xref: /openbmc/qemu/target/arm/helper.c (revision 646b5378)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* for crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33 #include "target/arm/gtimer.h"
34 
35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
36 
37 static void switch_mode(CPUARMState *env, int mode);
38 
39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
40 {
41     assert(ri->fieldoffset);
42     if (cpreg_field_is_64bit(ri)) {
43         return CPREG_FIELD64(env, ri);
44     } else {
45         return CPREG_FIELD32(env, ri);
46     }
47 }
48 
49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
50 {
51     assert(ri->fieldoffset);
52     if (cpreg_field_is_64bit(ri)) {
53         CPREG_FIELD64(env, ri) = value;
54     } else {
55         CPREG_FIELD32(env, ri) = value;
56     }
57 }
58 
59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
60 {
61     return (char *)env + ri->fieldoffset;
62 }
63 
64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
65 {
66     /* Raw read of a coprocessor register (as needed for migration, etc). */
67     if (ri->type & ARM_CP_CONST) {
68         return ri->resetvalue;
69     } else if (ri->raw_readfn) {
70         return ri->raw_readfn(env, ri);
71     } else if (ri->readfn) {
72         return ri->readfn(env, ri);
73     } else {
74         return raw_read(env, ri);
75     }
76 }
77 
78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
79                              uint64_t v)
80 {
81     /*
82      * Raw write of a coprocessor register (as needed for migration, etc).
83      * Note that constant registers are treated as write-ignored; the
84      * caller should check for success by whether a readback gives the
85      * value written.
86      */
87     if (ri->type & ARM_CP_CONST) {
88         return;
89     } else if (ri->raw_writefn) {
90         ri->raw_writefn(env, ri, v);
91     } else if (ri->writefn) {
92         ri->writefn(env, ri, v);
93     } else {
94         raw_write(env, ri, v);
95     }
96 }
97 
98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
99 {
100    /*
101     * Return true if the regdef would cause an assertion if you called
102     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
103     * program bug for it not to have the NO_RAW flag).
104     * NB that returning false here doesn't necessarily mean that calling
105     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
106     * read/write access functions which are safe for raw use" from "has
107     * read/write access functions which have side effects but has forgotten
108     * to provide raw access functions".
109     * The tests here line up with the conditions in read/write_raw_cp_reg()
110     * and assertions in raw_read()/raw_write().
111     */
112     if ((ri->type & ARM_CP_CONST) ||
113         ri->fieldoffset ||
114         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
115         return false;
116     }
117     return true;
118 }
119 
120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
121 {
122     /* Write the coprocessor state from cpu->env to the (index,value) list. */
123     int i;
124     bool ok = true;
125 
126     for (i = 0; i < cpu->cpreg_array_len; i++) {
127         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
128         const ARMCPRegInfo *ri;
129         uint64_t newval;
130 
131         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
132         if (!ri) {
133             ok = false;
134             continue;
135         }
136         if (ri->type & ARM_CP_NO_RAW) {
137             continue;
138         }
139 
140         newval = read_raw_cp_reg(&cpu->env, ri);
141         if (kvm_sync) {
142             /*
143              * Only sync if the previous list->cpustate sync succeeded.
144              * Rather than tracking the success/failure state for every
145              * item in the list, we just recheck "does the raw write we must
146              * have made in write_list_to_cpustate() read back OK" here.
147              */
148             uint64_t oldval = cpu->cpreg_values[i];
149 
150             if (oldval == newval) {
151                 continue;
152             }
153 
154             write_raw_cp_reg(&cpu->env, ri, oldval);
155             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
156                 continue;
157             }
158 
159             write_raw_cp_reg(&cpu->env, ri, newval);
160         }
161         cpu->cpreg_values[i] = newval;
162     }
163     return ok;
164 }
165 
166 bool write_list_to_cpustate(ARMCPU *cpu)
167 {
168     int i;
169     bool ok = true;
170 
171     for (i = 0; i < cpu->cpreg_array_len; i++) {
172         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
173         uint64_t v = cpu->cpreg_values[i];
174         const ARMCPRegInfo *ri;
175 
176         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
177         if (!ri) {
178             ok = false;
179             continue;
180         }
181         if (ri->type & ARM_CP_NO_RAW) {
182             continue;
183         }
184         /*
185          * Write value and confirm it reads back as written
186          * (to catch read-only registers and partially read-only
187          * registers where the incoming migration value doesn't match)
188          */
189         write_raw_cp_reg(&cpu->env, ri, v);
190         if (read_raw_cp_reg(&cpu->env, ri) != v) {
191             ok = false;
192         }
193     }
194     return ok;
195 }
196 
197 static void add_cpreg_to_list(gpointer key, gpointer opaque)
198 {
199     ARMCPU *cpu = opaque;
200     uint32_t regidx = (uintptr_t)key;
201     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
202 
203     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
204         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
205         /* The value array need not be initialized at this point */
206         cpu->cpreg_array_len++;
207     }
208 }
209 
210 static void count_cpreg(gpointer key, gpointer opaque)
211 {
212     ARMCPU *cpu = opaque;
213     const ARMCPRegInfo *ri;
214 
215     ri = g_hash_table_lookup(cpu->cp_regs, key);
216 
217     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
218         cpu->cpreg_array_len++;
219     }
220 }
221 
222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
223 {
224     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
225     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
226 
227     if (aidx > bidx) {
228         return 1;
229     }
230     if (aidx < bidx) {
231         return -1;
232     }
233     return 0;
234 }
235 
236 void init_cpreg_list(ARMCPU *cpu)
237 {
238     /*
239      * Initialise the cpreg_tuples[] array based on the cp_regs hash.
240      * Note that we require cpreg_tuples[] to be sorted by key ID.
241      */
242     GList *keys;
243     int arraylen;
244 
245     keys = g_hash_table_get_keys(cpu->cp_regs);
246     keys = g_list_sort(keys, cpreg_key_compare);
247 
248     cpu->cpreg_array_len = 0;
249 
250     g_list_foreach(keys, count_cpreg, cpu);
251 
252     arraylen = cpu->cpreg_array_len;
253     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
254     cpu->cpreg_values = g_new(uint64_t, arraylen);
255     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
256     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
257     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
258     cpu->cpreg_array_len = 0;
259 
260     g_list_foreach(keys, add_cpreg_to_list, cpu);
261 
262     assert(cpu->cpreg_array_len == arraylen);
263 
264     g_list_free(keys);
265 }
266 
267 static bool arm_pan_enabled(CPUARMState *env)
268 {
269     if (is_a64(env)) {
270         if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
271             return false;
272         }
273         return env->pstate & PSTATE_PAN;
274     } else {
275         return env->uncached_cpsr & CPSR_PAN;
276     }
277 }
278 
279 /*
280  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
281  */
282 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
283                                         const ARMCPRegInfo *ri,
284                                         bool isread)
285 {
286     if (!is_a64(env) && arm_current_el(env) == 3 &&
287         arm_is_secure_below_el3(env)) {
288         return CP_ACCESS_TRAP_UNCATEGORIZED;
289     }
290     return CP_ACCESS_OK;
291 }
292 
293 /*
294  * Some secure-only AArch32 registers trap to EL3 if used from
295  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
296  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
297  * We assume that the .access field is set to PL1_RW.
298  */
299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
300                                             const ARMCPRegInfo *ri,
301                                             bool isread)
302 {
303     if (arm_current_el(env) == 3) {
304         return CP_ACCESS_OK;
305     }
306     if (arm_is_secure_below_el3(env)) {
307         if (env->cp15.scr_el3 & SCR_EEL2) {
308             return CP_ACCESS_TRAP_EL2;
309         }
310         return CP_ACCESS_TRAP_EL3;
311     }
312     /* This will be EL1 NS and EL2 NS, which just UNDEF */
313     return CP_ACCESS_TRAP_UNCATEGORIZED;
314 }
315 
316 /*
317  * Check for traps to performance monitor registers, which are controlled
318  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
319  */
320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
321                                  bool isread)
322 {
323     int el = arm_current_el(env);
324     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
325 
326     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
327         return CP_ACCESS_TRAP_EL2;
328     }
329     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
330         return CP_ACCESS_TRAP_EL3;
331     }
332     return CP_ACCESS_OK;
333 }
334 
335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
337                                bool isread)
338 {
339     if (arm_current_el(env) == 1) {
340         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
341         if (arm_hcr_el2_eff(env) & trap) {
342             return CP_ACCESS_TRAP_EL2;
343         }
344     }
345     return CP_ACCESS_OK;
346 }
347 
348 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
350                                  bool isread)
351 {
352     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
353         return CP_ACCESS_TRAP_EL2;
354     }
355     return CP_ACCESS_OK;
356 }
357 
358 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
360                                   bool isread)
361 {
362     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
363         return CP_ACCESS_TRAP_EL2;
364     }
365     return CP_ACCESS_OK;
366 }
367 
368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
370                                   bool isread)
371 {
372     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
373         return CP_ACCESS_TRAP_EL2;
374     }
375     return CP_ACCESS_OK;
376 }
377 
378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
380                                     bool isread)
381 {
382     if (arm_current_el(env) == 1 &&
383         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
384         return CP_ACCESS_TRAP_EL2;
385     }
386     return CP_ACCESS_OK;
387 }
388 
389 #ifdef TARGET_AARCH64
390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
392                                     bool isread)
393 {
394     if (arm_current_el(env) == 1 &&
395         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
396         return CP_ACCESS_TRAP_EL2;
397     }
398     return CP_ACCESS_OK;
399 }
400 #endif
401 
402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
403 {
404     ARMCPU *cpu = env_archcpu(env);
405 
406     raw_write(env, ri, value);
407     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
408 }
409 
410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
411 {
412     ARMCPU *cpu = env_archcpu(env);
413 
414     if (raw_read(env, ri) != value) {
415         /*
416          * Unlike real hardware the qemu TLB uses virtual addresses,
417          * not modified virtual addresses, so this causes a TLB flush.
418          */
419         tlb_flush(CPU(cpu));
420         raw_write(env, ri, value);
421     }
422 }
423 
424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
425                              uint64_t value)
426 {
427     ARMCPU *cpu = env_archcpu(env);
428 
429     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
430         && !extended_addresses_enabled(env)) {
431         /*
432          * For VMSA (when not using the LPAE long descriptor page table
433          * format) this register includes the ASID, so do a TLB flush.
434          * For PMSA it is purely a process ID and no action is needed.
435          */
436         tlb_flush(CPU(cpu));
437     }
438     raw_write(env, ri, value);
439 }
440 
441 static int alle1_tlbmask(CPUARMState *env)
442 {
443     /*
444      * Note that the 'ALL' scope must invalidate both stage 1 and
445      * stage 2 translations, whereas most other scopes only invalidate
446      * stage 1 translations.
447      */
448     return (ARMMMUIdxBit_E10_1 |
449             ARMMMUIdxBit_E10_1_PAN |
450             ARMMMUIdxBit_E10_0 |
451             ARMMMUIdxBit_Stage2 |
452             ARMMMUIdxBit_Stage2_S);
453 }
454 
455 
456 /* IS variants of TLB operations must affect all cores */
457 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
458                              uint64_t value)
459 {
460     CPUState *cs = env_cpu(env);
461 
462     tlb_flush_all_cpus_synced(cs);
463 }
464 
465 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
466                              uint64_t value)
467 {
468     CPUState *cs = env_cpu(env);
469 
470     tlb_flush_all_cpus_synced(cs);
471 }
472 
473 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
474                              uint64_t value)
475 {
476     CPUState *cs = env_cpu(env);
477 
478     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
479 }
480 
481 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
482                              uint64_t value)
483 {
484     CPUState *cs = env_cpu(env);
485 
486     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
487 }
488 
489 /*
490  * Non-IS variants of TLB operations are upgraded to
491  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
492  * force broadcast of these operations.
493  */
494 static bool tlb_force_broadcast(CPUARMState *env)
495 {
496     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
497 }
498 
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500                           uint64_t value)
501 {
502     /* Invalidate all (TLBIALL) */
503     CPUState *cs = env_cpu(env);
504 
505     if (tlb_force_broadcast(env)) {
506         tlb_flush_all_cpus_synced(cs);
507     } else {
508         tlb_flush(cs);
509     }
510 }
511 
512 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
513                           uint64_t value)
514 {
515     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
516     CPUState *cs = env_cpu(env);
517 
518     value &= TARGET_PAGE_MASK;
519     if (tlb_force_broadcast(env)) {
520         tlb_flush_page_all_cpus_synced(cs, value);
521     } else {
522         tlb_flush_page(cs, value);
523     }
524 }
525 
526 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
527                            uint64_t value)
528 {
529     /* Invalidate by ASID (TLBIASID) */
530     CPUState *cs = env_cpu(env);
531 
532     if (tlb_force_broadcast(env)) {
533         tlb_flush_all_cpus_synced(cs);
534     } else {
535         tlb_flush(cs);
536     }
537 }
538 
539 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
540                            uint64_t value)
541 {
542     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
543     CPUState *cs = env_cpu(env);
544 
545     value &= TARGET_PAGE_MASK;
546     if (tlb_force_broadcast(env)) {
547         tlb_flush_page_all_cpus_synced(cs, value);
548     } else {
549         tlb_flush_page(cs, value);
550     }
551 }
552 
553 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
554                                uint64_t value)
555 {
556     CPUState *cs = env_cpu(env);
557 
558     tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
559 }
560 
561 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
562                                   uint64_t value)
563 {
564     CPUState *cs = env_cpu(env);
565 
566     tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
567 }
568 
569 
570 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
571                               uint64_t value)
572 {
573     CPUState *cs = env_cpu(env);
574 
575     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
576 }
577 
578 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579                                  uint64_t value)
580 {
581     CPUState *cs = env_cpu(env);
582 
583     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
584 }
585 
586 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
587                               uint64_t value)
588 {
589     CPUState *cs = env_cpu(env);
590     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
591 
592     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
593 }
594 
595 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
596                                  uint64_t value)
597 {
598     CPUState *cs = env_cpu(env);
599     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
600 
601     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
602                                              ARMMMUIdxBit_E2);
603 }
604 
605 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
606                                 uint64_t value)
607 {
608     CPUState *cs = env_cpu(env);
609     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
610 
611     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
612 }
613 
614 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
615                                 uint64_t value)
616 {
617     CPUState *cs = env_cpu(env);
618     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
619 
620     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
621 }
622 
623 static const ARMCPRegInfo cp_reginfo[] = {
624     /*
625      * Define the secure and non-secure FCSE identifier CP registers
626      * separately because there is no secure bank in V8 (no _EL3).  This allows
627      * the secure register to be properly reset and migrated. There is also no
628      * v8 EL1 version of the register so the non-secure instance stands alone.
629      */
630     { .name = "FCSEIDR",
631       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
632       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
633       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
634       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
635     { .name = "FCSEIDR_S",
636       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
637       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
638       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
639       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
640     /*
641      * Define the secure and non-secure context identifier CP registers
642      * separately because there is no secure bank in V8 (no _EL3).  This allows
643      * the secure register to be properly reset and migrated.  In the
644      * non-secure case, the 32-bit register will have reset and migration
645      * disabled during registration as it is handled by the 64-bit instance.
646      */
647     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
648       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
649       .access = PL1_RW, .accessfn = access_tvm_trvm,
650       .fgt = FGT_CONTEXTIDR_EL1,
651       .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
652       .secure = ARM_CP_SECSTATE_NS,
653       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
654       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
655     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
656       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
657       .access = PL1_RW, .accessfn = access_tvm_trvm,
658       .secure = ARM_CP_SECSTATE_S,
659       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
660       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
661 };
662 
663 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
664     /*
665      * NB: Some of these registers exist in v8 but with more precise
666      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
667      */
668     /* MMU Domain access control / MPU write buffer control */
669     { .name = "DACR",
670       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
671       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
672       .writefn = dacr_write, .raw_writefn = raw_write,
673       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
674                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
675     /*
676      * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
677      * For v6 and v5, these mappings are overly broad.
678      */
679     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
680       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
681     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
682       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
683     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
684       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
685     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
686       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
687     /* Cache maintenance ops; some of this space may be overridden later. */
688     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
689       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
690       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
691 };
692 
693 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
694     /*
695      * Not all pre-v6 cores implemented this WFI, so this is slightly
696      * over-broad.
697      */
698     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
699       .access = PL1_W, .type = ARM_CP_WFI },
700 };
701 
702 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
703     /*
704      * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
705      * is UNPREDICTABLE; we choose to NOP as most implementations do).
706      */
707     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
708       .access = PL1_W, .type = ARM_CP_WFI },
709     /*
710      * L1 cache lockdown. Not architectural in v6 and earlier but in practice
711      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
712      * OMAPCP will override this space.
713      */
714     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
715       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
716       .resetvalue = 0 },
717     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
718       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
719       .resetvalue = 0 },
720     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
721     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
722       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
723       .resetvalue = 0 },
724     /*
725      * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
726      * implementing it as RAZ means the "debug architecture version" bits
727      * will read as a reserved value, which should cause Linux to not try
728      * to use the debug hardware.
729      */
730     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
731       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
732     /*
733      * MMU TLB control. Note that the wildcarding means we cover not just
734      * the unified TLB ops but also the dside/iside/inner-shareable variants.
735      */
736     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
737       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
738       .type = ARM_CP_NO_RAW },
739     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
740       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
741       .type = ARM_CP_NO_RAW },
742     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
743       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
744       .type = ARM_CP_NO_RAW },
745     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
746       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
747       .type = ARM_CP_NO_RAW },
748     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
749       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
750     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
751       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
752 };
753 
754 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
755                         uint64_t value)
756 {
757     uint32_t mask = 0;
758 
759     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
760     if (!arm_feature(env, ARM_FEATURE_V8)) {
761         /*
762          * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
763          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
764          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
765          */
766         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
767             /* VFP coprocessor: cp10 & cp11 [23:20] */
768             mask |= R_CPACR_ASEDIS_MASK |
769                     R_CPACR_D32DIS_MASK |
770                     R_CPACR_CP11_MASK |
771                     R_CPACR_CP10_MASK;
772 
773             if (!arm_feature(env, ARM_FEATURE_NEON)) {
774                 /* ASEDIS [31] bit is RAO/WI */
775                 value |= R_CPACR_ASEDIS_MASK;
776             }
777 
778             /*
779              * VFPv3 and upwards with NEON implement 32 double precision
780              * registers (D0-D31).
781              */
782             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
783                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
784                 value |= R_CPACR_D32DIS_MASK;
785             }
786         }
787         value &= mask;
788     }
789 
790     /*
791      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
793      */
794     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
795         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
796         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
797         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
798     }
799 
800     env->cp15.cpacr_el1 = value;
801 }
802 
803 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
804 {
805     /*
806      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
807      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
808      */
809     uint64_t value = env->cp15.cpacr_el1;
810 
811     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
812         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
813         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
814     }
815     return value;
816 }
817 
818 
819 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
820 {
821     /*
822      * Call cpacr_write() so that we reset with the correct RAO bits set
823      * for our CPU features.
824      */
825     cpacr_write(env, ri, 0);
826 }
827 
828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
829                                    bool isread)
830 {
831     if (arm_feature(env, ARM_FEATURE_V8)) {
832         /* Check if CPACR accesses are to be trapped to EL2 */
833         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
834             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
835             return CP_ACCESS_TRAP_EL2;
836         /* Check if CPACR accesses are to be trapped to EL3 */
837         } else if (arm_current_el(env) < 3 &&
838                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
839             return CP_ACCESS_TRAP_EL3;
840         }
841     }
842 
843     return CP_ACCESS_OK;
844 }
845 
846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
847                                   bool isread)
848 {
849     /* Check if CPTR accesses are set to trap to EL3 */
850     if (arm_current_el(env) == 2 &&
851         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
852         return CP_ACCESS_TRAP_EL3;
853     }
854 
855     return CP_ACCESS_OK;
856 }
857 
858 static const ARMCPRegInfo v6_cp_reginfo[] = {
859     /* prefetch by MVA in v6, NOP in v7 */
860     { .name = "MVA_prefetch",
861       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
862       .access = PL1_W, .type = ARM_CP_NOP },
863     /*
864      * We need to break the TB after ISB to execute self-modifying code
865      * correctly and also to take any pending interrupts immediately.
866      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
867      */
868     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
869       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
870     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
871       .access = PL0_W, .type = ARM_CP_NOP },
872     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
873       .access = PL0_W, .type = ARM_CP_NOP },
874     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
875       .access = PL1_RW, .accessfn = access_tvm_trvm,
876       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
877                              offsetof(CPUARMState, cp15.ifar_ns) },
878       .resetvalue = 0, },
879     /*
880      * Watchpoint Fault Address Register : should actually only be present
881      * for 1136, 1176, 11MPCore.
882      */
883     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
884       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
885     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
886       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
887       .fgt = FGT_CPACR_EL1,
888       .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
889       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
890       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
891 };
892 
893 typedef struct pm_event {
894     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
895     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
896     bool (*supported)(CPUARMState *);
897     /*
898      * Retrieve the current count of the underlying event. The programmed
899      * counters hold a difference from the return value from this function
900      */
901     uint64_t (*get_count)(CPUARMState *);
902     /*
903      * Return how many nanoseconds it will take (at a minimum) for count events
904      * to occur. A negative value indicates the counter will never overflow, or
905      * that the counter has otherwise arranged for the overflow bit to be set
906      * and the PMU interrupt to be raised on overflow.
907      */
908     int64_t (*ns_per_count)(uint64_t);
909 } pm_event;
910 
911 static bool event_always_supported(CPUARMState *env)
912 {
913     return true;
914 }
915 
916 static uint64_t swinc_get_count(CPUARMState *env)
917 {
918     /*
919      * SW_INCR events are written directly to the pmevcntr's by writes to
920      * PMSWINC, so there is no underlying count maintained by the PMU itself
921      */
922     return 0;
923 }
924 
925 static int64_t swinc_ns_per(uint64_t ignored)
926 {
927     return -1;
928 }
929 
930 /*
931  * Return the underlying cycle count for the PMU cycle counters. If we're in
932  * usermode, simply return 0.
933  */
934 static uint64_t cycles_get_count(CPUARMState *env)
935 {
936 #ifndef CONFIG_USER_ONLY
937     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
938                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
939 #else
940     return cpu_get_host_ticks();
941 #endif
942 }
943 
944 #ifndef CONFIG_USER_ONLY
945 static int64_t cycles_ns_per(uint64_t cycles)
946 {
947     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
948 }
949 
950 static bool instructions_supported(CPUARMState *env)
951 {
952     /* Precise instruction counting */
953     return icount_enabled() == ICOUNT_PRECISE;
954 }
955 
956 static uint64_t instructions_get_count(CPUARMState *env)
957 {
958     assert(icount_enabled() == ICOUNT_PRECISE);
959     return (uint64_t)icount_get_raw();
960 }
961 
962 static int64_t instructions_ns_per(uint64_t icount)
963 {
964     assert(icount_enabled() == ICOUNT_PRECISE);
965     return icount_to_ns((int64_t)icount);
966 }
967 #endif
968 
969 static bool pmuv3p1_events_supported(CPUARMState *env)
970 {
971     /* For events which are supported in any v8.1 PMU */
972     return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
973 }
974 
975 static bool pmuv3p4_events_supported(CPUARMState *env)
976 {
977     /* For events which are supported in any v8.1 PMU */
978     return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
979 }
980 
981 static uint64_t zero_event_get_count(CPUARMState *env)
982 {
983     /* For events which on QEMU never fire, so their count is always zero */
984     return 0;
985 }
986 
987 static int64_t zero_event_ns_per(uint64_t cycles)
988 {
989     /* An event which never fires can never overflow */
990     return -1;
991 }
992 
993 static const pm_event pm_events[] = {
994     { .number = 0x000, /* SW_INCR */
995       .supported = event_always_supported,
996       .get_count = swinc_get_count,
997       .ns_per_count = swinc_ns_per,
998     },
999 #ifndef CONFIG_USER_ONLY
1000     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1001       .supported = instructions_supported,
1002       .get_count = instructions_get_count,
1003       .ns_per_count = instructions_ns_per,
1004     },
1005     { .number = 0x011, /* CPU_CYCLES, Cycle */
1006       .supported = event_always_supported,
1007       .get_count = cycles_get_count,
1008       .ns_per_count = cycles_ns_per,
1009     },
1010 #endif
1011     { .number = 0x023, /* STALL_FRONTEND */
1012       .supported = pmuv3p1_events_supported,
1013       .get_count = zero_event_get_count,
1014       .ns_per_count = zero_event_ns_per,
1015     },
1016     { .number = 0x024, /* STALL_BACKEND */
1017       .supported = pmuv3p1_events_supported,
1018       .get_count = zero_event_get_count,
1019       .ns_per_count = zero_event_ns_per,
1020     },
1021     { .number = 0x03c, /* STALL */
1022       .supported = pmuv3p4_events_supported,
1023       .get_count = zero_event_get_count,
1024       .ns_per_count = zero_event_ns_per,
1025     },
1026 };
1027 
1028 /*
1029  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1030  * events (i.e. the statistical profiling extension), this implementation
1031  * should first be updated to something sparse instead of the current
1032  * supported_event_map[] array.
1033  */
1034 #define MAX_EVENT_ID 0x3c
1035 #define UNSUPPORTED_EVENT UINT16_MAX
1036 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1037 
1038 /*
1039  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1040  * of ARM event numbers to indices in our pm_events array.
1041  *
1042  * Note: Events in the 0x40XX range are not currently supported.
1043  */
1044 void pmu_init(ARMCPU *cpu)
1045 {
1046     unsigned int i;
1047 
1048     /*
1049      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1050      * events to them
1051      */
1052     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1053         supported_event_map[i] = UNSUPPORTED_EVENT;
1054     }
1055     cpu->pmceid0 = 0;
1056     cpu->pmceid1 = 0;
1057 
1058     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1059         const pm_event *cnt = &pm_events[i];
1060         assert(cnt->number <= MAX_EVENT_ID);
1061         /* We do not currently support events in the 0x40xx range */
1062         assert(cnt->number <= 0x3f);
1063 
1064         if (cnt->supported(&cpu->env)) {
1065             supported_event_map[cnt->number] = i;
1066             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1067             if (cnt->number & 0x20) {
1068                 cpu->pmceid1 |= event_mask;
1069             } else {
1070                 cpu->pmceid0 |= event_mask;
1071             }
1072         }
1073     }
1074 }
1075 
1076 /*
1077  * Check at runtime whether a PMU event is supported for the current machine
1078  */
1079 static bool event_supported(uint16_t number)
1080 {
1081     if (number > MAX_EVENT_ID) {
1082         return false;
1083     }
1084     return supported_event_map[number] != UNSUPPORTED_EVENT;
1085 }
1086 
1087 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1088                                    bool isread)
1089 {
1090     /*
1091      * Performance monitor registers user accessibility is controlled
1092      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1093      * trapping to EL2 or EL3 for other accesses.
1094      */
1095     int el = arm_current_el(env);
1096     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1097 
1098     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1099         return CP_ACCESS_TRAP;
1100     }
1101     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1102         return CP_ACCESS_TRAP_EL2;
1103     }
1104     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1105         return CP_ACCESS_TRAP_EL3;
1106     }
1107 
1108     return CP_ACCESS_OK;
1109 }
1110 
1111 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1112                                            const ARMCPRegInfo *ri,
1113                                            bool isread)
1114 {
1115     /* ER: event counter read trap control */
1116     if (arm_feature(env, ARM_FEATURE_V8)
1117         && arm_current_el(env) == 0
1118         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1119         && isread) {
1120         return CP_ACCESS_OK;
1121     }
1122 
1123     return pmreg_access(env, ri, isread);
1124 }
1125 
1126 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1127                                          const ARMCPRegInfo *ri,
1128                                          bool isread)
1129 {
1130     /* SW: software increment write trap control */
1131     if (arm_feature(env, ARM_FEATURE_V8)
1132         && arm_current_el(env) == 0
1133         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1134         && !isread) {
1135         return CP_ACCESS_OK;
1136     }
1137 
1138     return pmreg_access(env, ri, isread);
1139 }
1140 
1141 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1142                                         const ARMCPRegInfo *ri,
1143                                         bool isread)
1144 {
1145     /* ER: event counter read trap control */
1146     if (arm_feature(env, ARM_FEATURE_V8)
1147         && arm_current_el(env) == 0
1148         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1149         return CP_ACCESS_OK;
1150     }
1151 
1152     return pmreg_access(env, ri, isread);
1153 }
1154 
1155 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1156                                          const ARMCPRegInfo *ri,
1157                                          bool isread)
1158 {
1159     /* CR: cycle counter read trap control */
1160     if (arm_feature(env, ARM_FEATURE_V8)
1161         && arm_current_el(env) == 0
1162         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1163         && isread) {
1164         return CP_ACCESS_OK;
1165     }
1166 
1167     return pmreg_access(env, ri, isread);
1168 }
1169 
1170 /*
1171  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1172  * We use these to decide whether we need to wrap a write to MDCR_EL2
1173  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1174  */
1175 #define MDCR_EL2_PMU_ENABLE_BITS \
1176     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1177 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1178 
1179 /*
1180  * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1181  * the current EL, security state, and register configuration.
1182  */
1183 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1184 {
1185     uint64_t filter;
1186     bool e, p, u, nsk, nsu, nsh, m;
1187     bool enabled, prohibited = false, filtered;
1188     bool secure = arm_is_secure(env);
1189     int el = arm_current_el(env);
1190     uint64_t mdcr_el2;
1191     uint8_t hpmn;
1192 
1193     /*
1194      * We might be called for M-profile cores where MDCR_EL2 doesn't
1195      * exist and arm_mdcr_el2_eff() will assert, so this early-exit check
1196      * must be before we read that value.
1197      */
1198     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1199         return false;
1200     }
1201 
1202     mdcr_el2 = arm_mdcr_el2_eff(env);
1203     hpmn = mdcr_el2 & MDCR_HPMN;
1204 
1205     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1206             (counter < hpmn || counter == 31)) {
1207         e = env->cp15.c9_pmcr & PMCRE;
1208     } else {
1209         e = mdcr_el2 & MDCR_HPME;
1210     }
1211     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1212 
1213     /* Is event counting prohibited? */
1214     if (el == 2 && (counter < hpmn || counter == 31)) {
1215         prohibited = mdcr_el2 & MDCR_HPMD;
1216     }
1217     if (secure) {
1218         prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1219     }
1220 
1221     if (counter == 31) {
1222         /*
1223          * The cycle counter defaults to running. PMCR.DP says "disable
1224          * the cycle counter when event counting is prohibited".
1225          * Some MDCR bits disable the cycle counter specifically.
1226          */
1227         prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1228         if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1229             if (secure) {
1230                 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1231             }
1232             if (el == 2) {
1233                 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1234             }
1235         }
1236     }
1237 
1238     if (counter == 31) {
1239         filter = env->cp15.pmccfiltr_el0;
1240     } else {
1241         filter = env->cp15.c14_pmevtyper[counter];
1242     }
1243 
1244     p   = filter & PMXEVTYPER_P;
1245     u   = filter & PMXEVTYPER_U;
1246     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1247     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1248     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1249     m   = arm_el_is_aa64(env, 1) &&
1250               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1251 
1252     if (el == 0) {
1253         filtered = secure ? u : u != nsu;
1254     } else if (el == 1) {
1255         filtered = secure ? p : p != nsk;
1256     } else if (el == 2) {
1257         filtered = !nsh;
1258     } else { /* EL3 */
1259         filtered = m != p;
1260     }
1261 
1262     if (counter != 31) {
1263         /*
1264          * If not checking PMCCNTR, ensure the counter is setup to an event we
1265          * support
1266          */
1267         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1268         if (!event_supported(event)) {
1269             return false;
1270         }
1271     }
1272 
1273     return enabled && !prohibited && !filtered;
1274 }
1275 
1276 static void pmu_update_irq(CPUARMState *env)
1277 {
1278     ARMCPU *cpu = env_archcpu(env);
1279     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1280             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1281 }
1282 
1283 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1284 {
1285     /*
1286      * Return true if the clock divider is enabled and the cycle counter
1287      * is supposed to tick only once every 64 clock cycles. This is
1288      * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1289      * (64-bit) cycle counter PMCR.D has no effect.
1290      */
1291     return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1292 }
1293 
1294 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1295 {
1296     /* Return true if the specified event counter is configured to be 64 bit */
1297 
1298     /* This isn't intended to be used with the cycle counter */
1299     assert(counter < 31);
1300 
1301     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1302         return false;
1303     }
1304 
1305     if (arm_feature(env, ARM_FEATURE_EL2)) {
1306         /*
1307          * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1308          * current security state, so we don't use arm_mdcr_el2_eff() here.
1309          */
1310         bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1311         int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1312 
1313         if (counter >= hpmn) {
1314             return hlp;
1315         }
1316     }
1317     return env->cp15.c9_pmcr & PMCRLP;
1318 }
1319 
1320 /*
1321  * Ensure c15_ccnt is the guest-visible count so that operations such as
1322  * enabling/disabling the counter or filtering, modifying the count itself,
1323  * etc. can be done logically. This is essentially a no-op if the counter is
1324  * not enabled at the time of the call.
1325  */
1326 static void pmccntr_op_start(CPUARMState *env)
1327 {
1328     uint64_t cycles = cycles_get_count(env);
1329 
1330     if (pmu_counter_enabled(env, 31)) {
1331         uint64_t eff_cycles = cycles;
1332         if (pmccntr_clockdiv_enabled(env)) {
1333             eff_cycles /= 64;
1334         }
1335 
1336         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1337 
1338         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1339                                  1ull << 63 : 1ull << 31;
1340         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1341             env->cp15.c9_pmovsr |= (1ULL << 31);
1342             pmu_update_irq(env);
1343         }
1344 
1345         env->cp15.c15_ccnt = new_pmccntr;
1346     }
1347     env->cp15.c15_ccnt_delta = cycles;
1348 }
1349 
1350 /*
1351  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1352  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1353  * pmccntr_op_start.
1354  */
1355 static void pmccntr_op_finish(CPUARMState *env)
1356 {
1357     if (pmu_counter_enabled(env, 31)) {
1358 #ifndef CONFIG_USER_ONLY
1359         /* Calculate when the counter will next overflow */
1360         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1361         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1362             remaining_cycles = (uint32_t)remaining_cycles;
1363         }
1364         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1365 
1366         if (overflow_in > 0) {
1367             int64_t overflow_at;
1368 
1369             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1370                                  overflow_in, &overflow_at)) {
1371                 ARMCPU *cpu = env_archcpu(env);
1372                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1373             }
1374         }
1375 #endif
1376 
1377         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1378         if (pmccntr_clockdiv_enabled(env)) {
1379             prev_cycles /= 64;
1380         }
1381         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1382     }
1383 }
1384 
1385 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1386 {
1387 
1388     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1389     uint64_t count = 0;
1390     if (event_supported(event)) {
1391         uint16_t event_idx = supported_event_map[event];
1392         count = pm_events[event_idx].get_count(env);
1393     }
1394 
1395     if (pmu_counter_enabled(env, counter)) {
1396         uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1397         uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1398             1ULL << 63 : 1ULL << 31;
1399 
1400         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1401             env->cp15.c9_pmovsr |= (1 << counter);
1402             pmu_update_irq(env);
1403         }
1404         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1405     }
1406     env->cp15.c14_pmevcntr_delta[counter] = count;
1407 }
1408 
1409 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1410 {
1411     if (pmu_counter_enabled(env, counter)) {
1412 #ifndef CONFIG_USER_ONLY
1413         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1414         uint16_t event_idx = supported_event_map[event];
1415         uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1416         int64_t overflow_in;
1417 
1418         if (!pmevcntr_is_64_bit(env, counter)) {
1419             delta = (uint32_t)delta;
1420         }
1421         overflow_in = pm_events[event_idx].ns_per_count(delta);
1422 
1423         if (overflow_in > 0) {
1424             int64_t overflow_at;
1425 
1426             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1427                                  overflow_in, &overflow_at)) {
1428                 ARMCPU *cpu = env_archcpu(env);
1429                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1430             }
1431         }
1432 #endif
1433 
1434         env->cp15.c14_pmevcntr_delta[counter] -=
1435             env->cp15.c14_pmevcntr[counter];
1436     }
1437 }
1438 
1439 void pmu_op_start(CPUARMState *env)
1440 {
1441     unsigned int i;
1442     pmccntr_op_start(env);
1443     for (i = 0; i < pmu_num_counters(env); i++) {
1444         pmevcntr_op_start(env, i);
1445     }
1446 }
1447 
1448 void pmu_op_finish(CPUARMState *env)
1449 {
1450     unsigned int i;
1451     pmccntr_op_finish(env);
1452     for (i = 0; i < pmu_num_counters(env); i++) {
1453         pmevcntr_op_finish(env, i);
1454     }
1455 }
1456 
1457 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1458 {
1459     pmu_op_start(&cpu->env);
1460 }
1461 
1462 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1463 {
1464     pmu_op_finish(&cpu->env);
1465 }
1466 
1467 void arm_pmu_timer_cb(void *opaque)
1468 {
1469     ARMCPU *cpu = opaque;
1470 
1471     /*
1472      * Update all the counter values based on the current underlying counts,
1473      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1474      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1475      * counter may expire.
1476      */
1477     pmu_op_start(&cpu->env);
1478     pmu_op_finish(&cpu->env);
1479 }
1480 
1481 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1482                        uint64_t value)
1483 {
1484     pmu_op_start(env);
1485 
1486     if (value & PMCRC) {
1487         /* The counter has been reset */
1488         env->cp15.c15_ccnt = 0;
1489     }
1490 
1491     if (value & PMCRP) {
1492         unsigned int i;
1493         for (i = 0; i < pmu_num_counters(env); i++) {
1494             env->cp15.c14_pmevcntr[i] = 0;
1495         }
1496     }
1497 
1498     env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1499     env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1500 
1501     pmu_op_finish(env);
1502 }
1503 
1504 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1505 {
1506     uint64_t pmcr = env->cp15.c9_pmcr;
1507 
1508     /*
1509      * If EL2 is implemented and enabled for the current security state, reads
1510      * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
1511      */
1512     if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
1513         pmcr &= ~PMCRN_MASK;
1514         pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
1515     }
1516 
1517     return pmcr;
1518 }
1519 
1520 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1521                           uint64_t value)
1522 {
1523     unsigned int i;
1524     uint64_t overflow_mask, new_pmswinc;
1525 
1526     for (i = 0; i < pmu_num_counters(env); i++) {
1527         /* Increment a counter's count iff: */
1528         if ((value & (1 << i)) && /* counter's bit is set */
1529                 /* counter is enabled and not filtered */
1530                 pmu_counter_enabled(env, i) &&
1531                 /* counter is SW_INCR */
1532                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1533             pmevcntr_op_start(env, i);
1534 
1535             /*
1536              * Detect if this write causes an overflow since we can't predict
1537              * PMSWINC overflows like we can for other events
1538              */
1539             new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1540 
1541             overflow_mask = pmevcntr_is_64_bit(env, i) ?
1542                 1ULL << 63 : 1ULL << 31;
1543 
1544             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1545                 env->cp15.c9_pmovsr |= (1 << i);
1546                 pmu_update_irq(env);
1547             }
1548 
1549             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1550 
1551             pmevcntr_op_finish(env, i);
1552         }
1553     }
1554 }
1555 
1556 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1557 {
1558     uint64_t ret;
1559     pmccntr_op_start(env);
1560     ret = env->cp15.c15_ccnt;
1561     pmccntr_op_finish(env);
1562     return ret;
1563 }
1564 
1565 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1566                          uint64_t value)
1567 {
1568     /*
1569      * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1570      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1571      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1572      * accessed.
1573      */
1574     env->cp15.c9_pmselr = value & 0x1f;
1575 }
1576 
1577 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1578                         uint64_t value)
1579 {
1580     pmccntr_op_start(env);
1581     env->cp15.c15_ccnt = value;
1582     pmccntr_op_finish(env);
1583 }
1584 
1585 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1586                             uint64_t value)
1587 {
1588     uint64_t cur_val = pmccntr_read(env, NULL);
1589 
1590     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1591 }
1592 
1593 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594                             uint64_t value)
1595 {
1596     pmccntr_op_start(env);
1597     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1598     pmccntr_op_finish(env);
1599 }
1600 
1601 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1602                             uint64_t value)
1603 {
1604     pmccntr_op_start(env);
1605     /* M is not accessible from AArch32 */
1606     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1607         (value & PMCCFILTR);
1608     pmccntr_op_finish(env);
1609 }
1610 
1611 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1612 {
1613     /* M is not visible in AArch32 */
1614     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1615 }
1616 
1617 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1618                             uint64_t value)
1619 {
1620     pmu_op_start(env);
1621     value &= pmu_counter_mask(env);
1622     env->cp15.c9_pmcnten |= value;
1623     pmu_op_finish(env);
1624 }
1625 
1626 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1627                              uint64_t value)
1628 {
1629     pmu_op_start(env);
1630     value &= pmu_counter_mask(env);
1631     env->cp15.c9_pmcnten &= ~value;
1632     pmu_op_finish(env);
1633 }
1634 
1635 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1636                          uint64_t value)
1637 {
1638     value &= pmu_counter_mask(env);
1639     env->cp15.c9_pmovsr &= ~value;
1640     pmu_update_irq(env);
1641 }
1642 
1643 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1644                          uint64_t value)
1645 {
1646     value &= pmu_counter_mask(env);
1647     env->cp15.c9_pmovsr |= value;
1648     pmu_update_irq(env);
1649 }
1650 
1651 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1652                              uint64_t value, const uint8_t counter)
1653 {
1654     if (counter == 31) {
1655         pmccfiltr_write(env, ri, value);
1656     } else if (counter < pmu_num_counters(env)) {
1657         pmevcntr_op_start(env, counter);
1658 
1659         /*
1660          * If this counter's event type is changing, store the current
1661          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1662          * pmevcntr_op_finish has the correct baseline when it converts back to
1663          * a delta.
1664          */
1665         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1666             PMXEVTYPER_EVTCOUNT;
1667         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1668         if (old_event != new_event) {
1669             uint64_t count = 0;
1670             if (event_supported(new_event)) {
1671                 uint16_t event_idx = supported_event_map[new_event];
1672                 count = pm_events[event_idx].get_count(env);
1673             }
1674             env->cp15.c14_pmevcntr_delta[counter] = count;
1675         }
1676 
1677         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1678         pmevcntr_op_finish(env, counter);
1679     }
1680     /*
1681      * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1682      * PMSELR value is equal to or greater than the number of implemented
1683      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1684      */
1685 }
1686 
1687 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1688                                const uint8_t counter)
1689 {
1690     if (counter == 31) {
1691         return env->cp15.pmccfiltr_el0;
1692     } else if (counter < pmu_num_counters(env)) {
1693         return env->cp15.c14_pmevtyper[counter];
1694     } else {
1695       /*
1696        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1697        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1698        */
1699         return 0;
1700     }
1701 }
1702 
1703 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1704                               uint64_t value)
1705 {
1706     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1707     pmevtyper_write(env, ri, value, counter);
1708 }
1709 
1710 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1711                                uint64_t value)
1712 {
1713     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1714     env->cp15.c14_pmevtyper[counter] = value;
1715 
1716     /*
1717      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1718      * pmu_op_finish calls when loading saved state for a migration. Because
1719      * we're potentially updating the type of event here, the value written to
1720      * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1721      * different counter type. Therefore, we need to set this value to the
1722      * current count for the counter type we're writing so that pmu_op_finish
1723      * has the correct count for its calculation.
1724      */
1725     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1726     if (event_supported(event)) {
1727         uint16_t event_idx = supported_event_map[event];
1728         env->cp15.c14_pmevcntr_delta[counter] =
1729             pm_events[event_idx].get_count(env);
1730     }
1731 }
1732 
1733 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1734 {
1735     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1736     return pmevtyper_read(env, ri, counter);
1737 }
1738 
1739 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1740                              uint64_t value)
1741 {
1742     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1743 }
1744 
1745 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1746 {
1747     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1748 }
1749 
1750 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1751                              uint64_t value, uint8_t counter)
1752 {
1753     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1754         /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1755         value &= MAKE_64BIT_MASK(0, 32);
1756     }
1757     if (counter < pmu_num_counters(env)) {
1758         pmevcntr_op_start(env, counter);
1759         env->cp15.c14_pmevcntr[counter] = value;
1760         pmevcntr_op_finish(env, counter);
1761     }
1762     /*
1763      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1764      * are CONSTRAINED UNPREDICTABLE.
1765      */
1766 }
1767 
1768 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1769                               uint8_t counter)
1770 {
1771     if (counter < pmu_num_counters(env)) {
1772         uint64_t ret;
1773         pmevcntr_op_start(env, counter);
1774         ret = env->cp15.c14_pmevcntr[counter];
1775         pmevcntr_op_finish(env, counter);
1776         if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1777             /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1778             ret &= MAKE_64BIT_MASK(0, 32);
1779         }
1780         return ret;
1781     } else {
1782       /*
1783        * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1784        * are CONSTRAINED UNPREDICTABLE.
1785        */
1786         return 0;
1787     }
1788 }
1789 
1790 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1791                              uint64_t value)
1792 {
1793     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1794     pmevcntr_write(env, ri, value, counter);
1795 }
1796 
1797 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1798 {
1799     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1800     return pmevcntr_read(env, ri, counter);
1801 }
1802 
1803 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1804                              uint64_t value)
1805 {
1806     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1807     assert(counter < pmu_num_counters(env));
1808     env->cp15.c14_pmevcntr[counter] = value;
1809     pmevcntr_write(env, ri, value, counter);
1810 }
1811 
1812 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1813 {
1814     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1815     assert(counter < pmu_num_counters(env));
1816     return env->cp15.c14_pmevcntr[counter];
1817 }
1818 
1819 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1820                              uint64_t value)
1821 {
1822     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1823 }
1824 
1825 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1826 {
1827     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1828 }
1829 
1830 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1831                             uint64_t value)
1832 {
1833     if (arm_feature(env, ARM_FEATURE_V8)) {
1834         env->cp15.c9_pmuserenr = value & 0xf;
1835     } else {
1836         env->cp15.c9_pmuserenr = value & 1;
1837     }
1838 }
1839 
1840 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841                              uint64_t value)
1842 {
1843     /* We have no event counters so only the C bit can be changed */
1844     value &= pmu_counter_mask(env);
1845     env->cp15.c9_pminten |= value;
1846     pmu_update_irq(env);
1847 }
1848 
1849 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850                              uint64_t value)
1851 {
1852     value &= pmu_counter_mask(env);
1853     env->cp15.c9_pminten &= ~value;
1854     pmu_update_irq(env);
1855 }
1856 
1857 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858                        uint64_t value)
1859 {
1860     /*
1861      * Note that even though the AArch64 view of this register has bits
1862      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1863      * architectural requirements for bits which are RES0 only in some
1864      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1865      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1866      */
1867     raw_write(env, ri, value & ~0x1FULL);
1868 }
1869 
1870 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1871 {
1872     /* Begin with base v8.0 state.  */
1873     uint64_t valid_mask = 0x3fff;
1874     ARMCPU *cpu = env_archcpu(env);
1875     uint64_t changed;
1876 
1877     /*
1878      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1879      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1880      * Instead, choose the format based on the mode of EL3.
