1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/kvm.h" 28 #include "sysemu/tcg.h" 29 #include "qemu/range.h" 30 #include "qapi/qapi-commands-machine-target.h" 31 #include "qapi/error.h" 32 #include "qemu/guest-random.h" 33 #ifdef CONFIG_TCG 34 #include "arm_ldst.h" 35 #include "exec/cpu_ldst.h" 36 #endif 37 38 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 39 40 #ifndef CONFIG_USER_ONLY 41 42 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 43 MMUAccessType access_type, ARMMMUIdx mmu_idx, 44 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 45 target_ulong *page_size_ptr, 46 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 47 #endif 48 49 static void switch_mode(CPUARMState *env, int mode); 50 51 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 52 { 53 ARMCPU *cpu = env_archcpu(env); 54 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 55 56 /* VFP data registers are always little-endian. */ 57 if (reg < nregs) { 58 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); 59 } 60 if (arm_feature(env, ARM_FEATURE_NEON)) { 61 /* Aliases for Q regs. */ 62 nregs += 16; 63 if (reg < nregs) { 64 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 65 return gdb_get_reg128(buf, q[0], q[1]); 66 } 67 } 68 switch (reg - nregs) { 69 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; 70 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; 71 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; 72 } 73 return 0; 74 } 75 76 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 77 { 78 ARMCPU *cpu = env_archcpu(env); 79 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 80 81 if (reg < nregs) { 82 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 83 return 8; 84 } 85 if (arm_feature(env, ARM_FEATURE_NEON)) { 86 nregs += 16; 87 if (reg < nregs) { 88 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 89 q[0] = ldq_le_p(buf); 90 q[1] = ldq_le_p(buf + 8); 91 return 16; 92 } 93 } 94 switch (reg - nregs) { 95 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 96 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 97 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 98 } 99 return 0; 100 } 101 102 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 103 { 104 switch (reg) { 105 case 0 ... 31: 106 { 107 /* 128 bit FP register - quads are in LE order */ 108 uint64_t *q = aa64_vfp_qreg(env, reg); 109 return gdb_get_reg128(buf, q[1], q[0]); 110 } 111 case 32: 112 /* FPSR */ 113 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 114 case 33: 115 /* FPCR */ 116 return gdb_get_reg32(buf,vfp_get_fpcr(env)); 117 default: 118 return 0; 119 } 120 } 121 122 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 123 { 124 switch (reg) { 125 case 0 ... 31: 126 /* 128 bit FP register */ 127 { 128 uint64_t *q = aa64_vfp_qreg(env, reg); 129 q[0] = ldq_le_p(buf); 130 q[1] = ldq_le_p(buf + 8); 131 return 16; 132 } 133 case 32: 134 /* FPSR */ 135 vfp_set_fpsr(env, ldl_p(buf)); 136 return 4; 137 case 33: 138 /* FPCR */ 139 vfp_set_fpcr(env, ldl_p(buf)); 140 return 4; 141 default: 142 return 0; 143 } 144 } 145 146 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 147 { 148 assert(ri->fieldoffset); 149 if (cpreg_field_is_64bit(ri)) { 150 return CPREG_FIELD64(env, ri); 151 } else { 152 return CPREG_FIELD32(env, ri); 153 } 154 } 155 156 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 157 uint64_t value) 158 { 159 assert(ri->fieldoffset); 160 if (cpreg_field_is_64bit(ri)) { 161 CPREG_FIELD64(env, ri) = value; 162 } else { 163 CPREG_FIELD32(env, ri) = value; 164 } 165 } 166 167 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 168 { 169 return (char *)env + ri->fieldoffset; 170 } 171 172 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 173 { 174 /* Raw read of a coprocessor register (as needed for migration, etc). */ 175 if (ri->type & ARM_CP_CONST) { 176 return ri->resetvalue; 177 } else if (ri->raw_readfn) { 178 return ri->raw_readfn(env, ri); 179 } else if (ri->readfn) { 180 return ri->readfn(env, ri); 181 } else { 182 return raw_read(env, ri); 183 } 184 } 185 186 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 187 uint64_t v) 188 { 189 /* Raw write of a coprocessor register (as needed for migration, etc). 190 * Note that constant registers are treated as write-ignored; the 191 * caller should check for success by whether a readback gives the 192 * value written. 193 */ 194 if (ri->type & ARM_CP_CONST) { 195 return; 196 } else if (ri->raw_writefn) { 197 ri->raw_writefn(env, ri, v); 198 } else if (ri->writefn) { 199 ri->writefn(env, ri, v); 200 } else { 201 raw_write(env, ri, v); 202 } 203 } 204 205 /** 206 * arm_get/set_gdb_*: get/set a gdb register 207 * @env: the CPU state 208 * @buf: a buffer to copy to/from 209 * @reg: register number (offset from start of group) 210 * 211 * We return the number of bytes copied 212 */ 213 214 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) 215 { 216 ARMCPU *cpu = env_archcpu(env); 217 const ARMCPRegInfo *ri; 218 uint32_t key; 219 220 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; 221 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 222 if (ri) { 223 if (cpreg_field_is_64bit(ri)) { 224 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 225 } else { 226 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 227 } 228 } 229 return 0; 230 } 231 232 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 233 { 234 return 0; 235 } 236 237 #ifdef TARGET_AARCH64 238 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) 239 { 240 ARMCPU *cpu = env_archcpu(env); 241 242 switch (reg) { 243 /* The first 32 registers are the zregs */ 244 case 0 ... 31: 245 { 246 int vq, len = 0; 247 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 248 len += gdb_get_reg128(buf, 249 env->vfp.zregs[reg].d[vq * 2 + 1], 250 env->vfp.zregs[reg].d[vq * 2]); 251 } 252 return len; 253 } 254 case 32: 255 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 256 case 33: 257 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 258 /* then 16 predicates and the ffr */ 259 case 34 ... 50: 260 { 261 int preg = reg - 34; 262 int vq, len = 0; 263 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 264 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 265 } 266 return len; 267 } 268 case 51: 269 { 270 /* 271 * We report in Vector Granules (VG) which is 64bit in a Z reg 272 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 273 */ 274 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; 275 return gdb_get_reg32(buf, vq * 2); 276 } 277 default: 278 /* gdbstub asked for something out our range */ 279 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 280 break; 281 } 282 283 return 0; 284 } 285 286 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) 287 { 288 ARMCPU *cpu = env_archcpu(env); 289 290 /* The first 32 registers are the zregs */ 291 switch (reg) { 292 /* The first 32 registers are the zregs */ 293 case 0 ... 31: 294 { 295 int vq, len = 0; 296 uint64_t *p = (uint64_t *) buf; 297 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 298 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 299 env->vfp.zregs[reg].d[vq * 2] = *p++; 300 len += 16; 301 } 302 return len; 303 } 304 case 32: 305 vfp_set_fpsr(env, *(uint32_t *)buf); 306 return 4; 307 case 33: 308 vfp_set_fpcr(env, *(uint32_t *)buf); 309 return 4; 310 case 34 ... 50: 311 { 312 int preg = reg - 34; 313 int vq, len = 0; 314 uint64_t *p = (uint64_t *) buf; 315 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 316 env->vfp.pregs[preg].p[vq / 4] = *p++; 317 len += 8; 318 } 319 return len; 320 } 321 case 51: 322 /* cannot set vg via gdbstub */ 323 return 0; 324 default: 325 /* gdbstub asked for something out our range */ 326 break; 327 } 328 329 return 0; 330 } 331 #endif /* TARGET_AARCH64 */ 332 333 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 334 { 335 /* Return true if the regdef would cause an assertion if you called 336 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 337 * program bug for it not to have the NO_RAW flag). 338 * NB that returning false here doesn't necessarily mean that calling 339 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 340 * read/write access functions which are safe for raw use" from "has 341 * read/write access functions which have side effects but has forgotten 342 * to provide raw access functions". 343 * The tests here line up with the conditions in read/write_raw_cp_reg() 344 * and assertions in raw_read()/raw_write(). 345 */ 346 if ((ri->type & ARM_CP_CONST) || 347 ri->fieldoffset || 348 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 349 return false; 350 } 351 return true; 352 } 353 354 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 355 { 356 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 357 int i; 358 bool ok = true; 359 360 for (i = 0; i < cpu->cpreg_array_len; i++) { 361 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 362 const ARMCPRegInfo *ri; 363 uint64_t newval; 364 365 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 366 if (!ri) { 367 ok = false; 368 continue; 369 } 370 if (ri->type & ARM_CP_NO_RAW) { 371 continue; 372 } 373 374 newval = read_raw_cp_reg(&cpu->env, ri); 375 if (kvm_sync) { 376 /* 377 * Only sync if the previous list->cpustate sync succeeded. 378 * Rather than tracking the success/failure state for every 379 * item in the list, we just recheck "does the raw write we must 380 * have made in write_list_to_cpustate() read back OK" here. 381 */ 382 uint64_t oldval = cpu->cpreg_values[i]; 383 384 if (oldval == newval) { 385 continue; 386 } 387 388 write_raw_cp_reg(&cpu->env, ri, oldval); 389 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 390 continue; 391 } 392 393 write_raw_cp_reg(&cpu->env, ri, newval); 394 } 395 cpu->cpreg_values[i] = newval; 396 } 397 return ok; 398 } 399 400 bool write_list_to_cpustate(ARMCPU *cpu) 401 { 402 int i; 403 bool ok = true; 404 405 for (i = 0; i < cpu->cpreg_array_len; i++) { 406 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 407 uint64_t v = cpu->cpreg_values[i]; 408 const ARMCPRegInfo *ri; 409 410 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 411 if (!ri) { 412 ok = false; 413 continue; 414 } 415 if (ri->type & ARM_CP_NO_RAW) { 416 continue; 417 } 418 /* Write value and confirm it reads back as written 419 * (to catch read-only registers and partially read-only 420 * registers where the incoming migration value doesn't match) 421 */ 422 write_raw_cp_reg(&cpu->env, ri, v); 423 if (read_raw_cp_reg(&cpu->env, ri) != v) { 424 ok = false; 425 } 426 } 427 return ok; 428 } 429 430 static void add_cpreg_to_list(gpointer key, gpointer opaque) 431 { 432 ARMCPU *cpu = opaque; 433 uint64_t regidx; 434 const ARMCPRegInfo *ri; 435 436 regidx = *(uint32_t *)key; 437 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 438 439 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 440 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 441 /* The value array need not be initialized at this point */ 442 cpu->cpreg_array_len++; 443 } 444 } 445 446 static void count_cpreg(gpointer key, gpointer opaque) 447 { 448 ARMCPU *cpu = opaque; 449 uint64_t regidx; 450 const ARMCPRegInfo *ri; 451 452 regidx = *(uint32_t *)key; 453 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 454 455 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 456 cpu->cpreg_array_len++; 457 } 458 } 459 460 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 461 { 462 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 463 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 464 465 if (aidx > bidx) { 466 return 1; 467 } 468 if (aidx < bidx) { 469 return -1; 470 } 471 return 0; 472 } 473 474 void init_cpreg_list(ARMCPU *cpu) 475 { 476 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 477 * Note that we require cpreg_tuples[] to be sorted by key ID. 478 */ 479 GList *keys; 480 int arraylen; 481 482 keys = g_hash_table_get_keys(cpu->cp_regs); 483 keys = g_list_sort(keys, cpreg_key_compare); 484 485 cpu->cpreg_array_len = 0; 486 487 g_list_foreach(keys, count_cpreg, cpu); 488 489 arraylen = cpu->cpreg_array_len; 490 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 491 cpu->cpreg_values = g_new(uint64_t, arraylen); 492 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 493 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 494 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 495 cpu->cpreg_array_len = 0; 496 497 g_list_foreach(keys, add_cpreg_to_list, cpu); 498 499 assert(cpu->cpreg_array_len == arraylen); 500 501 g_list_free(keys); 502 } 503 504 /* 505 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 506 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 507 * 508 * access_el3_aa32ns: Used to check AArch32 register views. 509 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 510 */ 511 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 512 const ARMCPRegInfo *ri, 513 bool isread) 514 { 515 bool secure = arm_is_secure_below_el3(env); 516 517 assert(!arm_el_is_aa64(env, 3)); 518 if (secure) { 519 return CP_ACCESS_TRAP_UNCATEGORIZED; 520 } 521 return CP_ACCESS_OK; 522 } 523 524 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 525 const ARMCPRegInfo *ri, 526 bool isread) 527 { 528 if (!arm_el_is_aa64(env, 3)) { 529 return access_el3_aa32ns(env, ri, isread); 530 } 531 return CP_ACCESS_OK; 532 } 533 534 /* Some secure-only AArch32 registers trap to EL3 if used from 535 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 536 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 537 * We assume that the .access field is set to PL1_RW. 538 */ 539 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 540 const ARMCPRegInfo *ri, 541 bool isread) 542 { 543 if (arm_current_el(env) == 3) { 544 return CP_ACCESS_OK; 545 } 546 if (arm_is_secure_below_el3(env)) { 547 return CP_ACCESS_TRAP_EL3; 548 } 549 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 550 return CP_ACCESS_TRAP_UNCATEGORIZED; 551 } 552 553 /* Check for traps to "powerdown debug" registers, which are controlled 554 * by MDCR.TDOSA 555 */ 556 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 557 bool isread) 558 { 559 int el = arm_current_el(env); 560 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 561 (env->cp15.mdcr_el2 & MDCR_TDE) || 562 (arm_hcr_el2_eff(env) & HCR_TGE); 563 564 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 565 return CP_ACCESS_TRAP_EL2; 566 } 567 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 568 return CP_ACCESS_TRAP_EL3; 569 } 570 return CP_ACCESS_OK; 571 } 572 573 /* Check for traps to "debug ROM" registers, which are controlled 574 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 575 */ 576 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 577 bool isread) 578 { 579 int el = arm_current_el(env); 580 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 581 (env->cp15.mdcr_el2 & MDCR_TDE) || 582 (arm_hcr_el2_eff(env) & HCR_TGE); 583 584 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 585 return CP_ACCESS_TRAP_EL2; 586 } 587 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 588 return CP_ACCESS_TRAP_EL3; 589 } 590 return CP_ACCESS_OK; 591 } 592 593 /* Check for traps to general debug registers, which are controlled 594 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 595 */ 596 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 597 bool isread) 598 { 599 int el = arm_current_el(env); 600 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 601 (env->cp15.mdcr_el2 & MDCR_TDE) || 602 (arm_hcr_el2_eff(env) & HCR_TGE); 603 604 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 605 return CP_ACCESS_TRAP_EL2; 606 } 607 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 608 return CP_ACCESS_TRAP_EL3; 609 } 610 return CP_ACCESS_OK; 611 } 612 613 /* Check for traps to performance monitor registers, which are controlled 614 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 615 */ 616 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 617 bool isread) 618 { 619 int el = arm_current_el(env); 620 621 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 622 && !arm_is_secure_below_el3(env)) { 623 return CP_ACCESS_TRAP_EL2; 624 } 625 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 626 return CP_ACCESS_TRAP_EL3; 627 } 628 return CP_ACCESS_OK; 629 } 630 631 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 632 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 633 bool isread) 634 { 635 if (arm_current_el(env) == 1) { 636 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 637 if (arm_hcr_el2_eff(env) & trap) { 638 return CP_ACCESS_TRAP_EL2; 639 } 640 } 641 return CP_ACCESS_OK; 642 } 643 644 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 645 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 646 bool isread) 647 { 648 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 649 return CP_ACCESS_TRAP_EL2; 650 } 651 return CP_ACCESS_OK; 652 } 653 654 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 655 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 656 bool isread) 657 { 658 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 659 return CP_ACCESS_TRAP_EL2; 660 } 661 return CP_ACCESS_OK; 662 } 663 664 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 665 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 666 bool isread) 667 { 668 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 669 return CP_ACCESS_TRAP_EL2; 670 } 671 return CP_ACCESS_OK; 672 } 673 674 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 675 { 676 ARMCPU *cpu = env_archcpu(env); 677 678 raw_write(env, ri, value); 679 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 680 } 681 682 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 683 { 684 ARMCPU *cpu = env_archcpu(env); 685 686 if (raw_read(env, ri) != value) { 687 /* Unlike real hardware the qemu TLB uses virtual addresses, 688 * not modified virtual addresses, so this causes a TLB flush. 689 */ 690 tlb_flush(CPU(cpu)); 691 raw_write(env, ri, value); 692 } 693 } 694 695 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 696 uint64_t value) 697 { 698 ARMCPU *cpu = env_archcpu(env); 699 700 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 701 && !extended_addresses_enabled(env)) { 702 /* For VMSA (when not using the LPAE long descriptor page table 703 * format) this register includes the ASID, so do a TLB flush. 704 * For PMSA it is purely a process ID and no action is needed. 705 */ 706 tlb_flush(CPU(cpu)); 707 } 708 raw_write(env, ri, value); 709 } 710 711 /* IS variants of TLB operations must affect all cores */ 712 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 713 uint64_t value) 714 { 715 CPUState *cs = env_cpu(env); 716 717 tlb_flush_all_cpus_synced(cs); 718 } 719 720 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 721 uint64_t value) 722 { 723 CPUState *cs = env_cpu(env); 724 725 tlb_flush_all_cpus_synced(cs); 726 } 727 728 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 729 uint64_t value) 730 { 731 CPUState *cs = env_cpu(env); 732 733 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 734 } 735 736 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 737 uint64_t value) 738 { 739 CPUState *cs = env_cpu(env); 740 741 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 742 } 743 744 /* 745 * Non-IS variants of TLB operations are upgraded to 746 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 747 * force broadcast of these operations. 748 */ 749 static bool tlb_force_broadcast(CPUARMState *env) 750 { 751 return (env->cp15.hcr_el2 & HCR_FB) && 752 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 753 } 754 755 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 756 uint64_t value) 757 { 758 /* Invalidate all (TLBIALL) */ 759 CPUState *cs = env_cpu(env); 760 761 if (tlb_force_broadcast(env)) { 762 tlb_flush_all_cpus_synced(cs); 763 } else { 764 tlb_flush(cs); 765 } 766 } 767 768 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 769 uint64_t value) 770 { 771 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 772 CPUState *cs = env_cpu(env); 773 774 value &= TARGET_PAGE_MASK; 775 if (tlb_force_broadcast(env)) { 776 tlb_flush_page_all_cpus_synced(cs, value); 777 } else { 778 tlb_flush_page(cs, value); 779 } 780 } 781 782 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 783 uint64_t value) 784 { 785 /* Invalidate by ASID (TLBIASID) */ 786 CPUState *cs = env_cpu(env); 787 788 if (tlb_force_broadcast(env)) { 789 tlb_flush_all_cpus_synced(cs); 790 } else { 791 tlb_flush(cs); 792 } 793 } 794 795 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 796 uint64_t value) 797 { 798 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 799 CPUState *cs = env_cpu(env); 800 801 value &= TARGET_PAGE_MASK; 802 if (tlb_force_broadcast(env)) { 803 tlb_flush_page_all_cpus_synced(cs, value); 804 } else { 805 tlb_flush_page(cs, value); 806 } 807 } 808 809 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 810 uint64_t value) 811 { 812 CPUState *cs = env_cpu(env); 813 814 tlb_flush_by_mmuidx(cs, 815 ARMMMUIdxBit_E10_1 | 816 ARMMMUIdxBit_E10_1_PAN | 817 ARMMMUIdxBit_E10_0 | 818 ARMMMUIdxBit_Stage2); 819 } 820 821 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 822 uint64_t value) 823 { 824 CPUState *cs = env_cpu(env); 825 826 tlb_flush_by_mmuidx_all_cpus_synced(cs, 827 ARMMMUIdxBit_E10_1 | 828 ARMMMUIdxBit_E10_1_PAN | 829 ARMMMUIdxBit_E10_0 | 830 ARMMMUIdxBit_Stage2); 831 } 832 833 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 834 uint64_t value) 835 { 836 /* Invalidate by IPA. This has to invalidate any structures that 837 * contain only stage 2 translation information, but does not need 838 * to apply to structures that contain combined stage 1 and stage 2 839 * translation information. 840 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 841 */ 842 CPUState *cs = env_cpu(env); 843 uint64_t pageaddr; 844 845 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 846 return; 847 } 848 849 pageaddr = sextract64(value << 12, 0, 40); 850 851 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 852 } 853 854 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 855 uint64_t value) 856 { 857 CPUState *cs = env_cpu(env); 858 uint64_t pageaddr; 859 860 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 861 return; 862 } 863 864 pageaddr = sextract64(value << 12, 0, 40); 865 866 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 867 ARMMMUIdxBit_Stage2); 868 } 869 870 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 871 uint64_t value) 872 { 873 CPUState *cs = env_cpu(env); 874 875 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 876 } 877 878 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 879 uint64_t value) 880 { 881 CPUState *cs = env_cpu(env); 882 883 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 884 } 885 886 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 887 uint64_t value) 888 { 889 CPUState *cs = env_cpu(env); 890 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 891 892 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 893 } 894 895 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 896 uint64_t value) 897 { 898 CPUState *cs = env_cpu(env); 899 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 900 901 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 902 ARMMMUIdxBit_E2); 903 } 904 905 static const ARMCPRegInfo cp_reginfo[] = { 906 /* Define the secure and non-secure FCSE identifier CP registers 907 * separately because there is no secure bank in V8 (no _EL3). This allows 908 * the secure register to be properly reset and migrated. There is also no 909 * v8 EL1 version of the register so the non-secure instance stands alone. 910 */ 911 { .name = "FCSEIDR", 912 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 913 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 914 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 915 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 916 { .name = "FCSEIDR_S", 917 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 918 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 919 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 920 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 921 /* Define the secure and non-secure context identifier CP registers 922 * separately because there is no secure bank in V8 (no _EL3). This allows 923 * the secure register to be properly reset and migrated. In the 924 * non-secure case, the 32-bit register will have reset and migration 925 * disabled during registration as it is handled by the 64-bit instance. 926 */ 927 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 928 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 929 .access = PL1_RW, .accessfn = access_tvm_trvm, 930 .secure = ARM_CP_SECSTATE_NS, 931 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 932 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 933 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 934 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 935 .access = PL1_RW, .accessfn = access_tvm_trvm, 936 .secure = ARM_CP_SECSTATE_S, 937 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 938 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 939 REGINFO_SENTINEL 940 }; 941 942 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 943 /* NB: Some of these registers exist in v8 but with more precise 944 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 945 */ 946 /* MMU Domain access control / MPU write buffer control */ 947 { .name = "DACR", 948 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 949 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 950 .writefn = dacr_write, .raw_writefn = raw_write, 951 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 952 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 953 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 954 * For v6 and v5, these mappings are overly broad. 955 */ 956 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 957 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 958 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 959 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 960 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 961 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 962 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 963 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 964 /* Cache maintenance ops; some of this space may be overridden later. */ 965 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 966 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 967 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 968 REGINFO_SENTINEL 969 }; 970 971 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 972 /* Not all pre-v6 cores implemented this WFI, so this is slightly 973 * over-broad. 974 */ 975 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 976 .access = PL1_W, .type = ARM_CP_WFI }, 977 REGINFO_SENTINEL 978 }; 979 980 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 981 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 982 * is UNPREDICTABLE; we choose to NOP as most implementations do). 983 */ 984 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 985 .access = PL1_W, .type = ARM_CP_WFI }, 986 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 987 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 988 * OMAPCP will override this space. 989 */ 990 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 991 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 992 .resetvalue = 0 }, 993 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 994 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 995 .resetvalue = 0 }, 996 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 997 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 998 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 999 .resetvalue = 0 }, 1000 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 1001 * implementing it as RAZ means the "debug architecture version" bits 1002 * will read as a reserved value, which should cause Linux to not try 1003 * to use the debug hardware. 1004 */ 1005 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 1006 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1007 /* MMU TLB control. Note that the wildcarding means we cover not just 1008 * the unified TLB ops but also the dside/iside/inner-shareable variants. 1009 */ 1010 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 1011 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 1012 .type = ARM_CP_NO_RAW }, 1013 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 1014 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 1015 .type = ARM_CP_NO_RAW }, 1016 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 1017 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 1018 .type = ARM_CP_NO_RAW }, 1019 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 1020 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 1021 .type = ARM_CP_NO_RAW }, 1022 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 1023 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 1024 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 1025 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 1026 REGINFO_SENTINEL 1027 }; 1028 1029 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1030 uint64_t value) 1031 { 1032 uint32_t mask = 0; 1033 1034 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 1035 if (!arm_feature(env, ARM_FEATURE_V8)) { 1036 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 1037 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 1038 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 1039 */ 1040 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 1041 /* VFP coprocessor: cp10 & cp11 [23:20] */ 1042 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 1043 1044 if (!arm_feature(env, ARM_FEATURE_NEON)) { 1045 /* ASEDIS [31] bit is RAO/WI */ 1046 value |= (1 << 31); 1047 } 1048 1049 /* VFPv3 and upwards with NEON implement 32 double precision 1050 * registers (D0-D31). 1051 */ 1052 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 1053 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 1054 value |= (1 << 30); 1055 } 1056 } 1057 value &= mask; 1058 } 1059 1060 /* 1061 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1062 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1063 */ 1064 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1065 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1066 value &= ~(0xf << 20); 1067 value |= env->cp15.cpacr_el1 & (0xf << 20); 1068 } 1069 1070 env->cp15.cpacr_el1 = value; 1071 } 1072 1073 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1074 { 1075 /* 1076 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1077 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1078 */ 1079 uint64_t value = env->cp15.cpacr_el1; 1080 1081 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1082 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1083 value &= ~(0xf << 20); 1084 } 1085 return value; 1086 } 1087 1088 1089 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1090 { 1091 /* Call cpacr_write() so that we reset with the correct RAO bits set 1092 * for our CPU features. 1093 */ 1094 cpacr_write(env, ri, 0); 1095 } 1096 1097 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1098 bool isread) 1099 { 1100 if (arm_feature(env, ARM_FEATURE_V8)) { 1101 /* Check if CPACR accesses are to be trapped to EL2 */ 1102 if (arm_current_el(env) == 1 && 1103 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 1104 return CP_ACCESS_TRAP_EL2; 1105 /* Check if CPACR accesses are to be trapped to EL3 */ 1106 } else if (arm_current_el(env) < 3 && 1107 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1108 return CP_ACCESS_TRAP_EL3; 1109 } 1110 } 1111 1112 return CP_ACCESS_OK; 1113 } 1114 1115 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1116 bool isread) 1117 { 1118 /* Check if CPTR accesses are set to trap to EL3 */ 1119 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1120 return CP_ACCESS_TRAP_EL3; 1121 } 1122 1123 return CP_ACCESS_OK; 1124 } 1125 1126 static const ARMCPRegInfo v6_cp_reginfo[] = { 1127 /* prefetch by MVA in v6, NOP in v7 */ 1128 { .name = "MVA_prefetch", 1129 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1130 .access = PL1_W, .type = ARM_CP_NOP }, 1131 /* We need to break the TB after ISB to execute self-modifying code 1132 * correctly and also to take any pending interrupts immediately. 1133 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1134 */ 1135 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1136 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1137 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1138 .access = PL0_W, .type = ARM_CP_NOP }, 1139 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1140 .access = PL0_W, .type = ARM_CP_NOP }, 1141 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1142 .access = PL1_RW, .accessfn = access_tvm_trvm, 1143 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1144 offsetof(CPUARMState, cp15.ifar_ns) }, 1145 .resetvalue = 0, }, 1146 /* Watchpoint Fault Address Register : should actually only be present 1147 * for 1136, 1176, 11MPCore. 1148 */ 1149 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1150 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1151 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1152 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1153 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1154 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1155 REGINFO_SENTINEL 1156 }; 1157 1158 /* Definitions for the PMU registers */ 1159 #define PMCRN_MASK 0xf800 1160 #define PMCRN_SHIFT 11 1161 #define PMCRLC 0x40 1162 #define PMCRDP 0x20 1163 #define PMCRX 0x10 1164 #define PMCRD 0x8 1165 #define PMCRC 0x4 1166 #define PMCRP 0x2 1167 #define PMCRE 0x1 1168 /* 1169 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1170 * which can be written as 1 to trigger behaviour but which stay RAZ). 1171 */ 1172 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1173 1174 #define PMXEVTYPER_P 0x80000000 1175 #define PMXEVTYPER_U 0x40000000 1176 #define PMXEVTYPER_NSK 0x20000000 1177 #define PMXEVTYPER_NSU 0x10000000 1178 #define PMXEVTYPER_NSH 0x08000000 1179 #define PMXEVTYPER_M 0x04000000 1180 #define PMXEVTYPER_MT 0x02000000 1181 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1182 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1183 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1184 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1185 PMXEVTYPER_EVTCOUNT) 1186 1187 #define PMCCFILTR 0xf8000000 1188 #define PMCCFILTR_M PMXEVTYPER_M 1189 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1190 1191 static inline uint32_t pmu_num_counters(CPUARMState *env) 1192 { 1193 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1194 } 1195 1196 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1197 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1198 { 1199 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1200 } 1201 1202 typedef struct pm_event { 1203 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1204 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1205 bool (*supported)(CPUARMState *); 1206 /* 1207 * Retrieve the current count of the underlying event. The programmed 1208 * counters hold a difference from the return value from this function 1209 */ 1210 uint64_t (*get_count)(CPUARMState *); 1211 /* 1212 * Return how many nanoseconds it will take (at a minimum) for count events 1213 * to occur. A negative value indicates the counter will never overflow, or 1214 * that the counter has otherwise arranged for the overflow bit to be set 1215 * and the PMU interrupt to be raised on overflow. 1216 */ 1217 int64_t (*ns_per_count)(uint64_t); 1218 } pm_event; 1219 1220 static bool event_always_supported(CPUARMState *env) 1221 { 1222 return true; 1223 } 1224 1225 static uint64_t swinc_get_count(CPUARMState *env) 1226 { 1227 /* 1228 * SW_INCR events are written directly to the pmevcntr's by writes to 1229 * PMSWINC, so there is no underlying count maintained by the PMU itself 1230 */ 1231 return 0; 1232 } 1233 1234 static int64_t swinc_ns_per(uint64_t ignored) 1235 { 1236 return -1; 1237 } 1238 1239 /* 1240 * Return the underlying cycle count for the PMU cycle counters. If we're in 1241 * usermode, simply return 0. 1242 */ 1243 static uint64_t cycles_get_count(CPUARMState *env) 1244 { 1245 #ifndef CONFIG_USER_ONLY 1246 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1247 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1248 #else 1249 return cpu_get_host_ticks(); 1250 #endif 1251 } 1252 1253 #ifndef CONFIG_USER_ONLY 1254 static int64_t cycles_ns_per(uint64_t cycles) 1255 { 1256 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1257 } 1258 1259 static bool instructions_supported(CPUARMState *env) 1260 { 1261 return use_icount == 1 /* Precise instruction counting */; 1262 } 1263 1264 static uint64_t instructions_get_count(CPUARMState *env) 1265 { 1266 return (uint64_t)cpu_get_icount_raw(); 1267 } 1268 1269 static int64_t instructions_ns_per(uint64_t icount) 1270 { 1271 return cpu_icount_to_ns((int64_t)icount); 1272 } 1273 #endif 1274 1275 static bool pmu_8_1_events_supported(CPUARMState *env) 1276 { 1277 /* For events which are supported in any v8.1 PMU */ 1278 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1279 } 1280 1281 static bool pmu_8_4_events_supported(CPUARMState *env) 1282 { 1283 /* For events which are supported in any v8.1 PMU */ 1284 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1285 } 1286 1287 static uint64_t zero_event_get_count(CPUARMState *env) 1288 { 1289 /* For events which on QEMU never fire, so their count is always zero */ 1290 return 0; 1291 } 1292 1293 static int64_t zero_event_ns_per(uint64_t cycles) 1294 { 1295 /* An event which never fires can never overflow */ 1296 return -1; 1297 } 1298 1299 static const pm_event pm_events[] = { 1300 { .number = 0x000, /* SW_INCR */ 1301 .supported = event_always_supported, 1302 .get_count = swinc_get_count, 1303 .ns_per_count = swinc_ns_per, 1304 }, 1305 #ifndef CONFIG_USER_ONLY 1306 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1307 .supported = instructions_supported, 1308 .get_count = instructions_get_count, 1309 .ns_per_count = instructions_ns_per, 1310 }, 1311 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1312 .supported = event_always_supported, 1313 .get_count = cycles_get_count, 1314 .ns_per_count = cycles_ns_per, 1315 }, 1316 #endif 1317 { .number = 0x023, /* STALL_FRONTEND */ 1318 .supported = pmu_8_1_events_supported, 1319 .get_count = zero_event_get_count, 1320 .ns_per_count = zero_event_ns_per, 1321 }, 1322 { .number = 0x024, /* STALL_BACKEND */ 1323 .supported = pmu_8_1_events_supported, 1324 .get_count = zero_event_get_count, 1325 .ns_per_count = zero_event_ns_per, 1326 }, 1327 { .number = 0x03c, /* STALL */ 1328 .supported = pmu_8_4_events_supported, 1329 .get_count = zero_event_get_count, 1330 .ns_per_count = zero_event_ns_per, 1331 }, 1332 }; 1333 1334 /* 1335 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1336 * events (i.e. the statistical profiling extension), this implementation 1337 * should first be updated to something sparse instead of the current 1338 * supported_event_map[] array. 1339 */ 1340 #define MAX_EVENT_ID 0x3c 1341 #define UNSUPPORTED_EVENT UINT16_MAX 1342 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1343 1344 /* 1345 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1346 * of ARM event numbers to indices in our pm_events array. 1347 * 1348 * Note: Events in the 0x40XX range are not currently supported. 1349 */ 1350 void pmu_init(ARMCPU *cpu) 1351 { 1352 unsigned int i; 1353 1354 /* 1355 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1356 * events to them 1357 */ 1358 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1359 supported_event_map[i] = UNSUPPORTED_EVENT; 1360 } 1361 cpu->pmceid0 = 0; 1362 cpu->pmceid1 = 0; 1363 1364 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1365 const pm_event *cnt = &pm_events[i]; 1366 assert(cnt->number <= MAX_EVENT_ID); 1367 /* We do not currently support events in the 0x40xx range */ 1368 assert(cnt->number <= 0x3f); 1369 1370 if (cnt->supported(&cpu->env)) { 1371 supported_event_map[cnt->number] = i; 1372 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1373 if (cnt->number & 0x20) { 1374 cpu->pmceid1 |= event_mask; 1375 } else { 1376 cpu->pmceid0 |= event_mask; 1377 } 1378 } 1379 } 1380 } 1381 1382 /* 1383 * Check at runtime whether a PMU event is supported for the current machine 1384 */ 1385 static bool event_supported(uint16_t number) 1386 { 1387 if (number > MAX_EVENT_ID) { 1388 return false; 1389 } 1390 return supported_event_map[number] != UNSUPPORTED_EVENT; 1391 } 1392 1393 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1394 bool isread) 1395 { 1396 /* Performance monitor registers user accessibility is controlled 1397 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1398 * trapping to EL2 or EL3 for other accesses. 1399 */ 1400 int el = arm_current_el(env); 1401 1402 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1403 return CP_ACCESS_TRAP; 1404 } 1405 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1406 && !arm_is_secure_below_el3(env)) { 1407 return CP_ACCESS_TRAP_EL2; 1408 } 1409 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1410 return CP_ACCESS_TRAP_EL3; 1411 } 1412 1413 return CP_ACCESS_OK; 1414 } 1415 1416 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1417 const ARMCPRegInfo *ri, 1418 bool isread) 1419 { 1420 /* ER: event counter read trap control */ 1421 if (arm_feature(env, ARM_FEATURE_V8) 1422 && arm_current_el(env) == 0 1423 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1424 && isread) { 1425 return CP_ACCESS_OK; 1426 } 1427 1428 return pmreg_access(env, ri, isread); 1429 } 1430 1431 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1432 const ARMCPRegInfo *ri, 1433 bool isread) 1434 { 1435 /* SW: software increment write trap control */ 1436 if (arm_feature(env, ARM_FEATURE_V8) 1437 && arm_current_el(env) == 0 1438 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1439 && !isread) { 1440 return CP_ACCESS_OK; 1441 } 1442 1443 return pmreg_access(env, ri, isread); 1444 } 1445 1446 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1447 const ARMCPRegInfo *ri, 1448 bool isread) 1449 { 1450 /* ER: event counter read trap control */ 1451 if (arm_feature(env, ARM_FEATURE_V8) 1452 && arm_current_el(env) == 0 1453 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1454 return CP_ACCESS_OK; 1455 } 1456 1457 return pmreg_access(env, ri, isread); 1458 } 1459 1460 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1461 const ARMCPRegInfo *ri, 1462 bool isread) 1463 { 1464 /* CR: cycle counter read trap control */ 1465 if (arm_feature(env, ARM_FEATURE_V8) 1466 && arm_current_el(env) == 0 1467 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1468 && isread) { 1469 return CP_ACCESS_OK; 1470 } 1471 1472 return pmreg_access(env, ri, isread); 1473 } 1474 1475 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1476 * the current EL, security state, and register configuration. 1477 */ 1478 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1479 { 1480 uint64_t filter; 1481 bool e, p, u, nsk, nsu, nsh, m; 1482 bool enabled, prohibited, filtered; 1483 bool secure = arm_is_secure(env); 1484 int el = arm_current_el(env); 1485 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1486 1487 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1488 return false; 1489 } 1490 1491 if (!arm_feature(env, ARM_FEATURE_EL2) || 1492 (counter < hpmn || counter == 31)) { 1493 e = env->cp15.c9_pmcr & PMCRE; 1494 } else { 1495 e = env->cp15.mdcr_el2 & MDCR_HPME; 1496 } 1497 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1498 1499 if (!secure) { 1500 if (el == 2 && (counter < hpmn || counter == 31)) { 1501 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1502 } else { 1503 prohibited = false; 1504 } 1505 } else { 1506 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1507 (env->cp15.mdcr_el3 & MDCR_SPME); 1508 } 1509 1510 if (prohibited && counter == 31) { 1511 prohibited = env->cp15.c9_pmcr & PMCRDP; 1512 } 1513 1514 if (counter == 31) { 1515 filter = env->cp15.pmccfiltr_el0; 1516 } else { 1517 filter = env->cp15.c14_pmevtyper[counter]; 1518 } 1519 1520 p = filter & PMXEVTYPER_P; 1521 u = filter & PMXEVTYPER_U; 1522 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1523 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1524 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1525 m = arm_el_is_aa64(env, 1) && 1526 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1527 1528 if (el == 0) { 1529 filtered = secure ? u : u != nsu; 1530 } else if (el == 1) { 1531 filtered = secure ? p : p != nsk; 1532 } else if (el == 2) { 1533 filtered = !nsh; 1534 } else { /* EL3 */ 1535 filtered = m != p; 1536 } 1537 1538 if (counter != 31) { 1539 /* 1540 * If not checking PMCCNTR, ensure the counter is setup to an event we 1541 * support 1542 */ 1543 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1544 if (!event_supported(event)) { 1545 return false; 1546 } 1547 } 1548 1549 return enabled && !prohibited && !filtered; 1550 } 1551 1552 static void pmu_update_irq(CPUARMState *env) 1553 { 1554 ARMCPU *cpu = env_archcpu(env); 1555 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1556 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1557 } 1558 1559 /* 1560 * Ensure c15_ccnt is the guest-visible count so that operations such as 1561 * enabling/disabling the counter or filtering, modifying the count itself, 1562 * etc. can be done logically. This is essentially a no-op if the counter is 1563 * not enabled at the time of the call. 1564 */ 1565 static void pmccntr_op_start(CPUARMState *env) 1566 { 1567 uint64_t cycles = cycles_get_count(env); 1568 1569 if (pmu_counter_enabled(env, 31)) { 1570 uint64_t eff_cycles = cycles; 1571 if (env->cp15.c9_pmcr & PMCRD) { 1572 /* Increment once every 64 processor clock cycles */ 1573 eff_cycles /= 64; 1574 } 1575 1576 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1577 1578 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1579 1ull << 63 : 1ull << 31; 1580 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1581 env->cp15.c9_pmovsr |= (1 << 31); 1582 pmu_update_irq(env); 1583 } 1584 1585 env->cp15.c15_ccnt = new_pmccntr; 1586 } 1587 env->cp15.c15_ccnt_delta = cycles; 1588 } 1589 1590 /* 1591 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1592 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1593 * pmccntr_op_start. 