HCR_TLOR);
6163     }
6164 
6165     return ret;
6166 }
6167 
6168 uint64_t arm_hcr_el2_eff(CPUARMState *env)
6169 {
6170     if (arm_feature(env, ARM_FEATURE_M)) {
6171         return 0;
6172     }
6173     return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
6174 }
6175 
6176 /*
6177  * Corresponds to ARM pseudocode function ELIsInHost().
6178  */
6179 bool el_is_in_host(CPUARMState *env, int el)
6180 {
6181     uint64_t mask;
6182 
6183     /*
6184      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
6185      * Perform the simplest bit tests first, and validate EL2 afterward.
6186      */
6187     if (el & 1) {
6188         return false; /* EL1 or EL3 */
6189     }
6190 
6191     /*
6192      * Note that hcr_write() checks isar_feature_aa64_vh(),
6193      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
6194      */
6195     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
6196     if ((env->cp15.hcr_el2 & mask) != mask) {
6197         return false;
6198     }
6199 
6200     /* TGE and/or E2H set: double check those bits are currently legal. */
6201     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
6202 }
6203 
6204 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
6205                        uint64_t value)
6206 {
6207     ARMCPU *cpu = env_archcpu(env);
6208     uint64_t valid_mask = 0;
6209 
6210     /* FEAT_MOPS adds MSCEn and MCE2 */
6211     if (cpu_isar_feature(aa64_mops, cpu)) {
6212         valid_mask |= HCRX_MSCEN | HCRX_MCE2;
6213     }
6214 
6215     /* FEAT_NMI adds TALLINT, VINMI and VFNMI */
6216     if (cpu_isar_feature(aa64_nmi, cpu)) {
6217         valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI;
6218     }
6219 
6220     /* Clear RES0 bits.  */
6221     env->cp15.hcrx_el2 = value & valid_mask;
6222 
6223     /*
6224      * Updates to VINMI and VFNMI require us to update the status of
6225      * virtual NMI, which are the logical OR of these bits
6226      * and the state of the input lines from the GIC. (This requires
6227      * that we have the BQL, which is done by marking the
6228      * reginfo structs as ARM_CP_IO.)
6229      * Note that if a write to HCRX pends a VINMI or VFNMI it is never
6230      * possible for it to be taken immediately, because VINMI and
6231      * VFNMI are masked unless running at EL0 or EL1, and HCRX
6232      * can only be written at EL2.
6233      */
6234     if (cpu_isar_feature(aa64_nmi, cpu)) {
6235         g_assert(bql_locked());
6236         arm_cpu_update_vinmi(cpu);
6237         arm_cpu_update_vfnmi(cpu);
6238     }
6239 }
6240 
6241 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
6242                                   bool isread)
6243 {
6244     if (arm_current_el(env) == 2
6245         && arm_feature(env, ARM_FEATURE_EL3)
6246         && !(env->cp15.scr_el3 & SCR_HXEN)) {
6247         return CP_ACCESS_TRAP_EL3;
6248     }
6249     return CP_ACCESS_OK;
6250 }
6251 
6252 static const ARMCPRegInfo hcrx_el2_reginfo = {
6253     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6254     .type = ARM_CP_IO,
6255     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6256     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6257     .nv2_redirect_offset = 0xa0,
6258     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6259 };
6260 
6261 /* Return the effective value of HCRX_EL2.  */
6262 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6263 {
6264     /*
6265      * The bits in this register behave as 0 for all purposes other than
6266      * direct reads of the register if SCR_EL3.HXEn is 0.
6267      * If EL2 is not enabled in the current security state, then the
6268      * bit may behave as if 0, or as if 1, depending on the bit.
6269      * For the moment, we treat the EL2-disabled case as taking
6270      * priority over the HXEn-disabled case. This is true for the only
6271      * bit for a feature which we implement where the answer is different
6272      * for the two cases (MSCEn for FEAT_MOPS).
6273      * This may need to be revisited for future bits.
6274      */
6275     if (!arm_is_el2_enabled(env)) {
6276         uint64_t hcrx = 0;
6277         if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6278             /* MSCEn behaves as 1 if EL2 is not enabled */
6279             hcrx |= HCRX_MSCEN;
6280         }
6281         return hcrx;
6282     }
6283     if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6284         return 0;
6285     }
6286     return env->cp15.hcrx_el2;
6287 }
6288 
6289 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6290                            uint64_t value)
6291 {
6292     /*
6293      * For A-profile AArch32 EL3, if NSACR.CP10
6294      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6295      */
6296     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6297         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6298         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6299         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6300     }
6301     env->cp15.cptr_el[2] = value;
6302 }
6303 
6304 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6305 {
6306     /*
6307      * For A-profile AArch32 EL3, if NSACR.CP10
6308      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6309      */
6310     uint64_t value = env->cp15.cptr_el[2];
6311 
6312     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6313         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6314         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6315     }
6316     return value;
6317 }
6318 
6319 static const ARMCPRegInfo el2_cp_reginfo[] = {
6320     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6321       .type = ARM_CP_IO,
6322       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6323       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6324       .nv2_redirect_offset = 0x78,
6325       .writefn = hcr_write, .raw_writefn = raw_write },
6326     { .name = "HCR", .state = ARM_CP_STATE_AA32,
6327       .type = ARM_CP_ALIAS | ARM_CP_IO,
6328       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6329       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6330       .writefn = hcr_writelow },
6331     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6332       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6333       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6334     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6335       .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6336       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6337       .access = PL2_RW,
6338       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6339     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6340       .type = ARM_CP_NV2_REDIRECT,
6341       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6342       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6343     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6344       .type = ARM_CP_NV2_REDIRECT,
6345       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6346       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6347     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6348       .type = ARM_CP_ALIAS,
6349       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6350       .access = PL2_RW,
6351       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6352     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6353       .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6354       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6355       .access = PL2_RW,
6356       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6357     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6358       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6359       .access = PL2_RW, .writefn = vbar_write,
6360       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6361       .resetvalue = 0 },
6362     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6363       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6364       .access = PL3_RW, .type = ARM_CP_ALIAS,
6365       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6366     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6367       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6368       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6369       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6370       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6371     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6372       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6373       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6374       .resetvalue = 0 },
6375     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6376       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6377       .access = PL2_RW, .type = ARM_CP_ALIAS,
6378       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6379     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6380       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6381       .access = PL2_RW, .type = ARM_CP_CONST,
6382       .resetvalue = 0 },
6383     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6384     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6385       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6386       .access = PL2_RW, .type = ARM_CP_CONST,
6387       .resetvalue = 0 },
6388     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6389       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6390       .access = PL2_RW, .type = ARM_CP_CONST,
6391       .resetvalue = 0 },
6392     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6393       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6394       .access = PL2_RW, .type = ARM_CP_CONST,
6395       .resetvalue = 0 },
6396     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6397       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6398       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6399       .raw_writefn = raw_write,
6400       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6401     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6402       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6403       .type = ARM_CP_ALIAS,
6404       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6405       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6406     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6407       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6408       .access = PL2_RW,
6409       .nv2_redirect_offset = 0x40,
6410       /* no .writefn needed as this can't cause an ASID change */
6411       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6412     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6413       .cp = 15, .opc1 = 6, .crm = 2,
6414       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6415       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6416       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6417       .writefn = vttbr_write, .raw_writefn = raw_write },
6418     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6419       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6420       .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6421       .nv2_redirect_offset = 0x20,
6422       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6423     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6424       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6425       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6426       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6427     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6428       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6429       .access = PL2_RW, .resetvalue = 0,
6430       .nv2_redirect_offset = 0x90,
6431       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6432     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6433       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6434       .access = PL2_RW, .resetvalue = 0,
6435       .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6436       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6437     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6438       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6439       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6440     { .name = "TLBIALLNSNH",
6441       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6442       .type = ARM_CP_NO_RAW, .access = PL2_W,
6443       .writefn = tlbiall_nsnh_write },
6444     { .name = "TLBIALLNSNHIS",
6445       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6446       .type = ARM_CP_NO_RAW, .access = PL2_W,
6447       .writefn = tlbiall_nsnh_is_write },
6448     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6449       .type = ARM_CP_NO_RAW, .access = PL2_W,
6450       .writefn = tlbiall_hyp_write },
6451     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6452       .type = ARM_CP_NO_RAW, .access = PL2_W,
6453       .writefn = tlbiall_hyp_is_write },
6454     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6455       .type = ARM_CP_NO_RAW, .access = PL2_W,
6456       .writefn = tlbimva_hyp_write },
6457     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6458       .type = ARM_CP_NO_RAW, .access = PL2_W,
6459       .writefn = tlbimva_hyp_is_write },
6460     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6461       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6462       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6463       .writefn = tlbi_aa64_alle2_write },
6464     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6465       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6466       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6467       .writefn = tlbi_aa64_vae2_write },
6468     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6469       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6470       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6471       .writefn = tlbi_aa64_vae2_write },
6472     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6473       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6474       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6475       .writefn = tlbi_aa64_alle2is_write },
6476     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6477       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6478       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6479       .writefn = tlbi_aa64_vae2is_write },
6480     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6481       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6482       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6483       .writefn = tlbi_aa64_vae2is_write },
6484 #ifndef CONFIG_USER_ONLY
6485     /*
6486      * Unlike the other EL2-related AT operations, these must
6487      * UNDEF from EL3 if EL2 is not implemented, which is why we
6488      * define them here rather than with the rest of the AT ops.
6489      */
6490     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6491       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6492       .access = PL2_W, .accessfn = at_s1e2_access,
6493       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6494       .writefn = ats_write64 },
6495     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6496       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6497       .access = PL2_W, .accessfn = at_s1e2_access,
6498       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6499       .writefn = ats_write64 },
6500     /*
6501      * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6502      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6503      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6504      * to behave as if SCR.NS was 1.
6505      */
6506     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6507       .access = PL2_W,
6508       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6509     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6510       .access = PL2_W,
6511       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6512     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6513       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6514       /*
6515        * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6516        * reset values as IMPDEF. We choose to reset to 3 to comply with
6517        * both ARMv7 and ARMv8.
6518        */
6519       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6520       .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6521       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6522     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6523       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6524       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6525       .writefn = gt_cntvoff_write,
6526       .nv2_redirect_offset = 0x60,
6527       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6528     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6529       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6530       .writefn = gt_cntvoff_write,
6531       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6532     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6533       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6534       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6535       .type = ARM_CP_IO, .access = PL2_RW,
6536       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6537     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6538       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6539       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6540       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6541     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6542       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6543       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6544       .resetfn = gt_hyp_timer_reset,
6545       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6546     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6547       .type = ARM_CP_IO,
6548       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6549       .access = PL2_RW,
6550       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6551       .resetvalue = 0,
6552       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6553 #endif
6554     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6555       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6556       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6557       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6558     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6559       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6560       .access = PL2_RW,
6561       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6562     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6563       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6564       .access = PL2_RW,
6565       .nv2_redirect_offset = 0x80,
6566       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6567 };
6568 
6569 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6570     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6571       .type = ARM_CP_ALIAS | ARM_CP_IO,
6572       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6573       .access = PL2_RW,
6574       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6575       .writefn = hcr_writehigh },
6576 };
6577 
6578 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6579                                   bool isread)
6580 {
6581     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6582         return CP_ACCESS_OK;
6583     }
6584     return CP_ACCESS_TRAP_UNCATEGORIZED;
6585 }
6586 
6587 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6588     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6589       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6590       .access = PL2_RW, .accessfn = sel2_access,
6591       .nv2_redirect_offset = 0x30,
6592       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6593     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6594       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6595       .access = PL2_RW, .accessfn = sel2_access,
6596       .nv2_redirect_offset = 0x48,
6597       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6598 };
6599 
6600 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6601                                    bool isread)
6602 {
6603     /*
6604      * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6605      * At Secure EL1 it traps to EL3 or EL2.
6606      */
6607     if (arm_current_el(env) == 3) {
6608         return CP_ACCESS_OK;
6609     }
6610     if (arm_is_secure_below_el3(env)) {
6611         if (env->cp15.scr_el3 & SCR_EEL2) {
6612             return CP_ACCESS_TRAP_EL2;
6613         }
6614         return CP_ACCESS_TRAP_EL3;
6615     }
6616     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6617     if (isread) {
6618         return CP_ACCESS_OK;
6619     }
6620     return CP_ACCESS_TRAP_UNCATEGORIZED;
6621 }
6622 
6623 static const ARMCPRegInfo el3_cp_reginfo[] = {
6624     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6625       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6626       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6627       .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6628     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6629       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6630       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6631       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6632       .writefn = scr_write, .raw_writefn = raw_write },
6633     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6634       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6635       .access = PL3_RW, .resetvalue = 0,
6636       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6637     { .name = "SDER",
6638       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6639       .access = PL3_RW, .resetvalue = 0,
6640       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6641     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6642       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6643       .writefn = vbar_write, .resetvalue = 0,
6644       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6645     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6646       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6647       .access = PL3_RW, .resetvalue = 0,
6648       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6649     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6650       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6651       .access = PL3_RW,
6652       /* no .writefn needed as this can't cause an ASID change */
6653       .resetvalue = 0,
6654       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6655     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6656       .type = ARM_CP_ALIAS,
6657       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6658       .access = PL3_RW,
6659       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6660     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6661       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6662       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6663     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6664       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6665       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6666     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6667       .type = ARM_CP_ALIAS,
6668       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6669       .access = PL3_RW,
6670       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6671     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6672       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6673       .access = PL3_RW, .writefn = vbar_write,
6674       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6675       .resetvalue = 0 },
6676     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6677       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6678       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6679       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6680     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6681       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6682       .access = PL3_RW, .resetvalue = 0,
6683       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6684     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6685       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6686       .access = PL3_RW, .type = ARM_CP_CONST,
6687       .resetvalue = 0 },
6688     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6689       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6690       .access = PL3_RW, .type = ARM_CP_CONST,
6691       .resetvalue = 0 },
6692     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6693       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6694       .access = PL3_RW, .type = ARM_CP_CONST,
6695       .resetvalue = 0 },
6696     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6697       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6698       .access = PL3_W, .type = ARM_CP_NO_RAW,
6699       .writefn = tlbi_aa64_alle3is_write },
6700     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6701       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6702       .access = PL3_W, .type = ARM_CP_NO_RAW,
6703       .writefn = tlbi_aa64_vae3is_write },
6704     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6705       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6706       .access = PL3_W, .type = ARM_CP_NO_RAW,
6707       .writefn = tlbi_aa64_vae3is_write },
6708     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6709       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6710       .access = PL3_W, .type = ARM_CP_NO_RAW,
6711       .writefn = tlbi_aa64_alle3_write },
6712     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6713       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6714       .access = PL3_W, .type = ARM_CP_NO_RAW,
6715       .writefn = tlbi_aa64_vae3_write },
6716     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6717       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6718       .access = PL3_W, .type = ARM_CP_NO_RAW,
6719       .writefn = tlbi_aa64_vae3_write },
6720 };
6721 
6722 #ifndef CONFIG_USER_ONLY
6723 
6724 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
6725                                  bool isread)
6726 {
6727     if (arm_current_el(env) == 1) {
6728         /* This must be a FEAT_NV access */
6729         return CP_ACCESS_OK;
6730     }
6731     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6732         return CP_ACCESS_TRAP_UNCATEGORIZED;
6733     }
6734     return CP_ACCESS_OK;
6735 }
6736 
6737 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri,
6738                                       bool isread)
6739 {
6740     if (arm_current_el(env) == 1) {
6741         /* This must be a FEAT_NV access with NVx == 101 */
6742         if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) {
6743             return CP_ACCESS_TRAP_EL2;
6744         }
6745     }
6746     return e2h_access(env, ri, isread);
6747 }
6748 
6749 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri,
6750                                       bool isread)
6751 {
6752     if (arm_current_el(env) == 1) {
6753         /* This must be a FEAT_NV access with NVx == 101 */
6754         if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) {
6755             return CP_ACCESS_TRAP_EL2;
6756         }
6757     }
6758     return e2h_access(env, ri, isread);
6759 }
6760 
6761 /* Test if system register redirection is to occur in the current state.  */
6762 static bool redirect_for_e2h(CPUARMState *env)
6763 {
6764     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6765 }
6766 
6767 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6768 {
6769     CPReadFn *readfn;
6770 
6771     if (redirect_for_e2h(env)) {
6772         /* Switch to the saved EL2 version of the register.  */
6773         ri = ri->opaque;
6774         readfn = ri->readfn;
6775     } else {
6776         readfn = ri->orig_readfn;
6777     }
6778     if (readfn == NULL) {
6779         readfn = raw_read;
6780     }
6781     return readfn(env, ri);
6782 }
6783 
6784 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6785                           uint64_t value)
6786 {
6787     CPWriteFn *writefn;
6788 
6789     if (redirect_for_e2h(env)) {
6790         /* Switch to the saved EL2 version of the register.  */
6791         ri = ri->opaque;
6792         writefn = ri->writefn;
6793     } else {
6794         writefn = ri->orig_writefn;
6795     }
6796     if (writefn == NULL) {
6797         writefn = raw_write;
6798     }
6799     writefn(env, ri, value);
6800 }
6801 
6802 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
6803 {
6804     /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6805     return ri->orig_readfn(env, ri->opaque);
6806 }
6807 
6808 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
6809                               uint64_t value)
6810 {
6811     /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6812     return ri->orig_writefn(env, ri->opaque, value);
6813 }
6814 
6815 static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
6816                                          const ARMCPRegInfo *ri,
6817                                          bool isread)
6818 {
6819     if (arm_current_el(env) == 1) {
6820         /*
6821          * This must be a FEAT_NV access (will either trap or redirect
6822          * to memory). None of the registers with _EL12 aliases want to
6823          * apply their trap controls for this kind of access, so don't
6824          * call the orig_accessfn or do the "UNDEF when E2H is 0" check.
6825          */
6826         return CP_ACCESS_OK;
6827     }
6828     /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
6829     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6830         return CP_ACCESS_TRAP_UNCATEGORIZED;
6831     }
6832     if (ri->orig_accessfn) {
6833         return ri->orig_accessfn(env, ri->opaque, isread);
6834     }
6835     return CP_ACCESS_OK;
6836 }
6837 
6838 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6839 {
6840     struct E2HAlias {
6841         uint32_t src_key, dst_key, new_key;
6842         const char *src_name, *dst_name, *new_name;
6843         bool (*feature)(const ARMISARegisters *id);
6844     };
6845 
6846 #define K(op0, op1, crn, crm, op2) \
6847     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6848 
6849     static const struct E2HAlias aliases[] = {
6850         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6851           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6852         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6853           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6854         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6855           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6856         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6857           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6858         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6859           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6860         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6861           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6862         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6863           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6864         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6865           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6866         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6867           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6868         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6869           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6870         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6871           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6872         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6873           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6874         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6875           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6876         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6877           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6878         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6879           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6880         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6881           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6882 
6883         /*
6884          * Note that redirection of ZCR is mentioned in the description
6885          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6886          * not in the summary table.
6887          */
6888         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6889           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6890         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
6891           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6892 
6893         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6894           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6895 
6896         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6897           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6898           isar_feature_aa64_scxtnum },
6899 
6900         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6901         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6902     };
6903 #undef K
6904 
6905     size_t i;
6906 
6907     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6908         const struct E2HAlias *a = &aliases[i];
6909         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6910         bool ok;
6911 
6912         if (a->feature && !a->feature(&cpu->isar)) {
6913             continue;
6914         }
6915 
6916         src_reg = g_hash_table_lookup(cpu->cp_regs,
6917                                       (gpointer)(uintptr_t)a->src_key);
6918         dst_reg = g_hash_table_lookup(cpu->cp_regs,
6919                                       (gpointer)(uintptr_t)a->dst_key);
6920         g_assert(src_reg != NULL);
6921         g_assert(dst_reg != NULL);
6922 
6923         /* Cross-compare names to detect typos in the keys.  */
6924         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6925         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6926 
6927         /* None of the core system registers use opaque; we will.  */
6928         g_assert(src_reg->opaque == NULL);
6929 
6930         /* Create alias before redirection so we dup the right data. */
6931         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6932 
6933         new_reg->name = a->new_name;
6934         new_reg->type |= ARM_CP_ALIAS;
6935         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6936         new_reg->access &= PL2_RW | PL3_RW;
6937         /* The new_reg op fields are as per new_key, not the target reg */
6938         new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
6939             >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
6940         new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
6941             >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
6942         new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
6943             >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
6944         new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
6945             >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
6946         new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
6947             >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
6948         new_reg->opaque = src_reg;
6949         new_reg->orig_readfn = src_reg->readfn ?: raw_read;
6950         new_reg->orig_writefn = src_reg->writefn ?: raw_write;
6951         new_reg->orig_accessfn = src_reg->accessfn;
6952         if (!new_reg->raw_readfn) {
6953             new_reg->raw_readfn = raw_read;
6954         }
6955         if (!new_reg->raw_writefn) {
6956             new_reg->raw_writefn = raw_write;
6957         }
6958         new_reg->readfn = el2_e2h_e12_read;
6959         new_reg->writefn = el2_e2h_e12_write;
6960         new_reg->accessfn = el2_e2h_e12_access;
6961 
6962         /*
6963          * If the _EL1 register is redirected to memory by FEAT_NV2,
6964          * then it shares the offset with the _EL12 register,
6965          * and which one is redirected depends on HCR_EL2.NV1.
6966          */
6967         if (new_reg->nv2_redirect_offset) {
6968             assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
6969             new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
6970             new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
6971         }
6972 
6973         ok = g_hash_table_insert(cpu->cp_regs,
6974                                  (gpointer)(uintptr_t)a->new_key, new_reg);
6975         g_assert(ok);
6976 
6977         src_reg->opaque = dst_reg;
6978         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6979         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6980         if (!src_reg->raw_readfn) {
6981             src_reg->raw_readfn = raw_read;
6982         }
6983         if (!src_reg->raw_writefn) {
6984             src_reg->raw_writefn = raw_write;
6985         }
6986         src_reg->readfn = el2_e2h_read;
6987         src_reg->writefn = el2_e2h_write;
6988     }
6989 }
6990 #endif
6991 
6992 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6993                                      bool isread)
6994 {
6995     int cur_el = arm_current_el(env);
6996 
6997     if (cur_el < 2) {
6998         uint64_t hcr = arm_hcr_el2_eff(env);
6999 
7000         if (cur_el == 0) {
7001             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
7002                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
7003                     return CP_ACCESS_TRAP_EL2;
7004                 }
7005             } else {
7006                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7007                     return CP_ACCESS_TRAP;
7008                 }
7009                 if (hcr & HCR_TID2) {
7010                     return CP_ACCESS_TRAP_EL2;
7011                 }
7012             }
7013         } else if (hcr & HCR_TID2) {
7014             return CP_ACCESS_TRAP_EL2;
7015         }
7016     }
7017 
7018     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
7019         return CP_ACCESS_TRAP_EL2;
7020     }
7021 
7022     return CP_ACCESS_OK;
7023 }
7024 
7025 /*
7026  * Check for traps to RAS registers, which are controlled
7027  * by HCR_EL2.TERR and SCR_EL3.TERR.
7028  */
7029 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
7030                                   bool isread)
7031 {
7032     int el = arm_current_el(env);
7033 
7034     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
7035         return CP_ACCESS_TRAP_EL2;
7036     }
7037     if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
7038         return CP_ACCESS_TRAP_EL3;
7039     }
7040     return CP_ACCESS_OK;
7041 }
7042 
7043 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
7044 {
7045     int el = arm_current_el(env);
7046 
7047     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
7048         return env->cp15.vdisr_el2;
7049     }
7050     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
7051         return 0; /* RAZ/WI */
7052     }
7053     return env->cp15.disr_el1;
7054 }
7055 
7056 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7057 {
7058     int el = arm_current_el(env);
7059 
7060     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
7061         env->cp15.vdisr_el2 = val;
7062         return;
7063     }
7064     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
7065         return; /* RAZ/WI */
7066     }
7067     env->cp15.disr_el1 = val;
7068 }
7069 
7070 /*
7071  * Minimal RAS implementation with no Error Records.
7072  * Which means that all of the Error Record registers:
7073  *   ERXADDR_EL1
7074  *   ERXCTLR_EL1
7075  *   ERXFR_EL1
7076  *   ERXMISC0_EL1
7077  *   ERXMISC1_EL1
7078  *   ERXMISC2_EL1
7079  *   ERXMISC3_EL1
7080  *   ERXPFGCDN_EL1  (RASv1p1)
7081  *   ERXPFGCTL_EL1  (RASv1p1)
7082  *   ERXPFGF_EL1    (RASv1p1)
7083  *   ERXSTATUS_EL1
7084  * and
7085  *   ERRSELR_EL1
7086  * may generate UNDEFINED, which is the effect we get by not
7087  * listing them at all.
7088  *
7089  * These registers have fine-grained trap bits, but UNDEF-to-EL1
7090  * is higher priority than FGT-to-EL2 so we do not need to list them
7091  * in order to check for an FGT.
7092  */
7093 static const ARMCPRegInfo minimal_ras_reginfo[] = {
7094     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
7095       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
7096       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
7097       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
7098     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
7099       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
7100       .access = PL1_R, .accessfn = access_terr,
7101       .fgt = FGT_ERRIDR_EL1,
7102       .type = ARM_CP_CONST, .resetvalue = 0 },
7103     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
7104       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
7105       .nv2_redirect_offset = 0x500,
7106       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
7107     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
7108       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
7109       .nv2_redirect_offset = 0x508,
7110       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
7111 };
7112 
7113 /*
7114  * Return the exception level to which exceptions should be taken
7115  * via SVEAccessTrap.  This excludes the check for whether the exception
7116  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
7117  * be found by testing 0 < fp_exception_el < sve_exception_el.
7118  *
7119  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
7120  * pseudocode does *not* separate out the FP trap checks, but has them
7121  * all in one function.