1881      */
1882     if (arm_el_is_aa64(env, 3)) {
1883         value |= SCR_FW | SCR_AW;      /* RES1 */
1884         valid_mask &= ~SCR_NET;        /* RES0 */
1885 
1886         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1887             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1888             value |= SCR_RW;           /* RAO/WI */
1889         }
1890         if (cpu_isar_feature(aa64_ras, cpu)) {
1891             valid_mask |= SCR_TERR;
1892         }
1893         if (cpu_isar_feature(aa64_lor, cpu)) {
1894             valid_mask |= SCR_TLOR;
1895         }
1896         if (cpu_isar_feature(aa64_pauth, cpu)) {
1897             valid_mask |= SCR_API | SCR_APK;
1898         }
1899         if (cpu_isar_feature(aa64_sel2, cpu)) {
1900             valid_mask |= SCR_EEL2;
1901         } else if (cpu_isar_feature(aa64_rme, cpu)) {
1902             /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1903             value |= SCR_NS;
1904         }
1905         if (cpu_isar_feature(aa64_mte, cpu)) {
1906             valid_mask |= SCR_ATA;
1907         }
1908         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1909             valid_mask |= SCR_ENSCXT;
1910         }
1911         if (cpu_isar_feature(aa64_doublefault, cpu)) {
1912             valid_mask |= SCR_EASE | SCR_NMEA;
1913         }
1914         if (cpu_isar_feature(aa64_sme, cpu)) {
1915             valid_mask |= SCR_ENTP2;
1916         }
1917         if (cpu_isar_feature(aa64_hcx, cpu)) {
1918             valid_mask |= SCR_HXEN;
1919         }
1920         if (cpu_isar_feature(aa64_fgt, cpu)) {
1921             valid_mask |= SCR_FGTEN;
1922         }
1923         if (cpu_isar_feature(aa64_rme, cpu)) {
1924             valid_mask |= SCR_NSE | SCR_GPF;
1925         }
1926         if (cpu_isar_feature(aa64_ecv, cpu)) {
1927             valid_mask |= SCR_ECVEN;
1928         }
1929     } else {
1930         valid_mask &= ~(SCR_RW | SCR_ST);
1931         if (cpu_isar_feature(aa32_ras, cpu)) {
1932             valid_mask |= SCR_TERR;
1933         }
1934     }
1935 
1936     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1937         valid_mask &= ~SCR_HCE;
1938 
1939         /*
1940          * On ARMv7, SMD (or SCD as it is called in v7) is only
1941          * supported if EL2 exists. The bit is UNK/SBZP when
1942          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1943          * when EL2 is unavailable.
1944          * On ARMv8, this bit is always available.
1945          */
1946         if (arm_feature(env, ARM_FEATURE_V7) &&
1947             !arm_feature(env, ARM_FEATURE_V8)) {
1948             valid_mask &= ~SCR_SMD;
1949         }
1950     }
1951 
1952     /* Clear all-context RES0 bits.  */
1953     value &= valid_mask;
1954     changed = env->cp15.scr_el3 ^ value;
1955     env->cp15.scr_el3 = value;
1956 
1957     /*
1958      * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1959      * we must invalidate all TLBs below EL3.
1960      */
1961     if (changed & (SCR_NS | SCR_NSE)) {
1962         tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1963                                            ARMMMUIdxBit_E20_0 |
1964                                            ARMMMUIdxBit_E10_1 |
1965                                            ARMMMUIdxBit_E20_2 |
1966                                            ARMMMUIdxBit_E10_1_PAN |
1967                                            ARMMMUIdxBit_E20_2_PAN |
1968                                            ARMMMUIdxBit_E2));
1969     }
1970 }
1971 
1972 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1973 {
1974     /*
1975      * scr_write will set the RES1 bits on an AArch64-only CPU.
1976      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1977      */
1978     scr_write(env, ri, 0);
1979 }
1980 
1981 static CPAccessResult access_tid4(CPUARMState *env,
1982                                   const ARMCPRegInfo *ri,
1983                                   bool isread)
1984 {
1985     if (arm_current_el(env) == 1 &&
1986         (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1987         return CP_ACCESS_TRAP_EL2;
1988     }
1989 
1990     return CP_ACCESS_OK;
1991 }
1992 
1993 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1994 {
1995     ARMCPU *cpu = env_archcpu(env);
1996 
1997     /*
1998      * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1999      * bank
2000      */
2001     uint32_t index = A32_BANKED_REG_GET(env, csselr,
2002                                         ri->secure & ARM_CP_SECSTATE_S);
2003 
2004     return cpu->ccsidr[index];
2005 }
2006 
2007 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2008                          uint64_t value)
2009 {
2010     raw_write(env, ri, value & 0xf);
2011 }
2012 
2013 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2014 {
2015     CPUState *cs = env_cpu(env);
2016     bool el1 = arm_current_el(env) == 1;
2017     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2018     uint64_t ret = 0;
2019 
2020     if (hcr_el2 & HCR_IMO) {
2021         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2022             ret |= CPSR_I;
2023         }
2024         if (cs->interrupt_request & CPU_INTERRUPT_VINMI) {
2025             ret |= ISR_IS;
2026             ret |= CPSR_I;
2027         }
2028     } else {
2029         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2030             ret |= CPSR_I;
2031         }
2032 
2033         if (cs->interrupt_request & CPU_INTERRUPT_NMI) {
2034             ret |= ISR_IS;
2035             ret |= CPSR_I;
2036         }
2037     }
2038 
2039     if (hcr_el2 & HCR_FMO) {
2040         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2041             ret |= CPSR_F;
2042         }
2043         if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) {
2044             ret |= ISR_FS;
2045             ret |= CPSR_F;
2046         }
2047     } else {
2048         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2049             ret |= CPSR_F;
2050         }
2051     }
2052 
2053     if (hcr_el2 & HCR_AMO) {
2054         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
2055             ret |= CPSR_A;
2056         }
2057     }
2058 
2059     return ret;
2060 }
2061 
2062 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2063                                        bool isread)
2064 {
2065     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2066         return CP_ACCESS_TRAP_EL2;
2067     }
2068 
2069     return CP_ACCESS_OK;
2070 }
2071 
2072 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2073                                        bool isread)
2074 {
2075     if (arm_feature(env, ARM_FEATURE_V8)) {
2076         return access_aa64_tid1(env, ri, isread);
2077     }
2078 
2079     return CP_ACCESS_OK;
2080 }
2081 
2082 static const ARMCPRegInfo v7_cp_reginfo[] = {
2083     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2084     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2085       .access = PL1_W, .type = ARM_CP_NOP },
2086     /*
2087      * Performance monitors are implementation defined in v7,
2088      * but with an ARM recommended set of registers, which we
2089      * follow.
2090      *
2091      * Performance registers fall into three categories:
2092      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2093      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2094      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2095      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2096      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2097      */
2098     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2099       .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2100       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2101       .writefn = pmcntenset_write,
2102       .accessfn = pmreg_access,
2103       .fgt = FGT_PMCNTEN,
2104       .raw_writefn = raw_write },
2105     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2106       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2107       .access = PL0_RW, .accessfn = pmreg_access,
2108       .fgt = FGT_PMCNTEN,
2109       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2110       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2111     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2112       .access = PL0_RW,
2113       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2114       .accessfn = pmreg_access,
2115       .fgt = FGT_PMCNTEN,
2116       .writefn = pmcntenclr_write,
2117       .type = ARM_CP_ALIAS | ARM_CP_IO },
2118     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2119       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2120       .access = PL0_RW, .accessfn = pmreg_access,
2121       .fgt = FGT_PMCNTEN,
2122       .type = ARM_CP_ALIAS | ARM_CP_IO,
2123       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2124       .writefn = pmcntenclr_write },
2125     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2126       .access = PL0_RW, .type = ARM_CP_IO,
2127       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2128       .accessfn = pmreg_access,
2129       .fgt = FGT_PMOVS,
2130       .writefn = pmovsr_write,
2131       .raw_writefn = raw_write },
2132     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2133       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2134       .access = PL0_RW, .accessfn = pmreg_access,
2135       .fgt = FGT_PMOVS,
2136       .type = ARM_CP_ALIAS | ARM_CP_IO,
2137       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2138       .writefn = pmovsr_write,
2139       .raw_writefn = raw_write },
2140     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2141       .access = PL0_W, .accessfn = pmreg_access_swinc,
2142       .fgt = FGT_PMSWINC_EL0,
2143       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2144       .writefn = pmswinc_write },
2145     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2146       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2147       .access = PL0_W, .accessfn = pmreg_access_swinc,
2148       .fgt = FGT_PMSWINC_EL0,
2149       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2150       .writefn = pmswinc_write },
2151     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2152       .access = PL0_RW, .type = ARM_CP_ALIAS,
2153       .fgt = FGT_PMSELR_EL0,
2154       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2155       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2156       .raw_writefn = raw_write},
2157     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2158       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2159       .access = PL0_RW, .accessfn = pmreg_access_selr,
2160       .fgt = FGT_PMSELR_EL0,
2161       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2162       .writefn = pmselr_write, .raw_writefn = raw_write, },
2163     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2164       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2165       .fgt = FGT_PMCCNTR_EL0,
2166       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2167       .accessfn = pmreg_access_ccntr },
2168     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2169       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2170       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2171       .fgt = FGT_PMCCNTR_EL0,
2172       .type = ARM_CP_IO,
2173       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2174       .readfn = pmccntr_read, .writefn = pmccntr_write,
2175       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2176     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2177       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2178       .access = PL0_RW, .accessfn = pmreg_access,
2179       .fgt = FGT_PMCCFILTR_EL0,
2180       .type = ARM_CP_ALIAS | ARM_CP_IO,
2181       .resetvalue = 0, },
2182     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2183       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2184       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2185       .access = PL0_RW, .accessfn = pmreg_access,
2186       .fgt = FGT_PMCCFILTR_EL0,
2187       .type = ARM_CP_IO,
2188       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2189       .resetvalue = 0, },
2190     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2191       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2192       .accessfn = pmreg_access,
2193       .fgt = FGT_PMEVTYPERN_EL0,
2194       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2195     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2196       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2197       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2198       .accessfn = pmreg_access,
2199       .fgt = FGT_PMEVTYPERN_EL0,
2200       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2201     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2202       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2203       .accessfn = pmreg_access_xevcntr,
2204       .fgt = FGT_PMEVCNTRN_EL0,
2205       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2206     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2207       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2208       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2209       .accessfn = pmreg_access_xevcntr,
2210       .fgt = FGT_PMEVCNTRN_EL0,
2211       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2212     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2213       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2214       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2215       .resetvalue = 0,
2216       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2217     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2218       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2219       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2220       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2221       .resetvalue = 0,
2222       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2223     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2224       .access = PL1_RW, .accessfn = access_tpm,
2225       .fgt = FGT_PMINTEN,
2226       .type = ARM_CP_ALIAS | ARM_CP_IO,
2227       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2228       .resetvalue = 0,
2229       .writefn = pmintenset_write, .raw_writefn = raw_write },
2230     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2231       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2232       .access = PL1_RW, .accessfn = access_tpm,
2233       .fgt = FGT_PMINTEN,
2234       .type = ARM_CP_IO,
2235       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2236       .writefn = pmintenset_write, .raw_writefn = raw_write,
2237       .resetvalue = 0x0 },
2238     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2239       .access = PL1_RW, .accessfn = access_tpm,
2240       .fgt = FGT_PMINTEN,
2241       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2242       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2243       .writefn = pmintenclr_write, },
2244     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2245       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2246       .access = PL1_RW, .accessfn = access_tpm,
2247       .fgt = FGT_PMINTEN,
2248       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2249       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2250       .writefn = pmintenclr_write },
2251     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2252       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2253       .access = PL1_R,
2254       .accessfn = access_tid4,
2255       .fgt = FGT_CCSIDR_EL1,
2256       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2257     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2258       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2259       .access = PL1_RW,
2260       .accessfn = access_tid4,
2261       .fgt = FGT_CSSELR_EL1,
2262       .writefn = csselr_write, .resetvalue = 0,
2263       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2264                              offsetof(CPUARMState, cp15.csselr_ns) } },
2265     /*
2266      * Auxiliary ID register: this actually has an IMPDEF value but for now
2267      * just RAZ for all cores:
2268      */
2269     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2270       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2271       .access = PL1_R, .type = ARM_CP_CONST,
2272       .accessfn = access_aa64_tid1,
2273       .fgt = FGT_AIDR_EL1,
2274       .resetvalue = 0 },
2275     /*
2276      * Auxiliary fault status registers: these also are IMPDEF, and we
2277      * choose to RAZ/WI for all cores.
2278      */
2279     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2280       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2281       .access = PL1_RW, .accessfn = access_tvm_trvm,
2282       .fgt = FGT_AFSR0_EL1,
2283       .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
2284       .type = ARM_CP_CONST, .resetvalue = 0 },
2285     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2286       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2287       .access = PL1_RW, .accessfn = access_tvm_trvm,
2288       .fgt = FGT_AFSR1_EL1,
2289       .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
2290       .type = ARM_CP_CONST, .resetvalue = 0 },
2291     /*
2292      * MAIR can just read-as-written because we don't implement caches
2293      * and so don't need to care about memory attributes.
2294      */
2295     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2296       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2297       .access = PL1_RW, .accessfn = access_tvm_trvm,
2298       .fgt = FGT_MAIR_EL1,
2299       .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
2300       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2301       .resetvalue = 0 },
2302     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2303       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2304       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2305       .resetvalue = 0 },
2306     /*
2307      * For non-long-descriptor page tables these are PRRR and NMRR;
2308      * regardless they still act as reads-as-written for QEMU.
2309      */
2310      /*
2311       * MAIR0/1 are defined separately from their 64-bit counterpart which
2312       * allows them to assign the correct fieldoffset based on the endianness
2313       * handled in the field definitions.
2314       */
2315     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2316       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2317       .access = PL1_RW, .accessfn = access_tvm_trvm,
2318       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2319                              offsetof(CPUARMState, cp15.mair0_ns) },
2320       .resetfn = arm_cp_reset_ignore },
2321     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2322       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2323       .access = PL1_RW, .accessfn = access_tvm_trvm,
2324       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2325                              offsetof(CPUARMState, cp15.mair1_ns) },
2326       .resetfn = arm_cp_reset_ignore },
2327     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2328       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2329       .fgt = FGT_ISR_EL1,
2330       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2331     /* 32 bit ITLB invalidates */
2332     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2333       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2334       .writefn = tlbiall_write },
2335     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2336       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2337       .writefn = tlbimva_write },
2338     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2339       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2340       .writefn = tlbiasid_write },
2341     /* 32 bit DTLB invalidates */
2342     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2343       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2344       .writefn = tlbiall_write },
2345     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2346       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2347       .writefn = tlbimva_write },
2348     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2349       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2350       .writefn = tlbiasid_write },
2351     /* 32 bit TLB invalidates */
2352     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2353       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2354       .writefn = tlbiall_write },
2355     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2356       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2357       .writefn = tlbimva_write },
2358     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2359       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2360       .writefn = tlbiasid_write },
2361     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2362       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2363       .writefn = tlbimvaa_write },
2364 };
2365 
2366 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2367     /* 32 bit TLB invalidates, Inner Shareable */
2368     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2369       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2370       .writefn = tlbiall_is_write },
2371     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2372       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2373       .writefn = tlbimva_is_write },
2374     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2375       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2376       .writefn = tlbiasid_is_write },
2377     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2378       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2379       .writefn = tlbimvaa_is_write },
2380 };
2381 
2382 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2383     /* PMOVSSET is not implemented in v7 before v7ve */
2384     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2385       .access = PL0_RW, .accessfn = pmreg_access,
2386       .fgt = FGT_PMOVS,
2387       .type = ARM_CP_ALIAS | ARM_CP_IO,
2388       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2389       .writefn = pmovsset_write,
2390       .raw_writefn = raw_write },
2391     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2392       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2393       .access = PL0_RW, .accessfn = pmreg_access,
2394       .fgt = FGT_PMOVS,
2395       .type = ARM_CP_ALIAS | ARM_CP_IO,
2396       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2397       .writefn = pmovsset_write,
2398       .raw_writefn = raw_write },
2399 };
2400 
2401 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2402                         uint64_t value)
2403 {
2404     value &= 1;
2405     env->teecr = value;
2406 }
2407 
2408 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2409                                    bool isread)
2410 {
2411     /*
2412      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2413      * at all, so we don't need to check whether we're v8A.
2414      */
2415     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2416         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2417         return CP_ACCESS_TRAP_EL2;
2418     }
2419     return CP_ACCESS_OK;
2420 }
2421 
2422 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2423                                     bool isread)
2424 {
2425     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2426         return CP_ACCESS_TRAP;
2427     }
2428     return teecr_access(env, ri, isread);
2429 }
2430 
2431 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2432     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2433       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2434       .resetvalue = 0,
2435       .writefn = teecr_write, .accessfn = teecr_access },
2436     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2437       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2438       .accessfn = teehbr_access, .resetvalue = 0 },
2439 };
2440 
2441 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2442     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2443       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2444       .access = PL0_RW,
2445       .fgt = FGT_TPIDR_EL0,
2446       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2447     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2448       .access = PL0_RW,
2449       .fgt = FGT_TPIDR_EL0,
2450       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2451                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2452       .resetfn = arm_cp_reset_ignore },
2453     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2454       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2455       .access = PL0_R | PL1_W,
2456       .fgt = FGT_TPIDRRO_EL0,
2457       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2458       .resetvalue = 0},
2459     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2460       .access = PL0_R | PL1_W,
2461       .fgt = FGT_TPIDRRO_EL0,
2462       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2463                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2464       .resetfn = arm_cp_reset_ignore },
2465     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2466       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2467       .access = PL1_RW,
2468       .fgt = FGT_TPIDR_EL1,
2469       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2470     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2471       .access = PL1_RW,
2472       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2473                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2474       .resetvalue = 0 },
2475 };
2476 
2477 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2478 {
2479     ARMCPU *cpu = env_archcpu(env);
2480 
2481     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2482 }
2483 
2484 #ifndef CONFIG_USER_ONLY
2485 
2486 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2487                                        bool isread)
2488 {
2489     /*
2490      * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2491      * Writable only at the highest implemented exception level.
2492      */
2493     int el = arm_current_el(env);
2494     uint64_t hcr;
2495     uint32_t cntkctl;
2496 
2497     switch (el) {
2498     case 0:
2499         hcr = arm_hcr_el2_eff(env);
2500         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2501             cntkctl = env->cp15.cnthctl_el2;
2502         } else {
2503             cntkctl = env->cp15.c14_cntkctl;
2504         }
2505         if (!extract32(cntkctl, 0, 2)) {
2506             return CP_ACCESS_TRAP;
2507         }
2508         break;
2509     case 1:
2510         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2511             arm_is_secure_below_el3(env)) {
2512             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2513             return CP_ACCESS_TRAP_UNCATEGORIZED;
2514         }
2515         break;
2516     case 2:
2517     case 3:
2518         break;
2519     }
2520 
2521     if (!isread && el < arm_highest_el(env)) {
2522         return CP_ACCESS_TRAP_UNCATEGORIZED;
2523     }
2524 
2525     return CP_ACCESS_OK;
2526 }
2527 
2528 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2529                                         bool isread)
2530 {
2531     unsigned int cur_el = arm_current_el(env);
2532     bool has_el2 = arm_is_el2_enabled(env);
2533     uint64_t hcr = arm_hcr_el2_eff(env);
2534 
2535     switch (cur_el) {
2536     case 0:
2537         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2538         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2539             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2540                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2541         }
2542 
2543         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2544         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2545             return CP_ACCESS_TRAP;
2546         }
2547         /* fall through */
2548     case 1:
2549         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2550         if (has_el2 && timeridx == GTIMER_PHYS &&
2551             (hcr & HCR_E2H
2552              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2553              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2554             return CP_ACCESS_TRAP_EL2;
2555         }
2556         if (has_el2 && timeridx == GTIMER_VIRT) {
2557             if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) {
2558                 return CP_ACCESS_TRAP_EL2;
2559             }
2560         }
2561         break;
2562     }
2563     return CP_ACCESS_OK;
2564 }
2565 
2566 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2567                                       bool isread)
2568 {
2569     unsigned int cur_el = arm_current_el(env);
2570     bool has_el2 = arm_is_el2_enabled(env);
2571     uint64_t hcr = arm_hcr_el2_eff(env);
2572 
2573     switch (cur_el) {
2574     case 0:
2575         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2576             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2577             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2578                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2579         }
2580 
2581         /*
2582          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2583          * EL0 if EL0[PV]TEN is zero.
2584          */
2585         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2586             return CP_ACCESS_TRAP;
2587         }
2588         /* fall through */
2589 
2590     case 1:
2591         if (has_el2 && timeridx == GTIMER_PHYS) {
2592             if (hcr & HCR_E2H) {
2593                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2594                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2595                     return CP_ACCESS_TRAP_EL2;
2596                 }
2597             } else {
2598                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2599                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2600                     return CP_ACCESS_TRAP_EL2;
2601                 }
2602             }
2603         }
2604         if (has_el2 && timeridx == GTIMER_VIRT) {
2605             if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) {
2606                 return CP_ACCESS_TRAP_EL2;
2607             }
2608         }
2609         break;
2610     }
2611     return CP_ACCESS_OK;
2612 }
2613 
2614 static CPAccessResult gt_pct_access(CPUARMState *env,
2615                                     const ARMCPRegInfo *ri,
2616                                     bool isread)
2617 {
2618     return gt_counter_access(env, GTIMER_PHYS, isread);
2619 }
2620 
2621 static CPAccessResult gt_vct_access(CPUARMState *env,
2622                                     const ARMCPRegInfo *ri,
2623                                     bool isread)
2624 {
2625     return gt_counter_access(env, GTIMER_VIRT, isread);
2626 }
2627 
2628 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2629                                        bool isread)
2630 {
2631     return gt_timer_access(env, GTIMER_PHYS, isread);
2632 }
2633 
2634 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2635                                        bool isread)
2636 {
2637     return gt_timer_access(env, GTIMER_VIRT, isread);
2638 }
2639 
2640 static CPAccessResult gt_stimer_access(CPUARMState *env,
2641                                        const ARMCPRegInfo *ri,
2642                                        bool isread)
2643 {
2644     /*
2645      * The AArch64 register view of the secure physical timer is
2646      * always accessible from EL3, and configurably accessible from
2647      * Secure EL1.
2648      */
2649     switch (arm_current_el(env)) {
2650     case 1:
2651         if (!arm_is_secure(env)) {
2652             return CP_ACCESS_TRAP;
2653         }
2654         if (!(env->cp15.scr_el3 & SCR_ST)) {
2655             return CP_ACCESS_TRAP_EL3;
2656         }
2657         return CP_ACCESS_OK;
2658     case 0:
2659     case 2:
2660         return CP_ACCESS_TRAP;
2661     case 3:
2662         return CP_ACCESS_OK;
2663     default:
2664         g_assert_not_reached();
2665     }
2666 }
2667 
2668 uint64_t gt_get_countervalue(CPUARMState *env)
2669 {
2670     ARMCPU *cpu = env_archcpu(env);
2671 
2672     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2673 }
2674 
2675 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2676 {
2677     CPUARMState *env = &cpu->env;
2678     uint64_t cnthctl = env->cp15.cnthctl_el2;
2679     ARMSecuritySpace ss = arm_security_space(env);
2680     /* ISTATUS && !IMASK */
2681     int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2682 
2683     /*
2684      * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2685      * It is RES0 in Secure and NonSecure state.
2686      */
2687     if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2688         ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) ||
2689          (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) {
2690         irqstate = 0;
2691     }
2692 
2693     qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2694     trace_arm_gt_update_irq(timeridx, irqstate);
2695 }
2696 
2697 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2698 {
2699     /*
2700      * Changing security state between Root and Secure/NonSecure, which may
2701      * happen when switching EL, can change the effective value of CNTHCTL_EL2
2702      * mask bits. Update the IRQ state accordingly.
2703      */
2704     gt_update_irq(cpu, GTIMER_VIRT);
2705     gt_update_irq(cpu, GTIMER_PHYS);
2706 }
2707 
2708 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env)
2709 {
2710     if ((env->cp15.scr_el3 & SCR_ECVEN) &&
2711         FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) &&
2712         arm_is_el2_enabled(env) &&
2713         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
2714         return env->cp15.cntpoff_el2;
2715     }
2716     return 0;
2717 }
2718 
2719 static uint64_t gt_phys_cnt_offset(CPUARMState *env)
2720 {
2721     if (arm_current_el(env) >= 2) {
2722         return 0;
2723     }
2724     return gt_phys_raw_cnt_offset(env);
2725 }
2726 
2727 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2728 {
2729     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2730 
2731     if (gt->ctl & 1) {
2732         /*
2733          * Timer enabled: calculate and set current ISTATUS, irq, and
2734          * reset timer to when ISTATUS next has to change
2735          */
2736         uint64_t offset = timeridx == GTIMER_VIRT ?
2737             cpu->env.cp15.cntvoff_el2 : gt_phys_raw_cnt_offset(&cpu->env);
2738         uint64_t count = gt_get_countervalue(&cpu->env);
2739         /* Note that this must be unsigned 64 bit arithmetic: */
2740         int istatus = count - offset >= gt->cval;
2741         uint64_t nexttick;
2742 
2743         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2744 
2745         if (istatus) {
2746             /*
2747              * Next transition is when (count - offset) rolls back over to 0.
2748              * If offset > count then this is when count == offset;
2749              * if offset <= count then this is when count == offset + 2^64
2750              * For the latter case we set nexttick to an "as far in future
2751              * as possible" value and let the code below handle it.
2752              */
2753             if (offset > count) {
2754                 nexttick = offset;
2755             } else {
2756                 nexttick = UINT64_MAX;
2757             }
2758         } else {
2759             /*
2760              * Next transition is when (count - offset) == cval, i.e.
2761              * when count == (cval + offset).
2762              * If that would overflow, then again we set up the next interrupt
2763              * for "as far in the future as possible" for the code below.
2764              */
2765             if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2766                 nexttick = UINT64_MAX;
2767             }
2768         }
2769         /*
2770          * Note that the desired next expiry time might be beyond the
2771          * signed-64-bit range of a QEMUTimer -- in this case we just
2772          * set the timer for as far in the future as possible. When the
2773          * timer expires we will reset the timer for any remaining period.
2774          */
2775         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2776             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2777         } else {
2778             timer_mod(cpu->gt_timer[timeridx], nexttick);
2779         }
2780         trace_arm_gt_recalc(timeridx, nexttick);
2781     } else {
2782         /* Timer disabled: ISTATUS and timer output always clear */
2783         gt->ctl &= ~4;
2784         timer_del(cpu->gt_timer[timeridx]);
2785         trace_arm_gt_recalc_disabled(timeridx);
2786     }
2787     gt_update_irq(cpu, timeridx);
2788 }
2789 
2790 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2791                            int timeridx)
2792 {
2793     ARMCPU *cpu = env_archcpu(env);
2794 
2795     timer_del(cpu->gt_timer[timeridx]);
2796 }
2797 
2798 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2799 {
2800     return gt_get_countervalue(env) - gt_phys_cnt_offset(env);
2801 }
2802 
2803 uint64_t gt_virt_cnt_offset(CPUARMState *env)
2804 {
2805     uint64_t hcr;
2806 
2807     switch (arm_current_el(env)) {
2808     case 2:
2809         hcr = arm_hcr_el2_eff(env);
2810         if (hcr & HCR_E2H) {
2811             return 0;
2812         }
2813         break;
2814     case 0:
2815         hcr = arm_hcr_el2_eff(env);
2816         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2817             return 0;
2818         }
2819         break;
2820     }
2821 
2822     return env->cp15.cntvoff_el2;
2823 }
2824 
2825 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2826 {
2827     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2828 }
2829 
2830 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2831                           int timeridx,
2832                           uint64_t value)
2833 {
2834     trace_arm_gt_cval_write(timeridx, value);
2835     env->cp15.c14_timer[timeridx].cval = value;
2836     gt_recalc_timer(env_archcpu(env), timeridx);
2837 }
2838 
2839 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2840                              int timeridx)
2841 {
2842     uint64_t offset = 0;
2843 
2844     switch (timeridx) {
2845     case GTIMER_VIRT:
2846     case GTIMER_HYPVIRT:
2847         offset = gt_virt_cnt_offset(env);
2848         break;
2849     case GTIMER_PHYS:
2850         offset = gt_phys_cnt_offset(env);
2851         break;
2852     }
2853 
2854     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2855                       (gt_get_countervalue(env) - offset));
2856 }
2857 
2858 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2859                           int timeridx,
2860                           uint64_t value)
2861 {
2862     uint64_t offset = 0;
2863 
2864     switch (timeridx) {
2865     case GTIMER_VIRT:
2866     case GTIMER_HYPVIRT:
2867         offset = gt_virt_cnt_offset(env);
2868         break;
2869     case GTIMER_PHYS:
2870         offset = gt_phys_cnt_offset(env);
2871         break;
2872     }
2873 
2874     trace_arm_gt_tval_write(timeridx, value);
2875     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2876                                          sextract64(value, 0, 32);
2877     gt_recalc_timer(env_archcpu(env), timeridx);
2878 }
2879 
2880 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2881                          int timeridx,
2882                          uint64_t value)
2883 {
2884     ARMCPU *cpu = env_archcpu(env);
2885     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2886 
2887     trace_arm_gt_ctl_write(timeridx, value);
2888     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2889     if ((oldval ^ value) & 1) {
2890         /* Enable toggled */
2891         gt_recalc_timer(cpu, timeridx);
2892     } else if ((oldval ^ value) & 2) {
2893         /*
2894          * IMASK toggled: don't need to recalculate,
2895          * just set the interrupt line based on ISTATUS
2896          */
2897         trace_arm_gt_imask_toggle(timeridx);
2898         gt_update_irq(cpu, timeridx);
2899     }
2900 }
2901 
2902 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2903 {
2904     gt_timer_reset(env, ri, GTIMER_PHYS);
2905 }
2906 
2907 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2908                                uint64_t value)
2909 {
2910     gt_cval_write(env, ri, GTIMER_PHYS, value);
2911 }
2912 
2913 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2914 {
2915     return gt_tval_read(env, ri, GTIMER_PHYS);
2916 }
2917 
2918 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2919                                uint64_t value)
2920 {
2921     gt_tval_write(env, ri, GTIMER_PHYS, value);
2922 }
2923 
2924 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2925                               uint64_t value)
2926 {
2927     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2928 }
2929 
2930 static int gt_phys_redir_timeridx(CPUARMState *env)
2931 {
2932     switch (arm_mmu_idx(env)) {
2933     case ARMMMUIdx_E20_0:
2934     case ARMMMUIdx_E20_2:
2935     case ARMMMUIdx_E20_2_PAN:
2936         return GTIMER_HYP;
2937     default:
2938         return GTIMER_PHYS;
2939     }
2940 }
2941 
2942 static int gt_virt_redir_timeridx(CPUARMState *env)
2943 {
2944     switch (arm_mmu_idx(env)) {
2945     case ARMMMUIdx_E20_0:
2946     case ARMMMUIdx_E20_2:
2947     case ARMMMUIdx_E20_2_PAN:
2948         return GTIMER_HYPVIRT;
2949     default:
2950         return GTIMER_VIRT;
2951     }
2952 }
2953 
2954 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2955                                         const ARMCPRegInfo *ri)
2956 {
2957     int timeridx = gt_phys_redir_timeridx(env);
2958     return env->cp15.c14_timer[timeridx].cval;
2959 }
2960 
2961 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2962                                      uint64_t value)
2963 {
2964     int timeridx = gt_phys_redir_timeridx(env);
2965     gt_cval_write(env, ri, timeridx, value);
2966 }
2967 
2968 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2969                                         const ARMCPRegInfo *ri)
2970 {
2971     int timeridx = gt_phys_redir_timeridx(env);
2972     return gt_tval_read(env, ri, timeridx);
2973 }
2974 
2975 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2976                                      uint64_t value)
2977 {
2978     int timeridx = gt_phys_redir_timeridx(env);
2979     gt_tval_write(env, ri, timeridx, value);
2980 }
2981 
2982 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2983                                        const ARMCPRegInfo *ri)
2984 {
2985     int timeridx = gt_phys_redir_timeridx(env);
2986     return env->cp15.c14_timer[timeridx].ctl;
2987 }
2988 
2989 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2990                                     uint64_t value)
2991 {
2992     int timeridx = gt_phys_redir_timeridx(env);
2993     gt_ctl_write(env, ri, timeridx, value);
2994 }
2995 
2996 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2997 {
2998     gt_timer_reset(env, ri, GTIMER_VIRT);
2999 }
3000 
3001 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3002                                uint64_t value)
3003 {
3004     gt_cval_write(env, ri, GTIMER_VIRT, value);
3005 }
3006 
3007 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3008 {
3009     return gt_tval_read(env, ri, GTIMER_VIRT);
3010 }
3011 
3012 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3013                                uint64_t value)
3014 {
3015     gt_tval_write(env, ri, GTIMER_VIRT, value);
3016 }
3017 
3018 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3019                               uint64_t value)
3020 {
3021     gt_ctl_write(env, ri, GTIMER_VIRT, value);
3022 }
3023 
3024 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3025                              uint64_t value)
3026 {
3027     ARMCPU *cpu = env_archcpu(env);
3028     uint32_t oldval = env->cp15.cnthctl_el2;
3029     uint32_t valid_mask =
3030         R_CNTHCTL_EL0PCTEN_E2H1_MASK |
3031         R_CNTHCTL_EL0VCTEN_E2H1_MASK |
3032         R_CNTHCTL_EVNTEN_MASK |
3033         R_CNTHCTL_EVNTDIR_MASK |
3034         R_CNTHCTL_EVNTI_MASK |
3035         R_CNTHCTL_EL0VTEN_MASK |
3036         R_CNTHCTL_EL0PTEN_MASK |
3037         R_CNTHCTL_EL1PCTEN_E2H1_MASK |
3038         R_CNTHCTL_EL1PTEN_MASK;
3039 
3040     if (cpu_isar_feature(aa64_rme, cpu)) {
3041         valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK;
3042     }
3043     if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
3044         valid_mask |=
3045             R_CNTHCTL_EL1TVT_MASK |
3046             R_CNTHCTL_EL1TVCT_MASK |
3047             R_CNTHCTL_EL1NVPCT_MASK |
3048             R_CNTHCTL_EL1NVVCT_MASK |
3049             R_CNTHCTL_EVNTIS_MASK;
3050     }
3051     if (cpu_isar_feature(aa64_ecv, cpu)) {
3052         valid_mask |= R_CNTHCTL_ECV_MASK;
3053     }
3054 
3055     /* Clear RES0 bits */
3056     value &= valid_mask;
3057 
3058     raw_write(env, ri, value);
3059 
3060     if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) {
3061         gt_update_irq(cpu, GTIMER_VIRT);
3062     } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) {
3063         gt_update_irq(cpu, GTIMER_PHYS);
3064     }
3065 }
3066 
3067 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3068                               uint64_t value)
3069 {
3070     ARMCPU *cpu = env_archcpu(env);
3071 
3072     trace_arm_gt_cntvoff_write(value);
3073     raw_write(env, ri, value);
3074     gt_recalc_timer(cpu, GTIMER_VIRT);
3075 }
3076 
3077 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
3078                                         const ARMCPRegInfo *ri)
3079 {
3080     int timeridx = gt_virt_redir_timeridx(env);
3081     return env->cp15.c14_timer[timeridx].cval;
3082 }
3083 
3084 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3085                                      uint64_t value)
3086 {
3087     int timeridx = gt_virt_redir_timeridx(env);
3088     gt_cval_write(env, ri, timeridx, value);
3089 }
3090 
3091 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3092                                         const ARMCPRegInfo *ri)
3093 {
3094     int timeridx = gt_virt_redir_timeridx(env);
3095     return gt_tval_read(env, ri, timeridx);
3096 }
3097 
3098 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3099                                      uint64_t value)
3100 {
3101     int timeridx = gt_virt_redir_timeridx(env);
3102     gt_tval_write(env, ri, timeridx, value);
3103 }
3104 
3105 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3106                                        const ARMCPRegInfo *ri)
3107 {
3108     int timeridx = gt_virt_redir_timeridx(env);
3109     return env->cp15.c14_timer[timeridx].ctl;
3110 }
3111 
3112 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3113                                     uint64_t value)
3114 {
3115     int timeridx = gt_virt_redir_timeridx(env);
3116     gt_ctl_write(env, ri, timeridx, value);
3117 }
3118 
3119 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3120 {
3121     gt_timer_reset(env, ri, GTIMER_HYP);
3122 }
3123 
3124 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3125                               uint64_t value)
3126 {
3127     gt_cval_write(env, ri, GTIMER_HYP, value);
3128 }
3129 
3130 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3131 {
3132     return gt_tval_read(env, ri, GTIMER_HYP);
3133 }
3134 
3135 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3136                               uint64_t value)
3137 {
3138     gt_tval_write(env, ri, GTIMER_HYP, value);
3139 }
3140 
3141 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3142                               uint64_t value)
3143 {
3144     gt_ctl_write(env, ri, GTIMER_HYP, value);
3145 }
3146 
3147 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3148 {
3149     gt_timer_reset(env, ri, GTIMER_SEC);
3150 }
3151 
3152 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3153                               uint64_t value)
3154 {
3155     gt_cval_write(env, ri, GTIMER_SEC, value);
3156 }
3157 
3158 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3159 {
3160     return gt_tval_read(env, ri, GTIMER_SEC);
3161 }
3162 
3163 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3164                               uint64_t value)
3165 {
3166     gt_tval_write(env, ri, GTIMER_SEC, value);
3167 }
3168 
3169 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3170                               uint64_t value)
3171 {
3172     gt_ctl_write(env, ri, GTIMER_SEC, value);
3173 }
3174 
3175 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3176 {
3177     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3178 }
3179 
3180 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3181                              uint64_t value)
3182 {
3183     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3184 }
3185 
3186 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3187 {
3188     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3189 }
3190 
3191 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3192                              uint64_t value)
3193 {
3194     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3195 }
3196 
3197 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3198                             uint64_t value)
3199 {
3200     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3201 }
3202 
3203 void arm_gt_ptimer_cb(void *opaque)
3204 {
3205     ARMCPU *cpu = opaque;
3206 
3207     gt_recalc_timer(cpu, GTIMER_PHYS);
3208 }
3209 
3210 void arm_gt_vtimer_cb(void *opaque)
3211 {
3212     ARMCPU *cpu = opaque;
3213 
3214     gt_recalc_timer(cpu, GTIMER_VIRT);
3215 }
3216 
3217 void arm_gt_htimer_cb(void *opaque)
3218 {
3219     ARMCPU *cpu = opaque;
3220 
3221     gt_recalc_timer(cpu, GTIMER_HYP);
3222 }
3223 
3224 void arm_gt_stimer_cb(void *opaque)
3225 {
3226     ARMCPU *cpu = opaque;
3227 
3228     gt_recalc_timer(cpu, GTIMER_SEC);
3229 }
3230 
3231 void arm_gt_hvtimer_cb(void *opaque)
3232 {
3233     ARMCPU *cpu = opaque;
3234 
3235     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3236 }
3237 
3238 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3239     /*
3240      * Note that CNTFRQ is purely reads-as-written for the benefit
3241      * of software; writing it doesn't actually change the timer frequency.
3242      * Our reset value matches the fixed frequency we implement the timer at.
3243      */
3244     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3245       .type = ARM_CP_ALIAS,
3246       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3247       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3248     },
3249     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3250       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3251       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3252       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3253       .resetfn = arm_gt_cntfrq_reset,
3254     },
3255     /* overall control: mostly access permissions */
3256     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3257       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3258       .access = PL1_RW,
3259       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3260       .resetvalue = 0,
3261     },
3262     /* per-timer control */
3263     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3264       .secure = ARM_CP_SECSTATE_NS,
3265       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3266       .accessfn = gt_ptimer_access,
3267       .fieldoffset = offsetoflow32(CPUARMState,
3268                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3269       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3270       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3271     },
3272     { .name = "CNTP_CTL_S",
3273       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3274       .secure = ARM_CP_SECSTATE_S,
3275       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3276       .accessfn = gt_ptimer_access,
3277       .fieldoffset = offsetoflow32(CPUARMState,
3278                                    cp15.c14_timer[GTIMER_SEC].ctl),
3279       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3280     },
3281     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3282       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3283       .type = ARM_CP_IO, .access = PL0_RW,
3284       .accessfn = gt_ptimer_access,
3285       .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
3286       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3287       .resetvalue = 0,
3288       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3289       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3290     },
3291     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3292       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3293       .accessfn = gt_vtimer_access,
3294       .fieldoffset = offsetoflow32(CPUARMState,
3295                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3296       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3297       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3298     },
3299     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3300       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3301       .type = ARM_CP_IO, .access = PL0_RW,
3302       .accessfn = gt_vtimer_access,
3303       .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
3304       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3305       .resetvalue = 0,
3306       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3307       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3308     },
3309     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3310     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3311       .secure = ARM_CP_SECSTATE_NS,
3312       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3313       .accessfn = gt_ptimer_access,
3314       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3315     },
3316     { .name = "CNTP_TVAL_S",
3317       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3318       .secure = ARM_CP_SECSTATE_S,
3319       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3320       .accessfn = gt_ptimer_access,
3321       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3322     },
3323     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3324       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3325       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3326       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3327       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3328     },
3329     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3330       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3331       .accessfn = gt_vtimer_access,
3332       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3333     },
3334     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3335       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3336       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3337       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3338       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3339     },
3340     /* The counter itself */
3341     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3342       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3343       .accessfn = gt_pct_access,
3344       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3345     },
3346     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3347       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3348       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3349       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3350     },
3351     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3352       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3353       .accessfn = gt_vct_access,
3354       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3355     },
3356     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3357       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3358       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3359       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3360     },
3361     /* Comparison value, indicating when the timer goes off */
3362     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3363       .secure = ARM_CP_SECSTATE_NS,
3364       .access = PL0_RW,
3365       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3366       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3367       .accessfn = gt_ptimer_access,
3368       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3369       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3370     },
3371     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3372       .secure = ARM_CP_SECSTATE_S,
3373       .access = PL0_RW,
3374       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3375       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3376       .accessfn = gt_ptimer_access,
3377       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3378     },
3379     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3380       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3381       .access = PL0_RW,
3382       .type = ARM_CP_IO,
3383       .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
3384       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3385       .resetvalue = 0, .accessfn = gt_ptimer_access,
3386       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3387       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3388     },
3389     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3390       .access = PL0_RW,
3391       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3392       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3393       .accessfn = gt_vtimer_access,
3394       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3395       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3396     },
3397     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3398       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3399       .access = PL0_RW,
3400       .type = ARM_CP_IO,
3401       .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
3402       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3403       .resetvalue = 0, .accessfn = gt_vtimer_access,
3404       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3405       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3406     },
3407     /*
3408      * Secure timer -- this is actually restricted to only EL3
3409      * and configurably Secure-EL1 via the accessfn.
3410      */
3411     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3412       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3413       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3414       .accessfn = gt_stimer_access,
3415       .readfn = gt_sec_tval_read,
3416       .writefn = gt_sec_tval_write,
3417       .resetfn = gt_sec_timer_reset,
3418     },
3419     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3420       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3421       .type = ARM_CP_IO, .access = PL1_RW,
3422       .accessfn = gt_stimer_access,
3423       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3424       .resetvalue = 0,
3425       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3426     },
3427     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3428       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3429       .type = ARM_CP_IO, .access = PL1_RW,
3430       .accessfn = gt_stimer_access,
3431       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3432       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3433     },
3434 };
3435 
3436 /*
3437  * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which
3438  * are "self-synchronizing". For QEMU all sysregs are self-synchronizing,
3439  * so our implementations here are identical to the normal registers.
3440  */
3441 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3442     { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9,
3443       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3444       .accessfn = gt_vct_access,
3445       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3446     },
3447     { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3448       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3449       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3450       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3451     },
3452     { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8,
3453       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3454       .accessfn = gt_pct_access,
3455       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3456     },
3457     { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64,
3458       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5,
3459       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3460       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3461     },
3462 };
3463 
3464 static CPAccessResult gt_cntpoff_access(CPUARMState *env,
3465                                         const ARMCPRegInfo *ri,
3466                                         bool isread)
3467 {
3468     if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) &&
3469         !(env->cp15.scr_el3 & SCR_ECVEN)) {
3470         return CP_ACCESS_TRAP_EL3;
3471     }
3472     return CP_ACCESS_OK;
3473 }
3474 
3475 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3476                               uint64_t value)
3477 {
3478     ARMCPU *cpu = env_archcpu(env);
3479 
3480     trace_arm_gt_cntpoff_write(value);
3481     raw_write(env, ri, value);
3482     gt_recalc_timer(cpu, GTIMER_PHYS);
3483 }
3484 
3485 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = {
3486     .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64,
3487     .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6,
3488     .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3489     .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write,
3490     .nv2_redirect_offset = 0x1a8,
3491     .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2),
3492 };
3493 #else
3494 
3495 /*
3496  * In user-mode most of the generic timer registers are inaccessible
3497  * however modern kernels (4.12+) allow access to cntvct_el0
3498  */
3499 
3500 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3501 {
3502     ARMCPU *cpu = env_archcpu(env);
3503 
3504     /*
3505      * Currently we have no support for QEMUTimer in linux-user so we
3506      * can't call gt_get_countervalue(env), instead we directly
3507      * call the lower level functions.