1594 */ 1595 static void pmccntr_op_finish(CPUARMState *env) 1596 { 1597 if (pmu_counter_enabled(env, 31)) { 1598 #ifndef CONFIG_USER_ONLY 1599 /* Calculate when the counter will next overflow */ 1600 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1601 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1602 remaining_cycles = (uint32_t)remaining_cycles; 1603 } 1604 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1605 1606 if (overflow_in > 0) { 1607 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1608 overflow_in; 1609 ARMCPU *cpu = env_archcpu(env); 1610 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1611 } 1612 #endif 1613 1614 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1615 if (env->cp15.c9_pmcr & PMCRD) { 1616 /* Increment once every 64 processor clock cycles */ 1617 prev_cycles /= 64; 1618 } 1619 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1620 } 1621 } 1622 1623 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1624 { 1625 1626 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1627 uint64_t count = 0; 1628 if (event_supported(event)) { 1629 uint16_t event_idx = supported_event_map[event]; 1630 count = pm_events[event_idx].get_count(env); 1631 } 1632 1633 if (pmu_counter_enabled(env, counter)) { 1634 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1635 1636 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1637 env->cp15.c9_pmovsr |= (1 << counter); 1638 pmu_update_irq(env); 1639 } 1640 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1641 } 1642 env->cp15.c14_pmevcntr_delta[counter] = count; 1643 } 1644 1645 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1646 { 1647 if (pmu_counter_enabled(env, counter)) { 1648 #ifndef CONFIG_USER_ONLY 1649 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1650 uint16_t event_idx = supported_event_map[event]; 1651 uint64_t delta = UINT32_MAX - 1652 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1653 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1654 1655 if (overflow_in > 0) { 1656 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1657 overflow_in; 1658 ARMCPU *cpu = env_archcpu(env); 1659 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1660 } 1661 #endif 1662 1663 env->cp15.c14_pmevcntr_delta[counter] -= 1664 env->cp15.c14_pmevcntr[counter]; 1665 } 1666 } 1667 1668 void pmu_op_start(CPUARMState *env) 1669 { 1670 unsigned int i; 1671 pmccntr_op_start(env); 1672 for (i = 0; i < pmu_num_counters(env); i++) { 1673 pmevcntr_op_start(env, i); 1674 } 1675 } 1676 1677 void pmu_op_finish(CPUARMState *env) 1678 { 1679 unsigned int i; 1680 pmccntr_op_finish(env); 1681 for (i = 0; i < pmu_num_counters(env); i++) { 1682 pmevcntr_op_finish(env, i); 1683 } 1684 } 1685 1686 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1687 { 1688 pmu_op_start(&cpu->env); 1689 } 1690 1691 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1692 { 1693 pmu_op_finish(&cpu->env); 1694 } 1695 1696 void arm_pmu_timer_cb(void *opaque) 1697 { 1698 ARMCPU *cpu = opaque; 1699 1700 /* 1701 * Update all the counter values based on the current underlying counts, 1702 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1703 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1704 * counter may expire. 1705 */ 1706 pmu_op_start(&cpu->env); 1707 pmu_op_finish(&cpu->env); 1708 } 1709 1710 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1711 uint64_t value) 1712 { 1713 pmu_op_start(env); 1714 1715 if (value & PMCRC) { 1716 /* The counter has been reset */ 1717 env->cp15.c15_ccnt = 0; 1718 } 1719 1720 if (value & PMCRP) { 1721 unsigned int i; 1722 for (i = 0; i < pmu_num_counters(env); i++) { 1723 env->cp15.c14_pmevcntr[i] = 0; 1724 } 1725 } 1726 1727 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1728 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1729 1730 pmu_op_finish(env); 1731 } 1732 1733 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 unsigned int i; 1737 for (i = 0; i < pmu_num_counters(env); i++) { 1738 /* Increment a counter's count iff: */ 1739 if ((value & (1 << i)) && /* counter's bit is set */ 1740 /* counter is enabled and not filtered */ 1741 pmu_counter_enabled(env, i) && 1742 /* counter is SW_INCR */ 1743 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1744 pmevcntr_op_start(env, i); 1745 1746 /* 1747 * Detect if this write causes an overflow since we can't predict 1748 * PMSWINC overflows like we can for other events 1749 */ 1750 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1751 1752 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1753 env->cp15.c9_pmovsr |= (1 << i); 1754 pmu_update_irq(env); 1755 } 1756 1757 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1758 1759 pmevcntr_op_finish(env, i); 1760 } 1761 } 1762 } 1763 1764 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1765 { 1766 uint64_t ret; 1767 pmccntr_op_start(env); 1768 ret = env->cp15.c15_ccnt; 1769 pmccntr_op_finish(env); 1770 return ret; 1771 } 1772 1773 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1774 uint64_t value) 1775 { 1776 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1777 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1778 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1779 * accessed. 1780 */ 1781 env->cp15.c9_pmselr = value & 0x1f; 1782 } 1783 1784 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1785 uint64_t value) 1786 { 1787 pmccntr_op_start(env); 1788 env->cp15.c15_ccnt = value; 1789 pmccntr_op_finish(env); 1790 } 1791 1792 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1793 uint64_t value) 1794 { 1795 uint64_t cur_val = pmccntr_read(env, NULL); 1796 1797 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1798 } 1799 1800 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1801 uint64_t value) 1802 { 1803 pmccntr_op_start(env); 1804 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1805 pmccntr_op_finish(env); 1806 } 1807 1808 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1809 uint64_t value) 1810 { 1811 pmccntr_op_start(env); 1812 /* M is not accessible from AArch32 */ 1813 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1814 (value & PMCCFILTR); 1815 pmccntr_op_finish(env); 1816 } 1817 1818 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1819 { 1820 /* M is not visible in AArch32 */ 1821 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1822 } 1823 1824 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1825 uint64_t value) 1826 { 1827 value &= pmu_counter_mask(env); 1828 env->cp15.c9_pmcnten |= value; 1829 } 1830 1831 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1832 uint64_t value) 1833 { 1834 value &= pmu_counter_mask(env); 1835 env->cp15.c9_pmcnten &= ~value; 1836 } 1837 1838 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1839 uint64_t value) 1840 { 1841 value &= pmu_counter_mask(env); 1842 env->cp15.c9_pmovsr &= ~value; 1843 pmu_update_irq(env); 1844 } 1845 1846 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1847 uint64_t value) 1848 { 1849 value &= pmu_counter_mask(env); 1850 env->cp15.c9_pmovsr |= value; 1851 pmu_update_irq(env); 1852 } 1853 1854 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1855 uint64_t value, const uint8_t counter) 1856 { 1857 if (counter == 31) { 1858 pmccfiltr_write(env, ri, value); 1859 } else if (counter < pmu_num_counters(env)) { 1860 pmevcntr_op_start(env, counter); 1861 1862 /* 1863 * If this counter's event type is changing, store the current 1864 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1865 * pmevcntr_op_finish has the correct baseline when it converts back to 1866 * a delta. 1867 */ 1868 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1869 PMXEVTYPER_EVTCOUNT; 1870 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1871 if (old_event != new_event) { 1872 uint64_t count = 0; 1873 if (event_supported(new_event)) { 1874 uint16_t event_idx = supported_event_map[new_event]; 1875 count = pm_events[event_idx].get_count(env); 1876 } 1877 env->cp15.c14_pmevcntr_delta[counter] = count; 1878 } 1879 1880 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1881 pmevcntr_op_finish(env, counter); 1882 } 1883 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1884 * PMSELR value is equal to or greater than the number of implemented 1885 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1886 */ 1887 } 1888 1889 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1890 const uint8_t counter) 1891 { 1892 if (counter == 31) { 1893 return env->cp15.pmccfiltr_el0; 1894 } else if (counter < pmu_num_counters(env)) { 1895 return env->cp15.c14_pmevtyper[counter]; 1896 } else { 1897 /* 1898 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1899 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1900 */ 1901 return 0; 1902 } 1903 } 1904 1905 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1906 uint64_t value) 1907 { 1908 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1909 pmevtyper_write(env, ri, value, counter); 1910 } 1911 1912 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1913 uint64_t value) 1914 { 1915 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1916 env->cp15.c14_pmevtyper[counter] = value; 1917 1918 /* 1919 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1920 * pmu_op_finish calls when loading saved state for a migration. Because 1921 * we're potentially updating the type of event here, the value written to 1922 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1923 * different counter type. Therefore, we need to set this value to the 1924 * current count for the counter type we're writing so that pmu_op_finish 1925 * has the correct count for its calculation. 1926 */ 1927 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1928 if (event_supported(event)) { 1929 uint16_t event_idx = supported_event_map[event]; 1930 env->cp15.c14_pmevcntr_delta[counter] = 1931 pm_events[event_idx].get_count(env); 1932 } 1933 } 1934 1935 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1936 { 1937 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1938 return pmevtyper_read(env, ri, counter); 1939 } 1940 1941 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1942 uint64_t value) 1943 { 1944 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1945 } 1946 1947 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1948 { 1949 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1950 } 1951 1952 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1953 uint64_t value, uint8_t counter) 1954 { 1955 if (counter < pmu_num_counters(env)) { 1956 pmevcntr_op_start(env, counter); 1957 env->cp15.c14_pmevcntr[counter] = value; 1958 pmevcntr_op_finish(env, counter); 1959 } 1960 /* 1961 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1962 * are CONSTRAINED UNPREDICTABLE. 1963 */ 1964 } 1965 1966 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1967 uint8_t counter) 1968 { 1969 if (counter < pmu_num_counters(env)) { 1970 uint64_t ret; 1971 pmevcntr_op_start(env, counter); 1972 ret = env->cp15.c14_pmevcntr[counter]; 1973 pmevcntr_op_finish(env, counter); 1974 return ret; 1975 } else { 1976 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1977 * are CONSTRAINED UNPREDICTABLE. */ 1978 return 0; 1979 } 1980 } 1981 1982 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1983 uint64_t value) 1984 { 1985 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1986 pmevcntr_write(env, ri, value, counter); 1987 } 1988 1989 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1990 { 1991 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1992 return pmevcntr_read(env, ri, counter); 1993 } 1994 1995 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1996 uint64_t value) 1997 { 1998 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1999 assert(counter < pmu_num_counters(env)); 2000 env->cp15.c14_pmevcntr[counter] = value; 2001 pmevcntr_write(env, ri, value, counter); 2002 } 2003 2004 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 2005 { 2006 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 2007 assert(counter < pmu_num_counters(env)); 2008 return env->cp15.c14_pmevcntr[counter]; 2009 } 2010 2011 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2012 uint64_t value) 2013 { 2014 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 2015 } 2016 2017 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2018 { 2019 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 2020 } 2021 2022 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2023 uint64_t value) 2024 { 2025 if (arm_feature(env, ARM_FEATURE_V8)) { 2026 env->cp15.c9_pmuserenr = value & 0xf; 2027 } else { 2028 env->cp15.c9_pmuserenr = value & 1; 2029 } 2030 } 2031 2032 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 2033 uint64_t value) 2034 { 2035 /* We have no event counters so only the C bit can be changed */ 2036 value &= pmu_counter_mask(env); 2037 env->cp15.c9_pminten |= value; 2038 pmu_update_irq(env); 2039 } 2040 2041 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2042 uint64_t value) 2043 { 2044 value &= pmu_counter_mask(env); 2045 env->cp15.c9_pminten &= ~value; 2046 pmu_update_irq(env); 2047 } 2048 2049 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2050 uint64_t value) 2051 { 2052 /* Note that even though the AArch64 view of this register has bits 2053 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 2054 * architectural requirements for bits which are RES0 only in some 2055 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 2056 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 2057 */ 2058 raw_write(env, ri, value & ~0x1FULL); 2059 } 2060 2061 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2062 { 2063 /* Begin with base v8.0 state. */ 2064 uint32_t valid_mask = 0x3fff; 2065 ARMCPU *cpu = env_archcpu(env); 2066 2067 if (arm_el_is_aa64(env, 3)) { 2068 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 2069 valid_mask &= ~SCR_NET; 2070 } else { 2071 valid_mask &= ~(SCR_RW | SCR_ST); 2072 } 2073 2074 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2075 valid_mask &= ~SCR_HCE; 2076 2077 /* On ARMv7, SMD (or SCD as it is called in v7) is only 2078 * supported if EL2 exists. The bit is UNK/SBZP when 2079 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 2080 * when EL2 is unavailable. 2081 * On ARMv8, this bit is always available. 2082 */ 2083 if (arm_feature(env, ARM_FEATURE_V7) && 2084 !arm_feature(env, ARM_FEATURE_V8)) { 2085 valid_mask &= ~SCR_SMD; 2086 } 2087 } 2088 if (cpu_isar_feature(aa64_lor, cpu)) { 2089 valid_mask |= SCR_TLOR; 2090 } 2091 if (cpu_isar_feature(aa64_pauth, cpu)) { 2092 valid_mask |= SCR_API | SCR_APK; 2093 } 2094 2095 /* Clear all-context RES0 bits. */ 2096 value &= valid_mask; 2097 raw_write(env, ri, value); 2098 } 2099 2100 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2101 const ARMCPRegInfo *ri, 2102 bool isread) 2103 { 2104 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2105 return CP_ACCESS_TRAP_EL2; 2106 } 2107 2108 return CP_ACCESS_OK; 2109 } 2110 2111 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2112 { 2113 ARMCPU *cpu = env_archcpu(env); 2114 2115 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2116 * bank 2117 */ 2118 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2119 ri->secure & ARM_CP_SECSTATE_S); 2120 2121 return cpu->ccsidr[index]; 2122 } 2123 2124 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2125 uint64_t value) 2126 { 2127 raw_write(env, ri, value & 0xf); 2128 } 2129 2130 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2131 { 2132 CPUState *cs = env_cpu(env); 2133 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 2134 uint64_t ret = 0; 2135 bool allow_virt = (arm_current_el(env) == 1 && 2136 (!arm_is_secure_below_el3(env) || 2137 (env->cp15.scr_el3 & SCR_EEL2))); 2138 2139 if (allow_virt && (hcr_el2 & HCR_IMO)) { 2140 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2141 ret |= CPSR_I; 2142 } 2143 } else { 2144 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2145 ret |= CPSR_I; 2146 } 2147 } 2148 2149 if (allow_virt && (hcr_el2 & HCR_FMO)) { 2150 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2151 ret |= CPSR_F; 2152 } 2153 } else { 2154 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2155 ret |= CPSR_F; 2156 } 2157 } 2158 2159 /* External aborts are not possible in QEMU so A bit is always clear */ 2160 return ret; 2161 } 2162 2163 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2164 bool isread) 2165 { 2166 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2167 return CP_ACCESS_TRAP_EL2; 2168 } 2169 2170 return CP_ACCESS_OK; 2171 } 2172 2173 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2174 bool isread) 2175 { 2176 if (arm_feature(env, ARM_FEATURE_V8)) { 2177 return access_aa64_tid1(env, ri, isread); 2178 } 2179 2180 return CP_ACCESS_OK; 2181 } 2182 2183 static const ARMCPRegInfo v7_cp_reginfo[] = { 2184 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2185 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2186 .access = PL1_W, .type = ARM_CP_NOP }, 2187 /* Performance monitors are implementation defined in v7, 2188 * but with an ARM recommended set of registers, which we 2189 * follow. 2190 * 2191 * Performance registers fall into three categories: 2192 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2193 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2194 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2195 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2196 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2197 */ 2198 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2199 .access = PL0_RW, .type = ARM_CP_ALIAS, 2200 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2201 .writefn = pmcntenset_write, 2202 .accessfn = pmreg_access, 2203 .raw_writefn = raw_write }, 2204 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2205 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2206 .access = PL0_RW, .accessfn = pmreg_access, 2207 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2208 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2209 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2210 .access = PL0_RW, 2211 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2212 .accessfn = pmreg_access, 2213 .writefn = pmcntenclr_write, 2214 .type = ARM_CP_ALIAS }, 2215 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2216 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2217 .access = PL0_RW, .accessfn = pmreg_access, 2218 .type = ARM_CP_ALIAS, 2219 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2220 .writefn = pmcntenclr_write }, 2221 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2222 .access = PL0_RW, .type = ARM_CP_IO, 2223 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2224 .accessfn = pmreg_access, 2225 .writefn = pmovsr_write, 2226 .raw_writefn = raw_write }, 2227 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2228 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2229 .access = PL0_RW, .accessfn = pmreg_access, 2230 .type = ARM_CP_ALIAS | ARM_CP_IO, 2231 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2232 .writefn = pmovsr_write, 2233 .raw_writefn = raw_write }, 2234 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2235 .access = PL0_W, .accessfn = pmreg_access_swinc, 2236 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2237 .writefn = pmswinc_write }, 2238 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2239 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2240 .access = PL0_W, .accessfn = pmreg_access_swinc, 2241 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2242 .writefn = pmswinc_write }, 2243 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2244 .access = PL0_RW, .type = ARM_CP_ALIAS, 2245 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2246 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2247 .raw_writefn = raw_write}, 2248 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2249 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2250 .access = PL0_RW, .accessfn = pmreg_access_selr, 2251 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2252 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2253 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2254 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2255 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2256 .accessfn = pmreg_access_ccntr }, 2257 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2258 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2259 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2260 .type = ARM_CP_IO, 2261 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2262 .readfn = pmccntr_read, .writefn = pmccntr_write, 2263 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2264 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2265 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2266 .access = PL0_RW, .accessfn = pmreg_access, 2267 .type = ARM_CP_ALIAS | ARM_CP_IO, 2268 .resetvalue = 0, }, 2269 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2270 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2271 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2272 .access = PL0_RW, .accessfn = pmreg_access, 2273 .type = ARM_CP_IO, 2274 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2275 .resetvalue = 0, }, 2276 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2277 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2278 .accessfn = pmreg_access, 2279 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2280 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2281 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2282 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2283 .accessfn = pmreg_access, 2284 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2285 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2286 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2287 .accessfn = pmreg_access_xevcntr, 2288 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2289 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2290 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2291 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2292 .accessfn = pmreg_access_xevcntr, 2293 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2294 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2295 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2296 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2297 .resetvalue = 0, 2298 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2299 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2300 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2301 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2302 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2303 .resetvalue = 0, 2304 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2305 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2306 .access = PL1_RW, .accessfn = access_tpm, 2307 .type = ARM_CP_ALIAS | ARM_CP_IO, 2308 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2309 .resetvalue = 0, 2310 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2311 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2312 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2313 .access = PL1_RW, .accessfn = access_tpm, 2314 .type = ARM_CP_IO, 2315 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2316 .writefn = pmintenset_write, .raw_writefn = raw_write, 2317 .resetvalue = 0x0 }, 2318 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2319 .access = PL1_RW, .accessfn = access_tpm, 2320 .type = ARM_CP_ALIAS | ARM_CP_IO, 2321 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2322 .writefn = pmintenclr_write, }, 2323 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2324 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2325 .access = PL1_RW, .accessfn = access_tpm, 2326 .type = ARM_CP_ALIAS | ARM_CP_IO, 2327 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2328 .writefn = pmintenclr_write }, 2329 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2330 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2331 .access = PL1_R, 2332 .accessfn = access_aa64_tid2, 2333 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2334 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2335 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2336 .access = PL1_RW, 2337 .accessfn = access_aa64_tid2, 2338 .writefn = csselr_write, .resetvalue = 0, 2339 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2340 offsetof(CPUARMState, cp15.csselr_ns) } }, 2341 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2342 * just RAZ for all cores: 2343 */ 2344 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2345 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2346 .access = PL1_R, .type = ARM_CP_CONST, 2347 .accessfn = access_aa64_tid1, 2348 .resetvalue = 0 }, 2349 /* Auxiliary fault status registers: these also are IMPDEF, and we 2350 * choose to RAZ/WI for all cores. 2351 */ 2352 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2353 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2354 .access = PL1_RW, .accessfn = access_tvm_trvm, 2355 .type = ARM_CP_CONST, .resetvalue = 0 }, 2356 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2357 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2358 .access = PL1_RW, .accessfn = access_tvm_trvm, 2359 .type = ARM_CP_CONST, .resetvalue = 0 }, 2360 /* MAIR can just read-as-written because we don't implement caches 2361 * and so don't need to care about memory attributes. 2362 */ 2363 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2364 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2365 .access = PL1_RW, .accessfn = access_tvm_trvm, 2366 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2367 .resetvalue = 0 }, 2368 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2369 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2370 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2371 .resetvalue = 0 }, 2372 /* For non-long-descriptor page tables these are PRRR and NMRR; 2373 * regardless they still act as reads-as-written for QEMU. 2374 */ 2375 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2376 * allows them to assign the correct fieldoffset based on the endianness 2377 * handled in the field definitions. 2378 */ 2379 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2380 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2381 .access = PL1_RW, .accessfn = access_tvm_trvm, 2382 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2383 offsetof(CPUARMState, cp15.mair0_ns) }, 2384 .resetfn = arm_cp_reset_ignore }, 2385 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2386 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2387 .access = PL1_RW, .accessfn = access_tvm_trvm, 2388 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2389 offsetof(CPUARMState, cp15.mair1_ns) }, 2390 .resetfn = arm_cp_reset_ignore }, 2391 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2392 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2393 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2394 /* 32 bit ITLB invalidates */ 2395 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2396 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2397 .writefn = tlbiall_write }, 2398 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2399 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2400 .writefn = tlbimva_write }, 2401 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2402 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2403 .writefn = tlbiasid_write }, 2404 /* 32 bit DTLB invalidates */ 2405 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2406 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2407 .writefn = tlbiall_write }, 2408 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2409 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2410 .writefn = tlbimva_write }, 2411 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2412 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2413 .writefn = tlbiasid_write }, 2414 /* 32 bit TLB invalidates */ 2415 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2416 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2417 .writefn = tlbiall_write }, 2418 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2419 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2420 .writefn = tlbimva_write }, 2421 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2422 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2423 .writefn = tlbiasid_write }, 2424 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2425 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2426 .writefn = tlbimvaa_write }, 2427 REGINFO_SENTINEL 2428 }; 2429 2430 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2431 /* 32 bit TLB invalidates, Inner Shareable */ 2432 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2433 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2434 .writefn = tlbiall_is_write }, 2435 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2436 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2437 .writefn = tlbimva_is_write }, 2438 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2439 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2440 .writefn = tlbiasid_is_write }, 2441 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2442 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2443 .writefn = tlbimvaa_is_write }, 2444 REGINFO_SENTINEL 2445 }; 2446 2447 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2448 /* PMOVSSET is not implemented in v7 before v7ve */ 2449 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2450 .access = PL0_RW, .accessfn = pmreg_access, 2451 .type = ARM_CP_ALIAS | ARM_CP_IO, 2452 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2453 .writefn = pmovsset_write, 2454 .raw_writefn = raw_write }, 2455 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2456 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2457 .access = PL0_RW, .accessfn = pmreg_access, 2458 .type = ARM_CP_ALIAS | ARM_CP_IO, 2459 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2460 .writefn = pmovsset_write, 2461 .raw_writefn = raw_write }, 2462 REGINFO_SENTINEL 2463 }; 2464 2465 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2466 uint64_t value) 2467 { 2468 value &= 1; 2469 env->teecr = value; 2470 } 2471 2472 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2473 bool isread) 2474 { 2475 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2476 return CP_ACCESS_TRAP; 2477 } 2478 return CP_ACCESS_OK; 2479 } 2480 2481 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2482 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2483 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2484 .resetvalue = 0, 2485 .writefn = teecr_write }, 2486 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2487 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2488 .accessfn = teehbr_access, .resetvalue = 0 }, 2489 REGINFO_SENTINEL 2490 }; 2491 2492 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2493 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2494 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2495 .access = PL0_RW, 2496 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2497 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2498 .access = PL0_RW, 2499 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2500 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2501 .resetfn = arm_cp_reset_ignore }, 2502 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2503 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2504 .access = PL0_R|PL1_W, 2505 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2506 .resetvalue = 0}, 2507 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2508 .access = PL0_R|PL1_W, 2509 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2510 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2511 .resetfn = arm_cp_reset_ignore }, 2512 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2513 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2514 .access = PL1_RW, 2515 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2516 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2517 .access = PL1_RW, 2518 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2519 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2520 .resetvalue = 0 }, 2521 REGINFO_SENTINEL 2522 }; 2523 2524 #ifndef CONFIG_USER_ONLY 2525 2526 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2527 bool isread) 2528 { 2529 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2530 * Writable only at the highest implemented exception level. 2531 */ 2532 int el = arm_current_el(env); 2533 uint64_t hcr; 2534 uint32_t cntkctl; 2535 2536 switch (el) { 2537 case 0: 2538 hcr = arm_hcr_el2_eff(env); 2539 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2540 cntkctl = env->cp15.cnthctl_el2; 2541 } else { 2542 cntkctl = env->cp15.c14_cntkctl; 2543 } 2544 if (!extract32(cntkctl, 0, 2)) { 2545 return CP_ACCESS_TRAP; 2546 } 2547 break; 2548 case 1: 2549 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2550 arm_is_secure_below_el3(env)) { 2551 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2552 return CP_ACCESS_TRAP_UNCATEGORIZED; 2553 } 2554 break; 2555 case 2: 2556 case 3: 2557 break; 2558 } 2559 2560 if (!isread && el < arm_highest_el(env)) { 2561 return CP_ACCESS_TRAP_UNCATEGORIZED; 2562 } 2563 2564 return CP_ACCESS_OK; 2565 } 2566 2567 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2568 bool isread) 2569 { 2570 unsigned int cur_el = arm_current_el(env); 2571 bool secure = arm_is_secure(env); 2572 uint64_t hcr = arm_hcr_el2_eff(env); 2573 2574 switch (cur_el) { 2575 case 0: 2576 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2577 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2578 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2579 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2580 } 2581 2582 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2583 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2584 return CP_ACCESS_TRAP; 2585 } 2586 2587 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2588 if (hcr & HCR_E2H) { 2589 if (timeridx == GTIMER_PHYS && 2590 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2591 return CP_ACCESS_TRAP_EL2; 2592 } 2593 } else { 2594 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2595 if (arm_feature(env, ARM_FEATURE_EL2) && 2596 timeridx == GTIMER_PHYS && !secure && 2597 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2598 return CP_ACCESS_TRAP_EL2; 2599 } 2600 } 2601 break; 2602 2603 case 1: 2604 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2605 if (arm_feature(env, ARM_FEATURE_EL2) && 2606 timeridx == GTIMER_PHYS && !secure && 2607 (hcr & HCR_E2H 2608 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2609 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2610 return CP_ACCESS_TRAP_EL2; 2611 } 2612 break; 2613 } 2614 return CP_ACCESS_OK; 2615 } 2616 2617 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2618 bool isread) 2619 { 2620 unsigned int cur_el = arm_current_el(env); 2621 bool secure = arm_is_secure(env); 2622 uint64_t hcr = arm_hcr_el2_eff(env); 2623 2624 switch (cur_el) { 2625 case 0: 2626 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2627 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2628 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2629 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2630 } 2631 2632 /* 2633 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2634 * EL0 if EL0[PV]TEN is zero. 2635 */ 2636 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2637 return CP_ACCESS_TRAP; 2638 } 2639 /* fall through */ 2640 2641 case 1: 2642 if (arm_feature(env, ARM_FEATURE_EL2) && 2643 timeridx == GTIMER_PHYS && !secure) { 2644 if (hcr & HCR_E2H) { 2645 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2646 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2647 return CP_ACCESS_TRAP_EL2; 2648 } 2649 } else { 2650 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2651 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2652 return CP_ACCESS_TRAP_EL2; 2653 } 2654 } 2655 } 2656 break; 2657 } 2658 return CP_ACCESS_OK; 2659 } 2660 2661 static CPAccessResult gt_pct_access(CPUARMState *env, 2662 const ARMCPRegInfo *ri, 2663 bool isread) 2664 { 2665 return gt_counter_access(env, GTIMER_PHYS, isread); 2666 } 2667 2668 static CPAccessResult gt_vct_access(CPUARMState *env, 2669 const ARMCPRegInfo *ri, 2670 bool isread) 2671 { 2672 return gt_counter_access(env, GTIMER_VIRT, isread); 2673 } 2674 2675 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2676 bool isread) 2677 { 2678 return gt_timer_access(env, GTIMER_PHYS, isread); 2679 } 2680 2681 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2682 bool isread) 2683 { 2684 return gt_timer_access(env, GTIMER_VIRT, isread); 2685 } 2686 2687 static CPAccessResult gt_stimer_access(CPUARMState *env, 2688 const ARMCPRegInfo *ri, 2689 bool isread) 2690 { 2691 /* The AArch64 register view of the secure physical timer is 2692 * always accessible from EL3, and configurably accessible from 2693 * Secure EL1. 2694 */ 2695 switch (arm_current_el(env)) { 2696 case 1: 2697 if (!arm_is_secure(env)) { 2698 return CP_ACCESS_TRAP; 2699 } 2700 if (!(env->cp15.scr_el3 & SCR_ST)) { 2701 return CP_ACCESS_TRAP_EL3; 2702 } 2703 return CP_ACCESS_OK; 2704 case 0: 2705 case 2: 2706 return CP_ACCESS_TRAP; 2707 case 3: 2708 return CP_ACCESS_OK; 2709 default: 2710 g_assert_not_reached(); 2711 } 2712 } 2713 2714 static uint64_t gt_get_countervalue(CPUARMState *env) 2715 { 2716 ARMCPU *cpu = env_archcpu(env); 2717 2718 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2719 } 2720 2721 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2722 { 2723 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2724 2725 if (gt->ctl & 1) { 2726 /* Timer enabled: calculate and set current ISTATUS, irq, and 2727 * reset timer to when ISTATUS next has to change 2728 */ 2729 uint64_t offset = timeridx == GTIMER_VIRT ? 2730 cpu->env.cp15.cntvoff_el2 : 0; 2731 uint64_t count = gt_get_countervalue(&cpu->env); 2732 /* Note that this must be unsigned 64 bit arithmetic: */ 2733 int istatus = count - offset >= gt->cval; 2734 uint64_t nexttick; 2735 int irqstate; 2736 2737 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2738 2739 irqstate = (istatus && !(gt->ctl & 2)); 2740 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2741 2742 if (istatus) { 2743 /* Next transition is when count rolls back over to zero */ 2744 nexttick = UINT64_MAX; 2745 } else { 2746 /* Next transition is when we hit cval */ 2747 nexttick = gt->cval + offset; 2748 } 2749 /* Note that the desired next expiry time might be beyond the 2750 * signed-64-bit range of a QEMUTimer -- in this case we just 2751 * set the timer for as far in the future as possible. When the 2752 * timer expires we will reset the timer for any remaining period. 2753 */ 2754 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2755 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2756 } else { 2757 timer_mod(cpu->gt_timer[timeridx], nexttick); 2758 } 2759 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2760 } else { 2761 /* Timer disabled: ISTATUS and timer output always clear */ 2762 gt->ctl &= ~4; 2763 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2764 timer_del(cpu->gt_timer[timeridx]); 2765 trace_arm_gt_recalc_disabled(timeridx); 2766 } 2767 } 2768 2769 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2770 int timeridx) 2771 { 2772 ARMCPU *cpu = env_archcpu(env); 2773 2774 timer_del(cpu->gt_timer[timeridx]); 2775 } 2776 2777 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2778 { 2779 return gt_get_countervalue(env); 2780 } 2781 2782 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2783 { 2784 uint64_t hcr; 2785 2786 switch (arm_current_el(env)) { 2787 case 2: 2788 hcr = arm_hcr_el2_eff(env); 2789 if (hcr & HCR_E2H) { 2790 return 0; 2791 } 2792 break; 2793 case 0: 2794 hcr = arm_hcr_el2_eff(env); 2795 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2796 return 0; 2797 } 2798 break; 2799 } 2800 2801 return env->cp15.cntvoff_el2; 2802 } 2803 2804 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2805 { 2806 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2807 } 2808 2809 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2810 int timeridx, 2811 uint64_t value) 2812 { 2813 trace_arm_gt_cval_write(timeridx, value); 2814 env->cp15.c14_timer[timeridx].cval = value; 2815 gt_recalc_timer(env_archcpu(env), timeridx); 2816 } 2817 2818 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2819 int timeridx) 2820 { 2821 uint64_t offset = 0; 2822 2823 switch (timeridx) { 2824 case GTIMER_VIRT: 2825 case GTIMER_HYPVIRT: 2826 offset = gt_virt_cnt_offset(env); 2827 break; 2828 } 2829 2830 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2831 (gt_get_countervalue(env) - offset)); 2832 } 2833 2834 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2835 int timeridx, 2836 uint64_t value) 2837 { 2838 uint64_t offset = 0; 2839 2840 switch (timeridx) { 2841 case GTIMER_VIRT: 2842 case GTIMER_HYPVIRT: 2843 offset = gt_virt_cnt_offset(env); 2844 break; 2845 } 2846 2847 trace_arm_gt_tval_write(timeridx, value); 2848 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2849 sextract64(value, 0, 32); 2850 gt_recalc_timer(env_archcpu(env), timeridx); 2851 } 2852 2853 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2854 int timeridx, 2855 uint64_t value) 2856 { 2857 ARMCPU *cpu = env_archcpu(env); 2858 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2859 2860 trace_arm_gt_ctl_write(timeridx, value); 2861 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2862 if ((oldval ^ value) & 1) { 2863 /* Enable toggled */ 2864 gt_recalc_timer(cpu, timeridx); 2865 } else if ((oldval ^ value) & 2) { 2866 /* IMASK toggled: don't need to recalculate, 2867 * just set the interrupt line based on ISTATUS 2868 */ 2869 int irqstate = (oldval & 4) && !(value & 2); 2870 2871 trace_arm_gt_imask_toggle(timeridx, irqstate); 2872 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2873 } 2874 } 2875 2876 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2877 { 2878 gt_timer_reset(env, ri, GTIMER_PHYS); 2879 } 2880 2881 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2882 uint64_t value) 2883 { 2884 gt_cval_write(env, ri, GTIMER_PHYS, value); 2885 } 2886 2887 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2888 { 2889 return gt_tval_read(env, ri, GTIMER_PHYS); 2890 } 2891 2892 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2893 uint64_t value) 2894 { 2895 gt_tval_write(env, ri, GTIMER_PHYS, value); 2896 } 2897 2898 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2899 uint64_t value) 2900 { 2901 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2902 } 2903 2904 static int gt_phys_redir_timeridx(CPUARMState *env) 2905 { 2906 switch (arm_mmu_idx(env)) { 2907 case ARMMMUIdx_E20_0: 2908 case ARMMMUIdx_E20_2: 2909 case ARMMMUIdx_E20_2_PAN: 2910 return GTIMER_HYP; 2911 default: 2912 return GTIMER_PHYS; 2913 } 2914 } 2915 2916 static int gt_virt_redir_timeridx(CPUARMState *env) 2917 { 2918 switch (arm_mmu_idx(env)) { 2919 case ARMMMUIdx_E20_0: 2920 case ARMMMUIdx_E20_2: 2921 case ARMMMUIdx_E20_2_PAN: 2922 return GTIMER_HYPVIRT; 2923 default: 2924 return GTIMER_VIRT; 2925 } 2926 } 2927 2928 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2929 const ARMCPRegInfo *ri) 2930 { 2931 int timeridx = gt_phys_redir_timeridx(env); 2932 return env->cp15.c14_timer[timeridx].cval; 2933 } 2934 2935 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2936 uint64_t value) 2937 { 2938 int timeridx = gt_phys_redir_timeridx(env); 2939 gt_cval_write(env, ri, timeridx, value); 2940 } 2941 2942 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2943 const ARMCPRegInfo *ri) 2944 { 2945 int timeridx = gt_phys_redir_timeridx(env); 2946 return gt_tval_read(env, ri, timeridx); 2947 } 2948 2949 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2950 uint64_t value) 2951 { 2952 int timeridx = gt_phys_redir_timeridx(env); 2953 gt_tval_write(env, ri, timeridx, value); 2954 } 2955 2956 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2957 const ARMCPRegInfo *ri) 2958 { 2959 int timeridx = gt_phys_redir_timeridx(env); 2960 return env->cp15.c14_timer[timeridx].ctl; 2961 } 2962 2963 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2964 uint64_t value) 2965 { 2966 int timeridx = gt_phys_redir_timeridx(env); 2967 gt_ctl_write(env, ri, timeridx, value); 2968 } 2969 2970 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2971 { 2972 gt_timer_reset(env, ri, GTIMER_VIRT); 2973 } 2974 2975 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2976 uint64_t value) 2977 { 2978 gt_cval_write(env, ri, GTIMER_VIRT, value); 2979 } 2980 2981 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2982 { 2983 return gt_tval_read(env, ri, GTIMER_VIRT); 2984 } 2985 2986 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2987 uint64_t value) 2988 { 2989 gt_tval_write(env, ri, GTIMER_VIRT, value); 2990 } 2991 2992 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2993 uint64_t value) 2994 { 2995 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2996 } 2997 2998 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2999 uint64_t value) 3000 { 3001 ARMCPU *cpu = env_archcpu(env); 3002 3003 trace_arm_gt_cntvoff_write(value); 3004 raw_write(env, ri, value); 3005 gt_recalc_timer(cpu, GTIMER_VIRT); 3006 } 3007 3008 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 3009 const ARMCPRegInfo *ri) 3010 { 3011 int timeridx = gt_virt_redir_timeridx(env); 3012 return env->cp15.c14_timer[timeridx].cval; 3013 } 3014 3015 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3016 uint64_t value) 3017 { 3018 int timeridx = gt_virt_redir_timeridx(env); 3019 gt_cval_write(env, ri, timeridx, value); 3020 } 3021 3022 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 3023 const ARMCPRegInfo *ri) 3024 { 3025 int timeridx = gt_virt_redir_timeridx(env); 3026 return gt_tval_read(env, ri, timeridx); 3027 } 3028 3029 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3030 uint64_t value) 3031 { 3032 int timeridx = gt_virt_redir_timeridx(env); 3033 gt_tval_write(env, ri, timeridx, value); 3034 } 3035 3036 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3037 const ARMCPRegInfo *ri) 3038 { 3039 int timeridx = gt_virt_redir_timeridx(env); 3040 return env->cp15.c14_timer[timeridx].ctl; 3041 } 3042 3043 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3044 uint64_t value) 3045 { 3046 int timeridx = gt_virt_redir_timeridx(env); 3047 gt_ctl_write(env, ri, timeridx, value); 3048 } 3049 3050 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3051 { 3052 gt_timer_reset(env, ri, GTIMER_HYP); 3053 } 3054 3055 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3056 uint64_t value) 3057 { 3058 gt_cval_write(env, ri, GTIMER_HYP, value); 3059 } 3060 3061 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3062 { 3063 return gt_tval_read(env, ri, GTIMER_HYP); 3064 } 3065 3066 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3067 uint64_t value) 3068 { 3069 gt_tval_write(env, ri, GTIMER_HYP, value); 3070 } 3071 3072 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3073 uint64_t value) 3074 { 3075 gt_ctl_write(env, ri, GTIMER_HYP, value); 3076 } 3077 3078 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3079 { 3080 gt_timer_reset(env, ri, GTIMER_SEC); 3081 } 3082 3083 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3084 uint64_t value) 3085 { 3086 gt_cval_write(env, ri, GTIMER_SEC, value); 3087 } 3088 3089 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3090 { 3091 return gt_tval_read(env, ri, GTIMER_SEC); 3092 } 3093 3094 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3095 uint64_t value) 3096 { 3097 gt_tval_write(env, ri, GTIMER_SEC, value); 3098 } 3099 3100 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3101 uint64_t value) 3102 { 3103 gt_ctl_write(env, ri, GTIMER_SEC, value); 3104 } 3105 3106 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3107 { 3108 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3109 } 3110 3111 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3112 uint64_t value) 3113 { 3114 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3115 } 3116 3117 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3118 { 3119 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3120 } 3121 3122 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3123 uint64_t value) 3124 { 3125 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3126 } 3127 3128 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3129 uint64_t value) 3130 { 3131 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3132 } 3133 3134 void arm_gt_ptimer_cb(void *opaque) 3135 { 3136 ARMCPU *cpu = opaque; 3137 3138 gt_recalc_timer(cpu, GTIMER_PHYS); 3139 } 3140 3141 void arm_gt_vtimer_cb(void *opaque) 3142 { 3143 ARMCPU *cpu = opaque; 3144 3145 gt_recalc_timer(cpu, GTIMER_VIRT); 3146 } 3147 3148 void arm_gt_htimer_cb(void *opaque) 3149 { 3150 ARMCPU *cpu = opaque; 3151 3152 gt_recalc_timer(cpu, GTIMER_HYP); 3153 } 3154 3155 void arm_gt_stimer_cb(void *opaque) 3156 { 3157 ARMCPU *cpu = opaque; 3158 3159 gt_recalc_timer(cpu, GTIMER_SEC); 3160 } 3161 3162 void arm_gt_hvtimer_cb(void *opaque) 3163 { 3164 ARMCPU *cpu = opaque; 3165 3166 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3167 } 3168 3169 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3170 { 3171 ARMCPU *cpu = env_archcpu(env); 3172 3173 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3174 } 3175 3176 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3177 /* Note that CNTFRQ is purely reads-as-written for the benefit 3178 * of software; writing it doesn't actually change the timer frequency. 