7122  */
7123 int sve_exception_el(CPUARMState *env, int el)
7124 {
7125 #ifndef CONFIG_USER_ONLY
7126     if (el <= 1 && !el_is_in_host(env, el)) {
7127         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
7128         case 1:
7129             if (el != 0) {
7130                 break;
7131             }
7132             /* fall through */
7133         case 0:
7134         case 2:
7135             return 1;
7136         }
7137     }
7138 
7139     if (el <= 2 && arm_is_el2_enabled(env)) {
7140         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7141         if (env->cp15.hcr_el2 & HCR_E2H) {
7142             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
7143             case 1:
7144                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7145                     break;
7146                 }
7147                 /* fall through */
7148             case 0:
7149             case 2:
7150                 return 2;
7151             }
7152         } else {
7153             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
7154                 return 2;
7155             }
7156         }
7157     }
7158 
7159     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
7160     if (arm_feature(env, ARM_FEATURE_EL3)
7161         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
7162         return 3;
7163     }
7164 #endif
7165     return 0;
7166 }
7167 
7168 /*
7169  * Return the exception level to which exceptions should be taken for SME.
7170  * C.f. the ARM pseudocode function CheckSMEAccess.
7171  */
7172 int sme_exception_el(CPUARMState *env, int el)
7173 {
7174 #ifndef CONFIG_USER_ONLY
7175     if (el <= 1 && !el_is_in_host(env, el)) {
7176         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
7177         case 1:
7178             if (el != 0) {
7179                 break;
7180             }
7181             /* fall through */
7182         case 0:
7183         case 2:
7184             return 1;
7185         }
7186     }
7187 
7188     if (el <= 2 && arm_is_el2_enabled(env)) {
7189         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7190         if (env->cp15.hcr_el2 & HCR_E2H) {
7191             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
7192             case 1:
7193                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7194                     break;
7195                 }
7196                 /* fall through */
7197             case 0:
7198             case 2:
7199                 return 2;
7200             }
7201         } else {
7202             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
7203                 return 2;
7204             }
7205         }
7206     }
7207 
7208     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
7209     if (arm_feature(env, ARM_FEATURE_EL3)
7210         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7211         return 3;
7212     }
7213 #endif
7214     return 0;
7215 }
7216 
7217 /*
7218  * Given that SVE is enabled, return the vector length for EL.
7219  */
7220 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
7221 {
7222     ARMCPU *cpu = env_archcpu(env);
7223     uint64_t *cr = env->vfp.zcr_el;
7224     uint32_t map = cpu->sve_vq.map;
7225     uint32_t len = ARM_MAX_VQ - 1;
7226 
7227     if (sm) {
7228         cr = env->vfp.smcr_el;
7229         map = cpu->sme_vq.map;
7230     }
7231 
7232     if (el <= 1 && !el_is_in_host(env, el)) {
7233         len = MIN(len, 0xf & (uint32_t)cr[1]);
7234     }
7235     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7236         len = MIN(len, 0xf & (uint32_t)cr[2]);
7237     }
7238     if (arm_feature(env, ARM_FEATURE_EL3)) {
7239         len = MIN(len, 0xf & (uint32_t)cr[3]);
7240     }
7241 
7242     map &= MAKE_64BIT_MASK(0, len + 1);
7243     if (map != 0) {
7244         return 31 - clz32(map);
7245     }
7246 
7247     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
7248     assert(sm);
7249     return ctz32(cpu->sme_vq.map);
7250 }
7251 
7252 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
7253 {
7254     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
7255 }
7256 
7257 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7258                       uint64_t value)
7259 {
7260     int cur_el = arm_current_el(env);
7261     int old_len = sve_vqm1_for_el(env, cur_el);
7262     int new_len;
7263 
7264     /* Bits other than [3:0] are RAZ/WI.  */
7265     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
7266     raw_write(env, ri, value & 0xf);
7267 
7268     /*
7269      * Because we arrived here, we know both FP and SVE are enabled;
7270      * otherwise we would have trapped access to the ZCR_ELn register.
7271      */
7272     new_len = sve_vqm1_for_el(env, cur_el);
7273     if (new_len < old_len) {
7274         aarch64_sve_narrow_vq(env, new_len + 1);
7275     }
7276 }
7277 
7278 static const ARMCPRegInfo zcr_reginfo[] = {
7279     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
7280       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
7281       .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
7282       .access = PL1_RW, .type = ARM_CP_SVE,
7283       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
7284       .writefn = zcr_write, .raw_writefn = raw_write },
7285     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
7286       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
7287       .access = PL2_RW, .type = ARM_CP_SVE,
7288       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
7289       .writefn = zcr_write, .raw_writefn = raw_write },
7290     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
7291       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
7292       .access = PL3_RW, .type = ARM_CP_SVE,
7293       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
7294       .writefn = zcr_write, .raw_writefn = raw_write },
7295 };
7296 
7297 #ifdef TARGET_AARCH64
7298 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
7299                                     bool isread)
7300 {
7301     int el = arm_current_el(env);
7302 
7303     if (el == 0) {
7304         uint64_t sctlr = arm_sctlr(env, el);
7305         if (!(sctlr & SCTLR_EnTP2)) {
7306             return CP_ACCESS_TRAP;
7307         }
7308     }
7309     /* TODO: FEAT_FGT */
7310     if (el < 3
7311         && arm_feature(env, ARM_FEATURE_EL3)
7312         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
7313         return CP_ACCESS_TRAP_EL3;
7314     }
7315     return CP_ACCESS_OK;
7316 }
7317 
7318 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
7319                                       bool isread)
7320 {
7321     /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
7322     if (arm_current_el(env) == 2
7323         && arm_feature(env, ARM_FEATURE_EL3)
7324         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7325         return CP_ACCESS_TRAP_EL3;
7326     }
7327     return CP_ACCESS_OK;
7328 }
7329 
7330 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
7331                                    bool isread)
7332 {
7333     if (arm_current_el(env) < 3
7334         && arm_feature(env, ARM_FEATURE_EL3)
7335         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7336         return CP_ACCESS_TRAP_EL3;
7337     }
7338     return CP_ACCESS_OK;
7339 }
7340 
7341 /* ResetSVEState */
7342 static void arm_reset_sve_state(CPUARMState *env)
7343 {
7344     memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
7345     /* Recall that FFR is stored as pregs[16]. */
7346     memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
7347     vfp_set_fpcr(env, 0x0800009f);
7348 }
7349 
7350 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
7351 {
7352     uint64_t change = (env->svcr ^ new) & mask;
7353 
7354     if (change == 0) {
7355         return;
7356     }
7357     env->svcr ^= change;
7358 
7359     if (change & R_SVCR_SM_MASK) {
7360         arm_reset_sve_state(env);
7361     }
7362 
7363     /*
7364      * ResetSMEState.
7365      *
7366      * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
7367      * on enable: while disabled, the storage is inaccessible and the
7368      * value does not matter.  We're not saving the storage in vmstate
7369      * when disabled either.
7370      */
7371     if (change & new & R_SVCR_ZA_MASK) {
7372         memset(env->zarray, 0, sizeof(env->zarray));
7373     }
7374 
7375     if (tcg_enabled()) {
7376         arm_rebuild_hflags(env);
7377     }
7378 }
7379 
7380 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7381                        uint64_t value)
7382 {
7383     aarch64_set_svcr(env, value, -1);
7384 }
7385 
7386 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7387                        uint64_t value)
7388 {
7389     int cur_el = arm_current_el(env);
7390     int old_len = sve_vqm1_for_el(env, cur_el);
7391     int new_len;
7392 
7393     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7394     value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7395     raw_write(env, ri, value);
7396 
7397     /*
7398      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7399      * when SVL is widened (old values kept, or zeros).  Choose to keep the
7400      * current values for simplicity.  But for QEMU internals, we must still
7401      * apply the narrower SVL to the Zregs and Pregs -- see the comment
7402      * above aarch64_sve_narrow_vq.
7403      */
7404     new_len = sve_vqm1_for_el(env, cur_el);
7405     if (new_len < old_len) {
7406         aarch64_sve_narrow_vq(env, new_len + 1);
7407     }
7408 }
7409 
7410 static const ARMCPRegInfo sme_reginfo[] = {
7411     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7412       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7413       .access = PL0_RW, .accessfn = access_tpidr2,
7414       .fgt = FGT_NTPIDR2_EL0,
7415       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7416     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7417       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7418       .access = PL0_RW, .type = ARM_CP_SME,
7419       .fieldoffset = offsetof(CPUARMState, svcr),
7420       .writefn = svcr_write, .raw_writefn = raw_write },
7421     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7422       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7423       .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
7424       .access = PL1_RW, .type = ARM_CP_SME,
7425       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7426       .writefn = smcr_write, .raw_writefn = raw_write },
7427     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7428       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7429       .access = PL2_RW, .type = ARM_CP_SME,
7430       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7431       .writefn = smcr_write, .raw_writefn = raw_write },
7432     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7433       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7434       .access = PL3_RW, .type = ARM_CP_SME,
7435       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7436       .writefn = smcr_write, .raw_writefn = raw_write },
7437     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7438       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7439       .access = PL1_R, .accessfn = access_aa64_tid1,
7440       /*
7441        * IMPLEMENTOR = 0 (software)
7442        * REVISION    = 0 (implementation defined)
7443        * SMPS        = 0 (no streaming execution priority in QEMU)
7444        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
7445        */
7446       .type = ARM_CP_CONST, .resetvalue = 0, },
7447     /*
7448      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7449      */
7450     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7451       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7452       .access = PL1_RW, .accessfn = access_smpri,
7453       .fgt = FGT_NSMPRI_EL1,
7454       .type = ARM_CP_CONST, .resetvalue = 0 },
7455     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7456       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7457       .nv2_redirect_offset = 0x1f8,
7458       .access = PL2_RW, .accessfn = access_smprimap,
7459       .type = ARM_CP_CONST, .resetvalue = 0 },
7460 };
7461 
7462 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7463                                   uint64_t value)
7464 {
7465     CPUState *cs = env_cpu(env);
7466 
7467     tlb_flush(cs);
7468 }
7469 
7470 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7471                         uint64_t value)
7472 {
7473     /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7474     uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7475         R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7476         R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7477 
7478     env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7479 }
7480 
7481 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7482 {
7483     env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7484                                      env_archcpu(env)->reset_l0gptsz);
7485 }
7486 
7487 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7488                                     uint64_t value)
7489 {
7490     CPUState *cs = env_cpu(env);
7491 
7492     tlb_flush_all_cpus_synced(cs);
7493 }
7494 
7495 static const ARMCPRegInfo rme_reginfo[] = {
7496     { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7497       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7498       .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7499       .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7500     { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7501       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7502       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7503     { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7504       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7505       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7506     { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7507       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7508       .access = PL3_W, .type = ARM_CP_NO_RAW,
7509       .writefn = tlbi_aa64_paall_write },
7510     { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7511       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7512       .access = PL3_W, .type = ARM_CP_NO_RAW,
7513       .writefn = tlbi_aa64_paallos_write },
7514     /*
7515      * QEMU does not have a way to invalidate by physical address, thus
7516      * invalidating a range of physical addresses is accomplished by
7517      * flushing all tlb entries in the outer shareable domain,
7518      * just like PAALLOS.
7519      */
7520     { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7521       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7522       .access = PL3_W, .type = ARM_CP_NO_RAW,
7523       .writefn = tlbi_aa64_paallos_write },
7524     { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7525       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7526       .access = PL3_W, .type = ARM_CP_NO_RAW,
7527       .writefn = tlbi_aa64_paallos_write },
7528     { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7529       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7530       .access = PL3_W, .type = ARM_CP_NOP },
7531 };
7532 
7533 static const ARMCPRegInfo rme_mte_reginfo[] = {
7534     { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7535       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7536       .access = PL3_W, .type = ARM_CP_NOP },
7537 };
7538 
7539 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri,
7540                               uint64_t value)
7541 {
7542     env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT);
7543 }
7544 
7545 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri)
7546 {
7547     return env->pstate & PSTATE_ALLINT;
7548 }
7549 
7550 static CPAccessResult aa64_allint_access(CPUARMState *env,
7551                                          const ARMCPRegInfo *ri, bool isread)
7552 {
7553     if (!isread && arm_current_el(env) == 1 &&
7554         (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) {
7555         return CP_ACCESS_TRAP_EL2;
7556     }
7557     return CP_ACCESS_OK;
7558 }
7559 
7560 static const ARMCPRegInfo nmi_reginfo[] = {
7561     { .name = "ALLINT", .state = ARM_CP_STATE_AA64,
7562       .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3,
7563       .type = ARM_CP_NO_RAW,
7564       .access = PL1_RW, .accessfn = aa64_allint_access,
7565       .fieldoffset = offsetof(CPUARMState, pstate),
7566       .writefn = aa64_allint_write, .readfn = aa64_allint_read,
7567       .resetfn = arm_cp_reset_ignore },
7568 };
7569 #endif /* TARGET_AARCH64 */
7570 
7571 static void define_pmu_regs(ARMCPU *cpu)
7572 {
7573     /*
7574      * v7 performance monitor control register: same implementor
7575      * field as main ID register, and we implement four counters in
7576      * addition to the cycle count register.
7577      */
7578     unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7579     ARMCPRegInfo pmcr = {
7580         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7581         .access = PL0_RW,
7582         .fgt = FGT_PMCR_EL0,
7583         .type = ARM_CP_IO | ARM_CP_ALIAS,
7584         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7585         .accessfn = pmreg_access,
7586         .readfn = pmcr_read, .raw_readfn = raw_read,
7587         .writefn = pmcr_write, .raw_writefn = raw_write,
7588     };
7589     ARMCPRegInfo pmcr64 = {
7590         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7591         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7592         .access = PL0_RW, .accessfn = pmreg_access,
7593         .fgt = FGT_PMCR_EL0,
7594         .type = ARM_CP_IO,
7595         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7596         .resetvalue = cpu->isar.reset_pmcr_el0,
7597         .readfn = pmcr_read, .raw_readfn = raw_read,
7598         .writefn = pmcr_write, .raw_writefn = raw_write,
7599     };
7600 
7601     define_one_arm_cp_reg(cpu, &pmcr);
7602     define_one_arm_cp_reg(cpu, &pmcr64);
7603     for (i = 0; i < pmcrn; i++) {
7604         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7605         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7606         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7607         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7608         ARMCPRegInfo pmev_regs[] = {
7609             { .name = pmevcntr_name, .cp = 15, .crn = 14,
7610               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7611               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7612               .fgt = FGT_PMEVCNTRN_EL0,
7613               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7614               .accessfn = pmreg_access_xevcntr },
7615             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7616               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7617               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7618               .type = ARM_CP_IO,
7619               .fgt = FGT_PMEVCNTRN_EL0,
7620               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7621               .raw_readfn = pmevcntr_rawread,
7622               .raw_writefn = pmevcntr_rawwrite },
7623             { .name = pmevtyper_name, .cp = 15, .crn = 14,
7624               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7625               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7626               .fgt = FGT_PMEVTYPERN_EL0,
7627               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7628               .accessfn = pmreg_access },
7629             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7630               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7631               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7632               .fgt = FGT_PMEVTYPERN_EL0,
7633               .type = ARM_CP_IO,
7634               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7635               .raw_writefn = pmevtyper_rawwrite },
7636         };
7637         define_arm_cp_regs(cpu, pmev_regs);
7638         g_free(pmevcntr_name);
7639         g_free(pmevcntr_el0_name);
7640         g_free(pmevtyper_name);
7641         g_free(pmevtyper_el0_name);
7642     }
7643     if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7644         ARMCPRegInfo v81_pmu_regs[] = {
7645             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7646               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7647               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7648               .fgt = FGT_PMCEIDN_EL0,
7649               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7650             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7651               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7652               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7653               .fgt = FGT_PMCEIDN_EL0,
7654               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7655         };
7656         define_arm_cp_regs(cpu, v81_pmu_regs);
7657     }
7658     if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7659         static const ARMCPRegInfo v84_pmmir = {
7660             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7661             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7662             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7663             .fgt = FGT_PMMIR_EL1,
7664             .resetvalue = 0
7665         };
7666         define_one_arm_cp_reg(cpu, &v84_pmmir);
7667     }
7668 }
7669 
7670 #ifndef CONFIG_USER_ONLY
7671 /*
7672  * We don't know until after realize whether there's a GICv3
7673  * attached, and that is what registers the gicv3 sysregs.
7674  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7675  * at runtime.
7676  */
7677 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7678 {
7679     ARMCPU *cpu = env_archcpu(env);
7680     uint64_t pfr1 = cpu->isar.id_pfr1;
7681 
7682     if (env->gicv3state) {
7683         pfr1 |= 1 << 28;
7684     }
7685     return pfr1;
7686 }
7687 
7688 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7689 {
7690     ARMCPU *cpu = env_archcpu(env);
7691     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7692 
7693     if (env->gicv3state) {
7694         pfr0 |= 1 << 24;
7695     }
7696     return pfr0;
7697 }
7698 #endif
7699 
7700 /*
7701  * Shared logic between LORID and the rest of the LOR* registers.
7702  * Secure state exclusion has already been dealt with.
7703  */
7704 static CPAccessResult access_lor_ns(CPUARMState *env,
7705                                     const ARMCPRegInfo *ri, bool isread)
7706 {
7707     int el = arm_current_el(env);
7708 
7709     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7710         return CP_ACCESS_TRAP_EL2;
7711     }
7712     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7713         return CP_ACCESS_TRAP_EL3;
7714     }
7715     return CP_ACCESS_OK;
7716 }
7717 
7718 static CPAccessResult access_lor_other(CPUARMState *env,
7719                                        const ARMCPRegInfo *ri, bool isread)
7720 {
7721     if (arm_is_secure_below_el3(env)) {
7722         /* Access denied in secure mode.  */
7723         return CP_ACCESS_TRAP;
7724     }
7725     return access_lor_ns(env, ri, isread);
7726 }
7727 
7728 /*
7729  * A trivial implementation of ARMv8.1-LOR leaves all of these
7730  * registers fixed at 0, which indicates that there are zero
7731  * supported Limited Ordering regions.
7732  */
7733 static const ARMCPRegInfo lor_reginfo[] = {
7734     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7735       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7736       .access = PL1_RW, .accessfn = access_lor_other,
7737       .fgt = FGT_LORSA_EL1,
7738       .type = ARM_CP_CONST, .resetvalue = 0 },
7739     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7740       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7741       .access = PL1_RW, .accessfn = access_lor_other,
7742       .fgt = FGT_LOREA_EL1,
7743       .type = ARM_CP_CONST, .resetvalue = 0 },
7744     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7745       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7746       .access = PL1_RW, .accessfn = access_lor_other,
7747       .fgt = FGT_LORN_EL1,
7748       .type = ARM_CP_CONST, .resetvalue = 0 },
7749     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7750       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7751       .access = PL1_RW, .accessfn = access_lor_other,
7752       .fgt = FGT_LORC_EL1,
7753       .type = ARM_CP_CONST, .resetvalue = 0 },
7754     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7755       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7756       .access = PL1_R, .accessfn = access_lor_ns,
7757       .fgt = FGT_LORID_EL1,
7758       .type = ARM_CP_CONST, .resetvalue = 0 },
7759 };
7760 
7761 #ifdef TARGET_AARCH64
7762 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7763                                    bool isread)
7764 {
7765     int el = arm_current_el(env);
7766 
7767     if (el < 2 &&
7768         arm_is_el2_enabled(env) &&
7769         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7770         return CP_ACCESS_TRAP_EL2;
7771     }
7772     if (el < 3 &&
7773         arm_feature(env, ARM_FEATURE_EL3) &&
7774         !(env->cp15.scr_el3 & SCR_APK)) {
7775         return CP_ACCESS_TRAP_EL3;
7776     }
7777     return CP_ACCESS_OK;
7778 }
7779 
7780 static const ARMCPRegInfo pauth_reginfo[] = {
7781     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7782       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7783       .access = PL1_RW, .accessfn = access_pauth,
7784       .fgt = FGT_APDAKEY,
7785       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7786     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7787       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7788       .access = PL1_RW, .accessfn = access_pauth,
7789       .fgt = FGT_APDAKEY,
7790       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7791     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7792       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7793       .access = PL1_RW, .accessfn = access_pauth,
7794       .fgt = FGT_APDBKEY,
7795       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7796     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7797       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7798       .access = PL1_RW, .accessfn = access_pauth,
7799       .fgt = FGT_APDBKEY,
7800       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7801     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7802       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7803       .access = PL1_RW, .accessfn = access_pauth,
7804       .fgt = FGT_APGAKEY,
7805       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7806     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7807       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7808       .access = PL1_RW, .accessfn = access_pauth,
7809       .fgt = FGT_APGAKEY,
7810       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7811     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7812       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7813       .access = PL1_RW, .accessfn = access_pauth,
7814       .fgt = FGT_APIAKEY,
7815       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7816     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7817       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7818       .access = PL1_RW, .accessfn = access_pauth,
7819       .fgt = FGT_APIAKEY,
7820       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7821     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7822       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7823       .access = PL1_RW, .accessfn = access_pauth,
7824       .fgt = FGT_APIBKEY,
7825       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7826     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7827       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7828       .access = PL1_RW, .accessfn = access_pauth,
7829       .fgt = FGT_APIBKEY,
7830       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7831 };
7832 
7833 static const ARMCPRegInfo tlbirange_reginfo[] = {
7834     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7835       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7836       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7837       .fgt = FGT_TLBIRVAE1IS,
7838       .writefn = tlbi_aa64_rvae1is_write },
7839     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7840       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7841       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7842       .fgt = FGT_TLBIRVAAE1IS,
7843       .writefn = tlbi_aa64_rvae1is_write },
7844    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7845       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7846       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7847       .fgt = FGT_TLBIRVALE1IS,
7848       .writefn = tlbi_aa64_rvae1is_write },
7849     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7850       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7851       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7852       .fgt = FGT_TLBIRVAALE1IS,
7853       .writefn = tlbi_aa64_rvae1is_write },
7854     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7855       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7856       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7857       .fgt = FGT_TLBIRVAE1OS,
7858       .writefn = tlbi_aa64_rvae1is_write },
7859     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7860       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7861       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7862       .fgt = FGT_TLBIRVAAE1OS,
7863       .writefn = tlbi_aa64_rvae1is_write },
7864    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7865       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7866       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7867       .fgt = FGT_TLBIRVALE1OS,
7868       .writefn = tlbi_aa64_rvae1is_write },
7869     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7870       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7871       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7872       .fgt = FGT_TLBIRVAALE1OS,
7873       .writefn = tlbi_aa64_rvae1is_write },
7874     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7875       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7876       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7877       .fgt = FGT_TLBIRVAE1,
7878       .writefn = tlbi_aa64_rvae1_write },
7879     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7880       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7881       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7882       .fgt = FGT_TLBIRVAAE1,
7883       .writefn = tlbi_aa64_rvae1_write },
7884    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7885       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7886       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7887       .fgt = FGT_TLBIRVALE1,
7888       .writefn = tlbi_aa64_rvae1_write },
7889     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7890       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7891       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7892       .fgt = FGT_TLBIRVAALE1,
7893       .writefn = tlbi_aa64_rvae1_write },
7894     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7895       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7896       .access = PL2_W, .type = ARM_CP_NO_RAW,
7897       .writefn = tlbi_aa64_ripas2e1is_write },
7898     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7899       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7900       .access = PL2_W, .type = ARM_CP_NO_RAW,
7901       .writefn = tlbi_aa64_ripas2e1is_write },
7902     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7903       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7904       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7905       .writefn = tlbi_aa64_rvae2is_write },
7906    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7907       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7908       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7909       .writefn = tlbi_aa64_rvae2is_write },
7910     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7911       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7912       .access = PL2_W, .type = ARM_CP_NO_RAW,
7913       .writefn = tlbi_aa64_ripas2e1_write },
7914     { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7915       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7916       .access = PL2_W, .type = ARM_CP_NO_RAW,
7917       .writefn = tlbi_aa64_ripas2e1_write },
7918    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7919       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7920       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7921       .writefn = tlbi_aa64_rvae2is_write },
7922    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7923       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7924       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7925       .writefn = tlbi_aa64_rvae2is_write },
7926     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7927       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7928       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7929       .writefn = tlbi_aa64_rvae2_write },
7930    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7931       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7932       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7933       .writefn = tlbi_aa64_rvae2_write },
7934    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7935       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7936       .access = PL3_W, .type = ARM_CP_NO_RAW,
7937       .writefn = tlbi_aa64_rvae3is_write },
7938    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7939       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7940       .access = PL3_W, .type = ARM_CP_NO_RAW,
7941       .writefn = tlbi_aa64_rvae3is_write },
7942    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7943       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7944       .access = PL3_W, .type = ARM_CP_NO_RAW,
7945       .writefn = tlbi_aa64_rvae3is_write },
7946    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7947       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7948       .access = PL3_W, .type = ARM_CP_NO_RAW,
7949       .writefn = tlbi_aa64_rvae3is_write },
7950    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7951       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7952       .access = PL3_W, .type = ARM_CP_NO_RAW,
7953       .writefn = tlbi_aa64_rvae3_write },
7954    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7955       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7956       .access = PL3_W, .type = ARM_CP_NO_RAW,
7957       .writefn = tlbi_aa64_rvae3_write },
7958 };
7959 
7960 static const ARMCPRegInfo tlbios_reginfo[] = {
7961     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7962       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7963       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7964       .fgt = FGT_TLBIVMALLE1OS,
7965       .writefn = tlbi_aa64_vmalle1is_write },
7966     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7967       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7968       .fgt = FGT_TLBIVAE1OS,
7969       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7970       .writefn = tlbi_aa64_vae1is_write },
7971     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7972       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7973       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7974       .fgt = FGT_TLBIASIDE1OS,
7975       .writefn = tlbi_aa64_vmalle1is_write },
7976     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7977       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7978       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7979       .fgt = FGT_TLBIVAAE1OS,
7980       .writefn = tlbi_aa64_vae1is_write },
7981     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7982       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7983       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7984       .fgt = FGT_TLBIVALE1OS,
7985       .writefn = tlbi_aa64_vae1is_write },
7986     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7987       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7988       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7989       .fgt = FGT_TLBIVAALE1OS,
7990       .writefn = tlbi_aa64_vae1is_write },
7991     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7992       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7993       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7994       .writefn = tlbi_aa64_alle2is_write },
7995     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7996       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7997       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7998       .writefn = tlbi_aa64_vae2is_write },
7999    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
8000       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
8001       .access = PL2_W, .type = ARM_CP_NO_RAW,
8002       .writefn = tlbi_aa64_alle1is_write },
8003     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
8004       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
8005       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8006       .writefn = tlbi_aa64_vae2is_write },
8007     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
8008       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
8009       .access = PL2_W, .type = ARM_CP_NO_RAW,
8010       .writefn = tlbi_aa64_alle1is_write },
8011     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
8012       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
8013       .access = PL2_W, .type = ARM_CP_NOP },
8014     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
8015       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
8016       .access = PL2_W, .type = ARM_CP_NOP },
8017     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
8018       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
8019       .access = PL2_W, .type = ARM_CP_NOP },
8020     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
8021       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
8022       .access = PL2_W, .type = ARM_CP_NOP },
8023     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
8024       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
8025       .access = PL3_W, .type = ARM_CP_NO_RAW,
8026       .writefn = tlbi_aa64_alle3is_write },
8027     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
8028       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
8029       .access = PL3_W, .type = ARM_CP_NO_RAW,
8030       .writefn = tlbi_aa64_vae3is_write },
8031     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
8032       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
8033       .access = PL3_W, .type = ARM_CP_NO_RAW,
8034       .writefn = tlbi_aa64_vae3is_write },
8035 };
8036 
8037 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
8038 {
8039     Error *err = NULL;
8040     uint64_t ret;
8041 
8042     /* Success sets NZCV = 0000.  */
8043     env->NF = env->CF = env->VF = 0, env->ZF = 1;
8044 
8045     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
8046         /*
8047          * ??? Failed, for unknown reasons in the crypto subsystem.