3508      */
3509     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3510 }
3511 
3512 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3513     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3514       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3515       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3516       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3517       .resetfn = arm_gt_cntfrq_reset,
3518     },
3519     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3520       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3521       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3522       .readfn = gt_virt_cnt_read,
3523     },
3524 };
3525 
3526 /*
3527  * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also
3528  * is exposed to userspace by Linux.
3529  */
3530 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3531     { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3532       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3533       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3534       .readfn = gt_virt_cnt_read,
3535     },
3536 };
3537 
3538 #endif
3539 
3540 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3541 {
3542     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3543         raw_write(env, ri, value);
3544     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3545         raw_write(env, ri, value & 0xfffff6ff);
3546     } else {
3547         raw_write(env, ri, value & 0xfffff1ff);
3548     }
3549 }
3550 
3551 #ifndef CONFIG_USER_ONLY
3552 /* get_phys_addr() isn't present for user-mode-only targets */
3553 
3554 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3555                                  bool isread)
3556 {
3557     if (ri->opc2 & 4) {
3558         /*
3559          * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3560          * Secure EL1 (which can only happen if EL3 is AArch64).
3561          * They are simply UNDEF if executed from NS EL1.
3562          * They function normally from EL2 or EL3.
3563          */
3564         if (arm_current_el(env) == 1) {
3565             if (arm_is_secure_below_el3(env)) {
3566                 if (env->cp15.scr_el3 & SCR_EEL2) {
3567                     return CP_ACCESS_TRAP_EL2;
3568                 }
3569                 return CP_ACCESS_TRAP_EL3;
3570             }
3571             return CP_ACCESS_TRAP_UNCATEGORIZED;
3572         }
3573     }
3574     return CP_ACCESS_OK;
3575 }
3576 
3577 #ifdef CONFIG_TCG
3578 static int par_el1_shareability(GetPhysAddrResult *res)
3579 {
3580     /*
3581      * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3582      * memory -- see pseudocode PAREncodeShareability().
3583      */
3584     if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3585         res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3586         return 2;
3587     }
3588     return res->cacheattrs.shareability;
3589 }
3590 
3591 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3592                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
3593                              ARMSecuritySpace ss)
3594 {
3595     bool ret;
3596     uint64_t par64;
3597     bool format64 = false;
3598     ARMMMUFaultInfo fi = {};
3599     GetPhysAddrResult res = {};
3600 
3601     /*
3602      * I_MXTJT: Granule protection checks are not performed on the final
3603      * address of a successful translation.  This is a translation not a
3604      * memory reference, so "memop = none = 0".
3605      */
3606     ret = get_phys_addr_with_space_nogpc(env, value, access_type, 0,
3607                                          mmu_idx, ss, &res, &fi);
3608 
3609     /*
3610      * ATS operations only do S1 or S1+S2 translations, so we never
3611      * have to deal with the ARMCacheAttrs format for S2 only.
3612      */
3613     assert(!res.cacheattrs.is_s2_format);
3614 
3615     if (ret) {
3616         /*
3617          * Some kinds of translation fault must cause exceptions rather
3618          * than being reported in the PAR.
3619          */
3620         int current_el = arm_current_el(env);
3621         int target_el;
3622         uint32_t syn, fsr, fsc;
3623         bool take_exc = false;
3624 
3625         if (fi.s1ptw && current_el == 1
3626             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3627             /*
3628              * Synchronous stage 2 fault on an access made as part of the
3629              * translation table walk for AT S1E0* or AT S1E1* insn
3630              * executed from NS EL1. If this is a synchronous external abort
3631              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3632              * to EL3. Otherwise the fault is taken as an exception to EL2,
3633              * and HPFAR_EL2 holds the faulting IPA.
3634              */
3635             if (fi.type == ARMFault_SyncExternalOnWalk &&
3636                 (env->cp15.scr_el3 & SCR_EA)) {
3637                 target_el = 3;
3638             } else {
3639                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3640                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3641                     env->cp15.hpfar_el2 |= HPFAR_NS;
3642                 }
3643                 target_el = 2;
3644             }
3645             take_exc = true;
3646         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3647             /*
3648              * Synchronous external aborts during a translation table walk
3649              * are taken as Data Abort exceptions.
3650              */
3651             if (fi.stage2) {
3652                 if (current_el == 3) {
3653                     target_el = 3;
3654                 } else {
3655                     target_el = 2;
3656                 }
3657             } else {
3658                 target_el = exception_target_el(env);
3659             }
3660             take_exc = true;
3661         }
3662 
3663         if (take_exc) {
3664             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3665             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3666                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3667                 fsr = arm_fi_to_lfsc(&fi);
3668                 fsc = extract32(fsr, 0, 6);
3669             } else {
3670                 fsr = arm_fi_to_sfsc(&fi);
3671                 fsc = 0x3f;
3672             }
3673             /*
3674              * Report exception with ESR indicating a fault due to a
3675              * translation table walk for a cache maintenance instruction.
3676              */
3677             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3678                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3679             env->exception.vaddress = value;
3680             env->exception.fsr = fsr;
3681             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3682         }
3683     }
3684 
3685     if (is_a64(env)) {
3686         format64 = true;
3687     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3688         /*
3689          * ATS1Cxx:
3690          * * TTBCR.EAE determines whether the result is returned using the
3691          *   32-bit or the 64-bit PAR format
3692          * * Instructions executed in Hyp mode always use the 64bit format
3693          *
3694          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3695          * * The Non-secure TTBCR.EAE bit is set to 1
3696          * * The implementation includes EL2, and the value of HCR.VM is 1
3697          *
3698          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3699          *
3700          * ATS1Hx always uses the 64bit format.
3701          */
3702         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3703 
3704         if (arm_feature(env, ARM_FEATURE_EL2) && !arm_aa32_secure_pl1_0(env)) {
3705             if (mmu_idx == ARMMMUIdx_E10_0 ||
3706                 mmu_idx == ARMMMUIdx_E10_1 ||
3707                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3708                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3709             } else {
3710                 format64 |= arm_current_el(env) == 2;
3711             }
3712         }
3713     }
3714 
3715     if (format64) {
3716         /* Create a 64-bit PAR */
3717         par64 = (1 << 11); /* LPAE bit always set */
3718         if (!ret) {
3719             par64 |= res.f.phys_addr & ~0xfffULL;
3720             if (!res.f.attrs.secure) {
3721                 par64 |= (1 << 9); /* NS */
3722             }
3723             par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3724             par64 |= par_el1_shareability(&res) << 7; /* SH */
3725         } else {
3726             uint32_t fsr = arm_fi_to_lfsc(&fi);
3727 
3728             par64 |= 1; /* F */
3729             par64 |= (fsr & 0x3f) << 1; /* FS */
3730             if (fi.stage2) {
3731                 par64 |= (1 << 9); /* S */
3732             }
3733             if (fi.s1ptw) {
3734                 par64 |= (1 << 8); /* PTW */
3735             }
3736         }
3737     } else {
3738         /*
3739          * fsr is a DFSR/IFSR value for the short descriptor
3740          * translation table format (with WnR always clear).
3741          * Convert it to a 32-bit PAR.
3742          */
3743         if (!ret) {
3744             /* We do not set any attribute bits in the PAR */
3745             if (res.f.lg_page_size == 24
3746                 && arm_feature(env, ARM_FEATURE_V7)) {
3747                 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3748             } else {
3749                 par64 = res.f.phys_addr & 0xfffff000;
3750             }
3751             if (!res.f.attrs.secure) {
3752                 par64 |= (1 << 9); /* NS */
3753             }
3754         } else {
3755             uint32_t fsr = arm_fi_to_sfsc(&fi);
3756 
3757             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3758                     ((fsr & 0xf) << 1) | 1;
3759         }
3760     }
3761     return par64;
3762 }
3763 #endif /* CONFIG_TCG */
3764 
3765 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3766 {
3767 #ifdef CONFIG_TCG
3768     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3769     uint64_t par64;
3770     ARMMMUIdx mmu_idx;
3771     int el = arm_current_el(env);
3772     ARMSecuritySpace ss = arm_security_space(env);
3773 
3774     switch (ri->opc2 & 6) {
3775     case 0:
3776         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3777         switch (el) {
3778         case 2:
3779             g_assert(ss != ARMSS_Secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3780             /* fall through */
3781         case 1:
3782         case 3:
3783             if (ri->crm == 9 && arm_pan_enabled(env)) {
3784                 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3785             } else {
3786                 mmu_idx = ARMMMUIdx_Stage1_E1;
3787             }
3788             break;
3789         default:
3790             g_assert_not_reached();
3791         }
3792         break;
3793     case 2:
3794         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3795         switch (el) {
3796         case 3:
3797             mmu_idx = ARMMMUIdx_E10_0;
3798             break;
3799         case 2:
3800             g_assert(ss != ARMSS_Secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3801             mmu_idx = ARMMMUIdx_Stage1_E0;
3802             break;
3803         case 1:
3804             mmu_idx = ARMMMUIdx_Stage1_E0;
3805             break;
3806         default:
3807             g_assert_not_reached();
3808         }
3809         break;
3810     case 4:
3811         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3812         mmu_idx = ARMMMUIdx_E10_1;
3813         ss = ARMSS_NonSecure;
3814         break;
3815     case 6:
3816         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3817         mmu_idx = ARMMMUIdx_E10_0;
3818         ss = ARMSS_NonSecure;
3819         break;
3820     default:
3821         g_assert_not_reached();
3822     }
3823 
3824     par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3825 
3826     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3827 #else
3828     /* Handled by hardware accelerator. */
3829     g_assert_not_reached();
3830 #endif /* CONFIG_TCG */
3831 }
3832 
3833 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3834                         uint64_t value)
3835 {
3836 #ifdef CONFIG_TCG
3837     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3838     uint64_t par64;
3839 
3840     /* There is no SecureEL2 for AArch32. */
3841     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3842                          ARMSS_NonSecure);
3843 
3844     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3845 #else
3846     /* Handled by hardware accelerator. */
3847     g_assert_not_reached();
3848 #endif /* CONFIG_TCG */
3849 }
3850 
3851 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3852                                      bool isread)
3853 {
3854     /*
3855      * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3856      * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3857      * only happen when executing at EL3 because that combination also causes an
3858      * illegal exception return. We don't need to check FEAT_RME either, because
3859      * scr_write() ensures that the NSE bit is not set otherwise.
3860      */
3861     if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3862         return CP_ACCESS_TRAP;
3863     }
3864     return CP_ACCESS_OK;
3865 }
3866 
3867 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3868                                      bool isread)
3869 {
3870     if (arm_current_el(env) == 3 &&
3871         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3872         return CP_ACCESS_TRAP;
3873     }
3874     return at_e012_access(env, ri, isread);
3875 }
3876 
3877 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
3878                                       bool isread)
3879 {
3880     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
3881         return CP_ACCESS_TRAP_EL2;
3882     }
3883     return at_e012_access(env, ri, isread);
3884 }
3885 
3886 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3887                         uint64_t value)
3888 {
3889 #ifdef CONFIG_TCG
3890     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3891     ARMMMUIdx mmu_idx;
3892     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3893     bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3894     bool for_el3 = false;
3895     ARMSecuritySpace ss;
3896 
3897     switch (ri->opc2 & 6) {
3898     case 0:
3899         switch (ri->opc1) {
3900         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3901             if (ri->crm == 9 && arm_pan_enabled(env)) {
3902                 mmu_idx = regime_e20 ?
3903                           ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3904             } else {
3905                 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3906             }
3907             break;
3908         case 4: /* AT S1E2R, AT S1E2W */
3909             mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3910             break;
3911         case 6: /* AT S1E3R, AT S1E3W */
3912             mmu_idx = ARMMMUIdx_E3;
3913             for_el3 = true;
3914             break;
3915         default:
3916             g_assert_not_reached();
3917         }
3918         break;
3919     case 2: /* AT S1E0R, AT S1E0W */
3920         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3921         break;
3922     case 4: /* AT S12E1R, AT S12E1W */
3923         mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3924         break;
3925     case 6: /* AT S12E0R, AT S12E0W */
3926         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3927         break;
3928     default:
3929         g_assert_not_reached();
3930     }
3931 
3932     ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env);
3933     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss);
3934 #else
3935     /* Handled by hardware accelerator. */
3936     g_assert_not_reached();
3937 #endif /* CONFIG_TCG */
3938 }
3939 #endif
3940 
3941 /* Return basic MPU access permission bits.  */
3942 static uint32_t simple_mpu_ap_bits(uint32_t val)
3943 {
3944     uint32_t ret;
3945     uint32_t mask;
3946     int i;
3947     ret = 0;
3948     mask = 3;
3949     for (i = 0; i < 16; i += 2) {
3950         ret |= (val >> i) & mask;
3951         mask <<= 2;
3952     }
3953     return ret;
3954 }
3955 
3956 /* Pad basic MPU access permission bits to extended format.  */
3957 static uint32_t extended_mpu_ap_bits(uint32_t val)
3958 {
3959     uint32_t ret;
3960     uint32_t mask;
3961     int i;
3962     ret = 0;
3963     mask = 3;
3964     for (i = 0; i < 16; i += 2) {
3965         ret |= (val & mask) << i;
3966         mask <<= 2;
3967     }
3968     return ret;
3969 }
3970 
3971 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3972                                  uint64_t value)
3973 {
3974     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3975 }
3976 
3977 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3978 {
3979     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3980 }
3981 
3982 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3983                                  uint64_t value)
3984 {
3985     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3986 }
3987 
3988 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3989 {
3990     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3991 }
3992 
3993 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3994 {
3995     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3996 
3997     if (!u32p) {
3998         return 0;
3999     }
4000 
4001     u32p += env->pmsav7.rnr[M_REG_NS];
4002     return *u32p;
4003 }
4004 
4005 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
4006                          uint64_t value)
4007 {
4008     ARMCPU *cpu = env_archcpu(env);
4009     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
4010 
4011     if (!u32p) {
4012         return;
4013     }
4014 
4015     u32p += env->pmsav7.rnr[M_REG_NS];
4016     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4017     *u32p = value;
4018 }
4019 
4020 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4021                               uint64_t value)
4022 {
4023     ARMCPU *cpu = env_archcpu(env);
4024     uint32_t nrgs = cpu->pmsav7_dregion;
4025 
4026     if (value >= nrgs) {
4027         qemu_log_mask(LOG_GUEST_ERROR,
4028                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
4029                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
4030         return;
4031     }
4032 
4033     raw_write(env, ri, value);
4034 }
4035 
4036 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4037                           uint64_t value)
4038 {
4039     ARMCPU *cpu = env_archcpu(env);
4040 
4041     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4042     env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
4043 }
4044 
4045 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4046 {
4047     return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
4048 }
4049 
4050 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4051                           uint64_t value)
4052 {
4053     ARMCPU *cpu = env_archcpu(env);
4054 
4055     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4056     env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
4057 }
4058 
4059 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4060 {
4061     return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
4062 }
4063 
4064 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4065                            uint64_t value)
4066 {
4067     ARMCPU *cpu = env_archcpu(env);
4068 
4069     /*
4070      * Ignore writes that would select not implemented region.
4071      * This is architecturally UNPREDICTABLE.
4072      */
4073     if (value >= cpu->pmsav7_dregion) {
4074         return;
4075     }
4076 
4077     env->pmsav7.rnr[M_REG_NS] = value;
4078 }
4079 
4080 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4081                           uint64_t value)
4082 {
4083     ARMCPU *cpu = env_archcpu(env);
4084 
4085     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4086     env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
4087 }
4088 
4089 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4090 {
4091     return env->pmsav8.hprbar[env->pmsav8.hprselr];
4092 }
4093 
4094 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4095                           uint64_t value)
4096 {
4097     ARMCPU *cpu = env_archcpu(env);
4098 
4099     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4100     env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
4101 }
4102 
4103 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4104 {
4105     return env->pmsav8.hprlar[env->pmsav8.hprselr];
4106 }
4107 
4108 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4109                           uint64_t value)
4110 {
4111     uint32_t n;
4112     uint32_t bit;
4113     ARMCPU *cpu = env_archcpu(env);
4114 
4115     /* Ignore writes to unimplemented regions */
4116     int rmax = MIN(cpu->pmsav8r_hdregion, 32);
4117     value &= MAKE_64BIT_MASK(0, rmax);
4118 
4119     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4120 
4121     /* Register alias is only valid for first 32 indexes */
4122     for (n = 0; n < rmax; ++n) {
4123         bit = extract32(value, n, 1);
4124         env->pmsav8.hprlar[n] = deposit32(
4125                     env->pmsav8.hprlar[n], 0, 1, bit);
4126     }
4127 }
4128 
4129 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4130 {
4131     uint32_t n;
4132     uint32_t result = 0x0;
4133     ARMCPU *cpu = env_archcpu(env);
4134 
4135     /* Register alias is only valid for first 32 indexes */
4136     for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
4137         if (env->pmsav8.hprlar[n] & 0x1) {
4138             result |= (0x1 << n);
4139         }
4140     }
4141     return result;
4142 }
4143 
4144 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4145                            uint64_t value)
4146 {
4147     ARMCPU *cpu = env_archcpu(env);
4148 
4149     /*
4150      * Ignore writes that would select not implemented region.
4151      * This is architecturally UNPREDICTABLE.
4152      */
4153     if (value >= cpu->pmsav8r_hdregion) {
4154         return;
4155     }
4156 
4157     env->pmsav8.hprselr = value;
4158 }
4159 
4160 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
4161                           uint64_t value)
4162 {
4163     ARMCPU *cpu = env_archcpu(env);
4164     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4165                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4166 
4167     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4168 
4169     if (ri->opc1 & 4) {
4170         if (index >= cpu->pmsav8r_hdregion) {
4171             return;
4172         }
4173         if (ri->opc2 & 0x1) {
4174             env->pmsav8.hprlar[index] = value;
4175         } else {
4176             env->pmsav8.hprbar[index] = value;
4177         }
4178     } else {
4179         if (index >= cpu->pmsav7_dregion) {
4180             return;
4181         }
4182         if (ri->opc2 & 0x1) {
4183             env->pmsav8.rlar[M_REG_NS][index] = value;
4184         } else {
4185             env->pmsav8.rbar[M_REG_NS][index] = value;
4186         }
4187     }
4188 }
4189 
4190 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4191 {
4192     ARMCPU *cpu = env_archcpu(env);
4193     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4194                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4195 
4196     if (ri->opc1 & 4) {
4197         if (index >= cpu->pmsav8r_hdregion) {
4198             return 0x0;
4199         }
4200         if (ri->opc2 & 0x1) {
4201             return env->pmsav8.hprlar[index];
4202         } else {
4203             return env->pmsav8.hprbar[index];
4204         }
4205     } else {
4206         if (index >= cpu->pmsav7_dregion) {
4207             return 0x0;
4208         }
4209         if (ri->opc2 & 0x1) {
4210             return env->pmsav8.rlar[M_REG_NS][index];
4211         } else {
4212             return env->pmsav8.rbar[M_REG_NS][index];
4213         }
4214     }
4215 }
4216 
4217 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4218     { .name = "PRBAR",
4219       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4220       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4221       .accessfn = access_tvm_trvm,
4222       .readfn = prbar_read, .writefn = prbar_write },
4223     { .name = "PRLAR",
4224       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4225       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4226       .accessfn = access_tvm_trvm,
4227       .readfn = prlar_read, .writefn = prlar_write },
4228     { .name = "PRSELR", .resetvalue = 0,
4229       .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4230       .access = PL1_RW, .accessfn = access_tvm_trvm,
4231       .writefn = prselr_write,
4232       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4233     { .name = "HPRBAR", .resetvalue = 0,
4234       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4235       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4236       .readfn = hprbar_read, .writefn = hprbar_write },
4237     { .name = "HPRLAR",
4238       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4239       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4240       .readfn = hprlar_read, .writefn = hprlar_write },
4241     { .name = "HPRSELR", .resetvalue = 0,
4242       .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4243       .access = PL2_RW,
4244       .writefn = hprselr_write,
4245       .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4246     { .name = "HPRENR",
4247       .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4248       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4249       .readfn = hprenr_read, .writefn = hprenr_write },
4250 };
4251 
4252 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4253     /*
4254      * Reset for all these registers is handled in arm_cpu_reset(),
4255      * because the PMSAv7 is also used by M-profile CPUs, which do
4256      * not register cpregs but still need the state to be reset.
4257      */
4258     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4259       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4260       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4261       .readfn = pmsav7_read, .writefn = pmsav7_write,
4262       .resetfn = arm_cp_reset_ignore },
4263     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4264       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4265       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4266       .readfn = pmsav7_read, .writefn = pmsav7_write,
4267       .resetfn = arm_cp_reset_ignore },
4268     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4269       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4270       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4271       .readfn = pmsav7_read, .writefn = pmsav7_write,
4272       .resetfn = arm_cp_reset_ignore },
4273     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4274       .access = PL1_RW,
4275       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4276       .writefn = pmsav7_rgnr_write,
4277       .resetfn = arm_cp_reset_ignore },
4278 };
4279 
4280 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4281     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4282       .access = PL1_RW, .type = ARM_CP_ALIAS,
4283       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4284       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4285     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4286       .access = PL1_RW, .type = ARM_CP_ALIAS,
4287       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4288       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4289     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4290       .access = PL1_RW,
4291       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4292       .resetvalue = 0, },
4293     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4294       .access = PL1_RW,
4295       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4296       .resetvalue = 0, },
4297     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4298       .access = PL1_RW,
4299       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4300     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4301       .access = PL1_RW,
4302       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4303     /* Protection region base and size registers */
4304     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4305       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4306       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4307     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4308       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4309       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4310     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4311       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4312       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4313     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4314       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4315       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4316     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4317       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4318       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4319     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4320       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4321       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4322     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4323       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4324       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4325     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4326       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4327       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4328 };
4329 
4330 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4331                              uint64_t value)
4332 {
4333     ARMCPU *cpu = env_archcpu(env);
4334 
4335     if (!arm_feature(env, ARM_FEATURE_V8)) {
4336         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4337             /*
4338              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4339              * using Long-descriptor translation table format
4340              */
4341             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4342         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4343             /*
4344              * In an implementation that includes the Security Extensions
4345              * TTBCR has additional fields PD0 [4] and PD1 [5] for
4346              * Short-descriptor translation table format.
4347              */
4348             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4349         } else {
4350             value &= TTBCR_N;
4351         }
4352     }
4353 
4354     if (arm_feature(env, ARM_FEATURE_LPAE)) {
4355         /*
4356          * With LPAE the TTBCR could result in a change of ASID
4357          * via the TTBCR.A1 bit, so do a TLB flush.
4358          */
4359         tlb_flush(CPU(cpu));
4360     }
4361     raw_write(env, ri, value);
4362 }
4363 
4364 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4365                                uint64_t value)
4366 {
4367     ARMCPU *cpu = env_archcpu(env);
4368 
4369     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4370     tlb_flush(CPU(cpu));
4371     raw_write(env, ri, value);
4372 }
4373 
4374 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4375                             uint64_t value)
4376 {
4377     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4378     if (cpreg_field_is_64bit(ri) &&
4379         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4380         ARMCPU *cpu = env_archcpu(env);
4381         tlb_flush(CPU(cpu));
4382     }
4383     raw_write(env, ri, value);
4384 }
4385 
4386 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4387                                     uint64_t value)
4388 {
4389     /*
4390      * If we are running with E2&0 regime, then an ASID is active.
4391      * Flush if that might be changing.  Note we're not checking
4392      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4393      * holds the active ASID, only checking the field that might.
4394      */
4395     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4396         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4397         uint16_t mask = ARMMMUIdxBit_E20_2 |
4398                         ARMMMUIdxBit_E20_2_PAN |
4399                         ARMMMUIdxBit_E20_0;
4400         tlb_flush_by_mmuidx(env_cpu(env), mask);
4401     }
4402     raw_write(env, ri, value);
4403 }
4404 
4405 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4406                         uint64_t value)
4407 {
4408     ARMCPU *cpu = env_archcpu(env);
4409     CPUState *cs = CPU(cpu);
4410 
4411     /*
4412      * A change in VMID to the stage2 page table (Stage2) invalidates
4413      * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4414      */
4415     if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4416         tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4417     }
4418     raw_write(env, ri, value);
4419 }
4420 
4421 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4422     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4423       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4424       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4425                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4426     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4427       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4428       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4429                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4430     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4431       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4432       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4433                              offsetof(CPUARMState, cp15.dfar_ns) } },
4434     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4435       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4436       .access = PL1_RW, .accessfn = access_tvm_trvm,
4437       .fgt = FGT_FAR_EL1,
4438       .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
4439       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4440       .resetvalue = 0, },
4441 };
4442 
4443 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4444     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4445       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4446       .access = PL1_RW, .accessfn = access_tvm_trvm,
4447       .fgt = FGT_ESR_EL1,
4448       .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
4449       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4450     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4451       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4452       .access = PL1_RW, .accessfn = access_tvm_trvm,
4453       .fgt = FGT_TTBR0_EL1,
4454       .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
4455       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4456       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4457                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4458     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4459       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4460       .access = PL1_RW, .accessfn = access_tvm_trvm,
4461       .fgt = FGT_TTBR1_EL1,
4462       .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
4463       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4464       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4465                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4466     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4467       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4468       .access = PL1_RW, .accessfn = access_tvm_trvm,
4469       .fgt = FGT_TCR_EL1,
4470       .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
4471       .writefn = vmsa_tcr_el12_write,
4472       .raw_writefn = raw_write,
4473       .resetvalue = 0,
4474       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4475     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4476       .access = PL1_RW, .accessfn = access_tvm_trvm,
4477       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4478       .raw_writefn = raw_write,
4479       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4480                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4481 };
4482 
4483 /*
4484  * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4485  * qemu tlbs nor adjusting cached masks.
4486  */
4487 static const ARMCPRegInfo ttbcr2_reginfo = {
4488     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4489     .access = PL1_RW, .accessfn = access_tvm_trvm,
4490     .type = ARM_CP_ALIAS,
4491     .bank_fieldoffsets = {
4492         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4493         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4494     },
4495 };
4496 
4497 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4498                                 uint64_t value)
4499 {
4500     env->cp15.c15_ticonfig = value & 0xe7;
4501     /* The OS_TYPE bit in this register changes the reported CPUID! */
4502     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4503         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4504 }
4505 
4506 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4507                                 uint64_t value)
4508 {
4509     env->cp15.c15_threadid = value & 0xffff;
4510 }
4511 
4512 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4513                            uint64_t value)
4514 {
4515     /* Wait-for-interrupt (deprecated) */
4516     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4517 }
4518 
4519 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4520                                   uint64_t value)
4521 {
4522     /*
4523      * On OMAP there are registers indicating the max/min index of dcache lines
4524      * containing a dirty line; cache flush operations have to reset these.
4525      */
4526     env->cp15.c15_i_max = 0x000;
4527     env->cp15.c15_i_min = 0xff0;
4528 }
4529 
4530 static const ARMCPRegInfo omap_cp_reginfo[] = {
4531     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4532       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4533       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4534       .resetvalue = 0, },
4535     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4536       .access = PL1_RW, .type = ARM_CP_NOP },
4537     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4538       .access = PL1_RW,
4539       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4540       .writefn = omap_ticonfig_write },
4541     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4542       .access = PL1_RW,
4543       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4544     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4545       .access = PL1_RW, .resetvalue = 0xff0,
4546       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4547     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4548       .access = PL1_RW,
4549       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4550       .writefn = omap_threadid_write },
4551     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4552       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4553       .type = ARM_CP_NO_RAW,
4554       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4555     /*
4556      * TODO: Peripheral port remap register:
4557      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4558      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4559      * when MMU is off.
4560      */
4561     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4562       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4563       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4564       .writefn = omap_cachemaint_write },
4565     { .name = "C9", .cp = 15, .crn = 9,
4566       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4567       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4568 };
4569 
4570 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4571                               uint64_t value)
4572 {
4573     env->cp15.c15_cpar = value & 0x3fff;
4574 }
4575 
4576 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4577     { .name = "XSCALE_CPAR",
4578       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4579       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4580       .writefn = xscale_cpar_write, },
4581     { .name = "XSCALE_AUXCR",
4582       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4583       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4584       .resetvalue = 0, },
4585     /*
4586      * XScale specific cache-lockdown: since we have no cache we NOP these
4587      * and hope the guest does not really rely on cache behaviour.
4588      */
4589     { .name = "XSCALE_LOCK_ICACHE_LINE",
4590       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4591       .access = PL1_W, .type = ARM_CP_NOP },
4592     { .name = "XSCALE_UNLOCK_ICACHE",
4593       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4594       .access = PL1_W, .type = ARM_CP_NOP },
4595     { .name = "XSCALE_DCACHE_LOCK",
4596       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4597       .access = PL1_RW, .type = ARM_CP_NOP },
4598     { .name = "XSCALE_UNLOCK_DCACHE",
4599       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4600       .access = PL1_W, .type = ARM_CP_NOP },
4601 };
4602 
4603 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4604     /*
4605      * RAZ/WI the whole crn=15 space, when we don't have a more specific
4606      * implementation of this implementation-defined space.
4607      * Ideally this should eventually disappear in favour of actually
4608      * implementing the correct behaviour for all cores.
4609      */
4610     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4611       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4612       .access = PL1_RW,
4613       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4614       .resetvalue = 0 },
4615 };
4616 
4617 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4618     /* Cache status: RAZ because we have no cache so it's always clean */
4619     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4620       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4621       .resetvalue = 0 },
4622 };
4623 
4624 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4625     /* We never have a block transfer operation in progress */
4626     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4627       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4628       .resetvalue = 0 },
4629     /* The cache ops themselves: these all NOP for QEMU */
4630     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4631       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4632     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4633       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4634     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4635       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4636     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4637       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4638     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4639       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4640     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4641       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4642 };
4643 
4644 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4645     /*
4646      * The cache test-and-clean instructions always return (1 << 30)
4647      * to indicate that there are no dirty cache lines.
4648      */
4649     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4650       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4651       .resetvalue = (1 << 30) },
4652     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4653       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4654       .resetvalue = (1 << 30) },
4655 };
4656 
4657 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4658     /* Ignore ReadBuffer accesses */
4659     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4660       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4661       .access = PL1_RW, .resetvalue = 0,
4662       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4663 };
4664 
4665 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4666 {
4667     unsigned int cur_el = arm_current_el(env);
4668 
4669     if (arm_is_el2_enabled(env) && cur_el == 1) {
4670         return env->cp15.vpidr_el2;
4671     }
4672     return raw_read(env, ri);
4673 }
4674 
4675 static uint64_t mpidr_read_val(CPUARMState *env)
4676 {
4677     ARMCPU *cpu = env_archcpu(env);
4678     uint64_t mpidr = cpu->mp_affinity;
4679 
4680     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4681         mpidr |= (1U << 31);
4682         /*
4683          * Cores which are uniprocessor (non-coherent)
4684          * but still implement the MP extensions set
4685          * bit 30. (For instance, Cortex-R5).
4686          */
4687         if (cpu->mp_is_up) {
4688             mpidr |= (1u << 30);
4689         }
4690     }
4691     return mpidr;
4692 }
4693 
4694 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4695 {
4696     unsigned int cur_el = arm_current_el(env);
4697 
4698     if (arm_is_el2_enabled(env) && cur_el == 1) {
4699         return env->cp15.vmpidr_el2;
4700     }
4701     return mpidr_read_val(env);
4702 }
4703 
4704 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4705     /* NOP AMAIR0/1 */
4706     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4707       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4708       .access = PL1_RW, .accessfn = access_tvm_trvm,
4709       .fgt = FGT_AMAIR_EL1,
4710       .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
4711       .type = ARM_CP_CONST, .resetvalue = 0 },
4712     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4713     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4714       .access = PL1_RW, .accessfn = access_tvm_trvm,
4715       .type = ARM_CP_CONST, .resetvalue = 0 },
4716     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4717       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4718       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4719                              offsetof(CPUARMState, cp15.par_ns)} },
4720     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4721       .access = PL1_RW, .accessfn = access_tvm_trvm,
4722       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4723       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4724                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4725       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4726     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4727       .access = PL1_RW, .accessfn = access_tvm_trvm,
4728       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4729       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4730                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4731       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4732 };
4733 
4734 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4735 {
4736     return vfp_get_fpcr(env);
4737 }
4738 
4739 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4740                             uint64_t value)
4741 {
4742     vfp_set_fpcr(env, value);
4743 }
4744 
4745 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4746 {
4747     return vfp_get_fpsr(env);
4748 }
4749 
4750 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4751                             uint64_t value)
4752 {
4753     vfp_set_fpsr(env, value);
4754 }
4755 
4756 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4757                                        bool isread)
4758 {
4759     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4760         return CP_ACCESS_TRAP;
4761     }
4762     return CP_ACCESS_OK;
4763 }
4764 
4765 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4766                             uint64_t value)
4767 {
4768     env->daif = value & PSTATE_DAIF;
4769 }
4770 
4771 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4772 {
4773     return env->pstate & PSTATE_PAN;
4774 }
4775 
4776 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4777                            uint64_t value)
4778 {
4779     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4780 }
4781 
4782 static const ARMCPRegInfo pan_reginfo = {
4783     .name = "PAN", .state = ARM_CP_STATE_AA64,
4784     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4785     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4786     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4787 };
4788 
4789 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4790 {
4791     return env->pstate & PSTATE_UAO;
4792 }
4793 
4794 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4795                            uint64_t value)
4796 {
4797     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4798 }
4799 
4800 static const ARMCPRegInfo uao_reginfo = {
4801     .name = "UAO", .state = ARM_CP_STATE_AA64,
4802     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4803     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4804     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4805 };
4806 
4807 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4808 {
4809     return env->pstate & PSTATE_DIT;
4810 }
4811 
4812 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4813                            uint64_t value)
4814 {
4815     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4816 }
4817 
4818 static const ARMCPRegInfo dit_reginfo = {
4819     .name = "DIT", .state = ARM_CP_STATE_AA64,
4820     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4821     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4822     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4823 };
4824 
4825 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4826 {
4827     return env->pstate & PSTATE_SSBS;
4828 }
4829 
4830 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4831                            uint64_t value)
4832 {
4833     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4834 }
4835 
4836 static const ARMCPRegInfo ssbs_reginfo = {
4837     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4838     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4839     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4840     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4841 };
4842 
4843 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4844                                               const ARMCPRegInfo *ri,
4845                                               bool isread)
4846 {
4847     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4848     switch (arm_current_el(env)) {
4849     case 0:
4850         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4851         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4852             return CP_ACCESS_TRAP;
4853         }
4854         /* fall through */
4855     case 1:
4856         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4857         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4858             return CP_ACCESS_TRAP_EL2;
4859         }
4860         break;
4861     }
4862     return CP_ACCESS_OK;
4863 }
4864 
4865 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4866 {
4867     /* Cache invalidate/clean to Point of Unification... */
4868     switch (arm_current_el(env)) {
4869     case 0:
4870         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4871         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4872             return CP_ACCESS_TRAP;
4873         }
4874         /* fall through */
4875     case 1:
4876         /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
4877         if (arm_hcr_el2_eff(env) & hcrflags) {
4878             return CP_ACCESS_TRAP_EL2;
4879         }
4880         break;
4881     }
4882     return CP_ACCESS_OK;
4883 }
4884 
4885 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4886                                    bool isread)
4887 {
4888     return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4889 }
4890 
4891 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4892                                   bool isread)
4893 {
4894     return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4895 }
4896 
4897 /*
4898  * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4899  * Page D4-1736 (DDI0487A.b)
4900  */
4901 
4902 static int vae1_tlbmask(CPUARMState *env)
4903 {
4904     uint64_t hcr = arm_hcr_el2_eff(env);
4905     uint16_t mask;
4906 
4907     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4908         mask = ARMMMUIdxBit_E20_2 |
4909                ARMMMUIdxBit_E20_2_PAN |
4910                ARMMMUIdxBit_E20_0;
4911     } else {
4912         mask = ARMMMUIdxBit_E10_1 |
4913                ARMMMUIdxBit_E10_1_PAN |
4914                ARMMMUIdxBit_E10_0;
4915     }
4916     return mask;
4917 }
4918 
4919 static int vae2_tlbmask(CPUARMState *env)
4920 {
4921     uint64_t hcr = arm_hcr_el2_eff(env);
4922     uint16_t mask;
4923 
4924     if (hcr & HCR_E2H) {
4925         mask = ARMMMUIdxBit_E20_2 |
4926                ARMMMUIdxBit_E20_2_PAN |
4927                ARMMMUIdxBit_E20_0;
4928     } else {
4929         mask = ARMMMUIdxBit_E2;
4930     }
4931     return mask;
4932 }
4933 
4934 /* Return 56 if TBI is enabled, 64 otherwise. */
4935 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4936                               uint64_t addr)
4937 {
4938     uint64_t tcr = regime_tcr(env, mmu_idx);
4939     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4940     int select = extract64(addr, 55, 1);
4941 
4942     return (tbi >> select) & 1 ? 56 : 64;
4943 }
4944 
4945 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4946 {
4947     uint64_t hcr = arm_hcr_el2_eff(env);
4948     ARMMMUIdx mmu_idx;
4949 
4950     /* Only the regime of the mmu_idx below is significant. */
4951     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4952         mmu_idx = ARMMMUIdx_E20_0;
4953     } else {
4954         mmu_idx = ARMMMUIdx_E10_0;
4955     }
4956 
4957     return tlbbits_for_regime(env, mmu_idx, addr);
4958 }
4959 
4960 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4961 {
4962     uint64_t hcr = arm_hcr_el2_eff(env);
4963     ARMMMUIdx mmu_idx;
4964 
4965     /*
4966      * Only the regime of the mmu_idx below is significant.
4967      * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4968      * only has one.
4969      */
4970     if (hcr & HCR_E2H) {
4971         mmu_idx = ARMMMUIdx_E20_2;
4972     } else {
4973         mmu_idx = ARMMMUIdx_E2;
4974     }
4975 
4976     return tlbbits_for_regime(env, mmu_idx, addr);
4977 }
4978 
4979 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4980                                       uint64_t value)
4981 {
4982     CPUState *cs = env_cpu(env);
4983     int mask = vae1_tlbmask(env);
4984 
4985     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4986 }
4987 
4988 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4989                                     uint64_t value)
4990 {
4991     CPUState *cs = env_cpu(env);
4992     int mask = vae1_tlbmask(env);
4993 
4994     if (tlb_force_broadcast(env)) {
4995         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4996     } else {
4997         tlb_flush_by_mmuidx(cs, mask);
4998     }
4999 }
5000 
5001 static int e2_tlbmask(CPUARMState *env)
5002 {
5003     return (ARMMMUIdxBit_E20_0 |
5004             ARMMMUIdxBit_E20_2 |
5005             ARMMMUIdxBit_E20_2_PAN |
5006             ARMMMUIdxBit_E2);
5007 }
5008 
5009 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5010                                   uint64_t value)
5011 {
5012     CPUState *cs = env_cpu(env);
5013     int mask = alle1_tlbmask(env);
5014 
5015     tlb_flush_by_mmuidx(cs, mask);
5016 }
5017 
5018 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5019                                   uint64_t value)
5020 {
5021     CPUState *cs = env_cpu(env);
5022     int mask = e2_tlbmask(env);
5023 
5024     tlb_flush_by_mmuidx(cs, mask);
5025 }
5026 
5027 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5028                                   uint64_t value)
5029 {
5030     ARMCPU *cpu = env_archcpu(env);
5031     CPUState *cs = CPU(cpu);
5032 
5033     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
5034 }
5035 
5036 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5037                                     uint64_t value)
5038 {
5039     CPUState *cs = env_cpu(env);
5040     int mask = alle1_tlbmask(env);
5041 
5042     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5043 }
5044 
5045 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5046                                     uint64_t value)
5047 {
5048     CPUState *cs = env_cpu(env);
5049     int mask = e2_tlbmask(env);
5050 
5051     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5052 }
5053 
5054 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5055                                     uint64_t value)
5056 {
5057     CPUState *cs = env_cpu(env);
5058 
5059     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
5060 }
5061 
5062 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5063                                  uint64_t value)
5064 {
5065     /*
5066      * Invalidate by VA, EL2
5067      * Currently handles both VAE2 and VALE2, since we don't support
5068      * flush-last-level-only.
5069      */
5070     CPUState *cs = env_cpu(env);
5071     int mask = vae2_tlbmask(env);
5072     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5073     int bits = vae2_tlbbits(env, pageaddr);
5074 
5075     tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5076 }
5077 
5078 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5079                                  uint64_t value)
5080 {
5081     /*
5082      * Invalidate by VA, EL3
5083      * Currently handles both VAE3 and VALE3, since we don't support
5084      * flush-last-level-only.
5085      */
5086     ARMCPU *cpu = env_archcpu(env);
5087     CPUState *cs = CPU(cpu);
5088     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5089 
5090     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
5091 }
5092 
5093 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5094                                    uint64_t value)
5095 {
5096     CPUState *cs = env_cpu(env);
5097     int mask = vae1_tlbmask(env);
5098     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5099     int bits = vae1_tlbbits(env, pageaddr);
5100 
5101     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5102 }
5103 
5104 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5105                                  uint64_t value)
5106 {
5107     /*
5108      * Invalidate by VA, EL1&0 (AArch64 version).
5109      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
5110      * since we don't support flush-for-specific-ASID-only or
5111      * flush-last-level-only.
5112      */
5113     CPUState *cs = env_cpu(env);
5114     int mask = vae1_tlbmask(env);
5115     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5116     int bits = vae1_tlbbits(env, pageaddr);
5117 
5118     if (tlb_force_broadcast(env)) {
5119         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5120     } else {
5121         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5122     }
5123 }
5124 
5125 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5126                                    uint64_t value)
5127 {
5128     CPUState *cs = env_cpu(env);
5129     int mask = vae2_tlbmask(env);
5130     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5131     int bits = vae2_tlbbits(env, pageaddr);
5132 
5133     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5134 }
5135 
5136 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5137                                    uint64_t value)
5138 {
5139     CPUState *cs = env_cpu(env);
5140     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5141     int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
5142 
5143     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
5144                                                   ARMMMUIdxBit_E3, bits);
5145 }
5146 
5147 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
5148 {
5149     /*
5150      * The MSB of value is the NS field, which only applies if SEL2
5151      * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
5152      */
5153     return (value >= 0
5154             && cpu_isar_feature(aa64_sel2, env_archcpu(env))
5155             && arm_is_secure_below_el3(env)
5156             ? ARMMMUIdxBit_Stage2_S
5157             : ARMMMUIdxBit_Stage2);
5158 }
5159 
5160 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5161                                     uint64_t value)
5162 {
5163     CPUState *cs = env_cpu(env);
5164     int mask = ipas2e1_tlbmask(env, value);
5165     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5166 
5167     if (tlb_force_broadcast(env)) {
5168         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5169     } else {
5170         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
5171     }
5172 }
5173 
5174 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5175                                       uint64_t value)
5176 {
5177     CPUState *cs = env_cpu(env);
5178     int mask = ipas2e1_tlbmask(env, value);
5179     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5180 
5181     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5182 }
5183 
5184 #ifdef TARGET_AARCH64
5185 typedef struct {
5186     uint64_t base;
5187     uint64_t length;
5188 } TLBIRange;
5189 
5190 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
5191 {
5192     /*
5193      * Note that the TLBI range TG field encoding differs from both
5194      * TG0 and TG1 encodings.
5195      */
5196     switch (tg) {
5197     case 1:
5198         return Gran4K;
5199     case 2:
5200         return Gran16K;
5201     case 3:
5202         return Gran64K;
5203     default:
5204         return GranInvalid;
5205     }
5206 }
5207 
5208 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5209                                      uint64_t value)
5210 {
5211     unsigned int page_size_granule, page_shift, num, scale, exponent;
5212     /* Extract one bit to represent the va selector in use. */
5213     uint64_t select = sextract64(value, 36, 1);
5214     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5215     TLBIRange ret = { };
5216     ARMGranuleSize gran;
5217 
5218     page_size_granule = extract64(value, 46, 2);
5219     gran = tlbi_range_tg_to_gran_size(page_size_granule);
5220 
5221     /* The granule encoded in value must match the granule in use. */
5222     if (gran != param.gran) {
5223         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5224                       page_size_granule);
5225         return ret;
5226     }
5227 
5228     page_shift = arm_granule_bits(gran);
5229     num = extract64(value, 39, 5);
5230     scale = extract64(value, 44, 2);
5231     exponent = (5 * scale) + 1;
5232 
5233     ret.length = (num + 1) << (exponent + page_shift);
5234 
5235     if (param.select) {
5236         ret.base = sextract64(value, 0, 37);
5237     } else {
5238         ret.base = extract64(value, 0, 37);
5239     }
5240     if (param.ds) {
5241         /*
5242          * With DS=1, BaseADDR is always shifted 16 so that it is able
5243          * to address all 52 va bits.  The input address is perforce
5244          * aligned on a 64k boundary regardless of translation granule.
5245          */
5246         page_shift = 16;
5247     }
5248     ret.base <<= page_shift;
5249 
5250     return ret;
5251 }
5252 
5253 static void do_rvae_write(CPUARMState *env, uint64_t value,
5254                           int idxmap, bool synced)
5255 {
5256     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5257     TLBIRange range;
5258     int bits;
5259 
5260     range = tlbi_aa64_get_range(env, one_idx, value);
5261     bits = tlbbits_for_regime(env, one_idx, range.base);
5262 
5263     if (synced) {
5264         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5265                                                   range.base,
5266                                                   range.length,
5267                                                   idxmap,
5268                                                   bits);
5269     } else {
5270         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5271                                   range.length, idxmap, bits);
5272     }
5273 }
5274 
5275 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5276                                   const ARMCPRegInfo *ri,
5277                                   uint64_t value)
5278 {
5279     /*
5280      * Invalidate by VA range, EL1&0.
5281      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5282      * since we don't support flush-for-specific-ASID-only or
5283      * flush-last-level-only.
5284      */
5285 
5286     do_rvae_write(env, value, vae1_tlbmask(env),
5287                   tlb_force_broadcast(env));
5288 }
5289 
5290 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5291                                     const ARMCPRegInfo *ri,
5292                                     uint64_t value)
5293 {
5294     /*
5295      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5296      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5297      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5298      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5299      * shareable specific flushes.