3179 * Our reset value matches the fixed frequency we implement the timer at. 3180 */ 3181 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3182 .type = ARM_CP_ALIAS, 3183 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3184 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3185 }, 3186 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3187 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3188 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3189 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3190 .resetfn = arm_gt_cntfrq_reset, 3191 }, 3192 /* overall control: mostly access permissions */ 3193 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3194 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3195 .access = PL1_RW, 3196 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3197 .resetvalue = 0, 3198 }, 3199 /* per-timer control */ 3200 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3201 .secure = ARM_CP_SECSTATE_NS, 3202 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3203 .accessfn = gt_ptimer_access, 3204 .fieldoffset = offsetoflow32(CPUARMState, 3205 cp15.c14_timer[GTIMER_PHYS].ctl), 3206 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3207 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3208 }, 3209 { .name = "CNTP_CTL_S", 3210 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3211 .secure = ARM_CP_SECSTATE_S, 3212 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3213 .accessfn = gt_ptimer_access, 3214 .fieldoffset = offsetoflow32(CPUARMState, 3215 cp15.c14_timer[GTIMER_SEC].ctl), 3216 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3217 }, 3218 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3219 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3220 .type = ARM_CP_IO, .access = PL0_RW, 3221 .accessfn = gt_ptimer_access, 3222 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3223 .resetvalue = 0, 3224 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3225 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3226 }, 3227 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3228 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3229 .accessfn = gt_vtimer_access, 3230 .fieldoffset = offsetoflow32(CPUARMState, 3231 cp15.c14_timer[GTIMER_VIRT].ctl), 3232 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3233 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3234 }, 3235 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3236 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3237 .type = ARM_CP_IO, .access = PL0_RW, 3238 .accessfn = gt_vtimer_access, 3239 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3240 .resetvalue = 0, 3241 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3242 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3243 }, 3244 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3245 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3246 .secure = ARM_CP_SECSTATE_NS, 3247 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3248 .accessfn = gt_ptimer_access, 3249 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3250 }, 3251 { .name = "CNTP_TVAL_S", 3252 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3253 .secure = ARM_CP_SECSTATE_S, 3254 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3255 .accessfn = gt_ptimer_access, 3256 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3257 }, 3258 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3259 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3260 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3261 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3262 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3263 }, 3264 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3265 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3266 .accessfn = gt_vtimer_access, 3267 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3268 }, 3269 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3270 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3271 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3272 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3273 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3274 }, 3275 /* The counter itself */ 3276 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3277 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3278 .accessfn = gt_pct_access, 3279 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3280 }, 3281 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3282 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3283 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3284 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3285 }, 3286 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3287 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3288 .accessfn = gt_vct_access, 3289 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3290 }, 3291 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3292 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3293 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3294 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3295 }, 3296 /* Comparison value, indicating when the timer goes off */ 3297 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3298 .secure = ARM_CP_SECSTATE_NS, 3299 .access = PL0_RW, 3300 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3301 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3302 .accessfn = gt_ptimer_access, 3303 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3304 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3305 }, 3306 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3307 .secure = ARM_CP_SECSTATE_S, 3308 .access = PL0_RW, 3309 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3310 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3311 .accessfn = gt_ptimer_access, 3312 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3313 }, 3314 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3315 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3316 .access = PL0_RW, 3317 .type = ARM_CP_IO, 3318 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3319 .resetvalue = 0, .accessfn = gt_ptimer_access, 3320 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3321 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3322 }, 3323 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3324 .access = PL0_RW, 3325 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3326 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3327 .accessfn = gt_vtimer_access, 3328 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3329 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3330 }, 3331 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3332 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3333 .access = PL0_RW, 3334 .type = ARM_CP_IO, 3335 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3336 .resetvalue = 0, .accessfn = gt_vtimer_access, 3337 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3338 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3339 }, 3340 /* Secure timer -- this is actually restricted to only EL3 3341 * and configurably Secure-EL1 via the accessfn. 3342 */ 3343 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3344 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3345 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3346 .accessfn = gt_stimer_access, 3347 .readfn = gt_sec_tval_read, 3348 .writefn = gt_sec_tval_write, 3349 .resetfn = gt_sec_timer_reset, 3350 }, 3351 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3352 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3353 .type = ARM_CP_IO, .access = PL1_RW, 3354 .accessfn = gt_stimer_access, 3355 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3356 .resetvalue = 0, 3357 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3358 }, 3359 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3360 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3361 .type = ARM_CP_IO, .access = PL1_RW, 3362 .accessfn = gt_stimer_access, 3363 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3364 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3365 }, 3366 REGINFO_SENTINEL 3367 }; 3368 3369 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3370 bool isread) 3371 { 3372 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3373 return CP_ACCESS_TRAP; 3374 } 3375 return CP_ACCESS_OK; 3376 } 3377 3378 #else 3379 3380 /* In user-mode most of the generic timer registers are inaccessible 3381 * however modern kernels (4.12+) allow access to cntvct_el0 3382 */ 3383 3384 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3385 { 3386 ARMCPU *cpu = env_archcpu(env); 3387 3388 /* Currently we have no support for QEMUTimer in linux-user so we 3389 * can't call gt_get_countervalue(env), instead we directly 3390 * call the lower level functions. 3391 */ 3392 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3393 } 3394 3395 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3396 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3397 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3398 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3399 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3400 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3401 }, 3402 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3403 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3404 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3405 .readfn = gt_virt_cnt_read, 3406 }, 3407 REGINFO_SENTINEL 3408 }; 3409 3410 #endif 3411 3412 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3413 { 3414 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3415 raw_write(env, ri, value); 3416 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3417 raw_write(env, ri, value & 0xfffff6ff); 3418 } else { 3419 raw_write(env, ri, value & 0xfffff1ff); 3420 } 3421 } 3422 3423 #ifndef CONFIG_USER_ONLY 3424 /* get_phys_addr() isn't present for user-mode-only targets */ 3425 3426 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3427 bool isread) 3428 { 3429 if (ri->opc2 & 4) { 3430 /* The ATS12NSO* operations must trap to EL3 if executed in 3431 * Secure EL1 (which can only happen if EL3 is AArch64). 3432 * They are simply UNDEF if executed from NS EL1. 3433 * They function normally from EL2 or EL3. 3434 */ 3435 if (arm_current_el(env) == 1) { 3436 if (arm_is_secure_below_el3(env)) { 3437 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3438 } 3439 return CP_ACCESS_TRAP_UNCATEGORIZED; 3440 } 3441 } 3442 return CP_ACCESS_OK; 3443 } 3444 3445 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3446 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3447 { 3448 hwaddr phys_addr; 3449 target_ulong page_size; 3450 int prot; 3451 bool ret; 3452 uint64_t par64; 3453 bool format64 = false; 3454 MemTxAttrs attrs = {}; 3455 ARMMMUFaultInfo fi = {}; 3456 ARMCacheAttrs cacheattrs = {}; 3457 3458 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3459 &prot, &page_size, &fi, &cacheattrs); 3460 3461 if (ret) { 3462 /* 3463 * Some kinds of translation fault must cause exceptions rather 3464 * than being reported in the PAR. 3465 */ 3466 int current_el = arm_current_el(env); 3467 int target_el; 3468 uint32_t syn, fsr, fsc; 3469 bool take_exc = false; 3470 3471 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) 3472 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3473 /* 3474 * Synchronous stage 2 fault on an access made as part of the 3475 * translation table walk for AT S1E0* or AT S1E1* insn 3476 * executed from NS EL1. If this is a synchronous external abort 3477 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3478 * to EL3. Otherwise the fault is taken as an exception to EL2, 3479 * and HPFAR_EL2 holds the faulting IPA. 3480 */ 3481 if (fi.type == ARMFault_SyncExternalOnWalk && 3482 (env->cp15.scr_el3 & SCR_EA)) { 3483 target_el = 3; 3484 } else { 3485 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3486 target_el = 2; 3487 } 3488 take_exc = true; 3489 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3490 /* 3491 * Synchronous external aborts during a translation table walk 3492 * are taken as Data Abort exceptions. 3493 */ 3494 if (fi.stage2) { 3495 if (current_el == 3) { 3496 target_el = 3; 3497 } else { 3498 target_el = 2; 3499 } 3500 } else { 3501 target_el = exception_target_el(env); 3502 } 3503 take_exc = true; 3504 } 3505 3506 if (take_exc) { 3507 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3508 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3509 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3510 fsr = arm_fi_to_lfsc(&fi); 3511 fsc = extract32(fsr, 0, 6); 3512 } else { 3513 fsr = arm_fi_to_sfsc(&fi); 3514 fsc = 0x3f; 3515 } 3516 /* 3517 * Report exception with ESR indicating a fault due to a 3518 * translation table walk for a cache maintenance instruction. 3519 */ 3520 syn = syn_data_abort_no_iss(current_el == target_el, 3521 fi.ea, 1, fi.s1ptw, 1, fsc); 3522 env->exception.vaddress = value; 3523 env->exception.fsr = fsr; 3524 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3525 } 3526 } 3527 3528 if (is_a64(env)) { 3529 format64 = true; 3530 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3531 /* 3532 * ATS1Cxx: 3533 * * TTBCR.EAE determines whether the result is returned using the 3534 * 32-bit or the 64-bit PAR format 3535 * * Instructions executed in Hyp mode always use the 64bit format 3536 * 3537 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3538 * * The Non-secure TTBCR.EAE bit is set to 1 3539 * * The implementation includes EL2, and the value of HCR.VM is 1 3540 * 3541 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3542 * 3543 * ATS1Hx always uses the 64bit format. 3544 */ 3545 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3546 3547 if (arm_feature(env, ARM_FEATURE_EL2)) { 3548 if (mmu_idx == ARMMMUIdx_E10_0 || 3549 mmu_idx == ARMMMUIdx_E10_1 || 3550 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3551 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3552 } else { 3553 format64 |= arm_current_el(env) == 2; 3554 } 3555 } 3556 } 3557 3558 if (format64) { 3559 /* Create a 64-bit PAR */ 3560 par64 = (1 << 11); /* LPAE bit always set */ 3561 if (!ret) { 3562 par64 |= phys_addr & ~0xfffULL; 3563 if (!attrs.secure) { 3564 par64 |= (1 << 9); /* NS */ 3565 } 3566 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3567 par64 |= cacheattrs.shareability << 7; /* SH */ 3568 } else { 3569 uint32_t fsr = arm_fi_to_lfsc(&fi); 3570 3571 par64 |= 1; /* F */ 3572 par64 |= (fsr & 0x3f) << 1; /* FS */ 3573 if (fi.stage2) { 3574 par64 |= (1 << 9); /* S */ 3575 } 3576 if (fi.s1ptw) { 3577 par64 |= (1 << 8); /* PTW */ 3578 } 3579 } 3580 } else { 3581 /* fsr is a DFSR/IFSR value for the short descriptor 3582 * translation table format (with WnR always clear). 3583 * Convert it to a 32-bit PAR. 3584 */ 3585 if (!ret) { 3586 /* We do not set any attribute bits in the PAR */ 3587 if (page_size == (1 << 24) 3588 && arm_feature(env, ARM_FEATURE_V7)) { 3589 par64 = (phys_addr & 0xff000000) | (1 << 1); 3590 } else { 3591 par64 = phys_addr & 0xfffff000; 3592 } 3593 if (!attrs.secure) { 3594 par64 |= (1 << 9); /* NS */ 3595 } 3596 } else { 3597 uint32_t fsr = arm_fi_to_sfsc(&fi); 3598 3599 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3600 ((fsr & 0xf) << 1) | 1; 3601 } 3602 } 3603 return par64; 3604 } 3605 3606 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3607 { 3608 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3609 uint64_t par64; 3610 ARMMMUIdx mmu_idx; 3611 int el = arm_current_el(env); 3612 bool secure = arm_is_secure_below_el3(env); 3613 3614 switch (ri->opc2 & 6) { 3615 case 0: 3616 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3617 switch (el) { 3618 case 3: 3619 mmu_idx = ARMMMUIdx_SE3; 3620 break; 3621 case 2: 3622 g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */ 3623 /* fall through */ 3624 case 1: 3625 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3626 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3627 : ARMMMUIdx_Stage1_E1_PAN); 3628 } else { 3629 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3630 } 3631 break; 3632 default: 3633 g_assert_not_reached(); 3634 } 3635 break; 3636 case 2: 3637 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3638 switch (el) { 3639 case 3: 3640 mmu_idx = ARMMMUIdx_SE10_0; 3641 break; 3642 case 2: 3643 mmu_idx = ARMMMUIdx_Stage1_E0; 3644 break; 3645 case 1: 3646 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3647 break; 3648 default: 3649 g_assert_not_reached(); 3650 } 3651 break; 3652 case 4: 3653 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3654 mmu_idx = ARMMMUIdx_E10_1; 3655 break; 3656 case 6: 3657 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3658 mmu_idx = ARMMMUIdx_E10_0; 3659 break; 3660 default: 3661 g_assert_not_reached(); 3662 } 3663 3664 par64 = do_ats_write(env, value, access_type, mmu_idx); 3665 3666 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3667 } 3668 3669 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3670 uint64_t value) 3671 { 3672 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3673 uint64_t par64; 3674 3675 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3676 3677 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3678 } 3679 3680 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3681 bool isread) 3682 { 3683 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3684 return CP_ACCESS_TRAP; 3685 } 3686 return CP_ACCESS_OK; 3687 } 3688 3689 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3690 uint64_t value) 3691 { 3692 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3693 ARMMMUIdx mmu_idx; 3694 int secure = arm_is_secure_below_el3(env); 3695 3696 switch (ri->opc2 & 6) { 3697 case 0: 3698 switch (ri->opc1) { 3699 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3700 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3701 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3702 : ARMMMUIdx_Stage1_E1_PAN); 3703 } else { 3704 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3705 } 3706 break; 3707 case 4: /* AT S1E2R, AT S1E2W */ 3708 mmu_idx = ARMMMUIdx_E2; 3709 break; 3710 case 6: /* AT S1E3R, AT S1E3W */ 3711 mmu_idx = ARMMMUIdx_SE3; 3712 break; 3713 default: 3714 g_assert_not_reached(); 3715 } 3716 break; 3717 case 2: /* AT S1E0R, AT S1E0W */ 3718 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3719 break; 3720 case 4: /* AT S12E1R, AT S12E1W */ 3721 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3722 break; 3723 case 6: /* AT S12E0R, AT S12E0W */ 3724 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3725 break; 3726 default: 3727 g_assert_not_reached(); 3728 } 3729 3730 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3731 } 3732 #endif 3733 3734 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3735 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3736 .access = PL1_RW, .resetvalue = 0, 3737 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3738 offsetoflow32(CPUARMState, cp15.par_ns) }, 3739 .writefn = par_write }, 3740 #ifndef CONFIG_USER_ONLY 3741 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3742 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3743 .access = PL1_W, .accessfn = ats_access, 3744 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3745 #endif 3746 REGINFO_SENTINEL 3747 }; 3748 3749 /* Return basic MPU access permission bits. */ 3750 static uint32_t simple_mpu_ap_bits(uint32_t val) 3751 { 3752 uint32_t ret; 3753 uint32_t mask; 3754 int i; 3755 ret = 0; 3756 mask = 3; 3757 for (i = 0; i < 16; i += 2) { 3758 ret |= (val >> i) & mask; 3759 mask <<= 2; 3760 } 3761 return ret; 3762 } 3763 3764 /* Pad basic MPU access permission bits to extended format. */ 3765 static uint32_t extended_mpu_ap_bits(uint32_t val) 3766 { 3767 uint32_t ret; 3768 uint32_t mask; 3769 int i; 3770 ret = 0; 3771 mask = 3; 3772 for (i = 0; i < 16; i += 2) { 3773 ret |= (val & mask) << i; 3774 mask <<= 2; 3775 } 3776 return ret; 3777 } 3778 3779 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3780 uint64_t value) 3781 { 3782 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3783 } 3784 3785 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3786 { 3787 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3788 } 3789 3790 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3791 uint64_t value) 3792 { 3793 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3794 } 3795 3796 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3797 { 3798 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3799 } 3800 3801 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3802 { 3803 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3804 3805 if (!u32p) { 3806 return 0; 3807 } 3808 3809 u32p += env->pmsav7.rnr[M_REG_NS]; 3810 return *u32p; 3811 } 3812 3813 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3814 uint64_t value) 3815 { 3816 ARMCPU *cpu = env_archcpu(env); 3817 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3818 3819 if (!u32p) { 3820 return; 3821 } 3822 3823 u32p += env->pmsav7.rnr[M_REG_NS]; 3824 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3825 *u32p = value; 3826 } 3827 3828 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3829 uint64_t value) 3830 { 3831 ARMCPU *cpu = env_archcpu(env); 3832 uint32_t nrgs = cpu->pmsav7_dregion; 3833 3834 if (value >= nrgs) { 3835 qemu_log_mask(LOG_GUEST_ERROR, 3836 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3837 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3838 return; 3839 } 3840 3841 raw_write(env, ri, value); 3842 } 3843 3844 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3845 /* Reset for all these registers is handled in arm_cpu_reset(), 3846 * because the PMSAv7 is also used by M-profile CPUs, which do 3847 * not register cpregs but still need the state to be reset. 3848 */ 3849 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3850 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3851 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3852 .readfn = pmsav7_read, .writefn = pmsav7_write, 3853 .resetfn = arm_cp_reset_ignore }, 3854 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3855 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3856 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3857 .readfn = pmsav7_read, .writefn = pmsav7_write, 3858 .resetfn = arm_cp_reset_ignore }, 3859 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3860 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3861 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3862 .readfn = pmsav7_read, .writefn = pmsav7_write, 3863 .resetfn = arm_cp_reset_ignore }, 3864 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3865 .access = PL1_RW, 3866 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3867 .writefn = pmsav7_rgnr_write, 3868 .resetfn = arm_cp_reset_ignore }, 3869 REGINFO_SENTINEL 3870 }; 3871 3872 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3873 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3874 .access = PL1_RW, .type = ARM_CP_ALIAS, 3875 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3876 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3877 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3878 .access = PL1_RW, .type = ARM_CP_ALIAS, 3879 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3880 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3881 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3882 .access = PL1_RW, 3883 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3884 .resetvalue = 0, }, 3885 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3886 .access = PL1_RW, 3887 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3888 .resetvalue = 0, }, 3889 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3890 .access = PL1_RW, 3891 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3892 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3893 .access = PL1_RW, 3894 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3895 /* Protection region base and size registers */ 3896 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3897 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3898 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3899 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3900 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3901 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3902 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3903 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3904 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3905 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3906 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3907 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3908 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3909 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3910 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3911 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3912 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3913 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3914 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3915 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3916 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3917 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3918 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3919 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3920 REGINFO_SENTINEL 3921 }; 3922 3923 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3924 uint64_t value) 3925 { 3926 TCR *tcr = raw_ptr(env, ri); 3927 int maskshift = extract32(value, 0, 3); 3928 3929 if (!arm_feature(env, ARM_FEATURE_V8)) { 3930 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3931 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3932 * using Long-desciptor translation table format */ 3933 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3934 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3935 /* In an implementation that includes the Security Extensions 3936 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3937 * Short-descriptor translation table format. 3938 */ 3939 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3940 } else { 3941 value &= TTBCR_N; 3942 } 3943 } 3944 3945 /* Update the masks corresponding to the TCR bank being written 3946 * Note that we always calculate mask and base_mask, but 3947 * they are only used for short-descriptor tables (ie if EAE is 0); 3948 * for long-descriptor tables the TCR fields are used differently 3949 * and the mask and base_mask values are meaningless. 3950 */ 3951 tcr->raw_tcr = value; 3952 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3953 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3954 } 3955 3956 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3957 uint64_t value) 3958 { 3959 ARMCPU *cpu = env_archcpu(env); 3960 TCR *tcr = raw_ptr(env, ri); 3961 3962 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3963 /* With LPAE the TTBCR could result in a change of ASID 3964 * via the TTBCR.A1 bit, so do a TLB flush. 3965 */ 3966 tlb_flush(CPU(cpu)); 3967 } 3968 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3969 value = deposit64(tcr->raw_tcr, 0, 32, value); 3970 vmsa_ttbcr_raw_write(env, ri, value); 3971 } 3972 3973 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3974 { 3975 TCR *tcr = raw_ptr(env, ri); 3976 3977 /* Reset both the TCR as well as the masks corresponding to the bank of 3978 * the TCR being reset. 3979 */ 3980 tcr->raw_tcr = 0; 3981 tcr->mask = 0; 3982 tcr->base_mask = 0xffffc000u; 3983 } 3984 3985 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3986 uint64_t value) 3987 { 3988 ARMCPU *cpu = env_archcpu(env); 3989 TCR *tcr = raw_ptr(env, ri); 3990 3991 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3992 tlb_flush(CPU(cpu)); 3993 tcr->raw_tcr = value; 3994 } 3995 3996 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3997 uint64_t value) 3998 { 3999 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4000 if (cpreg_field_is_64bit(ri) && 4001 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4002 ARMCPU *cpu = env_archcpu(env); 4003 tlb_flush(CPU(cpu)); 4004 } 4005 raw_write(env, ri, value); 4006 } 4007 4008 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4009 uint64_t value) 4010 { 4011 /* 4012 * If we are running with E2&0 regime, then an ASID is active. 4013 * Flush if that might be changing. Note we're not checking 4014 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4015 * holds the active ASID, only checking the field that might. 4016 */ 4017 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4018 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4019 tlb_flush_by_mmuidx(env_cpu(env), 4020 ARMMMUIdxBit_E20_2 | 4021 ARMMMUIdxBit_E20_2_PAN | 4022 ARMMMUIdxBit_E20_0); 4023 } 4024 raw_write(env, ri, value); 4025 } 4026 4027 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4028 uint64_t value) 4029 { 4030 ARMCPU *cpu = env_archcpu(env); 4031 CPUState *cs = CPU(cpu); 4032 4033 /* 4034 * A change in VMID to the stage2 page table (Stage2) invalidates 4035 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 4036 */ 4037 if (raw_read(env, ri) != value) { 4038 tlb_flush_by_mmuidx(cs, 4039 ARMMMUIdxBit_E10_1 | 4040 ARMMMUIdxBit_E10_1_PAN | 4041 ARMMMUIdxBit_E10_0 | 4042 ARMMMUIdxBit_Stage2); 4043 raw_write(env, ri, value); 4044 } 4045 } 4046 4047 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4048 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4049 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4050 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4051 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4052 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4053 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4054 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4055 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4056 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4057 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4058 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4059 offsetof(CPUARMState, cp15.dfar_ns) } }, 4060 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4061 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4062 .access = PL1_RW, .accessfn = access_tvm_trvm, 4063 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4064 .resetvalue = 0, }, 4065 REGINFO_SENTINEL 4066 }; 4067 4068 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4069 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4070 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4071 .access = PL1_RW, .accessfn = access_tvm_trvm, 4072 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4073 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4074 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4075 .access = PL1_RW, .accessfn = access_tvm_trvm, 4076 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4077 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4078 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4079 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4080 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4081 .access = PL1_RW, .accessfn = access_tvm_trvm, 4082 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4083 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4084 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4085 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4086 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4087 .access = PL1_RW, .accessfn = access_tvm_trvm, 4088 .writefn = vmsa_tcr_el12_write, 4089 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 4090 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4091 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4092 .access = PL1_RW, .accessfn = access_tvm_trvm, 4093 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4094 .raw_writefn = vmsa_ttbcr_raw_write, 4095 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4096 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4097 REGINFO_SENTINEL 4098 }; 4099 4100 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4101 * qemu tlbs nor adjusting cached masks. 4102 */ 4103 static const ARMCPRegInfo ttbcr2_reginfo = { 4104 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4105 .access = PL1_RW, .accessfn = access_tvm_trvm, 4106 .type = ARM_CP_ALIAS, 4107 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4108 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 4109 }; 4110 4111 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4112 uint64_t value) 4113 { 4114 env->cp15.c15_ticonfig = value & 0xe7; 4115 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4116 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4117 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4118 } 4119 4120 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4121 uint64_t value) 4122 { 4123 env->cp15.c15_threadid = value & 0xffff; 4124 } 4125 4126 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4127 uint64_t value) 4128 { 4129 /* Wait-for-interrupt (deprecated) */ 4130 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4131 } 4132 4133 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4134 uint64_t value) 4135 { 4136 /* On OMAP there are registers indicating the max/min index of dcache lines 4137 * containing a dirty line; cache flush operations have to reset these. 4138 */ 4139 env->cp15.c15_i_max = 0x000; 4140 env->cp15.c15_i_min = 0xff0; 4141 } 4142 4143 static const ARMCPRegInfo omap_cp_reginfo[] = { 4144 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4145 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4146 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4147 .resetvalue = 0, }, 4148 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4149 .access = PL1_RW, .type = ARM_CP_NOP }, 4150 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4151 .access = PL1_RW, 4152 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4153 .writefn = omap_ticonfig_write }, 4154 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4155 .access = PL1_RW, 4156 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4157 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4158 .access = PL1_RW, .resetvalue = 0xff0, 4159 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4160 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4161 .access = PL1_RW, 4162 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4163 .writefn = omap_threadid_write }, 4164 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4165 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4166 .type = ARM_CP_NO_RAW, 4167 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4168 /* TODO: Peripheral port remap register: 4169 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4170 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4171 * when MMU is off. 4172 */ 4173 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4174 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4175 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4176 .writefn = omap_cachemaint_write }, 4177 { .name = "C9", .cp = 15, .crn = 9, 4178 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4179 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4180 REGINFO_SENTINEL 4181 }; 4182 4183 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4184 uint64_t value) 4185 { 4186 env->cp15.c15_cpar = value & 0x3fff; 4187 } 4188 4189 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4190 { .name = "XSCALE_CPAR", 4191 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4192 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4193 .writefn = xscale_cpar_write, }, 4194 { .name = "XSCALE_AUXCR", 4195 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4196 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4197 .resetvalue = 0, }, 4198 /* XScale specific cache-lockdown: since we have no cache we NOP these 4199 * and hope the guest does not really rely on cache behaviour. 4200 */ 4201 { .name = "XSCALE_LOCK_ICACHE_LINE", 4202 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4203 .access = PL1_W, .type = ARM_CP_NOP }, 4204 { .name = "XSCALE_UNLOCK_ICACHE", 4205 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4206 .access = PL1_W, .type = ARM_CP_NOP }, 4207 { .name = "XSCALE_DCACHE_LOCK", 4208 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4209 .access = PL1_RW, .type = ARM_CP_NOP }, 4210 { .name = "XSCALE_UNLOCK_DCACHE", 4211 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4212 .access = PL1_W, .type = ARM_CP_NOP }, 4213 REGINFO_SENTINEL 4214 }; 4215 4216 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4217 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4218 * implementation of this implementation-defined space. 4219 * Ideally this should eventually disappear in favour of actually 4220 * implementing the correct behaviour for all cores. 4221 */ 4222 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4223 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4224 .access = PL1_RW, 4225 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4226 .resetvalue = 0 }, 4227 REGINFO_SENTINEL 4228 }; 4229 4230 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4231 /* Cache status: RAZ because we have no cache so it's always clean */ 4232 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4233 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4234 .resetvalue = 0 }, 4235 REGINFO_SENTINEL 4236 }; 4237 4238 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4239 /* We never have a a block transfer operation in progress */ 4240 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4241 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4242 .resetvalue = 0 }, 4243 /* The cache ops themselves: these all NOP for QEMU */ 4244 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4245 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4246 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4247 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4248 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4249 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4250 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4251 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4252 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4253 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4254 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4255 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4256 REGINFO_SENTINEL 4257 }; 4258 4259 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4260 /* The cache test-and-clean instructions always return (1 << 30) 4261 * to indicate that there are no dirty cache lines. 4262 */ 4263 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4264 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4265 .resetvalue = (1 << 30) }, 4266 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4267 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4268 .resetvalue = (1 << 30) }, 4269 REGINFO_SENTINEL 4270 }; 4271 4272 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4273 /* Ignore ReadBuffer accesses */ 4274 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4275 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4276 .access = PL1_RW, .resetvalue = 0, 4277 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4278 REGINFO_SENTINEL 4279 }; 4280 4281 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4282 { 4283 ARMCPU *cpu = env_archcpu(env); 4284 unsigned int cur_el = arm_current_el(env); 4285 bool secure = arm_is_secure(env); 4286 4287 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4288 return env->cp15.vpidr_el2; 4289 } 4290 return raw_read(env, ri); 4291 } 4292 4293 static uint64_t mpidr_read_val(CPUARMState *env) 4294 { 4295 ARMCPU *cpu = env_archcpu(env); 4296 uint64_t mpidr = cpu->mp_affinity; 4297 4298 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4299 mpidr |= (1U << 31); 4300 /* Cores which are uniprocessor (non-coherent) 4301 * but still implement the MP extensions set 4302 * bit 30. (For instance, Cortex-R5). 