8048          * The best we can do is log the reason and return the
8049          * timed-out indication to the guest.  There is no reason
8050          * we know to expect this failure to be transitory, so the
8051          * guest may well hang retrying the operation.
8052          */
8053         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
8054                       ri->name, error_get_pretty(err));
8055         error_free(err);
8056 
8057         env->ZF = 0; /* NZCF = 0100 */
8058         return 0;
8059     }
8060     return ret;
8061 }
8062 
8063 /* We do not support re-seeding, so the two registers operate the same.  */
8064 static const ARMCPRegInfo rndr_reginfo[] = {
8065     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
8066       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
8067       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
8068       .access = PL0_R, .readfn = rndr_readfn },
8069     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
8070       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
8071       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
8072       .access = PL0_R, .readfn = rndr_readfn },
8073 };
8074 
8075 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
8076                           uint64_t value)
8077 {
8078 #ifdef CONFIG_TCG
8079     ARMCPU *cpu = env_archcpu(env);
8080     /* CTR_EL0 System register -> DminLine, bits [19:16] */
8081     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
8082     uint64_t vaddr_in = (uint64_t) value;
8083     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
8084     void *haddr;
8085     int mem_idx = arm_env_mmu_index(env);
8086 
8087     /* This won't be crossing page boundaries */
8088     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
8089     if (haddr) {
8090 #ifndef CONFIG_USER_ONLY
8091 
8092         ram_addr_t offset;
8093         MemoryRegion *mr;
8094 
8095         /* RCU lock is already being held */
8096         mr = memory_region_from_host(haddr, &offset);
8097 
8098         if (mr) {
8099             memory_region_writeback(mr, offset, dline_size);
8100         }
8101 #endif /*CONFIG_USER_ONLY*/
8102     }
8103 #else
8104     /* Handled by hardware accelerator. */
8105     g_assert_not_reached();
8106 #endif /* CONFIG_TCG */
8107 }
8108 
8109 static const ARMCPRegInfo dcpop_reg[] = {
8110     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
8111       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
8112       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
8113       .fgt = FGT_DCCVAP,
8114       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
8115 };
8116 
8117 static const ARMCPRegInfo dcpodp_reg[] = {
8118     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
8119       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
8120       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
8121       .fgt = FGT_DCCVADP,
8122       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
8123 };
8124 
8125 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
8126                                        bool isread)
8127 {
8128     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
8129         return CP_ACCESS_TRAP_EL2;
8130     }
8131 
8132     return CP_ACCESS_OK;
8133 }
8134 
8135 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
8136                                  bool isread)
8137 {
8138     int el = arm_current_el(env);
8139     if (el < 2 && arm_is_el2_enabled(env)) {
8140         uint64_t hcr = arm_hcr_el2_eff(env);
8141         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8142             return CP_ACCESS_TRAP_EL2;
8143         }
8144     }
8145     if (el < 3 &&
8146         arm_feature(env, ARM_FEATURE_EL3) &&
8147         !(env->cp15.scr_el3 & SCR_ATA)) {
8148         return CP_ACCESS_TRAP_EL3;
8149     }
8150     return CP_ACCESS_OK;
8151 }
8152 
8153 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
8154                                       bool isread)
8155 {
8156     CPAccessResult nv1 = access_nv1(env, ri, isread);
8157 
8158     if (nv1 != CP_ACCESS_OK) {
8159         return nv1;
8160     }
8161     return access_mte(env, ri, isread);
8162 }
8163 
8164 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
8165                                       bool isread)
8166 {
8167     /*
8168      * TFSR_EL2: similar to generic access_mte(), but we need to
8169      * account for FEAT_NV. At EL1 this must be a FEAT_NV access;
8170      * if NV2 is enabled then we will redirect this to TFSR_EL1
8171      * after doing the HCR and SCR ATA traps; otherwise this will
8172      * be a trap to EL2 and the HCR/SCR traps do not apply.
8173      */
8174     int el = arm_current_el(env);
8175 
8176     if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
8177         return CP_ACCESS_OK;
8178     }
8179     if (el < 2 && arm_is_el2_enabled(env)) {
8180         uint64_t hcr = arm_hcr_el2_eff(env);
8181         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8182             return CP_ACCESS_TRAP_EL2;
8183         }
8184     }
8185     if (el < 3 &&
8186         arm_feature(env, ARM_FEATURE_EL3) &&
8187         !(env->cp15.scr_el3 & SCR_ATA)) {
8188         return CP_ACCESS_TRAP_EL3;
8189     }
8190     return CP_ACCESS_OK;
8191 }
8192 
8193 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
8194 {
8195     return env->pstate & PSTATE_TCO;
8196 }
8197 
8198 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
8199 {
8200     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
8201 }
8202 
8203 static const ARMCPRegInfo mte_reginfo[] = {
8204     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
8205       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
8206       .access = PL1_RW, .accessfn = access_mte,
8207       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
8208     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
8209       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
8210       .access = PL1_RW, .accessfn = access_tfsr_el1,
8211       .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
8212       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
8213     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
8214       .type = ARM_CP_NV2_REDIRECT,
8215       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
8216       .access = PL2_RW, .accessfn = access_tfsr_el2,
8217       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
8218     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
8219       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
8220       .access = PL3_RW,
8221       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
8222     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
8223       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
8224       .access = PL1_RW, .accessfn = access_mte,
8225       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
8226     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
8227       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
8228       .access = PL1_RW, .accessfn = access_mte,
8229       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
8230     { .name = "TCO", .state = ARM_CP_STATE_AA64,
8231       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8232       .type = ARM_CP_NO_RAW,
8233       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
8234     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
8235       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
8236       .type = ARM_CP_NOP, .access = PL1_W,
8237       .fgt = FGT_DCIVAC,
8238       .accessfn = aa64_cacheop_poc_access },
8239     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
8240       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
8241       .fgt = FGT_DCISW,
8242       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8243     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
8244       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
8245       .type = ARM_CP_NOP, .access = PL1_W,
8246       .fgt = FGT_DCIVAC,
8247       .accessfn = aa64_cacheop_poc_access },
8248     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
8249       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
8250       .fgt = FGT_DCISW,
8251       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8252     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
8253       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
8254       .fgt = FGT_DCCSW,
8255       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8256     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
8257       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
8258       .fgt = FGT_DCCSW,
8259       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8260     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
8261       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
8262       .fgt = FGT_DCCISW,
8263       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8264     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
8265       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
8266       .fgt = FGT_DCCISW,
8267       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8268 };
8269 
8270 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
8271     { .name = "TCO", .state = ARM_CP_STATE_AA64,
8272       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8273       .type = ARM_CP_CONST, .access = PL0_RW, },
8274 };
8275 
8276 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
8277     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
8278       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
8279       .type = ARM_CP_NOP, .access = PL0_W,
8280       .fgt = FGT_DCCVAC,
8281       .accessfn = aa64_cacheop_poc_access },
8282     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
8283       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
8284       .type = ARM_CP_NOP, .access = PL0_W,
8285       .fgt = FGT_DCCVAC,
8286       .accessfn = aa64_cacheop_poc_access },
8287     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
8288       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
8289       .type = ARM_CP_NOP, .access = PL0_W,
8290       .fgt = FGT_DCCVAP,
8291       .accessfn = aa64_cacheop_poc_access },
8292     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
8293       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
8294       .type = ARM_CP_NOP, .access = PL0_W,
8295       .fgt = FGT_DCCVAP,
8296       .accessfn = aa64_cacheop_poc_access },
8297     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
8298       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
8299       .type = ARM_CP_NOP, .access = PL0_W,
8300       .fgt = FGT_DCCVADP,
8301       .accessfn = aa64_cacheop_poc_access },
8302     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
8303       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
8304       .type = ARM_CP_NOP, .access = PL0_W,
8305       .fgt = FGT_DCCVADP,
8306       .accessfn = aa64_cacheop_poc_access },
8307     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
8308       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
8309       .type = ARM_CP_NOP, .access = PL0_W,
8310       .fgt = FGT_DCCIVAC,
8311       .accessfn = aa64_cacheop_poc_access },
8312     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
8313       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
8314       .type = ARM_CP_NOP, .access = PL0_W,
8315       .fgt = FGT_DCCIVAC,
8316       .accessfn = aa64_cacheop_poc_access },
8317     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
8318       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
8319       .access = PL0_W, .type = ARM_CP_DC_GVA,
8320 #ifndef CONFIG_USER_ONLY
8321       /* Avoid overhead of an access check that always passes in user-mode */
8322       .accessfn = aa64_zva_access,
8323       .fgt = FGT_DCZVA,
8324 #endif
8325     },
8326     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
8327       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
8328       .access = PL0_W, .type = ARM_CP_DC_GZVA,
8329 #ifndef CONFIG_USER_ONLY
8330       /* Avoid overhead of an access check that always passes in user-mode */
8331       .accessfn = aa64_zva_access,
8332       .fgt = FGT_DCZVA,
8333 #endif
8334     },
8335 };
8336 
8337 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
8338                                      bool isread)
8339 {
8340     uint64_t hcr = arm_hcr_el2_eff(env);
8341     int el = arm_current_el(env);
8342 
8343     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
8344         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
8345             if (hcr & HCR_TGE) {
8346                 return CP_ACCESS_TRAP_EL2;
8347             }
8348             return CP_ACCESS_TRAP;
8349         }
8350     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
8351         return CP_ACCESS_TRAP_EL2;
8352     }
8353     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
8354         return CP_ACCESS_TRAP_EL2;
8355     }
8356     if (el < 3
8357         && arm_feature(env, ARM_FEATURE_EL3)
8358         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
8359         return CP_ACCESS_TRAP_EL3;
8360     }
8361     return CP_ACCESS_OK;
8362 }
8363 
8364 static CPAccessResult access_scxtnum_el1(CPUARMState *env,
8365                                          const ARMCPRegInfo *ri,
8366                                          bool isread)
8367 {
8368     CPAccessResult nv1 = access_nv1(env, ri, isread);
8369 
8370     if (nv1 != CP_ACCESS_OK) {
8371         return nv1;
8372     }
8373     return access_scxtnum(env, ri, isread);
8374 }
8375 
8376 static const ARMCPRegInfo scxtnum_reginfo[] = {
8377     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
8378       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
8379       .access = PL0_RW, .accessfn = access_scxtnum,
8380       .fgt = FGT_SCXTNUM_EL0,
8381       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
8382     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
8383       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
8384       .access = PL1_RW, .accessfn = access_scxtnum_el1,
8385       .fgt = FGT_SCXTNUM_EL1,
8386       .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
8387       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
8388     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
8389       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
8390       .access = PL2_RW, .accessfn = access_scxtnum,
8391       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
8392     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
8393       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
8394       .access = PL3_RW,
8395       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
8396 };
8397 
8398 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
8399                                  bool isread)
8400 {
8401     if (arm_current_el(env) == 2 &&
8402         arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
8403         return CP_ACCESS_TRAP_EL3;
8404     }
8405     return CP_ACCESS_OK;
8406 }
8407 
8408 static const ARMCPRegInfo fgt_reginfo[] = {
8409     { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8410       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
8411       .nv2_redirect_offset = 0x1b8,
8412       .access = PL2_RW, .accessfn = access_fgt,
8413       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
8414     { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8415       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
8416       .nv2_redirect_offset = 0x1c0,
8417       .access = PL2_RW, .accessfn = access_fgt,
8418       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
8419     { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8420       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
8421       .nv2_redirect_offset = 0x1d0,
8422       .access = PL2_RW, .accessfn = access_fgt,
8423       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
8424     { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8425       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
8426       .nv2_redirect_offset = 0x1d8,
8427       .access = PL2_RW, .accessfn = access_fgt,
8428       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
8429     { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
8430       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
8431       .nv2_redirect_offset = 0x1c8,
8432       .access = PL2_RW, .accessfn = access_fgt,
8433       .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
8434 };
8435 
8436 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
8437                        uint64_t value)
8438 {
8439     /*
8440      * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
8441      * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
8442      * about the RESS bits at the top -- we choose the "generate an EL2
8443      * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
8444      * the ptw.c code detect the resulting invalid address).
8445      */
8446     env->cp15.vncr_el2 = value & ~0xfffULL;
8447 }
8448 
8449 static const ARMCPRegInfo nv2_reginfo[] = {
8450     { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
8451       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
8452       .access = PL2_RW,
8453       .writefn = vncr_write,
8454       .nv2_redirect_offset = 0xb0,
8455       .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
8456 };
8457 
8458 #endif /* TARGET_AARCH64 */
8459 
8460 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
8461                                      bool isread)
8462 {
8463     int el = arm_current_el(env);
8464 
8465     if (el == 0) {
8466         uint64_t sctlr = arm_sctlr(env, el);
8467         if (!(sctlr & SCTLR_EnRCTX)) {
8468             return CP_ACCESS_TRAP;
8469         }
8470     } else if (el == 1) {
8471         uint64_t hcr = arm_hcr_el2_eff(env);
8472         if (hcr & HCR_NV) {
8473             return CP_ACCESS_TRAP_EL2;
8474         }
8475     }
8476     return CP_ACCESS_OK;
8477 }
8478 
8479 static const ARMCPRegInfo predinv_reginfo[] = {
8480     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
8481       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
8482       .fgt = FGT_CFPRCTX,
8483       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8484     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
8485       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
8486       .fgt = FGT_DVPRCTX,
8487       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8488     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
8489       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
8490       .fgt = FGT_CPPRCTX,
8491       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8492     /*
8493      * Note the AArch32 opcodes have a different OPC1.
8494      */
8495     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
8496       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
8497       .fgt = FGT_CFPRCTX,
8498       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8499     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
8500       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
8501       .fgt = FGT_DVPRCTX,
8502       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8503     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
8504       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
8505       .fgt = FGT_CPPRCTX,
8506       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8507 };
8508 
8509 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8510 {
8511     /* Read the high 32 bits of the current CCSIDR */
8512     return extract64(ccsidr_read(env, ri), 32, 32);
8513 }
8514 
8515 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8516     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8517       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8518       .access = PL1_R,
8519       .accessfn = access_tid4,
8520       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8521 };
8522 
8523 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8524                                        bool isread)
8525 {
8526     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8527         return CP_ACCESS_TRAP_EL2;
8528     }
8529 
8530     return CP_ACCESS_OK;
8531 }
8532 
8533 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8534                                        bool isread)
8535 {
8536     if (arm_feature(env, ARM_FEATURE_V8)) {
8537         return access_aa64_tid3(env, ri, isread);
8538     }
8539 
8540     return CP_ACCESS_OK;
8541 }
8542 
8543 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8544                                      bool isread)
8545 {
8546     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8547         return CP_ACCESS_TRAP_EL2;
8548     }
8549 
8550     return CP_ACCESS_OK;
8551 }
8552 
8553 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8554                                         const ARMCPRegInfo *ri, bool isread)
8555 {
8556     /*
8557      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8558      * in v7A, not in v8A.
8559      */
8560     if (!arm_feature(env, ARM_FEATURE_V8) &&
8561         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8562         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8563         return CP_ACCESS_TRAP_EL2;
8564     }
8565     return CP_ACCESS_OK;
8566 }
8567 
8568 static const ARMCPRegInfo jazelle_regs[] = {
8569     { .name = "JIDR",
8570       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8571       .access = PL1_R, .accessfn = access_jazelle,
8572       .type = ARM_CP_CONST, .resetvalue = 0 },
8573     { .name = "JOSCR",
8574       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8575       .accessfn = access_joscr_jmcr,
8576       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8577     { .name = "JMCR",
8578       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8579       .accessfn = access_joscr_jmcr,
8580       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8581 };
8582 
8583 static const ARMCPRegInfo contextidr_el2 = {
8584     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8585     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8586     .access = PL2_RW,
8587     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8588 };
8589 
8590 static const ARMCPRegInfo vhe_reginfo[] = {
8591     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8592       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8593       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8594       .raw_writefn = raw_write,
8595       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8596 #ifndef CONFIG_USER_ONLY
8597     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8598       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8599       .fieldoffset =
8600         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8601       .type = ARM_CP_IO, .access = PL2_RW,
8602       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8603     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8604       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8605       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8606       .resetfn = gt_hv_timer_reset,
8607       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8608     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8609       .type = ARM_CP_IO,
8610       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8611       .access = PL2_RW,
8612       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8613       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8614     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8615       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8616       .type = ARM_CP_IO | ARM_CP_ALIAS,
8617       .access = PL2_RW, .accessfn = access_el1nvpct,
8618       .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
8619       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8620       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8621     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8622       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8623       .type = ARM_CP_IO | ARM_CP_ALIAS,
8624       .access = PL2_RW, .accessfn = access_el1nvvct,
8625       .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
8626       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8627       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8628     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8629       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8630       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8631       .access = PL2_RW, .accessfn = e2h_access,
8632       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8633     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8634       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8635       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8636       .access = PL2_RW, .accessfn = e2h_access,
8637       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8638     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8639       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8640       .type = ARM_CP_IO | ARM_CP_ALIAS,
8641       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8642       .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
8643       .access = PL2_RW, .accessfn = access_el1nvpct,
8644       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8645     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8646       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8647       .type = ARM_CP_IO | ARM_CP_ALIAS,
8648       .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
8649       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8650       .access = PL2_RW, .accessfn = access_el1nvvct,
8651       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8652 #endif
8653 };
8654 
8655 #ifndef CONFIG_USER_ONLY
8656 static const ARMCPRegInfo ats1e1_reginfo[] = {
8657     { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8658       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8659       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8660       .fgt = FGT_ATS1E1RP,
8661       .accessfn = at_s1e01_access, .writefn = ats_write64 },
8662     { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8663       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8664       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8665       .fgt = FGT_ATS1E1WP,
8666       .accessfn = at_s1e01_access, .writefn = ats_write64 },
8667 };
8668 
8669 static const ARMCPRegInfo ats1cp_reginfo[] = {
8670     { .name = "ATS1CPRP",
8671       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8672       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8673       .writefn = ats_write },
8674     { .name = "ATS1CPWP",
8675       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8676       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8677       .writefn = ats_write },
8678 };
8679 #endif
8680 
8681 /*
8682  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8683  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8684  * is non-zero, which is never for ARMv7, optionally in ARMv8
8685  * and mandatorily for ARMv8.2 and up.
8686  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8687  * implementation is RAZ/WI we can ignore this detail, as we
8688  * do for ACTLR.
8689  */
8690 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8691     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8692       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8693       .access = PL1_RW, .accessfn = access_tacr,
8694       .type = ARM_CP_CONST, .resetvalue = 0 },
8695     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8696       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8697       .access = PL2_RW, .type = ARM_CP_CONST,
8698       .resetvalue = 0 },
8699 };
8700 
8701 void register_cp_regs_for_features(ARMCPU *cpu)
8702 {
8703     /* Register all the coprocessor registers based on feature bits */
8704     CPUARMState *env = &cpu->env;
8705     if (arm_feature(env, ARM_FEATURE_M)) {
8706         /* M profile has no coprocessor registers */
8707         return;
8708     }
8709 
8710     define_arm_cp_regs(cpu, cp_reginfo);
8711     if (!arm_feature(env, ARM_FEATURE_V8)) {
8712         /*
8713          * Must go early as it is full of wildcards that may be
8714          * overridden by later definitions.
8715          */
8716         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8717     }
8718 
8719     if (arm_feature(env, ARM_FEATURE_V6)) {
8720         /* The ID registers all have impdef reset values */
8721         ARMCPRegInfo v6_idregs[] = {
8722             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8723               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8724               .access = PL1_R, .type = ARM_CP_CONST,
8725               .accessfn = access_aa32_tid3,
8726               .resetvalue = cpu->isar.id_pfr0 },
8727             /*
8728              * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8729              * the value of the GIC field until after we define these regs.
8730              */
8731             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8732               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8733               .access = PL1_R, .type = ARM_CP_NO_RAW,
8734               .accessfn = access_aa32_tid3,
8735 #ifdef CONFIG_USER_ONLY
8736               .type = ARM_CP_CONST,
8737               .resetvalue = cpu->isar.id_pfr1,
8738 #else
8739               .type = ARM_CP_NO_RAW,
8740               .accessfn = access_aa32_tid3,
8741               .readfn = id_pfr1_read,
8742               .writefn = arm_cp_write_ignore
8743 #endif
8744             },
8745             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8746               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8747               .access = PL1_R, .type = ARM_CP_CONST,
8748               .accessfn = access_aa32_tid3,
8749               .resetvalue = cpu->isar.id_dfr0 },
8750             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8751               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8752               .access = PL1_R, .type = ARM_CP_CONST,
8753               .accessfn = access_aa32_tid3,
8754               .resetvalue = cpu->id_afr0 },
8755             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8756               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8757               .access = PL1_R, .type = ARM_CP_CONST,
8758               .accessfn = access_aa32_tid3,
8759               .resetvalue = cpu->isar.id_mmfr0 },
8760             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8761               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8762               .access = PL1_R, .type = ARM_CP_CONST,
8763               .accessfn = access_aa32_tid3,
8764               .resetvalue = cpu->isar.id_mmfr1 },
8765             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8766               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8767               .access = PL1_R, .type = ARM_CP_CONST,
8768               .accessfn = access_aa32_tid3,
8769               .resetvalue = cpu->isar.id_mmfr2 },
8770             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8771               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8772               .access = PL1_R, .type = ARM_CP_CONST,
8773               .accessfn = access_aa32_tid3,
8774               .resetvalue = cpu->isar.id_mmfr3 },
8775             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8776               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8777               .access = PL1_R, .type = ARM_CP_CONST,
8778               .accessfn = access_aa32_tid3,
8779               .resetvalue = cpu->isar.id_isar0 },
8780             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8781               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8782               .access = PL1_R, .type = ARM_CP_CONST,
8783               .accessfn = access_aa32_tid3,
8784               .resetvalue = cpu->isar.id_isar1 },
8785             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8786               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8787               .access = PL1_R, .type = ARM_CP_CONST,
8788               .accessfn = access_aa32_tid3,
8789               .resetvalue = cpu->isar.id_isar2 },
8790             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8791               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8792               .access = PL1_R, .type = ARM_CP_CONST,
8793               .accessfn = access_aa32_tid3,
8794               .resetvalue = cpu->isar.id_isar3 },
8795             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8796               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8797               .access = PL1_R, .type = ARM_CP_CONST,
8798               .accessfn = access_aa32_tid3,
8799               .resetvalue = cpu->isar.id_isar4 },
8800             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8801               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8802               .access = PL1_R, .type = ARM_CP_CONST,
8803               .accessfn = access_aa32_tid3,
8804               .resetvalue = cpu->isar.id_isar5 },
8805             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8806               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8807               .access = PL1_R, .type = ARM_CP_CONST,
8808               .accessfn = access_aa32_tid3,
8809               .resetvalue = cpu->isar.id_mmfr4 },
8810             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8811               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8812               .access = PL1_R, .type = ARM_CP_CONST,
8813               .accessfn = access_aa32_tid3,
8814               .resetvalue = cpu->isar.id_isar6 },
8815         };
8816         define_arm_cp_regs(cpu, v6_idregs);
8817         define_arm_cp_regs(cpu, v6_cp_reginfo);
8818     } else {
8819         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8820     }
8821     if (arm_feature(env, ARM_FEATURE_V6K)) {
8822         define_arm_cp_regs(cpu, v6k_cp_reginfo);
8823     }
8824     if (arm_feature(env, ARM_FEATURE_V7MP) &&
8825         !arm_feature(env, ARM_FEATURE_PMSA)) {
8826         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8827     }
8828     if (arm_feature(env, ARM_FEATURE_V7VE)) {
8829         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8830     }
8831     if (arm_feature(env, ARM_FEATURE_V7)) {
8832         ARMCPRegInfo clidr = {
8833             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8834             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8835             .access = PL1_R, .type = ARM_CP_CONST,
8836             .accessfn = access_tid4,
8837             .fgt = FGT_CLIDR_EL1,
8838             .resetvalue = cpu->clidr
8839         };
8840         define_one_arm_cp_reg(cpu, &clidr);
8841         define_arm_cp_regs(cpu, v7_cp_reginfo);
8842         define_debug_regs(cpu);
8843         define_pmu_regs(cpu);
8844     } else {
8845         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8846     }
8847     if (arm_feature(env, ARM_FEATURE_V8)) {
8848         /*
8849          * v8 ID registers, which all have impdef reset values.