5300      */
5301 
5302     do_rvae_write(env, value, vae1_tlbmask(env), true);
5303 }
5304 
5305 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5306                                   const ARMCPRegInfo *ri,
5307                                   uint64_t value)
5308 {
5309     /*
5310      * Invalidate by VA range, EL2.
5311      * Currently handles all of RVAE2 and RVALE2,
5312      * since we don't support flush-for-specific-ASID-only or
5313      * flush-last-level-only.
5314      */
5315 
5316     do_rvae_write(env, value, vae2_tlbmask(env),
5317                   tlb_force_broadcast(env));
5318 
5319 
5320 }
5321 
5322 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5323                                     const ARMCPRegInfo *ri,
5324                                     uint64_t value)
5325 {
5326     /*
5327      * Invalidate by VA range, Inner/Outer Shareable, EL2.
5328      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5329      * since we don't support flush-for-specific-ASID-only,
5330      * flush-last-level-only or inner/outer shareable specific flushes.
5331      */
5332 
5333     do_rvae_write(env, value, vae2_tlbmask(env), true);
5334 
5335 }
5336 
5337 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5338                                   const ARMCPRegInfo *ri,
5339                                   uint64_t value)
5340 {
5341     /*
5342      * Invalidate by VA range, EL3.
5343      * Currently handles all of RVAE3 and RVALE3,
5344      * since we don't support flush-for-specific-ASID-only or
5345      * flush-last-level-only.
5346      */
5347 
5348     do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5349 }
5350 
5351 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5352                                     const ARMCPRegInfo *ri,
5353                                     uint64_t value)
5354 {
5355     /*
5356      * Invalidate by VA range, EL3, Inner/Outer Shareable.
5357      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5358      * since we don't support flush-for-specific-ASID-only,
5359      * flush-last-level-only or inner/outer specific flushes.
5360      */
5361 
5362     do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5363 }
5364 
5365 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5366                                      uint64_t value)
5367 {
5368     do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5369                   tlb_force_broadcast(env));
5370 }
5371 
5372 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5373                                        const ARMCPRegInfo *ri,
5374                                        uint64_t value)
5375 {
5376     do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5377 }
5378 #endif
5379 
5380 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5381                                       bool isread)
5382 {
5383     int cur_el = arm_current_el(env);
5384 
5385     if (cur_el < 2) {
5386         uint64_t hcr = arm_hcr_el2_eff(env);
5387 
5388         if (cur_el == 0) {
5389             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5390                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5391                     return CP_ACCESS_TRAP_EL2;
5392                 }
5393             } else {
5394                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5395                     return CP_ACCESS_TRAP;
5396                 }
5397                 if (hcr & HCR_TDZ) {
5398                     return CP_ACCESS_TRAP_EL2;
5399                 }
5400             }
5401         } else if (hcr & HCR_TDZ) {
5402             return CP_ACCESS_TRAP_EL2;
5403         }
5404     }
5405     return CP_ACCESS_OK;
5406 }
5407 
5408 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5409 {
5410     ARMCPU *cpu = env_archcpu(env);
5411     int dzp_bit = 1 << 4;
5412 
5413     /* DZP indicates whether DC ZVA access is allowed */
5414     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5415         dzp_bit = 0;
5416     }
5417     return cpu->dcz_blocksize | dzp_bit;
5418 }
5419 
5420 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5421                                     bool isread)
5422 {
5423     if (!(env->pstate & PSTATE_SP)) {
5424         /*
5425          * Access to SP_EL0 is undefined if it's being used as
5426          * the stack pointer.
5427          */
5428         return CP_ACCESS_TRAP_UNCATEGORIZED;
5429     }
5430     return CP_ACCESS_OK;
5431 }
5432 
5433 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5434 {
5435     return env->pstate & PSTATE_SP;
5436 }
5437 
5438 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5439 {
5440     update_spsel(env, val);
5441 }
5442 
5443 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5444                         uint64_t value)
5445 {
5446     ARMCPU *cpu = env_archcpu(env);
5447 
5448     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5449         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5450         value &= ~SCTLR_M;
5451     }
5452 
5453     /* ??? Lots of these bits are not implemented.  */
5454 
5455     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5456         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5457             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5458         } else {
5459             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5460                        SCTLR_ATA0 | SCTLR_ATA);
5461         }
5462     }
5463 
5464     if (raw_read(env, ri) == value) {
5465         /*
5466          * Skip the TLB flush if nothing actually changed; Linux likes
5467          * to do a lot of pointless SCTLR writes.
5468          */
5469         return;
5470     }
5471 
5472     raw_write(env, ri, value);
5473 
5474     /* This may enable/disable the MMU, so do a TLB flush.  */
5475     tlb_flush(CPU(cpu));
5476 
5477     if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5478         /*
5479          * Normally we would always end the TB on an SCTLR write; see the
5480          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5481          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5482          * of hflags from the translator, so do it here.
5483          */
5484         arm_rebuild_hflags(env);
5485     }
5486 }
5487 
5488 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5489                            uint64_t value)
5490 {
5491     /*
5492      * Some MDCR_EL3 bits affect whether PMU counters are running:
5493      * if we are trying to change any of those then we must
5494      * bracket this update with PMU start/finish calls.
5495      */
5496     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5497 
5498     if (pmu_op) {
5499         pmu_op_start(env);
5500     }
5501     env->cp15.mdcr_el3 = value;
5502     if (pmu_op) {
5503         pmu_op_finish(env);
5504     }
5505 }
5506 
5507 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5508                        uint64_t value)
5509 {
5510     /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5511     mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5512 }
5513 
5514 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5515                            uint64_t value)
5516 {
5517     /*
5518      * Some MDCR_EL2 bits affect whether PMU counters are running:
5519      * if we are trying to change any of those then we must
5520      * bracket this update with PMU start/finish calls.
5521      */
5522     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5523 
5524     if (pmu_op) {
5525         pmu_op_start(env);
5526     }
5527     env->cp15.mdcr_el2 = value;
5528     if (pmu_op) {
5529         pmu_op_finish(env);
5530     }
5531 }
5532 
5533 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
5534                                  bool isread)
5535 {
5536     if (arm_current_el(env) == 1) {
5537         uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
5538 
5539         if (hcr_nv == (HCR_NV | HCR_NV1)) {
5540             return CP_ACCESS_TRAP_EL2;
5541         }
5542     }
5543     return CP_ACCESS_OK;
5544 }
5545 
5546 #ifdef CONFIG_USER_ONLY
5547 /*
5548  * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5549  * code to get around W^X restrictions, where one region is writable and the
5550  * other is executable.
5551  *
5552  * Since the executable region is never written to we cannot detect code
5553  * changes when running in user mode, and rely on the emulated JIT telling us
5554  * that the code has changed by executing this instruction.
5555  */
5556 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5557                           uint64_t value)
5558 {
5559     uint64_t icache_line_mask, start_address, end_address;
5560     const ARMCPU *cpu;
5561 
5562     cpu = env_archcpu(env);
5563 
5564     icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5565     start_address = value & ~icache_line_mask;
5566     end_address = value | icache_line_mask;
5567 
5568     mmap_lock();
5569 
5570     tb_invalidate_phys_range(start_address, end_address);
5571 
5572     mmap_unlock();
5573 }
5574 #endif
5575 
5576 static const ARMCPRegInfo v8_cp_reginfo[] = {
5577     /*
5578      * Minimal set of EL0-visible registers. This will need to be expanded
5579      * significantly for system emulation of AArch64 CPUs.
5580      */
5581     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5582       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5583       .access = PL0_RW, .type = ARM_CP_NZCV },
5584     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5585       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5586       .type = ARM_CP_NO_RAW,
5587       .access = PL0_RW, .accessfn = aa64_daif_access,
5588       .fieldoffset = offsetof(CPUARMState, daif),
5589       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5590     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5591       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5592       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5593       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5594     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5595       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5596       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5597       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5598     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5599       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5600       .access = PL0_R, .type = ARM_CP_NO_RAW,
5601       .fgt = FGT_DCZID_EL0,
5602       .readfn = aa64_dczid_read },
5603     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5604       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5605       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5606 #ifndef CONFIG_USER_ONLY
5607       /* Avoid overhead of an access check that always passes in user-mode */
5608       .accessfn = aa64_zva_access,
5609       .fgt = FGT_DCZVA,
5610 #endif
5611     },
5612     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5613       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5614       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5615     /*
5616      * Instruction cache ops. All of these except `IC IVAU` NOP because we
5617      * don't emulate caches.
5618      */
5619     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5620       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5621       .access = PL1_W, .type = ARM_CP_NOP,
5622       .fgt = FGT_ICIALLUIS,
5623       .accessfn = access_ticab },
5624     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5625       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5626       .access = PL1_W, .type = ARM_CP_NOP,
5627       .fgt = FGT_ICIALLU,
5628       .accessfn = access_tocu },
5629     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5630       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5631       .access = PL0_W,
5632       .fgt = FGT_ICIVAU,
5633       .accessfn = access_tocu,
5634 #ifdef CONFIG_USER_ONLY
5635       .type = ARM_CP_NO_RAW,
5636       .writefn = ic_ivau_write
5637 #else
5638       .type = ARM_CP_NOP
5639 #endif
5640     },
5641     /* Cache ops: all NOPs since we don't emulate caches */
5642     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5643       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5644       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5645       .fgt = FGT_DCIVAC,
5646       .type = ARM_CP_NOP },
5647     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5648       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5649       .fgt = FGT_DCISW,
5650       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5651     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5652       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5653       .access = PL0_W, .type = ARM_CP_NOP,
5654       .fgt = FGT_DCCVAC,
5655       .accessfn = aa64_cacheop_poc_access },
5656     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5657       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5658       .fgt = FGT_DCCSW,
5659       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5660     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5661       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5662       .access = PL0_W, .type = ARM_CP_NOP,
5663       .fgt = FGT_DCCVAU,
5664       .accessfn = access_tocu },
5665     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5666       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5667       .access = PL0_W, .type = ARM_CP_NOP,
5668       .fgt = FGT_DCCIVAC,
5669       .accessfn = aa64_cacheop_poc_access },
5670     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5671       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5672       .fgt = FGT_DCCISW,
5673       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5674     /* TLBI operations */
5675     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5676       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5677       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5678       .fgt = FGT_TLBIVMALLE1IS,
5679       .writefn = tlbi_aa64_vmalle1is_write },
5680     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5681       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5682       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5683       .fgt = FGT_TLBIVAE1IS,
5684       .writefn = tlbi_aa64_vae1is_write },
5685     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5686       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5687       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5688       .fgt = FGT_TLBIASIDE1IS,
5689       .writefn = tlbi_aa64_vmalle1is_write },
5690     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5691       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5692       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5693       .fgt = FGT_TLBIVAAE1IS,
5694       .writefn = tlbi_aa64_vae1is_write },
5695     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5696       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5697       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5698       .fgt = FGT_TLBIVALE1IS,
5699       .writefn = tlbi_aa64_vae1is_write },
5700     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5701       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5702       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5703       .fgt = FGT_TLBIVAALE1IS,
5704       .writefn = tlbi_aa64_vae1is_write },
5705     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5706       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5707       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5708       .fgt = FGT_TLBIVMALLE1,
5709       .writefn = tlbi_aa64_vmalle1_write },
5710     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5711       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5712       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5713       .fgt = FGT_TLBIVAE1,
5714       .writefn = tlbi_aa64_vae1_write },
5715     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5716       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5717       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5718       .fgt = FGT_TLBIASIDE1,
5719       .writefn = tlbi_aa64_vmalle1_write },
5720     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5721       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5722       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5723       .fgt = FGT_TLBIVAAE1,
5724       .writefn = tlbi_aa64_vae1_write },
5725     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5726       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5727       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5728       .fgt = FGT_TLBIVALE1,
5729       .writefn = tlbi_aa64_vae1_write },
5730     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5731       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5732       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5733       .fgt = FGT_TLBIVAALE1,
5734       .writefn = tlbi_aa64_vae1_write },
5735     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5736       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5737       .access = PL2_W, .type = ARM_CP_NO_RAW,
5738       .writefn = tlbi_aa64_ipas2e1is_write },
5739     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5740       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5741       .access = PL2_W, .type = ARM_CP_NO_RAW,
5742       .writefn = tlbi_aa64_ipas2e1is_write },
5743     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5744       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5745       .access = PL2_W, .type = ARM_CP_NO_RAW,
5746       .writefn = tlbi_aa64_alle1is_write },
5747     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5748       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5749       .access = PL2_W, .type = ARM_CP_NO_RAW,
5750       .writefn = tlbi_aa64_alle1is_write },
5751     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5752       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5753       .access = PL2_W, .type = ARM_CP_NO_RAW,
5754       .writefn = tlbi_aa64_ipas2e1_write },
5755     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5756       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5757       .access = PL2_W, .type = ARM_CP_NO_RAW,
5758       .writefn = tlbi_aa64_ipas2e1_write },
5759     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5760       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5761       .access = PL2_W, .type = ARM_CP_NO_RAW,
5762       .writefn = tlbi_aa64_alle1_write },
5763     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5764       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5765       .access = PL2_W, .type = ARM_CP_NO_RAW,
5766       .writefn = tlbi_aa64_alle1is_write },
5767 #ifndef CONFIG_USER_ONLY
5768     /* 64 bit address translation operations */
5769     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5770       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5771       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5772       .fgt = FGT_ATS1E1R,
5773       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5774     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5775       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5776       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5777       .fgt = FGT_ATS1E1W,
5778       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5779     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5780       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5781       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5782       .fgt = FGT_ATS1E0R,
5783       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5784     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5785       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5786       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5787       .fgt = FGT_ATS1E0W,
5788       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5789     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5790       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5791       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5792       .accessfn = at_e012_access, .writefn = ats_write64 },
5793     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5794       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5795       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5796       .accessfn = at_e012_access, .writefn = ats_write64 },
5797     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5798       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5799       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5800       .accessfn = at_e012_access, .writefn = ats_write64 },
5801     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5802       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5803       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5804       .accessfn = at_e012_access, .writefn = ats_write64 },
5805     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5806     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5807       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5808       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5809       .writefn = ats_write64 },
5810     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5811       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5812       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5813       .writefn = ats_write64 },
5814     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5815       .type = ARM_CP_ALIAS,
5816       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5817       .access = PL1_RW, .resetvalue = 0,
5818       .fgt = FGT_PAR_EL1,
5819       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5820       .writefn = par_write },
5821 #endif
5822     /* TLB invalidate last level of translation table walk */
5823     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5824       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5825       .writefn = tlbimva_is_write },
5826     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5827       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5828       .writefn = tlbimvaa_is_write },
5829     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5830       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5831       .writefn = tlbimva_write },
5832     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5833       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5834       .writefn = tlbimvaa_write },
5835     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5836       .type = ARM_CP_NO_RAW, .access = PL2_W,
5837       .writefn = tlbimva_hyp_write },
5838     { .name = "TLBIMVALHIS",
5839       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5840       .type = ARM_CP_NO_RAW, .access = PL2_W,
5841       .writefn = tlbimva_hyp_is_write },
5842     { .name = "TLBIIPAS2",
5843       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5844       .type = ARM_CP_NO_RAW, .access = PL2_W,
5845       .writefn = tlbiipas2_hyp_write },
5846     { .name = "TLBIIPAS2IS",
5847       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5848       .type = ARM_CP_NO_RAW, .access = PL2_W,
5849       .writefn = tlbiipas2is_hyp_write },
5850     { .name = "TLBIIPAS2L",
5851       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5852       .type = ARM_CP_NO_RAW, .access = PL2_W,
5853       .writefn = tlbiipas2_hyp_write },
5854     { .name = "TLBIIPAS2LIS",
5855       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5856       .type = ARM_CP_NO_RAW, .access = PL2_W,
5857       .writefn = tlbiipas2is_hyp_write },
5858     /* 32 bit cache operations */
5859     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5860       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5861     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5862       .type = ARM_CP_NOP, .access = PL1_W },
5863     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5864       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5865     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5866       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5867     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5868       .type = ARM_CP_NOP, .access = PL1_W },
5869     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5870       .type = ARM_CP_NOP, .access = PL1_W },
5871     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5872       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5873     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5874       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5875     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5876       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5877     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5878       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5879     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5880       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5881     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5882       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5883     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5884       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5885     /* MMU Domain access control / MPU write buffer control */
5886     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5887       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5888       .writefn = dacr_write, .raw_writefn = raw_write,
5889       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5890                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5891     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5892       .type = ARM_CP_ALIAS,
5893       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5894       .access = PL1_RW, .accessfn = access_nv1,
5895       .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
5896       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5897     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5898       .type = ARM_CP_ALIAS,
5899       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5900       .access = PL1_RW, .accessfn = access_nv1,
5901       .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
5902       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5903     /*
5904      * We rely on the access checks not allowing the guest to write to the
5905      * state field when SPSel indicates that it's being used as the stack
5906      * pointer.
5907      */
5908     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5909       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5910       .access = PL1_RW, .accessfn = sp_el0_access,
5911       .type = ARM_CP_ALIAS,
5912       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5913     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5914       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5915       .nv2_redirect_offset = 0x240,
5916       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5917       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5918     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5919       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5920       .type = ARM_CP_NO_RAW,
5921       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5922     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5923       .type = ARM_CP_ALIAS,
5924       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5925       .access = PL2_RW,
5926       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5927     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5928       .type = ARM_CP_ALIAS,
5929       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5930       .access = PL2_RW,
5931       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5932     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5933       .type = ARM_CP_ALIAS,
5934       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5935       .access = PL2_RW,
5936       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5937     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5938       .type = ARM_CP_ALIAS,
5939       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5940       .access = PL2_RW,
5941       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5942     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5943       .type = ARM_CP_IO,
5944       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5945       .resetvalue = 0,
5946       .access = PL3_RW,
5947       .writefn = mdcr_el3_write,
5948       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5949     { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5950       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5951       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5952       .writefn = sdcr_write,
5953       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5954 };
5955 
5956 /* These are present only when EL1 supports AArch32 */
5957 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5958     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5959       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5960       .access = PL2_RW,
5961       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5962       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5963     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5964       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5965       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5966       .writefn = dacr_write, .raw_writefn = raw_write,
5967       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5968     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5969       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5970       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5971       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5972 };
5973 
5974 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5975 {
5976     ARMCPU *cpu = env_archcpu(env);
5977 
5978     if (arm_feature(env, ARM_FEATURE_V8)) {
5979         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5980     } else {
5981         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5982     }
5983 
5984     if (arm_feature(env, ARM_FEATURE_EL3)) {
5985         valid_mask &= ~HCR_HCD;
5986     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5987         /*
5988          * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5989          * However, if we're using the SMC PSCI conduit then QEMU is
5990          * effectively acting like EL3 firmware and so the guest at
5991          * EL2 should retain the ability to prevent EL1 from being
5992          * able to make SMC calls into the ersatz firmware, so in
5993          * that case HCR.TSC should be read/write.
5994          */
5995         valid_mask &= ~HCR_TSC;
5996     }
5997 
5998     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5999         if (cpu_isar_feature(aa64_vh, cpu)) {
6000             valid_mask |= HCR_E2H;
6001         }
6002         if (cpu_isar_feature(aa64_ras, cpu)) {
6003             valid_mask |= HCR_TERR | HCR_TEA;
6004         }
6005         if (cpu_isar_feature(aa64_lor, cpu)) {
6006             valid_mask |= HCR_TLOR;
6007         }
6008         if (cpu_isar_feature(aa64_pauth, cpu)) {
6009             valid_mask |= HCR_API | HCR_APK;
6010         }
6011         if (cpu_isar_feature(aa64_mte, cpu)) {
6012             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
6013         }
6014         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
6015             valid_mask |= HCR_ENSCXT;
6016         }
6017         if (cpu_isar_feature(aa64_fwb, cpu)) {
6018             valid_mask |= HCR_FWB;
6019         }
6020         if (cpu_isar_feature(aa64_rme, cpu)) {
6021             valid_mask |= HCR_GPF;
6022         }
6023         if (cpu_isar_feature(aa64_nv, cpu)) {
6024             valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
6025         }
6026         if (cpu_isar_feature(aa64_nv2, cpu)) {
6027             valid_mask |= HCR_NV2;
6028         }
6029     }
6030 
6031     if (cpu_isar_feature(any_evt, cpu)) {
6032         valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
6033     } else if (cpu_isar_feature(any_half_evt, cpu)) {
6034         valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
6035     }
6036 
6037     /* Clear RES0 bits.  */
6038     value &= valid_mask;
6039 
6040     /*
6041      * These bits change the MMU setup:
6042      * HCR_VM enables stage 2 translation
6043      * HCR_PTW forbids certain page-table setups
6044      * HCR_DC disables stage1 and enables stage2 translation
6045      * HCR_DCT enables tagging on (disabled) stage1 translation
6046      * HCR_FWB changes the interpretation of stage2 descriptor bits
6047      * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
6048      */
6049     if ((env->cp15.hcr_el2 ^ value) &
6050         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
6051         tlb_flush(CPU(cpu));
6052     }
6053     env->cp15.hcr_el2 = value;
6054 
6055     /*
6056      * Updates to VI and VF require us to update the status of
6057      * virtual interrupts, which are the logical OR of these bits
6058      * and the state of the input lines from the GIC. (This requires
6059      * that we have the BQL, which is done by marking the
6060      * reginfo structs as ARM_CP_IO.)
6061      * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or
6062      * VFNMI, it is never possible for it to be taken immediately
6063      * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running
6064      * at EL0 or EL1, and HCR can only be written at EL2.
6065      */
6066     g_assert(bql_locked());
6067     arm_cpu_update_virq(cpu);
6068     arm_cpu_update_vfiq(cpu);
6069     arm_cpu_update_vserr(cpu);
6070     if (cpu_isar_feature(aa64_nmi, cpu)) {
6071         arm_cpu_update_vinmi(cpu);
6072         arm_cpu_update_vfnmi(cpu);
6073     }
6074 }
6075 
6076 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
6077 {
6078     do_hcr_write(env, value, 0);
6079 }
6080 
6081 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
6082                           uint64_t value)
6083 {
6084     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
6085     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
6086     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
6087 }
6088 
6089 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
6090                          uint64_t value)
6091 {
6092     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
6093     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
6094     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
6095 }
6096 
6097 /*
6098  * Return the effective value of HCR_EL2, at the given security state.
6099  * Bits that are not included here:
6100  * RW       (read from SCR_EL3.RW as needed)
6101  */
6102 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
6103 {
6104     uint64_t ret = env->cp15.hcr_el2;
6105 
6106     assert(space != ARMSS_Root);
6107 
6108     if (!arm_is_el2_enabled_secstate(env, space)) {
6109         /*
6110          * "This register has no effect if EL2 is not enabled in the
6111          * current Security state".  This is ARMv8.4-SecEL2 speak for
6112          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
6113          *
6114          * Prior to that, the language was "In an implementation that
6115          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
6116          * as if this field is 0 for all purposes other than a direct
6117          * read or write access of HCR_EL2".  With lots of enumeration
6118          * on a per-field basis.  In current QEMU, this is condition
6119          * is arm_is_secure_below_el3.
6120          *
6121          * Since the v8.4 language applies to the entire register, and
6122          * appears to be backward compatible, use that.
6123          */
6124         return 0;
6125     }
6126 
6127     /*
6128      * For a cpu that supports both aarch64 and aarch32, we can set bits
6129      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
6130      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
6131      */
6132     if (!arm_el_is_aa64(env, 2)) {
6133         uint64_t aa32_valid;
6134 
6135         /*
6136          * These bits are up-to-date as of ARMv8.6.
6137          * For HCR, it's easiest to list just the 2 bits that are invalid.
6138          * For HCR2, list those that are valid.
6139          */
6140         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
6141         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
6142                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
6143         ret &= aa32_valid;
6144     }
6145 
6146     if (ret & HCR_TGE) {
6147         /* These bits are up-to-date as of ARMv8.6.  */
6148         if (ret & HCR_E2H) {
6149             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
6150                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
6151                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
6152                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
6153                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
6154                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
6155         } else {
6156             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
6157         }
6158         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
6159                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
6160                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
6161                  HCR_TLOR);
6162     }
6163 
6164     return ret;
6165 }
6166 
6167 uint64_t arm_hcr_el2_eff(CPUARMState *env)
6168 {
6169     if (arm_feature(env, ARM_FEATURE_M)) {
6170         return 0;
6171     }
6172     return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
6173 }
6174 
6175 /*
6176  * Corresponds to ARM pseudocode function ELIsInHost().
6177  */
6178 bool el_is_in_host(CPUARMState *env, int el)
6179 {
6180     uint64_t mask;
6181 
6182     /*
6183      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
6184      * Perform the simplest bit tests first, and validate EL2 afterward.
6185      */
6186     if (el & 1) {
6187         return false; /* EL1 or EL3 */
6188     }
6189 
6190     /*
6191      * Note that hcr_write() checks isar_feature_aa64_vh(),
6192      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
6193      */
6194     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
6195     if ((env->cp15.hcr_el2 & mask) != mask) {
6196         return false;
6197     }
6198 
6199     /* TGE and/or E2H set: double check those bits are currently legal. */
6200     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
6201 }
6202 
6203 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
6204                        uint64_t value)
6205 {
6206     ARMCPU *cpu = env_archcpu(env);
6207     uint64_t valid_mask = 0;
6208 
6209     /* FEAT_MOPS adds MSCEn and MCE2 */
6210     if (cpu_isar_feature(aa64_mops, cpu)) {
6211         valid_mask |= HCRX_MSCEN | HCRX_MCE2;
6212     }
6213 
6214     /* FEAT_NMI adds TALLINT, VINMI and VFNMI */
6215     if (cpu_isar_feature(aa64_nmi, cpu)) {
6216         valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI;
6217     }
6218 
6219     /* Clear RES0 bits.  */
6220     env->cp15.hcrx_el2 = value & valid_mask;
6221 
6222     /*
6223      * Updates to VINMI and VFNMI require us to update the status of
6224      * virtual NMI, which are the logical OR of these bits
6225      * and the state of the input lines from the GIC. (This requires
6226      * that we have the BQL, which is done by marking the
6227      * reginfo structs as ARM_CP_IO.)
6228      * Note that if a write to HCRX pends a VINMI or VFNMI it is never
6229      * possible for it to be taken immediately, because VINMI and
6230      * VFNMI are masked unless running at EL0 or EL1, and HCRX
6231      * can only be written at EL2.
6232      */
6233     if (cpu_isar_feature(aa64_nmi, cpu)) {
6234         g_assert(bql_locked());
6235         arm_cpu_update_vinmi(cpu);
6236         arm_cpu_update_vfnmi(cpu);
6237     }
6238 }
6239 
6240 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
6241                                   bool isread)
6242 {
6243     if (arm_current_el(env) == 2
6244         && arm_feature(env, ARM_FEATURE_EL3)
6245         && !(env->cp15.scr_el3 & SCR_HXEN)) {
6246         return CP_ACCESS_TRAP_EL3;
6247     }
6248     return CP_ACCESS_OK;
6249 }
6250 
6251 static const ARMCPRegInfo hcrx_el2_reginfo = {
6252     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6253     .type = ARM_CP_IO,
6254     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6255     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6256     .nv2_redirect_offset = 0xa0,
6257     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6258 };
6259 
6260 /* Return the effective value of HCRX_EL2.  */
6261 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6262 {
6263     /*
6264      * The bits in this register behave as 0 for all purposes other than
6265      * direct reads of the register if SCR_EL3.HXEn is 0.
6266      * If EL2 is not enabled in the current security state, then the
6267      * bit may behave as if 0, or as if 1, depending on the bit.
6268      * For the moment, we treat the EL2-disabled case as taking
6269      * priority over the HXEn-disabled case. This is true for the only
6270      * bit for a feature which we implement where the answer is different
6271      * for the two cases (MSCEn for FEAT_MOPS).
6272      * This may need to be revisited for future bits.
6273      */
6274     if (!arm_is_el2_enabled(env)) {
6275         uint64_t hcrx = 0;
6276         if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6277             /* MSCEn behaves as 1 if EL2 is not enabled */
6278             hcrx |= HCRX_MSCEN;
6279         }
6280         return hcrx;
6281     }
6282     if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6283         return 0;
6284     }
6285     return env->cp15.hcrx_el2;
6286 }
6287 
6288 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6289                            uint64_t value)
6290 {
6291     /*
6292      * For A-profile AArch32 EL3, if NSACR.CP10
6293      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6294      */
6295     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6296         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6297         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6298         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6299     }
6300     env->cp15.cptr_el[2] = value;
6301 }
6302 
6303 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6304 {
6305     /*
6306      * For A-profile AArch32 EL3, if NSACR.CP10
6307      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6308      */
6309     uint64_t value = env->cp15.cptr_el[2];
6310 
6311     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6312         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6313         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6314     }
6315     return value;
6316 }
6317 
6318 static const ARMCPRegInfo el2_cp_reginfo[] = {
6319     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6320       .type = ARM_CP_IO,
6321       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6322       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6323       .nv2_redirect_offset = 0x78,
6324       .writefn = hcr_write, .raw_writefn = raw_write },
6325     { .name = "HCR", .state = ARM_CP_STATE_AA32,
6326       .type = ARM_CP_ALIAS | ARM_CP_IO,
6327       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6328       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6329       .writefn = hcr_writelow },
6330     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6331       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6332       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6333     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6334       .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6335       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6336       .access = PL2_RW,
6337       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6338     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6339       .type = ARM_CP_NV2_REDIRECT,
6340       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6341       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6342     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6343       .type = ARM_CP_NV2_REDIRECT,
6344       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6345       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6346     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6347       .type = ARM_CP_ALIAS,
6348       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6349       .access = PL2_RW,
6350       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6351     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6352       .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6353       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6354       .access = PL2_RW,
6355       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6356     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6357       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6358       .access = PL2_RW, .writefn = vbar_write,
6359       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6360       .resetvalue = 0 },
6361     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6362       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6363       .access = PL3_RW, .type = ARM_CP_ALIAS,
6364       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6365     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6366       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6367       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6368       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6369       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6370     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6371       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6372       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6373       .resetvalue = 0 },
6374     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6375       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6376       .access = PL2_RW, .type = ARM_CP_ALIAS,
6377       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6378     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6379       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6380       .access = PL2_RW, .type = ARM_CP_CONST,
6381       .resetvalue = 0 },
6382     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6383     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6384       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6385       .access = PL2_RW, .type = ARM_CP_CONST,
6386       .resetvalue = 0 },
6387     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6388       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6389       .access = PL2_RW, .type = ARM_CP_CONST,
6390       .resetvalue = 0 },
6391     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6392       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6393       .access = PL2_RW, .type = ARM_CP_CONST,
6394       .resetvalue = 0 },
6395     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6396       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6397       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6398       .raw_writefn = raw_write,
6399       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6400     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6401       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6402       .type = ARM_CP_ALIAS,
6403       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6404       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6405     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6406       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6407       .access = PL2_RW,
6408       .nv2_redirect_offset = 0x40,
6409       /* no .writefn needed as this can't cause an ASID change */
6410       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6411     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6412       .cp = 15, .opc1 = 6, .crm = 2,
6413       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6414       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6415       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6416       .writefn = vttbr_write, .raw_writefn = raw_write },
6417     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6418       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6419       .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6420       .nv2_redirect_offset = 0x20,
6421       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6422     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6423       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6424       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6425       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6426     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6427       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6428       .access = PL2_RW, .resetvalue = 0,
6429       .nv2_redirect_offset = 0x90,
6430       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6431     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6432       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6433       .access = PL2_RW, .resetvalue = 0,
6434       .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6435       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6436     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6437       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6438       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6439     { .name = "TLBIALLNSNH",
6440       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6441       .type = ARM_CP_NO_RAW, .access = PL2_W,
6442       .writefn = tlbiall_nsnh_write },
6443     { .name = "TLBIALLNSNHIS",
6444       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6445       .type = ARM_CP_NO_RAW, .access = PL2_W,
6446       .writefn = tlbiall_nsnh_is_write },
6447     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6448       .type = ARM_CP_NO_RAW, .access = PL2_W,
6449       .writefn = tlbiall_hyp_write },
6450     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6451       .type = ARM_CP_NO_RAW, .access = PL2_W,
6452       .writefn = tlbiall_hyp_is_write },
6453     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6454       .type = ARM_CP_NO_RAW, .access = PL2_W,
6455       .writefn = tlbimva_hyp_write },
6456     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6457       .type = ARM_CP_NO_RAW, .access = PL2_W,
6458       .writefn = tlbimva_hyp_is_write },
6459     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6460       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6461       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6462       .writefn = tlbi_aa64_alle2_write },
6463     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6464       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6465       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6466       .writefn = tlbi_aa64_vae2_write },
6467     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6468       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6469       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6470       .writefn = tlbi_aa64_vae2_write },
6471     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6472       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6473       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6474       .writefn = tlbi_aa64_alle2is_write },
6475     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6476       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6477       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6478       .writefn = tlbi_aa64_vae2is_write },
6479     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6480       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6481       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6482       .writefn = tlbi_aa64_vae2is_write },
6483 #ifndef CONFIG_USER_ONLY
6484     /*
6485      * Unlike the other EL2-related AT operations, these must
6486      * UNDEF from EL3 if EL2 is not implemented, which is why we
6487      * define them here rather than with the rest of the AT ops.
6488      */
6489     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6490       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6491       .access = PL2_W, .accessfn = at_s1e2_access,
6492       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6493       .writefn = ats_write64 },
6494     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6495       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6496       .access = PL2_W, .accessfn = at_s1e2_access,
6497       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6498       .writefn = ats_write64 },
6499     /*
6500      * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6501      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6502      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6503      * to behave as if SCR.NS was 1.
6504      */
6505     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6506       .access = PL2_W,
6507       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6508     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6509       .access = PL2_W,
6510       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6511     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6512       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6513       /*
6514        * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6515        * reset values as IMPDEF. We choose to reset to 3 to comply with
6516        * both ARMv7 and ARMv8.
6517        */
6518       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6519       .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6520       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6521     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6522       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6523       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6524       .writefn = gt_cntvoff_write,
6525       .nv2_redirect_offset = 0x60,
6526       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6527     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6528       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6529       .writefn = gt_cntvoff_write,
6530       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6531     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6532       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6533       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6534       .type = ARM_CP_IO, .access = PL2_RW,
6535       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6536     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6537       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6538       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6539       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6540     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6541       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6542       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6543       .resetfn = gt_hyp_timer_reset,
6544       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6545     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6546       .type = ARM_CP_IO,
6547       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6548       .access = PL2_RW,
6549       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6550       .resetvalue = 0,
6551       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6552 #endif
6553     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6554       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6555       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6556       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6557     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6558       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6559       .access = PL2_RW,
6560       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6561     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6562       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6563       .access = PL2_RW,
6564       .nv2_redirect_offset = 0x80,
6565       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6566 };
6567 
6568 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6569     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6570       .type = ARM_CP_ALIAS | ARM_CP_IO,
6571       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6572       .access = PL2_RW,
6573       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6574       .writefn = hcr_writehigh },
6575 };
6576 
6577 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6578                                   bool isread)
6579 {
6580     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6581         return CP_ACCESS_OK;
6582     }
6583     return CP_ACCESS_TRAP_UNCATEGORIZED;
6584 }
6585 
6586 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6587     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6588       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6589       .access = PL2_RW, .accessfn = sel2_access,
6590       .nv2_redirect_offset = 0x30,
6591       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6592     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6593       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6594       .access = PL2_RW, .accessfn = sel2_access,
6595       .nv2_redirect_offset = 0x48,
6596       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6597 };
6598 
6599 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6600                                    bool isread)
6601 {
6602     /*
6603      * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6604      * At Secure EL1 it traps to EL3 or EL2.
6605      */
6606     if (arm_current_el(env) == 3) {
6607         return CP_ACCESS_OK;
6608     }
6609     if (arm_is_secure_below_el3(env)) {
6610         if (env->cp15.scr_el3 & SCR_EEL2) {
6611             return CP_ACCESS_TRAP_EL2;
6612         }
6613         return CP_ACCESS_TRAP_EL3;
6614     }
6615     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6616     if (isread) {
6617         return CP_ACCESS_OK;
6618     }
6619     return CP_ACCESS_TRAP_UNCATEGORIZED;
6620 }
6621 
6622 static const ARMCPRegInfo el3_cp_reginfo[] = {
6623     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6624       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6625       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6626       .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6627     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6628       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6629       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6630       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6631       .writefn = scr_write, .raw_writefn = raw_write },
6632     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6633       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6634       .access = PL3_RW, .resetvalue = 0,
6635       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6636     { .name = "SDER",
6637       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6638       .access = PL3_RW, .resetvalue = 0,
6639       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6640     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6641       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6642       .writefn = vbar_write, .resetvalue = 0,
6643       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6644     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6645       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6646       .access = PL3_RW, .resetvalue = 0,
6647       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6648     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6649       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6650       .access = PL3_RW,
6651       /* no .writefn needed as this can't cause an ASID change */
6652       .resetvalue = 0,
6653       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6654     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6655       .type = ARM_CP_ALIAS,
6656       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6657       .access = PL3_RW,
6658       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6659     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6660       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6661       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6662     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6663       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6664       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6665     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6666       .type = ARM_CP_ALIAS,
6667       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6668       .access = PL3_RW,
6669       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6670     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6671       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6672       .access = PL3_RW, .writefn = vbar_write,
6673       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6674       .resetvalue = 0 },
6675     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6676       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6677       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6678       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6679     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6680       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6681       .access = PL3_RW, .resetvalue = 0,
6682       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6683     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6684       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6685       .access = PL3_RW, .type = ARM_CP_CONST,
6686       .resetvalue = 0 },
6687     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6688       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6689       .access = PL3_RW, .type = ARM_CP_CONST,
6690       .resetvalue = 0 },
6691     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6692       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6693       .access = PL3_RW, .type = ARM_CP_CONST,
6694       .resetvalue = 0 },
6695     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6696       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6697       .access = PL3_W, .type = ARM_CP_NO_RAW,
6698       .writefn = tlbi_aa64_alle3is_write },
6699     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6700       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6701       .access = PL3_W, .type = ARM_CP_NO_RAW,
6702       .writefn = tlbi_aa64_vae3is_write },
6703     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6704       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6705       .access = PL3_W, .type = ARM_CP_NO_RAW,
6706       .writefn = tlbi_aa64_vae3is_write },
6707     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6708       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6709       .access = PL3_W, .type = ARM_CP_NO_RAW,
6710       .writefn = tlbi_aa64_alle3_write },
6711     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6712       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6713       .access = PL3_W, .type = ARM_CP_NO_RAW,
6714       .writefn = tlbi_aa64_vae3_write },
6715     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6716       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6717       .access = PL3_W, .type = ARM_CP_NO_RAW,
6718       .writefn = tlbi_aa64_vae3_write },
6719 };
6720 
6721 #ifndef CONFIG_USER_ONLY
6722 
6723 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
6724                                  bool isread)
6725 {
6726     if (arm_current_el(env) == 1) {
6727         /* This must be a FEAT_NV access */
6728         return CP_ACCESS_OK;
6729     }
6730     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6731         return CP_ACCESS_TRAP_UNCATEGORIZED;
6732     }
6733     return CP_ACCESS_OK;
6734 }
6735 
6736 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri,
6737                                       bool isread)
6738 {
6739     if (arm_current_el(env) == 1) {
6740         /* This must be a FEAT_NV access with NVx == 101 */
6741         if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) {
6742             return CP_ACCESS_TRAP_EL2;
6743         }
6744     }
6745     return e2h_access(env, ri, isread);
6746 }
6747 
6748 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri,
6749                                       bool isread)
6750 {
6751     if (arm_current_el(env) == 1) {
6752         /* This must be a FEAT_NV access with NVx == 101 */
6753         if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) {
6754             return CP_ACCESS_TRAP_EL2;
6755         }
6756     }
6757     return e2h_access(env, ri, isread);
6758 }
6759 
6760 /* Test if system register redirection is to occur in the current state.  */
6761 static bool redirect_for_e2h(CPUARMState *env)
6762 {
6763     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6764 }
6765 
6766 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6767 {
6768     CPReadFn *readfn;
6769 
6770     if (redirect_for_e2h(env)) {
6771         /* Switch to the saved EL2 version of the register.  */
6772         ri = ri->opaque;
6773         readfn = ri->readfn;
6774     } else {
6775         readfn = ri->orig_readfn;
6776     }
6777     if (readfn == NULL) {
6778         readfn = raw_read;
6779     }
6780     return readfn(env, ri);
6781 }
6782 
6783 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6784                           uint64_t value)
6785 {
6786     CPWriteFn *writefn;
6787 
6788     if (redirect_for_e2h(env)) {
6789         /* Switch to the saved EL2 version of the register.  */
6790         ri = ri->opaque;
6791         writefn = ri->writefn;
6792     } else {
6793         writefn = ri->orig_writefn;
6794     }
6795     if (writefn == NULL) {
6796         writefn = raw_write;
6797     }
6798     writefn(env, ri, value);
6799 }
6800 
6801 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
6802 {
6803     /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6804     return ri->orig_readfn(env, ri->opaque);
6805 }
6806 
6807 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
6808                               uint64_t value)
6809 {
6810     /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6811     return ri->orig_writefn(env, ri->opaque, value);
6812 }
6813 
6814 static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
6815                                          const ARMCPRegInfo *ri,
6816                                          bool isread)
6817 {
6818     if (arm_current_el(env) == 1) {
6819         /*
6820          * This must be a FEAT_NV access (will either trap or redirect
6821          * to memory). None of the registers with _EL12 aliases want to
6822          * apply their trap controls for this kind of access, so don't
6823          * call the orig_accessfn or do the "UNDEF when E2H is 0" check.
6824          */
6825         return CP_ACCESS_OK;
6826     }
6827     /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
6828     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6829         return CP_ACCESS_TRAP_UNCATEGORIZED;
6830     }
6831     if (ri->orig_accessfn) {
6832         return ri->orig_accessfn(env, ri->opaque, isread);
6833     }
6834     return CP_ACCESS_OK;
6835 }
6836 
6837 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6838 {
6839     struct E2HAlias {
6840         uint32_t src_key, dst_key, new_key;
6841         const char *src_name, *dst_name, *new_name;
6842         bool (*feature)(const ARMISARegisters *id);
6843     };
6844 
6845 #define K(op0, op1, crn, crm, op2) \
6846     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6847 
6848     static const struct E2HAlias aliases[] = {
6849         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6850           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6851         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6852           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6853         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6854           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6855         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6856           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6857         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6858           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6859         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6860           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6861         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6862           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6863         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6864           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6865         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6866           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6867         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6868           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6869         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6870           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6871         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6872           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6873         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6874           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6875         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6876           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6877         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6878           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6879         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6880           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6881 
6882         /*
6883          * Note that redirection of ZCR is mentioned in the description
6884          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6885          * not in the summary table.
6886          */
6887         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6888           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6889         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
6890           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6891 
6892         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6893           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6894 
6895         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6896           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6897           isar_feature_aa64_scxtnum },
6898 
6899         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6900         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6901     };
6902 #undef K
6903 
6904     size_t i;
6905 
6906     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6907         const struct E2HAlias *a = &aliases[i];
6908         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6909         bool ok;
6910 
6911         if (a->feature && !a->feature(&cpu->isar)) {
6912             continue;
6913         }
6914 
6915         src_reg = g_hash_table_lookup(cpu->cp_regs,
6916                                       (gpointer)(uintptr_t)a->src_key);
6917         dst_reg = g_hash_table_lookup(cpu->cp_regs,
6918                                       (gpointer)(uintptr_t)a->dst_key);
6919         g_assert(src_reg != NULL);
6920         g_assert(dst_reg != NULL);
6921 
6922         /* Cross-compare names to detect typos in the keys.  */
6923         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6924         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6925 
6926         /* None of the core system registers use opaque; we will.  */
6927         g_assert(src_reg->opaque == NULL);
6928 
6929         /* Create alias before redirection so we dup the right data. */
6930         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6931 
6932         new_reg->name = a->new_name;
6933         new_reg->type |= ARM_CP_ALIAS;
6934         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6935         new_reg->access &= PL2_RW | PL3_RW;
6936         /* The new_reg op fields are as per new_key, not the target reg */
6937         new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
6938             >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
6939         new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
6940             >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
6941         new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
6942             >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
6943         new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
6944             >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
6945         new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
6946             >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
6947         new_reg->opaque = src_reg;
6948         new_reg->orig_readfn = src_reg->readfn ?: raw_read;
6949         new_reg->orig_writefn = src_reg->writefn ?: raw_write;
6950         new_reg->orig_accessfn = src_reg->accessfn;
6951         if (!new_reg->raw_readfn) {
6952             new_reg->raw_readfn = raw_read;
6953         }
6954         if (!new_reg->raw_writefn) {
6955             new_reg->raw_writefn = raw_write;
6956         }
6957         new_reg->readfn = el2_e2h_e12_read;
6958         new_reg->writefn = el2_e2h_e12_write;
6959         new_reg->accessfn = el2_e2h_e12_access;
6960 
6961         /*
6962          * If the _EL1 register is redirected to memory by FEAT_NV2,
6963          * then it shares the offset with the _EL12 register,
6964          * and which one is redirected depends on HCR_EL2.NV1.
6965          */
6966         if (new_reg->nv2_redirect_offset) {
6967             assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
6968             new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
6969             new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
6970         }
6971 
6972         ok = g_hash_table_insert(cpu->cp_regs,
6973                                  (gpointer)(uintptr_t)a->new_key, new_reg);
6974         g_assert(ok);
6975 
6976         src_reg->opaque = dst_reg;
6977         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6978         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6979         if (!src_reg->raw_readfn) {
6980             src_reg->raw_readfn = raw_read;
6981         }
6982         if (!src_reg->raw_writefn) {
6983             src_reg->raw_writefn = raw_write;
6984         }
6985         src_reg->readfn = el2_e2h_read;
6986         src_reg->writefn = el2_e2h_write;
6987     }
6988 }
6989 #endif
6990 
6991 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6992                                      bool isread)
6993 {
6994     int cur_el = arm_current_el(env);
6995 
6996     if (cur_el < 2) {
6997         uint64_t hcr = arm_hcr_el2_eff(env);
6998 
6999         if (cur_el == 0) {
7000             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
7001                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
7002                     return CP_ACCESS_TRAP_EL2;
7003                 }
7004             } else {
7005                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7006                     return CP_ACCESS_TRAP;
7007                 }
7008                 if (hcr & HCR_TID2) {
7009                     return CP_ACCESS_TRAP_EL2;
7010                 }
7011             }
7012         } else if (hcr & HCR_TID2) {
7013             return CP_ACCESS_TRAP_EL2;
7014         }
7015     }
7016 
7017     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
7018         return CP_ACCESS_TRAP_EL2;
7019     }
7020 
7021     return CP_ACCESS_OK;
7022 }
7023 
7024 /*
7025  * Check for traps to RAS registers, which are controlled
7026  * by HCR_EL2.TERR and SCR_EL3.TERR.