4303 */ 4304 if (cpu->mp_is_up) { 4305 mpidr |= (1u << 30); 4306 } 4307 } 4308 return mpidr; 4309 } 4310 4311 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4312 { 4313 unsigned int cur_el = arm_current_el(env); 4314 bool secure = arm_is_secure(env); 4315 4316 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4317 return env->cp15.vmpidr_el2; 4318 } 4319 return mpidr_read_val(env); 4320 } 4321 4322 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4323 /* NOP AMAIR0/1 */ 4324 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4325 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4326 .access = PL1_RW, .accessfn = access_tvm_trvm, 4327 .type = ARM_CP_CONST, .resetvalue = 0 }, 4328 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4329 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4330 .access = PL1_RW, .accessfn = access_tvm_trvm, 4331 .type = ARM_CP_CONST, .resetvalue = 0 }, 4332 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4333 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4334 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4335 offsetof(CPUARMState, cp15.par_ns)} }, 4336 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4337 .access = PL1_RW, .accessfn = access_tvm_trvm, 4338 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4339 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4340 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4341 .writefn = vmsa_ttbr_write, }, 4342 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4343 .access = PL1_RW, .accessfn = access_tvm_trvm, 4344 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4345 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4346 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4347 .writefn = vmsa_ttbr_write, }, 4348 REGINFO_SENTINEL 4349 }; 4350 4351 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4352 { 4353 return vfp_get_fpcr(env); 4354 } 4355 4356 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4357 uint64_t value) 4358 { 4359 vfp_set_fpcr(env, value); 4360 } 4361 4362 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4363 { 4364 return vfp_get_fpsr(env); 4365 } 4366 4367 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4368 uint64_t value) 4369 { 4370 vfp_set_fpsr(env, value); 4371 } 4372 4373 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4374 bool isread) 4375 { 4376 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4377 return CP_ACCESS_TRAP; 4378 } 4379 return CP_ACCESS_OK; 4380 } 4381 4382 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4383 uint64_t value) 4384 { 4385 env->daif = value & PSTATE_DAIF; 4386 } 4387 4388 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4389 { 4390 return env->pstate & PSTATE_PAN; 4391 } 4392 4393 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4394 uint64_t value) 4395 { 4396 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4397 } 4398 4399 static const ARMCPRegInfo pan_reginfo = { 4400 .name = "PAN", .state = ARM_CP_STATE_AA64, 4401 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4402 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4403 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4404 }; 4405 4406 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4407 { 4408 return env->pstate & PSTATE_UAO; 4409 } 4410 4411 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4412 uint64_t value) 4413 { 4414 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4415 } 4416 4417 static const ARMCPRegInfo uao_reginfo = { 4418 .name = "UAO", .state = ARM_CP_STATE_AA64, 4419 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4420 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4421 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4422 }; 4423 4424 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4425 const ARMCPRegInfo *ri, 4426 bool isread) 4427 { 4428 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4429 switch (arm_current_el(env)) { 4430 case 0: 4431 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4432 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4433 return CP_ACCESS_TRAP; 4434 } 4435 /* fall through */ 4436 case 1: 4437 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4438 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4439 return CP_ACCESS_TRAP_EL2; 4440 } 4441 break; 4442 } 4443 return CP_ACCESS_OK; 4444 } 4445 4446 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4447 const ARMCPRegInfo *ri, 4448 bool isread) 4449 { 4450 /* Cache invalidate/clean to Point of Unification... */ 4451 switch (arm_current_el(env)) { 4452 case 0: 4453 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4454 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4455 return CP_ACCESS_TRAP; 4456 } 4457 /* fall through */ 4458 case 1: 4459 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4460 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4461 return CP_ACCESS_TRAP_EL2; 4462 } 4463 break; 4464 } 4465 return CP_ACCESS_OK; 4466 } 4467 4468 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4469 * Page D4-1736 (DDI0487A.b) 4470 */ 4471 4472 static int vae1_tlbmask(CPUARMState *env) 4473 { 4474 /* Since we exclude secure first, we may read HCR_EL2 directly. */ 4475 if (arm_is_secure_below_el3(env)) { 4476 return ARMMMUIdxBit_SE10_1 | 4477 ARMMMUIdxBit_SE10_1_PAN | 4478 ARMMMUIdxBit_SE10_0; 4479 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) 4480 == (HCR_E2H | HCR_TGE)) { 4481 return ARMMMUIdxBit_E20_2 | 4482 ARMMMUIdxBit_E20_2_PAN | 4483 ARMMMUIdxBit_E20_0; 4484 } else { 4485 return ARMMMUIdxBit_E10_1 | 4486 ARMMMUIdxBit_E10_1_PAN | 4487 ARMMMUIdxBit_E10_0; 4488 } 4489 } 4490 4491 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4492 uint64_t value) 4493 { 4494 CPUState *cs = env_cpu(env); 4495 int mask = vae1_tlbmask(env); 4496 4497 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4498 } 4499 4500 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4501 uint64_t value) 4502 { 4503 CPUState *cs = env_cpu(env); 4504 int mask = vae1_tlbmask(env); 4505 4506 if (tlb_force_broadcast(env)) { 4507 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4508 } else { 4509 tlb_flush_by_mmuidx(cs, mask); 4510 } 4511 } 4512 4513 static int alle1_tlbmask(CPUARMState *env) 4514 { 4515 /* 4516 * Note that the 'ALL' scope must invalidate both stage 1 and 4517 * stage 2 translations, whereas most other scopes only invalidate 4518 * stage 1 translations. 4519 */ 4520 if (arm_is_secure_below_el3(env)) { 4521 return ARMMMUIdxBit_SE10_1 | 4522 ARMMMUIdxBit_SE10_1_PAN | 4523 ARMMMUIdxBit_SE10_0; 4524 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 4525 return ARMMMUIdxBit_E10_1 | 4526 ARMMMUIdxBit_E10_1_PAN | 4527 ARMMMUIdxBit_E10_0 | 4528 ARMMMUIdxBit_Stage2; 4529 } else { 4530 return ARMMMUIdxBit_E10_1 | 4531 ARMMMUIdxBit_E10_1_PAN | 4532 ARMMMUIdxBit_E10_0; 4533 } 4534 } 4535 4536 static int e2_tlbmask(CPUARMState *env) 4537 { 4538 /* TODO: ARMv8.4-SecEL2 */ 4539 return ARMMMUIdxBit_E20_0 | 4540 ARMMMUIdxBit_E20_2 | 4541 ARMMMUIdxBit_E20_2_PAN | 4542 ARMMMUIdxBit_E2; 4543 } 4544 4545 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4546 uint64_t value) 4547 { 4548 CPUState *cs = env_cpu(env); 4549 int mask = alle1_tlbmask(env); 4550 4551 tlb_flush_by_mmuidx(cs, mask); 4552 } 4553 4554 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4555 uint64_t value) 4556 { 4557 CPUState *cs = env_cpu(env); 4558 int mask = e2_tlbmask(env); 4559 4560 tlb_flush_by_mmuidx(cs, mask); 4561 } 4562 4563 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4564 uint64_t value) 4565 { 4566 ARMCPU *cpu = env_archcpu(env); 4567 CPUState *cs = CPU(cpu); 4568 4569 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4570 } 4571 4572 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4573 uint64_t value) 4574 { 4575 CPUState *cs = env_cpu(env); 4576 int mask = alle1_tlbmask(env); 4577 4578 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4579 } 4580 4581 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4582 uint64_t value) 4583 { 4584 CPUState *cs = env_cpu(env); 4585 int mask = e2_tlbmask(env); 4586 4587 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4588 } 4589 4590 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4591 uint64_t value) 4592 { 4593 CPUState *cs = env_cpu(env); 4594 4595 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4596 } 4597 4598 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4599 uint64_t value) 4600 { 4601 /* Invalidate by VA, EL2 4602 * Currently handles both VAE2 and VALE2, since we don't support 4603 * flush-last-level-only. 4604 */ 4605 CPUState *cs = env_cpu(env); 4606 int mask = e2_tlbmask(env); 4607 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4608 4609 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4610 } 4611 4612 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4613 uint64_t value) 4614 { 4615 /* Invalidate by VA, EL3 4616 * Currently handles both VAE3 and VALE3, since we don't support 4617 * flush-last-level-only. 4618 */ 4619 ARMCPU *cpu = env_archcpu(env); 4620 CPUState *cs = CPU(cpu); 4621 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4622 4623 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4624 } 4625 4626 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4627 uint64_t value) 4628 { 4629 CPUState *cs = env_cpu(env); 4630 int mask = vae1_tlbmask(env); 4631 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4632 4633 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4634 } 4635 4636 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4637 uint64_t value) 4638 { 4639 /* Invalidate by VA, EL1&0 (AArch64 version). 4640 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4641 * since we don't support flush-for-specific-ASID-only or 4642 * flush-last-level-only. 4643 */ 4644 CPUState *cs = env_cpu(env); 4645 int mask = vae1_tlbmask(env); 4646 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4647 4648 if (tlb_force_broadcast(env)) { 4649 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4650 } else { 4651 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4652 } 4653 } 4654 4655 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4656 uint64_t value) 4657 { 4658 CPUState *cs = env_cpu(env); 4659 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4660 4661 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4662 ARMMMUIdxBit_E2); 4663 } 4664 4665 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4666 uint64_t value) 4667 { 4668 CPUState *cs = env_cpu(env); 4669 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4670 4671 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4672 ARMMMUIdxBit_SE3); 4673 } 4674 4675 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4676 uint64_t value) 4677 { 4678 /* Invalidate by IPA. This has to invalidate any structures that 4679 * contain only stage 2 translation information, but does not need 4680 * to apply to structures that contain combined stage 1 and stage 2 4681 * translation information. 4682 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 4683 */ 4684 ARMCPU *cpu = env_archcpu(env); 4685 CPUState *cs = CPU(cpu); 4686 uint64_t pageaddr; 4687 4688 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4689 return; 4690 } 4691 4692 pageaddr = sextract64(value << 12, 0, 48); 4693 4694 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 4695 } 4696 4697 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4698 uint64_t value) 4699 { 4700 CPUState *cs = env_cpu(env); 4701 uint64_t pageaddr; 4702 4703 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4704 return; 4705 } 4706 4707 pageaddr = sextract64(value << 12, 0, 48); 4708 4709 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4710 ARMMMUIdxBit_Stage2); 4711 } 4712 4713 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4714 bool isread) 4715 { 4716 int cur_el = arm_current_el(env); 4717 4718 if (cur_el < 2) { 4719 uint64_t hcr = arm_hcr_el2_eff(env); 4720 4721 if (cur_el == 0) { 4722 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4723 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4724 return CP_ACCESS_TRAP_EL2; 4725 } 4726 } else { 4727 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4728 return CP_ACCESS_TRAP; 4729 } 4730 if (hcr & HCR_TDZ) { 4731 return CP_ACCESS_TRAP_EL2; 4732 } 4733 } 4734 } else if (hcr & HCR_TDZ) { 4735 return CP_ACCESS_TRAP_EL2; 4736 } 4737 } 4738 return CP_ACCESS_OK; 4739 } 4740 4741 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4742 { 4743 ARMCPU *cpu = env_archcpu(env); 4744 int dzp_bit = 1 << 4; 4745 4746 /* DZP indicates whether DC ZVA access is allowed */ 4747 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4748 dzp_bit = 0; 4749 } 4750 return cpu->dcz_blocksize | dzp_bit; 4751 } 4752 4753 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4754 bool isread) 4755 { 4756 if (!(env->pstate & PSTATE_SP)) { 4757 /* Access to SP_EL0 is undefined if it's being used as 4758 * the stack pointer. 4759 */ 4760 return CP_ACCESS_TRAP_UNCATEGORIZED; 4761 } 4762 return CP_ACCESS_OK; 4763 } 4764 4765 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4766 { 4767 return env->pstate & PSTATE_SP; 4768 } 4769 4770 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4771 { 4772 update_spsel(env, val); 4773 } 4774 4775 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4776 uint64_t value) 4777 { 4778 ARMCPU *cpu = env_archcpu(env); 4779 4780 if (raw_read(env, ri) == value) { 4781 /* Skip the TLB flush if nothing actually changed; Linux likes 4782 * to do a lot of pointless SCTLR writes. 4783 */ 4784 return; 4785 } 4786 4787 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4788 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4789 value &= ~SCTLR_M; 4790 } 4791 4792 raw_write(env, ri, value); 4793 /* ??? Lots of these bits are not implemented. */ 4794 /* This may enable/disable the MMU, so do a TLB flush. */ 4795 tlb_flush(CPU(cpu)); 4796 4797 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4798 /* 4799 * Normally we would always end the TB on an SCTLR write; see the 4800 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4801 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4802 * of hflags from the translator, so do it here. 4803 */ 4804 arm_rebuild_hflags(env); 4805 } 4806 } 4807 4808 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4809 bool isread) 4810 { 4811 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4812 return CP_ACCESS_TRAP_FP_EL2; 4813 } 4814 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4815 return CP_ACCESS_TRAP_FP_EL3; 4816 } 4817 return CP_ACCESS_OK; 4818 } 4819 4820 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4821 uint64_t value) 4822 { 4823 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4824 } 4825 4826 static const ARMCPRegInfo v8_cp_reginfo[] = { 4827 /* Minimal set of EL0-visible registers. This will need to be expanded 4828 * significantly for system emulation of AArch64 CPUs. 4829 */ 4830 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4831 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4832 .access = PL0_RW, .type = ARM_CP_NZCV }, 4833 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4834 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4835 .type = ARM_CP_NO_RAW, 4836 .access = PL0_RW, .accessfn = aa64_daif_access, 4837 .fieldoffset = offsetof(CPUARMState, daif), 4838 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4839 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4840 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4841 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4842 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4843 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4845 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4846 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4847 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4849 .access = PL0_R, .type = ARM_CP_NO_RAW, 4850 .readfn = aa64_dczid_read }, 4851 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4852 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4853 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4854 #ifndef CONFIG_USER_ONLY 4855 /* Avoid overhead of an access check that always passes in user-mode */ 4856 .accessfn = aa64_zva_access, 4857 #endif 4858 }, 4859 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4860 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4861 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4862 /* Cache ops: all NOPs since we don't emulate caches */ 4863 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4864 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4865 .access = PL1_W, .type = ARM_CP_NOP, 4866 .accessfn = aa64_cacheop_pou_access }, 4867 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4868 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4869 .access = PL1_W, .type = ARM_CP_NOP, 4870 .accessfn = aa64_cacheop_pou_access }, 4871 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4872 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4873 .access = PL0_W, .type = ARM_CP_NOP, 4874 .accessfn = aa64_cacheop_pou_access }, 4875 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4876 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4877 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4878 .type = ARM_CP_NOP }, 4879 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4880 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4881 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4882 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4883 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4884 .access = PL0_W, .type = ARM_CP_NOP, 4885 .accessfn = aa64_cacheop_poc_access }, 4886 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4887 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4888 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4889 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4890 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4891 .access = PL0_W, .type = ARM_CP_NOP, 4892 .accessfn = aa64_cacheop_pou_access }, 4893 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4894 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4895 .access = PL0_W, .type = ARM_CP_NOP, 4896 .accessfn = aa64_cacheop_poc_access }, 4897 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4898 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4899 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4900 /* TLBI operations */ 4901 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4902 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4903 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4904 .writefn = tlbi_aa64_vmalle1is_write }, 4905 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4906 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4907 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4908 .writefn = tlbi_aa64_vae1is_write }, 4909 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4910 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4911 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4912 .writefn = tlbi_aa64_vmalle1is_write }, 4913 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4914 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4915 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4916 .writefn = tlbi_aa64_vae1is_write }, 4917 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4918 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4919 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4920 .writefn = tlbi_aa64_vae1is_write }, 4921 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4922 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4923 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4924 .writefn = tlbi_aa64_vae1is_write }, 4925 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4926 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4927 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4928 .writefn = tlbi_aa64_vmalle1_write }, 4929 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4930 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4931 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4932 .writefn = tlbi_aa64_vae1_write }, 4933 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4934 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4935 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4936 .writefn = tlbi_aa64_vmalle1_write }, 4937 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4938 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4939 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4940 .writefn = tlbi_aa64_vae1_write }, 4941 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4942 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4943 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4944 .writefn = tlbi_aa64_vae1_write }, 4945 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4946 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4947 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4948 .writefn = tlbi_aa64_vae1_write }, 4949 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4950 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4951 .access = PL2_W, .type = ARM_CP_NO_RAW, 4952 .writefn = tlbi_aa64_ipas2e1is_write }, 4953 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4954 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4955 .access = PL2_W, .type = ARM_CP_NO_RAW, 4956 .writefn = tlbi_aa64_ipas2e1is_write }, 4957 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4958 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4959 .access = PL2_W, .type = ARM_CP_NO_RAW, 4960 .writefn = tlbi_aa64_alle1is_write }, 4961 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4962 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4963 .access = PL2_W, .type = ARM_CP_NO_RAW, 4964 .writefn = tlbi_aa64_alle1is_write }, 4965 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4966 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4967 .access = PL2_W, .type = ARM_CP_NO_RAW, 4968 .writefn = tlbi_aa64_ipas2e1_write }, 4969 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4970 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4971 .access = PL2_W, .type = ARM_CP_NO_RAW, 4972 .writefn = tlbi_aa64_ipas2e1_write }, 4973 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4974 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4975 .access = PL2_W, .type = ARM_CP_NO_RAW, 4976 .writefn = tlbi_aa64_alle1_write }, 4977 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4978 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4979 .access = PL2_W, .type = ARM_CP_NO_RAW, 4980 .writefn = tlbi_aa64_alle1is_write }, 4981 #ifndef CONFIG_USER_ONLY 4982 /* 64 bit address translation operations */ 4983 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4984 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4985 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4986 .writefn = ats_write64 }, 4987 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4988 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4989 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4990 .writefn = ats_write64 }, 4991 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4992 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4993 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4994 .writefn = ats_write64 }, 4995 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4996 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4997 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4998 .writefn = ats_write64 }, 4999 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5000 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5001 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5002 .writefn = ats_write64 }, 5003 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5004 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5005 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5006 .writefn = ats_write64 }, 5007 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5008 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5009 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5010 .writefn = ats_write64 }, 5011 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5012 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5013 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5014 .writefn = ats_write64 }, 5015 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5016 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5017 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5018 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5019 .writefn = ats_write64 }, 5020 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5021 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5022 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5023 .writefn = ats_write64 }, 5024 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5025 .type = ARM_CP_ALIAS, 5026 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5027 .access = PL1_RW, .resetvalue = 0, 5028 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5029 .writefn = par_write }, 5030 #endif 5031 /* TLB invalidate last level of translation table walk */ 5032 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5033 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5034 .writefn = tlbimva_is_write }, 5035 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5036 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5037 .writefn = tlbimvaa_is_write }, 5038 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5039 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5040 .writefn = tlbimva_write }, 5041 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5042 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5043 .writefn = tlbimvaa_write }, 5044 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5045 .type = ARM_CP_NO_RAW, .access = PL2_W, 5046 .writefn = tlbimva_hyp_write }, 5047 { .name = "TLBIMVALHIS", 5048 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5049 .type = ARM_CP_NO_RAW, .access = PL2_W, 5050 .writefn = tlbimva_hyp_is_write }, 5051 { .name = "TLBIIPAS2", 5052 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5053 .type = ARM_CP_NO_RAW, .access = PL2_W, 5054 .writefn = tlbiipas2_write }, 5055 { .name = "TLBIIPAS2IS", 5056 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5057 .type = ARM_CP_NO_RAW, .access = PL2_W, 5058 .writefn = tlbiipas2_is_write }, 5059 { .name = "TLBIIPAS2L", 5060 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5061 .type = ARM_CP_NO_RAW, .access = PL2_W, 5062 .writefn = tlbiipas2_write }, 5063 { .name = "TLBIIPAS2LIS", 5064 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5065 .type = ARM_CP_NO_RAW, .access = PL2_W, 5066 .writefn = tlbiipas2_is_write }, 5067 /* 32 bit cache operations */ 5068 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5069 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5070 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5071 .type = ARM_CP_NOP, .access = PL1_W }, 5072 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5073 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5074 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5075 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5076 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5077 .type = ARM_CP_NOP, .access = PL1_W }, 5078 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5079 .type = ARM_CP_NOP, .access = PL1_W }, 5080 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5081 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5082 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5083 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5084 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5085 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5086 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5087 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5088 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5089 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5090 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5091 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5092 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5093 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5094 /* MMU Domain access control / MPU write buffer control */ 5095 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5096 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5097 .writefn = dacr_write, .raw_writefn = raw_write, 5098 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5099 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5100 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5101 .type = ARM_CP_ALIAS, 5102 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5103 .access = PL1_RW, 5104 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5105 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5106 .type = ARM_CP_ALIAS, 5107 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5108 .access = PL1_RW, 5109 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5110 /* We rely on the access checks not allowing the guest to write to the 5111 * state field when SPSel indicates that it's being used as the stack 5112 * pointer. 5113 */ 5114 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5115 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5116 .access = PL1_RW, .accessfn = sp_el0_access, 5117 .type = ARM_CP_ALIAS, 5118 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5119 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5120 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5121 .access = PL2_RW, .type = ARM_CP_ALIAS, 5122 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5123 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5124 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5125 .type = ARM_CP_NO_RAW, 5126 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5127 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5128 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5129 .type = ARM_CP_ALIAS, 5130 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5131 .access = PL2_RW, .accessfn = fpexc32_access }, 5132 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5133 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5134 .access = PL2_RW, .resetvalue = 0, 5135 .writefn = dacr_write, .raw_writefn = raw_write, 5136 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5137 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5138 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5139 .access = PL2_RW, .resetvalue = 0, 5140 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5141 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5142 .type = ARM_CP_ALIAS, 5143 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5144 .access = PL2_RW, 5145 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5146 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5147 .type = ARM_CP_ALIAS, 5148 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5149 .access = PL2_RW, 5150 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5151 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5152 .type = ARM_CP_ALIAS, 5153 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5154 .access = PL2_RW, 5155 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5156 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5157 .type = ARM_CP_ALIAS, 5158 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5159 .access = PL2_RW, 5160 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5161 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5162 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5163 .resetvalue = 0, 5164 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5165 { .name = "SDCR", .type = ARM_CP_ALIAS, 5166 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5167 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5168 .writefn = sdcr_write, 5169 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5170 REGINFO_SENTINEL 5171 }; 5172 5173 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5174 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5175 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5176 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5177 .access = PL2_RW, 5178 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5179 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5180 .type = ARM_CP_NO_RAW, 5181 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5182 .access = PL2_RW, 5183 .type = ARM_CP_CONST, .resetvalue = 0 }, 5184 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5185 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5186 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5187 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5188 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5189 .access = PL2_RW, 5190 .type = ARM_CP_CONST, .resetvalue = 0 }, 5191 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5192 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5193 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5194 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5195 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5196 .access = PL2_RW, .type = ARM_CP_CONST, 5197 .resetvalue = 0 }, 5198 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5199 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5200 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5201 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5202 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5203 .access = PL2_RW, .type = ARM_CP_CONST, 5204 .resetvalue = 0 }, 5205 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5206 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5207 .access = PL2_RW, .type = ARM_CP_CONST, 5208 .resetvalue = 0 }, 5209 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5210 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5211 .access = PL2_RW, .type = ARM_CP_CONST, 5212 .resetvalue = 0 }, 5213 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5214 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5215 .access = PL2_RW, .type = ARM_CP_CONST, 5216 .resetvalue = 0 }, 5217 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5218 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5219 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5220 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5221 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5222 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5223 .type = ARM_CP_CONST, .resetvalue = 0 }, 5224 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5225 .cp = 15, .opc1 = 6, .crm = 2, 5226 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5227 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5228 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5229 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5230 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5231 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5232 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5233 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5234 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5235 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5236 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5237 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5238 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5239 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5240 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5241 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5242 .resetvalue = 0 }, 5243 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5244 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5245 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5246 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5247 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5248 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5249 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5250 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5251 .resetvalue = 0 }, 5252 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5253 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5254 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5255 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5256 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5257 .resetvalue = 0 }, 5258 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5259 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5260 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5261 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5262 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5263 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5264 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5265 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5266 .access = PL2_RW, .accessfn = access_tda, 5267 .type = ARM_CP_CONST, .resetvalue = 0 }, 5268 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5269 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5270 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5271 .type = ARM_CP_CONST, .resetvalue = 0 }, 5272 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5273 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5274 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5275 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5276 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5277 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5278 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5279 .type = ARM_CP_CONST, 5280 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5281 .access = PL2_RW, .resetvalue = 0 }, 5282 REGINFO_SENTINEL 5283 }; 5284 5285 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5286 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5287 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5288 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5289 .access = PL2_RW, 5290 .type = ARM_CP_CONST, .resetvalue = 0 }, 5291 REGINFO_SENTINEL 5292 }; 5293 5294 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5295 { 5296 ARMCPU *cpu = env_archcpu(env); 5297 5298 if (arm_feature(env, ARM_FEATURE_V8)) { 5299 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5300 } else { 5301 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5302 } 5303 5304 if (arm_feature(env, ARM_FEATURE_EL3)) { 5305 valid_mask &= ~HCR_HCD; 5306 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5307 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5308 * However, if we're using the SMC PSCI conduit then QEMU is 5309 * effectively acting like EL3 firmware and so the guest at 5310 * EL2 should retain the ability to prevent EL1 from being 5311 * able to make SMC calls into the ersatz firmware, so in 5312 * that case HCR.TSC should be read/write. 5313 */ 5314 valid_mask &= ~HCR_TSC; 5315 } 5316 5317 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5318 if (cpu_isar_feature(aa64_vh, cpu)) { 5319 valid_mask |= HCR_E2H; 5320 } 5321 if (cpu_isar_feature(aa64_lor, cpu)) { 5322 valid_mask |= HCR_TLOR; 5323 } 5324 if (cpu_isar_feature(aa64_pauth, cpu)) { 5325 valid_mask |= HCR_API | HCR_APK; 5326 } 5327 } 5328 5329 /* Clear RES0 bits. */ 5330 value &= valid_mask; 5331 5332 /* These bits change the MMU setup: 5333 * HCR_VM enables stage 2 translation 5334 * HCR_PTW forbids certain page-table setups 5335 * HCR_DC Disables stage1 and enables stage2 translation 5336 */ 5337 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 5338 tlb_flush(CPU(cpu)); 5339 } 5340 env->cp15.hcr_el2 = value; 5341 5342 /* 5343 * Updates to VI and VF require us to update the status of 5344 * virtual interrupts, which are the logical OR of these bits 5345 * and the state of the input lines from the GIC. (This requires 5346 * that we have the iothread lock, which is done by marking the 5347 * reginfo structs as ARM_CP_IO.) 5348 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5349 * possible for it to be taken immediately, because VIRQ and 5350 * VFIQ are masked unless running at EL0 or EL1, and HCR 5351 * can only be written at EL2. 5352 */ 5353 g_assert(qemu_mutex_iothread_locked()); 5354 arm_cpu_update_virq(cpu); 5355 arm_cpu_update_vfiq(cpu); 5356 } 5357 5358 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5359 { 5360 do_hcr_write(env, value, 0); 5361 } 5362 5363 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5364 uint64_t value) 5365 { 5366 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5367 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5368 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5369 } 5370 5371 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5372 uint64_t value) 5373 { 5374 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5375 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5376 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5377 } 5378 5379 /* 5380 * Return the effective value of HCR_EL2. 5381 * Bits that are not included here: 5382 * RW (read from SCR_EL3.RW as needed) 5383 */ 5384 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5385 { 5386 uint64_t ret = env->cp15.hcr_el2; 5387 5388 if (arm_is_secure_below_el3(env)) { 5389 /* 5390 * "This register has no effect if EL2 is not enabled in the 5391 * current Security state". This is ARMv8.4-SecEL2 speak for 5392 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5393 * 5394 * Prior to that, the language was "In an implementation that 5395 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5396 * as if this field is 0 for all purposes other than a direct 5397 * read or write access of HCR_EL2". With lots of enumeration 5398 * on a per-field basis. In current QEMU, this is condition 5399 * is arm_is_secure_below_el3. 5400 * 5401 * Since the v8.4 language applies to the entire register, and 5402 * appears to be backward compatible, use that. 5403 */ 5404 return 0; 5405 } 5406 5407 /* 5408 * For a cpu that supports both aarch64 and aarch32, we can set bits 5409 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5410 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5411 */ 5412 if (!arm_el_is_aa64(env, 2)) { 5413 uint64_t aa32_valid; 5414 5415 /* 5416 * These bits are up-to-date as of ARMv8.6. 5417 * For HCR, it's easiest to list just the 2 bits that are invalid. 5418 * For HCR2, list those that are valid. 5419 */ 5420 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5421 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5422 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5423 ret &= aa32_valid; 5424 } 5425 5426 if (ret & HCR_TGE) { 5427 /* These bits are up-to-date as of ARMv8.6. */ 5428 if (ret & HCR_E2H) { 5429 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5430 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5431 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5432 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5433 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5434 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5435 } else { 5436 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5437 } 5438 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5439 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5440 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5441 HCR_TLOR); 5442 } 5443 5444 return ret; 5445 } 5446 5447 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5448 uint64_t value) 5449 { 5450 /* 5451 * For A-profile AArch32 EL3, if NSACR.CP10 5452 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5453 */ 5454 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5455 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5456 value &= ~(0x3 << 10); 5457 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5458 } 5459 env->cp15.cptr_el[2] = value; 5460 } 5461 5462 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5463 { 5464 /* 5465 * For A-profile AArch32 EL3, if NSACR.CP10 5466 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5467 */ 5468 uint64_t value = env->cp15.cptr_el[2]; 5469 5470 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5471 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5472 value |= 0x3 << 10; 5473 } 5474 return value; 5475 } 5476 5477 static const ARMCPRegInfo el2_cp_reginfo[] = { 5478 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5479 .type = ARM_CP_IO, 5480 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5481 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5482 .writefn = hcr_write }, 5483 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5484 .type = ARM_CP_ALIAS | ARM_CP_IO, 5485 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5486 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5487 .writefn = hcr_writelow }, 5488 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5489 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5490 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5491 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5492 .type = ARM_CP_ALIAS, 5493 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5494 .access = PL2_RW, 5495 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5496 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5497 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5498 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5499 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5500 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5501 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5502 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5503 .type = ARM_CP_ALIAS, 5504 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5505 .access = PL2_RW, 5506 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5507 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5508 .type = ARM_CP_ALIAS, 5509 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5510 .access = PL2_RW, 5511 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5512 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5513 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5514 .access = PL2_RW, .writefn = vbar_write, 5515 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5516 .resetvalue = 0 }, 5517 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5518 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5519 .access = PL3_RW, .type = ARM_CP_ALIAS, 5520 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5521 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5522 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5523 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5524 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5525 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5526 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5527 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5528 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5529 .resetvalue = 0 }, 5530 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5531 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5532 .access = PL2_RW, .type = ARM_CP_ALIAS, 5533 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5534 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5535 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5536 .access = PL2_RW, .type = ARM_CP_CONST, 5537 .resetvalue = 0 }, 5538 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5539 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5540 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5541 .access = PL2_RW, .type = ARM_CP_CONST, 5542 .resetvalue = 0 }, 5543 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5544 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5545 .access = PL2_RW, .type = ARM_CP_CONST, 5546 .resetvalue = 0 }, 5547 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5548 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5549 .access = PL2_RW, .type = ARM_CP_CONST, 5550 .resetvalue = 0 }, 5551 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5552 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5553 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5554 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5555 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5556 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5557 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5558 .type = ARM_CP_ALIAS, 5559 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5560 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5561 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5562 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5563 .access = PL2_RW, 5564 /* no .writefn needed as this can't cause an ASID change; 5565 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5566 */ 5567 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5568 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5569 .cp = 15, .opc1 = 6, .crm = 2, 5570 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5571 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5572 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5573 .writefn = vttbr_write }, 5574 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5575 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5576 .access = PL2_RW, .writefn = vttbr_write, 5577 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5578 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5579 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5580 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5581 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5582 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5583 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5584 .access = PL2_RW, .resetvalue = 0, 5585 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5586 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5587 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5588 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5589 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5590 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5591 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5592 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5593 { .name = "TLBIALLNSNH", 5594 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5595 .type = ARM_CP_NO_RAW, .access = PL2_W, 5596 .writefn = tlbiall_nsnh_write }, 5597 { .name = "TLBIALLNSNHIS", 5598 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5599 .type = ARM_CP_NO_RAW, .access = PL2_W, 5600 .writefn = tlbiall_nsnh_is_write }, 5601 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5602 .type = ARM_CP_NO_RAW, .access = PL2_W, 5603 .writefn = tlbiall_hyp_write }, 5604 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5605 .type = ARM_CP_NO_RAW, .access = PL2_W, 5606 .writefn = tlbiall_hyp_is_write }, 5607 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5608 .type = ARM_CP_NO_RAW, .access = PL2_W, 5609 .writefn = tlbimva_hyp_write }, 5610 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5611 .type = ARM_CP_NO_RAW, .access = PL2_W, 5612 .writefn = tlbimva_hyp_is_write }, 5613 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5614 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5615 .type = ARM_CP_NO_RAW, .access = PL2_W, 5616 .writefn = tlbi_aa64_alle2_write }, 5617 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5618 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5619 .type = ARM_CP_NO_RAW, .access = PL2_W, 5620 .writefn = tlbi_aa64_vae2_write }, 5621 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5622 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5623 .access = PL2_W, .type = ARM_CP_NO_RAW, 5624 .writefn = tlbi_aa64_vae2_write }, 5625 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5626 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5627 .access = PL2_W, .type = ARM_CP_NO_RAW, 5628 .writefn = tlbi_aa64_alle2is_write }, 5629 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5630 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5631 .type = ARM_CP_NO_RAW, .access = PL2_W, 5632 .writefn = tlbi_aa64_vae2is_write }, 5633 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5634 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5635 .access = PL2_W, .type = ARM_CP_NO_RAW, 5636 .writefn = tlbi_aa64_vae2is_write }, 5637 #ifndef CONFIG_USER_ONLY 5638 /* Unlike the other EL2-related AT operations, these must 5639 * UNDEF from EL3 if EL2 is not implemented, which is why we 5640 * define them here rather than with the rest of the AT ops. 5641 */ 5642 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5643 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5644 .access = PL2_W, .accessfn = at_s1e2_access, 5645 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5646 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5647 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5648 .access = PL2_W, .accessfn = at_s1e2_access, 5649 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5650 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5651 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5652 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5653 * to behave as if SCR.NS was 1. 