8850          * Note that within the ID register ranges the unused slots
8851          * must all RAZ, not UNDEF; future architecture versions may
8852          * define new registers here.
8853          * ID registers which are AArch64 views of the AArch32 ID registers
8854          * which already existed in v6 and v7 are handled elsewhere,
8855          * in v6_idregs[].
8856          */
8857         int i;
8858         ARMCPRegInfo v8_idregs[] = {
8859             /*
8860              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8861              * emulation because we don't know the right value for the
8862              * GIC field until after we define these regs.
8863              */
8864             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8865               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8866               .access = PL1_R,
8867 #ifdef CONFIG_USER_ONLY
8868               .type = ARM_CP_CONST,
8869               .resetvalue = cpu->isar.id_aa64pfr0
8870 #else
8871               .type = ARM_CP_NO_RAW,
8872               .accessfn = access_aa64_tid3,
8873               .readfn = id_aa64pfr0_read,
8874               .writefn = arm_cp_write_ignore
8875 #endif
8876             },
8877             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8878               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8879               .access = PL1_R, .type = ARM_CP_CONST,
8880               .accessfn = access_aa64_tid3,
8881               .resetvalue = cpu->isar.id_aa64pfr1},
8882             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8883               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8884               .access = PL1_R, .type = ARM_CP_CONST,
8885               .accessfn = access_aa64_tid3,
8886               .resetvalue = 0 },
8887             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8888               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8889               .access = PL1_R, .type = ARM_CP_CONST,
8890               .accessfn = access_aa64_tid3,
8891               .resetvalue = 0 },
8892             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8893               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8894               .access = PL1_R, .type = ARM_CP_CONST,
8895               .accessfn = access_aa64_tid3,
8896               .resetvalue = cpu->isar.id_aa64zfr0 },
8897             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8898               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8899               .access = PL1_R, .type = ARM_CP_CONST,
8900               .accessfn = access_aa64_tid3,
8901               .resetvalue = cpu->isar.id_aa64smfr0 },
8902             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8903               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8904               .access = PL1_R, .type = ARM_CP_CONST,
8905               .accessfn = access_aa64_tid3,
8906               .resetvalue = 0 },
8907             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8908               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8909               .access = PL1_R, .type = ARM_CP_CONST,
8910               .accessfn = access_aa64_tid3,
8911               .resetvalue = 0 },
8912             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8913               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8914               .access = PL1_R, .type = ARM_CP_CONST,
8915               .accessfn = access_aa64_tid3,
8916               .resetvalue = cpu->isar.id_aa64dfr0 },
8917             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8918               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8919               .access = PL1_R, .type = ARM_CP_CONST,
8920               .accessfn = access_aa64_tid3,
8921               .resetvalue = cpu->isar.id_aa64dfr1 },
8922             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8923               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8924               .access = PL1_R, .type = ARM_CP_CONST,
8925               .accessfn = access_aa64_tid3,
8926               .resetvalue = 0 },
8927             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8928               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8929               .access = PL1_R, .type = ARM_CP_CONST,
8930               .accessfn = access_aa64_tid3,
8931               .resetvalue = 0 },
8932             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8933               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8934               .access = PL1_R, .type = ARM_CP_CONST,
8935               .accessfn = access_aa64_tid3,
8936               .resetvalue = cpu->id_aa64afr0 },
8937             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8938               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8939               .access = PL1_R, .type = ARM_CP_CONST,
8940               .accessfn = access_aa64_tid3,
8941               .resetvalue = cpu->id_aa64afr1 },
8942             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8943               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8944               .access = PL1_R, .type = ARM_CP_CONST,
8945               .accessfn = access_aa64_tid3,
8946               .resetvalue = 0 },
8947             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8948               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8949               .access = PL1_R, .type = ARM_CP_CONST,
8950               .accessfn = access_aa64_tid3,
8951               .resetvalue = 0 },
8952             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8953               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8954               .access = PL1_R, .type = ARM_CP_CONST,
8955               .accessfn = access_aa64_tid3,
8956               .resetvalue = cpu->isar.id_aa64isar0 },
8957             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8958               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8959               .access = PL1_R, .type = ARM_CP_CONST,
8960               .accessfn = access_aa64_tid3,
8961               .resetvalue = cpu->isar.id_aa64isar1 },
8962             { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8963               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8964               .access = PL1_R, .type = ARM_CP_CONST,
8965               .accessfn = access_aa64_tid3,
8966               .resetvalue = cpu->isar.id_aa64isar2 },
8967             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8968               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8969               .access = PL1_R, .type = ARM_CP_CONST,
8970               .accessfn = access_aa64_tid3,
8971               .resetvalue = 0 },
8972             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8973               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8974               .access = PL1_R, .type = ARM_CP_CONST,
8975               .accessfn = access_aa64_tid3,
8976               .resetvalue = 0 },
8977             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8978               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8979               .access = PL1_R, .type = ARM_CP_CONST,
8980               .accessfn = access_aa64_tid3,
8981               .resetvalue = 0 },
8982             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8983               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8984               .access = PL1_R, .type = ARM_CP_CONST,
8985               .accessfn = access_aa64_tid3,
8986               .resetvalue = 0 },
8987             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8988               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8989               .access = PL1_R, .type = ARM_CP_CONST,
8990               .accessfn = access_aa64_tid3,
8991               .resetvalue = 0 },
8992             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8993               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8994               .access = PL1_R, .type = ARM_CP_CONST,
8995               .accessfn = access_aa64_tid3,
8996               .resetvalue = cpu->isar.id_aa64mmfr0 },
8997             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8998               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8999               .access = PL1_R, .type = ARM_CP_CONST,
9000               .accessfn = access_aa64_tid3,
9001               .resetvalue = cpu->isar.id_aa64mmfr1 },
9002             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
9003               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
9004               .access = PL1_R, .type = ARM_CP_CONST,
9005               .accessfn = access_aa64_tid3,
9006               .resetvalue = cpu->isar.id_aa64mmfr2 },
9007             { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64,
9008               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
9009               .access = PL1_R, .type = ARM_CP_CONST,
9010               .accessfn = access_aa64_tid3,
9011               .resetvalue = cpu->isar.id_aa64mmfr3 },
9012             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9013               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
9014               .access = PL1_R, .type = ARM_CP_CONST,
9015               .accessfn = access_aa64_tid3,
9016               .resetvalue = 0 },
9017             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9018               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
9019               .access = PL1_R, .type = ARM_CP_CONST,
9020               .accessfn = access_aa64_tid3,
9021               .resetvalue = 0 },
9022             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9023               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
9024               .access = PL1_R, .type = ARM_CP_CONST,
9025               .accessfn = access_aa64_tid3,
9026               .resetvalue = 0 },
9027             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9028               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
9029               .access = PL1_R, .type = ARM_CP_CONST,
9030               .accessfn = access_aa64_tid3,
9031               .resetvalue = 0 },
9032             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
9033               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
9034               .access = PL1_R, .type = ARM_CP_CONST,
9035               .accessfn = access_aa64_tid3,
9036               .resetvalue = cpu->isar.mvfr0 },
9037             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
9038               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
9039               .access = PL1_R, .type = ARM_CP_CONST,
9040               .accessfn = access_aa64_tid3,
9041               .resetvalue = cpu->isar.mvfr1 },
9042             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
9043               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
9044               .access = PL1_R, .type = ARM_CP_CONST,
9045               .accessfn = access_aa64_tid3,
9046               .resetvalue = cpu->isar.mvfr2 },
9047             /*
9048              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
9049              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
9050              * as RAZ, since it is in the "reserved for future ID
9051              * registers, RAZ" part of the AArch32 encoding space.
9052              */
9053             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
9054               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
9055               .access = PL1_R, .type = ARM_CP_CONST,
9056               .accessfn = access_aa64_tid3,
9057               .resetvalue = 0 },
9058             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
9059               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
9060               .access = PL1_R, .type = ARM_CP_CONST,
9061               .accessfn = access_aa64_tid3,
9062               .resetvalue = 0 },
9063             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
9064               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
9065               .access = PL1_R, .type = ARM_CP_CONST,
9066               .accessfn = access_aa64_tid3,
9067               .resetvalue = 0 },
9068             /*
9069              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
9070              * they're also RAZ for AArch64, and in v8 are gradually
9071              * being filled with AArch64-view-of-AArch32-ID-register
9072              * for new ID registers.
9073              */
9074             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
9075               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
9076               .access = PL1_R, .type = ARM_CP_CONST,
9077               .accessfn = access_aa64_tid3,
9078               .resetvalue = 0 },
9079             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
9080               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
9081               .access = PL1_R, .type = ARM_CP_CONST,
9082               .accessfn = access_aa64_tid3,
9083               .resetvalue = cpu->isar.id_pfr2 },
9084             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
9085               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
9086               .access = PL1_R, .type = ARM_CP_CONST,
9087               .accessfn = access_aa64_tid3,
9088               .resetvalue = cpu->isar.id_dfr1 },
9089             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
9090               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
9091               .access = PL1_R, .type = ARM_CP_CONST,
9092               .accessfn = access_aa64_tid3,
9093               .resetvalue = cpu->isar.id_mmfr5 },
9094             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
9095               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
9096               .access = PL1_R, .type = ARM_CP_CONST,
9097               .accessfn = access_aa64_tid3,
9098               .resetvalue = 0 },
9099             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
9100               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
9101               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9102               .fgt = FGT_PMCEIDN_EL0,
9103               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
9104             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
9105               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
9106               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9107               .fgt = FGT_PMCEIDN_EL0,
9108               .resetvalue = cpu->pmceid0 },
9109             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
9110               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
9111               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9112               .fgt = FGT_PMCEIDN_EL0,
9113               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
9114             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
9115               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
9116               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9117               .fgt = FGT_PMCEIDN_EL0,
9118               .resetvalue = cpu->pmceid1 },
9119         };
9120 #ifdef CONFIG_USER_ONLY
9121         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
9122             { .name = "ID_AA64PFR0_EL1",
9123               .exported_bits = R_ID_AA64PFR0_FP_MASK |
9124                                R_ID_AA64PFR0_ADVSIMD_MASK |
9125                                R_ID_AA64PFR0_SVE_MASK |
9126                                R_ID_AA64PFR0_DIT_MASK,
9127               .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
9128                             (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
9129             { .name = "ID_AA64PFR1_EL1",
9130               .exported_bits = R_ID_AA64PFR1_BT_MASK |
9131                                R_ID_AA64PFR1_SSBS_MASK |
9132                                R_ID_AA64PFR1_MTE_MASK |
9133                                R_ID_AA64PFR1_SME_MASK },
9134             { .name = "ID_AA64PFR*_EL1_RESERVED",
9135               .is_glob = true },
9136             { .name = "ID_AA64ZFR0_EL1",
9137               .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
9138                                R_ID_AA64ZFR0_AES_MASK |
9139                                R_ID_AA64ZFR0_BITPERM_MASK |
9140                                R_ID_AA64ZFR0_BFLOAT16_MASK |
9141                                R_ID_AA64ZFR0_B16B16_MASK |
9142                                R_ID_AA64ZFR0_SHA3_MASK |
9143                                R_ID_AA64ZFR0_SM4_MASK |
9144                                R_ID_AA64ZFR0_I8MM_MASK |
9145                                R_ID_AA64ZFR0_F32MM_MASK |
9146                                R_ID_AA64ZFR0_F64MM_MASK },
9147             { .name = "ID_AA64SMFR0_EL1",
9148               .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
9149                                R_ID_AA64SMFR0_BI32I32_MASK |
9150                                R_ID_AA64SMFR0_B16F32_MASK |
9151                                R_ID_AA64SMFR0_F16F32_MASK |
9152                                R_ID_AA64SMFR0_I8I32_MASK |
9153                                R_ID_AA64SMFR0_F16F16_MASK |
9154                                R_ID_AA64SMFR0_B16B16_MASK |
9155                                R_ID_AA64SMFR0_I16I32_MASK |
9156                                R_ID_AA64SMFR0_F64F64_MASK |
9157                                R_ID_AA64SMFR0_I16I64_MASK |
9158                                R_ID_AA64SMFR0_SMEVER_MASK |
9159                                R_ID_AA64SMFR0_FA64_MASK },
9160             { .name = "ID_AA64MMFR0_EL1",
9161               .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
9162               .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
9163                             (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
9164             { .name = "ID_AA64MMFR1_EL1",
9165               .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
9166             { .name = "ID_AA64MMFR2_EL1",
9167               .exported_bits = R_ID_AA64MMFR2_AT_MASK },
9168             { .name = "ID_AA64MMFR3_EL1",
9169               .exported_bits = 0 },
9170             { .name = "ID_AA64MMFR*_EL1_RESERVED",
9171               .is_glob = true },
9172             { .name = "ID_AA64DFR0_EL1",
9173               .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
9174             { .name = "ID_AA64DFR1_EL1" },
9175             { .name = "ID_AA64DFR*_EL1_RESERVED",
9176               .is_glob = true },
9177             { .name = "ID_AA64AFR*",
9178               .is_glob = true },
9179             { .name = "ID_AA64ISAR0_EL1",
9180               .exported_bits = R_ID_AA64ISAR0_AES_MASK |
9181                                R_ID_AA64ISAR0_SHA1_MASK |
9182                                R_ID_AA64ISAR0_SHA2_MASK |
9183                                R_ID_AA64ISAR0_CRC32_MASK |
9184                                R_ID_AA64ISAR0_ATOMIC_MASK |
9185                                R_ID_AA64ISAR0_RDM_MASK |
9186                                R_ID_AA64ISAR0_SHA3_MASK |
9187                                R_ID_AA64ISAR0_SM3_MASK |
9188                                R_ID_AA64ISAR0_SM4_MASK |
9189                                R_ID_AA64ISAR0_DP_MASK |
9190                                R_ID_AA64ISAR0_FHM_MASK |
9191                                R_ID_AA64ISAR0_TS_MASK |
9192                                R_ID_AA64ISAR0_RNDR_MASK },
9193             { .name = "ID_AA64ISAR1_EL1",
9194               .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
9195                                R_ID_AA64ISAR1_APA_MASK |
9196                                R_ID_AA64ISAR1_API_MASK |
9197                                R_ID_AA64ISAR1_JSCVT_MASK |
9198                                R_ID_AA64ISAR1_FCMA_MASK |
9199                                R_ID_AA64ISAR1_LRCPC_MASK |
9200                                R_ID_AA64ISAR1_GPA_MASK |
9201                                R_ID_AA64ISAR1_GPI_MASK |
9202                                R_ID_AA64ISAR1_FRINTTS_MASK |
9203                                R_ID_AA64ISAR1_SB_MASK |
9204                                R_ID_AA64ISAR1_BF16_MASK |
9205                                R_ID_AA64ISAR1_DGH_MASK |
9206                                R_ID_AA64ISAR1_I8MM_MASK },
9207             { .name = "ID_AA64ISAR2_EL1",
9208               .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
9209                                R_ID_AA64ISAR2_RPRES_MASK |
9210                                R_ID_AA64ISAR2_GPA3_MASK |
9211                                R_ID_AA64ISAR2_APA3_MASK |
9212                                R_ID_AA64ISAR2_MOPS_MASK |
9213                                R_ID_AA64ISAR2_BC_MASK |
9214                                R_ID_AA64ISAR2_RPRFM_MASK |
9215                                R_ID_AA64ISAR2_CSSC_MASK },
9216             { .name = "ID_AA64ISAR*_EL1_RESERVED",
9217               .is_glob = true },
9218         };
9219         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
9220 #endif
9221         /*
9222          * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
9223          * TODO: For RMR, a write with bit 1 set should do something with
9224          * cpu_reset(). In the meantime, "the bit is strictly a request",
9225          * so we are in spec just ignoring writes.
9226          */
9227         if (!arm_feature(env, ARM_FEATURE_EL3) &&
9228             !arm_feature(env, ARM_FEATURE_EL2)) {
9229             ARMCPRegInfo el1_reset_regs[] = {
9230                 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
9231                   .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9232                   .access = PL1_R,
9233                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9234                 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
9235                   .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9236                   .access = PL1_RW, .type = ARM_CP_CONST,
9237                   .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
9238             };
9239             define_arm_cp_regs(cpu, el1_reset_regs);
9240         }
9241         define_arm_cp_regs(cpu, v8_idregs);
9242         define_arm_cp_regs(cpu, v8_cp_reginfo);
9243         if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
9244             define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
9245         }
9246 
9247         for (i = 4; i < 16; i++) {
9248             /*
9249              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
9250              * For pre-v8 cores there are RAZ patterns for these in
9251              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
9252              * v8 extends the "must RAZ" part of the ID register space
9253              * to also cover c0, 0, c{8-15}, {0-7}.
9254              * These are STATE_AA32 because in the AArch64 sysreg space
9255              * c4-c7 is where the AArch64 ID registers live (and we've
9256              * already defined those in v8_idregs[]), and c8-c15 are not
9257              * "must RAZ" for AArch64.
9258              */
9259             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
9260             ARMCPRegInfo v8_aa32_raz_idregs = {
9261                 .name = name,
9262                 .state = ARM_CP_STATE_AA32,
9263                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
9264                 .access = PL1_R, .type = ARM_CP_CONST,
9265                 .accessfn = access_aa64_tid3,
9266                 .resetvalue = 0 };
9267             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
9268         }
9269     }
9270 
9271     /*
9272      * Register the base EL2 cpregs.
9273      * Pre v8, these registers are implemented only as part of the
9274      * Virtualization Extensions (EL2 present).  Beginning with v8,
9275      * if EL2 is missing but EL3 is enabled, mostly these become
9276      * RES0 from EL3, with some specific exceptions.
9277      */
9278     if (arm_feature(env, ARM_FEATURE_EL2)
9279         || (arm_feature(env, ARM_FEATURE_EL3)
9280             && arm_feature(env, ARM_FEATURE_V8))) {
9281         uint64_t vmpidr_def = mpidr_read_val(env);
9282         ARMCPRegInfo vpidr_regs[] = {
9283             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
9284               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9285               .access = PL2_RW, .accessfn = access_el3_aa32ns,
9286               .resetvalue = cpu->midr,
9287               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9288               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
9289             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
9290               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9291               .access = PL2_RW, .resetvalue = cpu->midr,
9292               .type = ARM_CP_EL3_NO_EL2_C_NZ,
9293               .nv2_redirect_offset = 0x88,
9294               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
9295             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
9296               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9297               .access = PL2_RW, .accessfn = access_el3_aa32ns,
9298               .resetvalue = vmpidr_def,
9299               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9300               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
9301             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
9302               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9303               .access = PL2_RW, .resetvalue = vmpidr_def,
9304               .type = ARM_CP_EL3_NO_EL2_C_NZ,
9305               .nv2_redirect_offset = 0x50,
9306               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
9307         };
9308         /*
9309          * The only field of MDCR_EL2 that has a defined architectural reset
9310          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
9311          */
9312         ARMCPRegInfo mdcr_el2 = {
9313             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
9314             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
9315             .writefn = mdcr_el2_write,
9316             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
9317             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
9318         };
9319         define_one_arm_cp_reg(cpu, &mdcr_el2);
9320         define_arm_cp_regs(cpu, vpidr_regs);
9321         define_arm_cp_regs(cpu, el2_cp_reginfo);
9322         if (arm_feature(env, ARM_FEATURE_V8)) {
9323             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
9324         }
9325         if (cpu_isar_feature(aa64_sel2, cpu)) {
9326             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
9327         }
9328         /*
9329          * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
9330          * See commentary near RMR_EL1.
9331          */
9332         if (!arm_feature(env, ARM_FEATURE_EL3)) {
9333             static const ARMCPRegInfo el2_reset_regs[] = {
9334                 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
9335                   .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
9336                   .access = PL2_R,
9337                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9338                 { .name = "RVBAR", .type = ARM_CP_ALIAS,
9339                   .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9340                   .access = PL2_R,
9341                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9342                 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
9343                   .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
9344                   .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9345             };
9346             define_arm_cp_regs(cpu, el2_reset_regs);
9347         }
9348     }
9349 
9350     /* Register the base EL3 cpregs. */
9351     if (arm_feature(env, ARM_FEATURE_EL3)) {
9352         define_arm_cp_regs(cpu, el3_cp_reginfo);
9353         ARMCPRegInfo el3_regs[] = {
9354             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
9355               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
9356               .access = PL3_R,
9357               .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
9358             { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
9359               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
9360               .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9361             { .name = "RMR", .state = ARM_CP_STATE_AA32,
9362               .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9363               .access = PL3_RW, .type = ARM_CP_CONST,
9364               .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
9365             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
9366               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
9367               .access = PL3_RW,
9368               .raw_writefn = raw_write, .writefn = sctlr_write,
9369               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
9370               .resetvalue = cpu->reset_sctlr },
9371         };
9372 
9373         define_arm_cp_regs(cpu, el3_regs);
9374     }
9375     /*
9376      * The behaviour of NSACR is sufficiently various that we don't
9377      * try to describe it in a single reginfo:
9378      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
9379      *     reads as constant 0xc00 from NS EL1 and NS EL2
9380      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
9381      *  if v7 without EL3, register doesn't exist
9382      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
9383      */
9384     if (arm_feature(env, ARM_FEATURE_EL3)) {
9385         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9386             static const ARMCPRegInfo nsacr = {
9387                 .name = "NSACR", .type = ARM_CP_CONST,
9388                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9389                 .access = PL1_RW, .accessfn = nsacr_access,
9390                 .resetvalue = 0xc00
9391             };
9392             define_one_arm_cp_reg(cpu, &nsacr);
9393         } else {
9394             static const ARMCPRegInfo nsacr = {
9395                 .name = "NSACR",
9396                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9397                 .access = PL3_RW | PL1_R,
9398                 .resetvalue = 0,
9399                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
9400             };
9401             define_one_arm_cp_reg(cpu, &nsacr);
9402         }
9403     } else {
9404         if (arm_feature(env, ARM_FEATURE_V8)) {
9405             static const ARMCPRegInfo nsacr = {
9406                 .name = "NSACR", .type = ARM_CP_CONST,
9407                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9408                 .access = PL1_R,
9409                 .resetvalue = 0xc00
9410             };
9411             define_one_arm_cp_reg(cpu, &nsacr);
9412         }
9413     }
9414 
9415     if (arm_feature(env, ARM_FEATURE_PMSA)) {
9416         if (arm_feature(env, ARM_FEATURE_V6)) {
9417             /* PMSAv6 not implemented */
9418             assert(arm_feature(env, ARM_FEATURE_V7));
9419             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9420             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
9421         } else {
9422             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
9423         }
9424     } else {
9425         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9426         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
9427         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
9428         if (cpu_isar_feature(aa32_hpd, cpu)) {
9429             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
9430         }
9431     }
9432     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
9433         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
9434     }
9435     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
9436         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
9437     }
9438     if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
9439         define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo);
9440     }
9441 #ifndef CONFIG_USER_ONLY
9442     if (cpu_isar_feature(aa64_ecv, cpu)) {
9443         define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo);
9444     }
9445 #endif
9446     if (arm_feature(env, ARM_FEATURE_VAPA)) {
9447         ARMCPRegInfo vapa_cp_reginfo[] = {
9448             { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
9449               .access = PL1_RW, .resetvalue = 0,
9450               .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
9451                                      offsetoflow32(CPUARMState, cp15.par_ns) },
9452               .writefn = par_write},
9453 #ifndef CONFIG_USER_ONLY
9454             /* This underdecoding is safe because the reginfo is NO_RAW. */
9455             { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
9456               .access = PL1_W, .accessfn = ats_access,
9457               .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
9458 #endif
9459         };
9460 
9461         /*
9462          * When LPAE exists this 32-bit PAR register is an alias of the
9463          * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
9464          */
9465         if (arm_feature(env, ARM_FEATURE_LPAE)) {
9466             vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
9467         }
9468         define_arm_cp_regs(cpu, vapa_cp_reginfo);
9469     }
9470     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
9471         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
9472     }
9473     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
9474         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
9475     }
9476     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
9477         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
9478     }
9479     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
9480         define_arm_cp_regs(cpu, omap_cp_reginfo);
9481     }
9482     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
9483         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
9484     }
9485     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9486         define_arm_cp_regs(cpu, xscale_cp_reginfo);
9487     }
9488     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
9489         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
9490     }
9491     if (arm_feature(env, ARM_FEATURE_LPAE)) {
9492         define_arm_cp_regs(cpu, lpae_cp_reginfo);
9493     }
9494     if (cpu_isar_feature(aa32_jazelle, cpu)) {
9495         define_arm_cp_regs(cpu, jazelle_regs);
9496     }
9497     /*
9498      * Slightly awkwardly, the OMAP and StrongARM cores need all of
9499      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
9500      * be read-only (ie write causes UNDEF exception).
9501      */
9502     {
9503         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9504             /*
9505              * Pre-v8 MIDR space.
9506              * Note that the MIDR isn't a simple constant register because
9507              * of the TI925 behaviour where writes to another register can
9508              * cause the MIDR value to change.
9509              *
9510              * Unimplemented registers in the c15 0 0 0 space default to
9511              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
9512              * and friends override accordingly.