7027  */
7028 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
7029                                   bool isread)
7030 {
7031     int el = arm_current_el(env);
7032 
7033     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
7034         return CP_ACCESS_TRAP_EL2;
7035     }
7036     if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
7037         return CP_ACCESS_TRAP_EL3;
7038     }
7039     return CP_ACCESS_OK;
7040 }
7041 
7042 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
7043 {
7044     int el = arm_current_el(env);
7045 
7046     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
7047         return env->cp15.vdisr_el2;
7048     }
7049     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
7050         return 0; /* RAZ/WI */
7051     }
7052     return env->cp15.disr_el1;
7053 }
7054 
7055 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7056 {
7057     int el = arm_current_el(env);
7058 
7059     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
7060         env->cp15.vdisr_el2 = val;
7061         return;
7062     }
7063     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
7064         return; /* RAZ/WI */
7065     }
7066     env->cp15.disr_el1 = val;
7067 }
7068 
7069 /*
7070  * Minimal RAS implementation with no Error Records.
7071  * Which means that all of the Error Record registers:
7072  *   ERXADDR_EL1
7073  *   ERXCTLR_EL1
7074  *   ERXFR_EL1
7075  *   ERXMISC0_EL1
7076  *   ERXMISC1_EL1
7077  *   ERXMISC2_EL1
7078  *   ERXMISC3_EL1
7079  *   ERXPFGCDN_EL1  (RASv1p1)
7080  *   ERXPFGCTL_EL1  (RASv1p1)
7081  *   ERXPFGF_EL1    (RASv1p1)
7082  *   ERXSTATUS_EL1
7083  * and
7084  *   ERRSELR_EL1
7085  * may generate UNDEFINED, which is the effect we get by not
7086  * listing them at all.
7087  *
7088  * These registers have fine-grained trap bits, but UNDEF-to-EL1
7089  * is higher priority than FGT-to-EL2 so we do not need to list them
7090  * in order to check for an FGT.
7091  */
7092 static const ARMCPRegInfo minimal_ras_reginfo[] = {
7093     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
7094       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
7095       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
7096       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
7097     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
7098       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
7099       .access = PL1_R, .accessfn = access_terr,
7100       .fgt = FGT_ERRIDR_EL1,
7101       .type = ARM_CP_CONST, .resetvalue = 0 },
7102     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
7103       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
7104       .nv2_redirect_offset = 0x500,
7105       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
7106     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
7107       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
7108       .nv2_redirect_offset = 0x508,
7109       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
7110 };
7111 
7112 /*
7113  * Return the exception level to which exceptions should be taken
7114  * via SVEAccessTrap.  This excludes the check for whether the exception
7115  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
7116  * be found by testing 0 < fp_exception_el < sve_exception_el.
7117  *
7118  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
7119  * pseudocode does *not* separate out the FP trap checks, but has them
7120  * all in one function.
7121  */
7122 int sve_exception_el(CPUARMState *env, int el)
7123 {
7124 #ifndef CONFIG_USER_ONLY
7125     if (el <= 1 && !el_is_in_host(env, el)) {
7126         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
7127         case 1:
7128             if (el != 0) {
7129                 break;
7130             }
7131             /* fall through */
7132         case 0:
7133         case 2:
7134             return 1;
7135         }
7136     }
7137 
7138     if (el <= 2 && arm_is_el2_enabled(env)) {
7139         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7140         if (env->cp15.hcr_el2 & HCR_E2H) {
7141             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
7142             case 1:
7143                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7144                     break;
7145                 }
7146                 /* fall through */
7147             case 0:
7148             case 2:
7149                 return 2;
7150             }
7151         } else {
7152             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
7153                 return 2;
7154             }
7155         }
7156     }
7157 
7158     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
7159     if (arm_feature(env, ARM_FEATURE_EL3)
7160         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
7161         return 3;
7162     }
7163 #endif
7164     return 0;
7165 }
7166 
7167 /*
7168  * Return the exception level to which exceptions should be taken for SME.
7169  * C.f. the ARM pseudocode function CheckSMEAccess.
7170  */
7171 int sme_exception_el(CPUARMState *env, int el)
7172 {
7173 #ifndef CONFIG_USER_ONLY
7174     if (el <= 1 && !el_is_in_host(env, el)) {
7175         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
7176         case 1:
7177             if (el != 0) {
7178                 break;
7179             }
7180             /* fall through */
7181         case 0:
7182         case 2:
7183             return 1;
7184         }
7185     }
7186 
7187     if (el <= 2 && arm_is_el2_enabled(env)) {
7188         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7189         if (env->cp15.hcr_el2 & HCR_E2H) {
7190             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
7191             case 1:
7192                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7193                     break;
7194                 }
7195                 /* fall through */
7196             case 0:
7197             case 2:
7198                 return 2;
7199             }
7200         } else {
7201             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
7202                 return 2;
7203             }
7204         }
7205     }
7206 
7207     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
7208     if (arm_feature(env, ARM_FEATURE_EL3)
7209         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7210         return 3;
7211     }
7212 #endif
7213     return 0;
7214 }
7215 
7216 /*
7217  * Given that SVE is enabled, return the vector length for EL.
7218  */
7219 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
7220 {
7221     ARMCPU *cpu = env_archcpu(env);
7222     uint64_t *cr = env->vfp.zcr_el;
7223     uint32_t map = cpu->sve_vq.map;
7224     uint32_t len = ARM_MAX_VQ - 1;
7225 
7226     if (sm) {
7227         cr = env->vfp.smcr_el;
7228         map = cpu->sme_vq.map;
7229     }
7230 
7231     if (el <= 1 && !el_is_in_host(env, el)) {
7232         len = MIN(len, 0xf & (uint32_t)cr[1]);
7233     }
7234     if (el <= 2 && arm_is_el2_enabled(env)) {
7235         len = MIN(len, 0xf & (uint32_t)cr[2]);
7236     }
7237     if (arm_feature(env, ARM_FEATURE_EL3)) {
7238         len = MIN(len, 0xf & (uint32_t)cr[3]);
7239     }
7240 
7241     map &= MAKE_64BIT_MASK(0, len + 1);
7242     if (map != 0) {
7243         return 31 - clz32(map);
7244     }
7245 
7246     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
7247     assert(sm);
7248     return ctz32(cpu->sme_vq.map);
7249 }
7250 
7251 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
7252 {
7253     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
7254 }
7255 
7256 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7257                       uint64_t value)
7258 {
7259     int cur_el = arm_current_el(env);
7260     int old_len = sve_vqm1_for_el(env, cur_el);
7261     int new_len;
7262 
7263     /* Bits other than [3:0] are RAZ/WI.  */
7264     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
7265     raw_write(env, ri, value & 0xf);
7266 
7267     /*
7268      * Because we arrived here, we know both FP and SVE are enabled;
7269      * otherwise we would have trapped access to the ZCR_ELn register.
7270      */
7271     new_len = sve_vqm1_for_el(env, cur_el);
7272     if (new_len < old_len) {
7273         aarch64_sve_narrow_vq(env, new_len + 1);
7274     }
7275 }
7276 
7277 static const ARMCPRegInfo zcr_reginfo[] = {
7278     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
7279       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
7280       .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
7281       .access = PL1_RW, .type = ARM_CP_SVE,
7282       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
7283       .writefn = zcr_write, .raw_writefn = raw_write },
7284     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
7285       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
7286       .access = PL2_RW, .type = ARM_CP_SVE,
7287       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
7288       .writefn = zcr_write, .raw_writefn = raw_write },
7289     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
7290       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
7291       .access = PL3_RW, .type = ARM_CP_SVE,
7292       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
7293       .writefn = zcr_write, .raw_writefn = raw_write },
7294 };
7295 
7296 #ifdef TARGET_AARCH64
7297 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
7298                                     bool isread)
7299 {
7300     int el = arm_current_el(env);
7301 
7302     if (el == 0) {
7303         uint64_t sctlr = arm_sctlr(env, el);
7304         if (!(sctlr & SCTLR_EnTP2)) {
7305             return CP_ACCESS_TRAP;
7306         }
7307     }
7308     /* TODO: FEAT_FGT */
7309     if (el < 3
7310         && arm_feature(env, ARM_FEATURE_EL3)
7311         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
7312         return CP_ACCESS_TRAP_EL3;
7313     }
7314     return CP_ACCESS_OK;
7315 }
7316 
7317 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
7318                                       bool isread)
7319 {
7320     /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
7321     if (arm_current_el(env) == 2
7322         && arm_feature(env, ARM_FEATURE_EL3)
7323         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7324         return CP_ACCESS_TRAP_EL3;
7325     }
7326     return CP_ACCESS_OK;
7327 }
7328 
7329 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
7330                                    bool isread)
7331 {
7332     if (arm_current_el(env) < 3
7333         && arm_feature(env, ARM_FEATURE_EL3)
7334         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7335         return CP_ACCESS_TRAP_EL3;
7336     }
7337     return CP_ACCESS_OK;
7338 }
7339 
7340 /* ResetSVEState */
7341 static void arm_reset_sve_state(CPUARMState *env)
7342 {
7343     memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
7344     /* Recall that FFR is stored as pregs[16]. */
7345     memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
7346     vfp_set_fpcr(env, 0x0800009f);
7347 }
7348 
7349 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
7350 {
7351     uint64_t change = (env->svcr ^ new) & mask;
7352 
7353     if (change == 0) {
7354         return;
7355     }
7356     env->svcr ^= change;
7357 
7358     if (change & R_SVCR_SM_MASK) {
7359         arm_reset_sve_state(env);
7360     }
7361 
7362     /*
7363      * ResetSMEState.
7364      *
7365      * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
7366      * on enable: while disabled, the storage is inaccessible and the
7367      * value does not matter.  We're not saving the storage in vmstate
7368      * when disabled either.
7369      */
7370     if (change & new & R_SVCR_ZA_MASK) {
7371         memset(env->zarray, 0, sizeof(env->zarray));
7372     }
7373 
7374     if (tcg_enabled()) {
7375         arm_rebuild_hflags(env);
7376     }
7377 }
7378 
7379 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7380                        uint64_t value)
7381 {
7382     aarch64_set_svcr(env, value, -1);
7383 }
7384 
7385 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7386                        uint64_t value)
7387 {
7388     int cur_el = arm_current_el(env);
7389     int old_len = sve_vqm1_for_el(env, cur_el);
7390     int new_len;
7391 
7392     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7393     value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7394     raw_write(env, ri, value);
7395 
7396     /*
7397      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7398      * when SVL is widened (old values kept, or zeros).  Choose to keep the
7399      * current values for simplicity.  But for QEMU internals, we must still
7400      * apply the narrower SVL to the Zregs and Pregs -- see the comment
7401      * above aarch64_sve_narrow_vq.
7402      */
7403     new_len = sve_vqm1_for_el(env, cur_el);
7404     if (new_len < old_len) {
7405         aarch64_sve_narrow_vq(env, new_len + 1);
7406     }
7407 }
7408 
7409 static const ARMCPRegInfo sme_reginfo[] = {
7410     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7411       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7412       .access = PL0_RW, .accessfn = access_tpidr2,
7413       .fgt = FGT_NTPIDR2_EL0,
7414       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7415     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7416       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7417       .access = PL0_RW, .type = ARM_CP_SME,
7418       .fieldoffset = offsetof(CPUARMState, svcr),
7419       .writefn = svcr_write, .raw_writefn = raw_write },
7420     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7421       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7422       .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
7423       .access = PL1_RW, .type = ARM_CP_SME,
7424       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7425       .writefn = smcr_write, .raw_writefn = raw_write },
7426     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7427       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7428       .access = PL2_RW, .type = ARM_CP_SME,
7429       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7430       .writefn = smcr_write, .raw_writefn = raw_write },
7431     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7432       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7433       .access = PL3_RW, .type = ARM_CP_SME,
7434       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7435       .writefn = smcr_write, .raw_writefn = raw_write },
7436     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7437       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7438       .access = PL1_R, .accessfn = access_aa64_tid1,
7439       /*
7440        * IMPLEMENTOR = 0 (software)
7441        * REVISION    = 0 (implementation defined)
7442        * SMPS        = 0 (no streaming execution priority in QEMU)
7443        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
7444        */
7445       .type = ARM_CP_CONST, .resetvalue = 0, },
7446     /*
7447      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7448      */
7449     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7450       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7451       .access = PL1_RW, .accessfn = access_smpri,
7452       .fgt = FGT_NSMPRI_EL1,
7453       .type = ARM_CP_CONST, .resetvalue = 0 },
7454     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7455       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7456       .nv2_redirect_offset = 0x1f8,
7457       .access = PL2_RW, .accessfn = access_smprimap,
7458       .type = ARM_CP_CONST, .resetvalue = 0 },
7459 };
7460 
7461 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7462                                   uint64_t value)
7463 {
7464     CPUState *cs = env_cpu(env);
7465 
7466     tlb_flush(cs);
7467 }
7468 
7469 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7470                         uint64_t value)
7471 {
7472     /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7473     uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7474         R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7475         R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7476 
7477     env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7478 }
7479 
7480 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7481 {
7482     env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7483                                      env_archcpu(env)->reset_l0gptsz);
7484 }
7485 
7486 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7487                                     uint64_t value)
7488 {
7489     CPUState *cs = env_cpu(env);
7490 
7491     tlb_flush_all_cpus_synced(cs);
7492 }
7493 
7494 static const ARMCPRegInfo rme_reginfo[] = {
7495     { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7496       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7497       .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7498       .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7499     { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7500       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7501       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7502     { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7503       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7504       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7505     { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7506       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7507       .access = PL3_W, .type = ARM_CP_NO_RAW,
7508       .writefn = tlbi_aa64_paall_write },
7509     { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7510       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7511       .access = PL3_W, .type = ARM_CP_NO_RAW,
7512       .writefn = tlbi_aa64_paallos_write },
7513     /*
7514      * QEMU does not have a way to invalidate by physical address, thus
7515      * invalidating a range of physical addresses is accomplished by
7516      * flushing all tlb entries in the outer shareable domain,
7517      * just like PAALLOS.
7518      */
7519     { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7520       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7521       .access = PL3_W, .type = ARM_CP_NO_RAW,
7522       .writefn = tlbi_aa64_paallos_write },
7523     { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7524       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7525       .access = PL3_W, .type = ARM_CP_NO_RAW,
7526       .writefn = tlbi_aa64_paallos_write },
7527     { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7528       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7529       .access = PL3_W, .type = ARM_CP_NOP },
7530 };
7531 
7532 static const ARMCPRegInfo rme_mte_reginfo[] = {
7533     { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7534       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7535       .access = PL3_W, .type = ARM_CP_NOP },
7536 };
7537 
7538 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri,
7539                               uint64_t value)
7540 {
7541     env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT);
7542 }
7543 
7544 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri)
7545 {
7546     return env->pstate & PSTATE_ALLINT;
7547 }
7548 
7549 static CPAccessResult aa64_allint_access(CPUARMState *env,
7550                                          const ARMCPRegInfo *ri, bool isread)
7551 {
7552     if (!isread && arm_current_el(env) == 1 &&
7553         (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) {
7554         return CP_ACCESS_TRAP_EL2;
7555     }
7556     return CP_ACCESS_OK;
7557 }
7558 
7559 static const ARMCPRegInfo nmi_reginfo[] = {
7560     { .name = "ALLINT", .state = ARM_CP_STATE_AA64,
7561       .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3,
7562       .type = ARM_CP_NO_RAW,
7563       .access = PL1_RW, .accessfn = aa64_allint_access,
7564       .fieldoffset = offsetof(CPUARMState, pstate),
7565       .writefn = aa64_allint_write, .readfn = aa64_allint_read,
7566       .resetfn = arm_cp_reset_ignore },
7567 };
7568 #endif /* TARGET_AARCH64 */
7569 
7570 static void define_pmu_regs(ARMCPU *cpu)
7571 {
7572     /*
7573      * v7 performance monitor control register: same implementor
7574      * field as main ID register, and we implement four counters in
7575      * addition to the cycle count register.
7576      */
7577     unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7578     ARMCPRegInfo pmcr = {
7579         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7580         .access = PL0_RW,
7581         .fgt = FGT_PMCR_EL0,
7582         .type = ARM_CP_IO | ARM_CP_ALIAS,
7583         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7584         .accessfn = pmreg_access,
7585         .readfn = pmcr_read, .raw_readfn = raw_read,
7586         .writefn = pmcr_write, .raw_writefn = raw_write,
7587     };
7588     ARMCPRegInfo pmcr64 = {
7589         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7590         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7591         .access = PL0_RW, .accessfn = pmreg_access,
7592         .fgt = FGT_PMCR_EL0,
7593         .type = ARM_CP_IO,
7594         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7595         .resetvalue = cpu->isar.reset_pmcr_el0,
7596         .readfn = pmcr_read, .raw_readfn = raw_read,
7597         .writefn = pmcr_write, .raw_writefn = raw_write,
7598     };
7599 
7600     define_one_arm_cp_reg(cpu, &pmcr);
7601     define_one_arm_cp_reg(cpu, &pmcr64);
7602     for (i = 0; i < pmcrn; i++) {
7603         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7604         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7605         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7606         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7607         ARMCPRegInfo pmev_regs[] = {
7608             { .name = pmevcntr_name, .cp = 15, .crn = 14,
7609               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7610               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7611               .fgt = FGT_PMEVCNTRN_EL0,
7612               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7613               .accessfn = pmreg_access_xevcntr },
7614             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7615               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7616               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7617               .type = ARM_CP_IO,
7618               .fgt = FGT_PMEVCNTRN_EL0,
7619               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7620               .raw_readfn = pmevcntr_rawread,
7621               .raw_writefn = pmevcntr_rawwrite },
7622             { .name = pmevtyper_name, .cp = 15, .crn = 14,
7623               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7624               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7625               .fgt = FGT_PMEVTYPERN_EL0,
7626               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7627               .accessfn = pmreg_access },
7628             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7629               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7630               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7631               .fgt = FGT_PMEVTYPERN_EL0,
7632               .type = ARM_CP_IO,
7633               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7634               .raw_writefn = pmevtyper_rawwrite },
7635         };
7636         define_arm_cp_regs(cpu, pmev_regs);
7637         g_free(pmevcntr_name);
7638         g_free(pmevcntr_el0_name);
7639         g_free(pmevtyper_name);
7640         g_free(pmevtyper_el0_name);
7641     }
7642     if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7643         ARMCPRegInfo v81_pmu_regs[] = {
7644             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7645               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7646               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7647               .fgt = FGT_PMCEIDN_EL0,
7648               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7649             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7650               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7651               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7652               .fgt = FGT_PMCEIDN_EL0,
7653               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7654         };
7655         define_arm_cp_regs(cpu, v81_pmu_regs);
7656     }
7657     if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7658         static const ARMCPRegInfo v84_pmmir = {
7659             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7660             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7661             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7662             .fgt = FGT_PMMIR_EL1,
7663             .resetvalue = 0
7664         };
7665         define_one_arm_cp_reg(cpu, &v84_pmmir);
7666     }
7667 }
7668 
7669 #ifndef CONFIG_USER_ONLY
7670 /*
7671  * We don't know until after realize whether there's a GICv3
7672  * attached, and that is what registers the gicv3 sysregs.
7673  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7674  * at runtime.
7675  */
7676 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7677 {
7678     ARMCPU *cpu = env_archcpu(env);
7679     uint64_t pfr1 = cpu->isar.id_pfr1;
7680 
7681     if (env->gicv3state) {
7682         pfr1 |= 1 << 28;
7683     }
7684     return pfr1;
7685 }
7686 
7687 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7688 {
7689     ARMCPU *cpu = env_archcpu(env);
7690     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7691 
7692     if (env->gicv3state) {
7693         pfr0 |= 1 << 24;
7694     }
7695     return pfr0;
7696 }
7697 #endif
7698 
7699 /*
7700  * Shared logic between LORID and the rest of the LOR* registers.
7701  * Secure state exclusion has already been dealt with.
7702  */
7703 static CPAccessResult access_lor_ns(CPUARMState *env,
7704                                     const ARMCPRegInfo *ri, bool isread)
7705 {
7706     int el = arm_current_el(env);
7707 
7708     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7709         return CP_ACCESS_TRAP_EL2;
7710     }
7711     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7712         return CP_ACCESS_TRAP_EL3;
7713     }
7714     return CP_ACCESS_OK;
7715 }
7716 
7717 static CPAccessResult access_lor_other(CPUARMState *env,
7718                                        const ARMCPRegInfo *ri, bool isread)
7719 {
7720     if (arm_is_secure_below_el3(env)) {
7721         /* Access denied in secure mode.  */
7722         return CP_ACCESS_TRAP;
7723     }
7724     return access_lor_ns(env, ri, isread);
7725 }
7726 
7727 /*
7728  * A trivial implementation of ARMv8.1-LOR leaves all of these
7729  * registers fixed at 0, which indicates that there are zero
7730  * supported Limited Ordering regions.
7731  */
7732 static const ARMCPRegInfo lor_reginfo[] = {
7733     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7734       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7735       .access = PL1_RW, .accessfn = access_lor_other,
7736       .fgt = FGT_LORSA_EL1,
7737       .type = ARM_CP_CONST, .resetvalue = 0 },
7738     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7739       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7740       .access = PL1_RW, .accessfn = access_lor_other,
7741       .fgt = FGT_LOREA_EL1,
7742       .type = ARM_CP_CONST, .resetvalue = 0 },
7743     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7744       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7745       .access = PL1_RW, .accessfn = access_lor_other,
7746       .fgt = FGT_LORN_EL1,
7747       .type = ARM_CP_CONST, .resetvalue = 0 },
7748     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7749       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7750       .access = PL1_RW, .accessfn = access_lor_other,
7751       .fgt = FGT_LORC_EL1,
7752       .type = ARM_CP_CONST, .resetvalue = 0 },
7753     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7754       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7755       .access = PL1_R, .accessfn = access_lor_ns,
7756       .fgt = FGT_LORID_EL1,
7757       .type = ARM_CP_CONST, .resetvalue = 0 },
7758 };
7759 
7760 #ifdef TARGET_AARCH64
7761 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7762                                    bool isread)
7763 {
7764     int el = arm_current_el(env);
7765 
7766     if (el < 2 &&
7767         arm_is_el2_enabled(env) &&
7768         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7769         return CP_ACCESS_TRAP_EL2;
7770     }
7771     if (el < 3 &&
7772         arm_feature(env, ARM_FEATURE_EL3) &&
7773         !(env->cp15.scr_el3 & SCR_APK)) {
7774         return CP_ACCESS_TRAP_EL3;
7775     }
7776     return CP_ACCESS_OK;
7777 }
7778 
7779 static const ARMCPRegInfo pauth_reginfo[] = {
7780     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7781       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7782       .access = PL1_RW, .accessfn = access_pauth,
7783       .fgt = FGT_APDAKEY,
7784       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7785     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7786       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7787       .access = PL1_RW, .accessfn = access_pauth,
7788       .fgt = FGT_APDAKEY,
7789       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7790     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7791       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7792       .access = PL1_RW, .accessfn = access_pauth,
7793       .fgt = FGT_APDBKEY,
7794       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7795     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7796       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7797       .access = PL1_RW, .accessfn = access_pauth,
7798       .fgt = FGT_APDBKEY,
7799       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7800     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7801       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7802       .access = PL1_RW, .accessfn = access_pauth,
7803       .fgt = FGT_APGAKEY,
7804       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7805     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7806       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7807       .access = PL1_RW, .accessfn = access_pauth,
7808       .fgt = FGT_APGAKEY,
7809       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7810     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7811       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7812       .access = PL1_RW, .accessfn = access_pauth,
7813       .fgt = FGT_APIAKEY,
7814       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7815     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7816       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7817       .access = PL1_RW, .accessfn = access_pauth,
7818       .fgt = FGT_APIAKEY,
7819       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7820     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7821       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7822       .access = PL1_RW, .accessfn = access_pauth,
7823       .fgt = FGT_APIBKEY,
7824       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7825     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7826       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7827       .access = PL1_RW, .accessfn = access_pauth,
7828       .fgt = FGT_APIBKEY,
7829       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7830 };
7831 
7832 static const ARMCPRegInfo tlbirange_reginfo[] = {
7833     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7834       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7835       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7836       .fgt = FGT_TLBIRVAE1IS,
7837       .writefn = tlbi_aa64_rvae1is_write },
7838     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7839       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7840       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7841       .fgt = FGT_TLBIRVAAE1IS,
7842       .writefn = tlbi_aa64_rvae1is_write },
7843    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7844       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7845       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7846       .fgt = FGT_TLBIRVALE1IS,
7847       .writefn = tlbi_aa64_rvae1is_write },
7848     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7849       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7850       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7851       .fgt = FGT_TLBIRVAALE1IS,
7852       .writefn = tlbi_aa64_rvae1is_write },
7853     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7854       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7855       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7856       .fgt = FGT_TLBIRVAE1OS,
7857       .writefn = tlbi_aa64_rvae1is_write },
7858     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7859       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7860       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7861       .fgt = FGT_TLBIRVAAE1OS,
7862       .writefn = tlbi_aa64_rvae1is_write },
7863    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7864       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7865       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7866       .fgt = FGT_TLBIRVALE1OS,
7867       .writefn = tlbi_aa64_rvae1is_write },
7868     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7869       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7870       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7871       .fgt = FGT_TLBIRVAALE1OS,
7872       .writefn = tlbi_aa64_rvae1is_write },
7873     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7874       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7875       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7876       .fgt = FGT_TLBIRVAE1,
7877       .writefn = tlbi_aa64_rvae1_write },
7878     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7879       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7880       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7881       .fgt = FGT_TLBIRVAAE1,
7882       .writefn = tlbi_aa64_rvae1_write },
7883    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7884       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7885       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7886       .fgt = FGT_TLBIRVALE1,
7887       .writefn = tlbi_aa64_rvae1_write },
7888     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7889       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7890       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7891       .fgt = FGT_TLBIRVAALE1,
7892       .writefn = tlbi_aa64_rvae1_write },
7893     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7894       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7895       .access = PL2_W, .type = ARM_CP_NO_RAW,
7896       .writefn = tlbi_aa64_ripas2e1is_write },
7897     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7898       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7899       .access = PL2_W, .type = ARM_CP_NO_RAW,
7900       .writefn = tlbi_aa64_ripas2e1is_write },
7901     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7902       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7903       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7904       .writefn = tlbi_aa64_rvae2is_write },
7905    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7906       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7907       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7908       .writefn = tlbi_aa64_rvae2is_write },
7909     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7910       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7911       .access = PL2_W, .type = ARM_CP_NO_RAW,
7912       .writefn = tlbi_aa64_ripas2e1_write },
7913     { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7914       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7915       .access = PL2_W, .type = ARM_CP_NO_RAW,
7916       .writefn = tlbi_aa64_ripas2e1_write },
7917    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7918       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7919       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7920       .writefn = tlbi_aa64_rvae2is_write },
7921    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7922       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7923       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7924       .writefn = tlbi_aa64_rvae2is_write },
7925     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7926       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7927       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7928       .writefn = tlbi_aa64_rvae2_write },
7929    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7930       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7931       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7932       .writefn = tlbi_aa64_rvae2_write },
7933    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7934       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7935       .access = PL3_W, .type = ARM_CP_NO_RAW,
7936       .writefn = tlbi_aa64_rvae3is_write },
7937    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7938       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7939       .access = PL3_W, .type = ARM_CP_NO_RAW,
7940       .writefn = tlbi_aa64_rvae3is_write },
7941    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7942       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7943       .access = PL3_W, .type = ARM_CP_NO_RAW,
7944       .writefn = tlbi_aa64_rvae3is_write },
7945    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7946       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7947       .access = PL3_W, .type = ARM_CP_NO_RAW,
7948       .writefn = tlbi_aa64_rvae3is_write },
7949    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7950       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7951       .access = PL3_W, .type = ARM_CP_NO_RAW,
7952       .writefn = tlbi_aa64_rvae3_write },
7953    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7954       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7955       .access = PL3_W, .type = ARM_CP_NO_RAW,
7956       .writefn = tlbi_aa64_rvae3_write },
7957 };
7958 
7959 static const ARMCPRegInfo tlbios_reginfo[] = {
7960     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7961       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7962       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7963       .fgt = FGT_TLBIVMALLE1OS,
7964       .writefn = tlbi_aa64_vmalle1is_write },
7965     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7966       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7967       .fgt = FGT_TLBIVAE1OS,
7968       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7969       .writefn = tlbi_aa64_vae1is_write },
7970     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7971       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7972       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7973       .fgt = FGT_TLBIASIDE1OS,
7974       .writefn = tlbi_aa64_vmalle1is_write },
7975     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7976       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7977       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7978       .fgt = FGT_TLBIVAAE1OS,
7979       .writefn = tlbi_aa64_vae1is_write },
7980     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7981       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7982       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7983       .fgt = FGT_TLBIVALE1OS,
7984       .writefn = tlbi_aa64_vae1is_write },
7985     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7986       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7987       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7988       .fgt = FGT_TLBIVAALE1OS,
7989       .writefn = tlbi_aa64_vae1is_write },
7990     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7991       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7992       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7993       .writefn = tlbi_aa64_alle2is_write },
7994     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7995       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7996       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7997       .writefn = tlbi_aa64_vae2is_write },
7998    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7999       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
8000       .access = PL2_W, .type = ARM_CP_NO_RAW,
8001       .writefn = tlbi_aa64_alle1is_write },
8002     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
8003       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
8004       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8005       .writefn = tlbi_aa64_vae2is_write },
8006     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
8007       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
8008       .access = PL2_W, .type = ARM_CP_NO_RAW,
8009       .writefn = tlbi_aa64_alle1is_write },
8010     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
8011       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
8012       .access = PL2_W, .type = ARM_CP_NOP },
8013     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
8014       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
8015       .access = PL2_W, .type = ARM_CP_NOP },
8016     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
8017       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
8018       .access = PL2_W, .type = ARM_CP_NOP },
8019     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
8020       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
8021       .access = PL2_W, .type = ARM_CP_NOP },
8022     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
8023       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
8024       .access = PL3_W, .type = ARM_CP_NO_RAW,
8025       .writefn = tlbi_aa64_alle3is_write },
8026     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
8027       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
8028       .access = PL3_W, .type = ARM_CP_NO_RAW,
8029       .writefn = tlbi_aa64_vae3is_write },
8030     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
8031       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
8032       .access = PL3_W, .type = ARM_CP_NO_RAW,
8033       .writefn = tlbi_aa64_vae3is_write },
8034 };
8035 
8036 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
8037 {
8038     Error *err = NULL;
8039     uint64_t ret;
8040 
8041     /* Success sets NZCV = 0000.  */
8042     env->NF = env->CF = env->VF = 0, env->ZF = 1;
8043 
8044     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
8045         /*
8046          * ??? Failed, for unknown reasons in the crypto subsystem.
8047          * The best we can do is log the reason and return the
8048          * timed-out indication to the guest.  There is no reason
8049          * we know to expect this failure to be transitory, so the
8050          * guest may well hang retrying the operation.
8051          */
8052         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
8053                       ri->name, error_get_pretty(err));
8054         error_free(err);
8055 
8056         env->ZF = 0; /* NZCF = 0100 */
8057         return 0;
8058     }
8059     return ret;
8060 }
8061 
8062 /* We do not support re-seeding, so the two registers operate the same.  */
8063 static const ARMCPRegInfo rndr_reginfo[] = {
8064     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
8065       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
8066       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
8067       .access = PL0_R, .readfn = rndr_readfn },
8068     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
8069       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
8070       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
8071       .access = PL0_R, .readfn = rndr_readfn },
8072 };
8073 
8074 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
8075                           uint64_t value)
8076 {
8077 #ifdef CONFIG_TCG
8078     ARMCPU *cpu = env_archcpu(env);
8079     /* CTR_EL0 System register -> DminLine, bits [19:16] */
8080     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
8081     uint64_t vaddr_in = (uint64_t) value;
8082     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
8083     void *haddr;
8084     int mem_idx = arm_env_mmu_index(env);
8085 
8086     /* This won't be crossing page boundaries */
8087     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
8088     if (haddr) {
8089 #ifndef CONFIG_USER_ONLY
8090 
8091         ram_addr_t offset;
8092         MemoryRegion *mr;
8093 
8094         /* RCU lock is already being held */
8095         mr = memory_region_from_host(haddr, &offset);
8096 
8097         if (mr) {
8098             memory_region_writeback(mr, offset, dline_size);
8099         }
8100 #endif /*CONFIG_USER_ONLY*/
8101     }
8102 #else
8103     /* Handled by hardware accelerator. */
8104     g_assert_not_reached();
8105 #endif /* CONFIG_TCG */
8106 }
8107 
8108 static const ARMCPRegInfo dcpop_reg[] = {
8109     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
8110       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
8111       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
8112       .fgt = FGT_DCCVAP,
8113       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
8114 };
8115 
8116 static const ARMCPRegInfo dcpodp_reg[] = {
8117     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
8118       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
8119       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
8120       .fgt = FGT_DCCVADP,
8121       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
8122 };
8123 
8124 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
8125                                        bool isread)
8126 {
8127     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
8128         return CP_ACCESS_TRAP_EL2;
8129     }
8130 
8131     return CP_ACCESS_OK;
8132 }
8133 
8134 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
8135                                  bool isread)
8136 {
8137     int el = arm_current_el(env);
8138     if (el < 2 && arm_is_el2_enabled(env)) {
8139         uint64_t hcr = arm_hcr_el2_eff(env);
8140         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8141             return CP_ACCESS_TRAP_EL2;
8142         }
8143     }
8144     if (el < 3 &&
8145         arm_feature(env, ARM_FEATURE_EL3) &&
8146         !(env->cp15.scr_el3 & SCR_ATA)) {
8147         return CP_ACCESS_TRAP_EL3;
8148     }
8149     return CP_ACCESS_OK;
8150 }
8151 
8152 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
8153                                       bool isread)
8154 {
8155     CPAccessResult nv1 = access_nv1(env, ri, isread);
8156 
8157     if (nv1 != CP_ACCESS_OK) {
8158         return nv1;
8159     }
8160     return access_mte(env, ri, isread);
8161 }
8162 
8163 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
8164                                       bool isread)
8165 {
8166     /*
8167      * TFSR_EL2: similar to generic access_mte(), but we need to
8168      * account for FEAT_NV. At EL1 this must be a FEAT_NV access;
8169      * if NV2 is enabled then we will redirect this to TFSR_EL1
8170      * after doing the HCR and SCR ATA traps; otherwise this will
8171      * be a trap to EL2 and the HCR/SCR traps do not apply.
8172      */
8173     int el = arm_current_el(env);
8174 
8175     if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
8176         return CP_ACCESS_OK;
8177     }
8178     if (el < 2 && arm_is_el2_enabled(env)) {
8179         uint64_t hcr = arm_hcr_el2_eff(env);
8180         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8181             return CP_ACCESS_TRAP_EL2;
8182         }
8183     }
8184     if (el < 3 &&
8185         arm_feature(env, ARM_FEATURE_EL3) &&
8186         !(env->cp15.scr_el3 & SCR_ATA)) {
8187         return CP_ACCESS_TRAP_EL3;
8188     }
8189     return CP_ACCESS_OK;
8190 }
8191 
8192 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
8193 {
8194     return env->pstate & PSTATE_TCO;
8195 }
8196 
8197 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
8198 {
8199     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
8200 }
8201 
8202 static const ARMCPRegInfo mte_reginfo[] = {
8203     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
8204       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
8205       .access = PL1_RW, .accessfn = access_mte,
8206       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
8207     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
8208       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
8209       .access = PL1_RW, .accessfn = access_tfsr_el1,
8210       .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
8211       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
8212     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
8213       .type = ARM_CP_NV2_REDIRECT,
8214       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
8215       .access = PL2_RW, .accessfn = access_tfsr_el2,
8216       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
8217     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
8218       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
8219       .access = PL3_RW,
8220       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
8221     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
8222       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
8223       .access = PL1_RW, .accessfn = access_mte,
8224       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
8225     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
8226       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
8227       .access = PL1_RW, .accessfn = access_mte,
8228       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
8229     { .name = "TCO", .state = ARM_CP_STATE_AA64,
8230       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8231       .type = ARM_CP_NO_RAW,
8232       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
8233     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
8234       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
8235       .type = ARM_CP_NOP, .access = PL1_W,
8236       .fgt = FGT_DCIVAC,
8237       .accessfn = aa64_cacheop_poc_access },
8238     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
8239       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
8240       .fgt = FGT_DCISW,
8241       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8242     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
8243       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
8244       .type = ARM_CP_NOP, .access = PL1_W,
8245       .fgt = FGT_DCIVAC,
8246       .accessfn = aa64_cacheop_poc_access },
8247     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
8248       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
8249       .fgt = FGT_DCISW,
8250       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8251     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
8252       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
8253       .fgt = FGT_DCCSW,
8254       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8255     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
8256       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
8257       .fgt = FGT_DCCSW,
8258       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8259     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
8260       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
8261       .fgt = FGT_DCCISW,
8262       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8263     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
8264       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
8265       .fgt = FGT_DCCISW,
8266       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8267 };
8268 
8269 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
8270     { .name = "TCO", .state = ARM_CP_STATE_AA64,
8271       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8272       .type = ARM_CP_CONST, .access = PL0_RW, },
8273 };
8274 
8275 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
8276     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
8277       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
8278       .type = ARM_CP_NOP, .access = PL0_W,
8279       .fgt = FGT_DCCVAC,
8280       .accessfn = aa64_cacheop_poc_access },
8281     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
8282       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
8283       .type = ARM_CP_NOP, .access = PL0_W,
8284       .fgt = FGT_DCCVAC,
8285       .accessfn = aa64_cacheop_poc_access },
8286     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
8287       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
8288       .type = ARM_CP_NOP, .access = PL0_W,
8289       .fgt = FGT_DCCVAP,
8290       .accessfn = aa64_cacheop_poc_access },
8291     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
8292       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
8293       .type = ARM_CP_NOP, .access = PL0_W,
8294       .fgt = FGT_DCCVAP,
8295       .accessfn = aa64_cacheop_poc_access },
8296     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
8297       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
8298       .type = ARM_CP_NOP, .access = PL0_W,
8299       .fgt = FGT_DCCVADP,
8300       .accessfn = aa64_cacheop_poc_access },
8301     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
8302       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
8303       .type = ARM_CP_NOP, .access = PL0_W,
8304       .fgt = FGT_DCCVADP,
8305       .accessfn = aa64_cacheop_poc_access },
8306     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
8307       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
8308       .type = ARM_CP_NOP, .access = PL0_W,
8309       .fgt = FGT_DCCIVAC,
8310       .accessfn = aa64_cacheop_poc_access },
8311     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
8312       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
8313       .type = ARM_CP_NOP, .access = PL0_W,
8314       .fgt = FGT_DCCIVAC,
8315       .accessfn = aa64_cacheop_poc_access },
8316     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
8317       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
8318       .access = PL0_W, .type = ARM_CP_DC_GVA,
8319 #ifndef CONFIG_USER_ONLY
8320       /* Avoid overhead of an access check that always passes in user-mode */
8321       .accessfn = aa64_zva_access,
8322       .fgt = FGT_DCZVA,
8323 #endif
8324     },
8325     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
8326       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
8327       .access = PL0_W, .type = ARM_CP_DC_GZVA,
8328 #ifndef CONFIG_USER_ONLY
8329       /* Avoid overhead of an access check that always passes in user-mode */
8330       .accessfn = aa64_zva_access,
8331       .fgt = FGT_DCZVA,
8332 #endif
8333     },
8334 };
8335 
8336 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
8337                                      bool isread)
8338 {
8339     uint64_t hcr = arm_hcr_el2_eff(env);
8340     int el = arm_current_el(env);
8341 
8342     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
8343         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
8344             if (hcr & HCR_TGE) {
8345                 return CP_ACCESS_TRAP_EL2;
8346             }
8347             return CP_ACCESS_TRAP;
8348         }
8349     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
8350         return CP_ACCESS_TRAP_EL2;
8351     }
8352     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
8353         return CP_ACCESS_TRAP_EL2;
8354     }
8355     if (el < 3
8356         && arm_feature(env, ARM_FEATURE_EL3)
8357         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
8358         return CP_ACCESS_TRAP_EL3;
8359     }
8360     return CP_ACCESS_OK;
8361 }
8362 
8363 static CPAccessResult access_scxtnum_el1(CPUARMState *env,
8364                                          const ARMCPRegInfo *ri,
8365                                          bool isread)
8366 {
8367     CPAccessResult nv1 = access_nv1(env, ri, isread);
8368 
8369     if (nv1 != CP_ACCESS_OK) {
8370         return nv1;
8371     }
8372     return access_scxtnum(env, ri, isread);
8373 }
8374 
8375 static const ARMCPRegInfo scxtnum_reginfo[] = {
8376     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
8377       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
8378       .access = PL0_RW, .accessfn = access_scxtnum,
8379       .fgt = FGT_SCXTNUM_EL0,
8380       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
8381     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
8382       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
8383       .access = PL1_RW, .accessfn = access_scxtnum_el1,
8384       .fgt = FGT_SCXTNUM_EL1,
8385       .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
8386       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
8387     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
8388       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
8389       .access = PL2_RW, .accessfn = access_scxtnum,
8390       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
8391     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
8392       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
8393       .access = PL3_RW,
8394       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
8395 };
8396 
8397 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
8398                                  bool isread)
8399 {
8400     if (arm_current_el(env) == 2 &&
8401         arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
8402         return CP_ACCESS_TRAP_EL3;
8403     }
8404     return CP_ACCESS_OK;
8405 }
8406 
8407 static const ARMCPRegInfo fgt_reginfo[] = {
8408     { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8409       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
8410       .nv2_redirect_offset = 0x1b8,
8411       .access = PL2_RW, .accessfn = access_fgt,
8412       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
8413     { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8414       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
8415       .nv2_redirect_offset = 0x1c0,
8416       .access = PL2_RW, .accessfn = access_fgt,
8417       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
8418     { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8419       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
8420       .nv2_redirect_offset = 0x1d0,
8421       .access = PL2_RW, .accessfn = access_fgt,
8422       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
8423     { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8424       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
8425       .nv2_redirect_offset = 0x1d8,
8426       .access = PL2_RW, .accessfn = access_fgt,
8427       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
8428     { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
8429       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
8430       .nv2_redirect_offset = 0x1c8,
8431       .access = PL2_RW, .accessfn = access_fgt,
8432       .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
8433 };
8434 
8435 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
8436                        uint64_t value)
8437 {
8438     /*
8439      * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
8440      * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
8441      * about the RESS bits at the top -- we choose the "generate an EL2
8442      * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
8443      * the ptw.c code detect the resulting invalid address).
8444      */
8445     env->cp15.vncr_el2 = value & ~0xfffULL;
8446 }
8447 
8448 static const ARMCPRegInfo nv2_reginfo[] = {
8449     { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
8450       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
8451       .access = PL2_RW,
8452       .writefn = vncr_write,
8453       .nv2_redirect_offset = 0xb0,
8454       .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
8455 };
8456 
8457 #endif /* TARGET_AARCH64 */
8458 
8459 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
8460                                      bool isread)
8461 {
8462     int el = arm_current_el(env);
8463 
8464     if (el == 0) {
8465         uint64_t sctlr = arm_sctlr(env, el);
8466         if (!(sctlr & SCTLR_EnRCTX)) {
8467             return CP_ACCESS_TRAP;
8468         }
8469     } else if (el == 1) {
8470         uint64_t hcr = arm_hcr_el2_eff(env);
8471         if (hcr & HCR_NV) {
8472             return CP_ACCESS_TRAP_EL2;
8473         }
8474     }
8475     return CP_ACCESS_OK;
8476 }
8477 
8478 static const ARMCPRegInfo predinv_reginfo[] = {
8479     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
8480       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
8481       .fgt = FGT_CFPRCTX,
8482       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8483     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
8484       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
8485       .fgt = FGT_DVPRCTX,
8486       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8487     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
8488       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
8489       .fgt = FGT_CPPRCTX,
8490       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8491     /*
8492      * Note the AArch32 opcodes have a different OPC1.
8493      */
8494     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
8495       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
8496       .fgt = FGT_CFPRCTX,
8497       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8498     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
8499       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
8500       .fgt = FGT_DVPRCTX,
8501       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8502     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
8503       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
8504       .fgt = FGT_CPPRCTX,
8505       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8506 };
8507 
8508 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8509 {
8510     /* Read the high 32 bits of the current CCSIDR */
8511     return extract64(ccsidr_read(env, ri), 32, 32);
8512 }
8513 
8514 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8515     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8516       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8517       .access = PL1_R,
8518       .accessfn = access_tid4,
8519       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8520 };
8521 
8522 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8523                                        bool isread)
8524 {
8525     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8526         return CP_ACCESS_TRAP_EL2;
8527     }
8528 
8529     return CP_ACCESS_OK;
8530 }
8531 
8532 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8533                                        bool isread)
8534 {
8535     if (arm_feature(env, ARM_FEATURE_V8)) {
8536         return access_aa64_tid3(env, ri, isread);
8537     }
8538 
8539     return CP_ACCESS_OK;
8540 }
8541 
8542 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8543                                      bool isread)
8544 {
8545     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8546         return CP_ACCESS_TRAP_EL2;
8547     }
8548 
8549     return CP_ACCESS_OK;
8550 }
8551 
8552 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8553                                         const ARMCPRegInfo *ri, bool isread)
8554 {
8555     /*
8556      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8557      * in v7A, not in v8A.