5654 */ 5655 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5656 .access = PL2_W, 5657 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5658 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5659 .access = PL2_W, 5660 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5661 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5662 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5663 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5664 * reset values as IMPDEF. We choose to reset to 3 to comply with 5665 * both ARMv7 and ARMv8. 5666 */ 5667 .access = PL2_RW, .resetvalue = 3, 5668 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5669 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5670 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5671 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5672 .writefn = gt_cntvoff_write, 5673 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5674 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5675 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5676 .writefn = gt_cntvoff_write, 5677 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5678 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5679 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5680 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5681 .type = ARM_CP_IO, .access = PL2_RW, 5682 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5683 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5684 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5685 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5686 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5687 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5688 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5689 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5690 .resetfn = gt_hyp_timer_reset, 5691 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5692 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5693 .type = ARM_CP_IO, 5694 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5695 .access = PL2_RW, 5696 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5697 .resetvalue = 0, 5698 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5699 #endif 5700 /* The only field of MDCR_EL2 that has a defined architectural reset value 5701 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5702 * don't implement any PMU event counters, so using zero as a reset 5703 * value for MDCR_EL2 is okay 5704 */ 5705 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5706 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5707 .access = PL2_RW, .resetvalue = 0, 5708 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5709 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5710 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5711 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5712 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5713 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5714 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5715 .access = PL2_RW, 5716 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5717 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5718 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5719 .access = PL2_RW, 5720 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5721 REGINFO_SENTINEL 5722 }; 5723 5724 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5725 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5726 .type = ARM_CP_ALIAS | ARM_CP_IO, 5727 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5728 .access = PL2_RW, 5729 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5730 .writefn = hcr_writehigh }, 5731 REGINFO_SENTINEL 5732 }; 5733 5734 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5735 bool isread) 5736 { 5737 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5738 * At Secure EL1 it traps to EL3. 5739 */ 5740 if (arm_current_el(env) == 3) { 5741 return CP_ACCESS_OK; 5742 } 5743 if (arm_is_secure_below_el3(env)) { 5744 return CP_ACCESS_TRAP_EL3; 5745 } 5746 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5747 if (isread) { 5748 return CP_ACCESS_OK; 5749 } 5750 return CP_ACCESS_TRAP_UNCATEGORIZED; 5751 } 5752 5753 static const ARMCPRegInfo el3_cp_reginfo[] = { 5754 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5755 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5756 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5757 .resetvalue = 0, .writefn = scr_write }, 5758 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5759 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5760 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5761 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5762 .writefn = scr_write }, 5763 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5764 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5765 .access = PL3_RW, .resetvalue = 0, 5766 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5767 { .name = "SDER", 5768 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5769 .access = PL3_RW, .resetvalue = 0, 5770 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5771 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5772 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5773 .writefn = vbar_write, .resetvalue = 0, 5774 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5775 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5776 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5777 .access = PL3_RW, .resetvalue = 0, 5778 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5779 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5780 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5781 .access = PL3_RW, 5782 /* no .writefn needed as this can't cause an ASID change; 5783 * we must provide a .raw_writefn and .resetfn because we handle 5784 * reset and migration for the AArch32 TTBCR(S), which might be 5785 * using mask and base_mask. 5786 */ 5787 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5788 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5789 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5790 .type = ARM_CP_ALIAS, 5791 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5792 .access = PL3_RW, 5793 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5794 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5795 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5796 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5797 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5798 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5799 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5800 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5801 .type = ARM_CP_ALIAS, 5802 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5803 .access = PL3_RW, 5804 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5805 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5806 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5807 .access = PL3_RW, .writefn = vbar_write, 5808 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5809 .resetvalue = 0 }, 5810 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5811 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5812 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5813 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5814 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5815 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5816 .access = PL3_RW, .resetvalue = 0, 5817 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5818 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5819 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5820 .access = PL3_RW, .type = ARM_CP_CONST, 5821 .resetvalue = 0 }, 5822 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5823 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5824 .access = PL3_RW, .type = ARM_CP_CONST, 5825 .resetvalue = 0 }, 5826 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5827 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5828 .access = PL3_RW, .type = ARM_CP_CONST, 5829 .resetvalue = 0 }, 5830 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5831 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5832 .access = PL3_W, .type = ARM_CP_NO_RAW, 5833 .writefn = tlbi_aa64_alle3is_write }, 5834 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5835 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5836 .access = PL3_W, .type = ARM_CP_NO_RAW, 5837 .writefn = tlbi_aa64_vae3is_write }, 5838 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5839 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5840 .access = PL3_W, .type = ARM_CP_NO_RAW, 5841 .writefn = tlbi_aa64_vae3is_write }, 5842 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5843 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5844 .access = PL3_W, .type = ARM_CP_NO_RAW, 5845 .writefn = tlbi_aa64_alle3_write }, 5846 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5847 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5848 .access = PL3_W, .type = ARM_CP_NO_RAW, 5849 .writefn = tlbi_aa64_vae3_write }, 5850 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5851 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5852 .access = PL3_W, .type = ARM_CP_NO_RAW, 5853 .writefn = tlbi_aa64_vae3_write }, 5854 REGINFO_SENTINEL 5855 }; 5856 5857 #ifndef CONFIG_USER_ONLY 5858 /* Test if system register redirection is to occur in the current state. */ 5859 static bool redirect_for_e2h(CPUARMState *env) 5860 { 5861 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5862 } 5863 5864 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5865 { 5866 CPReadFn *readfn; 5867 5868 if (redirect_for_e2h(env)) { 5869 /* Switch to the saved EL2 version of the register. */ 5870 ri = ri->opaque; 5871 readfn = ri->readfn; 5872 } else { 5873 readfn = ri->orig_readfn; 5874 } 5875 if (readfn == NULL) { 5876 readfn = raw_read; 5877 } 5878 return readfn(env, ri); 5879 } 5880 5881 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5882 uint64_t value) 5883 { 5884 CPWriteFn *writefn; 5885 5886 if (redirect_for_e2h(env)) { 5887 /* Switch to the saved EL2 version of the register. */ 5888 ri = ri->opaque; 5889 writefn = ri->writefn; 5890 } else { 5891 writefn = ri->orig_writefn; 5892 } 5893 if (writefn == NULL) { 5894 writefn = raw_write; 5895 } 5896 writefn(env, ri, value); 5897 } 5898 5899 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5900 { 5901 struct E2HAlias { 5902 uint32_t src_key, dst_key, new_key; 5903 const char *src_name, *dst_name, *new_name; 5904 bool (*feature)(const ARMISARegisters *id); 5905 }; 5906 5907 #define K(op0, op1, crn, crm, op2) \ 5908 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5909 5910 static const struct E2HAlias aliases[] = { 5911 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5912 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5913 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5914 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5915 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5916 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5917 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5918 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5919 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5920 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5921 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5922 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5923 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5924 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5925 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5926 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5927 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5928 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5929 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5930 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5931 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5932 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5933 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5934 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5935 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5936 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5937 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5938 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5939 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5940 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5941 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5942 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5943 5944 /* 5945 * Note that redirection of ZCR is mentioned in the description 5946 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5947 * not in the summary table. 5948 */ 5949 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5950 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5951 5952 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5953 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5954 }; 5955 #undef K 5956 5957 size_t i; 5958 5959 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5960 const struct E2HAlias *a = &aliases[i]; 5961 ARMCPRegInfo *src_reg, *dst_reg; 5962 5963 if (a->feature && !a->feature(&cpu->isar)) { 5964 continue; 5965 } 5966 5967 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5968 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5969 g_assert(src_reg != NULL); 5970 g_assert(dst_reg != NULL); 5971 5972 /* Cross-compare names to detect typos in the keys. */ 5973 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5974 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5975 5976 /* None of the core system registers use opaque; we will. */ 5977 g_assert(src_reg->opaque == NULL); 5978 5979 /* Create alias before redirection so we dup the right data. */ 5980 if (a->new_key) { 5981 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5982 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5983 bool ok; 5984 5985 new_reg->name = a->new_name; 5986 new_reg->type |= ARM_CP_ALIAS; 5987 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5988 new_reg->access &= PL2_RW | PL3_RW; 5989 5990 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5991 g_assert(ok); 5992 } 5993 5994 src_reg->opaque = dst_reg; 5995 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5996 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5997 if (!src_reg->raw_readfn) { 5998 src_reg->raw_readfn = raw_read; 5999 } 6000 if (!src_reg->raw_writefn) { 6001 src_reg->raw_writefn = raw_write; 6002 } 6003 src_reg->readfn = el2_e2h_read; 6004 src_reg->writefn = el2_e2h_write; 6005 } 6006 } 6007 #endif 6008 6009 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6010 bool isread) 6011 { 6012 int cur_el = arm_current_el(env); 6013 6014 if (cur_el < 2) { 6015 uint64_t hcr = arm_hcr_el2_eff(env); 6016 6017 if (cur_el == 0) { 6018 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6019 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6020 return CP_ACCESS_TRAP_EL2; 6021 } 6022 } else { 6023 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6024 return CP_ACCESS_TRAP; 6025 } 6026 if (hcr & HCR_TID2) { 6027 return CP_ACCESS_TRAP_EL2; 6028 } 6029 } 6030 } else if (hcr & HCR_TID2) { 6031 return CP_ACCESS_TRAP_EL2; 6032 } 6033 } 6034 6035 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6036 return CP_ACCESS_TRAP_EL2; 6037 } 6038 6039 return CP_ACCESS_OK; 6040 } 6041 6042 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6043 uint64_t value) 6044 { 6045 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6046 * read via a bit in OSLSR_EL1. 6047 */ 6048 int oslock; 6049 6050 if (ri->state == ARM_CP_STATE_AA32) { 6051 oslock = (value == 0xC5ACCE55); 6052 } else { 6053 oslock = value & 1; 6054 } 6055 6056 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6057 } 6058 6059 static const ARMCPRegInfo debug_cp_reginfo[] = { 6060 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6061 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6062 * unlike DBGDRAR it is never accessible from EL0. 6063 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6064 * accessor. 6065 */ 6066 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6067 .access = PL0_R, .accessfn = access_tdra, 6068 .type = ARM_CP_CONST, .resetvalue = 0 }, 6069 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6070 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6071 .access = PL1_R, .accessfn = access_tdra, 6072 .type = ARM_CP_CONST, .resetvalue = 0 }, 6073 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6074 .access = PL0_R, .accessfn = access_tdra, 6075 .type = ARM_CP_CONST, .resetvalue = 0 }, 6076 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6077 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6078 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6079 .access = PL1_RW, .accessfn = access_tda, 6080 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6081 .resetvalue = 0 }, 6082 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 6083 * We don't implement the configurable EL0 access. 6084 */ 6085 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 6086 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6087 .type = ARM_CP_ALIAS, 6088 .access = PL1_R, .accessfn = access_tda, 6089 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6090 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6091 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6092 .access = PL1_W, .type = ARM_CP_NO_RAW, 6093 .accessfn = access_tdosa, 6094 .writefn = oslar_write }, 6095 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6096 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6097 .access = PL1_R, .resetvalue = 10, 6098 .accessfn = access_tdosa, 6099 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6100 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6101 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6102 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6103 .access = PL1_RW, .accessfn = access_tdosa, 6104 .type = ARM_CP_NOP }, 6105 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6106 * implement vector catch debug events yet. 6107 */ 6108 { .name = "DBGVCR", 6109 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6110 .access = PL1_RW, .accessfn = access_tda, 6111 .type = ARM_CP_NOP }, 6112 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6113 * to save and restore a 32-bit guest's DBGVCR) 6114 */ 6115 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6116 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6117 .access = PL2_RW, .accessfn = access_tda, 6118 .type = ARM_CP_NOP }, 6119 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6120 * Channel but Linux may try to access this register. The 32-bit 6121 * alias is DBGDCCINT. 6122 */ 6123 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6124 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6125 .access = PL1_RW, .accessfn = access_tda, 6126 .type = ARM_CP_NOP }, 6127 REGINFO_SENTINEL 6128 }; 6129 6130 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6131 /* 64 bit access versions of the (dummy) debug registers */ 6132 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6133 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6134 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6135 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6136 REGINFO_SENTINEL 6137 }; 6138 6139 /* Return the exception level to which exceptions should be taken 6140 * via SVEAccessTrap. If an exception should be routed through 6141 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6142 * take care of raising that exception. 6143 * C.f. the ARM pseudocode function CheckSVEEnabled. 6144 */ 6145 int sve_exception_el(CPUARMState *env, int el) 6146 { 6147 #ifndef CONFIG_USER_ONLY 6148 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6149 6150 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6151 bool disabled = false; 6152 6153 /* The CPACR.ZEN controls traps to EL1: 6154 * 0, 2 : trap EL0 and EL1 accesses 6155 * 1 : trap only EL0 accesses 6156 * 3 : trap no accesses 6157 */ 6158 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6159 disabled = true; 6160 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6161 disabled = el == 0; 6162 } 6163 if (disabled) { 6164 /* route_to_el2 */ 6165 return hcr_el2 & HCR_TGE ? 2 : 1; 6166 } 6167 6168 /* Check CPACR.FPEN. */ 6169 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6170 disabled = true; 6171 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6172 disabled = el == 0; 6173 } 6174 if (disabled) { 6175 return 0; 6176 } 6177 } 6178 6179 /* CPTR_EL2. Since TZ and TFP are positive, 6180 * they will be zero when EL2 is not present. 6181 */ 6182 if (el <= 2 && !arm_is_secure_below_el3(env)) { 6183 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6184 return 2; 6185 } 6186 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6187 return 0; 6188 } 6189 } 6190 6191 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6192 if (arm_feature(env, ARM_FEATURE_EL3) 6193 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6194 return 3; 6195 } 6196 #endif 6197 return 0; 6198 } 6199 6200 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6201 { 6202 uint32_t end_len; 6203 6204 end_len = start_len &= 0xf; 6205 if (!test_bit(start_len, cpu->sve_vq_map)) { 6206 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6207 assert(end_len < start_len); 6208 } 6209 return end_len; 6210 } 6211 6212 /* 6213 * Given that SVE is enabled, return the vector length for EL. 6214 */ 6215 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6216 { 6217 ARMCPU *cpu = env_archcpu(env); 6218 uint32_t zcr_len = cpu->sve_max_vq - 1; 6219 6220 if (el <= 1) { 6221 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6222 } 6223 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6224 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6225 } 6226 if (arm_feature(env, ARM_FEATURE_EL3)) { 6227 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6228 } 6229 6230 return sve_zcr_get_valid_len(cpu, zcr_len); 6231 } 6232 6233 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6234 uint64_t value) 6235 { 6236 int cur_el = arm_current_el(env); 6237 int old_len = sve_zcr_len_for_el(env, cur_el); 6238 int new_len; 6239 6240 /* Bits other than [3:0] are RAZ/WI. */ 6241 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6242 raw_write(env, ri, value & 0xf); 6243 6244 /* 6245 * Because we arrived here, we know both FP and SVE are enabled; 6246 * otherwise we would have trapped access to the ZCR_ELn register. 6247 */ 6248 new_len = sve_zcr_len_for_el(env, cur_el); 6249 if (new_len < old_len) { 6250 aarch64_sve_narrow_vq(env, new_len + 1); 6251 } 6252 } 6253 6254 static const ARMCPRegInfo zcr_el1_reginfo = { 6255 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6256 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6257 .access = PL1_RW, .type = ARM_CP_SVE, 6258 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6259 .writefn = zcr_write, .raw_writefn = raw_write 6260 }; 6261 6262 static const ARMCPRegInfo zcr_el2_reginfo = { 6263 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6264 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6265 .access = PL2_RW, .type = ARM_CP_SVE, 6266 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6267 .writefn = zcr_write, .raw_writefn = raw_write 6268 }; 6269 6270 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6271 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6272 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6273 .access = PL2_RW, .type = ARM_CP_SVE, 6274 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6275 }; 6276 6277 static const ARMCPRegInfo zcr_el3_reginfo = { 6278 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6279 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6280 .access = PL3_RW, .type = ARM_CP_SVE, 6281 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6282 .writefn = zcr_write, .raw_writefn = raw_write 6283 }; 6284 6285 void hw_watchpoint_update(ARMCPU *cpu, int n) 6286 { 6287 CPUARMState *env = &cpu->env; 6288 vaddr len = 0; 6289 vaddr wvr = env->cp15.dbgwvr[n]; 6290 uint64_t wcr = env->cp15.dbgwcr[n]; 6291 int mask; 6292 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6293 6294 if (env->cpu_watchpoint[n]) { 6295 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6296 env->cpu_watchpoint[n] = NULL; 6297 } 6298 6299 if (!extract64(wcr, 0, 1)) { 6300 /* E bit clear : watchpoint disabled */ 6301 return; 6302 } 6303 6304 switch (extract64(wcr, 3, 2)) { 6305 case 0: 6306 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6307 return; 6308 case 1: 6309 flags |= BP_MEM_READ; 6310 break; 6311 case 2: 6312 flags |= BP_MEM_WRITE; 6313 break; 6314 case 3: 6315 flags |= BP_MEM_ACCESS; 6316 break; 6317 } 6318 6319 /* Attempts to use both MASK and BAS fields simultaneously are 6320 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6321 * thus generating a watchpoint for every byte in the masked region. 6322 */ 6323 mask = extract64(wcr, 24, 4); 6324 if (mask == 1 || mask == 2) { 6325 /* Reserved values of MASK; we must act as if the mask value was 6326 * some non-reserved value, or as if the watchpoint were disabled. 6327 * We choose the latter. 6328 */ 6329 return; 6330 } else if (mask) { 6331 /* Watchpoint covers an aligned area up to 2GB in size */ 6332 len = 1ULL << mask; 6333 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6334 * whether the watchpoint fires when the unmasked bits match; we opt 6335 * to generate the exceptions. 6336 */ 6337 wvr &= ~(len - 1); 6338 } else { 6339 /* Watchpoint covers bytes defined by the byte address select bits */ 6340 int bas = extract64(wcr, 5, 8); 6341 int basstart; 6342 6343 if (extract64(wvr, 2, 1)) { 6344 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6345 * ignored, and BAS[3:0] define which bytes to watch. 6346 */ 6347 bas &= 0xf; 6348 } 6349 6350 if (bas == 0) { 6351 /* This must act as if the watchpoint is disabled */ 6352 return; 6353 } 6354 6355 /* The BAS bits are supposed to be programmed to indicate a contiguous 6356 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6357 * we fire for each byte in the word/doubleword addressed by the WVR. 6358 * We choose to ignore any non-zero bits after the first range of 1s. 6359 */ 6360 basstart = ctz32(bas); 6361 len = cto32(bas >> basstart); 6362 wvr += basstart; 6363 } 6364 6365 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6366 &env->cpu_watchpoint[n]); 6367 } 6368 6369 void hw_watchpoint_update_all(ARMCPU *cpu) 6370 { 6371 int i; 6372 CPUARMState *env = &cpu->env; 6373 6374 /* Completely clear out existing QEMU watchpoints and our array, to 6375 * avoid possible stale entries following migration load. 6376 */ 6377 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6378 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6379 6380 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6381 hw_watchpoint_update(cpu, i); 6382 } 6383 } 6384 6385 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6386 uint64_t value) 6387 { 6388 ARMCPU *cpu = env_archcpu(env); 6389 int i = ri->crm; 6390 6391 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6392 * register reads and behaves as if values written are sign extended. 6393 * Bits [1:0] are RES0. 6394 */ 6395 value = sextract64(value, 0, 49) & ~3ULL; 6396 6397 raw_write(env, ri, value); 6398 hw_watchpoint_update(cpu, i); 6399 } 6400 6401 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6402 uint64_t value) 6403 { 6404 ARMCPU *cpu = env_archcpu(env); 6405 int i = ri->crm; 6406 6407 raw_write(env, ri, value); 6408 hw_watchpoint_update(cpu, i); 6409 } 6410 6411 void hw_breakpoint_update(ARMCPU *cpu, int n) 6412 { 6413 CPUARMState *env = &cpu->env; 6414 uint64_t bvr = env->cp15.dbgbvr[n]; 6415 uint64_t bcr = env->cp15.dbgbcr[n]; 6416 vaddr addr; 6417 int bt; 6418 int flags = BP_CPU; 6419 6420 if (env->cpu_breakpoint[n]) { 6421 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6422 env->cpu_breakpoint[n] = NULL; 6423 } 6424 6425 if (!extract64(bcr, 0, 1)) { 6426 /* E bit clear : watchpoint disabled */ 6427 return; 6428 } 6429 6430 bt = extract64(bcr, 20, 4); 6431 6432 switch (bt) { 6433 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6434 case 5: /* linked address mismatch (reserved if AArch64) */ 6435 qemu_log_mask(LOG_UNIMP, 6436 "arm: address mismatch breakpoint types not implemented\n"); 6437 return; 6438 case 0: /* unlinked address match */ 6439 case 1: /* linked address match */ 6440 { 6441 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6442 * we behave as if the register was sign extended. Bits [1:0] are 6443 * RES0. The BAS field is used to allow setting breakpoints on 16 6444 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6445 * a bp will fire if the addresses covered by the bp and the addresses 6446 * covered by the insn overlap but the insn doesn't start at the 6447 * start of the bp address range. We choose to require the insn and 6448 * the bp to have the same address. The constraints on writing to 6449 * BAS enforced in dbgbcr_write mean we have only four cases: 6450 * 0b0000 => no breakpoint 6451 * 0b0011 => breakpoint on addr 6452 * 0b1100 => breakpoint on addr + 2 6453 * 0b1111 => breakpoint on addr 6454 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6455 */ 6456 int bas = extract64(bcr, 5, 4); 6457 addr = sextract64(bvr, 0, 49) & ~3ULL; 6458 if (bas == 0) { 6459 return; 6460 } 6461 if (bas == 0xc) { 6462 addr += 2; 6463 } 6464 break; 6465 } 6466 case 2: /* unlinked context ID match */ 6467 case 8: /* unlinked VMID match (reserved if no EL2) */ 6468 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6469 qemu_log_mask(LOG_UNIMP, 6470 "arm: unlinked context breakpoint types not implemented\n"); 6471 return; 6472 case 9: /* linked VMID match (reserved if no EL2) */ 6473 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6474 case 3: /* linked context ID match */ 6475 default: 6476 /* We must generate no events for Linked context matches (unless 6477 * they are linked to by some other bp/wp, which is handled in 6478 * updates for the linking bp/wp). We choose to also generate no events 6479 * for reserved values. 6480 */ 6481 return; 6482 } 6483 6484 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6485 } 6486 6487 void hw_breakpoint_update_all(ARMCPU *cpu) 6488 { 6489 int i; 6490 CPUARMState *env = &cpu->env; 6491 6492 /* Completely clear out existing QEMU breakpoints and our array, to 6493 * avoid possible stale entries following migration load. 6494 */ 6495 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6496 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6497 6498 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6499 hw_breakpoint_update(cpu, i); 6500 } 6501 } 6502 6503 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6504 uint64_t value) 6505 { 6506 ARMCPU *cpu = env_archcpu(env); 6507 int i = ri->crm; 6508 6509 raw_write(env, ri, value); 6510 hw_breakpoint_update(cpu, i); 6511 } 6512 6513 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6514 uint64_t value) 6515 { 6516 ARMCPU *cpu = env_archcpu(env); 6517 int i = ri->crm; 6518 6519 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6520 * copy of BAS[0]. 6521 */ 6522 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6523 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6524 6525 raw_write(env, ri, value); 6526 hw_breakpoint_update(cpu, i); 6527 } 6528 6529 static void define_debug_regs(ARMCPU *cpu) 6530 { 6531 /* Define v7 and v8 architectural debug registers. 6532 * These are just dummy implementations for now. 6533 */ 6534 int i; 6535 int wrps, brps, ctx_cmps; 6536 ARMCPRegInfo dbgdidr = { 6537 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 6538 .access = PL0_R, .accessfn = access_tda, 6539 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6540 }; 6541 6542 /* Note that all these register fields hold "number of Xs minus 1". */ 6543 brps = arm_num_brps(cpu); 6544 wrps = arm_num_wrps(cpu); 6545 ctx_cmps = arm_num_ctx_cmps(cpu); 6546 6547 assert(ctx_cmps <= brps); 6548 6549 define_one_arm_cp_reg(cpu, &dbgdidr); 6550 define_arm_cp_regs(cpu, debug_cp_reginfo); 6551 6552 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6553 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6554 } 6555 6556 for (i = 0; i < brps; i++) { 6557 ARMCPRegInfo dbgregs[] = { 6558 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6559 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6560 .access = PL1_RW, .accessfn = access_tda, 6561 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6562 .writefn = dbgbvr_write, .raw_writefn = raw_write 6563 }, 6564 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6565 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6566 .access = PL1_RW, .accessfn = access_tda, 6567 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6568 .writefn = dbgbcr_write, .raw_writefn = raw_write 6569 }, 6570 REGINFO_SENTINEL 6571 }; 6572 define_arm_cp_regs(cpu, dbgregs); 6573 } 6574 6575 for (i = 0; i < wrps; i++) { 6576 ARMCPRegInfo dbgregs[] = { 6577 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6578 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6579 .access = PL1_RW, .accessfn = access_tda, 6580 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6581 .writefn = dbgwvr_write, .raw_writefn = raw_write 6582 }, 6583 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6584 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6585 .access = PL1_RW, .accessfn = access_tda, 6586 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6587 .writefn = dbgwcr_write, .raw_writefn = raw_write 6588 }, 6589 REGINFO_SENTINEL 6590 }; 6591 define_arm_cp_regs(cpu, dbgregs); 6592 } 6593 } 6594 6595 static void define_pmu_regs(ARMCPU *cpu) 6596 { 6597 /* 6598 * v7 performance monitor control register: same implementor 6599 * field as main ID register, and we implement four counters in 6600 * addition to the cycle count register. 6601 */ 6602 unsigned int i, pmcrn = 4; 6603 ARMCPRegInfo pmcr = { 6604 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6605 .access = PL0_RW, 6606 .type = ARM_CP_IO | ARM_CP_ALIAS, 6607 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6608 .accessfn = pmreg_access, .writefn = pmcr_write, 6609 .raw_writefn = raw_write, 6610 }; 6611 ARMCPRegInfo pmcr64 = { 6612 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6613 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6614 .access = PL0_RW, .accessfn = pmreg_access, 6615 .type = ARM_CP_IO, 6616 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6617 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6618 PMCRLC, 6619 .writefn = pmcr_write, .raw_writefn = raw_write, 6620 }; 6621 define_one_arm_cp_reg(cpu, &pmcr); 6622 define_one_arm_cp_reg(cpu, &pmcr64); 6623 for (i = 0; i < pmcrn; i++) { 6624 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6625 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6626 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6627 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6628 ARMCPRegInfo pmev_regs[] = { 6629 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6630 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6631 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6632 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6633 .accessfn = pmreg_access }, 6634 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6635 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6636 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6637 .type = ARM_CP_IO, 6638 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6639 .raw_readfn = pmevcntr_rawread, 6640 .raw_writefn = pmevcntr_rawwrite }, 6641 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6642 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6643 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6644 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6645 .accessfn = pmreg_access }, 6646 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6647 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6648 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6649 .type = ARM_CP_IO, 6650 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6651 .raw_writefn = pmevtyper_rawwrite }, 6652 REGINFO_SENTINEL 6653 }; 6654 define_arm_cp_regs(cpu, pmev_regs); 6655 g_free(pmevcntr_name); 6656 g_free(pmevcntr_el0_name); 6657 g_free(pmevtyper_name); 6658 g_free(pmevtyper_el0_name); 6659 } 6660 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6661 ARMCPRegInfo v81_pmu_regs[] = { 6662 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6663 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6664 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6665 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6666 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6667 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6668 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6669 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6670 REGINFO_SENTINEL 6671 }; 6672 define_arm_cp_regs(cpu, v81_pmu_regs); 6673 } 6674 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6675 static const ARMCPRegInfo v84_pmmir = { 6676 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6677 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6678 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6679 .resetvalue = 0 6680 }; 6681 define_one_arm_cp_reg(cpu, &v84_pmmir); 6682 } 6683 } 6684 6685 /* We don't know until after realize whether there's a GICv3 6686 * attached, and that is what registers the gicv3 sysregs. 6687 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6688 * at runtime. 6689 */ 6690 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6691 { 6692 ARMCPU *cpu = env_archcpu(env); 6693 uint64_t pfr1 = cpu->id_pfr1; 6694 6695 if (env->gicv3state) { 6696 pfr1 |= 1 << 28; 6697 } 6698 return pfr1; 6699 } 6700 6701 #ifndef CONFIG_USER_ONLY 6702 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6703 { 6704 ARMCPU *cpu = env_archcpu(env); 6705 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6706 6707 if (env->gicv3state) { 6708 pfr0 |= 1 << 24; 6709 } 6710 return pfr0; 6711 } 6712 #endif 6713 6714 /* Shared logic between LORID and the rest of the LOR* registers. 6715 * Secure state has already been delt with. 6716 */ 6717 static CPAccessResult access_lor_ns(CPUARMState *env) 6718 { 6719 int el = arm_current_el(env); 6720 6721 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6722 return CP_ACCESS_TRAP_EL2; 6723 } 6724 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6725 return CP_ACCESS_TRAP_EL3; 6726 } 6727 return CP_ACCESS_OK; 6728 } 6729 6730 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 6731 bool isread) 6732 { 6733 if (arm_is_secure_below_el3(env)) { 6734 /* Access ok in secure mode. */ 6735 return CP_ACCESS_OK; 6736 } 6737 return access_lor_ns(env); 6738 } 6739 6740 static CPAccessResult access_lor_other(CPUARMState *env, 6741 const ARMCPRegInfo *ri, bool isread) 6742 { 6743 if (arm_is_secure_below_el3(env)) { 6744 /* Access denied in secure mode. */ 6745 return CP_ACCESS_TRAP; 6746 } 6747 return access_lor_ns(env); 6748 } 6749 6750 /* 6751 * A trivial implementation of ARMv8.1-LOR leaves all of these 6752 * registers fixed at 0, which indicates that there are zero 6753 * supported Limited Ordering regions. 6754 */ 6755 static const ARMCPRegInfo lor_reginfo[] = { 6756 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6757 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6758 .access = PL1_RW, .accessfn = access_lor_other, 6759 .type = ARM_CP_CONST, .resetvalue = 0 }, 6760 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6761 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6762 .access = PL1_RW, .accessfn = access_lor_other, 6763 .type = ARM_CP_CONST, .resetvalue = 0 }, 6764 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6765 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6766 .access = PL1_RW, .accessfn = access_lor_other, 6767 .type = ARM_CP_CONST, .resetvalue = 0 }, 6768 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6769 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6770 .access = PL1_RW, .accessfn = access_lor_other, 6771 .type = ARM_CP_CONST, .resetvalue = 0 }, 6772 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6773 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6774 .access = PL1_R, .accessfn = access_lorid, 6775 .type = ARM_CP_CONST, .resetvalue = 0 }, 6776 REGINFO_SENTINEL 6777 }; 6778 6779 #ifdef TARGET_AARCH64 6780 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6781 bool isread) 6782 { 6783 int el = arm_current_el(env); 6784 6785 if (el < 2 && 6786 arm_feature(env, ARM_FEATURE_EL2) && 6787 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6788 return CP_ACCESS_TRAP_EL2; 6789 } 6790 if (el < 3 && 6791 arm_feature(env, ARM_FEATURE_EL3) && 6792 !