9513              */
9514             { .name = "MIDR",
9515               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
9516               .access = PL1_R, .resetvalue = cpu->midr,
9517               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
9518               .readfn = midr_read,
9519               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9520               .type = ARM_CP_OVERRIDE },
9521             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
9522             { .name = "DUMMY",
9523               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
9524               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9525             { .name = "DUMMY",
9526               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
9527               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9528             { .name = "DUMMY",
9529               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9530               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9531             { .name = "DUMMY",
9532               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9533               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9534             { .name = "DUMMY",
9535               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9536               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9537         };
9538         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9539             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9540               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9541               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9542               .fgt = FGT_MIDR_EL1,
9543               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9544               .readfn = midr_read },
9545             /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9546             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9547               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9548               .access = PL1_R, .resetvalue = cpu->midr },
9549             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9550               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9551               .access = PL1_R,
9552               .accessfn = access_aa64_tid1,
9553               .fgt = FGT_REVIDR_EL1,
9554               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9555         };
9556         ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9557             .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9558             .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9559             .access = PL1_R, .resetvalue = cpu->midr
9560         };
9561         ARMCPRegInfo id_cp_reginfo[] = {
9562             /* These are common to v8 and pre-v8 */
9563             { .name = "CTR",
9564               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9565               .access = PL1_R, .accessfn = ctr_el0_access,
9566               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9567             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9568               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9569               .access = PL0_R, .accessfn = ctr_el0_access,
9570               .fgt = FGT_CTR_EL0,
9571               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9572             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9573             { .name = "TCMTR",
9574               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9575               .access = PL1_R,
9576               .accessfn = access_aa32_tid1,
9577               .type = ARM_CP_CONST, .resetvalue = 0 },
9578         };
9579         /* TLBTR is specific to VMSA */
9580         ARMCPRegInfo id_tlbtr_reginfo = {
9581               .name = "TLBTR",
9582               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9583               .access = PL1_R,
9584               .accessfn = access_aa32_tid1,
9585               .type = ARM_CP_CONST, .resetvalue = 0,
9586         };
9587         /* MPUIR is specific to PMSA V6+ */
9588         ARMCPRegInfo id_mpuir_reginfo = {
9589               .name = "MPUIR",
9590               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9591               .access = PL1_R, .type = ARM_CP_CONST,
9592               .resetvalue = cpu->pmsav7_dregion << 8
9593         };
9594         /* HMPUIR is specific to PMSA V8 */
9595         ARMCPRegInfo id_hmpuir_reginfo = {
9596             .name = "HMPUIR",
9597             .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9598             .access = PL2_R, .type = ARM_CP_CONST,
9599             .resetvalue = cpu->pmsav8r_hdregion
9600         };
9601         static const ARMCPRegInfo crn0_wi_reginfo = {
9602             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9603             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9604             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9605         };
9606 #ifdef CONFIG_USER_ONLY
9607         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9608             { .name = "MIDR_EL1",
9609               .exported_bits = R_MIDR_EL1_REVISION_MASK |
9610                                R_MIDR_EL1_PARTNUM_MASK |
9611                                R_MIDR_EL1_ARCHITECTURE_MASK |
9612                                R_MIDR_EL1_VARIANT_MASK |
9613                                R_MIDR_EL1_IMPLEMENTER_MASK },
9614             { .name = "REVIDR_EL1" },
9615         };
9616         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9617 #endif
9618         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9619             arm_feature(env, ARM_FEATURE_STRONGARM)) {
9620             size_t i;
9621             /*
9622              * Register the blanket "writes ignored" value first to cover the
9623              * whole space. Then update the specific ID registers to allow write
9624              * access, so that they ignore writes rather than causing them to
9625              * UNDEF.
9626              */
9627             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9628             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9629                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9630             }
9631             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9632                 id_cp_reginfo[i].access = PL1_RW;
9633             }
9634             id_mpuir_reginfo.access = PL1_RW;
9635             id_tlbtr_reginfo.access = PL1_RW;
9636         }
9637         if (arm_feature(env, ARM_FEATURE_V8)) {
9638             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9639             if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9640                 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9641             }
9642         } else {
9643             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9644         }
9645         define_arm_cp_regs(cpu, id_cp_reginfo);
9646         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9647             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9648         } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9649                    arm_feature(env, ARM_FEATURE_V8)) {
9650             uint32_t i = 0;
9651             char *tmp_string;
9652 
9653             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9654             define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9655             define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9656 
9657             /* Register alias is only valid for first 32 indexes */
9658             for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9659                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9660                 uint8_t opc1 = extract32(i, 4, 1);
9661                 uint8_t opc2 = extract32(i, 0, 1) << 2;
9662 
9663                 tmp_string = g_strdup_printf("PRBAR%u", i);
9664                 ARMCPRegInfo tmp_prbarn_reginfo = {
9665                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9666                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9667                     .access = PL1_RW, .resetvalue = 0,
9668                     .accessfn = access_tvm_trvm,
9669                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9670                 };
9671                 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9672                 g_free(tmp_string);
9673 
9674                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9675                 tmp_string = g_strdup_printf("PRLAR%u", i);
9676                 ARMCPRegInfo tmp_prlarn_reginfo = {
9677                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9678                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9679                     .access = PL1_RW, .resetvalue = 0,
9680                     .accessfn = access_tvm_trvm,
9681                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9682                 };
9683                 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9684                 g_free(tmp_string);
9685             }
9686 
9687             /* Register alias is only valid for first 32 indexes */
9688             for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9689                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9690                 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9691                 uint8_t opc2 = extract32(i, 0, 1) << 2;
9692 
9693                 tmp_string = g_strdup_printf("HPRBAR%u", i);
9694                 ARMCPRegInfo tmp_hprbarn_reginfo = {
9695                     .name = tmp_string,
9696                     .type = ARM_CP_NO_RAW,
9697                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9698                     .access = PL2_RW, .resetvalue = 0,
9699                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9700                 };
9701                 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9702                 g_free(tmp_string);
9703 
9704                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9705                 tmp_string = g_strdup_printf("HPRLAR%u", i);
9706                 ARMCPRegInfo tmp_hprlarn_reginfo = {
9707                     .name = tmp_string,
9708                     .type = ARM_CP_NO_RAW,
9709                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9710                     .access = PL2_RW, .resetvalue = 0,
9711                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9712                 };
9713                 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9714                 g_free(tmp_string);
9715             }
9716         } else if (arm_feature(env, ARM_FEATURE_V7)) {
9717             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9718         }
9719     }
9720 
9721     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9722         ARMCPRegInfo mpidr_cp_reginfo[] = {
9723             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9724               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9725               .fgt = FGT_MPIDR_EL1,
9726               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9727         };
9728 #ifdef CONFIG_USER_ONLY
9729         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9730             { .name = "MPIDR_EL1",
9731               .fixed_bits = 0x0000000080000000 },
9732         };
9733         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9734 #endif
9735         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9736     }
9737 
9738     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9739         ARMCPRegInfo auxcr_reginfo[] = {
9740             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9741               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9742               .access = PL1_RW, .accessfn = access_tacr,
9743               .nv2_redirect_offset = 0x118,
9744               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9745             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9746               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9747               .access = PL2_RW, .type = ARM_CP_CONST,
9748               .resetvalue = 0 },
9749             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9750               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9751               .access = PL3_RW, .type = ARM_CP_CONST,
9752               .resetvalue = 0 },
9753         };
9754         define_arm_cp_regs(cpu, auxcr_reginfo);
9755         if (cpu_isar_feature(aa32_ac2, cpu)) {
9756             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9757         }
9758     }
9759 
9760     if (arm_feature(env, ARM_FEATURE_CBAR)) {
9761         /*
9762          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9763          * There are two flavours:
9764          *  (1) older 32-bit only cores have a simple 32-bit CBAR
9765          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9766          *      32-bit register visible to AArch32 at a different encoding
9767          *      to the "flavour 1" register and with the bits rearranged to
9768          *      be able to squash a 64-bit address into the 32-bit view.
9769          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9770          * in future if we support AArch32-only configs of some of the
9771          * AArch64 cores we might need to add a specific feature flag
9772          * to indicate cores with "flavour 2" CBAR.
9773          */
9774         if (arm_feature(env, ARM_FEATURE_V8)) {
9775             /* 32 bit view is [31:18] 0...0 [43:32]. */
9776             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9777                 | extract64(cpu->reset_cbar, 32, 12);
9778             ARMCPRegInfo cbar_reginfo[] = {
9779                 { .name = "CBAR",
9780                   .type = ARM_CP_CONST,
9781                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9782                   .access = PL1_R, .resetvalue = cbar32 },
9783                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9784                   .type = ARM_CP_CONST,
9785                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9786                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
9787             };
9788             /* We don't implement a r/w 64 bit CBAR currently */
9789             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9790             define_arm_cp_regs(cpu, cbar_reginfo);
9791         } else {
9792             ARMCPRegInfo cbar = {
9793                 .name = "CBAR",
9794                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9795                 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9796                 .fieldoffset = offsetof(CPUARMState,
9797                                         cp15.c15_config_base_address)
9798             };
9799             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9800                 cbar.access = PL1_R;
9801                 cbar.fieldoffset = 0;
9802                 cbar.type = ARM_CP_CONST;
9803             }
9804             define_one_arm_cp_reg(cpu, &cbar);
9805         }
9806     }
9807 
9808     if (arm_feature(env, ARM_FEATURE_VBAR)) {
9809         static const ARMCPRegInfo vbar_cp_reginfo[] = {
9810             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9811               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9812               .access = PL1_RW, .writefn = vbar_write,
9813               .accessfn = access_nv1,
9814               .fgt = FGT_VBAR_EL1,
9815               .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
9816               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9817                                      offsetof(CPUARMState, cp15.vbar_ns) },
9818               .resetvalue = 0 },
9819         };
9820         define_arm_cp_regs(cpu, vbar_cp_reginfo);
9821     }
9822 
9823     /* Generic registers whose values depend on the implementation */
9824     {
9825         ARMCPRegInfo sctlr = {
9826             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9827             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9828             .access = PL1_RW, .accessfn = access_tvm_trvm,
9829             .fgt = FGT_SCTLR_EL1,
9830             .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
9831             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9832                                    offsetof(CPUARMState, cp15.sctlr_ns) },
9833             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9834             .raw_writefn = raw_write,
9835         };
9836         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9837             /*
9838              * Normally we would always end the TB on an SCTLR write, but Linux
9839              * arch/arm/mach-pxa/sleep.S expects two instructions following
9840              * an MMU enable to execute from cache.  Imitate this behaviour.
9841              */
9842             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9843         }
9844         define_one_arm_cp_reg(cpu, &sctlr);
9845 
9846         if (arm_feature(env, ARM_FEATURE_PMSA) &&
9847             arm_feature(env, ARM_FEATURE_V8)) {
9848             ARMCPRegInfo vsctlr = {
9849                 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9850                 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9851                 .access = PL2_RW, .resetvalue = 0x0,
9852                 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9853             };
9854             define_one_arm_cp_reg(cpu, &vsctlr);
9855         }
9856     }
9857 
9858     if (cpu_isar_feature(aa64_lor, cpu)) {
9859         define_arm_cp_regs(cpu, lor_reginfo);
9860     }
9861     if (cpu_isar_feature(aa64_pan, cpu)) {
9862         define_one_arm_cp_reg(cpu, &pan_reginfo);
9863     }
9864 #ifndef CONFIG_USER_ONLY
9865     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9866         define_arm_cp_regs(cpu, ats1e1_reginfo);
9867     }
9868     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9869         define_arm_cp_regs(cpu, ats1cp_reginfo);
9870     }
9871 #endif
9872     if (cpu_isar_feature(aa64_uao, cpu)) {
9873         define_one_arm_cp_reg(cpu, &uao_reginfo);
9874     }
9875 
9876     if (cpu_isar_feature(aa64_dit, cpu)) {
9877         define_one_arm_cp_reg(cpu, &dit_reginfo);
9878     }
9879     if (cpu_isar_feature(aa64_ssbs, cpu)) {
9880         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9881     }
9882     if (cpu_isar_feature(any_ras, cpu)) {
9883         define_arm_cp_regs(cpu, minimal_ras_reginfo);
9884     }
9885 
9886     if (cpu_isar_feature(aa64_vh, cpu) ||
9887         cpu_isar_feature(aa64_debugv8p2, cpu)) {
9888         define_one_arm_cp_reg(cpu, &contextidr_el2);
9889     }
9890     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9891         define_arm_cp_regs(cpu, vhe_reginfo);
9892     }
9893 
9894     if (cpu_isar_feature(aa64_sve, cpu)) {
9895         define_arm_cp_regs(cpu, zcr_reginfo);
9896     }
9897 
9898     if (cpu_isar_feature(aa64_hcx, cpu)) {
9899         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9900     }
9901 
9902 #ifdef TARGET_AARCH64
9903     if (cpu_isar_feature(aa64_sme, cpu)) {
9904         define_arm_cp_regs(cpu, sme_reginfo);
9905     }
9906     if (cpu_isar_feature(aa64_pauth, cpu)) {
9907         define_arm_cp_regs(cpu, pauth_reginfo);
9908     }
9909     if (cpu_isar_feature(aa64_rndr, cpu)) {
9910         define_arm_cp_regs(cpu, rndr_reginfo);
9911     }
9912     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9913         define_arm_cp_regs(cpu, tlbirange_reginfo);
9914     }
9915     if (cpu_isar_feature(aa64_tlbios, cpu)) {
9916         define_arm_cp_regs(cpu, tlbios_reginfo);
9917     }
9918     /* Data Cache clean instructions up to PoP */
9919     if (cpu_isar_feature(aa64_dcpop, cpu)) {
9920         define_one_arm_cp_reg(cpu, dcpop_reg);
9921 
9922         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9923             define_one_arm_cp_reg(cpu, dcpodp_reg);
9924         }
9925     }
9926 
9927     /*
9928      * If full MTE is enabled, add all of the system registers.
9929      * If only "instructions available at EL0" are enabled,
9930      * then define only a RAZ/WI version of PSTATE.TCO.
9931      */
9932     if (cpu_isar_feature(aa64_mte, cpu)) {
9933         ARMCPRegInfo gmid_reginfo = {
9934             .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9935             .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9936             .access = PL1_R, .accessfn = access_aa64_tid5,
9937             .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9938         };
9939         define_one_arm_cp_reg(cpu, &gmid_reginfo);
9940         define_arm_cp_regs(cpu, mte_reginfo);
9941         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9942     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9943         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9944         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9945     }
9946 
9947     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9948         define_arm_cp_regs(cpu, scxtnum_reginfo);
9949     }
9950 
9951     if (cpu_isar_feature(aa64_fgt, cpu)) {
9952         define_arm_cp_regs(cpu, fgt_reginfo);
9953     }
9954 
9955     if (cpu_isar_feature(aa64_rme, cpu)) {
9956         define_arm_cp_regs(cpu, rme_reginfo);
9957         if (cpu_isar_feature(aa64_mte, cpu)) {
9958             define_arm_cp_regs(cpu, rme_mte_reginfo);
9959         }
9960     }
9961 
9962     if (cpu_isar_feature(aa64_nv2, cpu)) {
9963         define_arm_cp_regs(cpu, nv2_reginfo);
9964     }
9965 
9966     if (cpu_isar_feature(aa64_nmi, cpu)) {
9967         define_arm_cp_regs(cpu, nmi_reginfo);
9968     }
9969 #endif
9970 
9971     if (cpu_isar_feature(any_predinv, cpu)) {
9972         define_arm_cp_regs(cpu, predinv_reginfo);
9973     }
9974 
9975     if (cpu_isar_feature(any_ccidx, cpu)) {
9976         define_arm_cp_regs(cpu, ccsidr2_reginfo);
9977     }
9978 
9979 #ifndef CONFIG_USER_ONLY
9980     /*
9981      * Register redirections and aliases must be done last,
9982      * after the registers from the other extensions have been defined.
9983      */
9984     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9985         define_arm_vh_e2h_redirects_aliases(cpu);
9986     }
9987 #endif
9988 }
9989 
9990 /*
9991  * Private utility function for define_one_arm_cp_reg_with_opaque():
9992  * add a single reginfo struct to the hash table.
9993  */
9994 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9995                                    void *opaque, CPState state,
9996                                    CPSecureState secstate,
9997                                    int crm, int opc1, int opc2,
9998                                    const char *name)
9999 {
10000     CPUARMState *env = &cpu->env;
10001     uint32_t key;
10002     ARMCPRegInfo *r2;
10003     bool is64 = r->type & ARM_CP_64BIT;
10004     bool ns = secstate & ARM_CP_SECSTATE_NS;
10005     int cp = r->cp;
10006     size_t name_len;
10007     bool make_const;
10008 
10009     switch (state) {
10010     case ARM_CP_STATE_AA32:
10011         /* We assume it is a cp15 register if the .cp field is left unset. */
10012         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
10013             cp = 15;
10014         }
10015         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
10016         break;
10017     case ARM_CP_STATE_AA64:
10018         /*
10019          * To allow abbreviation of ARMCPRegInfo definitions, we treat
10020          * cp == 0 as equivalent to the value for "standard guest-visible
10021          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
10022          * in their AArch64 view (the .cp value may be non-zero for the
10023          * benefit of the AArch32 view).
10024          */
10025         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
10026             cp = CP_REG_ARM64_SYSREG_CP;
10027         }
10028         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
10029         break;
10030     default:
10031         g_assert_not_reached();
10032     }
10033 
10034     /* Overriding of an existing definition must be explicitly requested. */
10035     if (!(r->type & ARM_CP_OVERRIDE)) {
10036         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
10037         if (oldreg) {
10038             assert(oldreg->type & ARM_CP_OVERRIDE);
10039         }
10040     }
10041 
10042     /*
10043      * Eliminate registers that are not present because the EL is missing.
10044      * Doing this here makes it easier to put all registers for a given
10045      * feature into the same ARMCPRegInfo array and define them all at once.
10046      */
10047     make_const = false;
10048     if (arm_feature(env, ARM_FEATURE_EL3)) {
10049         /*
10050          * An EL2 register without EL2 but with EL3 is (usually) RES0.
10051          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
10052          */
10053         int min_el = ctz32(r->access) / 2;
10054         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
10055             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
10056                 return;
10057             }
10058             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
10059         }
10060     } else {
10061         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
10062                                  ? PL2_RW : PL1_RW);
10063         if ((r->access & max_el) == 0) {
10064             return;
10065         }
10066     }
10067 
10068     /* Combine cpreg and name into one allocation. */
10069     name_len = strlen(name) + 1;
10070     r2 = g_malloc(sizeof(*r2) + name_len);
10071     *r2 = *r;
10072     r2->name = memcpy(r2 + 1, name, name_len);
10073 
10074     /*
10075      * Update fields to match the instantiation, overwiting wildcards
10076      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
10077      */
10078     r2->cp = cp;
10079     r2->crm = crm;
10080     r2->opc1 = opc1;
10081     r2->opc2 = opc2;
10082     r2->state = state;
10083     r2->secure = secstate;
10084     if (opaque) {
10085         r2->opaque = opaque;
10086     }
10087 
10088     if (make_const) {
10089         /* This should not have been a very special register to begin. */
10090         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
10091         assert(old_special == 0 || old_special == ARM_CP_NOP);
10092         /*
10093          * Set the special function to CONST, retaining the other flags.
10094          * This is important for e.g. ARM_CP_SVE so that we still
10095          * take the SVE trap if CPTR_EL3.EZ == 0.
10096          */
10097         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
10098         /*
10099          * Usually, these registers become RES0, but there are a few
10100          * special cases like VPIDR_EL2 which have a constant non-zero
10101          * value with writes ignored.
10102          */
10103         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
10104             r2->resetvalue = 0;
10105         }
10106         /*
10107          * ARM_CP_CONST has precedence, so removing the callbacks and
10108          * offsets are not strictly necessary, but it is potentially
10109          * less confusing to debug later.
10110          */
10111         r2->readfn = NULL;
10112         r2->writefn = NULL;
10113         r2->raw_readfn = NULL;
10114         r2->raw_writefn = NULL;
10115         r2->resetfn = NULL;
10116         r2->fieldoffset = 0;
10117         r2->bank_fieldoffsets[0] = 0;
10118         r2->bank_fieldoffsets[1] = 0;
10119     } else {
10120         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
10121 
10122         if (isbanked) {
10123             /*
10124              * Register is banked (using both entries in array).
10125              * Overwriting fieldoffset as the array is only used to define
10126              * banked registers but later only fieldoffset is used.
10127              */
10128             r2->fieldoffset = r->bank_fieldoffsets[ns];
10129         }
10130         if (state == ARM_CP_STATE_AA32) {
10131             if (isbanked) {
10132                 /*
10133                  * If the register is banked then we don't need to migrate or
10134                  * reset the 32-bit instance in certain cases:
10135                  *
10136                  * 1) If the register has both 32-bit and 64-bit instances
10137                  *    then we can count on the 64-bit instance taking care
10138                  *    of the non-secure bank.
10139                  * 2) If ARMv8 is enabled then we can count on a 64-bit
10140                  *    version taking care of the secure bank.  This requires
10141                  *    that separate 32 and 64-bit definitions are provided.
10142                  */
10143                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
10144                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
10145                     r2->type |= ARM_CP_ALIAS;
10146                 }
10147             } else if ((secstate != r->secure) && !ns) {
10148                 /*
10149                  * The register is not banked so we only want to allow
10150                  * migration of the non-secure instance.
10151                  */
10152                 r2->type |= ARM_CP_ALIAS;
10153             }
10154 
10155             if (HOST_BIG_ENDIAN &&
10156                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
10157                 r2->fieldoffset += sizeof(uint32_t);
10158             }
10159         }
10160     }
10161 
10162     /*
10163      * By convention, for wildcarded registers only the first
10164      * entry is used for migration; the others are marked as
10165      * ALIAS so we don't try to transfer the register
10166      * multiple times. Special registers (ie NOP/WFI) are
10167      * never migratable and not even raw-accessible.
10168      */
10169     if (r2->type & ARM_CP_SPECIAL_MASK) {
10170         r2->type |= ARM_CP_NO_RAW;
10171     }
10172     if (((r->crm == CP_ANY) && crm != 0) ||
10173         ((r->opc1 == CP_ANY) && opc1 != 0) ||
10174         ((r->opc2 == CP_ANY) && opc2 != 0)) {
10175         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
10176     }
10177 
10178     /*
10179      * Check that raw accesses are either forbidden or handled. Note that
10180      * we can't assert this earlier because the setup of fieldoffset for
10181      * banked registers has to be done first.
10182      */
10183     if (!(r2->type & ARM_CP_NO_RAW)) {
10184         assert(!raw_accessors_invalid(r2));
10185     }
10186 
10187     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
10188 }
10189 
10190 
10191 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
10192                                        const ARMCPRegInfo *r, void *opaque)
10193 {
10194     /*
10195      * Define implementations of coprocessor registers.
10196      * We store these in a hashtable because typically
10197      * there are less than 150 registers in a space which
10198      * is 16*16*16*8*8 = 262144 in size.
10199      * Wildcarding is supported for the crm, opc1 and opc2 fields.
10200      * If a register is defined twice then the second definition is
10201      * used, so this can be used to define some generic registers and
10202      * then override them with implementation specific variations.
10203      * At least one of the original and the second definition should
10204      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
10205      * against accidental use.
10206      *
10207      * The state field defines whether the register is to be
10208      * visible in the AArch32 or AArch64 execution state. If the
10209      * state is set to ARM_CP_STATE_BOTH then we synthesise a
10210      * reginfo structure for the AArch32 view, which sees the lower
10211      * 32 bits of the 64 bit register.
10212      *
10213      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
10214      * be wildcarded. AArch64 registers are always considered to be 64
10215      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
10216      * the register, if any.
10217      */
10218     int crm, opc1, opc2;
10219     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
10220     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
10221     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
10222     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
10223     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
10224     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
10225     CPState state;
10226 
10227     /* 64 bit registers have only CRm and Opc1 fields */
10228     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
10229     /* op0 only exists in the AArch64 encodings */
10230     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
10231     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
10232     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
10233     /*
10234      * This API is only for Arm's system coprocessors (14 and 15) or
10235      * (M-profile or v7A-and-earlier only) for implementation defined
10236      * coprocessors in the range 0..7.  Our decode assumes this, since
10237      * 8..13 can be used for other insns including VFP and Neon. See
10238      * valid_cp() in translate.c.  Assert here that we haven't tried
10239      * to use an invalid coprocessor number.
10240      */
10241     switch (r->state) {
10242     case ARM_CP_STATE_BOTH:
10243         /* 0 has a special meaning, but otherwise the same rules as AA32. */
10244         if (r->cp == 0) {
10245             break;
10246         }
10247         /* fall through */
10248     case ARM_CP_STATE_AA32:
10249         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
10250             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
10251             assert(r->cp >= 14 && r->cp <= 15);
10252         } else {
10253             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
10254         }
10255         break;
10256     case ARM_CP_STATE_AA64:
10257         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
10258         break;
10259     default:
10260         g_assert_not_reached();
10261     }
10262     /*
10263      * The AArch64 pseudocode CheckSystemAccess() specifies that op1
10264      * encodes a minimum access level for the register. We roll this
10265      * runtime check into our general permission check code, so check
10266      * here that the reginfo's specified permissions are strict enough
10267      * to encompass the generic architectural permission check.
10268      */
10269     if (r->state != ARM_CP_STATE_AA32) {
10270         CPAccessRights mask;
10271         switch (r->opc1) {
10272         case 0:
10273             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
10274             mask = PL0U_R | PL1_RW;
10275             break;
10276         case 1: case 2:
10277             /* min_EL EL1 */
10278             mask = PL1_RW;
10279             break;
10280         case 3:
10281             /* min_EL EL0 */
10282             mask = PL0_RW;
10283             break;
10284         case 4:
10285         case 5:
10286             /* min_EL EL2 */
10287             mask = PL2_RW;
10288             break;
10289         case 6:
10290             /* min_EL EL3 */
10291             mask = PL3_RW;
10292             break;
10293         case 7:
10294             /* min_EL EL1, secure mode only (we don't check the latter) */
10295             mask = PL1_RW;
10296             break;
10297         default:
10298             /* broken reginfo with out-of-range opc1 */
10299             g_assert_not_reached();
10300         }
10301         /* assert our permissions are not too lax (stricter is fine) */
10302         assert((r->access & ~mask) == 0);
10303     }
10304 
10305     /*
10306      * Check that the register definition has enough info to handle
10307      * reads and writes if they are permitted.