8558      */
8559     if (!arm_feature(env, ARM_FEATURE_V8) &&
8560         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8561         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8562         return CP_ACCESS_TRAP_EL2;
8563     }
8564     return CP_ACCESS_OK;
8565 }
8566 
8567 static const ARMCPRegInfo jazelle_regs[] = {
8568     { .name = "JIDR",
8569       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8570       .access = PL1_R, .accessfn = access_jazelle,
8571       .type = ARM_CP_CONST, .resetvalue = 0 },
8572     { .name = "JOSCR",
8573       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8574       .accessfn = access_joscr_jmcr,
8575       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8576     { .name = "JMCR",
8577       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8578       .accessfn = access_joscr_jmcr,
8579       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8580 };
8581 
8582 static const ARMCPRegInfo contextidr_el2 = {
8583     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8584     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8585     .access = PL2_RW,
8586     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8587 };
8588 
8589 static const ARMCPRegInfo vhe_reginfo[] = {
8590     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8591       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8592       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8593       .raw_writefn = raw_write,
8594       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8595 #ifndef CONFIG_USER_ONLY
8596     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8597       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8598       .fieldoffset =
8599         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8600       .type = ARM_CP_IO, .access = PL2_RW,
8601       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8602     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8603       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8604       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8605       .resetfn = gt_hv_timer_reset,
8606       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8607     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8608       .type = ARM_CP_IO,
8609       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8610       .access = PL2_RW,
8611       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8612       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8613     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8614       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8615       .type = ARM_CP_IO | ARM_CP_ALIAS,
8616       .access = PL2_RW, .accessfn = access_el1nvpct,
8617       .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
8618       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8619       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8620     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8621       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8622       .type = ARM_CP_IO | ARM_CP_ALIAS,
8623       .access = PL2_RW, .accessfn = access_el1nvvct,
8624       .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
8625       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8626       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8627     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8628       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8629       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8630       .access = PL2_RW, .accessfn = e2h_access,
8631       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8632     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8633       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8634       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8635       .access = PL2_RW, .accessfn = e2h_access,
8636       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8637     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8638       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8639       .type = ARM_CP_IO | ARM_CP_ALIAS,
8640       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8641       .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
8642       .access = PL2_RW, .accessfn = access_el1nvpct,
8643       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8644     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8645       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8646       .type = ARM_CP_IO | ARM_CP_ALIAS,
8647       .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
8648       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8649       .access = PL2_RW, .accessfn = access_el1nvvct,
8650       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8651 #endif
8652 };
8653 
8654 #ifndef CONFIG_USER_ONLY
8655 static const ARMCPRegInfo ats1e1_reginfo[] = {
8656     { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8657       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8658       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8659       .fgt = FGT_ATS1E1RP,
8660       .accessfn = at_s1e01_access, .writefn = ats_write64 },
8661     { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8662       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8663       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8664       .fgt = FGT_ATS1E1WP,
8665       .accessfn = at_s1e01_access, .writefn = ats_write64 },
8666 };
8667 
8668 static const ARMCPRegInfo ats1cp_reginfo[] = {
8669     { .name = "ATS1CPRP",
8670       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8671       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8672       .writefn = ats_write },
8673     { .name = "ATS1CPWP",
8674       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8675       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8676       .writefn = ats_write },
8677 };
8678 #endif
8679 
8680 /*
8681  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8682  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8683  * is non-zero, which is never for ARMv7, optionally in ARMv8
8684  * and mandatorily for ARMv8.2 and up.
8685  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8686  * implementation is RAZ/WI we can ignore this detail, as we
8687  * do for ACTLR.
8688  */
8689 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8690     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8691       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8692       .access = PL1_RW, .accessfn = access_tacr,
8693       .type = ARM_CP_CONST, .resetvalue = 0 },
8694     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8695       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8696       .access = PL2_RW, .type = ARM_CP_CONST,
8697       .resetvalue = 0 },
8698 };
8699 
8700 void register_cp_regs_for_features(ARMCPU *cpu)
8701 {
8702     /* Register all the coprocessor registers based on feature bits */
8703     CPUARMState *env = &cpu->env;
8704     if (arm_feature(env, ARM_FEATURE_M)) {
8705         /* M profile has no coprocessor registers */
8706         return;
8707     }
8708 
8709     define_arm_cp_regs(cpu, cp_reginfo);
8710     if (!arm_feature(env, ARM_FEATURE_V8)) {
8711         /*
8712          * Must go early as it is full of wildcards that may be
8713          * overridden by later definitions.
8714          */
8715         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8716     }
8717 
8718     if (arm_feature(env, ARM_FEATURE_V6)) {
8719         /* The ID registers all have impdef reset values */
8720         ARMCPRegInfo v6_idregs[] = {
8721             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8722               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8723               .access = PL1_R, .type = ARM_CP_CONST,
8724               .accessfn = access_aa32_tid3,
8725               .resetvalue = cpu->isar.id_pfr0 },
8726             /*
8727              * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8728              * the value of the GIC field until after we define these regs.
8729              */
8730             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8731               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8732               .access = PL1_R, .type = ARM_CP_NO_RAW,
8733               .accessfn = access_aa32_tid3,
8734 #ifdef CONFIG_USER_ONLY
8735               .type = ARM_CP_CONST,
8736               .resetvalue = cpu->isar.id_pfr1,
8737 #else
8738               .type = ARM_CP_NO_RAW,
8739               .accessfn = access_aa32_tid3,
8740               .readfn = id_pfr1_read,
8741               .writefn = arm_cp_write_ignore
8742 #endif
8743             },
8744             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8745               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8746               .access = PL1_R, .type = ARM_CP_CONST,
8747               .accessfn = access_aa32_tid3,
8748               .resetvalue = cpu->isar.id_dfr0 },
8749             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8750               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8751               .access = PL1_R, .type = ARM_CP_CONST,
8752               .accessfn = access_aa32_tid3,
8753               .resetvalue = cpu->id_afr0 },
8754             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8755               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8756               .access = PL1_R, .type = ARM_CP_CONST,
8757               .accessfn = access_aa32_tid3,
8758               .resetvalue = cpu->isar.id_mmfr0 },
8759             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8760               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8761               .access = PL1_R, .type = ARM_CP_CONST,
8762               .accessfn = access_aa32_tid3,
8763               .resetvalue = cpu->isar.id_mmfr1 },
8764             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8765               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8766               .access = PL1_R, .type = ARM_CP_CONST,
8767               .accessfn = access_aa32_tid3,
8768               .resetvalue = cpu->isar.id_mmfr2 },
8769             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8770               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8771               .access = PL1_R, .type = ARM_CP_CONST,
8772               .accessfn = access_aa32_tid3,
8773               .resetvalue = cpu->isar.id_mmfr3 },
8774             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8775               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8776               .access = PL1_R, .type = ARM_CP_CONST,
8777               .accessfn = access_aa32_tid3,
8778               .resetvalue = cpu->isar.id_isar0 },
8779             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8780               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8781               .access = PL1_R, .type = ARM_CP_CONST,
8782               .accessfn = access_aa32_tid3,
8783               .resetvalue = cpu->isar.id_isar1 },
8784             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8785               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8786               .access = PL1_R, .type = ARM_CP_CONST,
8787               .accessfn = access_aa32_tid3,
8788               .resetvalue = cpu->isar.id_isar2 },
8789             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8790               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8791               .access = PL1_R, .type = ARM_CP_CONST,
8792               .accessfn = access_aa32_tid3,
8793               .resetvalue = cpu->isar.id_isar3 },
8794             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8795               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8796               .access = PL1_R, .type = ARM_CP_CONST,
8797               .accessfn = access_aa32_tid3,
8798               .resetvalue = cpu->isar.id_isar4 },
8799             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8800               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8801               .access = PL1_R, .type = ARM_CP_CONST,
8802               .accessfn = access_aa32_tid3,
8803               .resetvalue = cpu->isar.id_isar5 },
8804             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8805               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8806               .access = PL1_R, .type = ARM_CP_CONST,
8807               .accessfn = access_aa32_tid3,
8808               .resetvalue = cpu->isar.id_mmfr4 },
8809             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8810               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8811               .access = PL1_R, .type = ARM_CP_CONST,
8812               .accessfn = access_aa32_tid3,
8813               .resetvalue = cpu->isar.id_isar6 },
8814         };
8815         define_arm_cp_regs(cpu, v6_idregs);
8816         define_arm_cp_regs(cpu, v6_cp_reginfo);
8817     } else {
8818         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8819     }
8820     if (arm_feature(env, ARM_FEATURE_V6K)) {
8821         define_arm_cp_regs(cpu, v6k_cp_reginfo);
8822     }
8823     if (arm_feature(env, ARM_FEATURE_V7MP) &&
8824         !arm_feature(env, ARM_FEATURE_PMSA)) {
8825         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8826     }
8827     if (arm_feature(env, ARM_FEATURE_V7VE)) {
8828         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8829     }
8830     if (arm_feature(env, ARM_FEATURE_V7)) {
8831         ARMCPRegInfo clidr = {
8832             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8833             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8834             .access = PL1_R, .type = ARM_CP_CONST,
8835             .accessfn = access_tid4,
8836             .fgt = FGT_CLIDR_EL1,
8837             .resetvalue = cpu->clidr
8838         };
8839         define_one_arm_cp_reg(cpu, &clidr);
8840         define_arm_cp_regs(cpu, v7_cp_reginfo);
8841         define_debug_regs(cpu);
8842         define_pmu_regs(cpu);
8843     } else {
8844         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8845     }
8846     if (arm_feature(env, ARM_FEATURE_V8)) {
8847         /*
8848          * v8 ID registers, which all have impdef reset values.
8849          * Note that within the ID register ranges the unused slots
8850          * must all RAZ, not UNDEF; future architecture versions may
8851          * define new registers here.
8852          * ID registers which are AArch64 views of the AArch32 ID registers
8853          * which already existed in v6 and v7 are handled elsewhere,
8854          * in v6_idregs[].
8855          */
8856         int i;
8857         ARMCPRegInfo v8_idregs[] = {
8858             /*
8859              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8860              * emulation because we don't know the right value for the
8861              * GIC field until after we define these regs.
8862              */
8863             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8864               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8865               .access = PL1_R,
8866 #ifdef CONFIG_USER_ONLY
8867               .type = ARM_CP_CONST,
8868               .resetvalue = cpu->isar.id_aa64pfr0
8869 #else
8870               .type = ARM_CP_NO_RAW,
8871               .accessfn = access_aa64_tid3,
8872               .readfn = id_aa64pfr0_read,
8873               .writefn = arm_cp_write_ignore
8874 #endif
8875             },
8876             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8877               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8878               .access = PL1_R, .type = ARM_CP_CONST,
8879               .accessfn = access_aa64_tid3,
8880               .resetvalue = cpu->isar.id_aa64pfr1},
8881             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8882               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8883               .access = PL1_R, .type = ARM_CP_CONST,
8884               .accessfn = access_aa64_tid3,
8885               .resetvalue = 0 },
8886             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8887               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8888               .access = PL1_R, .type = ARM_CP_CONST,
8889               .accessfn = access_aa64_tid3,
8890               .resetvalue = 0 },
8891             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8892               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8893               .access = PL1_R, .type = ARM_CP_CONST,
8894               .accessfn = access_aa64_tid3,
8895               .resetvalue = cpu->isar.id_aa64zfr0 },
8896             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8897               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8898               .access = PL1_R, .type = ARM_CP_CONST,
8899               .accessfn = access_aa64_tid3,
8900               .resetvalue = cpu->isar.id_aa64smfr0 },
8901             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8902               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8903               .access = PL1_R, .type = ARM_CP_CONST,
8904               .accessfn = access_aa64_tid3,
8905               .resetvalue = 0 },
8906             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8907               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8908               .access = PL1_R, .type = ARM_CP_CONST,
8909               .accessfn = access_aa64_tid3,
8910               .resetvalue = 0 },
8911             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8912               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8913               .access = PL1_R, .type = ARM_CP_CONST,
8914               .accessfn = access_aa64_tid3,
8915               .resetvalue = cpu->isar.id_aa64dfr0 },
8916             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8917               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8918               .access = PL1_R, .type = ARM_CP_CONST,
8919               .accessfn = access_aa64_tid3,
8920               .resetvalue = cpu->isar.id_aa64dfr1 },
8921             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8922               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8923               .access = PL1_R, .type = ARM_CP_CONST,
8924               .accessfn = access_aa64_tid3,
8925               .resetvalue = 0 },
8926             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8927               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8928               .access = PL1_R, .type = ARM_CP_CONST,
8929               .accessfn = access_aa64_tid3,
8930               .resetvalue = 0 },
8931             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8932               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8933               .access = PL1_R, .type = ARM_CP_CONST,
8934               .accessfn = access_aa64_tid3,
8935               .resetvalue = cpu->id_aa64afr0 },
8936             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8937               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8938               .access = PL1_R, .type = ARM_CP_CONST,
8939               .accessfn = access_aa64_tid3,
8940               .resetvalue = cpu->id_aa64afr1 },
8941             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8942               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8943               .access = PL1_R, .type = ARM_CP_CONST,
8944               .accessfn = access_aa64_tid3,
8945               .resetvalue = 0 },
8946             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8947               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8948               .access = PL1_R, .type = ARM_CP_CONST,
8949               .accessfn = access_aa64_tid3,
8950               .resetvalue = 0 },
8951             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8952               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8953               .access = PL1_R, .type = ARM_CP_CONST,
8954               .accessfn = access_aa64_tid3,
8955               .resetvalue = cpu->isar.id_aa64isar0 },
8956             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8957               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8958               .access = PL1_R, .type = ARM_CP_CONST,
8959               .accessfn = access_aa64_tid3,
8960               .resetvalue = cpu->isar.id_aa64isar1 },
8961             { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8962               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8963               .access = PL1_R, .type = ARM_CP_CONST,
8964               .accessfn = access_aa64_tid3,
8965               .resetvalue = cpu->isar.id_aa64isar2 },
8966             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8967               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8968               .access = PL1_R, .type = ARM_CP_CONST,
8969               .accessfn = access_aa64_tid3,
8970               .resetvalue = 0 },
8971             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8972               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8973               .access = PL1_R, .type = ARM_CP_CONST,
8974               .accessfn = access_aa64_tid3,
8975               .resetvalue = 0 },
8976             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8977               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8978               .access = PL1_R, .type = ARM_CP_CONST,
8979               .accessfn = access_aa64_tid3,
8980               .resetvalue = 0 },
8981             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8982               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8983               .access = PL1_R, .type = ARM_CP_CONST,
8984               .accessfn = access_aa64_tid3,
8985               .resetvalue = 0 },
8986             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8987               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8988               .access = PL1_R, .type = ARM_CP_CONST,
8989               .accessfn = access_aa64_tid3,
8990               .resetvalue = 0 },
8991             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8992               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8993               .access = PL1_R, .type = ARM_CP_CONST,
8994               .accessfn = access_aa64_tid3,
8995               .resetvalue = cpu->isar.id_aa64mmfr0 },
8996             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8997               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8998               .access = PL1_R, .type = ARM_CP_CONST,
8999               .accessfn = access_aa64_tid3,
9000               .resetvalue = cpu->isar.id_aa64mmfr1 },
9001             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
9002               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
9003               .access = PL1_R, .type = ARM_CP_CONST,
9004               .accessfn = access_aa64_tid3,
9005               .resetvalue = cpu->isar.id_aa64mmfr2 },
9006             { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64,
9007               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
9008               .access = PL1_R, .type = ARM_CP_CONST,
9009               .accessfn = access_aa64_tid3,
9010               .resetvalue = cpu->isar.id_aa64mmfr3 },
9011             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9012               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
9013               .access = PL1_R, .type = ARM_CP_CONST,
9014               .accessfn = access_aa64_tid3,
9015               .resetvalue = 0 },
9016             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9017               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
9018               .access = PL1_R, .type = ARM_CP_CONST,
9019               .accessfn = access_aa64_tid3,
9020               .resetvalue = 0 },
9021             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9022               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
9023               .access = PL1_R, .type = ARM_CP_CONST,
9024               .accessfn = access_aa64_tid3,
9025               .resetvalue = 0 },
9026             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9027               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
9028               .access = PL1_R, .type = ARM_CP_CONST,
9029               .accessfn = access_aa64_tid3,
9030               .resetvalue = 0 },
9031             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
9032               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
9033               .access = PL1_R, .type = ARM_CP_CONST,
9034               .accessfn = access_aa64_tid3,
9035               .resetvalue = cpu->isar.mvfr0 },
9036             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
9037               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
9038               .access = PL1_R, .type = ARM_CP_CONST,
9039               .accessfn = access_aa64_tid3,
9040               .resetvalue = cpu->isar.mvfr1 },
9041             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
9042               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
9043               .access = PL1_R, .type = ARM_CP_CONST,
9044               .accessfn = access_aa64_tid3,
9045               .resetvalue = cpu->isar.mvfr2 },
9046             /*
9047              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
9048              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
9049              * as RAZ, since it is in the "reserved for future ID
9050              * registers, RAZ" part of the AArch32 encoding space.
9051              */
9052             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
9053               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
9054               .access = PL1_R, .type = ARM_CP_CONST,
9055               .accessfn = access_aa64_tid3,
9056               .resetvalue = 0 },
9057             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
9058               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
9059               .access = PL1_R, .type = ARM_CP_CONST,
9060               .accessfn = access_aa64_tid3,
9061               .resetvalue = 0 },
9062             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
9063               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
9064               .access = PL1_R, .type = ARM_CP_CONST,
9065               .accessfn = access_aa64_tid3,
9066               .resetvalue = 0 },
9067             /*
9068              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
9069              * they're also RAZ for AArch64, and in v8 are gradually
9070              * being filled with AArch64-view-of-AArch32-ID-register
9071              * for new ID registers.
9072              */
9073             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
9074               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
9075               .access = PL1_R, .type = ARM_CP_CONST,
9076               .accessfn = access_aa64_tid3,
9077               .resetvalue = 0 },
9078             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
9079               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
9080               .access = PL1_R, .type = ARM_CP_CONST,
9081               .accessfn = access_aa64_tid3,
9082               .resetvalue = cpu->isar.id_pfr2 },
9083             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
9084               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
9085               .access = PL1_R, .type = ARM_CP_CONST,
9086               .accessfn = access_aa64_tid3,
9087               .resetvalue = cpu->isar.id_dfr1 },
9088             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
9089               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
9090               .access = PL1_R, .type = ARM_CP_CONST,
9091               .accessfn = access_aa64_tid3,
9092               .resetvalue = cpu->isar.id_mmfr5 },
9093             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
9094               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
9095               .access = PL1_R, .type = ARM_CP_CONST,
9096               .accessfn = access_aa64_tid3,
9097               .resetvalue = 0 },
9098             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
9099               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
9100               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9101               .fgt = FGT_PMCEIDN_EL0,
9102               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
9103             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
9104               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
9105               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9106               .fgt = FGT_PMCEIDN_EL0,
9107               .resetvalue = cpu->pmceid0 },
9108             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
9109               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
9110               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9111               .fgt = FGT_PMCEIDN_EL0,
9112               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
9113             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
9114               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
9115               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9116               .fgt = FGT_PMCEIDN_EL0,
9117               .resetvalue = cpu->pmceid1 },
9118         };
9119 #ifdef CONFIG_USER_ONLY
9120         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
9121             { .name = "ID_AA64PFR0_EL1",
9122               .exported_bits = R_ID_AA64PFR0_FP_MASK |
9123                                R_ID_AA64PFR0_ADVSIMD_MASK |
9124                                R_ID_AA64PFR0_SVE_MASK |
9125                                R_ID_AA64PFR0_DIT_MASK,
9126               .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
9127                             (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
9128             { .name = "ID_AA64PFR1_EL1",
9129               .exported_bits = R_ID_AA64PFR1_BT_MASK |
9130                                R_ID_AA64PFR1_SSBS_MASK |
9131                                R_ID_AA64PFR1_MTE_MASK |
9132                                R_ID_AA64PFR1_SME_MASK },
9133             { .name = "ID_AA64PFR*_EL1_RESERVED",
9134               .is_glob = true },
9135             { .name = "ID_AA64ZFR0_EL1",
9136               .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
9137                                R_ID_AA64ZFR0_AES_MASK |
9138                                R_ID_AA64ZFR0_BITPERM_MASK |
9139                                R_ID_AA64ZFR0_BFLOAT16_MASK |
9140                                R_ID_AA64ZFR0_B16B16_MASK |
9141                                R_ID_AA64ZFR0_SHA3_MASK |
9142                                R_ID_AA64ZFR0_SM4_MASK |
9143                                R_ID_AA64ZFR0_I8MM_MASK |
9144                                R_ID_AA64ZFR0_F32MM_MASK |
9145                                R_ID_AA64ZFR0_F64MM_MASK },
9146             { .name = "ID_AA64SMFR0_EL1",
9147               .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
9148                                R_ID_AA64SMFR0_BI32I32_MASK |
9149                                R_ID_AA64SMFR0_B16F32_MASK |
9150                                R_ID_AA64SMFR0_F16F32_MASK |
9151                                R_ID_AA64SMFR0_I8I32_MASK |
9152                                R_ID_AA64SMFR0_F16F16_MASK |
9153                                R_ID_AA64SMFR0_B16B16_MASK |
9154                                R_ID_AA64SMFR0_I16I32_MASK |
9155                                R_ID_AA64SMFR0_F64F64_MASK |
9156                                R_ID_AA64SMFR0_I16I64_MASK |
9157                                R_ID_AA64SMFR0_SMEVER_MASK |
9158                                R_ID_AA64SMFR0_FA64_MASK },
9159             { .name = "ID_AA64MMFR0_EL1",
9160               .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
9161               .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
9162                             (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
9163             { .name = "ID_AA64MMFR1_EL1",
9164               .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
9165             { .name = "ID_AA64MMFR2_EL1",
9166               .exported_bits = R_ID_AA64MMFR2_AT_MASK },
9167             { .name = "ID_AA64MMFR3_EL1",
9168               .exported_bits = 0 },
9169             { .name = "ID_AA64MMFR*_EL1_RESERVED",
9170               .is_glob = true },
9171             { .name = "ID_AA64DFR0_EL1",
9172               .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
9173             { .name = "ID_AA64DFR1_EL1" },
9174             { .name = "ID_AA64DFR*_EL1_RESERVED",
9175               .is_glob = true },
9176             { .name = "ID_AA64AFR*",
9177               .is_glob = true },
9178             { .name = "ID_AA64ISAR0_EL1",
9179               .exported_bits = R_ID_AA64ISAR0_AES_MASK |
9180                                R_ID_AA64ISAR0_SHA1_MASK |
9181                                R_ID_AA64ISAR0_SHA2_MASK |
9182                                R_ID_AA64ISAR0_CRC32_MASK |
9183                                R_ID_AA64ISAR0_ATOMIC_MASK |
9184                                R_ID_AA64ISAR0_RDM_MASK |
9185                                R_ID_AA64ISAR0_SHA3_MASK |
9186                                R_ID_AA64ISAR0_SM3_MASK |
9187                                R_ID_AA64ISAR0_SM4_MASK |
9188                                R_ID_AA64ISAR0_DP_MASK |
9189                                R_ID_AA64ISAR0_FHM_MASK |
9190                                R_ID_AA64ISAR0_TS_MASK |
9191                                R_ID_AA64ISAR0_RNDR_MASK },
9192             { .name = "ID_AA64ISAR1_EL1",
9193               .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
9194                                R_ID_AA64ISAR1_APA_MASK |
9195                                R_ID_AA64ISAR1_API_MASK |
9196                                R_ID_AA64ISAR1_JSCVT_MASK |
9197                                R_ID_AA64ISAR1_FCMA_MASK |
9198                                R_ID_AA64ISAR1_LRCPC_MASK |
9199                                R_ID_AA64ISAR1_GPA_MASK |
9200                                R_ID_AA64ISAR1_GPI_MASK |
9201                                R_ID_AA64ISAR1_FRINTTS_MASK |
9202                                R_ID_AA64ISAR1_SB_MASK |
9203                                R_ID_AA64ISAR1_BF16_MASK |
9204                                R_ID_AA64ISAR1_DGH_MASK |
9205                                R_ID_AA64ISAR1_I8MM_MASK },
9206             { .name = "ID_AA64ISAR2_EL1",
9207               .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
9208                                R_ID_AA64ISAR2_RPRES_MASK |
9209                                R_ID_AA64ISAR2_GPA3_MASK |
9210                                R_ID_AA64ISAR2_APA3_MASK |
9211                                R_ID_AA64ISAR2_MOPS_MASK |
9212                                R_ID_AA64ISAR2_BC_MASK |
9213                                R_ID_AA64ISAR2_RPRFM_MASK |
9214                                R_ID_AA64ISAR2_CSSC_MASK },
9215             { .name = "ID_AA64ISAR*_EL1_RESERVED",
9216               .is_glob = true },
9217         };
9218         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
9219 #endif
9220         /*
9221          * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
9222          * TODO: For RMR, a write with bit 1 set should do something with
9223          * cpu_reset(). In the meantime, "the bit is strictly a request",
9224          * so we are in spec just ignoring writes.
9225          */
9226         if (!arm_feature(env, ARM_FEATURE_EL3) &&
9227             !arm_feature(env, ARM_FEATURE_EL2)) {
9228             ARMCPRegInfo el1_reset_regs[] = {
9229                 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
9230                   .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9231                   .access = PL1_R,
9232                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9233                 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
9234                   .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9235                   .access = PL1_RW, .type = ARM_CP_CONST,
9236                   .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
9237             };
9238             define_arm_cp_regs(cpu, el1_reset_regs);
9239         }
9240         define_arm_cp_regs(cpu, v8_idregs);
9241         define_arm_cp_regs(cpu, v8_cp_reginfo);
9242         if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
9243             define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
9244         }
9245 
9246         for (i = 4; i < 16; i++) {
9247             /*
9248              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
9249              * For pre-v8 cores there are RAZ patterns for these in
9250              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
9251              * v8 extends the "must RAZ" part of the ID register space
9252              * to also cover c0, 0, c{8-15}, {0-7}.
9253              * These are STATE_AA32 because in the AArch64 sysreg space
9254              * c4-c7 is where the AArch64 ID registers live (and we've
9255              * already defined those in v8_idregs[]), and c8-c15 are not
9256              * "must RAZ" for AArch64.
9257              */
9258             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
9259             ARMCPRegInfo v8_aa32_raz_idregs = {
9260                 .name = name,
9261                 .state = ARM_CP_STATE_AA32,
9262                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
9263                 .access = PL1_R, .type = ARM_CP_CONST,
9264                 .accessfn = access_aa64_tid3,
9265                 .resetvalue = 0 };
9266             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
9267         }
9268     }
9269 
9270     /*
9271      * Register the base EL2 cpregs.
9272      * Pre v8, these registers are implemented only as part of the
9273      * Virtualization Extensions (EL2 present).  Beginning with v8,
9274      * if EL2 is missing but EL3 is enabled, mostly these become
9275      * RES0 from EL3, with some specific exceptions.
9276      */
9277     if (arm_feature(env, ARM_FEATURE_EL2)
9278         || (arm_feature(env, ARM_FEATURE_EL3)
9279             && arm_feature(env, ARM_FEATURE_V8))) {
9280         uint64_t vmpidr_def = mpidr_read_val(env);
9281         ARMCPRegInfo vpidr_regs[] = {
9282             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
9283               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9284               .access = PL2_RW, .accessfn = access_el3_aa32ns,
9285               .resetvalue = cpu->midr,
9286               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9287               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
9288             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
9289               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9290               .access = PL2_RW, .resetvalue = cpu->midr,
9291               .type = ARM_CP_EL3_NO_EL2_C_NZ,
9292               .nv2_redirect_offset = 0x88,
9293               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
9294             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
9295               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9296               .access = PL2_RW, .accessfn = access_el3_aa32ns,
9297               .resetvalue = vmpidr_def,
9298               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9299               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
9300             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
9301               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9302               .access = PL2_RW, .resetvalue = vmpidr_def,
9303               .type = ARM_CP_EL3_NO_EL2_C_NZ,
9304               .nv2_redirect_offset = 0x50,
9305               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
9306         };
9307         /*
9308          * The only field of MDCR_EL2 that has a defined architectural reset
9309          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
9310          */
9311         ARMCPRegInfo mdcr_el2 = {
9312             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
9313             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
9314             .writefn = mdcr_el2_write,
9315             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
9316             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
9317         };
9318         define_one_arm_cp_reg(cpu, &mdcr_el2);
9319         define_arm_cp_regs(cpu, vpidr_regs);
9320         define_arm_cp_regs(cpu, el2_cp_reginfo);
9321         if (arm_feature(env, ARM_FEATURE_V8)) {
9322             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
9323         }
9324         if (cpu_isar_feature(aa64_sel2, cpu)) {
9325             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
9326         }
9327         /*
9328          * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
9329          * See commentary near RMR_EL1.
9330          */
9331         if (!arm_feature(env, ARM_FEATURE_EL3)) {
9332             static const ARMCPRegInfo el2_reset_regs[] = {
9333                 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
9334                   .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
9335                   .access = PL2_R,
9336                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9337                 { .name = "RVBAR", .type = ARM_CP_ALIAS,
9338                   .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9339                   .access = PL2_R,
9340                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9341                 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
9342                   .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
9343                   .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9344             };
9345             define_arm_cp_regs(cpu, el2_reset_regs);
9346         }
9347     }
9348 
9349     /* Register the base EL3 cpregs. */
9350     if (arm_feature(env, ARM_FEATURE_EL3)) {
9351         define_arm_cp_regs(cpu, el3_cp_reginfo);
9352         ARMCPRegInfo el3_regs[] = {
9353             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
9354               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
9355               .access = PL3_R,
9356               .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
9357             { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
9358               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
9359               .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9360             { .name = "RMR", .state = ARM_CP_STATE_AA32,
9361               .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9362               .access = PL3_RW, .type = ARM_CP_CONST,
9363               .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
9364             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
9365               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
9366               .access = PL3_RW,
9367               .raw_writefn = raw_write, .writefn = sctlr_write,
9368               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
9369               .resetvalue = cpu->reset_sctlr },
9370         };
9371 
9372         define_arm_cp_regs(cpu, el3_regs);
9373     }
9374     /*
9375      * The behaviour of NSACR is sufficiently various that we don't
9376      * try to describe it in a single reginfo:
9377      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
9378      *     reads as constant 0xc00 from NS EL1 and NS EL2
9379      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
9380      *  if v7 without EL3, register doesn't exist
9381      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
9382      */
9383     if (arm_feature(env, ARM_FEATURE_EL3)) {
9384         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9385             static const ARMCPRegInfo nsacr = {
9386                 .name = "NSACR", .type = ARM_CP_CONST,
9387                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9388                 .access = PL1_RW, .accessfn = nsacr_access,
9389                 .resetvalue = 0xc00
9390             };
9391             define_one_arm_cp_reg(cpu, &nsacr);
9392         } else {
9393             static const ARMCPRegInfo nsacr = {
9394                 .name = "NSACR",
9395                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9396                 .access = PL3_RW | PL1_R,
9397                 .resetvalue = 0,
9398                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
9399             };
9400             define_one_arm_cp_reg(cpu, &nsacr);
9401         }
9402     } else {
9403         if (arm_feature(env, ARM_FEATURE_V8)) {
9404             static const ARMCPRegInfo nsacr = {
9405                 .name = "NSACR", .type = ARM_CP_CONST,
9406                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9407                 .access = PL1_R,
9408                 .resetvalue = 0xc00
9409             };
9410             define_one_arm_cp_reg(cpu, &nsacr);
9411         }
9412     }
9413 
9414     if (arm_feature(env, ARM_FEATURE_PMSA)) {
9415         if (arm_feature(env, ARM_FEATURE_V6)) {
9416             /* PMSAv6 not implemented */
9417             assert(arm_feature(env, ARM_FEATURE_V7));
9418             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9419             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
9420         } else {
9421             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
9422         }
9423     } else {
9424         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9425         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
9426         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
9427         if (cpu_isar_feature(aa32_hpd, cpu)) {
9428             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
9429         }
9430     }
9431     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
9432         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
9433     }
9434     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
9435         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
9436     }
9437     if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
9438         define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo);
9439     }
9440 #ifndef CONFIG_USER_ONLY
9441     if (cpu_isar_feature(aa64_ecv, cpu)) {
9442         define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo);
9443     }
9444 #endif
9445     if (arm_feature(env, ARM_FEATURE_VAPA)) {
9446         ARMCPRegInfo vapa_cp_reginfo[] = {
9447             { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
9448               .access = PL1_RW, .resetvalue = 0,
9449               .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
9450                                      offsetoflow32(CPUARMState, cp15.par_ns) },
9451               .writefn = par_write},
9452 #ifndef CONFIG_USER_ONLY
9453             /* This underdecoding is safe because the reginfo is NO_RAW. */
9454             { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
9455               .access = PL1_W, .accessfn = ats_access,
9456               .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
9457 #endif
9458         };
9459 
9460         /*
9461          * When LPAE exists this 32-bit PAR register is an alias of the
9462          * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
9463          */
9464         if (arm_feature(env, ARM_FEATURE_LPAE)) {
9465             vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
9466         }
9467         define_arm_cp_regs(cpu, vapa_cp_reginfo);
9468     }
9469     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
9470         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
9471     }
9472     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
9473         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
9474     }
9475     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
9476         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
9477     }
9478     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
9479         define_arm_cp_regs(cpu, omap_cp_reginfo);
9480     }
9481     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
9482         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
9483     }
9484     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9485         define_arm_cp_regs(cpu, xscale_cp_reginfo);
9486     }
9487     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
9488         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
9489     }
9490     if (arm_feature(env, ARM_FEATURE_LPAE)) {
9491         define_arm_cp_regs(cpu, lpae_cp_reginfo);
9492     }
9493     if (cpu_isar_feature(aa32_jazelle, cpu)) {
9494         define_arm_cp_regs(cpu, jazelle_regs);
9495     }
9496     /*
9497      * Slightly awkwardly, the OMAP and StrongARM cores need all of
9498      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
9499      * be read-only (ie write causes UNDEF exception).
9500      */
9501     {
9502         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9503             /*
9504              * Pre-v8 MIDR space.
9505              * Note that the MIDR isn't a simple constant register because
9506              * of the TI925 behaviour where writes to another register can
9507              * cause the MIDR value to change.
9508              *
9509              * Unimplemented registers in the c15 0 0 0 space default to
9510              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
9511              * and friends override accordingly.
9512              */
9513             { .name = "MIDR",
9514               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
9515               .access = PL1_R, .resetvalue = cpu->midr,
9516               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
9517               .readfn = midr_read,
9518               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9519               .type = ARM_CP_OVERRIDE },
9520             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
9521             { .name = "DUMMY",
9522               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
9523               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9524             { .name = "DUMMY",
9525               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
9526               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9527             { .name = "DUMMY",
9528               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9529               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9530             { .name = "DUMMY",
9531               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9532               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9533             { .name = "DUMMY",
9534               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9535               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9536         };
9537         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9538             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9539               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9540               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9541               .fgt = FGT_MIDR_EL1,
9542               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9543               .readfn = midr_read },
9544             /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9545             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9546               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9547               .access = PL1_R, .resetvalue = cpu->midr },
9548             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9549               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9550               .access = PL1_R,
9551               .accessfn = access_aa64_tid1,
9552               .fgt = FGT_REVIDR_EL1,
9553               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9554         };
9555         ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9556             .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9557             .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9558             .access = PL1_R, .resetvalue = cpu->midr
9559         };
9560         ARMCPRegInfo id_cp_reginfo[] = {
9561             /* These are common to v8 and pre-v8 */
9562             { .name = "CTR",
9563               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9564               .access = PL1_R, .accessfn = ctr_el0_access,
9565               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9566             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9567               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9568               .access = PL0_R, .accessfn = ctr_el0_access,
9569               .fgt = FGT_CTR_EL0,
9570               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9571             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9572             { .name = "TCMTR",
9573               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9574               .access = PL1_R,
9575               .accessfn = access_aa32_tid1,
9576               .type = ARM_CP_CONST, .resetvalue = 0 },
9577         };
9578         /* TLBTR is specific to VMSA */
9579         ARMCPRegInfo id_tlbtr_reginfo = {
9580               .name = "TLBTR",
9581               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9582               .access = PL1_R,
9583               .accessfn = access_aa32_tid1,
9584               .type = ARM_CP_CONST, .resetvalue = 0,
9585         };
9586         /* MPUIR is specific to PMSA V6+ */
9587         ARMCPRegInfo id_mpuir_reginfo = {
9588               .name = "MPUIR",
9589               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9590               .access = PL1_R, .type = ARM_CP_CONST,
9591               .resetvalue = cpu->pmsav7_dregion << 8
9592         };
9593         /* HMPUIR is specific to PMSA V8 */
9594         ARMCPRegInfo id_hmpuir_reginfo = {
9595             .name = "HMPUIR",
9596             .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9597             .access = PL2_R, .type = ARM_CP_CONST,
9598             .resetvalue = cpu->pmsav8r_hdregion
9599         };
9600         static const ARMCPRegInfo crn0_wi_reginfo = {
9601             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9602             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9603             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9604         };
9605 #ifdef CONFIG_USER_ONLY
9606         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9607             { .name = "MIDR_EL1",
9608               .exported_bits = R_MIDR_EL1_REVISION_MASK |
9609                                R_MIDR_EL1_PARTNUM_MASK |
9610                                R_MIDR_EL1_ARCHITECTURE_MASK |
9611                                R_MIDR_EL1_VARIANT_MASK |
9612                                R_MIDR_EL1_IMPLEMENTER_MASK },
9613             { .name = "REVIDR_EL1" },
9614         };
9615         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9616 #endif
9617         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9618             arm_feature(env, ARM_FEATURE_STRONGARM)) {
9619             size_t i;
9620             /*
9621              * Register the blanket "writes ignored" value first to cover the
9622              * whole space. Then update the specific ID registers to allow write
9623              * access, so that they ignore writes rather than causing them to
9624              * UNDEF.
9625              */
9626             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9627             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9628                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9629             }
9630             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9631                 id_cp_reginfo[i].access = PL1_RW;
9632             }
9633             id_mpuir_reginfo.access = PL1_RW;
9634             id_tlbtr_reginfo.access = PL1_RW;
9635         }
9636         if (arm_feature(env, ARM_FEATURE_V8)) {
9637             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9638             if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9639                 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9640             }
9641         } else {
9642             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9643         }
9644         define_arm_cp_regs(cpu, id_cp_reginfo);
9645         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9646             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9647         } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9648                    arm_feature(env, ARM_FEATURE_V8)) {
9649             uint32_t i = 0;
9650             char *tmp_string;
9651 
9652             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9653             define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9654             define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9655 
9656             /* Register alias is only valid for first 32 indexes */
9657             for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9658                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9659                 uint8_t opc1 = extract32(i, 4, 1);
9660                 uint8_t opc2 = extract32(i, 0, 1) << 2;
9661 
9662                 tmp_string = g_strdup_printf("PRBAR%u", i);
9663                 ARMCPRegInfo tmp_prbarn_reginfo = {
9664                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9665                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9666                     .access = PL1_RW, .resetvalue = 0,
9667                     .accessfn = access_tvm_trvm,
9668                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9669                 };
9670                 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9671                 g_free(tmp_string);
9672 
9673                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9674                 tmp_string = g_strdup_printf("PRLAR%u", i);
9675                 ARMCPRegInfo tmp_prlarn_reginfo = {
9676                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9677                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9678                     .access = PL1_RW, .resetvalue = 0,
9679                     .accessfn = access_tvm_trvm,
9680                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9681                 };
9682                 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9683                 g_free(tmp_string);
9684             }
9685 
9686             /* Register alias is only valid for first 32 indexes */
9687             for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9688                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9689                 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9690                 uint8_t opc2 = extract32(i, 0, 1) << 2;
9691 
9692                 tmp_string = g_strdup_printf("HPRBAR%u", i);
9693                 ARMCPRegInfo tmp_hprbarn_reginfo = {
9694                     .name = tmp_string,
9695                     .type = ARM_CP_NO_RAW,
9696                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9697                     .access = PL2_RW, .resetvalue = 0,
9698                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9699                 };
9700                 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9701                 g_free(tmp_string);
9702 
9703                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9704                 tmp_string = g_strdup_printf("HPRLAR%u", i);
9705                 ARMCPRegInfo tmp_hprlarn_reginfo = {
9706                     .name = tmp_string,
9707                     .type = ARM_CP_NO_RAW,
9708                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9709                     .access = PL2_RW, .resetvalue = 0,
9710                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9711                 };
9712                 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9713                 g_free(tmp_string);
9714             }
9715         } else if (arm_feature(env, ARM_FEATURE_V7)) {
9716             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9717         }
9718     }
9719 
9720     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9721         ARMCPRegInfo mpidr_cp_reginfo[] = {
9722             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9723               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9724               .fgt = FGT_MPIDR_EL1,
9725               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9726         };
9727 #ifdef CONFIG_USER_ONLY
9728         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9729             { .name = "MPIDR_EL1",
9730               .fixed_bits = 0x0000000080000000 },
9731         };
9732         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9733 #endif
9734         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9735     }
9736 
9737     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9738         ARMCPRegInfo auxcr_reginfo[] = {
9739             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9740               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9741               .access = PL1_RW, .accessfn = access_tacr,
9742               .nv2_redirect_offset = 0x118,
9743               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9744             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9745               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9746               .access = PL2_RW, .type = ARM_CP_CONST,
9747               .resetvalue = 0 },
9748             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9749               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9750               .access = PL3_RW, .type = ARM_CP_CONST,
9751               .resetvalue = 0 },
9752         };
9753         define_arm_cp_regs(cpu, auxcr_reginfo);
9754         if (cpu_isar_feature(aa32_ac2, cpu)) {
9755             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9756         }
9757     }
9758 
9759     if (arm_feature(env, ARM_FEATURE_CBAR)) {
9760         /*
9761          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9762          * There are two flavours:
9763          *  (1) older 32-bit only cores have a simple 32-bit CBAR
9764          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9765          *      32-bit register visible to AArch32 at a different encoding
9766          *      to the "flavour 1" register and with the bits rearranged to
9767          *      be able to squash a 64-bit address into the 32-bit view.
9768          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9769          * in future if we support AArch32-only configs of some of the
9770          * AArch64 cores we might need to add a specific feature flag
9771          * to indicate cores with "flavour 2" CBAR.
9772          */
9773         if (arm_feature(env, ARM_FEATURE_V8)) {
9774             /* 32 bit view is [31:18] 0...0 [43:32]. */
9775             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9776                 | extract64(cpu->reset_cbar, 32, 12);
9777             ARMCPRegInfo cbar_reginfo[] = {
9778                 { .name = "CBAR",
9779                   .type = ARM_CP_CONST,
9780                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9781                   .access = PL1_R, .resetvalue = cbar32 },
9782                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9783                   .type = ARM_CP_CONST,
9784                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9785                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
9786             };
9787             /* We don't implement a r/w 64 bit CBAR currently */
9788             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9789             define_arm_cp_regs(cpu, cbar_reginfo);
9790         } else {
9791             ARMCPRegInfo cbar = {
9792                 .name = "CBAR",
9793                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9794                 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9795                 .fieldoffset = offsetof(CPUARMState,
9796                                         cp15.c15_config_base_address)
9797             };
9798             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9799                 cbar.access = PL1_R;
9800                 cbar.fieldoffset = 0;
9801                 cbar.type = ARM_CP_CONST;
9802             }
9803             define_one_arm_cp_reg(cpu, &cbar);
9804         }
9805     }
9806 
9807     if (arm_feature(env, ARM_FEATURE_VBAR)) {
9808         static const ARMCPRegInfo vbar_cp_reginfo[] = {
9809             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9810               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9811               .access = PL1_RW, .writefn = vbar_write,
9812               .accessfn = access_nv1,
9813               .fgt = FGT_VBAR_EL1,
9814               .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
9815               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9816                                      offsetof(CPUARMState, cp15.vbar_ns) },
9817               .resetvalue = 0 },
9818         };
9819         define_arm_cp_regs(cpu, vbar_cp_reginfo);
9820     }
9821 
9822     /* Generic registers whose values depend on the implementation */
9823     {
9824         ARMCPRegInfo sctlr = {
9825             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9826             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9827             .access = PL1_RW, .accessfn = access_tvm_trvm,
9828             .fgt = FGT_SCTLR_EL1,
9829             .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
9830             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9831                                    offsetof(CPUARMState, cp15.sctlr_ns) },
9832             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9833             .raw_writefn = raw_write,
9834         };
9835         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9836             /*
9837              * Normally we would always end the TB on an SCTLR write, but Linux
9838              * arch/arm/mach-pxa/sleep.S expects two instructions following
9839              * an MMU enable to execute from cache.  Imitate this behaviour.