(env->cp15.scr_el3 & SCR_APK)) { 6793 return CP_ACCESS_TRAP_EL3; 6794 } 6795 return CP_ACCESS_OK; 6796 } 6797 6798 static const ARMCPRegInfo pauth_reginfo[] = { 6799 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6800 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6801 .access = PL1_RW, .accessfn = access_pauth, 6802 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6803 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6804 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6805 .access = PL1_RW, .accessfn = access_pauth, 6806 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6807 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6808 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6809 .access = PL1_RW, .accessfn = access_pauth, 6810 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6811 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6812 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6813 .access = PL1_RW, .accessfn = access_pauth, 6814 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6815 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6816 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6817 .access = PL1_RW, .accessfn = access_pauth, 6818 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6819 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6820 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6821 .access = PL1_RW, .accessfn = access_pauth, 6822 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6823 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6824 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6825 .access = PL1_RW, .accessfn = access_pauth, 6826 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6827 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6828 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6829 .access = PL1_RW, .accessfn = access_pauth, 6830 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6831 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6832 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6833 .access = PL1_RW, .accessfn = access_pauth, 6834 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6835 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6836 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6837 .access = PL1_RW, .accessfn = access_pauth, 6838 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6839 REGINFO_SENTINEL 6840 }; 6841 6842 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6843 { 6844 Error *err = NULL; 6845 uint64_t ret; 6846 6847 /* Success sets NZCV = 0000. */ 6848 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6849 6850 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6851 /* 6852 * ??? Failed, for unknown reasons in the crypto subsystem. 6853 * The best we can do is log the reason and return the 6854 * timed-out indication to the guest. There is no reason 6855 * we know to expect this failure to be transitory, so the 6856 * guest may well hang retrying the operation. 6857 */ 6858 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6859 ri->name, error_get_pretty(err)); 6860 error_free(err); 6861 6862 env->ZF = 0; /* NZCF = 0100 */ 6863 return 0; 6864 } 6865 return ret; 6866 } 6867 6868 /* We do not support re-seeding, so the two registers operate the same. */ 6869 static const ARMCPRegInfo rndr_reginfo[] = { 6870 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6871 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6872 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6873 .access = PL0_R, .readfn = rndr_readfn }, 6874 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6875 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6876 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6877 .access = PL0_R, .readfn = rndr_readfn }, 6878 REGINFO_SENTINEL 6879 }; 6880 6881 #ifndef CONFIG_USER_ONLY 6882 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6883 uint64_t value) 6884 { 6885 ARMCPU *cpu = env_archcpu(env); 6886 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6887 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6888 uint64_t vaddr_in = (uint64_t) value; 6889 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6890 void *haddr; 6891 int mem_idx = cpu_mmu_index(env, false); 6892 6893 /* This won't be crossing page boundaries */ 6894 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6895 if (haddr) { 6896 6897 ram_addr_t offset; 6898 MemoryRegion *mr; 6899 6900 /* RCU lock is already being held */ 6901 mr = memory_region_from_host(haddr, &offset); 6902 6903 if (mr) { 6904 memory_region_do_writeback(mr, offset, dline_size); 6905 } 6906 } 6907 } 6908 6909 static const ARMCPRegInfo dcpop_reg[] = { 6910 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6911 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6912 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6913 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6914 REGINFO_SENTINEL 6915 }; 6916 6917 static const ARMCPRegInfo dcpodp_reg[] = { 6918 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6919 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6920 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6921 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6922 REGINFO_SENTINEL 6923 }; 6924 #endif /*CONFIG_USER_ONLY*/ 6925 6926 #endif 6927 6928 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 6929 bool isread) 6930 { 6931 int el = arm_current_el(env); 6932 6933 if (el == 0) { 6934 uint64_t sctlr = arm_sctlr(env, el); 6935 if (!(sctlr & SCTLR_EnRCTX)) { 6936 return CP_ACCESS_TRAP; 6937 } 6938 } else if (el == 1) { 6939 uint64_t hcr = arm_hcr_el2_eff(env); 6940 if (hcr & HCR_NV) { 6941 return CP_ACCESS_TRAP_EL2; 6942 } 6943 } 6944 return CP_ACCESS_OK; 6945 } 6946 6947 static const ARMCPRegInfo predinv_reginfo[] = { 6948 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 6949 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 6950 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6951 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 6952 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 6953 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6954 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 6955 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 6956 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6957 /* 6958 * Note the AArch32 opcodes have a different OPC1. 6959 */ 6960 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 6961 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 6962 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6963 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 6964 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 6965 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6966 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 6967 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 6968 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6969 REGINFO_SENTINEL 6970 }; 6971 6972 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6973 { 6974 /* Read the high 32 bits of the current CCSIDR */ 6975 return extract64(ccsidr_read(env, ri), 32, 32); 6976 } 6977 6978 static const ARMCPRegInfo ccsidr2_reginfo[] = { 6979 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 6980 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 6981 .access = PL1_R, 6982 .accessfn = access_aa64_tid2, 6983 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 6984 REGINFO_SENTINEL 6985 }; 6986 6987 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 6988 bool isread) 6989 { 6990 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 6991 return CP_ACCESS_TRAP_EL2; 6992 } 6993 6994 return CP_ACCESS_OK; 6995 } 6996 6997 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 6998 bool isread) 6999 { 7000 if (arm_feature(env, ARM_FEATURE_V8)) { 7001 return access_aa64_tid3(env, ri, isread); 7002 } 7003 7004 return CP_ACCESS_OK; 7005 } 7006 7007 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7008 bool isread) 7009 { 7010 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7011 return CP_ACCESS_TRAP_EL2; 7012 } 7013 7014 return CP_ACCESS_OK; 7015 } 7016 7017 static const ARMCPRegInfo jazelle_regs[] = { 7018 { .name = "JIDR", 7019 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7020 .access = PL1_R, .accessfn = access_jazelle, 7021 .type = ARM_CP_CONST, .resetvalue = 0 }, 7022 { .name = "JOSCR", 7023 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7024 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7025 { .name = "JMCR", 7026 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7027 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7028 REGINFO_SENTINEL 7029 }; 7030 7031 static const ARMCPRegInfo vhe_reginfo[] = { 7032 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7033 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7034 .access = PL2_RW, 7035 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7036 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7037 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7038 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7039 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7040 #ifndef CONFIG_USER_ONLY 7041 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7042 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7043 .fieldoffset = 7044 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7045 .type = ARM_CP_IO, .access = PL2_RW, 7046 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7047 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7048 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7049 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7050 .resetfn = gt_hv_timer_reset, 7051 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7052 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7053 .type = ARM_CP_IO, 7054 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7055 .access = PL2_RW, 7056 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7057 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7058 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7059 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7060 .type = ARM_CP_IO | ARM_CP_ALIAS, 7061 .access = PL2_RW, .accessfn = e2h_access, 7062 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7063 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7064 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7065 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7066 .type = ARM_CP_IO | ARM_CP_ALIAS, 7067 .access = PL2_RW, .accessfn = e2h_access, 7068 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7069 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7070 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7071 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7072 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7073 .access = PL2_RW, .accessfn = e2h_access, 7074 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7075 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7076 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7077 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7078 .access = PL2_RW, .accessfn = e2h_access, 7079 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7080 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7081 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7082 .type = ARM_CP_IO | ARM_CP_ALIAS, 7083 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7084 .access = PL2_RW, .accessfn = e2h_access, 7085 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7086 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7087 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7088 .type = ARM_CP_IO | ARM_CP_ALIAS, 7089 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7090 .access = PL2_RW, .accessfn = e2h_access, 7091 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7092 #endif 7093 REGINFO_SENTINEL 7094 }; 7095 7096 #ifndef CONFIG_USER_ONLY 7097 static const ARMCPRegInfo ats1e1_reginfo[] = { 7098 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7099 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7100 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7101 .writefn = ats_write64 }, 7102 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7103 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7104 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7105 .writefn = ats_write64 }, 7106 REGINFO_SENTINEL 7107 }; 7108 7109 static const ARMCPRegInfo ats1cp_reginfo[] = { 7110 { .name = "ATS1CPRP", 7111 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7112 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7113 .writefn = ats_write }, 7114 { .name = "ATS1CPWP", 7115 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7116 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7117 .writefn = ats_write }, 7118 REGINFO_SENTINEL 7119 }; 7120 #endif 7121 7122 /* 7123 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7124 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7125 * is non-zero, which is never for ARMv7, optionally in ARMv8 7126 * and mandatorily for ARMv8.2 and up. 7127 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7128 * implementation is RAZ/WI we can ignore this detail, as we 7129 * do for ACTLR. 7130 */ 7131 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7132 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7133 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7134 .access = PL1_RW, .accessfn = access_tacr, 7135 .type = ARM_CP_CONST, .resetvalue = 0 }, 7136 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7137 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7138 .access = PL2_RW, .type = ARM_CP_CONST, 7139 .resetvalue = 0 }, 7140 REGINFO_SENTINEL 7141 }; 7142 7143 void register_cp_regs_for_features(ARMCPU *cpu) 7144 { 7145 /* Register all the coprocessor registers based on feature bits */ 7146 CPUARMState *env = &cpu->env; 7147 if (arm_feature(env, ARM_FEATURE_M)) { 7148 /* M profile has no coprocessor registers */ 7149 return; 7150 } 7151 7152 define_arm_cp_regs(cpu, cp_reginfo); 7153 if (!arm_feature(env, ARM_FEATURE_V8)) { 7154 /* Must go early as it is full of wildcards that may be 7155 * overridden by later definitions. 7156 */ 7157 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7158 } 7159 7160 if (arm_feature(env, ARM_FEATURE_V6)) { 7161 /* The ID registers all have impdef reset values */ 7162 ARMCPRegInfo v6_idregs[] = { 7163 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7164 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7165 .access = PL1_R, .type = ARM_CP_CONST, 7166 .accessfn = access_aa32_tid3, 7167 .resetvalue = cpu->id_pfr0 }, 7168 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7169 * the value of the GIC field until after we define these regs. 7170 */ 7171 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7172 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7173 .access = PL1_R, .type = ARM_CP_NO_RAW, 7174 .accessfn = access_aa32_tid3, 7175 .readfn = id_pfr1_read, 7176 .writefn = arm_cp_write_ignore }, 7177 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7178 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7179 .access = PL1_R, .type = ARM_CP_CONST, 7180 .accessfn = access_aa32_tid3, 7181 .resetvalue = cpu->isar.id_dfr0 }, 7182 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7183 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7184 .access = PL1_R, .type = ARM_CP_CONST, 7185 .accessfn = access_aa32_tid3, 7186 .resetvalue = cpu->id_afr0 }, 7187 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7188 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7189 .access = PL1_R, .type = ARM_CP_CONST, 7190 .accessfn = access_aa32_tid3, 7191 .resetvalue = cpu->isar.id_mmfr0 }, 7192 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7193 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7194 .access = PL1_R, .type = ARM_CP_CONST, 7195 .accessfn = access_aa32_tid3, 7196 .resetvalue = cpu->isar.id_mmfr1 }, 7197 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7198 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7199 .access = PL1_R, .type = ARM_CP_CONST, 7200 .accessfn = access_aa32_tid3, 7201 .resetvalue = cpu->isar.id_mmfr2 }, 7202 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7203 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7204 .access = PL1_R, .type = ARM_CP_CONST, 7205 .accessfn = access_aa32_tid3, 7206 .resetvalue = cpu->isar.id_mmfr3 }, 7207 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7208 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7209 .access = PL1_R, .type = ARM_CP_CONST, 7210 .accessfn = access_aa32_tid3, 7211 .resetvalue = cpu->isar.id_isar0 }, 7212 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7213 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7214 .access = PL1_R, .type = ARM_CP_CONST, 7215 .accessfn = access_aa32_tid3, 7216 .resetvalue = cpu->isar.id_isar1 }, 7217 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7218 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7219 .access = PL1_R, .type = ARM_CP_CONST, 7220 .accessfn = access_aa32_tid3, 7221 .resetvalue = cpu->isar.id_isar2 }, 7222 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7223 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7224 .access = PL1_R, .type = ARM_CP_CONST, 7225 .accessfn = access_aa32_tid3, 7226 .resetvalue = cpu->isar.id_isar3 }, 7227 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7228 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7229 .access = PL1_R, .type = ARM_CP_CONST, 7230 .accessfn = access_aa32_tid3, 7231 .resetvalue = cpu->isar.id_isar4 }, 7232 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7233 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7234 .access = PL1_R, .type = ARM_CP_CONST, 7235 .accessfn = access_aa32_tid3, 7236 .resetvalue = cpu->isar.id_isar5 }, 7237 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7238 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7239 .access = PL1_R, .type = ARM_CP_CONST, 7240 .accessfn = access_aa32_tid3, 7241 .resetvalue = cpu->isar.id_mmfr4 }, 7242 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7243 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7244 .access = PL1_R, .type = ARM_CP_CONST, 7245 .accessfn = access_aa32_tid3, 7246 .resetvalue = cpu->isar.id_isar6 }, 7247 REGINFO_SENTINEL 7248 }; 7249 define_arm_cp_regs(cpu, v6_idregs); 7250 define_arm_cp_regs(cpu, v6_cp_reginfo); 7251 } else { 7252 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7253 } 7254 if (arm_feature(env, ARM_FEATURE_V6K)) { 7255 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7256 } 7257 if (arm_feature(env, ARM_FEATURE_V7MP) && 7258 !arm_feature(env, ARM_FEATURE_PMSA)) { 7259 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7260 } 7261 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7262 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7263 } 7264 if (arm_feature(env, ARM_FEATURE_V7)) { 7265 ARMCPRegInfo clidr = { 7266 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7267 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7268 .access = PL1_R, .type = ARM_CP_CONST, 7269 .accessfn = access_aa64_tid2, 7270 .resetvalue = cpu->clidr 7271 }; 7272 define_one_arm_cp_reg(cpu, &clidr); 7273 define_arm_cp_regs(cpu, v7_cp_reginfo); 7274 define_debug_regs(cpu); 7275 define_pmu_regs(cpu); 7276 } else { 7277 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7278 } 7279 if (arm_feature(env, ARM_FEATURE_V8)) { 7280 /* AArch64 ID registers, which all have impdef reset values. 7281 * Note that within the ID register ranges the unused slots 7282 * must all RAZ, not UNDEF; future architecture versions may 7283 * define new registers here. 7284 */ 7285 ARMCPRegInfo v8_idregs[] = { 7286 /* 7287 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7288 * emulation because we don't know the right value for the 7289 * GIC field until after we define these regs. 7290 */ 7291 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7292 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7293 .access = PL1_R, 7294 #ifdef CONFIG_USER_ONLY 7295 .type = ARM_CP_CONST, 7296 .resetvalue = cpu->isar.id_aa64pfr0 7297 #else 7298 .type = ARM_CP_NO_RAW, 7299 .accessfn = access_aa64_tid3, 7300 .readfn = id_aa64pfr0_read, 7301 .writefn = arm_cp_write_ignore 7302 #endif 7303 }, 7304 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7305 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7306 .access = PL1_R, .type = ARM_CP_CONST, 7307 .accessfn = access_aa64_tid3, 7308 .resetvalue = cpu->isar.id_aa64pfr1}, 7309 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7310 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7311 .access = PL1_R, .type = ARM_CP_CONST, 7312 .accessfn = access_aa64_tid3, 7313 .resetvalue = 0 }, 7314 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7315 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7316 .access = PL1_R, .type = ARM_CP_CONST, 7317 .accessfn = access_aa64_tid3, 7318 .resetvalue = 0 }, 7319 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7320 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7321 .access = PL1_R, .type = ARM_CP_CONST, 7322 .accessfn = access_aa64_tid3, 7323 /* At present, only SVEver == 0 is defined anyway. */ 7324 .resetvalue = 0 }, 7325 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7326 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7327 .access = PL1_R, .type = ARM_CP_CONST, 7328 .accessfn = access_aa64_tid3, 7329 .resetvalue = 0 }, 7330 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7331 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7332 .access = PL1_R, .type = ARM_CP_CONST, 7333 .accessfn = access_aa64_tid3, 7334 .resetvalue = 0 }, 7335 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7336 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7337 .access = PL1_R, .type = ARM_CP_CONST, 7338 .accessfn = access_aa64_tid3, 7339 .resetvalue = 0 }, 7340 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7341 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7342 .access = PL1_R, .type = ARM_CP_CONST, 7343 .accessfn = access_aa64_tid3, 7344 .resetvalue = cpu->isar.id_aa64dfr0 }, 7345 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7346 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7347 .access = PL1_R, .type = ARM_CP_CONST, 7348 .accessfn = access_aa64_tid3, 7349 .resetvalue = cpu->isar.id_aa64dfr1 }, 7350 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7351 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7352 .access = PL1_R, .type = ARM_CP_CONST, 7353 .accessfn = access_aa64_tid3, 7354 .resetvalue = 0 }, 7355 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7356 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7357 .access = PL1_R, .type = ARM_CP_CONST, 7358 .accessfn = access_aa64_tid3, 7359 .resetvalue = 0 }, 7360 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7361 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7362 .access = PL1_R, .type = ARM_CP_CONST, 7363 .accessfn = access_aa64_tid3, 7364 .resetvalue = cpu->id_aa64afr0 }, 7365 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7366 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7367 .access = PL1_R, .type = ARM_CP_CONST, 7368 .accessfn = access_aa64_tid3, 7369 .resetvalue = cpu->id_aa64afr1 }, 7370 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7371 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7372 .access = PL1_R, .type = ARM_CP_CONST, 7373 .accessfn = access_aa64_tid3, 7374 .resetvalue = 0 }, 7375 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7376 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7377 .access = PL1_R, .type = ARM_CP_CONST, 7378 .accessfn = access_aa64_tid3, 7379 .resetvalue = 0 }, 7380 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7381 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7382 .access = PL1_R, .type = ARM_CP_CONST, 7383 .accessfn = access_aa64_tid3, 7384 .resetvalue = cpu->isar.id_aa64isar0 }, 7385 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7386 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7387 .access = PL1_R, .type = ARM_CP_CONST, 7388 .accessfn = access_aa64_tid3, 7389 .resetvalue = cpu->isar.id_aa64isar1 }, 7390 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7391 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7392 .access = PL1_R, .type = ARM_CP_CONST, 7393 .accessfn = access_aa64_tid3, 7394 .resetvalue = 0 }, 7395 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7396 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7397 .access = PL1_R, .type = ARM_CP_CONST, 7398 .accessfn = access_aa64_tid3, 7399 .resetvalue = 0 }, 7400 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7401 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7402 .access = PL1_R, .type = ARM_CP_CONST, 7403 .accessfn = access_aa64_tid3, 7404 .resetvalue = 0 }, 7405 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7406 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7407 .access = PL1_R, .type = ARM_CP_CONST, 7408 .accessfn = access_aa64_tid3, 7409 .resetvalue = 0 }, 7410 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7411 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7412 .access = PL1_R, .type = ARM_CP_CONST, 7413 .accessfn = access_aa64_tid3, 7414 .resetvalue = 0 }, 7415 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7416 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7417 .access = PL1_R, .type = ARM_CP_CONST, 7418 .accessfn = access_aa64_tid3, 7419 .resetvalue = 0 }, 7420 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7421 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7422 .access = PL1_R, .type = ARM_CP_CONST, 7423 .accessfn = access_aa64_tid3, 7424 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7425 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7426 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7427 .access = PL1_R, .type = ARM_CP_CONST, 7428 .accessfn = access_aa64_tid3, 7429 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7430 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7431 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7432 .access = PL1_R, .type = ARM_CP_CONST, 7433 .accessfn = access_aa64_tid3, 7434 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7435 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7436 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7437 .access = PL1_R, .type = ARM_CP_CONST, 7438 .accessfn = access_aa64_tid3, 7439 .resetvalue = 0 }, 7440 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7441 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7442 .access = PL1_R, .type = ARM_CP_CONST, 7443 .accessfn = access_aa64_tid3, 7444 .resetvalue = 0 }, 7445 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7446 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7447 .access = PL1_R, .type = ARM_CP_CONST, 7448 .accessfn = access_aa64_tid3, 7449 .resetvalue = 0 }, 7450 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7451 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7452 .access = PL1_R, .type = ARM_CP_CONST, 7453 .accessfn = access_aa64_tid3, 7454 .resetvalue = 0 }, 7455 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7456 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7457 .access = PL1_R, .type = ARM_CP_CONST, 7458 .accessfn = access_aa64_tid3, 7459 .resetvalue = 0 }, 7460 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7461 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7462 .access = PL1_R, .type = ARM_CP_CONST, 7463 .accessfn = access_aa64_tid3, 7464 .resetvalue = cpu->isar.mvfr0 }, 7465 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7466 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7467 .access = PL1_R, .type = ARM_CP_CONST, 7468 .accessfn = access_aa64_tid3, 7469 .resetvalue = cpu->isar.mvfr1 }, 7470 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7471 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7472 .access = PL1_R, .type = ARM_CP_CONST, 7473 .accessfn = access_aa64_tid3, 7474 .resetvalue = cpu->isar.mvfr2 }, 7475 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7476 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7477 .access = PL1_R, .type = ARM_CP_CONST, 7478 .accessfn = access_aa64_tid3, 7479 .resetvalue = 0 }, 7480 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7481 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7482 .access = PL1_R, .type = ARM_CP_CONST, 7483 .accessfn = access_aa64_tid3, 7484 .resetvalue = 0 }, 7485 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7486 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7487 .access = PL1_R, .type = ARM_CP_CONST, 7488 .accessfn = access_aa64_tid3, 7489 .resetvalue = 0 }, 7490 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7491 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7492 .access = PL1_R, .type = ARM_CP_CONST, 7493 .accessfn = access_aa64_tid3, 7494 .resetvalue = 0 }, 7495 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7496 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7497 .access = PL1_R, .type = ARM_CP_CONST, 7498 .accessfn = access_aa64_tid3, 7499 .resetvalue = 0 }, 7500 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7501 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7502 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7503 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7504 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7505 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7506 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7507 .resetvalue = cpu->pmceid0 }, 7508 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7509 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7510 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7511 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7512 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7513 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7514 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7515 .resetvalue = cpu->pmceid1 }, 7516 REGINFO_SENTINEL 7517 }; 7518 #ifdef CONFIG_USER_ONLY 7519 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7520 { .name = "ID_AA64PFR0_EL1", 7521 .exported_bits = 0x000f000f00ff0000, 7522 .fixed_bits = 0x0000000000000011 }, 7523 { .name = "ID_AA64PFR1_EL1", 7524 .exported_bits = 0x00000000000000f0 }, 7525 { .name = "ID_AA64PFR*_EL1_RESERVED", 7526 .is_glob = true }, 7527 { .name = "ID_AA64ZFR0_EL1" }, 7528 { .name = "ID_AA64MMFR0_EL1", 7529 .fixed_bits = 0x00000000ff000000 }, 7530 { .name = "ID_AA64MMFR1_EL1" }, 7531 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7532 .is_glob = true }, 7533 { .name = "ID_AA64DFR0_EL1", 7534 .fixed_bits = 0x0000000000000006 }, 7535 { .name = "ID_AA64DFR1_EL1" }, 7536 { .name = "ID_AA64DFR*_EL1_RESERVED", 7537 .is_glob = true }, 7538 { .name = "ID_AA64AFR*", 7539 .is_glob = true }, 7540 { .name = "ID_AA64ISAR0_EL1", 7541 .exported_bits = 0x00fffffff0fffff0 }, 7542 { .name = "ID_AA64ISAR1_EL1", 7543 .exported_bits = 0x000000f0ffffffff }, 7544 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7545 .is_glob = true }, 7546 REGUSERINFO_SENTINEL 7547 }; 7548 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7549 #endif 7550 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7551 if (!arm_feature(env, ARM_FEATURE_EL3) && 7552 !arm_feature(env, ARM_FEATURE_EL2)) { 7553 ARMCPRegInfo rvbar = { 7554 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7555 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7556 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7557 }; 7558 define_one_arm_cp_reg(cpu, &rvbar); 7559 } 7560 define_arm_cp_regs(cpu, v8_idregs); 7561 define_arm_cp_regs(cpu, v8_cp_reginfo); 7562 } 7563 if (arm_feature(env, ARM_FEATURE_EL2)) { 7564 uint64_t vmpidr_def = mpidr_read_val(env); 7565 ARMCPRegInfo vpidr_regs[] = { 7566 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7567 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7568 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7569 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7570 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7571 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7572 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7573 .access = PL2_RW, .resetvalue = cpu->midr, 7574 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7575 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7576 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7577 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7578 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7579 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7580 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7581 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7582 .access = PL2_RW, 7583 .resetvalue = vmpidr_def, 7584 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7585 REGINFO_SENTINEL 7586 }; 7587 define_arm_cp_regs(cpu, vpidr_regs); 7588 define_arm_cp_regs(cpu, el2_cp_reginfo); 7589 if (arm_feature(env, ARM_FEATURE_V8)) { 7590 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7591 } 7592 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7593 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7594 ARMCPRegInfo rvbar = { 7595 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7596 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7597 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7598 }; 7599 define_one_arm_cp_reg(cpu, &rvbar); 7600 } 7601 } else { 7602 /* If EL2 is missing but higher ELs are enabled, we need to 7603 * register the no_el2 reginfos. 7604 */ 7605 if (arm_feature(env, ARM_FEATURE_EL3)) { 7606 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 7607 * of MIDR_EL1 and MPIDR_EL1. 7608 */ 7609 ARMCPRegInfo vpidr_regs[] = { 7610 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7611 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7612 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 7613 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 7614 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7615 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7616 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7617 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 7618 .type = ARM_CP_NO_RAW, 7619 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 7620 REGINFO_SENTINEL 7621 }; 7622 define_arm_cp_regs(cpu, vpidr_regs); 7623 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 7624 if (arm_feature(env, ARM_FEATURE_V8)) { 7625 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 7626 } 7627 } 7628 } 7629 if (arm_feature(env, ARM_FEATURE_EL3)) { 7630 define_arm_cp_regs(cpu, el3_cp_reginfo); 7631 ARMCPRegInfo el3_regs[] = { 7632 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7633 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7634 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 7635 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7636 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7637 .access = PL3_RW, 7638 .raw_writefn = raw_write, .writefn = sctlr_write, 7639 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7640 .resetvalue = cpu->reset_sctlr }, 7641 REGINFO_SENTINEL 7642 }; 7643 7644 define_arm_cp_regs(cpu, el3_regs); 7645 } 7646 /* The behaviour of NSACR is sufficiently various that we don't 7647 * try to describe it in a single reginfo: 7648 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7649 * reads as constant 0xc00 from NS EL1 and NS EL2 7650 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7651 * if v7 without EL3, register doesn't exist 7652 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7653 */ 7654 if (arm_feature(env, ARM_FEATURE_EL3)) { 7655 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7656 ARMCPRegInfo nsacr = { 7657 .name = "NSACR", .type = ARM_CP_CONST, 7658 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7659 .access = PL1_RW, .accessfn = nsacr_access, 7660 .resetvalue = 0xc00 7661 }; 7662 define_one_arm_cp_reg(cpu, &nsacr); 7663 } else { 7664 ARMCPRegInfo nsacr = { 7665 .name = "NSACR", 7666 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7667 .access = PL3_RW | PL1_R, 7668 .resetvalue = 0, 7669 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7670 }; 7671 define_one_arm_cp_reg(cpu, &nsacr); 7672 } 7673 } else { 7674 if (arm_feature(env, ARM_FEATURE_V8)) { 7675 ARMCPRegInfo nsacr = { 7676 .name = "NSACR", .type = ARM_CP_CONST, 7677 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7678 .access = PL1_R, 7679 .resetvalue = 0xc00 7680 }; 7681 define_one_arm_cp_reg(cpu, &nsacr); 7682 } 7683 } 7684 7685 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7686 if (arm_feature(env, ARM_FEATURE_V6)) { 7687 /* PMSAv6 not implemented */ 7688 assert(arm_feature(env, ARM_FEATURE_V7)); 7689 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7690 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7691 } else { 7692 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7693 } 7694 } else { 7695 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7696 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7697 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7698 if (cpu_isar_feature(aa32_hpd, cpu)) { 7699 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7700 } 7701 } 7702 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7703 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7704 } 7705 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7706 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7707 } 7708 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7709 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7710 } 7711 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7712 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7713 } 7714 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7715 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7716 } 7717 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7718 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7719 } 7720 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7721 define_arm_cp_regs(cpu, omap_cp_reginfo); 7722 } 7723 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7724 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7725 } 7726 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7727 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7728 } 7729 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7730 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7731 } 7732 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7733 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7734 } 7735 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7736 define_arm_cp_regs(cpu, jazelle_regs); 7737 } 7738 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7739 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7740 * be read-only (ie write causes UNDEF exception). 7741 */ 7742 { 7743 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7744 /* Pre-v8 MIDR space. 7745 * Note that the MIDR isn't a simple constant register because 7746 * of the TI925 behaviour where writes to another register can 7747 * cause the MIDR value to change. 7748 * 7749 * Unimplemented registers in the c15 0 0 0 space default to 7750 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 7751 * and friends override accordingly. 7752 */ 7753 { .name = "MIDR", 7754 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 7755 .access = PL1_R, .resetvalue = cpu->midr, 7756 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 7757 .readfn = midr_read, 7758 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7759 .type = ARM_CP_OVERRIDE }, 7760 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 7761 { .name = "DUMMY", 7762 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 7763 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7764 { .name = "DUMMY", 7765 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 7766 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7767 { .name = "DUMMY", 7768 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 7769 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7770 { .name = "DUMMY", 7771 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 7772 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7773 { .name = "DUMMY", 7774 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 7775 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7776 REGINFO_SENTINEL 7777 }; 7778 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 7779 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 7780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 7781 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 7782 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7783 .readfn = midr_read }, 7784 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 7785 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7786 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7787 .access = PL1_R, .resetvalue = cpu->midr }, 7788 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7789 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 7790 .access = PL1_R, .resetvalue = cpu->midr }, 7791 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 7792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 7793 .access = PL1_R, 7794 .accessfn = access_aa64_tid1, 7795 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 7796 REGINFO_SENTINEL 7797 }; 7798 ARMCPRegInfo id_cp_reginfo[] = { 7799 /* These are common to v8 and pre-v8 */ 7800 { .name = "CTR", 7801 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 7802 .access = PL1_R, .accessfn = ctr_el0_access, 7803 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7804 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 7805 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 7806 .access = PL0_R, .accessfn = ctr_el0_access, 7807 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7808 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 7809 { .name = "TCMTR", 7810 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 7811 .access = PL1_R, 7812 .accessfn = access_aa32_tid1, 7813 .type = ARM_CP_CONST, .resetvalue = 0 }, 7814 REGINFO_SENTINEL 7815 }; 7816 /* TLBTR is specific to VMSA */ 7817 ARMCPRegInfo id_tlbtr_reginfo = { 7818 .name = "TLBTR", 7819 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 7820 .access = PL1_R, 7821 .accessfn = access_aa32_tid1, 7822 .type = ARM_CP_CONST, .resetvalue = 0, 7823 }; 7824 /* MPUIR is specific to PMSA V6+ */ 7825 ARMCPRegInfo id_mpuir_reginfo = { 7826 .name = "MPUIR", 7827 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7828 .access = PL1_R, .type = ARM_CP_CONST, 7829 .resetvalue = cpu->pmsav7_dregion << 8 7830 }; 7831 ARMCPRegInfo crn0_wi_reginfo = { 7832 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 7833 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 7834 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 7835 }; 7836 #ifdef CONFIG_USER_ONLY 7837 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 7838 { .name = "MIDR_EL1", 7839 .exported_bits = 0x00000000ffffffff }, 7840 { .name = "REVIDR_EL1" }, 7841 REGUSERINFO_SENTINEL 7842 }; 7843 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 7844 #endif 7845 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 7846 arm_feature(env, ARM_FEATURE_STRONGARM)) { 7847 ARMCPRegInfo *r; 7848 /* Register the blanket "writes ignored" value first to cover the 7849 * whole space. Then update the specific ID registers to allow write 7850 * access, so that they ignore writes rather than causing them to 7851 * UNDEF. 7852 */ 7853 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 7854 for (r = id_pre_v8_midr_cp_reginfo; 7855 r->type != ARM_CP_SENTINEL; r++) { 7856 r->access = PL1_RW; 7857 } 7858 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 7859 r->access = PL1_RW; 7860 } 7861 id_mpuir_reginfo.access = PL1_RW; 7862 id_tlbtr_reginfo.access = PL1_RW; 7863 } 7864 if (arm_feature(env, ARM_FEATURE_V8)) { 7865 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 7866 } else { 7867 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 7868 } 7869 define_arm_cp_regs(cpu, id_cp_reginfo); 7870 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 7871 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 7872 } else if (arm_feature(env, ARM_FEATURE_V7)) { 7873 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 7874 } 7875 } 7876 7877 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 7878 ARMCPRegInfo mpidr_cp_reginfo[] = { 7879 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 7880 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 7881 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 7882 REGINFO_SENTINEL 7883 }; 7884 #ifdef CONFIG_USER_ONLY 7885 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 7886 { .name = "MPIDR_EL1", 7887 .fixed_bits = 0x0000000080000000 }, 7888 REGUSERINFO_SENTINEL 7889 }; 7890 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 7891 #endif 7892 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 7893 } 7894 7895 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 7896 ARMCPRegInfo auxcr_reginfo[] = { 7897 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 7898 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 7899 .access = PL1_RW, .accessfn = access_tacr, 7900 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 7901 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 7902 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 7903 .access = PL2_RW, .type = ARM_CP_CONST, 7904 .resetvalue = 0 }, 7905 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 7906 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 7907 .access = PL3_RW, .type = ARM_CP_CONST, 7908 .resetvalue = 0 }, 7909 REGINFO_SENTINEL 7910 }; 7911 define_arm_cp_regs(cpu, auxcr_reginfo); 7912 if (cpu_isar_feature(aa32_ac2, cpu)) { 7913 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 7914 } 7915 } 7916 7917 if (arm_feature(env, ARM_FEATURE_CBAR)) { 7918 /* 7919 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 7920 * There are two flavours: 7921 * (1) older 32-bit only cores have a simple 32-bit CBAR 7922 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 7923 * 32-bit register visible to AArch32 at a different encoding 7924 * to the "flavour 1" register and with the bits rearranged to 7925 * be able to squash a 64-bit address into the 32-bit view. 7926 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 7927 * in future if we support AArch32-only configs of some of the 7928 * AArch64 cores we might need to add a specific feature flag 7929 * to indicate cores with "flavour 2" CBAR. 7930 */ 7931 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7932 /* 32 bit view is [31:18] 0...0 [43:32]. */ 7933 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 7934 | extract64(cpu->reset_cbar, 32, 12); 7935 ARMCPRegInfo cbar_reginfo[] = { 7936 { .name = "CBAR", 7937 .type = ARM_CP_CONST, 7938 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 7939 .access = PL1_R, .resetvalue = cbar32 }, 7940 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 7941 .type = ARM_CP_CONST, 7942 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 7943 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 7944 REGINFO_SENTINEL 7945 }; 7946 /* We don't implement a r/w 64 bit CBAR currently */ 7947 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 7948 define_arm_cp_regs(cpu, cbar_reginfo); 7949 } else { 7950 ARMCPRegInfo cbar = { 7951 .name = "CBAR", 7952 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 7953 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 7954 .fieldoffset = offsetof(CPUARMState, 7955 cp15.c15_config_base_address) 7956 }; 7957 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 7958 cbar.access = PL1_R; 7959 cbar.fieldoffset = 0; 7960 cbar.type = ARM_CP_CONST; 7961 } 7962 define_one_arm_cp_reg(cpu, &cbar); 7963 } 7964 } 7965 7966 if (arm_feature(env, ARM_FEATURE_VBAR)) { 7967 ARMCPRegInfo vbar_cp_reginfo[] = { 7968 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 7969 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 7970 .access = PL1_RW, .writefn = vbar_write, 7971 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 7972 offsetof(CPUARMState, cp15.vbar_ns) }, 7973 .resetvalue = 0 }, 7974 REGINFO_SENTINEL 7975 }; 7976 define_arm_cp_regs(cpu, vbar_cp_reginfo); 7977 } 7978 7979 /* Generic registers whose values depend on the implementation */ 7980 { 7981 ARMCPRegInfo sctlr = { 7982 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 7983 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 7984 .access = PL1_RW, .accessfn = access_tvm_trvm, 7985 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 7986 offsetof(CPUARMState, cp15.sctlr_ns) }, 7987 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 7988 .raw_writefn = raw_write, 7989 }; 7990 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7991 /* Normally we would always end the TB on an SCTLR write, but Linux 7992 * arch/arm/mach-pxa/sleep.S expects two instructions following 7993 * an MMU enable to execute from cache. Imitate this behaviour. 