10308      */
10309     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
10310         if (r->access & PL3_R) {
10311             assert((r->fieldoffset ||
10312                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10313                    r->readfn);
10314         }
10315         if (r->access & PL3_W) {
10316             assert((r->fieldoffset ||
10317                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10318                    r->writefn);
10319         }
10320     }
10321 
10322     for (crm = crmmin; crm <= crmmax; crm++) {
10323         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
10324             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
10325                 for (state = ARM_CP_STATE_AA32;
10326                      state <= ARM_CP_STATE_AA64; state++) {
10327                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
10328                         continue;
10329                     }
10330                     if (state == ARM_CP_STATE_AA32) {
10331                         /*
10332                          * Under AArch32 CP registers can be common
10333                          * (same for secure and non-secure world) or banked.
10334                          */
10335                         char *name;
10336 
10337                         switch (r->secure) {
10338                         case ARM_CP_SECSTATE_S:
10339                         case ARM_CP_SECSTATE_NS:
10340                             add_cpreg_to_hashtable(cpu, r, opaque, state,
10341                                                    r->secure, crm, opc1, opc2,
10342                                                    r->name);
10343                             break;
10344                         case ARM_CP_SECSTATE_BOTH:
10345                             name = g_strdup_printf("%s_S", r->name);
10346                             add_cpreg_to_hashtable(cpu, r, opaque, state,
10347                                                    ARM_CP_SECSTATE_S,
10348                                                    crm, opc1, opc2, name);
10349                             g_free(name);
10350                             add_cpreg_to_hashtable(cpu, r, opaque, state,
10351                                                    ARM_CP_SECSTATE_NS,
10352                                                    crm, opc1, opc2, r->name);
10353                             break;
10354                         default:
10355                             g_assert_not_reached();
10356                         }
10357                     } else {
10358                         /*
10359                          * AArch64 registers get mapped to non-secure instance
10360                          * of AArch32
10361                          */
10362                         add_cpreg_to_hashtable(cpu, r, opaque, state,
10363                                                ARM_CP_SECSTATE_NS,
10364                                                crm, opc1, opc2, r->name);
10365                     }
10366                 }
10367             }
10368         }
10369     }
10370 }
10371 
10372 /* Define a whole list of registers */
10373 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
10374                                         void *opaque, size_t len)
10375 {
10376     size_t i;
10377     for (i = 0; i < len; ++i) {
10378         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
10379     }
10380 }
10381 
10382 /*
10383  * Modify ARMCPRegInfo for access from userspace.
10384  *
10385  * This is a data driven modification directed by
10386  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
10387  * user-space cannot alter any values and dynamic values pertaining to
10388  * execution state are hidden from user space view anyway.
10389  */
10390 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
10391                                  const ARMCPRegUserSpaceInfo *mods,
10392                                  size_t mods_len)
10393 {
10394     for (size_t mi = 0; mi < mods_len; ++mi) {
10395         const ARMCPRegUserSpaceInfo *m = mods + mi;
10396         GPatternSpec *pat = NULL;
10397 
10398         if (m->is_glob) {
10399             pat = g_pattern_spec_new(m->name);
10400         }
10401         for (size_t ri = 0; ri < regs_len; ++ri) {
10402             ARMCPRegInfo *r = regs + ri;
10403 
10404             if (pat && g_pattern_match_string(pat, r->name)) {
10405                 r->type = ARM_CP_CONST;
10406                 r->access = PL0U_R;
10407                 r->resetvalue = 0;
10408                 /* continue */
10409             } else if (strcmp(r->name, m->name) == 0) {
10410                 r->type = ARM_CP_CONST;
10411                 r->access = PL0U_R;
10412                 r->resetvalue &= m->exported_bits;
10413                 r->resetvalue |= m->fixed_bits;
10414                 break;
10415             }
10416         }
10417         if (pat) {
10418             g_pattern_spec_free(pat);
10419         }
10420     }
10421 }
10422 
10423 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
10424 {
10425     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
10426 }
10427 
10428 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
10429                          uint64_t value)
10430 {
10431     /* Helper coprocessor write function for write-ignore registers */
10432 }
10433 
10434 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
10435 {
10436     /* Helper coprocessor write function for read-as-zero registers */
10437     return 0;
10438 }
10439 
10440 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
10441 {
10442     /* Helper coprocessor reset function for do-nothing-on-reset registers */
10443 }
10444 
10445 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
10446 {
10447     /*
10448      * Return true if it is not valid for us to switch to
10449      * this CPU mode (ie all the UNPREDICTABLE cases in
10450      * the ARM ARM CPSRWriteByInstr pseudocode).
10451      */
10452 
10453     /* Changes to or from Hyp via MSR and CPS are illegal. */
10454     if (write_type == CPSRWriteByInstr &&
10455         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
10456          mode == ARM_CPU_MODE_HYP)) {
10457         return 1;
10458     }
10459 
10460     switch (mode) {
10461     case ARM_CPU_MODE_USR:
10462         return 0;
10463     case ARM_CPU_MODE_SYS:
10464     case ARM_CPU_MODE_SVC:
10465     case ARM_CPU_MODE_ABT:
10466     case ARM_CPU_MODE_UND:
10467     case ARM_CPU_MODE_IRQ:
10468     case ARM_CPU_MODE_FIQ:
10469         /*
10470          * Note that we don't implement the IMPDEF NSACR.RFR which in v7
10471          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
10472          */
10473         /*
10474          * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10475          * and CPS are treated as illegal mode changes.
10476          */
10477         if (write_type == CPSRWriteByInstr &&
10478             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
10479             (arm_hcr_el2_eff(env) & HCR_TGE)) {
10480             return 1;
10481         }
10482         return 0;
10483     case ARM_CPU_MODE_HYP:
10484         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
10485     case ARM_CPU_MODE_MON:
10486         return arm_current_el(env) < 3;
10487     default:
10488         return 1;
10489     }
10490 }
10491 
10492 uint32_t cpsr_read(CPUARMState *env)
10493 {
10494     int ZF;
10495     ZF = (env->ZF == 0);
10496     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10497         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10498         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10499         | ((env->condexec_bits & 0xfc) << 8)
10500         | (env->GE << 16) | (env->daif & CPSR_AIF);
10501 }
10502 
10503 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10504                 CPSRWriteType write_type)
10505 {
10506     uint32_t changed_daif;
10507     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10508         (mask & (CPSR_M | CPSR_E | CPSR_IL));
10509 
10510     if (mask & CPSR_NZCV) {
10511         env->ZF = (~val) & CPSR_Z;
10512         env->NF = val;
10513         env->CF = (val >> 29) & 1;
10514         env->VF = (val << 3) & 0x80000000;
10515     }
10516     if (mask & CPSR_Q) {
10517         env->QF = ((val & CPSR_Q) != 0);
10518     }
10519     if (mask & CPSR_T) {
10520         env->thumb = ((val & CPSR_T) != 0);
10521     }
10522     if (mask & CPSR_IT_0_1) {
10523         env->condexec_bits &= ~3;
10524         env->condexec_bits |= (val >> 25) & 3;
10525     }
10526     if (mask & CPSR_IT_2_7) {
10527         env->condexec_bits &= 3;
10528         env->condexec_bits |= (val >> 8) & 0xfc;
10529     }
10530     if (mask & CPSR_GE) {
10531         env->GE = (val >> 16) & 0xf;
10532     }
10533 
10534     /*
10535      * In a V7 implementation that includes the security extensions but does
10536      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10537      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10538      * bits respectively.
10539      *
10540      * In a V8 implementation, it is permitted for privileged software to
10541      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10542      */
10543     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10544         arm_feature(env, ARM_FEATURE_EL3) &&
10545         !arm_feature(env, ARM_FEATURE_EL2) &&
10546         !arm_is_secure(env)) {
10547 
10548         changed_daif = (env->daif ^ val) & mask;
10549 
10550         if (changed_daif & CPSR_A) {
10551             /*
10552              * Check to see if we are allowed to change the masking of async
10553              * abort exceptions from a non-secure state.
10554              */
10555             if (!(env->cp15.scr_el3 & SCR_AW)) {
10556                 qemu_log_mask(LOG_GUEST_ERROR,
10557                               "Ignoring attempt to switch CPSR_A flag from "
10558                               "non-secure world with SCR.AW bit clear\n");
10559                 mask &= ~CPSR_A;
10560             }
10561         }
10562 
10563         if (changed_daif & CPSR_F) {
10564             /*
10565              * Check to see if we are allowed to change the masking of FIQ
10566              * exceptions from a non-secure state.
10567              */
10568             if (!(env->cp15.scr_el3 & SCR_FW)) {
10569                 qemu_log_mask(LOG_GUEST_ERROR,
10570                               "Ignoring attempt to switch CPSR_F flag from "
10571                               "non-secure world with SCR.FW bit clear\n");
10572                 mask &= ~CPSR_F;
10573             }
10574 
10575             /*
10576              * Check whether non-maskable FIQ (NMFI) support is enabled.
10577              * If this bit is set software is not allowed to mask
10578              * FIQs, but is allowed to set CPSR_F to 0.
10579              */
10580             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10581                 (val & CPSR_F)) {
10582                 qemu_log_mask(LOG_GUEST_ERROR,
10583                               "Ignoring attempt to enable CPSR_F flag "
10584                               "(non-maskable FIQ [NMFI] support enabled)\n");
10585                 mask &= ~CPSR_F;
10586             }
10587         }
10588     }
10589 
10590     env->daif &= ~(CPSR_AIF & mask);
10591     env->daif |= val & CPSR_AIF & mask;
10592 
10593     if (write_type != CPSRWriteRaw &&
10594         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10595         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10596             /*
10597              * Note that we can only get here in USR mode if this is a
10598              * gdb stub write; for this case we follow the architectural
10599              * behaviour for guest writes in USR mode of ignoring an attempt
10600              * to switch mode. (Those are caught by translate.c for writes
10601              * triggered by guest instructions.)
10602              */
10603             mask &= ~CPSR_M;
10604         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10605             /*
10606              * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10607              * v7, and has defined behaviour in v8:
10608              *  + leave CPSR.M untouched
10609              *  + allow changes to the other CPSR fields
10610              *  + set PSTATE.IL
10611              * For user changes via the GDB stub, we don't set PSTATE.IL,
10612              * as this would be unnecessarily harsh for a user error.
10613              */
10614             mask &= ~CPSR_M;
10615             if (write_type != CPSRWriteByGDBStub &&
10616                 arm_feature(env, ARM_FEATURE_V8)) {
10617                 mask |= CPSR_IL;
10618                 val |= CPSR_IL;
10619             }
10620             qemu_log_mask(LOG_GUEST_ERROR,
10621                           "Illegal AArch32 mode switch attempt from %s to %s\n",
10622                           aarch32_mode_name(env->uncached_cpsr),
10623                           aarch32_mode_name(val));
10624         } else {
10625             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10626                           write_type == CPSRWriteExceptionReturn ?
10627                           "Exception return from AArch32" :
10628                           "AArch32 mode switch from",
10629                           aarch32_mode_name(env->uncached_cpsr),
10630                           aarch32_mode_name(val), env->regs[15]);
10631             switch_mode(env, val & CPSR_M);
10632         }
10633     }
10634     mask &= ~CACHED_CPSR_BITS;
10635     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10636     if (tcg_enabled() && rebuild_hflags) {
10637         arm_rebuild_hflags(env);
10638     }
10639 }
10640 
10641 #ifdef CONFIG_USER_ONLY
10642 
10643 static void switch_mode(CPUARMState *env, int mode)
10644 {
10645     ARMCPU *cpu = env_archcpu(env);
10646 
10647     if (mode != ARM_CPU_MODE_USR) {
10648         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10649     }
10650 }
10651 
10652 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10653                                  uint32_t cur_el, bool secure)
10654 {
10655     return 1;
10656 }
10657 
10658 void aarch64_sync_64_to_32(CPUARMState *env)
10659 {
10660     g_assert_not_reached();
10661 }
10662 
10663 #else
10664 
10665 static void switch_mode(CPUARMState *env, int mode)
10666 {
10667     int old_mode;
10668     int i;
10669 
10670     old_mode = env->uncached_cpsr & CPSR_M;
10671     if (mode == old_mode) {
10672         return;
10673     }
10674 
10675     if (old_mode == ARM_CPU_MODE_FIQ) {
10676         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10677         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10678     } else if (mode == ARM_CPU_MODE_FIQ) {
10679         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10680         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10681     }
10682 
10683     i = bank_number(old_mode);
10684     env->banked_r13[i] = env->regs[13];
10685     env->banked_spsr[i] = env->spsr;
10686 
10687     i = bank_number(mode);
10688     env->regs[13] = env->banked_r13[i];
10689     env->spsr = env->banked_spsr[i];
10690 
10691     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10692     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10693 }
10694 
10695 /*
10696  * Physical Interrupt Target EL Lookup Table
10697  *
10698  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10699  *
10700  * The below multi-dimensional table is used for looking up the target
10701  * exception level given numerous condition criteria.  Specifically, the
10702  * target EL is based on SCR and HCR routing controls as well as the
10703  * currently executing EL and secure state.
10704  *
10705  *    Dimensions:
10706  *    target_el_table[2][2][2][2][2][4]
10707  *                    |  |  |  |  |  +--- Current EL
10708  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
10709  *                    |  |  |  +--------- HCR mask override
10710  *                    |  |  +------------ SCR exec state control
10711  *                    |  +--------------- SCR mask override
10712  *                    +------------------ 32-bit(0)/64-bit(1) EL3
10713  *
10714  *    The table values are as such:
10715  *    0-3 = EL0-EL3
10716  *     -1 = Cannot occur
10717  *
10718  * The ARM ARM target EL table includes entries indicating that an "exception
10719  * is not taken".  The two cases where this is applicable are:
10720  *    1) An exception is taken from EL3 but the SCR does not have the exception
10721  *    routed to EL3.
10722  *    2) An exception is taken from EL2 but the HCR does not have the exception
10723  *    routed to EL2.
10724  * In these two cases, the below table contain a target of EL1.  This value is
10725  * returned as it is expected that the consumer of the table data will check
10726  * for "target EL >= current EL" to ensure the exception is not taken.
10727  *
10728  *            SCR     HCR
10729  *         64  EA     AMO                 From
10730  *        BIT IRQ     IMO      Non-secure         Secure
10731  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
10732  */
10733 static const int8_t target_el_table[2][2][2][2][2][4] = {
10734     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10735        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
10736       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10737        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
10738      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10739        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
10740       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10741        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
10742     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
10743        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
10744       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
10745        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
10746      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
10747        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
10748       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
10749        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
10750 };
10751 
10752 /*
10753  * Determine the target EL for physical exceptions
10754  */
10755 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10756                                  uint32_t cur_el, bool secure)
10757 {
10758     CPUARMState *env = cpu_env(cs);
10759     bool rw;
10760     bool scr;
10761     bool hcr;
10762     int target_el;
10763     /* Is the highest EL AArch64? */
10764     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10765     uint64_t hcr_el2;
10766 
10767     if (arm_feature(env, ARM_FEATURE_EL3)) {
10768         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10769     } else {
10770         /*
10771          * Either EL2 is the highest EL (and so the EL2 register width
10772          * is given by is64); or there is no EL2 or EL3, in which case
10773          * the value of 'rw' does not affect the table lookup anyway.
10774          */
10775         rw = is64;
10776     }
10777 
10778     hcr_el2 = arm_hcr_el2_eff(env);
10779     switch (excp_idx) {
10780     case EXCP_IRQ:
10781     case EXCP_NMI:
10782         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10783         hcr = hcr_el2 & HCR_IMO;
10784         break;
10785     case EXCP_FIQ:
10786         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10787         hcr = hcr_el2 & HCR_FMO;
10788         break;
10789     default:
10790         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10791         hcr = hcr_el2 & HCR_AMO;
10792         break;
10793     };
10794 
10795     /*
10796      * For these purposes, TGE and AMO/IMO/FMO both force the
10797      * interrupt to EL2.  Fold TGE into the bit extracted above.
10798      */
10799     hcr |= (hcr_el2 & HCR_TGE) != 0;
10800 
10801     /* Perform a table-lookup for the target EL given the current state */
10802     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10803 
10804     assert(target_el > 0);
10805 
10806     return target_el;
10807 }
10808 
10809 void arm_log_exception(CPUState *cs)
10810 {
10811     int idx = cs->exception_index;
10812 
10813     if (qemu_loglevel_mask(CPU_LOG_INT)) {
10814         const char *exc = NULL;
10815         static const char * const excnames[] = {
10816             [EXCP_UDEF] = "Undefined Instruction",
10817             [EXCP_SWI] = "SVC",
10818             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10819             [EXCP_DATA_ABORT] = "Data Abort",
10820             [EXCP_IRQ] = "IRQ",
10821             [EXCP_FIQ] = "FIQ",
10822             [EXCP_BKPT] = "Breakpoint",
10823             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10824             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10825             [EXCP_HVC] = "Hypervisor Call",
10826             [EXCP_HYP_TRAP] = "Hypervisor Trap",
10827             [EXCP_SMC] = "Secure Monitor Call",
10828             [EXCP_VIRQ] = "Virtual IRQ",
10829             [EXCP_VFIQ] = "Virtual FIQ",
10830             [EXCP_SEMIHOST] = "Semihosting call",
10831             [EXCP_NOCP] = "v7M NOCP UsageFault",
10832             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10833             [EXCP_STKOF] = "v8M STKOF UsageFault",
10834             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10835             [EXCP_LSERR] = "v8M LSERR UsageFault",
10836             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10837             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10838             [EXCP_VSERR] = "Virtual SERR",
10839             [EXCP_GPC] = "Granule Protection Check",
10840             [EXCP_NMI] = "NMI",
10841             [EXCP_VINMI] = "Virtual IRQ NMI",
10842             [EXCP_VFNMI] = "Virtual FIQ NMI",
10843         };
10844 
10845         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10846             exc = excnames[idx];
10847         }
10848         if (!exc) {
10849             exc = "unknown";
10850         }
10851         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10852                       idx, exc, cs->cpu_index);
10853     }
10854 }
10855 
10856 /*
10857  * Function used to synchronize QEMU's AArch64 register set with AArch32
10858  * register set.  This is necessary when switching between AArch32 and AArch64
10859  * execution state.
10860  */
10861 void aarch64_sync_32_to_64(CPUARMState *env)
10862 {
10863     int i;
10864     uint32_t mode = env->uncached_cpsr & CPSR_M;
10865 
10866     /* We can blanket copy R[0:7] to X[0:7] */
10867     for (i = 0; i < 8; i++) {
10868         env->xregs[i] = env->regs[i];
10869     }
10870 
10871     /*
10872      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10873      * Otherwise, they come from the banked user regs.
10874      */
10875     if (mode == ARM_CPU_MODE_FIQ) {
10876         for (i = 8; i < 13; i++) {
10877             env->xregs[i] = env->usr_regs[i - 8];
10878         }
10879     } else {
10880         for (i = 8; i < 13; i++) {
10881             env->xregs[i] = env->regs[i];
10882         }
10883     }
10884 
10885     /*
10886      * Registers x13-x23 are the various mode SP and FP registers. Registers
10887      * r13 and r14 are only copied if we are in that mode, otherwise we copy
10888      * from the mode banked register.
10889      */
10890     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10891         env->xregs[13] = env->regs[13];
10892         env->xregs[14] = env->regs[14];
10893     } else {
10894         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10895         /* HYP is an exception in that it is copied from r14 */
10896         if (mode == ARM_CPU_MODE_HYP) {
10897             env->xregs[14] = env->regs[14];
10898         } else {
10899             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10900         }
10901     }
10902 
10903     if (mode == ARM_CPU_MODE_HYP) {
10904         env->xregs[15] = env->regs[13];
10905     } else {
10906         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10907     }
10908 
10909     if (mode == ARM_CPU_MODE_IRQ) {
10910         env->xregs[16] = env->regs[14];
10911         env->xregs[17] = env->regs[13];
10912     } else {
10913         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10914         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10915     }
10916 
10917     if (mode == ARM_CPU_MODE_SVC) {
10918         env->xregs[18] = env->regs[14];
10919         env->xregs[19] = env->regs[13];
10920     } else {
10921         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10922         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10923     }
10924 
10925     if (mode == ARM_CPU_MODE_ABT) {
10926         env->xregs[20] = env->regs[14];
10927         env->xregs[21] = env->regs[13];
10928     } else {
10929         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10930         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10931     }
10932 
10933     if (mode == ARM_CPU_MODE_UND) {
10934         env->xregs[22] = env->regs[14];
10935         env->xregs[23] = env->regs[13];
10936     } else {
10937         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10938         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10939     }
10940 
10941     /*
10942      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10943      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
10944      * FIQ bank for r8-r14.
10945      */
10946     if (mode == ARM_CPU_MODE_FIQ) {
10947         for (i = 24; i < 31; i++) {
10948             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
10949         }
10950     } else {
10951         for (i = 24; i < 29; i++) {
10952             env->xregs[i] = env->fiq_regs[i - 24];
10953         }
10954         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10955         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10956     }
10957 
10958     env->pc = env->regs[15];
10959 }
10960 
10961 /*
10962  * Function used to synchronize QEMU's AArch32 register set with AArch64
10963  * register set.  This is necessary when switching between AArch32 and AArch64
10964  * execution state.
10965  */
10966 void aarch64_sync_64_to_32(CPUARMState *env)
10967 {
10968     int i;
10969     uint32_t mode = env->uncached_cpsr & CPSR_M;
10970 
10971     /* We can blanket copy X[0:7] to R[0:7] */
10972     for (i = 0; i < 8; i++) {
10973         env->regs[i] = env->xregs[i];
10974     }
10975 
10976     /*
10977      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10978      * Otherwise, we copy x8-x12 into the banked user regs.
10979      */
10980     if (mode == ARM_CPU_MODE_FIQ) {
10981         for (i = 8; i < 13; i++) {
10982             env->usr_regs[i - 8] = env->xregs[i];
10983         }
10984     } else {
10985         for (i = 8; i < 13; i++) {
10986             env->regs[i] = env->xregs[i];
10987         }
10988     }
10989 
10990     /*
10991      * Registers r13 & r14 depend on the current mode.
10992      * If we are in a given mode, we copy the corresponding x registers to r13
10993      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
10994      * for the mode.
10995      */
10996     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10997         env->regs[13] = env->xregs[13];
10998         env->regs[14] = env->xregs[14];
10999     } else {
11000         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
11001 
11002         /*
11003          * HYP is an exception in that it does not have its own banked r14 but
11004          * shares the USR r14
11005          */
11006         if (mode == ARM_CPU_MODE_HYP) {
11007             env->regs[14] = env->xregs[14];
11008         } else {
11009             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
11010         }
11011     }
11012 
11013     if (mode == ARM_CPU_MODE_HYP) {
11014         env->regs[13] = env->xregs[15];
11015     } else {
11016         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
11017     }
11018 
11019     if (mode == ARM_CPU_MODE_IRQ) {
11020         env->regs[14] = env->xregs[16];
11021         env->regs[13] = env->xregs[17];
11022     } else {
11023         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
11024         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
11025     }
11026 
11027     if (mode == ARM_CPU_MODE_SVC) {
11028         env->regs[14] = env->xregs[18];
11029         env->regs[13] = env->xregs[19];
11030     } else {
11031         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
11032         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
11033     }
11034 
11035     if (mode == ARM_CPU_MODE_ABT) {
11036         env->regs[14] = env->xregs[20];
11037         env->regs[13] = env->xregs[21];
11038     } else {
11039         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
11040         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
11041     }
11042 
11043     if (mode == ARM_CPU_MODE_UND) {
11044         env->regs[14] = env->xregs[22];
11045         env->regs[13] = env->xregs[23];
11046     } else {
11047         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
11048         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
11049     }
11050 
11051     /*
11052      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
11053      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
11054      * FIQ bank for r8-r14.
11055      */
11056     if (mode == ARM_CPU_MODE_FIQ) {
11057         for (i = 24; i < 31; i++) {
11058             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
11059         }
11060     } else {
11061         for (i = 24; i < 29; i++) {
11062             env->fiq_regs[i - 24] = env->xregs[i];
11063         }
11064         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
11065         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
11066     }
11067 
11068     env->regs[15] = env->pc;
11069 }
11070 
11071 static void take_aarch32_exception(CPUARMState *env, int new_mode,
11072                                    uint32_t mask, uint32_t offset,
11073                                    uint32_t newpc)
11074 {
11075     int new_el;
11076 
11077     /* Change the CPU state so as to actually take the exception. */
11078     switch_mode(env, new_mode);
11079 
11080     /*
11081      * For exceptions taken to AArch32 we must clear the SS bit in both
11082      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
11083      */
11084     env->pstate &= ~PSTATE_SS;
11085     env->spsr = cpsr_read(env);
11086     /* Clear IT bits.  */
11087     env->condexec_bits = 0;
11088     /* Switch to the new mode, and to the correct instruction set.  */
11089     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
11090 
11091     /* This must be after mode switching. */
11092     new_el = arm_current_el(env);
11093 
11094     /* Set new mode endianness */
11095     env->uncached_cpsr &= ~CPSR_E;
11096     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
11097         env->uncached_cpsr |= CPSR_E;
11098     }
11099     /* J and IL must always be cleared for exception entry */
11100     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
11101     env->daif |= mask;
11102 
11103     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
11104         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
11105             env->uncached_cpsr |= CPSR_SSBS;
11106         } else {
11107             env->uncached_cpsr &= ~CPSR_SSBS;
11108         }
11109     }
11110 
11111     if (new_mode == ARM_CPU_MODE_HYP) {
11112         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
11113         env->elr_el[2] = env->regs[15];
11114     } else {
11115         /* CPSR.PAN is normally preserved preserved unless...  */
11116         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
11117             switch (new_el) {
11118             case 3:
11119                 if (!arm_is_secure_below_el3(env)) {
11120                     /* ... the target is EL3, from non-secure state.  */
11121                     env->uncached_cpsr &= ~CPSR_PAN;
11122                     break;
11123                 }
11124                 /* ... the target is EL3, from secure state ... */
11125                 /* fall through */
11126             case 1:
11127                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
11128                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
11129                     env->uncached_cpsr |= CPSR_PAN;
11130                 }
11131                 break;
11132             }
11133         }
11134         /*
11135          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
11136          * and we should just guard the thumb mode on V4
11137          */
11138         if (arm_feature(env, ARM_FEATURE_V4T)) {
11139             env->thumb =
11140                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
11141         }
11142         env->regs[14] = env->regs[15] + offset;
11143     }
11144     env->regs[15] = newpc;
11145 
11146     if (tcg_enabled()) {
11147         arm_rebuild_hflags(env);
11148     }
11149 }
11150 
11151 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
11152 {
11153     /*
11154      * Handle exception entry to Hyp mode; this is sufficiently
11155      * different to entry to other AArch32 modes that we handle it
11156      * separately here.