9840              */
9841             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9842         }
9843         define_one_arm_cp_reg(cpu, &sctlr);
9844 
9845         if (arm_feature(env, ARM_FEATURE_PMSA) &&
9846             arm_feature(env, ARM_FEATURE_V8)) {
9847             ARMCPRegInfo vsctlr = {
9848                 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9849                 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9850                 .access = PL2_RW, .resetvalue = 0x0,
9851                 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9852             };
9853             define_one_arm_cp_reg(cpu, &vsctlr);
9854         }
9855     }
9856 
9857     if (cpu_isar_feature(aa64_lor, cpu)) {
9858         define_arm_cp_regs(cpu, lor_reginfo);
9859     }
9860     if (cpu_isar_feature(aa64_pan, cpu)) {
9861         define_one_arm_cp_reg(cpu, &pan_reginfo);
9862     }
9863 #ifndef CONFIG_USER_ONLY
9864     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9865         define_arm_cp_regs(cpu, ats1e1_reginfo);
9866     }
9867     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9868         define_arm_cp_regs(cpu, ats1cp_reginfo);
9869     }
9870 #endif
9871     if (cpu_isar_feature(aa64_uao, cpu)) {
9872         define_one_arm_cp_reg(cpu, &uao_reginfo);
9873     }
9874 
9875     if (cpu_isar_feature(aa64_dit, cpu)) {
9876         define_one_arm_cp_reg(cpu, &dit_reginfo);
9877     }
9878     if (cpu_isar_feature(aa64_ssbs, cpu)) {
9879         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9880     }
9881     if (cpu_isar_feature(any_ras, cpu)) {
9882         define_arm_cp_regs(cpu, minimal_ras_reginfo);
9883     }
9884 
9885     if (cpu_isar_feature(aa64_vh, cpu) ||
9886         cpu_isar_feature(aa64_debugv8p2, cpu)) {
9887         define_one_arm_cp_reg(cpu, &contextidr_el2);
9888     }
9889     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9890         define_arm_cp_regs(cpu, vhe_reginfo);
9891     }
9892 
9893     if (cpu_isar_feature(aa64_sve, cpu)) {
9894         define_arm_cp_regs(cpu, zcr_reginfo);
9895     }
9896 
9897     if (cpu_isar_feature(aa64_hcx, cpu)) {
9898         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9899     }
9900 
9901 #ifdef TARGET_AARCH64
9902     if (cpu_isar_feature(aa64_sme, cpu)) {
9903         define_arm_cp_regs(cpu, sme_reginfo);
9904     }
9905     if (cpu_isar_feature(aa64_pauth, cpu)) {
9906         define_arm_cp_regs(cpu, pauth_reginfo);
9907     }
9908     if (cpu_isar_feature(aa64_rndr, cpu)) {
9909         define_arm_cp_regs(cpu, rndr_reginfo);
9910     }
9911     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9912         define_arm_cp_regs(cpu, tlbirange_reginfo);
9913     }
9914     if (cpu_isar_feature(aa64_tlbios, cpu)) {
9915         define_arm_cp_regs(cpu, tlbios_reginfo);
9916     }
9917     /* Data Cache clean instructions up to PoP */
9918     if (cpu_isar_feature(aa64_dcpop, cpu)) {
9919         define_one_arm_cp_reg(cpu, dcpop_reg);
9920 
9921         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9922             define_one_arm_cp_reg(cpu, dcpodp_reg);
9923         }
9924     }
9925 
9926     /*
9927      * If full MTE is enabled, add all of the system registers.
9928      * If only "instructions available at EL0" are enabled,
9929      * then define only a RAZ/WI version of PSTATE.TCO.
9930      */
9931     if (cpu_isar_feature(aa64_mte, cpu)) {
9932         ARMCPRegInfo gmid_reginfo = {
9933             .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9934             .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9935             .access = PL1_R, .accessfn = access_aa64_tid5,
9936             .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9937         };
9938         define_one_arm_cp_reg(cpu, &gmid_reginfo);
9939         define_arm_cp_regs(cpu, mte_reginfo);
9940         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9941     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9942         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9943         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9944     }
9945 
9946     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9947         define_arm_cp_regs(cpu, scxtnum_reginfo);
9948     }
9949 
9950     if (cpu_isar_feature(aa64_fgt, cpu)) {
9951         define_arm_cp_regs(cpu, fgt_reginfo);
9952     }
9953 
9954     if (cpu_isar_feature(aa64_rme, cpu)) {
9955         define_arm_cp_regs(cpu, rme_reginfo);
9956         if (cpu_isar_feature(aa64_mte, cpu)) {
9957             define_arm_cp_regs(cpu, rme_mte_reginfo);
9958         }
9959     }
9960 
9961     if (cpu_isar_feature(aa64_nv2, cpu)) {
9962         define_arm_cp_regs(cpu, nv2_reginfo);
9963     }
9964 
9965     if (cpu_isar_feature(aa64_nmi, cpu)) {
9966         define_arm_cp_regs(cpu, nmi_reginfo);
9967     }
9968 #endif
9969 
9970     if (cpu_isar_feature(any_predinv, cpu)) {
9971         define_arm_cp_regs(cpu, predinv_reginfo);
9972     }
9973 
9974     if (cpu_isar_feature(any_ccidx, cpu)) {
9975         define_arm_cp_regs(cpu, ccsidr2_reginfo);
9976     }
9977 
9978 #ifndef CONFIG_USER_ONLY
9979     /*
9980      * Register redirections and aliases must be done last,
9981      * after the registers from the other extensions have been defined.
9982      */
9983     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9984         define_arm_vh_e2h_redirects_aliases(cpu);
9985     }
9986 #endif
9987 }
9988 
9989 /*
9990  * Private utility function for define_one_arm_cp_reg_with_opaque():
9991  * add a single reginfo struct to the hash table.
9992  */
9993 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9994                                    void *opaque, CPState state,
9995                                    CPSecureState secstate,
9996                                    int crm, int opc1, int opc2,
9997                                    const char *name)
9998 {
9999     CPUARMState *env = &cpu->env;
10000     uint32_t key;
10001     ARMCPRegInfo *r2;
10002     bool is64 = r->type & ARM_CP_64BIT;
10003     bool ns = secstate & ARM_CP_SECSTATE_NS;
10004     int cp = r->cp;
10005     size_t name_len;
10006     bool make_const;
10007 
10008     switch (state) {
10009     case ARM_CP_STATE_AA32:
10010         /* We assume it is a cp15 register if the .cp field is left unset. */
10011         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
10012             cp = 15;
10013         }
10014         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
10015         break;
10016     case ARM_CP_STATE_AA64:
10017         /*
10018          * To allow abbreviation of ARMCPRegInfo definitions, we treat
10019          * cp == 0 as equivalent to the value for "standard guest-visible
10020          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
10021          * in their AArch64 view (the .cp value may be non-zero for the
10022          * benefit of the AArch32 view).
10023          */
10024         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
10025             cp = CP_REG_ARM64_SYSREG_CP;
10026         }
10027         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
10028         break;
10029     default:
10030         g_assert_not_reached();
10031     }
10032 
10033     /* Overriding of an existing definition must be explicitly requested. */
10034     if (!(r->type & ARM_CP_OVERRIDE)) {
10035         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
10036         if (oldreg) {
10037             assert(oldreg->type & ARM_CP_OVERRIDE);
10038         }
10039     }
10040 
10041     /*
10042      * Eliminate registers that are not present because the EL is missing.
10043      * Doing this here makes it easier to put all registers for a given
10044      * feature into the same ARMCPRegInfo array and define them all at once.
10045      */
10046     make_const = false;
10047     if (arm_feature(env, ARM_FEATURE_EL3)) {
10048         /*
10049          * An EL2 register without EL2 but with EL3 is (usually) RES0.
10050          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
10051          */
10052         int min_el = ctz32(r->access) / 2;
10053         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
10054             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
10055                 return;
10056             }
10057             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
10058         }
10059     } else {
10060         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
10061                                  ? PL2_RW : PL1_RW);
10062         if ((r->access & max_el) == 0) {
10063             return;
10064         }
10065     }
10066 
10067     /* Combine cpreg and name into one allocation. */
10068     name_len = strlen(name) + 1;
10069     r2 = g_malloc(sizeof(*r2) + name_len);
10070     *r2 = *r;
10071     r2->name = memcpy(r2 + 1, name, name_len);
10072 
10073     /*
10074      * Update fields to match the instantiation, overwiting wildcards
10075      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
10076      */
10077     r2->cp = cp;
10078     r2->crm = crm;
10079     r2->opc1 = opc1;
10080     r2->opc2 = opc2;
10081     r2->state = state;
10082     r2->secure = secstate;
10083     if (opaque) {
10084         r2->opaque = opaque;
10085     }
10086 
10087     if (make_const) {
10088         /* This should not have been a very special register to begin. */
10089         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
10090         assert(old_special == 0 || old_special == ARM_CP_NOP);
10091         /*
10092          * Set the special function to CONST, retaining the other flags.
10093          * This is important for e.g. ARM_CP_SVE so that we still
10094          * take the SVE trap if CPTR_EL3.EZ == 0.
10095          */
10096         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
10097         /*
10098          * Usually, these registers become RES0, but there are a few
10099          * special cases like VPIDR_EL2 which have a constant non-zero
10100          * value with writes ignored.
10101          */
10102         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
10103             r2->resetvalue = 0;
10104         }
10105         /*
10106          * ARM_CP_CONST has precedence, so removing the callbacks and
10107          * offsets are not strictly necessary, but it is potentially
10108          * less confusing to debug later.
10109          */
10110         r2->readfn = NULL;
10111         r2->writefn = NULL;
10112         r2->raw_readfn = NULL;
10113         r2->raw_writefn = NULL;
10114         r2->resetfn = NULL;
10115         r2->fieldoffset = 0;
10116         r2->bank_fieldoffsets[0] = 0;
10117         r2->bank_fieldoffsets[1] = 0;
10118     } else {
10119         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
10120 
10121         if (isbanked) {
10122             /*
10123              * Register is banked (using both entries in array).
10124              * Overwriting fieldoffset as the array is only used to define
10125              * banked registers but later only fieldoffset is used.
10126              */
10127             r2->fieldoffset = r->bank_fieldoffsets[ns];
10128         }
10129         if (state == ARM_CP_STATE_AA32) {
10130             if (isbanked) {
10131                 /*
10132                  * If the register is banked then we don't need to migrate or
10133                  * reset the 32-bit instance in certain cases:
10134                  *
10135                  * 1) If the register has both 32-bit and 64-bit instances
10136                  *    then we can count on the 64-bit instance taking care
10137                  *    of the non-secure bank.
10138                  * 2) If ARMv8 is enabled then we can count on a 64-bit
10139                  *    version taking care of the secure bank.  This requires
10140                  *    that separate 32 and 64-bit definitions are provided.
10141                  */
10142                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
10143                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
10144                     r2->type |= ARM_CP_ALIAS;
10145                 }
10146             } else if ((secstate != r->secure) && !ns) {
10147                 /*
10148                  * The register is not banked so we only want to allow
10149                  * migration of the non-secure instance.
10150                  */
10151                 r2->type |= ARM_CP_ALIAS;
10152             }
10153 
10154             if (HOST_BIG_ENDIAN &&
10155                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
10156                 r2->fieldoffset += sizeof(uint32_t);
10157             }
10158         }
10159     }
10160 
10161     /*
10162      * By convention, for wildcarded registers only the first
10163      * entry is used for migration; the others are marked as
10164      * ALIAS so we don't try to transfer the register
10165      * multiple times. Special registers (ie NOP/WFI) are
10166      * never migratable and not even raw-accessible.
10167      */
10168     if (r2->type & ARM_CP_SPECIAL_MASK) {
10169         r2->type |= ARM_CP_NO_RAW;
10170     }
10171     if (((r->crm == CP_ANY) && crm != 0) ||
10172         ((r->opc1 == CP_ANY) && opc1 != 0) ||
10173         ((r->opc2 == CP_ANY) && opc2 != 0)) {
10174         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
10175     }
10176 
10177     /*
10178      * Check that raw accesses are either forbidden or handled. Note that
10179      * we can't assert this earlier because the setup of fieldoffset for
10180      * banked registers has to be done first.
10181      */
10182     if (!(r2->type & ARM_CP_NO_RAW)) {
10183         assert(!raw_accessors_invalid(r2));
10184     }
10185 
10186     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
10187 }
10188 
10189 
10190 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
10191                                        const ARMCPRegInfo *r, void *opaque)
10192 {
10193     /*
10194      * Define implementations of coprocessor registers.
10195      * We store these in a hashtable because typically
10196      * there are less than 150 registers in a space which
10197      * is 16*16*16*8*8 = 262144 in size.
10198      * Wildcarding is supported for the crm, opc1 and opc2 fields.
10199      * If a register is defined twice then the second definition is
10200      * used, so this can be used to define some generic registers and
10201      * then override them with implementation specific variations.
10202      * At least one of the original and the second definition should
10203      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
10204      * against accidental use.
10205      *
10206      * The state field defines whether the register is to be
10207      * visible in the AArch32 or AArch64 execution state. If the
10208      * state is set to ARM_CP_STATE_BOTH then we synthesise a
10209      * reginfo structure for the AArch32 view, which sees the lower
10210      * 32 bits of the 64 bit register.
10211      *
10212      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
10213      * be wildcarded. AArch64 registers are always considered to be 64
10214      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
10215      * the register, if any.
10216      */
10217     int crm, opc1, opc2;
10218     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
10219     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
10220     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
10221     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
10222     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
10223     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
10224     CPState state;
10225 
10226     /* 64 bit registers have only CRm and Opc1 fields */
10227     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
10228     /* op0 only exists in the AArch64 encodings */
10229     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
10230     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
10231     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
10232     /*
10233      * This API is only for Arm's system coprocessors (14 and 15) or
10234      * (M-profile or v7A-and-earlier only) for implementation defined
10235      * coprocessors in the range 0..7.  Our decode assumes this, since
10236      * 8..13 can be used for other insns including VFP and Neon. See
10237      * valid_cp() in translate.c.  Assert here that we haven't tried
10238      * to use an invalid coprocessor number.
10239      */
10240     switch (r->state) {
10241     case ARM_CP_STATE_BOTH:
10242         /* 0 has a special meaning, but otherwise the same rules as AA32. */
10243         if (r->cp == 0) {
10244             break;
10245         }
10246         /* fall through */
10247     case ARM_CP_STATE_AA32:
10248         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
10249             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
10250             assert(r->cp >= 14 && r->cp <= 15);
10251         } else {
10252             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
10253         }
10254         break;
10255     case ARM_CP_STATE_AA64:
10256         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
10257         break;
10258     default:
10259         g_assert_not_reached();
10260     }
10261     /*
10262      * The AArch64 pseudocode CheckSystemAccess() specifies that op1
10263      * encodes a minimum access level for the register. We roll this
10264      * runtime check into our general permission check code, so check
10265      * here that the reginfo's specified permissions are strict enough
10266      * to encompass the generic architectural permission check.
10267      */
10268     if (r->state != ARM_CP_STATE_AA32) {
10269         CPAccessRights mask;
10270         switch (r->opc1) {
10271         case 0:
10272             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
10273             mask = PL0U_R | PL1_RW;
10274             break;
10275         case 1: case 2:
10276             /* min_EL EL1 */
10277             mask = PL1_RW;
10278             break;
10279         case 3:
10280             /* min_EL EL0 */
10281             mask = PL0_RW;
10282             break;
10283         case 4:
10284         case 5:
10285             /* min_EL EL2 */
10286             mask = PL2_RW;
10287             break;
10288         case 6:
10289             /* min_EL EL3 */
10290             mask = PL3_RW;
10291             break;
10292         case 7:
10293             /* min_EL EL1, secure mode only (we don't check the latter) */
10294             mask = PL1_RW;
10295             break;
10296         default:
10297             /* broken reginfo with out-of-range opc1 */
10298             g_assert_not_reached();
10299         }
10300         /* assert our permissions are not too lax (stricter is fine) */
10301         assert((r->access & ~mask) == 0);
10302     }
10303 
10304     /*
10305      * Check that the register definition has enough info to handle
10306      * reads and writes if they are permitted.
10307      */
10308     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
10309         if (r->access & PL3_R) {
10310             assert((r->fieldoffset ||
10311                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10312                    r->readfn);
10313         }
10314         if (r->access & PL3_W) {
10315             assert((r->fieldoffset ||
10316                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10317                    r->writefn);
10318         }
10319     }
10320 
10321     for (crm = crmmin; crm <= crmmax; crm++) {
10322         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
10323             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
10324                 for (state = ARM_CP_STATE_AA32;
10325                      state <= ARM_CP_STATE_AA64; state++) {
10326                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
10327                         continue;
10328                     }
10329                     if (state == ARM_CP_STATE_AA32) {
10330                         /*
10331                          * Under AArch32 CP registers can be common
10332                          * (same for secure and non-secure world) or banked.
10333                          */
10334                         char *name;
10335 
10336                         switch (r->secure) {
10337                         case ARM_CP_SECSTATE_S:
10338                         case ARM_CP_SECSTATE_NS:
10339                             add_cpreg_to_hashtable(cpu, r, opaque, state,
10340                                                    r->secure, crm, opc1, opc2,
10341                                                    r->name);
10342                             break;
10343                         case ARM_CP_SECSTATE_BOTH:
10344                             name = g_strdup_printf("%s_S", r->name);
10345                             add_cpreg_to_hashtable(cpu, r, opaque, state,
10346                                                    ARM_CP_SECSTATE_S,
10347                                                    crm, opc1, opc2, name);
10348                             g_free(name);
10349                             add_cpreg_to_hashtable(cpu, r, opaque, state,
10350                                                    ARM_CP_SECSTATE_NS,
10351                                                    crm, opc1, opc2, r->name);
10352                             break;
10353                         default:
10354                             g_assert_not_reached();
10355                         }
10356                     } else {
10357                         /*
10358                          * AArch64 registers get mapped to non-secure instance
10359                          * of AArch32
10360                          */
10361                         add_cpreg_to_hashtable(cpu, r, opaque, state,
10362                                                ARM_CP_SECSTATE_NS,
10363                                                crm, opc1, opc2, r->name);
10364                     }
10365                 }
10366             }
10367         }
10368     }
10369 }
10370 
10371 /* Define a whole list of registers */
10372 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
10373                                         void *opaque, size_t len)
10374 {
10375     size_t i;
10376     for (i = 0; i < len; ++i) {
10377         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
10378     }
10379 }
10380 
10381 /*
10382  * Modify ARMCPRegInfo for access from userspace.
10383  *
10384  * This is a data driven modification directed by
10385  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
10386  * user-space cannot alter any values and dynamic values pertaining to
10387  * execution state are hidden from user space view anyway.
10388  */
10389 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
10390                                  const ARMCPRegUserSpaceInfo *mods,
10391                                  size_t mods_len)
10392 {
10393     for (size_t mi = 0; mi < mods_len; ++mi) {
10394         const ARMCPRegUserSpaceInfo *m = mods + mi;
10395         GPatternSpec *pat = NULL;
10396 
10397         if (m->is_glob) {
10398             pat = g_pattern_spec_new(m->name);
10399         }
10400         for (size_t ri = 0; ri < regs_len; ++ri) {
10401             ARMCPRegInfo *r = regs + ri;
10402 
10403             if (pat && g_pattern_match_string(pat, r->name)) {
10404                 r->type = ARM_CP_CONST;
10405                 r->access = PL0U_R;
10406                 r->resetvalue = 0;
10407                 /* continue */
10408             } else if (strcmp(r->name, m->name) == 0) {
10409                 r->type = ARM_CP_CONST;
10410                 r->access = PL0U_R;
10411                 r->resetvalue &= m->exported_bits;
10412                 r->resetvalue |= m->fixed_bits;
10413                 break;
10414             }
10415         }
10416         if (pat) {
10417             g_pattern_spec_free(pat);
10418         }
10419     }
10420 }
10421 
10422 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
10423 {
10424     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
10425 }
10426 
10427 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
10428                          uint64_t value)
10429 {
10430     /* Helper coprocessor write function for write-ignore registers */
10431 }
10432 
10433 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
10434 {
10435     /* Helper coprocessor write function for read-as-zero registers */
10436     return 0;
10437 }
10438 
10439 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
10440 {
10441     /* Helper coprocessor reset function for do-nothing-on-reset registers */
10442 }
10443 
10444 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
10445 {
10446     /*
10447      * Return true if it is not valid for us to switch to
10448      * this CPU mode (ie all the UNPREDICTABLE cases in
10449      * the ARM ARM CPSRWriteByInstr pseudocode).
10450      */
10451 
10452     /* Changes to or from Hyp via MSR and CPS are illegal. */
10453     if (write_type == CPSRWriteByInstr &&
10454         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
10455          mode == ARM_CPU_MODE_HYP)) {
10456         return 1;
10457     }
10458 
10459     switch (mode) {
10460     case ARM_CPU_MODE_USR:
10461         return 0;
10462     case ARM_CPU_MODE_SYS:
10463     case ARM_CPU_MODE_SVC:
10464     case ARM_CPU_MODE_ABT:
10465     case ARM_CPU_MODE_UND:
10466     case ARM_CPU_MODE_IRQ:
10467     case ARM_CPU_MODE_FIQ:
10468         /*
10469          * Note that we don't implement the IMPDEF NSACR.RFR which in v7
10470          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
10471          */
10472         /*
10473          * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10474          * and CPS are treated as illegal mode changes.
10475          */
10476         if (write_type == CPSRWriteByInstr &&
10477             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
10478             (arm_hcr_el2_eff(env) & HCR_TGE)) {
10479             return 1;
10480         }
10481         return 0;
10482     case ARM_CPU_MODE_HYP:
10483         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
10484     case ARM_CPU_MODE_MON:
10485         return arm_current_el(env) < 3;
10486     default:
10487         return 1;
10488     }
10489 }
10490 
10491 uint32_t cpsr_read(CPUARMState *env)
10492 {
10493     int ZF;
10494     ZF = (env->ZF == 0);
10495     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10496         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10497         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10498         | ((env->condexec_bits & 0xfc) << 8)
10499         | (env->GE << 16) | (env->daif & CPSR_AIF);
10500 }
10501 
10502 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10503                 CPSRWriteType write_type)
10504 {
10505     uint32_t changed_daif;
10506     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10507         (mask & (CPSR_M | CPSR_E | CPSR_IL));
10508 
10509     if (mask & CPSR_NZCV) {
10510         env->ZF = (~val) & CPSR_Z;
10511         env->NF = val;
10512         env->CF = (val >> 29) & 1;
10513         env->VF = (val << 3) & 0x80000000;
10514     }
10515     if (mask & CPSR_Q) {
10516         env->QF = ((val & CPSR_Q) != 0);
10517     }
10518     if (mask & CPSR_T) {
10519         env->thumb = ((val & CPSR_T) != 0);
10520     }
10521     if (mask & CPSR_IT_0_1) {
10522         env->condexec_bits &= ~3;
10523         env->condexec_bits |= (val >> 25) & 3;
10524     }
10525     if (mask & CPSR_IT_2_7) {
10526         env->condexec_bits &= 3;
10527         env->condexec_bits |= (val >> 8) & 0xfc;
10528     }
10529     if (mask & CPSR_GE) {
10530         env->GE = (val >> 16) & 0xf;
10531     }
10532 
10533     /*
10534      * In a V7 implementation that includes the security extensions but does
10535      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10536      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10537      * bits respectively.
10538      *
10539      * In a V8 implementation, it is permitted for privileged software to
10540      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10541      */
10542     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10543         arm_feature(env, ARM_FEATURE_EL3) &&
10544         !arm_feature(env, ARM_FEATURE_EL2) &&
10545         !arm_is_secure(env)) {
10546 
10547         changed_daif = (env->daif ^ val) & mask;
10548 
10549         if (changed_daif & CPSR_A) {
10550             /*
10551              * Check to see if we are allowed to change the masking of async
10552              * abort exceptions from a non-secure state.
10553              */
10554             if (!(env->cp15.scr_el3 & SCR_AW)) {
10555                 qemu_log_mask(LOG_GUEST_ERROR,
10556                               "Ignoring attempt to switch CPSR_A flag from "
10557                               "non-secure world with SCR.AW bit clear\n");
10558                 mask &= ~CPSR_A;
10559             }
10560         }
10561 
10562         if (changed_daif & CPSR_F) {
10563             /*
10564              * Check to see if we are allowed to change the masking of FIQ
10565              * exceptions from a non-secure state.
10566              */
10567             if (!(env->cp15.scr_el3 & SCR_FW)) {
10568                 qemu_log_mask(LOG_GUEST_ERROR,
10569                               "Ignoring attempt to switch CPSR_F flag from "
10570                               "non-secure world with SCR.FW bit clear\n");
10571                 mask &= ~CPSR_F;
10572             }
10573 
10574             /*
10575              * Check whether non-maskable FIQ (NMFI) support is enabled.
10576              * If this bit is set software is not allowed to mask
10577              * FIQs, but is allowed to set CPSR_F to 0.
10578              */
10579             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10580                 (val & CPSR_F)) {
10581                 qemu_log_mask(LOG_GUEST_ERROR,
10582                               "Ignoring attempt to enable CPSR_F flag "
10583                               "(non-maskable FIQ [NMFI] support enabled)\n");
10584                 mask &= ~CPSR_F;
10585             }
10586         }
10587     }
10588 
10589     env->daif &= ~(CPSR_AIF & mask);
10590     env->daif |= val & CPSR_AIF & mask;
10591 
10592     if (write_type != CPSRWriteRaw &&
10593         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10594         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10595             /*
10596              * Note that we can only get here in USR mode if this is a
10597              * gdb stub write; for this case we follow the architectural
10598              * behaviour for guest writes in USR mode of ignoring an attempt
10599              * to switch mode. (Those are caught by translate.c for writes
10600              * triggered by guest instructions.)
10601              */
10602             mask &= ~CPSR_M;
10603         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10604             /*
10605              * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10606              * v7, and has defined behaviour in v8:
10607              *  + leave CPSR.M untouched
10608              *  + allow changes to the other CPSR fields
10609              *  + set PSTATE.IL
10610              * For user changes via the GDB stub, we don't set PSTATE.IL,
10611              * as this would be unnecessarily harsh for a user error.
10612              */
10613             mask &= ~CPSR_M;
10614             if (write_type != CPSRWriteByGDBStub &&
10615                 arm_feature(env, ARM_FEATURE_V8)) {
10616                 mask |= CPSR_IL;
10617                 val |= CPSR_IL;
10618             }
10619             qemu_log_mask(LOG_GUEST_ERROR,
10620                           "Illegal AArch32 mode switch attempt from %s to %s\n",
10621                           aarch32_mode_name(env->uncached_cpsr),
10622                           aarch32_mode_name(val));
10623         } else {
10624             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10625                           write_type == CPSRWriteExceptionReturn ?
10626                           "Exception return from AArch32" :
10627                           "AArch32 mode switch from",
10628                           aarch32_mode_name(env->uncached_cpsr),
10629                           aarch32_mode_name(val), env->regs[15]);
10630             switch_mode(env, val & CPSR_M);
10631         }
10632     }
10633     mask &= ~CACHED_CPSR_BITS;
10634     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10635     if (tcg_enabled() && rebuild_hflags) {
10636         arm_rebuild_hflags(env);
10637     }
10638 }
10639 
10640 #ifdef CONFIG_USER_ONLY
10641 
10642 static void switch_mode(CPUARMState *env, int mode)
10643 {
10644     ARMCPU *cpu = env_archcpu(env);
10645 
10646     if (mode != ARM_CPU_MODE_USR) {
10647         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10648     }
10649 }
10650 
10651 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10652                                  uint32_t cur_el, bool secure)
10653 {
10654     return 1;
10655 }
10656 
10657 void aarch64_sync_64_to_32(CPUARMState *env)
10658 {
10659     g_assert_not_reached();
10660 }
10661 
10662 #else
10663 
10664 static void switch_mode(CPUARMState *env, int mode)
10665 {
10666     int old_mode;
10667     int i;
10668 
10669     old_mode = env->uncached_cpsr & CPSR_M;
10670     if (mode == old_mode) {
10671         return;
10672     }
10673 
10674     if (old_mode == ARM_CPU_MODE_FIQ) {
10675         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10676         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10677     } else if (mode == ARM_CPU_MODE_FIQ) {
10678         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10679         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10680     }
10681 
10682     i = bank_number(old_mode);
10683     env->banked_r13[i] = env->regs[13];
10684     env->banked_spsr[i] = env->spsr;
10685 
10686     i = bank_number(mode);
10687     env->regs[13] = env->banked_r13[i];
10688     env->spsr = env->banked_spsr[i];
10689 
10690     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10691     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10692 }
10693 
10694 /*
10695  * Physical Interrupt Target EL Lookup Table
10696  *
10697  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10698  *
10699  * The below multi-dimensional table is used for looking up the target
10700  * exception level given numerous condition criteria.  Specifically, the
10701  * target EL is based on SCR and HCR routing controls as well as the
10702  * currently executing EL and secure state.
10703  *
10704  *    Dimensions:
10705  *    target_el_table[2][2][2][2][2][4]
10706  *                    |  |  |  |  |  +--- Current EL
10707  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
10708  *                    |  |  |  +--------- HCR mask override
10709  *                    |  |  +------------ SCR exec state control
10710  *                    |  +--------------- SCR mask override
10711  *                    +------------------ 32-bit(0)/64-bit(1) EL3
10712  *
10713  *    The table values are as such:
10714  *    0-3 = EL0-EL3
10715  *     -1 = Cannot occur
10716  *
10717  * The ARM ARM target EL table includes entries indicating that an "exception
10718  * is not taken".  The two cases where this is applicable are:
10719  *    1) An exception is taken from EL3 but the SCR does not have the exception
10720  *    routed to EL3.
10721  *    2) An exception is taken from EL2 but the HCR does not have the exception
10722  *    routed to EL2.
10723  * In these two cases, the below table contain a target of EL1.  This value is
10724  * returned as it is expected that the consumer of the table data will check
10725  * for "target EL >= current EL" to ensure the exception is not taken.
10726  *
10727  *            SCR     HCR
10728  *         64  EA     AMO                 From
10729  *        BIT IRQ     IMO      Non-secure         Secure
10730  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
10731  */
10732 static const int8_t target_el_table[2][2][2][2][2][4] = {
10733     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10734        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
10735       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10736        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
10737      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10738        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
10739       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10740        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
10741     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
10742        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
10743       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
10744        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
10745      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
10746        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
10747       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
10748        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
10749 };
10750 
10751 /*
10752  * Determine the target EL for physical exceptions
10753  */
10754 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10755                                  uint32_t cur_el, bool secure)
10756 {
10757     CPUARMState *env = cpu_env(cs);
10758     bool rw;
10759     bool scr;
10760     bool hcr;
10761     int target_el;
10762     /* Is the highest EL AArch64? */
10763     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10764     uint64_t hcr_el2;
10765 
10766     if (arm_feature(env, ARM_FEATURE_EL3)) {
10767         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10768     } else {
10769         /*
10770          * Either EL2 is the highest EL (and so the EL2 register width
10771          * is given by is64); or there is no EL2 or EL3, in which case
10772          * the value of 'rw' does not affect the table lookup anyway.
10773          */
10774         rw = is64;
10775     }
10776 
10777     hcr_el2 = arm_hcr_el2_eff(env);
10778     switch (excp_idx) {
10779     case EXCP_IRQ:
10780     case EXCP_NMI:
10781         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10782         hcr = hcr_el2 & HCR_IMO;
10783         break;
10784     case EXCP_FIQ:
10785         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10786         hcr = hcr_el2 & HCR_FMO;
10787         break;
10788     default:
10789         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10790         hcr = hcr_el2 & HCR_AMO;
10791         break;
10792     };
10793 
10794     /*
10795      * For these purposes, TGE and AMO/IMO/FMO both force the
10796      * interrupt to EL2.  Fold TGE into the bit extracted above.
10797      */
10798     hcr |= (hcr_el2 & HCR_TGE) != 0;
10799 
10800     /* Perform a table-lookup for the target EL given the current state */
10801     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10802 
10803     assert(target_el > 0);
10804 
10805     return target_el;
10806 }
10807 
10808 void arm_log_exception(CPUState *cs)
10809 {
10810     int idx = cs->exception_index;
10811 
10812     if (qemu_loglevel_mask(CPU_LOG_INT)) {
10813         const char *exc = NULL;
10814         static const char * const excnames[] = {
10815             [EXCP_UDEF] = "Undefined Instruction",
10816             [EXCP_SWI] = "SVC",
10817             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10818             [EXCP_DATA_ABORT] = "Data Abort",
10819             [EXCP_IRQ] = "IRQ",
10820             [EXCP_FIQ] = "FIQ",
10821             [EXCP_BKPT] = "Breakpoint",
10822             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10823             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10824             [EXCP_HVC] = "Hypervisor Call",
10825             [EXCP_HYP_TRAP] = "Hypervisor Trap",
10826             [EXCP_SMC] = "Secure Monitor Call",
10827             [EXCP_VIRQ] = "Virtual IRQ",
10828             [EXCP_VFIQ] = "Virtual FIQ",
10829             [EXCP_SEMIHOST] = "Semihosting call",
10830             [EXCP_NOCP] = "v7M NOCP UsageFault",
10831             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10832             [EXCP_STKOF] = "v8M STKOF UsageFault",
10833             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10834             [EXCP_LSERR] = "v8M LSERR UsageFault",
10835             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10836             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10837             [EXCP_VSERR] = "Virtual SERR",
10838             [EXCP_GPC] = "Granule Protection Check",
10839             [EXCP_NMI] = "NMI",
10840             [EXCP_VINMI] = "Virtual IRQ NMI",
10841             [EXCP_VFNMI] = "Virtual FIQ NMI",
10842         };
10843 
10844         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10845             exc = excnames[idx];
10846         }
10847         if (!exc) {
10848             exc = "unknown";
10849         }
10850         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10851                       idx, exc, cs->cpu_index);
10852     }
10853 }
10854 
10855 /*
10856  * Function used to synchronize QEMU's AArch64 register set with AArch32
10857  * register set.  This is necessary when switching between AArch32 and AArch64
10858  * execution state.
10859  */
10860 void aarch64_sync_32_to_64(CPUARMState *env)
10861 {
10862     int i;
10863     uint32_t mode = env->uncached_cpsr & CPSR_M;
10864 
10865     /* We can blanket copy R[0:7] to X[0:7] */
10866     for (i = 0; i < 8; i++) {
10867         env->xregs[i] = env->regs[i];
10868     }
10869 
10870     /*
10871      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10872      * Otherwise, they come from the banked user regs.
10873      */
10874     if (mode == ARM_CPU_MODE_FIQ) {
10875         for (i = 8; i < 13; i++) {
10876             env->xregs[i] = env->usr_regs[i - 8];
10877         }
10878     } else {
10879         for (i = 8; i < 13; i++) {
10880             env->xregs[i] = env->regs[i];
10881         }
10882     }
10883 
10884     /*
10885      * Registers x13-x23 are the various mode SP and FP registers. Registers
10886      * r13 and r14 are only copied if we are in that mode, otherwise we copy
10887      * from the mode banked register.
10888      */
10889     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10890         env->xregs[13] = env->regs[13];
10891         env->xregs[14] = env->regs[14];
10892     } else {
10893         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10894         /* HYP is an exception in that it is copied from r14 */
10895         if (mode == ARM_CPU_MODE_HYP) {
10896             env->xregs[14] = env->regs[14];
10897         } else {
10898             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10899         }
10900     }
10901 
10902     if (mode == ARM_CPU_MODE_HYP) {
10903         env->xregs[15] = env->regs[13];
10904     } else {
10905         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10906     }
10907 
10908     if (mode == ARM_CPU_MODE_IRQ) {
10909         env->xregs[16] = env->regs[14];
10910         env->xregs[17] = env->regs[13];
10911     } else {
10912         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10913         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10914     }
10915 
10916     if (mode == ARM_CPU_MODE_SVC) {
10917         env->xregs[18] = env->regs[14];
10918         env->xregs[19] = env->regs[13];
10919     } else {
10920         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10921         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10922     }
10923 
10924     if (mode == ARM_CPU_MODE_ABT) {
10925         env->xregs[20] = env->regs[14];
10926         env->xregs[21] = env->regs[13];
10927     } else {
10928         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10929         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10930     }
10931 
10932     if (mode == ARM_CPU_MODE_UND) {
10933         env->xregs[22] = env->regs[14];
10934         env->xregs[23] = env->regs[13];
10935     } else {
10936         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10937         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10938     }
10939 
10940     /*
10941      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10942      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
10943      * FIQ bank for r8-r14.
10944      */
10945     if (mode == ARM_CPU_MODE_FIQ) {
10946         for (i = 24; i < 31; i++) {
10947             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
10948         }
10949     } else {
10950         for (i = 24; i < 29; i++) {
10951             env->xregs[i] = env->fiq_regs[i - 24];
10952         }
10953         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10954         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10955     }
10956 
10957     env->pc = env->regs[15];
10958 }
10959 
10960 /*
10961  * Function used to synchronize QEMU's AArch32 register set with AArch64
10962  * register set.  This is necessary when switching between AArch32 and AArch64
10963  * execution state.
10964  */
10965 void aarch64_sync_64_to_32(CPUARMState *env)
10966 {
10967     int i;
10968     uint32_t mode = env->uncached_cpsr & CPSR_M;
10969 
10970     /* We can blanket copy X[0:7] to R[0:7] */
10971     for (i = 0; i < 8; i++) {
10972         env->regs[i] = env->xregs[i];
10973     }
10974 
10975     /*
10976      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10977      * Otherwise, we copy x8-x12 into the banked user regs.
10978      */
10979     if (mode == ARM_CPU_MODE_FIQ) {
10980         for (i = 8; i < 13; i++) {
10981             env->usr_regs[i - 8] = env->xregs[i];
10982         }
10983     } else {
10984         for (i = 8; i < 13; i++) {
10985             env->regs[i] = env->xregs[i];
10986         }
10987     }
10988 
10989     /*
10990      * Registers r13 & r14 depend on the current mode.
10991      * If we are in a given mode, we copy the corresponding x registers to r13
10992      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
10993      * for the mode.
10994      */
10995     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10996         env->regs[13] = env->xregs[13];
10997         env->regs[14] = env->xregs[14];
10998     } else {
10999         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
11000 
11001         /*
11002          * HYP is an exception in that it does not have its own banked r14 but
11003          * shares the USR r14
11004          */
11005         if (mode == ARM_CPU_MODE_HYP) {
11006             env->regs[14] = env->xregs[14];
11007         } else {
11008             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
11009         }
11010     }
11011 
11012     if (mode == ARM_CPU_MODE_HYP) {
11013         env->regs[13] = env->xregs[15];
11014     } else {
11015         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
11016     }
11017 
11018     if (mode == ARM_CPU_MODE_IRQ) {
11019         env->regs[14] = env->xregs[16];
11020         env->regs[13] = env->xregs[17];
11021     } else {
11022         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
11023         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
11024     }
11025 
11026     if (mode == ARM_CPU_MODE_SVC) {
11027         env->regs[14] = env->xregs[18];
11028         env->regs[13] = env->xregs[19];
11029     } else {
11030         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
11031         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
11032     }
11033 
11034     if (mode == ARM_CPU_MODE_ABT) {
11035         env->regs[14] = env->xregs[20];
11036         env->regs[13] = env->xregs[21];
11037     } else {
11038         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
11039         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
11040     }
11041 
11042     if (mode == ARM_CPU_MODE_UND) {
11043         env->regs[14] = env->xregs[22];
11044         env->regs[13] = env->xregs[23];
11045     } else {
11046         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
11047         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
11048     }
11049 
11050     /*
11051      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
11052      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
11053      * FIQ bank for r8-r14.
11054      */
11055     if (mode == ARM_CPU_MODE_FIQ) {
11056         for (i = 24; i < 31; i++) {
11057             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
11058         }
11059     } else {
11060         for (i = 24; i < 29; i++) {
11061             env->fiq_regs[i - 24] = env->xregs[i];
11062         }
11063         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
11064         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
11065     }
11066 
11067     env->regs[15] = env->pc;
11068 }
11069 
11070 static void take_aarch32_exception(CPUARMState *env, int new_mode,
11071                                    uint32_t mask, uint32_t offset,
11072                                    uint32_t newpc)
11073 {
11074     int new_el;
11075 
11076     /* Change the CPU state so as to actually take the exception. */
11077     switch_mode(env, new_mode);
11078 
11079     /*
11080      * For exceptions taken to AArch32 we must clear the SS bit in both
11081      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
11082      */
11083     env->pstate &= ~PSTATE_SS;
11084     env->spsr = cpsr_read(env);
11085     /* Clear IT bits.  */
11086     env->condexec_bits = 0;
11087     /* Switch to the new mode, and to the correct instruction set.  */
11088     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
11089 
11090     /* This must be after mode switching. */
11091     new_el = arm_current_el(env);
11092 
11093     /* Set new mode endianness */
11094     env->uncached_cpsr &= ~CPSR_E;
11095     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
11096         env->uncached_cpsr |= CPSR_E;
11097     }
11098     /* J and IL must always be cleared for exception entry */
11099     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
11100     env->daif |= mask;
11101 
11102     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
11103         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
11104             env->uncached_cpsr |= CPSR_SSBS;
11105         } else {
11106             env->uncached_cpsr &= ~CPSR_SSBS;
11107         }
11108     }
11109 
11110     if (new_mode == ARM_CPU_MODE_HYP) {
11111         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
11112         env->elr_el[2] = env->regs[15];
11113     } else {
11114         /* CPSR.PAN is normally preserved preserved unless...  */
11115         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
11116             switch (new_el) {
11117             case 3:
11118                 if (!arm_is_secure_below_el3(env)) {
11119                     /* ... the target is EL3, from non-secure state.  */
11120                     env->uncached_cpsr &= ~CPSR_PAN;
11121                     break;
11122                 }
11123                 /* ... the target is EL3, from secure state ... */
11124                 /* fall through */
11125             case 1:
11126                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
11127                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
11128                     env->uncached_cpsr |= CPSR_PAN;
11129                 }
11130                 break;
11131             }
11132         }
11133         /*
11134          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
11135          * and we should just guard the thumb mode on V4
11136          */
11137         if (arm_feature(env, ARM_FEATURE_V4T)) {
11138             env->thumb =
11139                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
11140         }
11141         env->regs[14] = env->regs[15] + offset;
11142     }
11143     env->regs[15] = newpc;
11144 
11145     if (tcg_enabled()) {
11146         arm_rebuild_hflags(env);
11147     }
11148 }
11149 
11150 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
11151 {
11152     /*
11153      * Handle exception entry to Hyp mode; this is sufficiently
11154      * different to entry to other AArch32 modes that we handle it
11155      * separately here.
11156      *
11157      * The vector table entry used is always the 0x14 Hyp mode entry point,
11158      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
11159      * The offset applied to the preferred return address is always zero
11160      * (see DDI0487C.a section G1.12.3).
11161      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
11162      */
11163     uint32_t addr, mask;
11164     ARMCPU *cpu = ARM_CPU(cs);
11165     CPUARMState *env = &cpu->env;
11166 
11167     switch (cs->exception_index) {
11168     case EXCP_UDEF:
11169         addr = 0x04;
11170         break;
11171     case EXCP_SWI:
11172         addr = 0x08;
11173         break;
11174     case EXCP_BKPT:
11175         /* Fall through to prefetch abort.  */
11176     case EXCP_PREFETCH_ABORT:
11177         env->cp15.ifar_s = env->exception.vaddress;
11178         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
11179                       (uint32_t)env->exception.vaddress);
11180         addr = 0x0c;
11181         break;
11182     case EXCP_DATA_ABORT:
11183         env->cp15.dfar_s = env->exception.vaddress;
11184         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
11185                       (uint32_t)env->exception.vaddress);
11186         addr = 0x10;
11187         break;
11188     case EXCP_IRQ:
11189         addr = 0x18;
11190         break;
11191     case EXCP_FIQ:
11192         addr = 0x1c;
11193         break;
11194     case EXCP_HVC:
11195         addr = 0x08;
11196         break;
11197     case EXCP_HYP_TRAP:
11198         addr = 0x14;
11199         break;
11200     default:
11201         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11202     }
11203 
11204     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
11205         if (!arm_feature(env, ARM_FEATURE_V8)) {
11206             /*
11207              * QEMU syndrome values are v8-style. v7 has the IL bit
11208              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
11209              * If this is a v7 CPU, squash the IL bit in those cases.
11210              */
11211             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
11212                 (cs->exception_index == EXCP_DATA_ABORT &&
11213                  !(env->exception.syndrome & ARM_EL_ISV)) ||
11214                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
11215                 env->exception.syndrome &= ~ARM_EL_IL;
11216             }
11217         }
11218         env->cp15.esr_el[2] = env->exception.syndrome;
11219     }
11220 
11221     if (arm_current_el(env) != 2 && addr < 0x14) {
11222         addr = 0x14;
11223     }
11224 
11225     mask = 0;
11226     if (!(env->cp15.scr_el3 & SCR_EA)) {
11227         mask |= CPSR_A;
11228     }
11229     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
11230         mask |= CPSR_I;
11231     }
11232     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
11233         mask |= CPSR_F;
11234     }
11235 
11236     addr += env->cp15.hvbar;
11237 
11238     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
11239 }
11240 
11241 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
11242 {
11243     ARMCPU *cpu = ARM_CPU(cs);
11244     CPUARMState *env = &cpu->env;
11245     uint32_t addr;
11246     uint32_t mask;
11247     int new_mode;
11248     uint32_t offset;
11249     uint32_t moe;
11250 
11251     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
11252     switch (syn_get_ec(env->exception.syndrome)) {
11253     case EC_BREAKPOINT:
11254     case EC_BREAKPOINT_SAME_EL:
11255         moe = 1;
11256         break;
11257     case EC_WATCHPOINT:
11258     case EC_WATCHPOINT_SAME_EL:
11259         moe = 10;
11260         break;
11261     case EC_AA32_BKPT:
11262         moe = 3;
11263         break;
11264     case EC_VECTORCATCH:
11265         moe = 5;
11266         break;
11267     default:
11268         moe = 0;
11269         break;
11270     }
11271 
11272     if (moe) {
11273         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
11274     }
11275 
11276     if (env->exception.target_el == 2) {
11277         /* Debug exceptions are reported differently on AArch32 */
11278         switch (syn_get_ec(env->exception.syndrome)) {
11279         case EC_BREAKPOINT:
11280         case EC_BREAKPOINT_SAME_EL:
11281         case EC_AA32_BKPT:
11282         case EC_VECTORCATCH:
11283             env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2,
11284                                                      0, 0, 0x22);
11285             break;
11286         case EC_WATCHPOINT:
11287             env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11288                                                  EC_DATAABORT);
11289             break;
11290         case EC_WATCHPOINT_SAME_EL:
11291             env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11292                                                  EC_DATAABORT_SAME_EL);
11293             break;
11294         }
11295         arm_cpu_do_interrupt_aarch32_hyp(cs);
11296         return;
11297     }
11298 
11299     switch (cs->exception_index) {
11300     case EXCP_UDEF:
11301         new_mode = ARM_CPU_MODE_UND;
11302         addr = 0x04;
11303         mask = CPSR_I;
11304         if (env->thumb) {
11305             offset = 2;
11306         } else {
11307             offset = 4;
11308         }
11309         break;
11310     case EXCP_SWI:
11311         new_mode = ARM_CPU_MODE_SVC;
11312         addr = 0x08;
11313         mask = CPSR_I;
11314         /* The PC already points to the next instruction.  */
11315         offset = 0;
11316         break;
11317     case EXCP_BKPT:
11318         /* Fall through to prefetch abort.  */
11319     case EXCP_PREFETCH_ABORT:
11320         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
11321         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
11322         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
11323                       env->exception.fsr, (uint32_t)env->exception.vaddress);
11324         new_mode = ARM_CPU_MODE_ABT;
11325         addr = 0x0c;
11326         mask = CPSR_A | CPSR_I;
11327         offset = 4;
11328         break;
11329     case EXCP_DATA_ABORT:
11330         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11331         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
11332         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
11333                       env->exception.fsr,
11334                       (uint32_t)env->exception.vaddress);
11335         new_mode = ARM_CPU_MODE_ABT;
11336         addr = 0x10;
11337         mask = CPSR_A | CPSR_I;
11338         offset = 8;
11339         break;
11340     case EXCP_IRQ:
11341         new_mode = ARM_CPU_MODE_IRQ;
11342         addr = 0x18;
11343         /* Disable IRQ and imprecise data aborts.  */
11344         mask = CPSR_A | CPSR_I;
11345         offset = 4;
11346         if (env->cp15.scr_el3 & SCR_IRQ) {
11347             /* IRQ routed to monitor mode */
11348             new_mode = ARM_CPU_MODE_MON;
11349             mask |= CPSR_F;
11350         }
11351         break;
11352     case EXCP_FIQ:
11353         new_mode = ARM_CPU_MODE_FIQ;
11354         addr = 0x1c;
11355         /* Disable FIQ, IRQ and imprecise data aborts.  */
11356         mask = CPSR_A | CPSR_I | CPSR_F;
11357         if (env->cp15.scr_el3 & SCR_FIQ) {
11358             /* FIQ routed to monitor mode */
11359             new_mode = ARM_CPU_MODE_MON;
11360         }
11361         offset = 4;
11362         break;
11363     case EXCP_VIRQ:
11364         new_mode = ARM_CPU_MODE_IRQ;
11365         addr = 0x18;
11366         /* Disable IRQ and imprecise data aborts.  */
11367         mask = CPSR_A | CPSR_I;
11368         offset = 4;
11369         break;
11370     case EXCP_VFIQ:
11371         new_mode = ARM_CPU_MODE_FIQ;
11372         addr = 0x1c;
11373         /* Disable FIQ, IRQ and imprecise data aborts.  */
11374         mask = CPSR_A | CPSR_I | CPSR_F;
11375         offset = 4;
11376         break;
11377     case EXCP_VSERR:
11378         {
11379             /*
11380              * Note that this is reported as a data abort, but the DFAR
11381              * has an UNKNOWN value.  Construct the SError syndrome from
11382              * AET and ExT fields.