7994 */ 7995 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 7996 } 7997 define_one_arm_cp_reg(cpu, &sctlr); 7998 } 7999 8000 if (cpu_isar_feature(aa64_lor, cpu)) { 8001 define_arm_cp_regs(cpu, lor_reginfo); 8002 } 8003 if (cpu_isar_feature(aa64_pan, cpu)) { 8004 define_one_arm_cp_reg(cpu, &pan_reginfo); 8005 } 8006 #ifndef CONFIG_USER_ONLY 8007 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8008 define_arm_cp_regs(cpu, ats1e1_reginfo); 8009 } 8010 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8011 define_arm_cp_regs(cpu, ats1cp_reginfo); 8012 } 8013 #endif 8014 if (cpu_isar_feature(aa64_uao, cpu)) { 8015 define_one_arm_cp_reg(cpu, &uao_reginfo); 8016 } 8017 8018 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8019 define_arm_cp_regs(cpu, vhe_reginfo); 8020 } 8021 8022 if (cpu_isar_feature(aa64_sve, cpu)) { 8023 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8024 if (arm_feature(env, ARM_FEATURE_EL2)) { 8025 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8026 } else { 8027 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8028 } 8029 if (arm_feature(env, ARM_FEATURE_EL3)) { 8030 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8031 } 8032 } 8033 8034 #ifdef TARGET_AARCH64 8035 if (cpu_isar_feature(aa64_pauth, cpu)) { 8036 define_arm_cp_regs(cpu, pauth_reginfo); 8037 } 8038 if (cpu_isar_feature(aa64_rndr, cpu)) { 8039 define_arm_cp_regs(cpu, rndr_reginfo); 8040 } 8041 #ifndef CONFIG_USER_ONLY 8042 /* Data Cache clean instructions up to PoP */ 8043 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8044 define_one_arm_cp_reg(cpu, dcpop_reg); 8045 8046 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8047 define_one_arm_cp_reg(cpu, dcpodp_reg); 8048 } 8049 } 8050 #endif /*CONFIG_USER_ONLY*/ 8051 #endif 8052 8053 if (cpu_isar_feature(any_predinv, cpu)) { 8054 define_arm_cp_regs(cpu, predinv_reginfo); 8055 } 8056 8057 if (cpu_isar_feature(any_ccidx, cpu)) { 8058 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8059 } 8060 8061 #ifndef CONFIG_USER_ONLY 8062 /* 8063 * Register redirections and aliases must be done last, 8064 * after the registers from the other extensions have been defined. 8065 */ 8066 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8067 define_arm_vh_e2h_redirects_aliases(cpu); 8068 } 8069 #endif 8070 } 8071 8072 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 8073 { 8074 CPUState *cs = CPU(cpu); 8075 CPUARMState *env = &cpu->env; 8076 8077 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8078 /* 8079 * The lower part of each SVE register aliases to the FPU 8080 * registers so we don't need to include both. 8081 */ 8082 #ifdef TARGET_AARCH64 8083 if (isar_feature_aa64_sve(&cpu->isar)) { 8084 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, 8085 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), 8086 "sve-registers.xml", 0); 8087 } else 8088 #endif 8089 { 8090 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 8091 aarch64_fpu_gdb_set_reg, 8092 34, "aarch64-fpu.xml", 0); 8093 } 8094 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 8095 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8096 51, "arm-neon.xml", 0); 8097 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 8098 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8099 35, "arm-vfp3.xml", 0); 8100 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 8101 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8102 19, "arm-vfp.xml", 0); 8103 } 8104 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 8105 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), 8106 "system-registers.xml", 0); 8107 8108 } 8109 8110 /* Sort alphabetically by type name, except for "any". */ 8111 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8112 { 8113 ObjectClass *class_a = (ObjectClass *)a; 8114 ObjectClass *class_b = (ObjectClass *)b; 8115 const char *name_a, *name_b; 8116 8117 name_a = object_class_get_name(class_a); 8118 name_b = object_class_get_name(class_b); 8119 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8120 return 1; 8121 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8122 return -1; 8123 } else { 8124 return strcmp(name_a, name_b); 8125 } 8126 } 8127 8128 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8129 { 8130 ObjectClass *oc = data; 8131 const char *typename; 8132 char *name; 8133 8134 typename = object_class_get_name(oc); 8135 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8136 qemu_printf(" %s\n", name); 8137 g_free(name); 8138 } 8139 8140 void arm_cpu_list(void) 8141 { 8142 GSList *list; 8143 8144 list = object_class_get_list(TYPE_ARM_CPU, false); 8145 list = g_slist_sort(list, arm_cpu_list_compare); 8146 qemu_printf("Available CPUs:\n"); 8147 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8148 g_slist_free(list); 8149 } 8150 8151 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8152 { 8153 ObjectClass *oc = data; 8154 CpuDefinitionInfoList **cpu_list = user_data; 8155 CpuDefinitionInfoList *entry; 8156 CpuDefinitionInfo *info; 8157 const char *typename; 8158 8159 typename = object_class_get_name(oc); 8160 info = g_malloc0(sizeof(*info)); 8161 info->name = g_strndup(typename, 8162 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8163 info->q_typename = g_strdup(typename); 8164 8165 entry = g_malloc0(sizeof(*entry)); 8166 entry->value = info; 8167 entry->next = *cpu_list; 8168 *cpu_list = entry; 8169 } 8170 8171 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8172 { 8173 CpuDefinitionInfoList *cpu_list = NULL; 8174 GSList *list; 8175 8176 list = object_class_get_list(TYPE_ARM_CPU, false); 8177 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8178 g_slist_free(list); 8179 8180 return cpu_list; 8181 } 8182 8183 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8184 void *opaque, int state, int secstate, 8185 int crm, int opc1, int opc2, 8186 const char *name) 8187 { 8188 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8189 * add a single reginfo struct to the hash table. 8190 */ 8191 uint32_t *key = g_new(uint32_t, 1); 8192 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8193 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8194 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8195 8196 r2->name = g_strdup(name); 8197 /* Reset the secure state to the specific incoming state. This is 8198 * necessary as the register may have been defined with both states. 8199 */ 8200 r2->secure = secstate; 8201 8202 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8203 /* Register is banked (using both entries in array). 8204 * Overwriting fieldoffset as the array is only used to define 8205 * banked registers but later only fieldoffset is used. 8206 */ 8207 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8208 } 8209 8210 if (state == ARM_CP_STATE_AA32) { 8211 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8212 /* If the register is banked then we don't need to migrate or 8213 * reset the 32-bit instance in certain cases: 8214 * 8215 * 1) If the register has both 32-bit and 64-bit instances then we 8216 * can count on the 64-bit instance taking care of the 8217 * non-secure bank. 8218 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8219 * taking care of the secure bank. This requires that separate 8220 * 32 and 64-bit definitions are provided. 8221 */ 8222 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8223 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8224 r2->type |= ARM_CP_ALIAS; 8225 } 8226 } else if ((secstate != r->secure) && !ns) { 8227 /* The register is not banked so we only want to allow migration of 8228 * the non-secure instance. 8229 */ 8230 r2->type |= ARM_CP_ALIAS; 8231 } 8232 8233 if (r->state == ARM_CP_STATE_BOTH) { 8234 /* We assume it is a cp15 register if the .cp field is left unset. 8235 */ 8236 if (r2->cp == 0) { 8237 r2->cp = 15; 8238 } 8239 8240 #ifdef HOST_WORDS_BIGENDIAN 8241 if (r2->fieldoffset) { 8242 r2->fieldoffset += sizeof(uint32_t); 8243 } 8244 #endif 8245 } 8246 } 8247 if (state == ARM_CP_STATE_AA64) { 8248 /* To allow abbreviation of ARMCPRegInfo 8249 * definitions, we treat cp == 0 as equivalent to 8250 * the value for "standard guest-visible sysreg". 8251 * STATE_BOTH definitions are also always "standard 8252 * sysreg" in their AArch64 view (the .cp value may 8253 * be non-zero for the benefit of the AArch32 view). 8254 */ 8255 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8256 r2->cp = CP_REG_ARM64_SYSREG_CP; 8257 } 8258 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8259 r2->opc0, opc1, opc2); 8260 } else { 8261 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8262 } 8263 if (opaque) { 8264 r2->opaque = opaque; 8265 } 8266 /* reginfo passed to helpers is correct for the actual access, 8267 * and is never ARM_CP_STATE_BOTH: 8268 */ 8269 r2->state = state; 8270 /* Make sure reginfo passed to helpers for wildcarded regs 8271 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8272 */ 8273 r2->crm = crm; 8274 r2->opc1 = opc1; 8275 r2->opc2 = opc2; 8276 /* By convention, for wildcarded registers only the first 8277 * entry is used for migration; the others are marked as 8278 * ALIAS so we don't try to transfer the register 8279 * multiple times. Special registers (ie NOP/WFI) are 8280 * never migratable and not even raw-accessible. 8281 */ 8282 if ((r->type & ARM_CP_SPECIAL)) { 8283 r2->type |= ARM_CP_NO_RAW; 8284 } 8285 if (((r->crm == CP_ANY) && crm != 0) || 8286 ((r->opc1 == CP_ANY) && opc1 != 0) || 8287 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8288 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8289 } 8290 8291 /* Check that raw accesses are either forbidden or handled. Note that 8292 * we can't assert this earlier because the setup of fieldoffset for 8293 * banked registers has to be done first. 8294 */ 8295 if (!(r2->type & ARM_CP_NO_RAW)) { 8296 assert(!raw_accessors_invalid(r2)); 8297 } 8298 8299 /* Overriding of an existing definition must be explicitly 8300 * requested. 8301 */ 8302 if (!(r->type & ARM_CP_OVERRIDE)) { 8303 ARMCPRegInfo *oldreg; 8304 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8305 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8306 fprintf(stderr, "Register redefined: cp=%d %d bit " 8307 "crn=%d crm=%d opc1=%d opc2=%d, " 8308 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8309 r2->crn, r2->crm, r2->opc1, r2->opc2, 8310 oldreg->name, r2->name); 8311 g_assert_not_reached(); 8312 } 8313 } 8314 g_hash_table_insert(cpu->cp_regs, key, r2); 8315 } 8316 8317 8318 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8319 const ARMCPRegInfo *r, void *opaque) 8320 { 8321 /* Define implementations of coprocessor registers. 8322 * We store these in a hashtable because typically 8323 * there are less than 150 registers in a space which 8324 * is 16*16*16*8*8 = 262144 in size. 8325 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8326 * If a register is defined twice then the second definition is 8327 * used, so this can be used to define some generic registers and 8328 * then override them with implementation specific variations. 8329 * At least one of the original and the second definition should 8330 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8331 * against accidental use. 8332 * 8333 * The state field defines whether the register is to be 8334 * visible in the AArch32 or AArch64 execution state. If the 8335 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8336 * reginfo structure for the AArch32 view, which sees the lower 8337 * 32 bits of the 64 bit register. 8338 * 8339 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8340 * be wildcarded. AArch64 registers are always considered to be 64 8341 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8342 * the register, if any. 8343 */ 8344 int crm, opc1, opc2, state; 8345 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8346 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8347 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8348 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8349 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8350 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8351 /* 64 bit registers have only CRm and Opc1 fields */ 8352 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8353 /* op0 only exists in the AArch64 encodings */ 8354 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8355 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8356 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8357 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8358 * encodes a minimum access level for the register. We roll this 8359 * runtime check into our general permission check code, so check 8360 * here that the reginfo's specified permissions are strict enough 8361 * to encompass the generic architectural permission check. 8362 */ 8363 if (r->state != ARM_CP_STATE_AA32) { 8364 int mask = 0; 8365 switch (r->opc1) { 8366 case 0: 8367 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8368 mask = PL0U_R | PL1_RW; 8369 break; 8370 case 1: case 2: 8371 /* min_EL EL1 */ 8372 mask = PL1_RW; 8373 break; 8374 case 3: 8375 /* min_EL EL0 */ 8376 mask = PL0_RW; 8377 break; 8378 case 4: 8379 case 5: 8380 /* min_EL EL2 */ 8381 mask = PL2_RW; 8382 break; 8383 case 6: 8384 /* min_EL EL3 */ 8385 mask = PL3_RW; 8386 break; 8387 case 7: 8388 /* min_EL EL1, secure mode only (we don't check the latter) */ 8389 mask = PL1_RW; 8390 break; 8391 default: 8392 /* broken reginfo with out-of-range opc1 */ 8393 assert(false); 8394 break; 8395 } 8396 /* assert our permissions are not too lax (stricter is fine) */ 8397 assert((r->access & ~mask) == 0); 8398 } 8399 8400 /* Check that the register definition has enough info to handle 8401 * reads and writes if they are permitted. 8402 */ 8403 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8404 if (r->access & PL3_R) { 8405 assert((r->fieldoffset || 8406 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8407 r->readfn); 8408 } 8409 if (r->access & PL3_W) { 8410 assert((r->fieldoffset || 8411 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8412 r->writefn); 8413 } 8414 } 8415 /* Bad type field probably means missing sentinel at end of reg list */ 8416 assert(cptype_valid(r->type)); 8417 for (crm = crmmin; crm <= crmmax; crm++) { 8418 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8419 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8420 for (state = ARM_CP_STATE_AA32; 8421 state <= ARM_CP_STATE_AA64; state++) { 8422 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8423 continue; 8424 } 8425 if (state == ARM_CP_STATE_AA32) { 8426 /* Under AArch32 CP registers can be common 8427 * (same for secure and non-secure world) or banked. 8428 */ 8429 char *name; 8430 8431 switch (r->secure) { 8432 case ARM_CP_SECSTATE_S: 8433 case ARM_CP_SECSTATE_NS: 8434 add_cpreg_to_hashtable(cpu, r, opaque, state, 8435 r->secure, crm, opc1, opc2, 8436 r->name); 8437 break; 8438 default: 8439 name = g_strdup_printf("%s_S", r->name); 8440 add_cpreg_to_hashtable(cpu, r, opaque, state, 8441 ARM_CP_SECSTATE_S, 8442 crm, opc1, opc2, name); 8443 g_free(name); 8444 add_cpreg_to_hashtable(cpu, r, opaque, state, 8445 ARM_CP_SECSTATE_NS, 8446 crm, opc1, opc2, r->name); 8447 break; 8448 } 8449 } else { 8450 /* AArch64 registers get mapped to non-secure instance 8451 * of AArch32 */ 8452 add_cpreg_to_hashtable(cpu, r, opaque, state, 8453 ARM_CP_SECSTATE_NS, 8454 crm, opc1, opc2, r->name); 8455 } 8456 } 8457 } 8458 } 8459 } 8460 } 8461 8462 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8463 const ARMCPRegInfo *regs, void *opaque) 8464 { 8465 /* Define a whole list of registers */ 8466 const ARMCPRegInfo *r; 8467 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8468 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8469 } 8470 } 8471 8472 /* 8473 * Modify ARMCPRegInfo for access from userspace. 8474 * 8475 * This is a data driven modification directed by 8476 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8477 * user-space cannot alter any values and dynamic values pertaining to 8478 * execution state are hidden from user space view anyway. 8479 */ 8480 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8481 { 8482 const ARMCPRegUserSpaceInfo *m; 8483 ARMCPRegInfo *r; 8484 8485 for (m = mods; m->name; m++) { 8486 GPatternSpec *pat = NULL; 8487 if (m->is_glob) { 8488 pat = g_pattern_spec_new(m->name); 8489 } 8490 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8491 if (pat && g_pattern_match_string(pat, r->name)) { 8492 r->type = ARM_CP_CONST; 8493 r->access = PL0U_R; 8494 r->resetvalue = 0; 8495 /* continue */ 8496 } else if (strcmp(r->name, m->name) == 0) { 8497 r->type = ARM_CP_CONST; 8498 r->access = PL0U_R; 8499 r->resetvalue &= m->exported_bits; 8500 r->resetvalue |= m->fixed_bits; 8501 break; 8502 } 8503 } 8504 if (pat) { 8505 g_pattern_spec_free(pat); 8506 } 8507 } 8508 } 8509 8510 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8511 { 8512 return g_hash_table_lookup(cpregs, &encoded_cp); 8513 } 8514 8515 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8516 uint64_t value) 8517 { 8518 /* Helper coprocessor write function for write-ignore registers */ 8519 } 8520 8521 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8522 { 8523 /* Helper coprocessor write function for read-as-zero registers */ 8524 return 0; 8525 } 8526 8527 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8528 { 8529 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8530 } 8531 8532 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8533 { 8534 /* Return true if it is not valid for us to switch to 8535 * this CPU mode (ie all the UNPREDICTABLE cases in 8536 * the ARM ARM CPSRWriteByInstr pseudocode). 8537 */ 8538 8539 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8540 if (write_type == CPSRWriteByInstr && 8541 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8542 mode == ARM_CPU_MODE_HYP)) { 8543 return 1; 8544 } 8545 8546 switch (mode) { 8547 case ARM_CPU_MODE_USR: 8548 return 0; 8549 case ARM_CPU_MODE_SYS: 8550 case ARM_CPU_MODE_SVC: 8551 case ARM_CPU_MODE_ABT: 8552 case ARM_CPU_MODE_UND: 8553 case ARM_CPU_MODE_IRQ: 8554 case ARM_CPU_MODE_FIQ: 8555 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8556 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8557 */ 8558 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8559 * and CPS are treated as illegal mode changes. 8560 */ 8561 if (write_type == CPSRWriteByInstr && 8562 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8563 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8564 return 1; 8565 } 8566 return 0; 8567 case ARM_CPU_MODE_HYP: 8568 return !arm_feature(env, ARM_FEATURE_EL2) 8569 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 8570 case ARM_CPU_MODE_MON: 8571 return arm_current_el(env) < 3; 8572 default: 8573 return 1; 8574 } 8575 } 8576 8577 uint32_t cpsr_read(CPUARMState *env) 8578 { 8579 int ZF; 8580 ZF = (env->ZF == 0); 8581 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8582 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8583 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8584 | ((env->condexec_bits & 0xfc) << 8) 8585 | (env->GE << 16) | (env->daif & CPSR_AIF); 8586 } 8587 8588 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8589 CPSRWriteType write_type) 8590 { 8591 uint32_t changed_daif; 8592 8593 if (mask & CPSR_NZCV) { 8594 env->ZF = (~val) & CPSR_Z; 8595 env->NF = val; 8596 env->CF = (val >> 29) & 1; 8597 env->VF = (val << 3) & 0x80000000; 8598 } 8599 if (mask & CPSR_Q) 8600 env->QF = ((val & CPSR_Q) != 0); 8601 if (mask & CPSR_T) 8602 env->thumb = ((val & CPSR_T) != 0); 8603 if (mask & CPSR_IT_0_1) { 8604 env->condexec_bits &= ~3; 8605 env->condexec_bits |= (val >> 25) & 3; 8606 } 8607 if (mask & CPSR_IT_2_7) { 8608 env->condexec_bits &= 3; 8609 env->condexec_bits |= (val >> 8) & 0xfc; 8610 } 8611 if (mask & CPSR_GE) { 8612 env->GE = (val >> 16) & 0xf; 8613 } 8614 8615 /* In a V7 implementation that includes the security extensions but does 8616 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8617 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8618 * bits respectively. 8619 * 8620 * In a V8 implementation, it is permitted for privileged software to 8621 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8622 */ 8623 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8624 arm_feature(env, ARM_FEATURE_EL3) && 8625 !arm_feature(env, ARM_FEATURE_EL2) && 8626 !arm_is_secure(env)) { 8627 8628 changed_daif = (env->daif ^ val) & mask; 8629 8630 if (changed_daif & CPSR_A) { 8631 /* Check to see if we are allowed to change the masking of async 8632 * abort exceptions from a non-secure state. 8633 */ 8634 if (!(env->cp15.scr_el3 & SCR_AW)) { 8635 qemu_log_mask(LOG_GUEST_ERROR, 8636 "Ignoring attempt to switch CPSR_A flag from " 8637 "non-secure world with SCR.AW bit clear\n"); 8638 mask &= ~CPSR_A; 8639 } 8640 } 8641 8642 if (changed_daif & CPSR_F) { 8643 /* Check to see if we are allowed to change the masking of FIQ 8644 * exceptions from a non-secure state. 8645 */ 8646 if (!(env->cp15.scr_el3 & SCR_FW)) { 8647 qemu_log_mask(LOG_GUEST_ERROR, 8648 "Ignoring attempt to switch CPSR_F flag from " 8649 "non-secure world with SCR.FW bit clear\n"); 8650 mask &= ~CPSR_F; 8651 } 8652 8653 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8654 * If this bit is set software is not allowed to mask 8655 * FIQs, but is allowed to set CPSR_F to 0. 8656 */ 8657 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8658 (val & CPSR_F)) { 8659 qemu_log_mask(LOG_GUEST_ERROR, 8660 "Ignoring attempt to enable CPSR_F flag " 8661 "(non-maskable FIQ [NMFI] support enabled)\n"); 8662 mask &= ~CPSR_F; 8663 } 8664 } 8665 } 8666 8667 env->daif &= ~(CPSR_AIF & mask); 8668 env->daif |= val & CPSR_AIF & mask; 8669 8670 if (write_type != CPSRWriteRaw && 8671 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 8672 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 8673 /* Note that we can only get here in USR mode if this is a 8674 * gdb stub write; for this case we follow the architectural 8675 * behaviour for guest writes in USR mode of ignoring an attempt 8676 * to switch mode. (Those are caught by translate.c for writes 8677 * triggered by guest instructions.) 8678 */ 8679 mask &= ~CPSR_M; 8680 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 8681 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 8682 * v7, and has defined behaviour in v8: 8683 * + leave CPSR.M untouched 8684 * + allow changes to the other CPSR fields 8685 * + set PSTATE.IL 8686 * For user changes via the GDB stub, we don't set PSTATE.IL, 8687 * as this would be unnecessarily harsh for a user error. 8688 */ 8689 mask &= ~CPSR_M; 8690 if (write_type != CPSRWriteByGDBStub && 8691 arm_feature(env, ARM_FEATURE_V8)) { 8692 mask |= CPSR_IL; 8693 val |= CPSR_IL; 8694 } 8695 qemu_log_mask(LOG_GUEST_ERROR, 8696 "Illegal AArch32 mode switch attempt from %s to %s\n", 8697 aarch32_mode_name(env->uncached_cpsr), 8698 aarch32_mode_name(val)); 8699 } else { 8700 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 8701 write_type == CPSRWriteExceptionReturn ? 8702 "Exception return from AArch32" : 8703 "AArch32 mode switch from", 8704 aarch32_mode_name(env->uncached_cpsr), 8705 aarch32_mode_name(val), env->regs[15]); 8706 switch_mode(env, val & CPSR_M); 8707 } 8708 } 8709 mask &= ~CACHED_CPSR_BITS; 8710 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 8711 } 8712 8713 /* Sign/zero extend */ 8714 uint32_t HELPER(sxtb16)(uint32_t x) 8715 { 8716 uint32_t res; 8717 res = (uint16_t)(int8_t)x; 8718 res |= (uint32_t)(int8_t)(x >> 16) << 16; 8719 return res; 8720 } 8721 8722 uint32_t HELPER(uxtb16)(uint32_t x) 8723 { 8724 uint32_t res; 8725 res = (uint16_t)(uint8_t)x; 8726 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 8727 return res; 8728 } 8729 8730 int32_t HELPER(sdiv)(int32_t num, int32_t den) 8731 { 8732 if (den == 0) 8733 return 0; 8734 if (num == INT_MIN && den == -1) 8735 return INT_MIN; 8736 return num / den; 8737 } 8738 8739 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 8740 { 8741 if (den == 0) 8742 return 0; 8743 return num / den; 8744 } 8745 8746 uint32_t HELPER(rbit)(uint32_t x) 8747 { 8748 return revbit32(x); 8749 } 8750 8751 #ifdef CONFIG_USER_ONLY 8752 8753 static void switch_mode(CPUARMState *env, int mode) 8754 { 8755 ARMCPU *cpu = env_archcpu(env); 8756 8757 if (mode != ARM_CPU_MODE_USR) { 8758 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 8759 } 8760 } 8761 8762 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 8763 uint32_t cur_el, bool secure) 8764 { 8765 return 1; 8766 } 8767 8768 void aarch64_sync_64_to_32(CPUARMState *env) 8769 { 8770 g_assert_not_reached(); 8771 } 8772 8773 #else 8774 8775 static void switch_mode(CPUARMState *env, int mode) 8776 { 8777 int old_mode; 8778 int i; 8779 8780 old_mode = env->uncached_cpsr & CPSR_M; 8781 if (mode == old_mode) 8782 return; 8783 8784 if (old_mode == ARM_CPU_MODE_FIQ) { 8785 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8786 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 8787 } else if (mode == ARM_CPU_MODE_FIQ) { 8788 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8789 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 8790 } 8791 8792 i = bank_number(old_mode); 8793 env->banked_r13[i] = env->regs[13]; 8794 env->banked_spsr[i] = env->spsr; 8795 8796 i = bank_number(mode); 8797 env->regs[13] = env->banked_r13[i]; 8798 env->spsr = env->banked_spsr[i]; 8799 8800 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 8801 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 8802 } 8803 8804 /* Physical Interrupt Target EL Lookup Table 8805 * 8806 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 8807 * 8808 * The below multi-dimensional table is used for looking up the target 8809 * exception level given numerous condition criteria. Specifically, the 8810 * target EL is based on SCR and HCR routing controls as well as the 8811 * currently executing EL and secure state. 8812 * 8813 * Dimensions: 8814 * target_el_table[2][2][2][2][2][4] 8815 * | | | | | +--- Current EL 8816 * | | | | +------ Non-secure(0)/Secure(1) 8817 * | | | +--------- HCR mask override 8818 * | | +------------ SCR exec state control 8819 * | +--------------- SCR mask override 8820 * +------------------ 32-bit(0)/64-bit(1) EL3 8821 * 8822 * The table values are as such: 8823 * 0-3 = EL0-EL3 8824 * -1 = Cannot occur 8825 * 8826 * The ARM ARM target EL table includes entries indicating that an "exception 8827 * is not taken". The two cases where this is applicable are: 8828 * 1) An exception is taken from EL3 but the SCR does not have the exception 8829 * routed to EL3. 8830 * 2) An exception is taken from EL2 but the HCR does not have the exception 8831 * routed to EL2. 8832 * In these two cases, the below table contain a target of EL1. This value is 8833 * returned as it is expected that the consumer of the table data will check 8834 * for "target EL >= current EL" to ensure the exception is not taken. 8835 * 8836 * SCR HCR 8837 * 64 EA AMO From 8838 * BIT IRQ IMO Non-secure Secure 8839 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 8840 */ 8841 static const int8_t target_el_table[2][2][2][2][2][4] = { 8842 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 8843 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 8844 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 8845 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 8846 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 8847 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 8848 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 8849 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 8850 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 8851 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 8852 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 8853 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 8854 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 8855 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 8856 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 8857 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 8858 }; 8859 8860 /* 8861 * Determine the target EL for physical exceptions 8862 */ 8863 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 8864 uint32_t cur_el, bool secure) 8865 { 8866 CPUARMState *env = cs->env_ptr; 8867 bool rw; 8868 bool scr; 8869 bool hcr; 8870 int target_el; 8871 /* Is the highest EL AArch64? */ 8872 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 8873 uint64_t hcr_el2; 8874 8875 if (arm_feature(env, ARM_FEATURE_EL3)) { 8876 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 8877 } else { 8878 /* Either EL2 is the highest EL (and so the EL2 register width 8879 * is given by is64); or there is no EL2 or EL3, in which case 8880 * the value of 'rw' does not affect the table lookup anyway. 8881 */ 8882 rw = is64; 8883 } 8884 8885 hcr_el2 = arm_hcr_el2_eff(env); 8886 switch (excp_idx) { 8887 case EXCP_IRQ: 8888 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 8889 hcr = hcr_el2 & HCR_IMO; 8890 break; 8891 case EXCP_FIQ: 8892 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 8893 hcr = hcr_el2 & HCR_FMO; 8894 break; 8895 default: 8896 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 8897 hcr = hcr_el2 & HCR_AMO; 8898 break; 8899 }; 8900 8901 /* 8902 * For these purposes, TGE and AMO/IMO/FMO both force the 8903 * interrupt to EL2. Fold TGE into the bit extracted above. 8904 */ 8905 hcr |= (hcr_el2 & HCR_TGE) != 0; 8906 8907 /* Perform a table-lookup for the target EL given the current state */ 8908 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 8909 8910 assert(target_el > 0); 8911 8912 return target_el; 8913 } 8914 8915 void arm_log_exception(int idx) 8916 { 8917 if (qemu_loglevel_mask(CPU_LOG_INT)) { 8918 const char *exc = NULL; 8919 static const char * const excnames[] = { 8920 [EXCP_UDEF] = "Undefined Instruction", 8921 [EXCP_SWI] = "SVC", 8922 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 8923 [EXCP_DATA_ABORT] = "Data Abort", 8924 [EXCP_IRQ] = "IRQ", 8925 [EXCP_FIQ] = "FIQ", 8926 [EXCP_BKPT] = "Breakpoint", 8927 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 8928 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 8929 [EXCP_HVC] = "Hypervisor Call", 8930 [EXCP_HYP_TRAP] = "Hypervisor Trap", 8931 [EXCP_SMC] = "Secure Monitor Call", 8932 [EXCP_VIRQ] = "Virtual IRQ", 8933 [EXCP_VFIQ] = "Virtual FIQ", 8934 [EXCP_SEMIHOST] = "Semihosting call", 8935 [EXCP_NOCP] = "v7M NOCP UsageFault", 8936 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 8937 [EXCP_STKOF] = "v8M STKOF UsageFault", 8938 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 8939 [EXCP_LSERR] = "v8M LSERR UsageFault", 8940 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 8941 }; 8942 8943 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 8944 exc = excnames[idx]; 8945 } 8946 if (!exc) { 8947 exc = "unknown"; 8948 } 8949 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 8950 } 8951 } 8952 8953 /* 8954 * Function used to synchronize QEMU's AArch64 register set with AArch32 8955 * register set. This is necessary when switching between AArch32 and AArch64 8956 * execution state. 8957 */ 8958 void aarch64_sync_32_to_64(CPUARMState *env) 8959 { 8960 int i; 8961 uint32_t mode = env->uncached_cpsr & CPSR_M; 8962 8963 /* We can blanket copy R[0:7] to X[0:7] */ 8964 for (i = 0; i < 8; i++) { 8965 env->xregs[i] = env->regs[i]; 8966 } 8967 8968 /* 8969 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 8970 * Otherwise, they come from the banked user regs. 8971 */ 8972 if (mode == ARM_CPU_MODE_FIQ) { 8973 for (i = 8; i < 13; i++) { 8974 env->xregs[i] = env->usr_regs[i - 8]; 8975 } 8976 } else { 8977 for (i = 8; i < 13; i++) { 8978 env->xregs[i] = env->regs[i]; 8979 } 8980 } 8981 8982 /* 8983 * Registers x13-x23 are the various mode SP and FP registers. Registers 8984 * r13 and r14 are only copied if we are in that mode, otherwise we copy 8985 * from the mode banked register. 8986 */ 8987 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 8988 env->xregs[13] = env->regs[13]; 8989 env->xregs[14] = env->regs[14]; 8990 } else { 8991 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 8992 /* HYP is an exception in that it is copied from r14 */ 8993 if (mode == ARM_CPU_MODE_HYP) { 8994 env->xregs[14] = env->regs[14]; 8995 } else { 8996 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 8997 } 8998 } 8999 9000 if (mode == ARM_CPU_MODE_HYP) { 9001 env->xregs[15] = env->regs[13]; 9002 } else { 9003 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9004 } 9005 9006 if (mode == ARM_CPU_MODE_IRQ) { 9007 env->xregs[16] = env->regs[14]; 9008 env->xregs[17] = env->regs[13]; 9009 } else { 9010 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9011 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9012 } 9013 9014 if (mode == ARM_CPU_MODE_SVC) { 9015 env->xregs[18] = env->regs[14]; 9016 env->xregs[19] = env->regs[13]; 9017 } else { 9018 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9019 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9020 } 9021 9022 if (mode == ARM_CPU_MODE_ABT) { 9023 env->xregs[20] = env->regs[14]; 9024 env->xregs[21] = env->regs[13]; 9025 } else { 9026 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9027 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9028 } 9029 9030 if (mode == ARM_CPU_MODE_UND) { 9031 env->xregs[22] = env->regs[14]; 9032 env->xregs[23] = env->regs[13]; 9033 } else { 9034 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9035 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9036 } 9037 9038 /* 9039 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9040 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9041 * FIQ bank for r8-r14. 9042 */ 9043 if (mode == ARM_CPU_MODE_FIQ) { 9044 for (i = 24; i < 31; i++) { 9045 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9046 } 9047 } else { 9048 for (i = 24; i < 29; i++) { 9049 env->xregs[i] = env->fiq_regs[i - 24]; 9050 } 9051 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9052 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9053 } 9054 9055 env->pc = env->regs[15]; 9056 } 9057 9058 /* 9059 * Function used to synchronize QEMU's AArch32 register set with AArch64 9060 * register set. This is necessary when switching between AArch32 and AArch64 9061 * execution state. 9062 */ 9063 void aarch64_sync_64_to_32(CPUARMState *env) 9064 { 9065 int i; 9066 uint32_t mode = env->uncached_cpsr & CPSR_M; 9067 9068 /* We can blanket copy X[0:7] to R[0:7] */ 9069 for (i = 0; i < 8; i++) { 9070 env->regs[i] = env->xregs[i]; 9071 } 9072 9073 /* 9074 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9075 * Otherwise, we copy x8-x12 into the banked user regs. 9076 */ 9077 if (mode == ARM_CPU_MODE_FIQ) { 9078 for (i = 8; i < 13; i++) { 9079 env->usr_regs[i - 8] = env->xregs[i]; 9080 } 9081 } else { 9082 for (i = 8; i < 13; i++) { 9083 env->regs[i] = env->xregs[i]; 9084 } 9085 } 9086 9087 /* 9088 * Registers r13 & r14 depend on the current mode. 9089 * If we are in a given mode, we copy the corresponding x registers to r13 9090 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9091 * for the mode. 9092 */ 9093 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9094 env->regs[13] = env->xregs[13]; 9095 env->regs[14] = env->xregs[14]; 9096 } else { 9097 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9098 9099 /* 9100 * HYP is an exception in that it does not have its own banked r14 but 9101 * shares the USR r14 9102 */ 9103 if (mode == ARM_CPU_MODE_HYP) { 9104 env->regs[14] = env->xregs[14]; 9105 } else { 9106 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9107 } 9108 } 9109 9110 if (mode == ARM_CPU_MODE_HYP) { 9111 env->regs[13] = env->xregs[15]; 9112 } else { 9113 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9114 } 9115 9116 if (mode == ARM_CPU_MODE_IRQ) { 9117 env->regs[14] = env->xregs[16]; 9118 env->regs[13] = env->xregs[17]; 9119 } else { 9120 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9121 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9122 } 9123 9124 if (mode == ARM_CPU_MODE_SVC) { 9125 env->regs[14] = env->xregs[18]; 9126 env->regs[13] = env->xregs[19]; 9127 } else { 9128 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9129 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9130 } 9131 9132 if (mode == ARM_CPU_MODE_ABT) { 9133 env->regs[14] = env->xregs[20]; 9134 env->regs[13] = env->xregs[21]; 9135 } else { 9136 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9137 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9138 } 9139 9140 if (mode == ARM_CPU_MODE_UND) { 9141 env->regs[14] = env->xregs[22]; 9142 env->regs[13] = env->xregs[23]; 9143 } else { 9144 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9145 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9146 } 9147 9148 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9149 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9150 * FIQ bank for r8-r14. 9151 */ 9152 if (mode == ARM_CPU_MODE_FIQ) { 9153 for (i = 24; i < 31; i++) { 9154 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9155 } 9156 } else { 9157 for (i = 24; i < 29; i++) { 9158 env->fiq_regs[i - 24] = env->xregs[i]; 9159 } 9160 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9161 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9162 } 9163 9164 env->regs[15] = env->pc; 9165 } 9166 9167 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9168 uint32_t mask, uint32_t offset, 9169 uint32_t newpc) 9170 { 9171 int new_el; 9172 9173 /* Change the CPU state so as to actually take the exception. */ 9174 switch_mode(env, new_mode); 9175 new_el = arm_current_el(env); 9176 9177 /* 9178 * For exceptions taken to AArch32 we must clear the SS bit in both 9179 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9180 */ 9181 env->uncached_cpsr &= ~PSTATE_SS; 9182 env->spsr = cpsr_read(env); 9183 /* Clear IT bits. */ 9184 env->condexec_bits = 0; 9185 /* Switch to the new mode, and to the correct instruction set. */ 9186 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9187 /* Set new mode endianness */ 9188 env->uncached_cpsr &= ~CPSR_E; 9189 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9190 env->uncached_cpsr |= CPSR_E; 9191 } 9192 /* J and IL must always be cleared for exception entry */ 9193 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9194 env->daif |= mask; 9195 9196 if (new_mode == ARM_CPU_MODE_HYP) { 9197 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9198 env->elr_el[2] = env->regs[15]; 9199 } else { 9200 /* CPSR.PAN is normally preserved preserved unless... */ 9201 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9202 switch (new_el) { 9203 case 3: 9204 if (!arm_is_secure_below_el3(env)) { 9205 /* ... the target is EL3, from non-secure state. */ 9206 env->uncached_cpsr &= ~CPSR_PAN; 9207 break; 9208 } 9209 /* ... the target is EL3, from secure state ... */ 9210 /* fall through */ 9211 case 1: 9212 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9213 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9214 env->uncached_cpsr |= CPSR_PAN; 9215 } 9216 break; 9217 } 9218 } 9219 /* 9220 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9221 * and we should just guard the thumb mode on V4 9222 */ 9223 if (arm_feature(env, ARM_FEATURE_V4T)) { 9224 env->thumb = 9225 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9226 } 9227 env->regs[14] = env->regs[15] + offset; 9228 } 9229 env->regs[15] = newpc; 9230 arm_rebuild_hflags(env); 9231 } 9232 9233 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9234 { 9235 /* 9236 * Handle exception entry to Hyp mode; this is sufficiently 9237 * different to entry to other AArch32 modes that we handle it 9238 * separately here. 9239 * 9240 * The vector table entry used is always the 0x14 Hyp mode entry point, 9241 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9242 * The offset applied to the preferred return address is always zero 9243 * (see DDI0487C.a section G1.12.3). 9244 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9245 */ 9246 uint32_t addr, mask; 9247 ARMCPU *cpu = ARM_CPU(cs); 9248 CPUARMState *env = &cpu->env; 9249 9250 switch (cs->exception_index) { 9251 case EXCP_UDEF: 9252 addr = 0x04; 9253 break; 9254 case EXCP_SWI: 9255 addr = 0x14; 9256 break; 9257 case EXCP_BKPT: 9258 /* Fall through to prefetch abort. */ 9259 case EXCP_PREFETCH_ABORT: 9260 env->cp15.ifar_s = env->exception.vaddress; 9261 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9262 (uint32_t)env->exception.vaddress); 9263 addr = 0x0c; 9264 break; 9265 case EXCP_DATA_ABORT: 9266 env->cp15.dfar_s = env->exception.vaddress; 9267 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9268 (uint32_t)env->exception.vaddress); 9269 addr = 0x10; 9270 break; 9271 case EXCP_IRQ: 9272 addr = 0x18; 9273 break; 9274 case EXCP_FIQ: 9275 addr = 0x1c; 9276 break; 9277 case EXCP_HVC: 9278 addr = 0x08; 9279 break; 9280 case EXCP_HYP_TRAP: 9281 addr = 0x14; 9282 break; 9283 default: 9284 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9285 } 9286 9287 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9288 if (!arm_feature(env, ARM_FEATURE_V8)) { 9289 /* 9290 * QEMU syndrome values are v8-style. v7 has the IL bit 9291 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9292 * If this is a v7 CPU, squash the IL bit in those cases. 9293 */ 9294 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9295 (cs->exception_index == EXCP_DATA_ABORT && 9296 !(env->exception.syndrome & ARM_EL_ISV)) || 9297 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9298 env->exception.syndrome &= ~ARM_EL_IL; 9299 } 9300 } 9301 env->cp15.esr_el[2] = env->exception.syndrome; 9302 } 9303 9304 if (arm_current_el(env) != 2 && addr < 0x14) { 9305 addr = 0x14; 9306 } 9307 9308 mask = 0; 9309 if (!(env->cp15.scr_el3 & SCR_EA)) { 9310 mask |= CPSR_A; 9311 } 9312 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9313 mask |= CPSR_I; 9314 } 9315 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9316 mask |= CPSR_F; 9317 } 9318 9319 addr += env->cp15.hvbar; 9320 9321 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9322 } 9323 9324 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9325 { 9326 ARMCPU *cpu = ARM_CPU(cs); 9327 CPUARMState *env = &cpu->env; 9328 uint32_t addr; 9329 uint32_t mask; 9330 int new_mode; 9331 uint32_t offset; 9332 uint32_t moe; 9333 9334 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9335 switch (syn_get_ec(env->exception.syndrome)) { 9336 case EC_BREAKPOINT: 9337 case EC_BREAKPOINT_SAME_EL: 9338 moe = 1; 9339 break; 9340 case EC_WATCHPOINT: 9341 case EC_WATCHPOINT_SAME_EL: 9342 moe = 10; 9343 break; 9344 case EC_AA32_BKPT: 9345 moe = 3; 9346 break; 9347 case EC_VECTORCATCH: 9348 moe = 5; 9349 break; 9350 default: 9351 moe = 0; 9352 break; 9353 } 9354 9355 if (moe) { 9356 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9357 } 9358 9359 if (env->exception.target_el == 2) { 9360 arm_cpu_do_interrupt_aarch32_hyp(cs); 9361 return; 9362 } 9363 9364 switch (cs->exception_index) { 9365 case EXCP_UDEF: 9366 new_mode = ARM_CPU_MODE_UND; 9367 addr = 0x04; 9368 mask = CPSR_I; 9369 if (env->thumb) 9370 offset = 2; 9371 else 9372 offset = 4; 9373 break; 9374 case EXCP_SWI: 9375 new_mode = ARM_CPU_MODE_SVC; 9376 addr = 0x08; 9377 mask = CPSR_I; 9378 /* The PC already points to the next instruction. */ 9379 offset = 0; 9380 break; 9381 case EXCP_BKPT: 9382 /* Fall through to prefetch abort. */ 9383 case EXCP_PREFETCH_ABORT: 9384 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9385 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9386 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9387 env->exception.fsr, (uint32_t)env->exception.vaddress); 9388 new_mode = ARM_CPU_MODE_ABT; 9389 addr = 0x0c; 9390 mask = CPSR_A | CPSR_I; 9391 offset = 4; 9392 break; 9393 case EXCP_DATA_ABORT: 9394 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9395 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9396 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9397 env->exception.fsr, 9398 (uint32_t)env->exception.vaddress); 9399 new_mode = ARM_CPU_MODE_ABT; 9400 addr = 0x10; 9401 mask = CPSR_A | CPSR_I; 9402 offset = 8; 9403 break; 9404 case EXCP_IRQ: 9405 new_mode = ARM_CPU_MODE_IRQ; 9406 addr = 0x18; 9407 /* Disable IRQ and imprecise data aborts. */ 9408 mask = CPSR_A | CPSR_I; 9409 offset = 4; 9410 if (env->cp15.scr_el3 & SCR_IRQ) { 9411 /* IRQ routed to monitor mode */ 9412 new_mode = ARM_CPU_MODE_MON; 9413 mask |= CPSR_F; 9414 } 9415 break; 9416 case EXCP_FIQ: 9417 new_mode = ARM_CPU_MODE_FIQ; 9418 addr = 0x1c; 9419 /* Disable FIQ, IRQ and imprecise data aborts. */ 9420 mask = CPSR_A | CPSR_I | CPSR_F; 9421 if (env->cp15.scr_el3 & SCR_FIQ) { 9422 /* FIQ routed to monitor mode */ 9423 new_mode = ARM_CPU_MODE_MON; 9424 } 9425 offset = 4; 9426 break; 9427 case EXCP_VIRQ: 9428 new_mode = ARM_CPU_MODE_IRQ; 9429 addr = 0x18; 9430 /* Disable IRQ and imprecise data aborts. */ 9431 mask = CPSR_A | CPSR_I; 9432 offset = 4; 9433 break; 9434 case EXCP_VFIQ: 9435 new_mode = ARM_CPU_MODE_FIQ; 9436 addr = 0x1c; 9437 /* Disable FIQ, IRQ and imprecise data aborts. */ 9438 mask = CPSR_A | CPSR_I | CPSR_F; 9439 offset = 4; 9440 break; 9441 case EXCP_SMC: 9442 new_mode = ARM_CPU_MODE_MON; 9443 addr = 0x08; 9444 mask = CPSR_A | CPSR_I | CPSR_F; 9445 offset = 0; 9446 break; 9447 default: 9448 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9449 return; /* Never happens. Keep compiler happy. */ 9450 } 9451 9452 if (new_mode == ARM_CPU_MODE_MON) { 9453 addr += env->cp15.mvbar; 9454 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9455 /* High vectors. When enabled, base address cannot be remapped. */ 9456 addr += 0xffff0000; 9457 } else { 9458 /* ARM v7 architectures provide a vector base address register to remap 9459 * the interrupt vector table. 