11157      *
11158      * The vector table entry used is always the 0x14 Hyp mode entry point,
11159      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
11160      * The offset applied to the preferred return address is always zero
11161      * (see DDI0487C.a section G1.12.3).
11162      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
11163      */
11164     uint32_t addr, mask;
11165     ARMCPU *cpu = ARM_CPU(cs);
11166     CPUARMState *env = &cpu->env;
11167 
11168     switch (cs->exception_index) {
11169     case EXCP_UDEF:
11170         addr = 0x04;
11171         break;
11172     case EXCP_SWI:
11173         addr = 0x08;
11174         break;
11175     case EXCP_BKPT:
11176         /* Fall through to prefetch abort.  */
11177     case EXCP_PREFETCH_ABORT:
11178         env->cp15.ifar_s = env->exception.vaddress;
11179         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
11180                       (uint32_t)env->exception.vaddress);
11181         addr = 0x0c;
11182         break;
11183     case EXCP_DATA_ABORT:
11184         env->cp15.dfar_s = env->exception.vaddress;
11185         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
11186                       (uint32_t)env->exception.vaddress);
11187         addr = 0x10;
11188         break;
11189     case EXCP_IRQ:
11190         addr = 0x18;
11191         break;
11192     case EXCP_FIQ:
11193         addr = 0x1c;
11194         break;
11195     case EXCP_HVC:
11196         addr = 0x08;
11197         break;
11198     case EXCP_HYP_TRAP:
11199         addr = 0x14;
11200         break;
11201     default:
11202         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11203     }
11204 
11205     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
11206         if (!arm_feature(env, ARM_FEATURE_V8)) {
11207             /*
11208              * QEMU syndrome values are v8-style. v7 has the IL bit
11209              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
11210              * If this is a v7 CPU, squash the IL bit in those cases.
11211              */
11212             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
11213                 (cs->exception_index == EXCP_DATA_ABORT &&
11214                  !(env->exception.syndrome & ARM_EL_ISV)) ||
11215                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
11216                 env->exception.syndrome &= ~ARM_EL_IL;
11217             }
11218         }
11219         env->cp15.esr_el[2] = env->exception.syndrome;
11220     }
11221 
11222     if (arm_current_el(env) != 2 && addr < 0x14) {
11223         addr = 0x14;
11224     }
11225 
11226     mask = 0;
11227     if (!(env->cp15.scr_el3 & SCR_EA)) {
11228         mask |= CPSR_A;
11229     }
11230     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
11231         mask |= CPSR_I;
11232     }
11233     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
11234         mask |= CPSR_F;
11235     }
11236 
11237     addr += env->cp15.hvbar;
11238 
11239     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
11240 }
11241 
11242 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
11243 {
11244     ARMCPU *cpu = ARM_CPU(cs);
11245     CPUARMState *env = &cpu->env;
11246     uint32_t addr;
11247     uint32_t mask;
11248     int new_mode;
11249     uint32_t offset;
11250     uint32_t moe;
11251 
11252     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
11253     switch (syn_get_ec(env->exception.syndrome)) {
11254     case EC_BREAKPOINT:
11255     case EC_BREAKPOINT_SAME_EL:
11256         moe = 1;
11257         break;
11258     case EC_WATCHPOINT:
11259     case EC_WATCHPOINT_SAME_EL:
11260         moe = 10;
11261         break;
11262     case EC_AA32_BKPT:
11263         moe = 3;
11264         break;
11265     case EC_VECTORCATCH:
11266         moe = 5;
11267         break;
11268     default:
11269         moe = 0;
11270         break;
11271     }
11272 
11273     if (moe) {
11274         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
11275     }
11276 
11277     if (env->exception.target_el == 2) {
11278         /* Debug exceptions are reported differently on AArch32 */
11279         switch (syn_get_ec(env->exception.syndrome)) {
11280         case EC_BREAKPOINT:
11281         case EC_BREAKPOINT_SAME_EL:
11282         case EC_AA32_BKPT:
11283         case EC_VECTORCATCH:
11284             env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2,
11285                                                      0, 0, 0x22);
11286             break;
11287         case EC_WATCHPOINT:
11288             env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11289                                                  EC_DATAABORT);
11290             break;
11291         case EC_WATCHPOINT_SAME_EL:
11292             env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11293                                                  EC_DATAABORT_SAME_EL);
11294             break;
11295         }
11296         arm_cpu_do_interrupt_aarch32_hyp(cs);
11297         return;
11298     }
11299 
11300     switch (cs->exception_index) {
11301     case EXCP_UDEF:
11302         new_mode = ARM_CPU_MODE_UND;
11303         addr = 0x04;
11304         mask = CPSR_I;
11305         if (env->thumb) {
11306             offset = 2;
11307         } else {
11308             offset = 4;
11309         }
11310         break;
11311     case EXCP_SWI:
11312         new_mode = ARM_CPU_MODE_SVC;
11313         addr = 0x08;
11314         mask = CPSR_I;
11315         /* The PC already points to the next instruction.  */
11316         offset = 0;
11317         break;
11318     case EXCP_BKPT:
11319         /* Fall through to prefetch abort.  */
11320     case EXCP_PREFETCH_ABORT:
11321         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
11322         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
11323         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
11324                       env->exception.fsr, (uint32_t)env->exception.vaddress);
11325         new_mode = ARM_CPU_MODE_ABT;
11326         addr = 0x0c;
11327         mask = CPSR_A | CPSR_I;
11328         offset = 4;
11329         break;
11330     case EXCP_DATA_ABORT:
11331         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11332         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
11333         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
11334                       env->exception.fsr,
11335                       (uint32_t)env->exception.vaddress);
11336         new_mode = ARM_CPU_MODE_ABT;
11337         addr = 0x10;
11338         mask = CPSR_A | CPSR_I;
11339         offset = 8;
11340         break;
11341     case EXCP_IRQ:
11342         new_mode = ARM_CPU_MODE_IRQ;
11343         addr = 0x18;
11344         /* Disable IRQ and imprecise data aborts.  */
11345         mask = CPSR_A | CPSR_I;
11346         offset = 4;
11347         if (env->cp15.scr_el3 & SCR_IRQ) {
11348             /* IRQ routed to monitor mode */
11349             new_mode = ARM_CPU_MODE_MON;
11350             mask |= CPSR_F;
11351         }
11352         break;
11353     case EXCP_FIQ:
11354         new_mode = ARM_CPU_MODE_FIQ;
11355         addr = 0x1c;
11356         /* Disable FIQ, IRQ and imprecise data aborts.  */
11357         mask = CPSR_A | CPSR_I | CPSR_F;
11358         if (env->cp15.scr_el3 & SCR_FIQ) {
11359             /* FIQ routed to monitor mode */
11360             new_mode = ARM_CPU_MODE_MON;
11361         }
11362         offset = 4;
11363         break;
11364     case EXCP_VIRQ:
11365         new_mode = ARM_CPU_MODE_IRQ;
11366         addr = 0x18;
11367         /* Disable IRQ and imprecise data aborts.  */
11368         mask = CPSR_A | CPSR_I;
11369         offset = 4;
11370         break;
11371     case EXCP_VFIQ:
11372         new_mode = ARM_CPU_MODE_FIQ;
11373         addr = 0x1c;
11374         /* Disable FIQ, IRQ and imprecise data aborts.  */
11375         mask = CPSR_A | CPSR_I | CPSR_F;
11376         offset = 4;
11377         break;
11378     case EXCP_VSERR:
11379         {
11380             /*
11381              * Note that this is reported as a data abort, but the DFAR
11382              * has an UNKNOWN value.  Construct the SError syndrome from
11383              * AET and ExT fields.
11384              */
11385             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
11386 
11387             if (extended_addresses_enabled(env)) {
11388                 env->exception.fsr = arm_fi_to_lfsc(&fi);
11389             } else {
11390                 env->exception.fsr = arm_fi_to_sfsc(&fi);
11391             }
11392             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
11393             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11394             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
11395                           env->exception.fsr);
11396 
11397             new_mode = ARM_CPU_MODE_ABT;
11398             addr = 0x10;
11399             mask = CPSR_A | CPSR_I;
11400             offset = 8;
11401         }
11402         break;
11403     case EXCP_SMC:
11404         new_mode = ARM_CPU_MODE_MON;
11405         addr = 0x08;
11406         mask = CPSR_A | CPSR_I | CPSR_F;
11407         offset = 0;
11408         break;
11409     default:
11410         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11411         return; /* Never happens.  Keep compiler happy.  */
11412     }
11413 
11414     if (new_mode == ARM_CPU_MODE_MON) {
11415         addr += env->cp15.mvbar;
11416     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
11417         /* High vectors. When enabled, base address cannot be remapped. */
11418         addr += 0xffff0000;
11419     } else {
11420         /*
11421          * ARM v7 architectures provide a vector base address register to remap
11422          * the interrupt vector table.
11423          * This register is only followed in non-monitor mode, and is banked.
11424          * Note: only bits 31:5 are valid.
11425          */
11426         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
11427     }
11428 
11429     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
11430         env->cp15.scr_el3 &= ~SCR_NS;
11431     }
11432 
11433     take_aarch32_exception(env, new_mode, mask, offset, addr);
11434 }
11435 
11436 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
11437 {
11438     /*
11439      * Return the register number of the AArch64 view of the AArch32
11440      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
11441      * be that of the AArch32 mode the exception came from.
11442      */
11443     int mode = env->uncached_cpsr & CPSR_M;
11444 
11445     switch (aarch32_reg) {
11446     case 0 ... 7:
11447         return aarch32_reg;
11448     case 8 ... 12:
11449         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
11450     case 13:
11451         switch (mode) {
11452         case ARM_CPU_MODE_USR:
11453         case ARM_CPU_MODE_SYS:
11454             return 13;
11455         case ARM_CPU_MODE_HYP:
11456             return 15;
11457         case ARM_CPU_MODE_IRQ:
11458             return 17;
11459         case ARM_CPU_MODE_SVC:
11460             return 19;
11461         case ARM_CPU_MODE_ABT:
11462             return 21;
11463         case ARM_CPU_MODE_UND:
11464             return 23;
11465         case ARM_CPU_MODE_FIQ:
11466             return 29;
11467         default:
11468             g_assert_not_reached();
11469         }
11470     case 14:
11471         switch (mode) {
11472         case ARM_CPU_MODE_USR:
11473         case ARM_CPU_MODE_SYS:
11474         case ARM_CPU_MODE_HYP:
11475             return 14;
11476         case ARM_CPU_MODE_IRQ:
11477             return 16;
11478         case ARM_CPU_MODE_SVC:
11479             return 18;
11480         case ARM_CPU_MODE_ABT:
11481             return 20;
11482         case ARM_CPU_MODE_UND:
11483             return 22;
11484         case ARM_CPU_MODE_FIQ:
11485             return 30;
11486         default:
11487             g_assert_not_reached();
11488         }
11489     case 15:
11490         return 31;
11491     default:
11492         g_assert_not_reached();
11493     }
11494 }
11495 
11496 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11497 {
11498     uint32_t ret = cpsr_read(env);
11499 
11500     /* Move DIT to the correct location for SPSR_ELx */
11501     if (ret & CPSR_DIT) {
11502         ret &= ~CPSR_DIT;
11503         ret |= PSTATE_DIT;
11504     }
11505     /* Merge PSTATE.SS into SPSR_ELx */
11506     ret |= env->pstate & PSTATE_SS;
11507 
11508     return ret;
11509 }
11510 
11511 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11512 {
11513     /* Return true if this syndrome value is a synchronous external abort */
11514     switch (syn_get_ec(syndrome)) {
11515     case EC_INSNABORT:
11516     case EC_INSNABORT_SAME_EL:
11517     case EC_DATAABORT:
11518     case EC_DATAABORT_SAME_EL:
11519         /* Look at fault status code for all the synchronous ext abort cases */
11520         switch (syndrome & 0x3f) {
11521         case 0x10:
11522         case 0x13:
11523         case 0x14:
11524         case 0x15:
11525         case 0x16:
11526         case 0x17:
11527             return true;
11528         default:
11529             return false;
11530         }
11531     default:
11532         return false;
11533     }
11534 }
11535 
11536 /* Handle exception entry to a target EL which is using AArch64 */
11537 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11538 {
11539     ARMCPU *cpu = ARM_CPU(cs);
11540     CPUARMState *env = &cpu->env;
11541     unsigned int new_el = env->exception.target_el;
11542     target_ulong addr = env->cp15.vbar_el[new_el];
11543     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11544     unsigned int old_mode;
11545     unsigned int cur_el = arm_current_el(env);
11546     int rt;
11547 
11548     if (tcg_enabled()) {
11549         /*
11550          * Note that new_el can never be 0.  If cur_el is 0, then
11551          * el0_a64 is is_a64(), else el0_a64 is ignored.
11552          */
11553         aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11554     }
11555 
11556     if (cur_el < new_el) {
11557         /*
11558          * Entry vector offset depends on whether the implemented EL
11559          * immediately lower than the target level is using AArch32 or AArch64
11560          */
11561         bool is_aa64;
11562         uint64_t hcr;
11563 
11564         switch (new_el) {
11565         case 3:
11566             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11567             break;
11568         case 2:
11569             hcr = arm_hcr_el2_eff(env);
11570             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11571                 is_aa64 = (hcr & HCR_RW) != 0;
11572                 break;
11573             }
11574             /* fall through */
11575         case 1:
11576             is_aa64 = is_a64(env);
11577             break;
11578         default:
11579             g_assert_not_reached();
11580         }
11581 
11582         if (is_aa64) {
11583             addr += 0x400;
11584         } else {
11585             addr += 0x600;
11586         }
11587     } else if (pstate_read(env) & PSTATE_SP) {
11588         addr += 0x200;
11589     }
11590 
11591     switch (cs->exception_index) {
11592     case EXCP_GPC:
11593         qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11594                       env->cp15.mfar_el3);
11595         /* fall through */
11596     case EXCP_PREFETCH_ABORT:
11597     case EXCP_DATA_ABORT:
11598         /*
11599          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11600          * to be taken to the SError vector entrypoint.
11601          */
11602         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11603             syndrome_is_sync_extabt(env->exception.syndrome)) {
11604             addr += 0x180;
11605         }
11606         env->cp15.far_el[new_el] = env->exception.vaddress;
11607         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11608                       env->cp15.far_el[new_el]);
11609         /* fall through */
11610     case EXCP_BKPT:
11611     case EXCP_UDEF:
11612     case EXCP_SWI:
11613     case EXCP_HVC:
11614     case EXCP_HYP_TRAP:
11615     case EXCP_SMC:
11616         switch (syn_get_ec(env->exception.syndrome)) {
11617         case EC_ADVSIMDFPACCESSTRAP:
11618             /*
11619              * QEMU internal FP/SIMD syndromes from AArch32 include the
11620              * TA and coproc fields which are only exposed if the exception
11621              * is taken to AArch32 Hyp mode. Mask them out to get a valid
11622              * AArch64 format syndrome.
11623              */
11624             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11625             break;
11626         case EC_CP14RTTRAP:
11627         case EC_CP15RTTRAP:
11628         case EC_CP14DTTRAP:
11629             /*
11630              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11631              * the raw register field from the insn; when taking this to
11632              * AArch64 we must convert it to the AArch64 view of the register
11633              * number. Notice that we read a 4-bit AArch32 register number and
11634              * write back a 5-bit AArch64 one.
11635              */
11636             rt = extract32(env->exception.syndrome, 5, 4);
11637             rt = aarch64_regnum(env, rt);
11638             env->exception.syndrome = deposit32(env->exception.syndrome,
11639                                                 5, 5, rt);
11640             break;
11641         case EC_CP15RRTTRAP:
11642         case EC_CP14RRTTRAP:
11643             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11644             rt = extract32(env->exception.syndrome, 5, 4);
11645             rt = aarch64_regnum(env, rt);
11646             env->exception.syndrome = deposit32(env->exception.syndrome,
11647                                                 5, 5, rt);
11648             rt = extract32(env->exception.syndrome, 10, 4);
11649             rt = aarch64_regnum(env, rt);
11650             env->exception.syndrome = deposit32(env->exception.syndrome,
11651                                                 10, 5, rt);
11652             break;
11653         }
11654         env->cp15.esr_el[new_el] = env->exception.syndrome;
11655         break;
11656     case EXCP_IRQ:
11657     case EXCP_VIRQ:
11658     case EXCP_NMI:
11659     case EXCP_VINMI:
11660         addr += 0x80;
11661         break;
11662     case EXCP_FIQ:
11663     case EXCP_VFIQ:
11664     case EXCP_VFNMI:
11665         addr += 0x100;
11666         break;
11667     case EXCP_VSERR:
11668         addr += 0x180;
11669         /* Construct the SError syndrome from IDS and ISS fields. */
11670         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11671         env->cp15.esr_el[new_el] = env->exception.syndrome;
11672         break;
11673     default:
11674         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11675     }
11676 
11677     if (is_a64(env)) {
11678         old_mode = pstate_read(env);
11679         aarch64_save_sp(env, arm_current_el(env));
11680         env->elr_el[new_el] = env->pc;
11681 
11682         if (cur_el == 1 && new_el == 1) {
11683             uint64_t hcr = arm_hcr_el2_eff(env);
11684             if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
11685                 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
11686                 /*
11687                  * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
11688                  * by setting M[3:2] to 0b10.
11689                  * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
11690                  * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
11691                  */
11692                 old_mode = deposit32(old_mode, 2, 2, 2);
11693             }
11694         }
11695     } else {
11696         old_mode = cpsr_read_for_spsr_elx(env);
11697         env->elr_el[new_el] = env->regs[15];
11698 
11699         aarch64_sync_32_to_64(env);
11700 
11701         env->condexec_bits = 0;
11702     }
11703     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11704 
11705     qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
11706     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11707                   env->elr_el[new_el]);
11708 
11709     if (cpu_isar_feature(aa64_pan, cpu)) {
11710         /* The value of PSTATE.PAN is normally preserved, except when ... */
11711         new_mode |= old_mode & PSTATE_PAN;
11712         switch (new_el) {
11713         case 2:
11714             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
11715             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11716                 != (HCR_E2H | HCR_TGE)) {
11717                 break;
11718             }
11719             /* fall through */
11720         case 1:
11721             /* ... the target is EL1 ... */
11722             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
11723             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11724                 new_mode |= PSTATE_PAN;
11725             }
11726             break;
11727         }
11728     }
11729     if (cpu_isar_feature(aa64_mte, cpu)) {
11730         new_mode |= PSTATE_TCO;
11731     }
11732 
11733     if (cpu_isar_feature(aa64_ssbs, cpu)) {
11734         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11735             new_mode |= PSTATE_SSBS;
11736         } else {
11737             new_mode &= ~PSTATE_SSBS;
11738         }
11739     }
11740 
11741     if (cpu_isar_feature(aa64_nmi, cpu)) {
11742         if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) {
11743             new_mode |= PSTATE_ALLINT;
11744         } else {
11745             new_mode &= ~PSTATE_ALLINT;
11746         }
11747     }
11748 
11749     pstate_write(env, PSTATE_DAIF | new_mode);
11750     env->aarch64 = true;
11751     aarch64_restore_sp(env, new_el);
11752 
11753     if (tcg_enabled()) {
11754         helper_rebuild_hflags_a64(env, new_el);
11755     }
11756 
11757     env->pc = addr;
11758 
11759     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11760                   new_el, env->pc, pstate_read(env));
11761 }
11762 
11763 /*
11764  * Do semihosting call and set the appropriate return value. All the
11765  * permission and validity checks have been done at translate time.
11766  *
11767  * We only see semihosting exceptions in TCG only as they are not
11768  * trapped to the hypervisor in KVM.
11769  */
11770 #ifdef CONFIG_TCG
11771 static void tcg_handle_semihosting(CPUState *cs)
11772 {
11773     ARMCPU *cpu = ARM_CPU(cs);
11774     CPUARMState *env = &cpu->env;
11775 
11776     if (is_a64(env)) {
11777         qemu_log_mask(CPU_LOG_INT,
11778                       "...handling as semihosting call 0x%" PRIx64 "\n",
11779                       env->xregs[0]);
11780         do_common_semihosting(cs);
11781         env->pc += 4;
11782     } else {
11783         qemu_log_mask(CPU_LOG_INT,
11784                       "...handling as semihosting call 0x%x\n",
11785                       env->regs[0]);
11786         do_common_semihosting(cs);
11787         env->regs[15] += env->thumb ? 2 : 4;
11788     }
11789 }
11790 #endif
11791 
11792 /*
11793  * Handle a CPU exception for A and R profile CPUs.
11794  * Do any appropriate logging, handle PSCI calls, and then hand off
11795  * to the AArch64-entry or AArch32-entry function depending on the
11796  * target exception level's register width.
11797  *
11798  * Note: this is used for both TCG (as the do_interrupt tcg op),
11799  *       and KVM to re-inject guest debug exceptions, and to
11800  *       inject a Synchronous-External-Abort.
11801  */
11802 void arm_cpu_do_interrupt(CPUState *cs)
11803 {
11804     ARMCPU *cpu = ARM_CPU(cs);
11805     CPUARMState *env = &cpu->env;
11806     unsigned int new_el = env->exception.target_el;
11807 
11808     assert(!arm_feature(env, ARM_FEATURE_M));
11809 
11810     arm_log_exception(cs);
11811     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11812                   new_el);
11813     if (qemu_loglevel_mask(CPU_LOG_INT)
11814         && !excp_is_internal(cs->exception_index)) {
11815         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11816                       syn_get_ec(env->exception.syndrome),
11817                       env->exception.syndrome);
11818     }
11819 
11820     if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11821         arm_handle_psci_call(cpu);
11822         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11823         return;
11824     }
11825 
11826     /*
11827      * Semihosting semantics depend on the register width of the code
11828      * that caused the exception, not the target exception level, so
11829      * must be handled here.
11830      */
11831 #ifdef CONFIG_TCG
11832     if (cs->exception_index == EXCP_SEMIHOST) {
11833         tcg_handle_semihosting(cs);
11834         return;
11835     }
11836 #endif
11837 
11838     /*
11839      * Hooks may change global state so BQL should be held, also the
11840      * BQL needs to be held for any modification of
11841      * cs->interrupt_request.
11842      */
11843     g_assert(bql_locked());
11844 
11845     arm_call_pre_el_change_hook(cpu);
11846 
11847     assert(!excp_is_internal(cs->exception_index));
11848     if (arm_el_is_aa64(env, new_el)) {
11849         arm_cpu_do_interrupt_aarch64(cs);
11850     } else {
11851         arm_cpu_do_interrupt_aarch32(cs);
11852     }
11853 
11854     arm_call_el_change_hook(cpu);
11855 
11856     if (!kvm_enabled()) {
11857         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11858     }
11859 }
11860 #endif /* !CONFIG_USER_ONLY */
11861 
11862 uint64_t arm_sctlr(CPUARMState *env, int el)
11863 {
11864     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11865     if (el == 0) {
11866         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11867         el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11868     }
11869     return env->cp15.sctlr_el[el];
11870 }
11871 
11872 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11873 {
11874     if (regime_has_2_ranges(mmu_idx)) {
11875         return extract64(tcr, 37, 2);
11876     } else if (regime_is_stage2(mmu_idx)) {
11877         return 0; /* VTCR_EL2 */
11878     } else {
11879         /* Replicate the single TBI bit so we always have 2 bits.  */
11880         return extract32(tcr, 20, 1) * 3;
11881     }
11882 }
11883 
11884 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11885 {
11886     if (regime_has_2_ranges(mmu_idx)) {
11887         return extract64(tcr, 51, 2);
11888     } else if (regime_is_stage2(mmu_idx)) {
11889         return 0; /* VTCR_EL2 */
11890     } else {
11891         /* Replicate the single TBID bit so we always have 2 bits.  */
11892         return extract32(tcr, 29, 1) * 3;
11893     }
11894 }
11895 
11896 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11897 {
11898     if (regime_has_2_ranges(mmu_idx)) {
11899         return extract64(tcr, 57, 2);
11900     } else {
11901         /* Replicate the single TCMA bit so we always have 2 bits.  */
11902         return extract32(tcr, 30, 1) * 3;
11903     }
11904 }
11905 
11906 static ARMGranuleSize tg0_to_gran_size(int tg)
11907 {
11908     switch (tg) {
11909     case 0:
11910         return Gran4K;
11911     case 1:
11912         return Gran64K;
11913     case 2:
11914         return Gran16K;
11915     default:
11916         return GranInvalid;
11917     }
11918 }
11919 
11920 static ARMGranuleSize tg1_to_gran_size(int tg)
11921 {
11922     switch (tg) {
11923     case 1:
11924         return Gran16K;
11925     case 2:
11926         return Gran4K;
11927     case 3:
11928         return Gran64K;
11929     default:
11930         return GranInvalid;
11931     }
11932 }
11933 
11934 static inline bool have4k(ARMCPU *cpu, bool stage2)
11935 {
11936     return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11937         : cpu_isar_feature(aa64_tgran4, cpu);
11938 }
11939 
11940 static inline bool have16k(ARMCPU *cpu, bool stage2)
11941 {
11942     return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11943         : cpu_isar_feature(aa64_tgran16, cpu);
11944 }
11945 
11946 static inline bool have64k(ARMCPU *cpu, bool stage2)
11947 {
11948     return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11949         : cpu_isar_feature(aa64_tgran64, cpu);
11950 }
11951 
11952 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11953                                          bool stage2)
11954 {
11955     switch (gran) {
11956     case Gran4K:
11957         if (have4k(cpu, stage2)) {
11958             return gran;
11959         }
11960         break;
11961     case Gran16K:
11962         if (have16k(cpu, stage2)) {
11963             return gran;
11964         }
11965         break;
11966     case Gran64K:
11967         if (have64k(cpu, stage2)) {
11968             return gran;
11969         }
11970         break;
11971     case GranInvalid:
11972         break;
11973     }
11974     /*
11975      * If the guest selects a granule size that isn't implemented,
11976      * the architecture requires that we behave as if it selected one
11977      * that is (with an IMPDEF choice of which one to pick). We choose
11978      * to implement the smallest supported granule size.