11383              */
11384             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
11385 
11386             if (extended_addresses_enabled(env)) {
11387                 env->exception.fsr = arm_fi_to_lfsc(&fi);
11388             } else {
11389                 env->exception.fsr = arm_fi_to_sfsc(&fi);
11390             }
11391             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
11392             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11393             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
11394                           env->exception.fsr);
11395 
11396             new_mode = ARM_CPU_MODE_ABT;
11397             addr = 0x10;
11398             mask = CPSR_A | CPSR_I;
11399             offset = 8;
11400         }
11401         break;
11402     case EXCP_SMC:
11403         new_mode = ARM_CPU_MODE_MON;
11404         addr = 0x08;
11405         mask = CPSR_A | CPSR_I | CPSR_F;
11406         offset = 0;
11407         break;
11408     default:
11409         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11410         return; /* Never happens.  Keep compiler happy.  */
11411     }
11412 
11413     if (new_mode == ARM_CPU_MODE_MON) {
11414         addr += env->cp15.mvbar;
11415     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
11416         /* High vectors. When enabled, base address cannot be remapped. */
11417         addr += 0xffff0000;
11418     } else {
11419         /*
11420          * ARM v7 architectures provide a vector base address register to remap
11421          * the interrupt vector table.
11422          * This register is only followed in non-monitor mode, and is banked.
11423          * Note: only bits 31:5 are valid.
11424          */
11425         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
11426     }
11427 
11428     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
11429         env->cp15.scr_el3 &= ~SCR_NS;
11430     }
11431 
11432     take_aarch32_exception(env, new_mode, mask, offset, addr);
11433 }
11434 
11435 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
11436 {
11437     /*
11438      * Return the register number of the AArch64 view of the AArch32
11439      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
11440      * be that of the AArch32 mode the exception came from.
11441      */
11442     int mode = env->uncached_cpsr & CPSR_M;
11443 
11444     switch (aarch32_reg) {
11445     case 0 ... 7:
11446         return aarch32_reg;
11447     case 8 ... 12:
11448         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
11449     case 13:
11450         switch (mode) {
11451         case ARM_CPU_MODE_USR:
11452         case ARM_CPU_MODE_SYS:
11453             return 13;
11454         case ARM_CPU_MODE_HYP:
11455             return 15;
11456         case ARM_CPU_MODE_IRQ:
11457             return 17;
11458         case ARM_CPU_MODE_SVC:
11459             return 19;
11460         case ARM_CPU_MODE_ABT:
11461             return 21;
11462         case ARM_CPU_MODE_UND:
11463             return 23;
11464         case ARM_CPU_MODE_FIQ:
11465             return 29;
11466         default:
11467             g_assert_not_reached();
11468         }
11469     case 14:
11470         switch (mode) {
11471         case ARM_CPU_MODE_USR:
11472         case ARM_CPU_MODE_SYS:
11473         case ARM_CPU_MODE_HYP:
11474             return 14;
11475         case ARM_CPU_MODE_IRQ:
11476             return 16;
11477         case ARM_CPU_MODE_SVC:
11478             return 18;
11479         case ARM_CPU_MODE_ABT:
11480             return 20;
11481         case ARM_CPU_MODE_UND:
11482             return 22;
11483         case ARM_CPU_MODE_FIQ:
11484             return 30;
11485         default:
11486             g_assert_not_reached();
11487         }
11488     case 15:
11489         return 31;
11490     default:
11491         g_assert_not_reached();
11492     }
11493 }
11494 
11495 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11496 {
11497     uint32_t ret = cpsr_read(env);
11498 
11499     /* Move DIT to the correct location for SPSR_ELx */
11500     if (ret & CPSR_DIT) {
11501         ret &= ~CPSR_DIT;
11502         ret |= PSTATE_DIT;
11503     }
11504     /* Merge PSTATE.SS into SPSR_ELx */
11505     ret |= env->pstate & PSTATE_SS;
11506 
11507     return ret;
11508 }
11509 
11510 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11511 {
11512     /* Return true if this syndrome value is a synchronous external abort */
11513     switch (syn_get_ec(syndrome)) {
11514     case EC_INSNABORT:
11515     case EC_INSNABORT_SAME_EL:
11516     case EC_DATAABORT:
11517     case EC_DATAABORT_SAME_EL:
11518         /* Look at fault status code for all the synchronous ext abort cases */
11519         switch (syndrome & 0x3f) {
11520         case 0x10:
11521         case 0x13:
11522         case 0x14:
11523         case 0x15:
11524         case 0x16:
11525         case 0x17:
11526             return true;
11527         default:
11528             return false;
11529         }
11530     default:
11531         return false;
11532     }
11533 }
11534 
11535 /* Handle exception entry to a target EL which is using AArch64 */
11536 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11537 {
11538     ARMCPU *cpu = ARM_CPU(cs);
11539     CPUARMState *env = &cpu->env;
11540     unsigned int new_el = env->exception.target_el;
11541     target_ulong addr = env->cp15.vbar_el[new_el];
11542     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11543     unsigned int old_mode;
11544     unsigned int cur_el = arm_current_el(env);
11545     int rt;
11546 
11547     if (tcg_enabled()) {
11548         /*
11549          * Note that new_el can never be 0.  If cur_el is 0, then
11550          * el0_a64 is is_a64(), else el0_a64 is ignored.
11551          */
11552         aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11553     }
11554 
11555     if (cur_el < new_el) {
11556         /*
11557          * Entry vector offset depends on whether the implemented EL
11558          * immediately lower than the target level is using AArch32 or AArch64
11559          */
11560         bool is_aa64;
11561         uint64_t hcr;
11562 
11563         switch (new_el) {
11564         case 3:
11565             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11566             break;
11567         case 2:
11568             hcr = arm_hcr_el2_eff(env);
11569             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11570                 is_aa64 = (hcr & HCR_RW) != 0;
11571                 break;
11572             }
11573             /* fall through */
11574         case 1:
11575             is_aa64 = is_a64(env);
11576             break;
11577         default:
11578             g_assert_not_reached();
11579         }
11580 
11581         if (is_aa64) {
11582             addr += 0x400;
11583         } else {
11584             addr += 0x600;
11585         }
11586     } else if (pstate_read(env) & PSTATE_SP) {
11587         addr += 0x200;
11588     }
11589 
11590     switch (cs->exception_index) {
11591     case EXCP_GPC:
11592         qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11593                       env->cp15.mfar_el3);
11594         /* fall through */
11595     case EXCP_PREFETCH_ABORT:
11596     case EXCP_DATA_ABORT:
11597         /*
11598          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11599          * to be taken to the SError vector entrypoint.
11600          */
11601         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11602             syndrome_is_sync_extabt(env->exception.syndrome)) {
11603             addr += 0x180;
11604         }
11605         env->cp15.far_el[new_el] = env->exception.vaddress;
11606         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11607                       env->cp15.far_el[new_el]);
11608         /* fall through */
11609     case EXCP_BKPT:
11610     case EXCP_UDEF:
11611     case EXCP_SWI:
11612     case EXCP_HVC:
11613     case EXCP_HYP_TRAP:
11614     case EXCP_SMC:
11615         switch (syn_get_ec(env->exception.syndrome)) {
11616         case EC_ADVSIMDFPACCESSTRAP:
11617             /*
11618              * QEMU internal FP/SIMD syndromes from AArch32 include the
11619              * TA and coproc fields which are only exposed if the exception
11620              * is taken to AArch32 Hyp mode. Mask them out to get a valid
11621              * AArch64 format syndrome.
11622              */
11623             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11624             break;
11625         case EC_CP14RTTRAP:
11626         case EC_CP15RTTRAP:
11627         case EC_CP14DTTRAP:
11628             /*
11629              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11630              * the raw register field from the insn; when taking this to
11631              * AArch64 we must convert it to the AArch64 view of the register
11632              * number. Notice that we read a 4-bit AArch32 register number and
11633              * write back a 5-bit AArch64 one.
11634              */
11635             rt = extract32(env->exception.syndrome, 5, 4);
11636             rt = aarch64_regnum(env, rt);
11637             env->exception.syndrome = deposit32(env->exception.syndrome,
11638                                                 5, 5, rt);
11639             break;
11640         case EC_CP15RRTTRAP:
11641         case EC_CP14RRTTRAP:
11642             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11643             rt = extract32(env->exception.syndrome, 5, 4);
11644             rt = aarch64_regnum(env, rt);
11645             env->exception.syndrome = deposit32(env->exception.syndrome,
11646                                                 5, 5, rt);
11647             rt = extract32(env->exception.syndrome, 10, 4);
11648             rt = aarch64_regnum(env, rt);
11649             env->exception.syndrome = deposit32(env->exception.syndrome,
11650                                                 10, 5, rt);
11651             break;
11652         }
11653         env->cp15.esr_el[new_el] = env->exception.syndrome;
11654         break;
11655     case EXCP_IRQ:
11656     case EXCP_VIRQ:
11657     case EXCP_NMI:
11658     case EXCP_VINMI:
11659         addr += 0x80;
11660         break;
11661     case EXCP_FIQ:
11662     case EXCP_VFIQ:
11663     case EXCP_VFNMI:
11664         addr += 0x100;
11665         break;
11666     case EXCP_VSERR:
11667         addr += 0x180;
11668         /* Construct the SError syndrome from IDS and ISS fields. */
11669         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11670         env->cp15.esr_el[new_el] = env->exception.syndrome;
11671         break;
11672     default:
11673         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11674     }
11675 
11676     if (is_a64(env)) {
11677         old_mode = pstate_read(env);
11678         aarch64_save_sp(env, arm_current_el(env));
11679         env->elr_el[new_el] = env->pc;
11680 
11681         if (cur_el == 1 && new_el == 1) {
11682             uint64_t hcr = arm_hcr_el2_eff(env);
11683             if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
11684                 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
11685                 /*
11686                  * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
11687                  * by setting M[3:2] to 0b10.
11688                  * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
11689                  * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
11690                  */
11691                 old_mode = deposit32(old_mode, 2, 2, 2);
11692             }
11693         }
11694     } else {
11695         old_mode = cpsr_read_for_spsr_elx(env);
11696         env->elr_el[new_el] = env->regs[15];
11697 
11698         aarch64_sync_32_to_64(env);
11699 
11700         env->condexec_bits = 0;
11701     }
11702     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11703 
11704     qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
11705     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11706                   env->elr_el[new_el]);
11707 
11708     if (cpu_isar_feature(aa64_pan, cpu)) {
11709         /* The value of PSTATE.PAN is normally preserved, except when ... */
11710         new_mode |= old_mode & PSTATE_PAN;
11711         switch (new_el) {
11712         case 2:
11713             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
11714             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11715                 != (HCR_E2H | HCR_TGE)) {
11716                 break;
11717             }
11718             /* fall through */
11719         case 1:
11720             /* ... the target is EL1 ... */
11721             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
11722             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11723                 new_mode |= PSTATE_PAN;
11724             }
11725             break;
11726         }
11727     }
11728     if (cpu_isar_feature(aa64_mte, cpu)) {
11729         new_mode |= PSTATE_TCO;
11730     }
11731 
11732     if (cpu_isar_feature(aa64_ssbs, cpu)) {
11733         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11734             new_mode |= PSTATE_SSBS;
11735         } else {
11736             new_mode &= ~PSTATE_SSBS;
11737         }
11738     }
11739 
11740     if (cpu_isar_feature(aa64_nmi, cpu)) {
11741         if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) {
11742             new_mode |= PSTATE_ALLINT;
11743         } else {
11744             new_mode &= ~PSTATE_ALLINT;
11745         }
11746     }
11747 
11748     pstate_write(env, PSTATE_DAIF | new_mode);
11749     env->aarch64 = true;
11750     aarch64_restore_sp(env, new_el);
11751 
11752     if (tcg_enabled()) {
11753         helper_rebuild_hflags_a64(env, new_el);
11754     }
11755 
11756     env->pc = addr;
11757 
11758     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11759                   new_el, env->pc, pstate_read(env));
11760 }
11761 
11762 /*
11763  * Do semihosting call and set the appropriate return value. All the
11764  * permission and validity checks have been done at translate time.
11765  *
11766  * We only see semihosting exceptions in TCG only as they are not
11767  * trapped to the hypervisor in KVM.
11768  */
11769 #ifdef CONFIG_TCG
11770 static void tcg_handle_semihosting(CPUState *cs)
11771 {
11772     ARMCPU *cpu = ARM_CPU(cs);
11773     CPUARMState *env = &cpu->env;
11774 
11775     if (is_a64(env)) {
11776         qemu_log_mask(CPU_LOG_INT,
11777                       "...handling as semihosting call 0x%" PRIx64 "\n",
11778                       env->xregs[0]);
11779         do_common_semihosting(cs);
11780         env->pc += 4;
11781     } else {
11782         qemu_log_mask(CPU_LOG_INT,
11783                       "...handling as semihosting call 0x%x\n",
11784                       env->regs[0]);
11785         do_common_semihosting(cs);
11786         env->regs[15] += env->thumb ? 2 : 4;
11787     }
11788 }
11789 #endif
11790 
11791 /*
11792  * Handle a CPU exception for A and R profile CPUs.
11793  * Do any appropriate logging, handle PSCI calls, and then hand off
11794  * to the AArch64-entry or AArch32-entry function depending on the
11795  * target exception level's register width.
11796  *
11797  * Note: this is used for both TCG (as the do_interrupt tcg op),
11798  *       and KVM to re-inject guest debug exceptions, and to
11799  *       inject a Synchronous-External-Abort.
11800  */
11801 void arm_cpu_do_interrupt(CPUState *cs)
11802 {
11803     ARMCPU *cpu = ARM_CPU(cs);
11804     CPUARMState *env = &cpu->env;
11805     unsigned int new_el = env->exception.target_el;
11806 
11807     assert(!arm_feature(env, ARM_FEATURE_M));
11808 
11809     arm_log_exception(cs);
11810     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11811                   new_el);
11812     if (qemu_loglevel_mask(CPU_LOG_INT)
11813         && !excp_is_internal(cs->exception_index)) {
11814         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11815                       syn_get_ec(env->exception.syndrome),
11816                       env->exception.syndrome);
11817     }
11818 
11819     if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11820         arm_handle_psci_call(cpu);
11821         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11822         return;
11823     }
11824 
11825     /*
11826      * Semihosting semantics depend on the register width of the code
11827      * that caused the exception, not the target exception level, so
11828      * must be handled here.
11829      */
11830 #ifdef CONFIG_TCG
11831     if (cs->exception_index == EXCP_SEMIHOST) {
11832         tcg_handle_semihosting(cs);
11833         return;
11834     }
11835 #endif
11836 
11837     /*
11838      * Hooks may change global state so BQL should be held, also the
11839      * BQL needs to be held for any modification of
11840      * cs->interrupt_request.
11841      */
11842     g_assert(bql_locked());
11843 
11844     arm_call_pre_el_change_hook(cpu);
11845 
11846     assert(!excp_is_internal(cs->exception_index));
11847     if (arm_el_is_aa64(env, new_el)) {
11848         arm_cpu_do_interrupt_aarch64(cs);
11849     } else {
11850         arm_cpu_do_interrupt_aarch32(cs);
11851     }
11852 
11853     arm_call_el_change_hook(cpu);
11854 
11855     if (!kvm_enabled()) {
11856         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11857     }
11858 }
11859 #endif /* !CONFIG_USER_ONLY */
11860 
11861 uint64_t arm_sctlr(CPUARMState *env, int el)
11862 {
11863     if (arm_aa32_secure_pl1_0(env)) {
11864         /* In Secure PL1&0 SCTLR_S is always controlling */
11865         el = 3;
11866     } else if (el == 0) {
11867         /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11868         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11869         el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11870     }
11871     return env->cp15.sctlr_el[el];
11872 }
11873 
11874 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11875 {
11876     if (regime_has_2_ranges(mmu_idx)) {
11877         return extract64(tcr, 37, 2);
11878     } else if (regime_is_stage2(mmu_idx)) {
11879         return 0; /* VTCR_EL2 */
11880     } else {
11881         /* Replicate the single TBI bit so we always have 2 bits.  */
11882         return extract32(tcr, 20, 1) * 3;
11883     }
11884 }
11885 
11886 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11887 {
11888     if (regime_has_2_ranges(mmu_idx)) {
11889         return extract64(tcr, 51, 2);
11890     } else if (regime_is_stage2(mmu_idx)) {
11891         return 0; /* VTCR_EL2 */
11892     } else {
11893         /* Replicate the single TBID bit so we always have 2 bits.  */
11894         return extract32(tcr, 29, 1) * 3;
11895     }
11896 }
11897 
11898 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11899 {
11900     if (regime_has_2_ranges(mmu_idx)) {
11901         return extract64(tcr, 57, 2);
11902     } else {
11903         /* Replicate the single TCMA bit so we always have 2 bits.  */
11904         return extract32(tcr, 30, 1) * 3;
11905     }
11906 }
11907 
11908 static ARMGranuleSize tg0_to_gran_size(int tg)
11909 {
11910     switch (tg) {
11911     case 0:
11912         return Gran4K;
11913     case 1:
11914         return Gran64K;
11915     case 2:
11916         return Gran16K;
11917     default:
11918         return GranInvalid;
11919     }
11920 }
11921 
11922 static ARMGranuleSize tg1_to_gran_size(int tg)
11923 {
11924     switch (tg) {
11925     case 1:
11926         return Gran16K;
11927     case 2:
11928         return Gran4K;
11929     case 3:
11930         return Gran64K;
11931     default:
11932         return GranInvalid;
11933     }
11934 }
11935 
11936 static inline bool have4k(ARMCPU *cpu, bool stage2)
11937 {
11938     return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11939         : cpu_isar_feature(aa64_tgran4, cpu);
11940 }
11941 
11942 static inline bool have16k(ARMCPU *cpu, bool stage2)
11943 {
11944     return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11945         : cpu_isar_feature(aa64_tgran16, cpu);
11946 }
11947 
11948 static inline bool have64k(ARMCPU *cpu, bool stage2)
11949 {
11950     return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11951         : cpu_isar_feature(aa64_tgran64, cpu);
11952 }
11953 
11954 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11955                                          bool stage2)
11956 {
11957     switch (gran) {
11958     case Gran4K:
11959         if (have4k(cpu, stage2)) {
11960             return gran;
11961         }
11962         break;
11963     case Gran16K:
11964         if (have16k(cpu, stage2)) {
11965             return gran;
11966         }
11967         break;
11968     case Gran64K:
11969         if (have64k(cpu, stage2)) {
11970             return gran;
11971         }
11972         break;
11973     case GranInvalid:
11974         break;
11975     }
11976     /*
11977      * If the guest selects a granule size that isn't implemented,
11978      * the architecture requires that we behave as if it selected one
11979      * that is (with an IMPDEF choice of which one to pick). We choose
11980      * to implement the smallest supported granule size.
11981      */
11982     if (have4k(cpu, stage2)) {
11983         return Gran4K;
11984     }
11985     if (have16k(cpu, stage2)) {
11986         return Gran16K;
11987     }
11988     assert(have64k(cpu, stage2));
11989     return Gran64K;
11990 }
11991 
11992 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11993                                    ARMMMUIdx mmu_idx, bool data,
11994                                    bool el1_is_aa32)
11995 {
11996     uint64_t tcr = regime_tcr(env, mmu_idx);
11997     bool epd, hpd, tsz_oob, ds, ha, hd;
11998     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11999     ARMGranuleSize gran;
12000     ARMCPU *cpu = env_archcpu(env);
12001     bool stage2 = regime_is_stage2(mmu_idx);
12002 
12003     if (!regime_has_2_ranges(mmu_idx)) {
12004         select = 0;
12005         tsz = extract32(tcr, 0, 6);
12006         gran = tg0_to_gran_size(extract32(tcr, 14, 2));
12007         if (stage2) {
12008             /* VTCR_EL2 */
12009             hpd = false;
12010         } else {
12011             hpd = extract32(tcr, 24, 1);
12012         }
12013         epd = false;
12014         sh = extract32(tcr, 12, 2);
12015         ps = extract32(tcr, 16, 3);
12016         ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
12017         hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
12018         ds = extract64(tcr, 32, 1);
12019     } else {
12020         bool e0pd;
12021 
12022         /*
12023          * Bit 55 is always between the two regions, and is canonical for
12024          * determining if address tagging is enabled.
12025          */
12026         select = extract64(va, 55, 1);
12027         if (!select) {
12028             tsz = extract32(tcr, 0, 6);
12029             gran = tg0_to_gran_size(extract32(tcr, 14, 2));
12030             epd = extract32(tcr, 7, 1);
12031             sh = extract32(tcr, 12, 2);
12032             hpd = extract64(tcr, 41, 1);
12033             e0pd = extract64(tcr, 55, 1);
12034         } else {
12035             tsz = extract32(tcr, 16, 6);
12036             gran = tg1_to_gran_size(extract32(tcr, 30, 2));
12037             epd = extract32(tcr, 23, 1);
12038             sh = extract32(tcr, 28, 2);
12039             hpd = extract64(tcr, 42, 1);
12040             e0pd = extract64(tcr, 56, 1);
12041         }
12042         ps = extract64(tcr, 32, 3);
12043         ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
12044         hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
12045         ds = extract64(tcr, 59, 1);
12046 
12047         if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
12048             regime_is_user(env, mmu_idx)) {
12049             epd = true;
12050         }
12051     }
12052 
12053     gran = sanitize_gran_size(cpu, gran, stage2);
12054 
12055     if (cpu_isar_feature(aa64_st, cpu)) {
12056         max_tsz = 48 - (gran == Gran64K);
12057     } else {
12058         max_tsz = 39;
12059     }
12060 
12061     /*
12062      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
12063      * adjust the effective value of DS, as documented.
12064      */
12065     min_tsz = 16;
12066     if (gran == Gran64K) {
12067         if (cpu_isar_feature(aa64_lva, cpu)) {
12068             min_tsz = 12;
12069         }
12070         ds = false;
12071     } else if (ds) {
12072         if (regime_is_stage2(mmu_idx)) {
12073             if (gran == Gran16K) {
12074                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
12075             } else {
12076                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
12077             }
12078         } else {
12079             if (gran == Gran16K) {
12080                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
12081             } else {
12082                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
12083             }
12084         }
12085         if (ds) {
12086             min_tsz = 12;
12087         }
12088     }
12089 
12090     if (stage2 && el1_is_aa32) {
12091         /*
12092          * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
12093          * are loosened: a configured IPA of 40 bits is permitted even if
12094          * the implemented PA is less than that (and so a 40 bit IPA would
12095          * fault for an AArch64 EL1). See R_DTLMN.
12096          */
12097         min_tsz = MIN(min_tsz, 24);
12098     }
12099 
12100     if (tsz > max_tsz) {
12101         tsz = max_tsz;
12102         tsz_oob = true;
12103     } else if (tsz < min_tsz) {
12104         tsz = min_tsz;
12105         tsz_oob = true;
12106     } else {
12107         tsz_oob = false;
12108     }
12109 
12110     /* Present TBI as a composite with TBID.  */
12111     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12112     if (!data) {
12113         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12114     }
12115     tbi = (tbi >> select) & 1;
12116 
12117     return (ARMVAParameters) {
12118         .tsz = tsz,
12119         .ps = ps,
12120         .sh = sh,
12121         .select = select,
12122         .tbi = tbi,
12123         .epd = epd,
12124         .hpd = hpd,
12125         .tsz_oob = tsz_oob,
12126         .ds = ds,
12127         .ha = ha,
12128         .hd = ha && hd,
12129         .gran = gran,
12130     };
12131 }
12132 
12133 /*
12134  * Note that signed overflow is undefined in C.  The following routines are
12135  * careful to use unsigned types where modulo arithmetic is required.
12136  * Failure to do so _will_ break on newer gcc.
12137  */
12138 
12139 /* Signed saturating arithmetic.  */
12140 
12141 /* Perform 16-bit signed saturating addition.  */
12142 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12143 {
12144     uint16_t res;
12145 
12146     res = a + b;
12147     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12148         if (a & 0x8000) {
12149             res = 0x8000;
12150         } else {
12151             res = 0x7fff;
12152         }
12153     }
12154     return res;
12155 }
12156 
12157 /* Perform 8-bit signed saturating addition.  */
12158 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12159 {
12160     uint8_t res;
12161 
12162     res = a + b;
12163     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12164         if (a & 0x80) {
12165             res = 0x80;
12166         } else {
12167             res = 0x7f;
12168         }
12169     }
12170     return res;
12171 }
12172 
12173 /* Perform 16-bit signed saturating subtraction.  */
12174 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12175 {
12176     uint16_t res;
12177 
12178     res = a - b;
12179     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12180         if (a & 0x8000) {
12181             res = 0x8000;
12182         } else {
12183             res = 0x7fff;
12184         }
12185     }
12186     return res;
12187 }
12188 
12189 /* Perform 8-bit signed saturating subtraction.  */
12190 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12191 {
12192     uint8_t res;
12193 
12194     res = a - b;
12195     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12196         if (a & 0x80) {
12197             res = 0x80;
12198         } else {
12199             res = 0x7f;
12200         }
12201     }
12202     return res;
12203 }
12204 
12205 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12206 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12207 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12208 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12209 #define PFX q
12210 
12211 #include "op_addsub.h"
12212 
12213 /* Unsigned saturating arithmetic.  */
12214 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12215 {
12216     uint16_t res;
12217     res = a + b;
12218     if (res < a) {
12219         res = 0xffff;
12220     }
12221     return res;
12222 }
12223 
12224 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12225 {
12226     if (a > b) {
12227         return a - b;
12228     } else {
12229         return 0;
12230     }
12231 }
12232 
12233 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12234 {
12235     uint8_t res;
12236     res = a + b;
12237     if (res < a) {
12238         res = 0xff;
12239     }
12240     return res;
12241 }
12242 
12243 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12244 {
12245     if (a > b) {
12246         return a - b;
12247     } else {
12248         return 0;
12249     }
12250 }
12251 
12252 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12253 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12254 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12255 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12256 #define PFX uq
12257 
12258 #include "op_addsub.h"
12259 
12260 /* Signed modulo arithmetic.  */
12261 #define SARITH16(a, b, n, op) do { \
12262     int32_t sum; \
12263     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12264     RESULT(sum, n, 16); \
12265     if (sum >= 0) \
12266         ge |= 3 << (n * 2); \
12267     } while (0)
12268 
12269 #define SARITH8(a, b, n, op) do { \
12270     int32_t sum; \
12271     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12272     RESULT(sum, n, 8); \
12273     if (sum >= 0) \
12274         ge |= 1 << n; \
12275     } while (0)
12276 
12277 
12278 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12279 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12280 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
12281 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
12282 #define PFX s
12283 #define ARITH_GE
12284 
12285 #include "op_addsub.h"
12286 
12287 /* Unsigned modulo arithmetic.  */
12288 #define ADD16(a, b, n) do { \
12289     uint32_t sum; \
12290     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12291     RESULT(sum, n, 16); \
12292     if ((sum >> 16) == 1) \
12293         ge |= 3 << (n * 2); \
12294     } while (0)
12295 
12296 #define ADD8(a, b, n) do { \
12297     uint32_t sum; \
12298     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12299     RESULT(sum, n, 8); \
12300     if ((sum >> 8) == 1) \
12301         ge |= 1 << n; \
12302     } while (0)
12303 
12304 #define SUB16(a, b, n) do { \
12305     uint32_t sum; \
12306     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12307     RESULT(sum, n, 16); \
12308     if ((sum >> 16) == 0) \
12309         ge |= 3 << (n * 2); \
12310     } while (0)
12311 
12312 #define SUB8(a, b, n) do { \
12313     uint32_t sum; \
12314     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12315     RESULT(sum, n, 8); \
12316     if ((sum >> 8) == 0) \
12317         ge |= 1 << n; \
12318     } while (0)
12319 
12320 #define PFX u
12321 #define ARITH_GE
12322 
12323 #include "op_addsub.h"
12324 
12325 /* Halved signed arithmetic.  */
12326 #define ADD16(a, b, n) \
12327   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12328 #define SUB16(a, b, n) \
12329   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12330 #define ADD8(a, b, n) \
12331   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12332 #define SUB8(a, b, n) \
12333   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12334 #define PFX sh
12335 
12336 #include "op_addsub.h"
12337 
12338 /* Halved unsigned arithmetic.  */
12339 #define ADD16(a, b, n) \
12340   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12341 #define SUB16(a, b, n) \
12342   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12343 #define ADD8(a, b, n) \
12344   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12345 #define SUB8(a, b, n) \
12346   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12347 #define PFX uh
12348 
12349 #include "op_addsub.h"
12350 
12351 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12352 {
12353     if (a > b) {
12354         return a - b;
12355     } else {
12356         return b - a;
12357     }
12358 }
12359 
12360 /* Unsigned sum of absolute byte differences.  */
12361 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12362 {
12363     uint32_t sum;
12364     sum = do_usad(a, b);
12365     sum += do_usad(a >> 8, b >> 8);
12366     sum += do_usad(a >> 16, b >> 16);
12367     sum += do_usad(a >> 24, b >> 24);
12368     return sum;
12369 }
12370 
12371 /* For ARMv6 SEL instruction.  */
12372 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12373 {
12374     uint32_t mask;
12375 
12376     mask = 0;
12377     if (flags & 1) {
12378         mask |= 0xff;
12379     }
12380     if (flags & 2) {
12381         mask |= 0xff00;
12382     }
12383     if (flags & 4) {
12384         mask |= 0xff0000;
12385     }
12386     if (flags & 8) {
12387         mask |= 0xff000000;
12388     }
12389     return (a & mask) | (b & ~mask);
12390 }
12391 
12392 /*
12393  * CRC helpers.
12394  * The upper bytes of val (above the number specified by 'bytes') must have
12395  * been zeroed out by the caller.
12396  */
12397 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12398 {
12399     uint8_t buf[4];
12400 
12401     stl_le_p(buf, val);
12402 
12403     /* zlib crc32 converts the accumulator and output to one's complement.  */
12404     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12405 }
12406 
12407 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12408 {
12409     uint8_t buf[4];
12410 
12411     stl_le_p(buf, val);
12412 
12413     /* Linux crc32c converts the output to one's complement.  */
12414     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12415 }
12416 
12417 /*
12418  * Return the exception level to which FP-disabled exceptions should
12419  * be taken, or 0 if FP is enabled.
12420  */
12421 int fp_exception_el(CPUARMState *env, int cur_el)
12422 {
12423 #ifndef CONFIG_USER_ONLY
12424     uint64_t hcr_el2;
12425 
12426     /*
12427      * CPACR and the CPTR registers don't exist before v6, so FP is
12428      * always accessible
12429      */
12430     if (!arm_feature(env, ARM_FEATURE_V6)) {
12431         return 0;
12432     }
12433 
12434     if (arm_feature(env, ARM_FEATURE_M)) {
12435         /* CPACR can cause a NOCP UsageFault taken to current security state */
12436         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12437             return 1;
12438         }
12439 
12440         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12441             if (!extract32(env->v7m.nsacr, 10, 1)) {
12442                 /* FP insns cause a NOCP UsageFault taken to Secure */
12443                 return 3;
12444             }
12445         }
12446 
12447         return 0;
12448     }
12449 
12450     hcr_el2 = arm_hcr_el2_eff(env);
12451 
12452     /*
12453      * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12454      * 0, 2 : trap EL0 and EL1/PL1 accesses
12455      * 1    : trap only EL0 accesses
12456      * 3    : trap no accesses
12457      * This register is ignored if E2H+TGE are both set.
12458      */
12459     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12460         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
12461 
12462         switch (fpen) {
12463         case 1:
12464             if (cur_el != 0) {
12465                 break;
12466             }
12467             /* fall through */
12468         case 0:
12469         case 2:
12470             /* Trap from Secure PL0 or PL1 to Secure PL1. */
12471             if (!arm_el_is_aa64(env, 3)
12472                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
12473                 return 3;
12474             }
12475             if (cur_el <= 1) {
12476                 return 1;
12477             }
12478             break;
12479         }
12480     }
12481 
12482     /*
12483      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12484      * to control non-secure access to the FPU. It doesn't have any
12485      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12486      */
12487     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12488          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12489         if (!extract32(env->cp15.nsacr, 10, 1)) {
12490             /* FP insns act as UNDEF */
12491             return cur_el == 2 ? 2 : 1;
12492         }
12493     }
12494 
12495     /*
12496      * CPTR_EL2 is present in v7VE or v8, and changes format
12497      * with HCR_EL2.E2H (regardless of TGE).
12498      */
12499     if (cur_el <= 2) {
12500         if (hcr_el2 & HCR_E2H) {
12501             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
12502             case 1:
12503                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
12504                     break;
12505                 }
12506                 /* fall through */
12507             case 0:
12508             case 2:
12509                 return 2;
12510             }
12511         } else if (arm_is_el2_enabled(env)) {
12512             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12513                 return 2;
12514             }
12515         }
12516     }
12517 
12518     /* CPTR_EL3 : present in v8 */
12519     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12520         /* Trap all FP ops to EL3 */
12521         return 3;
12522     }
12523 #endif
12524     return 0;
12525 }
12526 
12527 /*
12528  * Return the exception level we're running at if this is our mmu_idx.
12529  * s_pl1_0 should be true if this is the AArch32 Secure PL1&0 translation
12530  * regime.
12531  */
12532 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx, bool s_pl1_0)
12533 {
12534     if (mmu_idx & ARM_MMU_IDX_M) {
12535         return mmu_idx & ARM_MMU_IDX_M_PRIV;
12536     }
12537 
12538     switch (mmu_idx) {
12539     case ARMMMUIdx_E10_0:
12540     case ARMMMUIdx_E20_0:
12541         return 0;
12542     case ARMMMUIdx_E10_1:
12543     case ARMMMUIdx_E10_1_PAN:
12544         return s_pl1_0 ? 3 : 1;
12545     case ARMMMUIdx_E2:
12546     case ARMMMUIdx_E20_2:
12547     case ARMMMUIdx_E20_2_PAN:
12548         return 2;
12549     case ARMMMUIdx_E3:
12550         return 3;
12551     default:
12552         g_assert_not_reached();
12553     }
12554 }
12555 
12556 #ifndef CONFIG_TCG
12557 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12558 {
12559     g_assert_not_reached();
12560 }
12561 #endif
12562 
12563 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12564 {
12565     ARMMMUIdx idx;
12566     uint64_t hcr;
12567 
12568     if (arm_feature(env, ARM_FEATURE_M)) {
12569         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12570     }
12571 
12572     /* See ARM pseudo-function ELIsInHost.  */
12573     switch (el) {
12574     case 0:
12575         hcr = arm_hcr_el2_eff(env);
12576         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12577             idx = ARMMMUIdx_E20_0;
12578         } else {
12579             idx = ARMMMUIdx_E10_0;
12580         }
12581         break;
12582     case 3:
12583         /*
12584          * AArch64 EL3 has its own translation regime; AArch32 EL3
12585          * uses the Secure PL1&0 translation regime.
12586          */
12587         if (arm_el_is_aa64(env, 3)) {
12588             return ARMMMUIdx_E3;
12589         }
12590         /* fall through */
12591     case 1:
12592         if (arm_pan_enabled(env)) {
12593             idx = ARMMMUIdx_E10_1_PAN;
12594         } else {
12595             idx = ARMMMUIdx_E10_1;
12596         }
12597         break;
12598     case 2:
12599         /* Note that TGE does not apply at EL2.  */
12600         if (arm_hcr_el2_eff(env) & HCR_E2H) {
12601             if (arm_pan_enabled(env)) {
12602                 idx = ARMMMUIdx_E20_2_PAN;
12603             } else {
12604                 idx = ARMMMUIdx_E20_2;
12605             }
12606         } else {
12607             idx = ARMMMUIdx_E2;
12608         }
12609         break;
12610     default:
12611         g_assert_not_reached();
12612     }
12613 
12614     return idx;
12615 }
12616 
12617 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12618 {
12619     return arm_mmu_idx_el(env, arm_current_el(env));
12620 }
12621 
12622 static bool mve_no_pred(CPUARMState *env)
12623 {
12624     /*
12625      * Return true if there is definitely no predication of MVE
12626      * instructions by VPR or LTPSIZE. (Returning false even if there
12627      * isn't any predication is OK; generated code will just be
12628      * a little worse.)
12629      * If the CPU does not implement MVE then this TB flag is always 0.
12630      *
12631      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12632      * logic in gen_update_fp_context() needs to be updated to match.
12633      *
12634      * We do not include the effect of the ECI bits here -- they are
12635      * tracked in other TB flags. This simplifies the logic for
12636      * "when did we emit code that changes the MVE_NO_PRED TB flag
12637      * and thus need to end the TB?".
12638      */
12639     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12640         return false;
12641     }
12642     if (env->v7m.vpr) {
12643         return false;
12644     }
12645     if (env->v7m.ltpsize < 4) {
12646         return false;
12647     }
12648     return true;
12649 }
12650 
12651 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12652                           uint64_t *cs_base, uint32_t *pflags)
12653 {
12654     CPUARMTBFlags flags;
12655 
12656     assert_hflags_rebuild_correctly(env);
12657     flags = env->hflags;
12658 
12659     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12660         *pc = env->pc;
12661         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12662             DP_TBFLAG_A64(flags, BTYPE, env->btype);
12663         }
12664     } else {
12665         *pc = env->regs[15];
12666 
12667         if (arm_feature(env, ARM_FEATURE_M)) {
12668             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12669                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12670                 != env->v7m.secure) {
12671                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12672             }
12673 
12674             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12675                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12676                  (env->v7m.secure &&
12677                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12678                 /*
12679                  * ASPEN is set, but FPCA/SFPA indicate that there is no
12680                  * active FP context; we must create a new FP context before
12681                  * executing any FP insn.
12682                  */
12683                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12684             }
12685 
12686             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12687             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12688                 DP_TBFLAG_M32(flags, LSPACT, 1);
12689             }
12690 
12691             if (mve_no_pred(env)) {
12692                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12693             }
12694         } else {
12695             /*
12696              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12697              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12698              */
12699             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12700                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12701             } else {
12702                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12703                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12704             }
12705             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12706                 DP_TBFLAG_A32(flags, VFPEN, 1);
12707             }
12708         }
12709 
12710         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12711         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12712     }
12713 
12714     /*
12715      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12716      * states defined in the ARM ARM for software singlestep:
12717      *  SS_ACTIVE   PSTATE.SS   State
12718      *     0            x       Inactive (the TB flag for SS is always 0)
12719      *     1            0       Active-pending
12720      *     1            1       Active-not-pending
12721      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12722      */
12723     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12724         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12725     }
12726 
12727     *pflags = flags.flags;
12728     *cs_base = flags.flags2;
12729 }
12730 
12731 #ifdef TARGET_AARCH64
12732 /*
12733  * The manual says that when SVE is enabled and VQ is widened the
12734  * implementation is allowed to zero the previously inaccessible
12735  * portion of the registers.  The corollary to that is that when
12736  * SVE is enabled and VQ is narrowed we are also allowed to zero
12737  * the now inaccessible portion of the registers.
12738  *
12739  * The intent of this is that no predicate bit beyond VQ is ever set.
12740  * Which means that some operations on predicate registers themselves
12741  * may operate on full uint64_t or even unrolled across the maximum
12742  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12743  * may well be cheaper than conditionals to restrict the operation
12744  * to the relevant portion of a uint16_t[16].
12745  */
12746 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12747 {
12748     int i, j;
12749     uint64_t pmask;
12750 
12751     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12752     assert(vq <= env_archcpu(env)->sve_max_vq);
12753 
12754     /* Zap the high bits of the zregs.  */
12755     for (i = 0; i < 32; i++) {
12756         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12757     }
12758 
12759     /* Zap the high bits of the pregs and ffr.  */
12760     pmask = 0;
12761     if (vq & 3) {
12762         pmask = ~(-1ULL << (16 * (vq & 3)));
12763     }
12764     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12765         for (i = 0; i < 17; ++i) {
12766             env->vfp.pregs[i].p[j] &= pmask;
12767         }
12768         pmask = 0;
12769     }
12770 }
12771 
12772 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12773 {
12774     int exc_el;
12775 
12776     if (sm) {
12777         exc_el = sme_exception_el(env, el);
12778     } else {
12779         exc_el = sve_exception_el(env, el);
12780     }
12781     if (exc_el) {
12782         return 0; /* disabled */
12783     }
12784     return sve_vqm1_for_el_sm(env, el, sm);
12785 }
12786 
12787 /*
12788  * Notice a change in SVE vector size when changing EL.
12789  */
12790 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12791                            int new_el, bool el0_a64)
12792 {
12793     ARMCPU *cpu = env_archcpu(env);
12794     int old_len, new_len;
12795     bool old_a64, new_a64, sm;
12796 
12797     /* Nothing to do if no SVE.  */
12798     if (!cpu_isar_feature(aa64_sve, cpu)) {
12799         return;
12800     }
12801 
12802     /* Nothing to do if FP is disabled in either EL.  */
12803     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12804         return;
12805     }
12806 
12807     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12808     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12809 
12810     /*
12811      * Both AArch64.TakeException and AArch64.ExceptionReturn
12812      * invoke ResetSVEState when taking an exception from, or
12813      * returning to, AArch32 state when PSTATE.SM is enabled.
12814      */
12815     sm = FIELD_EX64(env->svcr, SVCR, SM);
12816     if (old_a64 != new_a64 && sm) {
12817         arm_reset_sve_state(env);
12818         return;
12819     }
12820 
12821     /*
12822      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12823      * at ELx, or not available because the EL is in AArch32 state, then
12824      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12825      * has an effective value of 0".
12826      *
12827      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12828      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12829      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12830      * we already have the correct register contents when encountering the
12831      * vq0->vq0 transition between EL0->EL1.
12832      */
12833     old_len = new_len = 0;
12834     if (old_a64) {
12835         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12836     }
12837     if (new_a64) {
12838         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12839     }
12840 
12841     /* When changing vector length, clear inaccessible state.  */
12842     if (new_len < old_len) {
12843         aarch64_sve_narrow_vq(env, new_len + 1);
12844     }
12845 }
12846 #endif
12847 
12848 #ifndef CONFIG_USER_ONLY
12849 ARMSecuritySpace arm_security_space(CPUARMState *env)
12850 {
12851     if (arm_feature(env, ARM_FEATURE_M)) {
12852         return arm_secure_to_space(env->v7m.secure);
12853     }
12854 
12855     /*
12856      * If EL3 is not supported then the secure state is implementation
12857      * defined, in which case QEMU defaults to non-secure.
12858      */
12859     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12860         return ARMSS_NonSecure;
12861     }
12862 
12863     /* Check for AArch64 EL3 or AArch32 Mon. */
12864     if (is_a64(env)) {
12865         if (extract32(env->pstate, 2, 2) == 3) {
12866             if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12867                 return ARMSS_Root;
12868             } else {
12869                 return ARMSS_Secure;
12870             }
12871         }
12872     } else {
12873         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12874             return ARMSS_Secure;
12875         }
12876     }
12877 
12878     return arm_security_space_below_el3(env);
12879 }
12880 
12881 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12882 {
12883     assert(!arm_feature(env, ARM_FEATURE_M));
12884 
12885     /*
12886      * If EL3 is not supported then the secure state is implementation
12887      * defined, in which case QEMU defaults to non-secure.
12888      */
12889     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12890         return ARMSS_NonSecure;
12891     }
12892 
12893     /*
12894      * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12895      * Ignoring NSE when !NS retains consistency without having to
12896      * modify other predicates.
12897      */
12898     if (!(env->cp15.scr_el3 & SCR_NS)) {
12899         return ARMSS_Secure;
12900     } else if (env->cp15.scr_el3 & SCR_NSE) {
12901         return ARMSS_Realm;
12902     } else {
12903         return ARMSS_NonSecure;
12904     }
12905 }
12906 #endif /* !CONFIG_USER_ONLY */
12907