11979      */
11980     if (have4k(cpu, stage2)) {
11981         return Gran4K;
11982     }
11983     if (have16k(cpu, stage2)) {
11984         return Gran16K;
11985     }
11986     assert(have64k(cpu, stage2));
11987     return Gran64K;
11988 }
11989 
11990 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11991                                    ARMMMUIdx mmu_idx, bool data,
11992                                    bool el1_is_aa32)
11993 {
11994     uint64_t tcr = regime_tcr(env, mmu_idx);
11995     bool epd, hpd, tsz_oob, ds, ha, hd;
11996     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11997     ARMGranuleSize gran;
11998     ARMCPU *cpu = env_archcpu(env);
11999     bool stage2 = regime_is_stage2(mmu_idx);
12000 
12001     if (!regime_has_2_ranges(mmu_idx)) {
12002         select = 0;
12003         tsz = extract32(tcr, 0, 6);
12004         gran = tg0_to_gran_size(extract32(tcr, 14, 2));
12005         if (stage2) {
12006             /* VTCR_EL2 */
12007             hpd = false;
12008         } else {
12009             hpd = extract32(tcr, 24, 1);
12010         }
12011         epd = false;
12012         sh = extract32(tcr, 12, 2);
12013         ps = extract32(tcr, 16, 3);
12014         ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
12015         hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
12016         ds = extract64(tcr, 32, 1);
12017     } else {
12018         bool e0pd;
12019 
12020         /*
12021          * Bit 55 is always between the two regions, and is canonical for
12022          * determining if address tagging is enabled.
12023          */
12024         select = extract64(va, 55, 1);
12025         if (!select) {
12026             tsz = extract32(tcr, 0, 6);
12027             gran = tg0_to_gran_size(extract32(tcr, 14, 2));
12028             epd = extract32(tcr, 7, 1);
12029             sh = extract32(tcr, 12, 2);
12030             hpd = extract64(tcr, 41, 1);
12031             e0pd = extract64(tcr, 55, 1);
12032         } else {
12033             tsz = extract32(tcr, 16, 6);
12034             gran = tg1_to_gran_size(extract32(tcr, 30, 2));
12035             epd = extract32(tcr, 23, 1);
12036             sh = extract32(tcr, 28, 2);
12037             hpd = extract64(tcr, 42, 1);
12038             e0pd = extract64(tcr, 56, 1);
12039         }
12040         ps = extract64(tcr, 32, 3);
12041         ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
12042         hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
12043         ds = extract64(tcr, 59, 1);
12044 
12045         if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
12046             regime_is_user(env, mmu_idx)) {
12047             epd = true;
12048         }
12049     }
12050 
12051     gran = sanitize_gran_size(cpu, gran, stage2);
12052 
12053     if (cpu_isar_feature(aa64_st, cpu)) {
12054         max_tsz = 48 - (gran == Gran64K);
12055     } else {
12056         max_tsz = 39;
12057     }
12058 
12059     /*
12060      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
12061      * adjust the effective value of DS, as documented.
12062      */
12063     min_tsz = 16;
12064     if (gran == Gran64K) {
12065         if (cpu_isar_feature(aa64_lva, cpu)) {
12066             min_tsz = 12;
12067         }
12068         ds = false;
12069     } else if (ds) {
12070         if (regime_is_stage2(mmu_idx)) {
12071             if (gran == Gran16K) {
12072                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
12073             } else {
12074                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
12075             }
12076         } else {
12077             if (gran == Gran16K) {
12078                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
12079             } else {
12080                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
12081             }
12082         }
12083         if (ds) {
12084             min_tsz = 12;
12085         }
12086     }
12087 
12088     if (stage2 && el1_is_aa32) {
12089         /*
12090          * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
12091          * are loosened: a configured IPA of 40 bits is permitted even if
12092          * the implemented PA is less than that (and so a 40 bit IPA would
12093          * fault for an AArch64 EL1). See R_DTLMN.
12094          */
12095         min_tsz = MIN(min_tsz, 24);
12096     }
12097 
12098     if (tsz > max_tsz) {
12099         tsz = max_tsz;
12100         tsz_oob = true;
12101     } else if (tsz < min_tsz) {
12102         tsz = min_tsz;
12103         tsz_oob = true;
12104     } else {
12105         tsz_oob = false;
12106     }
12107 
12108     /* Present TBI as a composite with TBID.  */
12109     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12110     if (!data) {
12111         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12112     }
12113     tbi = (tbi >> select) & 1;
12114 
12115     return (ARMVAParameters) {
12116         .tsz = tsz,
12117         .ps = ps,
12118         .sh = sh,
12119         .select = select,
12120         .tbi = tbi,
12121         .epd = epd,
12122         .hpd = hpd,
12123         .tsz_oob = tsz_oob,
12124         .ds = ds,
12125         .ha = ha,
12126         .hd = ha && hd,
12127         .gran = gran,
12128     };
12129 }
12130 
12131 /*
12132  * Note that signed overflow is undefined in C.  The following routines are
12133  * careful to use unsigned types where modulo arithmetic is required.
12134  * Failure to do so _will_ break on newer gcc.
12135  */
12136 
12137 /* Signed saturating arithmetic.  */
12138 
12139 /* Perform 16-bit signed saturating addition.  */
12140 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12141 {
12142     uint16_t res;
12143 
12144     res = a + b;
12145     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12146         if (a & 0x8000) {
12147             res = 0x8000;
12148         } else {
12149             res = 0x7fff;
12150         }
12151     }
12152     return res;
12153 }
12154 
12155 /* Perform 8-bit signed saturating addition.  */
12156 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12157 {
12158     uint8_t res;
12159 
12160     res = a + b;
12161     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12162         if (a & 0x80) {
12163             res = 0x80;
12164         } else {
12165             res = 0x7f;
12166         }
12167     }
12168     return res;
12169 }
12170 
12171 /* Perform 16-bit signed saturating subtraction.  */
12172 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12173 {
12174     uint16_t res;
12175 
12176     res = a - b;
12177     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12178         if (a & 0x8000) {
12179             res = 0x8000;
12180         } else {
12181             res = 0x7fff;
12182         }
12183     }
12184     return res;
12185 }
12186 
12187 /* Perform 8-bit signed saturating subtraction.  */
12188 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12189 {
12190     uint8_t res;
12191 
12192     res = a - b;
12193     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12194         if (a & 0x80) {
12195             res = 0x80;
12196         } else {
12197             res = 0x7f;
12198         }
12199     }
12200     return res;
12201 }
12202 
12203 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12204 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12205 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12206 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12207 #define PFX q
12208 
12209 #include "op_addsub.h"
12210 
12211 /* Unsigned saturating arithmetic.  */
12212 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12213 {
12214     uint16_t res;
12215     res = a + b;
12216     if (res < a) {
12217         res = 0xffff;
12218     }
12219     return res;
12220 }
12221 
12222 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12223 {
12224     if (a > b) {
12225         return a - b;
12226     } else {
12227         return 0;
12228     }
12229 }
12230 
12231 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12232 {
12233     uint8_t res;
12234     res = a + b;
12235     if (res < a) {
12236         res = 0xff;
12237     }
12238     return res;
12239 }
12240 
12241 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12242 {
12243     if (a > b) {
12244         return a - b;
12245     } else {
12246         return 0;
12247     }
12248 }
12249 
12250 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12251 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12252 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12253 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12254 #define PFX uq
12255 
12256 #include "op_addsub.h"
12257 
12258 /* Signed modulo arithmetic.  */
12259 #define SARITH16(a, b, n, op) do { \
12260     int32_t sum; \
12261     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12262     RESULT(sum, n, 16); \
12263     if (sum >= 0) \
12264         ge |= 3 << (n * 2); \
12265     } while (0)
12266 
12267 #define SARITH8(a, b, n, op) do { \
12268     int32_t sum; \
12269     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12270     RESULT(sum, n, 8); \
12271     if (sum >= 0) \
12272         ge |= 1 << n; \
12273     } while (0)
12274 
12275 
12276 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12277 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12278 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
12279 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
12280 #define PFX s
12281 #define ARITH_GE
12282 
12283 #include "op_addsub.h"
12284 
12285 /* Unsigned modulo arithmetic.  */
12286 #define ADD16(a, b, n) do { \
12287     uint32_t sum; \
12288     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12289     RESULT(sum, n, 16); \
12290     if ((sum >> 16) == 1) \
12291         ge |= 3 << (n * 2); \
12292     } while (0)
12293 
12294 #define ADD8(a, b, n) do { \
12295     uint32_t sum; \
12296     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12297     RESULT(sum, n, 8); \
12298     if ((sum >> 8) == 1) \
12299         ge |= 1 << n; \
12300     } while (0)
12301 
12302 #define SUB16(a, b, n) do { \
12303     uint32_t sum; \
12304     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12305     RESULT(sum, n, 16); \
12306     if ((sum >> 16) == 0) \
12307         ge |= 3 << (n * 2); \
12308     } while (0)
12309 
12310 #define SUB8(a, b, n) do { \
12311     uint32_t sum; \
12312     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12313     RESULT(sum, n, 8); \
12314     if ((sum >> 8) == 0) \
12315         ge |= 1 << n; \
12316     } while (0)
12317 
12318 #define PFX u
12319 #define ARITH_GE
12320 
12321 #include "op_addsub.h"
12322 
12323 /* Halved signed arithmetic.  */
12324 #define ADD16(a, b, n) \
12325   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12326 #define SUB16(a, b, n) \
12327   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12328 #define ADD8(a, b, n) \
12329   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12330 #define SUB8(a, b, n) \
12331   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12332 #define PFX sh
12333 
12334 #include "op_addsub.h"
12335 
12336 /* Halved unsigned arithmetic.  */
12337 #define ADD16(a, b, n) \
12338   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12339 #define SUB16(a, b, n) \
12340   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12341 #define ADD8(a, b, n) \
12342   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12343 #define SUB8(a, b, n) \
12344   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12345 #define PFX uh
12346 
12347 #include "op_addsub.h"
12348 
12349 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12350 {
12351     if (a > b) {
12352         return a - b;
12353     } else {
12354         return b - a;
12355     }
12356 }
12357 
12358 /* Unsigned sum of absolute byte differences.  */
12359 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12360 {
12361     uint32_t sum;
12362     sum = do_usad(a, b);
12363     sum += do_usad(a >> 8, b >> 8);
12364     sum += do_usad(a >> 16, b >> 16);
12365     sum += do_usad(a >> 24, b >> 24);
12366     return sum;
12367 }
12368 
12369 /* For ARMv6 SEL instruction.  */
12370 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12371 {
12372     uint32_t mask;
12373 
12374     mask = 0;
12375     if (flags & 1) {
12376         mask |= 0xff;
12377     }
12378     if (flags & 2) {
12379         mask |= 0xff00;
12380     }
12381     if (flags & 4) {
12382         mask |= 0xff0000;
12383     }
12384     if (flags & 8) {
12385         mask |= 0xff000000;
12386     }
12387     return (a & mask) | (b & ~mask);
12388 }
12389 
12390 /*
12391  * CRC helpers.
12392  * The upper bytes of val (above the number specified by 'bytes') must have
12393  * been zeroed out by the caller.
12394  */
12395 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12396 {
12397     uint8_t buf[4];
12398 
12399     stl_le_p(buf, val);
12400 
12401     /* zlib crc32 converts the accumulator and output to one's complement.  */
12402     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12403 }
12404 
12405 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12406 {
12407     uint8_t buf[4];
12408 
12409     stl_le_p(buf, val);
12410 
12411     /* Linux crc32c converts the output to one's complement.  */
12412     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12413 }
12414 
12415 /*
12416  * Return the exception level to which FP-disabled exceptions should
12417  * be taken, or 0 if FP is enabled.
12418  */
12419 int fp_exception_el(CPUARMState *env, int cur_el)
12420 {
12421 #ifndef CONFIG_USER_ONLY
12422     uint64_t hcr_el2;
12423 
12424     /*
12425      * CPACR and the CPTR registers don't exist before v6, so FP is
12426      * always accessible
12427      */
12428     if (!arm_feature(env, ARM_FEATURE_V6)) {
12429         return 0;
12430     }
12431 
12432     if (arm_feature(env, ARM_FEATURE_M)) {
12433         /* CPACR can cause a NOCP UsageFault taken to current security state */
12434         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12435             return 1;
12436         }
12437 
12438         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12439             if (!extract32(env->v7m.nsacr, 10, 1)) {
12440                 /* FP insns cause a NOCP UsageFault taken to Secure */
12441                 return 3;
12442             }
12443         }
12444 
12445         return 0;
12446     }
12447 
12448     hcr_el2 = arm_hcr_el2_eff(env);
12449 
12450     /*
12451      * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12452      * 0, 2 : trap EL0 and EL1/PL1 accesses
12453      * 1    : trap only EL0 accesses
12454      * 3    : trap no accesses
12455      * This register is ignored if E2H+TGE are both set.
12456      */
12457     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12458         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
12459 
12460         switch (fpen) {
12461         case 1:
12462             if (cur_el != 0) {
12463                 break;
12464             }
12465             /* fall through */
12466         case 0:
12467         case 2:
12468             /* Trap from Secure PL0 or PL1 to Secure PL1. */
12469             if (!arm_el_is_aa64(env, 3)
12470                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
12471                 return 3;
12472             }
12473             if (cur_el <= 1) {
12474                 return 1;
12475             }
12476             break;
12477         }
12478     }
12479 
12480     /*
12481      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12482      * to control non-secure access to the FPU. It doesn't have any
12483      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12484      */
12485     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12486          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12487         if (!extract32(env->cp15.nsacr, 10, 1)) {
12488             /* FP insns act as UNDEF */
12489             return cur_el == 2 ? 2 : 1;
12490         }
12491     }
12492 
12493     /*
12494      * CPTR_EL2 is present in v7VE or v8, and changes format
12495      * with HCR_EL2.E2H (regardless of TGE).
12496      */
12497     if (cur_el <= 2) {
12498         if (hcr_el2 & HCR_E2H) {
12499             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
12500             case 1:
12501                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
12502                     break;
12503                 }
12504                 /* fall through */
12505             case 0:
12506             case 2:
12507                 return 2;
12508             }
12509         } else if (arm_is_el2_enabled(env)) {
12510             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12511                 return 2;
12512             }
12513         }
12514     }
12515 
12516     /* CPTR_EL3 : present in v8 */
12517     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12518         /* Trap all FP ops to EL3 */
12519         return 3;
12520     }
12521 #endif
12522     return 0;
12523 }
12524 
12525 /* Return the exception level we're running at if this is our mmu_idx */
12526 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12527 {
12528     if (mmu_idx & ARM_MMU_IDX_M) {
12529         return mmu_idx & ARM_MMU_IDX_M_PRIV;
12530     }
12531 
12532     switch (mmu_idx) {
12533     case ARMMMUIdx_E10_0:
12534     case ARMMMUIdx_E20_0:
12535         return 0;
12536     case ARMMMUIdx_E10_1:
12537     case ARMMMUIdx_E10_1_PAN:
12538         return 1;
12539     case ARMMMUIdx_E2:
12540     case ARMMMUIdx_E20_2:
12541     case ARMMMUIdx_E20_2_PAN:
12542         return 2;
12543     case ARMMMUIdx_E3:
12544         return 3;
12545     default:
12546         g_assert_not_reached();
12547     }
12548 }
12549 
12550 #ifndef CONFIG_TCG
12551 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12552 {
12553     g_assert_not_reached();
12554 }
12555 #endif
12556 
12557 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12558 {
12559     ARMMMUIdx idx;
12560     uint64_t hcr;
12561 
12562     if (arm_feature(env, ARM_FEATURE_M)) {
12563         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12564     }
12565 
12566     /* See ARM pseudo-function ELIsInHost.  */
12567     switch (el) {
12568     case 0:
12569         hcr = arm_hcr_el2_eff(env);
12570         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12571             idx = ARMMMUIdx_E20_0;
12572         } else {
12573             idx = ARMMMUIdx_E10_0;
12574         }
12575         break;
12576     case 1:
12577         if (arm_pan_enabled(env)) {
12578             idx = ARMMMUIdx_E10_1_PAN;
12579         } else {
12580             idx = ARMMMUIdx_E10_1;
12581         }
12582         break;
12583     case 2:
12584         /* Note that TGE does not apply at EL2.  */
12585         if (arm_hcr_el2_eff(env) & HCR_E2H) {
12586             if (arm_pan_enabled(env)) {
12587                 idx = ARMMMUIdx_E20_2_PAN;
12588             } else {
12589                 idx = ARMMMUIdx_E20_2;
12590             }
12591         } else {
12592             idx = ARMMMUIdx_E2;
12593         }
12594         break;
12595     case 3:
12596         return ARMMMUIdx_E3;
12597     default:
12598         g_assert_not_reached();
12599     }
12600 
12601     return idx;
12602 }
12603 
12604 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12605 {
12606     return arm_mmu_idx_el(env, arm_current_el(env));
12607 }
12608 
12609 static bool mve_no_pred(CPUARMState *env)
12610 {
12611     /*
12612      * Return true if there is definitely no predication of MVE
12613      * instructions by VPR or LTPSIZE. (Returning false even if there
12614      * isn't any predication is OK; generated code will just be
12615      * a little worse.)
12616      * If the CPU does not implement MVE then this TB flag is always 0.
12617      *
12618      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12619      * logic in gen_update_fp_context() needs to be updated to match.
12620      *
12621      * We do not include the effect of the ECI bits here -- they are
12622      * tracked in other TB flags. This simplifies the logic for
12623      * "when did we emit code that changes the MVE_NO_PRED TB flag
12624      * and thus need to end the TB?".
12625      */
12626     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12627         return false;
12628     }
12629     if (env->v7m.vpr) {
12630         return false;
12631     }
12632     if (env->v7m.ltpsize < 4) {
12633         return false;
12634     }
12635     return true;
12636 }
12637 
12638 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12639                           uint64_t *cs_base, uint32_t *pflags)
12640 {
12641     CPUARMTBFlags flags;
12642 
12643     assert_hflags_rebuild_correctly(env);
12644     flags = env->hflags;
12645 
12646     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12647         *pc = env->pc;
12648         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12649             DP_TBFLAG_A64(flags, BTYPE, env->btype);
12650         }
12651     } else {
12652         *pc = env->regs[15];
12653 
12654         if (arm_feature(env, ARM_FEATURE_M)) {
12655             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12656                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12657                 != env->v7m.secure) {
12658                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12659             }
12660 
12661             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12662                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12663                  (env->v7m.secure &&
12664                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12665                 /*
12666                  * ASPEN is set, but FPCA/SFPA indicate that there is no
12667                  * active FP context; we must create a new FP context before
12668                  * executing any FP insn.
12669                  */
12670                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12671             }
12672 
12673             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12674             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12675                 DP_TBFLAG_M32(flags, LSPACT, 1);
12676             }
12677 
12678             if (mve_no_pred(env)) {
12679                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12680             }
12681         } else {
12682             /*
12683              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12684              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12685              */
12686             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12687                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12688             } else {
12689                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12690                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12691             }
12692             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12693                 DP_TBFLAG_A32(flags, VFPEN, 1);
12694             }
12695         }
12696 
12697         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12698         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12699     }
12700 
12701     /*
12702      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12703      * states defined in the ARM ARM for software singlestep:
12704      *  SS_ACTIVE   PSTATE.SS   State
12705      *     0            x       Inactive (the TB flag for SS is always 0)
12706      *     1            0       Active-pending
12707      *     1            1       Active-not-pending
12708      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12709      */
12710     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12711         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12712     }
12713 
12714     *pflags = flags.flags;
12715     *cs_base = flags.flags2;
12716 }
12717 
12718 #ifdef TARGET_AARCH64
12719 /*
12720  * The manual says that when SVE is enabled and VQ is widened the
12721  * implementation is allowed to zero the previously inaccessible
12722  * portion of the registers.  The corollary to that is that when
12723  * SVE is enabled and VQ is narrowed we are also allowed to zero
12724  * the now inaccessible portion of the registers.
12725  *
12726  * The intent of this is that no predicate bit beyond VQ is ever set.
12727  * Which means that some operations on predicate registers themselves
12728  * may operate on full uint64_t or even unrolled across the maximum
12729  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12730  * may well be cheaper than conditionals to restrict the operation
12731  * to the relevant portion of a uint16_t[16].
12732  */
12733 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12734 {
12735     int i, j;
12736     uint64_t pmask;
12737 
12738     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12739     assert(vq <= env_archcpu(env)->sve_max_vq);
12740 
12741     /* Zap the high bits of the zregs.  */
12742     for (i = 0; i < 32; i++) {
12743         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12744     }
12745 
12746     /* Zap the high bits of the pregs and ffr.  */
12747     pmask = 0;
12748     if (vq & 3) {
12749         pmask = ~(-1ULL << (16 * (vq & 3)));
12750     }
12751     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12752         for (i = 0; i < 17; ++i) {
12753             env->vfp.pregs[i].p[j] &= pmask;
12754         }
12755         pmask = 0;
12756     }
12757 }
12758 
12759 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12760 {
12761     int exc_el;
12762 
12763     if (sm) {
12764         exc_el = sme_exception_el(env, el);
12765     } else {
12766         exc_el = sve_exception_el(env, el);
12767     }
12768     if (exc_el) {
12769         return 0; /* disabled */
12770     }
12771     return sve_vqm1_for_el_sm(env, el, sm);
12772 }
12773 
12774 /*
12775  * Notice a change in SVE vector size when changing EL.
12776  */
12777 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12778                            int new_el, bool el0_a64)
12779 {
12780     ARMCPU *cpu = env_archcpu(env);
12781     int old_len, new_len;
12782     bool old_a64, new_a64, sm;
12783 
12784     /* Nothing to do if no SVE.  */
12785     if (!cpu_isar_feature(aa64_sve, cpu)) {
12786         return;
12787     }
12788 
12789     /* Nothing to do if FP is disabled in either EL.  */
12790     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12791         return;
12792     }
12793 
12794     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12795     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12796 
12797     /*
12798      * Both AArch64.TakeException and AArch64.ExceptionReturn
12799      * invoke ResetSVEState when taking an exception from, or
12800      * returning to, AArch32 state when PSTATE.SM is enabled.
12801      */
12802     sm = FIELD_EX64(env->svcr, SVCR, SM);
12803     if (old_a64 != new_a64 && sm) {
12804         arm_reset_sve_state(env);
12805         return;
12806     }
12807 
12808     /*
12809      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12810      * at ELx, or not available because the EL is in AArch32 state, then
12811      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12812      * has an effective value of 0".
12813      *
12814      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12815      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12816      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12817      * we already have the correct register contents when encountering the
12818      * vq0->vq0 transition between EL0->EL1.
12819      */
12820     old_len = new_len = 0;
12821     if (old_a64) {
12822         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12823     }
12824     if (new_a64) {
12825         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12826     }
12827 
12828     /* When changing vector length, clear inaccessible state.  */
12829     if (new_len < old_len) {
12830         aarch64_sve_narrow_vq(env, new_len + 1);
12831     }
12832 }
12833 #endif
12834 
12835 #ifndef CONFIG_USER_ONLY
12836 ARMSecuritySpace arm_security_space(CPUARMState *env)
12837 {
12838     if (arm_feature(env, ARM_FEATURE_M)) {
12839         return arm_secure_to_space(env->v7m.secure);
12840     }
12841 
12842     /*
12843      * If EL3 is not supported then the secure state is implementation
12844      * defined, in which case QEMU defaults to non-secure.
12845      */
12846     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12847         return ARMSS_NonSecure;
12848     }
12849 
12850     /* Check for AArch64 EL3 or AArch32 Mon. */
12851     if (is_a64(env)) {
12852         if (extract32(env->pstate, 2, 2) == 3) {
12853             if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12854                 return ARMSS_Root;
12855             } else {
12856                 return ARMSS_Secure;
12857             }
12858         }
12859     } else {
12860         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12861             return ARMSS_Secure;
12862         }
12863     }
12864 
12865     return arm_security_space_below_el3(env);
12866 }
12867 
12868 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12869 {
12870     assert(!arm_feature(env, ARM_FEATURE_M));
12871 
12872     /*
12873      * If EL3 is not supported then the secure state is implementation
12874      * defined, in which case QEMU defaults to non-secure.
12875      */
12876     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12877         return ARMSS_NonSecure;
12878     }
12879 
12880     /*
12881      * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12882      * Ignoring NSE when !NS retains consistency without having to
12883      * modify other predicates.
12884      */
12885     if (!(env->cp15.scr_el3 & SCR_NS)) {
12886         return ARMSS_Secure;
12887     } else if (env->cp15.scr_el3 & SCR_NSE) {
12888         return ARMSS_Realm;
12889     } else {
12890         return ARMSS_NonSecure;
12891     }
12892 }
12893 #endif /* !CONFIG_USER_ONLY */
12894