9460 * This register is only followed in non-monitor mode, and is banked. 9461 * Note: only bits 31:5 are valid. 9462 */ 9463 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9464 } 9465 9466 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9467 env->cp15.scr_el3 &= ~SCR_NS; 9468 } 9469 9470 take_aarch32_exception(env, new_mode, mask, offset, addr); 9471 } 9472 9473 /* Handle exception entry to a target EL which is using AArch64 */ 9474 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9475 { 9476 ARMCPU *cpu = ARM_CPU(cs); 9477 CPUARMState *env = &cpu->env; 9478 unsigned int new_el = env->exception.target_el; 9479 target_ulong addr = env->cp15.vbar_el[new_el]; 9480 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9481 unsigned int old_mode; 9482 unsigned int cur_el = arm_current_el(env); 9483 9484 /* 9485 * Note that new_el can never be 0. If cur_el is 0, then 9486 * el0_a64 is is_a64(), else el0_a64 is ignored. 9487 */ 9488 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9489 9490 if (cur_el < new_el) { 9491 /* Entry vector offset depends on whether the implemented EL 9492 * immediately lower than the target level is using AArch32 or AArch64 9493 */ 9494 bool is_aa64; 9495 uint64_t hcr; 9496 9497 switch (new_el) { 9498 case 3: 9499 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9500 break; 9501 case 2: 9502 hcr = arm_hcr_el2_eff(env); 9503 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9504 is_aa64 = (hcr & HCR_RW) != 0; 9505 break; 9506 } 9507 /* fall through */ 9508 case 1: 9509 is_aa64 = is_a64(env); 9510 break; 9511 default: 9512 g_assert_not_reached(); 9513 } 9514 9515 if (is_aa64) { 9516 addr += 0x400; 9517 } else { 9518 addr += 0x600; 9519 } 9520 } else if (pstate_read(env) & PSTATE_SP) { 9521 addr += 0x200; 9522 } 9523 9524 switch (cs->exception_index) { 9525 case EXCP_PREFETCH_ABORT: 9526 case EXCP_DATA_ABORT: 9527 env->cp15.far_el[new_el] = env->exception.vaddress; 9528 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9529 env->cp15.far_el[new_el]); 9530 /* fall through */ 9531 case EXCP_BKPT: 9532 case EXCP_UDEF: 9533 case EXCP_SWI: 9534 case EXCP_HVC: 9535 case EXCP_HYP_TRAP: 9536 case EXCP_SMC: 9537 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 9538 /* 9539 * QEMU internal FP/SIMD syndromes from AArch32 include the 9540 * TA and coproc fields which are only exposed if the exception 9541 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9542 * AArch64 format syndrome. 9543 */ 9544 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9545 } 9546 env->cp15.esr_el[new_el] = env->exception.syndrome; 9547 break; 9548 case EXCP_IRQ: 9549 case EXCP_VIRQ: 9550 addr += 0x80; 9551 break; 9552 case EXCP_FIQ: 9553 case EXCP_VFIQ: 9554 addr += 0x100; 9555 break; 9556 default: 9557 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9558 } 9559 9560 if (is_a64(env)) { 9561 old_mode = pstate_read(env); 9562 aarch64_save_sp(env, arm_current_el(env)); 9563 env->elr_el[new_el] = env->pc; 9564 } else { 9565 old_mode = cpsr_read(env); 9566 env->elr_el[new_el] = env->regs[15]; 9567 9568 aarch64_sync_32_to_64(env); 9569 9570 env->condexec_bits = 0; 9571 } 9572 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 9573 9574 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9575 env->elr_el[new_el]); 9576 9577 if (cpu_isar_feature(aa64_pan, cpu)) { 9578 /* The value of PSTATE.PAN is normally preserved, except when ... */ 9579 new_mode |= old_mode & PSTATE_PAN; 9580 switch (new_el) { 9581 case 2: 9582 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 9583 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 9584 != (HCR_E2H | HCR_TGE)) { 9585 break; 9586 } 9587 /* fall through */ 9588 case 1: 9589 /* ... the target is EL1 ... */ 9590 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 9591 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 9592 new_mode |= PSTATE_PAN; 9593 } 9594 break; 9595 } 9596 } 9597 9598 pstate_write(env, PSTATE_DAIF | new_mode); 9599 env->aarch64 = 1; 9600 aarch64_restore_sp(env, new_el); 9601 helper_rebuild_hflags_a64(env, new_el); 9602 9603 env->pc = addr; 9604 9605 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 9606 new_el, env->pc, pstate_read(env)); 9607 } 9608 9609 /* 9610 * Do semihosting call and set the appropriate return value. All the 9611 * permission and validity checks have been done at translate time. 9612 * 9613 * We only see semihosting exceptions in TCG only as they are not 9614 * trapped to the hypervisor in KVM. 9615 */ 9616 #ifdef CONFIG_TCG 9617 static void handle_semihosting(CPUState *cs) 9618 { 9619 ARMCPU *cpu = ARM_CPU(cs); 9620 CPUARMState *env = &cpu->env; 9621 9622 if (is_a64(env)) { 9623 qemu_log_mask(CPU_LOG_INT, 9624 "...handling as semihosting call 0x%" PRIx64 "\n", 9625 env->xregs[0]); 9626 env->xregs[0] = do_arm_semihosting(env); 9627 env->pc += 4; 9628 } else { 9629 qemu_log_mask(CPU_LOG_INT, 9630 "...handling as semihosting call 0x%x\n", 9631 env->regs[0]); 9632 env->regs[0] = do_arm_semihosting(env); 9633 env->regs[15] += env->thumb ? 2 : 4; 9634 } 9635 } 9636 #endif 9637 9638 /* Handle a CPU exception for A and R profile CPUs. 9639 * Do any appropriate logging, handle PSCI calls, and then hand off 9640 * to the AArch64-entry or AArch32-entry function depending on the 9641 * target exception level's register width. 9642 */ 9643 void arm_cpu_do_interrupt(CPUState *cs) 9644 { 9645 ARMCPU *cpu = ARM_CPU(cs); 9646 CPUARMState *env = &cpu->env; 9647 unsigned int new_el = env->exception.target_el; 9648 9649 assert(!arm_feature(env, ARM_FEATURE_M)); 9650 9651 arm_log_exception(cs->exception_index); 9652 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 9653 new_el); 9654 if (qemu_loglevel_mask(CPU_LOG_INT) 9655 && !excp_is_internal(cs->exception_index)) { 9656 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 9657 syn_get_ec(env->exception.syndrome), 9658 env->exception.syndrome); 9659 } 9660 9661 if (arm_is_psci_call(cpu, cs->exception_index)) { 9662 arm_handle_psci_call(cpu); 9663 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 9664 return; 9665 } 9666 9667 /* 9668 * Semihosting semantics depend on the register width of the code 9669 * that caused the exception, not the target exception level, so 9670 * must be handled here. 9671 */ 9672 #ifdef CONFIG_TCG 9673 if (cs->exception_index == EXCP_SEMIHOST) { 9674 handle_semihosting(cs); 9675 return; 9676 } 9677 #endif 9678 9679 /* Hooks may change global state so BQL should be held, also the 9680 * BQL needs to be held for any modification of 9681 * cs->interrupt_request. 9682 */ 9683 g_assert(qemu_mutex_iothread_locked()); 9684 9685 arm_call_pre_el_change_hook(cpu); 9686 9687 assert(!excp_is_internal(cs->exception_index)); 9688 if (arm_el_is_aa64(env, new_el)) { 9689 arm_cpu_do_interrupt_aarch64(cs); 9690 } else { 9691 arm_cpu_do_interrupt_aarch32(cs); 9692 } 9693 9694 arm_call_el_change_hook(cpu); 9695 9696 if (!kvm_enabled()) { 9697 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 9698 } 9699 } 9700 #endif /* !CONFIG_USER_ONLY */ 9701 9702 /* Return the exception level which controls this address translation regime */ 9703 static uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 9704 { 9705 switch (mmu_idx) { 9706 case ARMMMUIdx_E20_0: 9707 case ARMMMUIdx_E20_2: 9708 case ARMMMUIdx_E20_2_PAN: 9709 case ARMMMUIdx_Stage2: 9710 case ARMMMUIdx_E2: 9711 return 2; 9712 case ARMMMUIdx_SE3: 9713 return 3; 9714 case ARMMMUIdx_SE10_0: 9715 return arm_el_is_aa64(env, 3) ? 1 : 3; 9716 case ARMMMUIdx_SE10_1: 9717 case ARMMMUIdx_SE10_1_PAN: 9718 case ARMMMUIdx_Stage1_E0: 9719 case ARMMMUIdx_Stage1_E1: 9720 case ARMMMUIdx_Stage1_E1_PAN: 9721 case ARMMMUIdx_E10_0: 9722 case ARMMMUIdx_E10_1: 9723 case ARMMMUIdx_E10_1_PAN: 9724 case ARMMMUIdx_MPrivNegPri: 9725 case ARMMMUIdx_MUserNegPri: 9726 case ARMMMUIdx_MPriv: 9727 case ARMMMUIdx_MUser: 9728 case ARMMMUIdx_MSPrivNegPri: 9729 case ARMMMUIdx_MSUserNegPri: 9730 case ARMMMUIdx_MSPriv: 9731 case ARMMMUIdx_MSUser: 9732 return 1; 9733 default: 9734 g_assert_not_reached(); 9735 } 9736 } 9737 9738 uint64_t arm_sctlr(CPUARMState *env, int el) 9739 { 9740 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 9741 if (el == 0) { 9742 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 9743 el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1); 9744 } 9745 return env->cp15.sctlr_el[el]; 9746 } 9747 9748 /* Return the SCTLR value which controls this address translation regime */ 9749 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 9750 { 9751 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 9752 } 9753 9754 #ifndef CONFIG_USER_ONLY 9755 9756 /* Return true if the specified stage of address translation is disabled */ 9757 static inline bool regime_translation_disabled(CPUARMState *env, 9758 ARMMMUIdx mmu_idx) 9759 { 9760 if (arm_feature(env, ARM_FEATURE_M)) { 9761 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 9762 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 9763 case R_V7M_MPU_CTRL_ENABLE_MASK: 9764 /* Enabled, but not for HardFault and NMI */ 9765 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 9766 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 9767 /* Enabled for all cases */ 9768 return false; 9769 case 0: 9770 default: 9771 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 9772 * we warned about that in armv7m_nvic.c when the guest set it. 9773 */ 9774 return true; 9775 } 9776 } 9777 9778 if (mmu_idx == ARMMMUIdx_Stage2) { 9779 /* HCR.DC means HCR.VM behaves as 1 */ 9780 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 9781 } 9782 9783 if (env->cp15.hcr_el2 & HCR_TGE) { 9784 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 9785 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 9786 return true; 9787 } 9788 } 9789 9790 if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 9791 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 9792 return true; 9793 } 9794 9795 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 9796 } 9797 9798 static inline bool regime_translation_big_endian(CPUARMState *env, 9799 ARMMMUIdx mmu_idx) 9800 { 9801 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 9802 } 9803 9804 /* Return the TTBR associated with this translation regime */ 9805 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 9806 int ttbrn) 9807 { 9808 if (mmu_idx == ARMMMUIdx_Stage2) { 9809 return env->cp15.vttbr_el2; 9810 } 9811 if (ttbrn == 0) { 9812 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 9813 } else { 9814 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 9815 } 9816 } 9817 9818 #endif /* !CONFIG_USER_ONLY */ 9819 9820 /* Return the TCR controlling this translation regime */ 9821 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 9822 { 9823 if (mmu_idx == ARMMMUIdx_Stage2) { 9824 return &env->cp15.vtcr_el2; 9825 } 9826 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 9827 } 9828 9829 /* Convert a possible stage1+2 MMU index into the appropriate 9830 * stage 1 MMU index 9831 */ 9832 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 9833 { 9834 switch (mmu_idx) { 9835 case ARMMMUIdx_E10_0: 9836 return ARMMMUIdx_Stage1_E0; 9837 case ARMMMUIdx_E10_1: 9838 return ARMMMUIdx_Stage1_E1; 9839 case ARMMMUIdx_E10_1_PAN: 9840 return ARMMMUIdx_Stage1_E1_PAN; 9841 default: 9842 return mmu_idx; 9843 } 9844 } 9845 9846 /* Return true if the translation regime is using LPAE format page tables */ 9847 static inline bool regime_using_lpae_format(CPUARMState *env, 9848 ARMMMUIdx mmu_idx) 9849 { 9850 int el = regime_el(env, mmu_idx); 9851 if (el == 2 || arm_el_is_aa64(env, el)) { 9852 return true; 9853 } 9854 if (arm_feature(env, ARM_FEATURE_LPAE) 9855 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 9856 return true; 9857 } 9858 return false; 9859 } 9860 9861 /* Returns true if the stage 1 translation regime is using LPAE format page 9862 * tables. Used when raising alignment exceptions, whose FSR changes depending 9863 * on whether the long or short descriptor format is in use. */ 9864 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 9865 { 9866 mmu_idx = stage_1_mmu_idx(mmu_idx); 9867 9868 return regime_using_lpae_format(env, mmu_idx); 9869 } 9870 9871 #ifndef CONFIG_USER_ONLY 9872 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 9873 { 9874 switch (mmu_idx) { 9875 case ARMMMUIdx_SE10_0: 9876 case ARMMMUIdx_E20_0: 9877 case ARMMMUIdx_Stage1_E0: 9878 case ARMMMUIdx_MUser: 9879 case ARMMMUIdx_MSUser: 9880 case ARMMMUIdx_MUserNegPri: 9881 case ARMMMUIdx_MSUserNegPri: 9882 return true; 9883 default: 9884 return false; 9885 case ARMMMUIdx_E10_0: 9886 case ARMMMUIdx_E10_1: 9887 case ARMMMUIdx_E10_1_PAN: 9888 g_assert_not_reached(); 9889 } 9890 } 9891 9892 /* Translate section/page access permissions to page 9893 * R/W protection flags 9894 * 9895 * @env: CPUARMState 9896 * @mmu_idx: MMU index indicating required translation regime 9897 * @ap: The 3-bit access permissions (AP[2:0]) 9898 * @domain_prot: The 2-bit domain access permissions 9899 */ 9900 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 9901 int ap, int domain_prot) 9902 { 9903 bool is_user = regime_is_user(env, mmu_idx); 9904 9905 if (domain_prot == 3) { 9906 return PAGE_READ | PAGE_WRITE; 9907 } 9908 9909 switch (ap) { 9910 case 0: 9911 if (arm_feature(env, ARM_FEATURE_V7)) { 9912 return 0; 9913 } 9914 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 9915 case SCTLR_S: 9916 return is_user ? 0 : PAGE_READ; 9917 case SCTLR_R: 9918 return PAGE_READ; 9919 default: 9920 return 0; 9921 } 9922 case 1: 9923 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 9924 case 2: 9925 if (is_user) { 9926 return PAGE_READ; 9927 } else { 9928 return PAGE_READ | PAGE_WRITE; 9929 } 9930 case 3: 9931 return PAGE_READ | PAGE_WRITE; 9932 case 4: /* Reserved. */ 9933 return 0; 9934 case 5: 9935 return is_user ? 0 : PAGE_READ; 9936 case 6: 9937 return PAGE_READ; 9938 case 7: 9939 if (!arm_feature(env, ARM_FEATURE_V6K)) { 9940 return 0; 9941 } 9942 return PAGE_READ; 9943 default: 9944 g_assert_not_reached(); 9945 } 9946 } 9947 9948 /* Translate section/page access permissions to page 9949 * R/W protection flags. 9950 * 9951 * @ap: The 2-bit simple AP (AP[2:1]) 9952 * @is_user: TRUE if accessing from PL0 9953 */ 9954 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 9955 { 9956 switch (ap) { 9957 case 0: 9958 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 9959 case 1: 9960 return PAGE_READ | PAGE_WRITE; 9961 case 2: 9962 return is_user ? 0 : PAGE_READ; 9963 case 3: 9964 return PAGE_READ; 9965 default: 9966 g_assert_not_reached(); 9967 } 9968 } 9969 9970 static inline int 9971 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 9972 { 9973 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 9974 } 9975 9976 /* Translate S2 section/page access permissions to protection flags 9977 * 9978 * @env: CPUARMState 9979 * @s2ap: The 2-bit stage2 access permissions (S2AP) 9980 * @xn: XN (execute-never) bit 9981 */ 9982 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 9983 { 9984 int prot = 0; 9985 9986 if (s2ap & 1) { 9987 prot |= PAGE_READ; 9988 } 9989 if (s2ap & 2) { 9990 prot |= PAGE_WRITE; 9991 } 9992 if (!xn) { 9993 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 9994 prot |= PAGE_EXEC; 9995 } 9996 } 9997 return prot; 9998 } 9999 10000 /* Translate section/page access permissions to protection flags 10001 * 10002 * @env: CPUARMState 10003 * @mmu_idx: MMU index indicating required translation regime 10004 * @is_aa64: TRUE if AArch64 10005 * @ap: The 2-bit simple AP (AP[2:1]) 10006 * @ns: NS (non-secure) bit 10007 * @xn: XN (execute-never) bit 10008 * @pxn: PXN (privileged execute-never) bit 10009 */ 10010 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10011 int ap, int ns, int xn, int pxn) 10012 { 10013 bool is_user = regime_is_user(env, mmu_idx); 10014 int prot_rw, user_rw; 10015 bool have_wxn; 10016 int wxn = 0; 10017 10018 assert(mmu_idx != ARMMMUIdx_Stage2); 10019 10020 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10021 if (is_user) { 10022 prot_rw = user_rw; 10023 } else { 10024 if (user_rw && regime_is_pan(env, mmu_idx)) { 10025 return 0; 10026 } 10027 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10028 } 10029 10030 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10031 return prot_rw; 10032 } 10033 10034 /* TODO have_wxn should be replaced with 10035 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10036 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10037 * compatible processors have EL2, which is required for [U]WXN. 10038 */ 10039 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10040 10041 if (have_wxn) { 10042 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10043 } 10044 10045 if (is_aa64) { 10046 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10047 xn = pxn || (user_rw & PAGE_WRITE); 10048 } 10049 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10050 switch (regime_el(env, mmu_idx)) { 10051 case 1: 10052 case 3: 10053 if (is_user) { 10054 xn = xn || !(user_rw & PAGE_READ); 10055 } else { 10056 int uwxn = 0; 10057 if (have_wxn) { 10058 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10059 } 10060 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10061 (uwxn && (user_rw & PAGE_WRITE)); 10062 } 10063 break; 10064 case 2: 10065 break; 10066 } 10067 } else { 10068 xn = wxn = 0; 10069 } 10070 10071 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10072 return prot_rw; 10073 } 10074 return prot_rw | PAGE_EXEC; 10075 } 10076 10077 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10078 uint32_t *table, uint32_t address) 10079 { 10080 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10081 TCR *tcr = regime_tcr(env, mmu_idx); 10082 10083 if (address & tcr->mask) { 10084 if (tcr->raw_tcr & TTBCR_PD1) { 10085 /* Translation table walk disabled for TTBR1 */ 10086 return false; 10087 } 10088 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10089 } else { 10090 if (tcr->raw_tcr & TTBCR_PD0) { 10091 /* Translation table walk disabled for TTBR0 */ 10092 return false; 10093 } 10094 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10095 } 10096 *table |= (address >> 18) & 0x3ffc; 10097 return true; 10098 } 10099 10100 /* Translate a S1 pagetable walk through S2 if needed. */ 10101 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10102 hwaddr addr, MemTxAttrs txattrs, 10103 ARMMMUFaultInfo *fi) 10104 { 10105 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10106 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10107 target_ulong s2size; 10108 hwaddr s2pa; 10109 int s2prot; 10110 int ret; 10111 ARMCacheAttrs cacheattrs = {}; 10112 ARMCacheAttrs *pcacheattrs = NULL; 10113 10114 if (env->cp15.hcr_el2 & HCR_PTW) { 10115 /* 10116 * PTW means we must fault if this S1 walk touches S2 Device 10117 * memory; otherwise we don't care about the attributes and can 10118 * save the S2 translation the effort of computing them. 10119 */ 10120 pcacheattrs = &cacheattrs; 10121 } 10122 10123 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_Stage2, &s2pa, 10124 &txattrs, &s2prot, &s2size, fi, pcacheattrs); 10125 if (ret) { 10126 assert(fi->type != ARMFault_None); 10127 fi->s2addr = addr; 10128 fi->stage2 = true; 10129 fi->s1ptw = true; 10130 return ~0; 10131 } 10132 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 10133 /* Access was to Device memory: generate Permission fault */ 10134 fi->type = ARMFault_Permission; 10135 fi->s2addr = addr; 10136 fi->stage2 = true; 10137 fi->s1ptw = true; 10138 return ~0; 10139 } 10140 addr = s2pa; 10141 } 10142 return addr; 10143 } 10144 10145 /* All loads done in the course of a page table walk go through here. */ 10146 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10147 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10148 { 10149 ARMCPU *cpu = ARM_CPU(cs); 10150 CPUARMState *env = &cpu->env; 10151 MemTxAttrs attrs = {}; 10152 MemTxResult result = MEMTX_OK; 10153 AddressSpace *as; 10154 uint32_t data; 10155 10156 attrs.secure = is_secure; 10157 as = arm_addressspace(cs, attrs); 10158 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10159 if (fi->s1ptw) { 10160 return 0; 10161 } 10162 if (regime_translation_big_endian(env, mmu_idx)) { 10163 data = address_space_ldl_be(as, addr, attrs, &result); 10164 } else { 10165 data = address_space_ldl_le(as, addr, attrs, &result); 10166 } 10167 if (result == MEMTX_OK) { 10168 return data; 10169 } 10170 fi->type = ARMFault_SyncExternalOnWalk; 10171 fi->ea = arm_extabort_type(result); 10172 return 0; 10173 } 10174 10175 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10176 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10177 { 10178 ARMCPU *cpu = ARM_CPU(cs); 10179 CPUARMState *env = &cpu->env; 10180 MemTxAttrs attrs = {}; 10181 MemTxResult result = MEMTX_OK; 10182 AddressSpace *as; 10183 uint64_t data; 10184 10185 attrs.secure = is_secure; 10186 as = arm_addressspace(cs, attrs); 10187 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10188 if (fi->s1ptw) { 10189 return 0; 10190 } 10191 if (regime_translation_big_endian(env, mmu_idx)) { 10192 data = address_space_ldq_be(as, addr, attrs, &result); 10193 } else { 10194 data = address_space_ldq_le(as, addr, attrs, &result); 10195 } 10196 if (result == MEMTX_OK) { 10197 return data; 10198 } 10199 fi->type = ARMFault_SyncExternalOnWalk; 10200 fi->ea = arm_extabort_type(result); 10201 return 0; 10202 } 10203 10204 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10205 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10206 hwaddr *phys_ptr, int *prot, 10207 target_ulong *page_size, 10208 ARMMMUFaultInfo *fi) 10209 { 10210 CPUState *cs = env_cpu(env); 10211 int level = 1; 10212 uint32_t table; 10213 uint32_t desc; 10214 int type; 10215 int ap; 10216 int domain = 0; 10217 int domain_prot; 10218 hwaddr phys_addr; 10219 uint32_t dacr; 10220 10221 /* Pagetable walk. */ 10222 /* Lookup l1 descriptor. */ 10223 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10224 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10225 fi->type = ARMFault_Translation; 10226 goto do_fault; 10227 } 10228 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10229 mmu_idx, fi); 10230 if (fi->type != ARMFault_None) { 10231 goto do_fault; 10232 } 10233 type = (desc & 3); 10234 domain = (desc >> 5) & 0x0f; 10235 if (regime_el(env, mmu_idx) == 1) { 10236 dacr = env->cp15.dacr_ns; 10237 } else { 10238 dacr = env->cp15.dacr_s; 10239 } 10240 domain_prot = (dacr >> (domain * 2)) & 3; 10241 if (type == 0) { 10242 /* Section translation fault. */ 10243 fi->type = ARMFault_Translation; 10244 goto do_fault; 10245 } 10246 if (type != 2) { 10247 level = 2; 10248 } 10249 if (domain_prot == 0 || domain_prot == 2) { 10250 fi->type = ARMFault_Domain; 10251 goto do_fault; 10252 } 10253 if (type == 2) { 10254 /* 1Mb section. */ 10255 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10256 ap = (desc >> 10) & 3; 10257 *page_size = 1024 * 1024; 10258 } else { 10259 /* Lookup l2 entry. */ 10260 if (type == 1) { 10261 /* Coarse pagetable. */ 10262 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10263 } else { 10264 /* Fine pagetable. */ 10265 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10266 } 10267 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10268 mmu_idx, fi); 10269 if (fi->type != ARMFault_None) { 10270 goto do_fault; 10271 } 10272 switch (desc & 3) { 10273 case 0: /* Page translation fault. */ 10274 fi->type = ARMFault_Translation; 10275 goto do_fault; 10276 case 1: /* 64k page. */ 10277 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10278 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10279 *page_size = 0x10000; 10280 break; 10281 case 2: /* 4k page. */ 10282 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10283 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10284 *page_size = 0x1000; 10285 break; 10286 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10287 if (type == 1) { 10288 /* ARMv6/XScale extended small page format */ 10289 if (arm_feature(env, ARM_FEATURE_XSCALE) 10290 || arm_feature(env, ARM_FEATURE_V6)) { 10291 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10292 *page_size = 0x1000; 10293 } else { 10294 /* UNPREDICTABLE in ARMv5; we choose to take a 10295 * page translation fault. 10296 */ 10297 fi->type = ARMFault_Translation; 10298 goto do_fault; 10299 } 10300 } else { 10301 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10302 *page_size = 0x400; 10303 } 10304 ap = (desc >> 4) & 3; 10305 break; 10306 default: 10307 /* Never happens, but compiler isn't smart enough to tell. */ 10308 abort(); 10309 } 10310 } 10311 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10312 *prot |= *prot ? PAGE_EXEC : 0; 10313 if (!(*prot & (1 << access_type))) { 10314 /* Access permission fault. */ 10315 fi->type = ARMFault_Permission; 10316 goto do_fault; 10317 } 10318 *phys_ptr = phys_addr; 10319 return false; 10320 do_fault: 10321 fi->domain = domain; 10322 fi->level = level; 10323 return true; 10324 } 10325 10326 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10327 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10328 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10329 target_ulong *page_size, ARMMMUFaultInfo *fi) 10330 { 10331 CPUState *cs = env_cpu(env); 10332 int level = 1; 10333 uint32_t table; 10334 uint32_t desc; 10335 uint32_t xn; 10336 uint32_t pxn = 0; 10337 int type; 10338 int ap; 10339 int domain = 0; 10340 int domain_prot; 10341 hwaddr phys_addr; 10342 uint32_t dacr; 10343 bool ns; 10344 10345 /* Pagetable walk. */ 10346 /* Lookup l1 descriptor. */ 10347 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10348 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10349 fi->type = ARMFault_Translation; 10350 goto do_fault; 10351 } 10352 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10353 mmu_idx, fi); 10354 if (fi->type != ARMFault_None) { 10355 goto do_fault; 10356 } 10357 type = (desc & 3); 10358 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 10359 /* Section translation fault, or attempt to use the encoding 10360 * which is Reserved on implementations without PXN. 10361 */ 10362 fi->type = ARMFault_Translation; 10363 goto do_fault; 10364 } 10365 if ((type == 1) || !(desc & (1 << 18))) { 10366 /* Page or Section. */ 10367 domain = (desc >> 5) & 0x0f; 10368 } 10369 if (regime_el(env, mmu_idx) == 1) { 10370 dacr = env->cp15.dacr_ns; 10371 } else { 10372 dacr = env->cp15.dacr_s; 10373 } 10374 if (type == 1) { 10375 level = 2; 10376 } 10377 domain_prot = (dacr >> (domain * 2)) & 3; 10378 if (domain_prot == 0 || domain_prot == 2) { 10379 /* Section or Page domain fault */ 10380 fi->type = ARMFault_Domain; 10381 goto do_fault; 10382 } 10383 if (type != 1) { 10384 if (desc & (1 << 18)) { 10385 /* Supersection. */ 10386 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10387 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10388 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10389 *page_size = 0x1000000; 10390 } else { 10391 /* Section. */ 10392 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10393 *page_size = 0x100000; 10394 } 10395 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10396 xn = desc & (1 << 4); 10397 pxn = desc & 1; 10398 ns = extract32(desc, 19, 1); 10399 } else { 10400 if (arm_feature(env, ARM_FEATURE_PXN)) { 10401 pxn = (desc >> 2) & 1; 10402 } 10403 ns = extract32(desc, 3, 1); 10404 /* Lookup l2 entry. */ 10405 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10406 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10407 mmu_idx, fi); 10408 if (fi->type != ARMFault_None) { 10409 goto do_fault; 10410 } 10411 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10412 switch (desc & 3) { 10413 case 0: /* Page translation fault. */ 10414 fi->type = ARMFault_Translation; 10415 goto do_fault; 10416 case 1: /* 64k page. */ 10417 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10418 xn = desc & (1 << 15); 10419 *page_size = 0x10000; 10420 break; 10421 case 2: case 3: /* 4k page. */ 10422 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10423 xn = desc & 1; 10424 *page_size = 0x1000; 10425 break; 10426 default: 10427 /* Never happens, but compiler isn't smart enough to tell. */ 10428 abort(); 10429 } 10430 } 10431 if (domain_prot == 3) { 10432 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10433 } else { 10434 if (pxn && !regime_is_user(env, mmu_idx)) { 10435 xn = 1; 10436 } 10437 if (xn && access_type == MMU_INST_FETCH) { 10438 fi->type = ARMFault_Permission; 10439 goto do_fault; 10440 } 10441 10442 if (arm_feature(env, ARM_FEATURE_V6K) && 10443 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10444 /* The simplified model uses AP[0] as an access control bit. */ 10445 if ((ap & 1) == 0) { 10446 /* Access flag fault. */ 10447 fi->type = ARMFault_AccessFlag; 10448 goto do_fault; 10449 } 10450 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10451 } else { 10452 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10453 } 10454 if (*prot && !xn) { 10455 *prot |= PAGE_EXEC; 10456 } 10457 if (!(*prot & (1 << access_type))) { 10458 /* Access permission fault. */ 10459 fi->type = ARMFault_Permission; 10460 goto do_fault; 10461 } 10462 } 10463 if (ns) { 10464 /* The NS bit will (as required by the architecture) have no effect if 10465 * the CPU doesn't support TZ or this is a non-secure translation 10466 * regime, because the attribute will already be non-secure. 10467 */ 10468 attrs->secure = false; 10469 } 10470 *phys_ptr = phys_addr; 10471 return false; 10472 do_fault: 10473 fi->domain = domain; 10474 fi->level = level; 10475 return true; 10476 } 10477 10478 /* 10479 * check_s2_mmu_setup 10480 * @cpu: ARMCPU 10481 * @is_aa64: True if the translation regime is in AArch64 state 10482 * @startlevel: Suggested starting level 10483 * @inputsize: Bitsize of IPAs 10484 * @stride: Page-table stride (See the ARM ARM) 10485 * 10486 * Returns true if the suggested S2 translation parameters are OK and 10487 * false otherwise. 10488 */ 10489 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10490 int inputsize, int stride) 10491 { 10492 const int grainsize = stride + 3; 10493 int startsizecheck; 10494 10495 /* Negative levels are never allowed. */ 10496 if (level < 0) { 10497 return false; 10498 } 10499 10500 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10501 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10502 return false; 10503 } 10504 10505 if (is_aa64) { 10506 CPUARMState *env = &cpu->env; 10507 unsigned int pamax = arm_pamax(cpu); 10508 10509 switch (stride) { 10510 case 13: /* 64KB Pages. */ 10511 if (level == 0 || (level == 1 && pamax <= 42)) { 10512 return false; 10513 } 10514 break; 10515 case 11: /* 16KB Pages. */ 10516 if (level == 0 || (level == 1 && pamax <= 40)) { 10517 return false; 10518 } 10519 break; 10520 case 9: /* 4KB Pages. */ 10521 if (level == 0 && pamax <= 42) { 10522 return false; 10523 } 10524 break; 10525 default: 10526 g_assert_not_reached(); 10527 } 10528 10529 /* Inputsize checks. */ 10530 if (inputsize > pamax && 10531 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 10532 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10533 return false; 10534 } 10535 } else { 10536 /* AArch32 only supports 4KB pages. Assert on that. */ 10537 assert(stride == 9); 10538 10539 if (level == 0) { 10540 return false; 10541 } 10542 } 10543 return true; 10544 } 10545 10546 /* Translate from the 4-bit stage 2 representation of 10547 * memory attributes (without cache-allocation hints) to 10548 * the 8-bit representation of the stage 1 MAIR registers 10549 * (which includes allocation hints). 10550 * 10551 * ref: shared/translation/attrs/S2AttrDecode() 10552 * .../S2ConvertAttrsHints() 10553 */ 10554 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 10555 { 10556 uint8_t hiattr = extract32(s2attrs, 2, 2); 10557 uint8_t loattr = extract32(s2attrs, 0, 2); 10558 uint8_t hihint = 0, lohint = 0; 10559 10560 if (hiattr != 0) { /* normal memory */ 10561 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 10562 hiattr = loattr = 1; /* non-cacheable */ 10563 } else { 10564 if (hiattr != 1) { /* Write-through or write-back */ 10565 hihint = 3; /* RW allocate */ 10566 } 10567 if (loattr != 1) { /* Write-through or write-back */ 10568 lohint = 3; /* RW allocate */ 10569 } 10570 } 10571 } 10572 10573 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 10574 } 10575 #endif /* !CONFIG_USER_ONLY */ 10576 10577 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10578 { 10579 if (regime_has_2_ranges(mmu_idx)) { 10580 return extract64(tcr, 37, 2); 10581 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10582 return 0; /* VTCR_EL2 */ 10583 } else { 10584 /* Replicate the single TBI bit so we always have 2 bits. */ 10585 return extract32(tcr, 20, 1) * 3; 10586 } 10587 } 10588 10589 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10590 { 10591 if (regime_has_2_ranges(mmu_idx)) { 10592 return extract64(tcr, 51, 2); 10593 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10594 return 0; /* VTCR_EL2 */ 10595 } else { 10596 /* Replicate the single TBID bit so we always have 2 bits. */ 10597 return extract32(tcr, 29, 1) * 3; 10598 } 10599 } 10600 10601 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10602 ARMMMUIdx mmu_idx, bool data) 10603 { 10604 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10605 bool epd, hpd, using16k, using64k; 10606 int select, tsz, tbi; 10607 10608 if (!regime_has_2_ranges(mmu_idx)) { 10609 select = 0; 10610 tsz = extract32(tcr, 0, 6); 10611 using64k = extract32(tcr, 14, 1); 10612 using16k = extract32(tcr, 15, 1); 10613 if (mmu_idx == ARMMMUIdx_Stage2) { 10614 /* VTCR_EL2 */ 10615 hpd = false; 10616 } else { 10617 hpd = extract32(tcr, 24, 1); 10618 } 10619 epd = false; 10620 } else { 10621 /* 10622 * Bit 55 is always between the two regions, and is canonical for 10623 * determining if address tagging is enabled. 10624 */ 10625 select = extract64(va, 55, 1); 10626 if (!select) { 10627 tsz = extract32(tcr, 0, 6); 10628 epd = extract32(tcr, 7, 1); 10629 using64k = extract32(tcr, 14, 1); 10630 using16k = extract32(tcr, 15, 1); 10631 hpd = extract64(tcr, 41, 1); 10632 } else { 10633 int tg = extract32(tcr, 30, 2); 10634 using16k = tg == 1; 10635 using64k = tg == 3; 10636 tsz = extract32(tcr, 16, 6); 10637 epd = extract32(tcr, 23, 1); 10638 hpd = extract64(tcr, 42, 1); 10639 } 10640 } 10641 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 10642 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 10643 10644 /* Present TBI as a composite with TBID. */ 10645 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10646 if (!data) { 10647 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10648 } 10649 tbi = (tbi >> select) & 1; 10650 10651 return (ARMVAParameters) { 10652 .tsz = tsz, 10653 .select = select, 10654 .tbi = tbi, 10655 .epd = epd, 10656 .hpd = hpd, 10657 .using16k = using16k, 10658 .using64k = using64k, 10659 }; 10660 } 10661 10662 #ifndef CONFIG_USER_ONLY 10663 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 10664 ARMMMUIdx mmu_idx) 10665 { 10666 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10667 uint32_t el = regime_el(env, mmu_idx); 10668 int select, tsz; 10669 bool epd, hpd; 10670 10671 if (mmu_idx == ARMMMUIdx_Stage2) { 10672 /* VTCR */ 10673 bool sext = extract32(tcr, 4, 1); 10674 bool sign = extract32(tcr, 3, 1); 10675 10676 /* 10677 * If the sign-extend bit is not the same as t0sz[3], the result 10678 * is unpredictable. Flag this as a guest error. 10679 */ 10680 if (sign != sext) { 10681 qemu_log_mask(LOG_GUEST_ERROR, 10682 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 10683 } 10684 tsz = sextract32(tcr, 0, 4) + 8; 10685 select = 0; 10686 hpd = false; 10687 epd = false; 10688 } else if (el == 2) { 10689 /* HTCR */ 10690 tsz = extract32(tcr, 0, 3); 10691 select = 0; 10692 hpd = extract64(tcr, 24, 1); 10693 epd = false; 10694 } else { 10695 int t0sz = extract32(tcr, 0, 3); 10696 int t1sz = extract32(tcr, 16, 3); 10697 10698 if (t1sz == 0) { 10699 select = va > (0xffffffffu >> t0sz); 10700 } else { 10701 /* Note that we will detect errors later. */ 10702 select = va >= ~(0xffffffffu >> t1sz); 10703 } 10704 if (!select) { 10705 tsz = t0sz; 10706 epd = extract32(tcr, 7, 1); 10707 hpd = extract64(tcr, 41, 1); 10708 } else { 10709 tsz = t1sz; 10710 epd = extract32(tcr, 23, 1); 10711 hpd = extract64(tcr, 42, 1); 10712 } 10713 /* For aarch32, hpd0 is not enabled without t2e as well. */ 10714 hpd &= extract32(tcr, 6, 1); 10715 } 10716 10717 return (ARMVAParameters) { 10718 .tsz = tsz, 10719 .select = select, 10720 .epd = epd, 10721 .hpd = hpd, 10722 }; 10723 } 10724 10725 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 10726 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10727 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 10728 target_ulong *page_size_ptr, 10729 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10730 { 10731 ARMCPU *cpu = env_archcpu(env); 10732 CPUState *cs = CPU(cpu); 10733 /* Read an LPAE long-descriptor translation table. */ 10734 ARMFaultType fault_type = ARMFault_Translation; 10735 uint32_t level; 10736 ARMVAParameters param; 10737 uint64_t ttbr; 10738 hwaddr descaddr, indexmask, indexmask_grainsize; 10739 uint32_t tableattrs; 10740 target_ulong page_size; 10741 uint32_t attrs; 10742 int32_t stride; 10743 int addrsize, inputsize; 10744 TCR *tcr = regime_tcr(env, mmu_idx); 10745 int ap, ns, xn, pxn; 10746 uint32_t el = regime_el(env, mmu_idx); 10747 uint64_t descaddrmask; 10748 bool aarch64 = arm_el_is_aa64(env, el); 10749 bool guarded = false; 10750 10751 /* TODO: 10752 * This code does not handle the different format TCR for VTCR_EL2. 10753 * This code also does not support shareability levels. 10754 * Attribute and permission bit handling should also be checked when adding 10755 * support for those page table walks. 10756 */ 10757 if (aarch64) { 10758 param = aa64_va_parameters(env, address, mmu_idx, 10759 access_type != MMU_INST_FETCH); 10760 level = 0; 10761 addrsize = 64 - 8 * param.tbi; 10762 inputsize = 64 - param.tsz; 10763 } else { 10764 param = aa32_va_parameters(env, address, mmu_idx); 10765 level = 1; 10766 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 10767 inputsize = addrsize - param.tsz; 10768 } 10769 10770 /* 10771 * We determined the region when collecting the parameters, but we 10772 * have not yet validated that the address is valid for the region. 10773 * Extract the top bits and verify that they all match select. 10774 * 10775 * For aa32, if inputsize == addrsize, then we have selected the 10776 * region by exclusion in aa32_va_parameters and there is no more 10777 * validation to do here. 10778 */ 10779 if (inputsize < addrsize) { 10780 target_ulong top_bits = sextract64(address, inputsize, 10781 addrsize - inputsize); 10782 if (-top_bits != param.select) { 10783 /* The gap between the two regions is a Translation fault */ 10784 fault_type = ARMFault_Translation; 10785 goto do_fault; 10786 } 10787 } 10788 10789 if (param.using64k) { 10790 stride = 13; 10791 } else if (param.using16k) { 10792 stride = 11; 10793 } else { 10794 stride = 9; 10795 } 10796 10797 /* Note that QEMU ignores shareability and cacheability attributes, 10798 * so we don't need to do anything with the SH, ORGN, IRGN fields 10799 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 10800 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 10801 * implement any ASID-like capability so we can ignore it (instead 10802 * we will always flush the TLB any time the ASID is changed). 10803 */ 10804 ttbr = regime_ttbr(env, mmu_idx, param.select); 10805 10806 /* Here we should have set up all the parameters for the translation: 10807 * inputsize, ttbr, epd, stride, tbi 10808 */ 10809 10810 if (param.epd) { 10811 /* Translation table walk disabled => Translation fault on TLB miss 10812 * Note: This is always 0 on 64-bit EL2 and EL3. 10813 */ 10814 goto do_fault; 10815 } 10816 10817 if (mmu_idx != ARMMMUIdx_Stage2) { 10818 /* The starting level depends on the virtual address size (which can 10819 * be up to 48 bits) and the translation granule size. It indicates 10820 * the number of strides (stride bits at a time) needed to 10821 * consume the bits of the input address. In the pseudocode this is: 10822 * level = 4 - RoundUp((inputsize - grainsize) / stride) 10823 * where their 'inputsize' is our 'inputsize', 'grainsize' is 10824 * our 'stride + 3' and 'stride' is our 'stride'. 10825 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 10826 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 10827 * = 4 - (inputsize - 4) / stride; 10828 */ 10829 level = 4 - (inputsize - 4) / stride; 10830 } else { 10831 /* For stage 2 translations the starting level is specified by the 10832 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 10833 */ 10834 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 10835 uint32_t startlevel; 10836 bool ok; 10837 10838 if (!aarch64 || stride == 9) { 10839 /* AArch32 or 4KB pages */ 10840 startlevel = 2 - sl0; 10841 } else { 10842 /* 16KB or 64KB pages */ 10843 startlevel = 3 - sl0; 10844 } 10845 10846 /* Check that the starting level is valid. */ 10847 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 10848 inputsize, stride); 10849 if (!ok) { 10850 fault_type = ARMFault_Translation; 10851 goto do_fault; 10852 } 10853 level = startlevel; 10854 } 10855 10856 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 10857 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 10858 10859 /* Now we can extract the actual base address from the TTBR */ 10860 descaddr = extract64(ttbr, 0, 48); 10861 /* 10862 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 10863 * and also to mask out CnP (bit 0) which could validly be non-zero. 10864 */ 10865 descaddr &= ~indexmask; 10866 10867 /* The address field in the descriptor goes up to bit 39 for ARMv7 10868 * but up to bit 47 for ARMv8, but we use the descaddrmask 10869 * up to bit 39 for AArch32, because we don't need other bits in that case 10870 * to construct next descriptor address (anyway they should be all zeroes). 10871 */ 10872 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 10873 ~indexmask_grainsize; 10874 10875 /* Secure accesses start with the page table in secure memory and 10876 * can be downgraded to non-secure at any step. Non-secure accesses 10877 * remain non-secure. We implement this by just ORing in the NSTable/NS 10878 * bits at each step. 10879 */ 10880 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 10881 for (;;) { 10882 uint64_t descriptor; 10883 bool nstable; 10884 10885 descaddr |= (address >> (stride * (4 - level))) & indexmask; 10886 descaddr &= ~7ULL; 10887 nstable = extract32(tableattrs, 4, 1); 10888 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 10889 if (fi->type != ARMFault_None) { 10890 goto do_fault; 10891 } 10892 10893 if (!(descriptor & 1) || 10894 (!(descriptor & 2) && (level == 3))) { 10895 /* Invalid, or the Reserved level 3 encoding */ 10896 goto do_fault; 10897 } 10898 descaddr = descriptor & descaddrmask; 10899 10900 if ((descriptor & 2) && (level < 3)) { 10901 /* Table entry. The top five bits are attributes which may 10902 * propagate down through lower levels of the table (and 10903 * which are all arranged so that 0 means "no effect", so 10904 * we can gather them up by ORing in the bits at each level). 10905 */ 10906 tableattrs |= extract64(descriptor, 59, 5); 10907 level++; 10908 indexmask = indexmask_grainsize; 10909 continue; 10910 } 10911 /* Block entry at level 1 or 2, or page entry at level 3. 10912 * These are basically the same thing, although the number 10913 * of bits we pull in from the vaddr varies. 10914 */ 10915 page_size = (1ULL << ((stride * (4 - level)) + 3)); 10916 descaddr |= (address & (page_size - 1)); 10917 /* Extract attributes from the descriptor */ 10918 attrs = extract64(descriptor, 2, 10) 10919 | (extract64(descriptor, 52, 12) << 10); 10920 10921 if (mmu_idx == ARMMMUIdx_Stage2) { 10922 /* Stage 2 table descriptors do not include any attribute fields */ 10923 break; 10924 } 10925 /* Merge in attributes from table descriptors */ 10926 attrs |= nstable << 3; /* NS */ 10927 guarded = extract64(descriptor, 50, 1); /* GP */ 10928 if (param.hpd) { 10929 /* HPD disables all the table attributes except NSTable. */ 10930 break; 10931 } 10932 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 10933 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 10934 * means "force PL1 access only", which means forcing AP[1] to 0. 10935 */ 10936 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 10937 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 10938 break; 10939 } 10940 /* Here descaddr is the final physical address, and attributes 10941 * are all in attrs. 10942 */ 10943 fault_type = ARMFault_AccessFlag; 10944 if ((attrs & (1 << 8)) == 0) { 10945 /* Access flag */ 10946 goto do_fault; 10947 } 10948 10949 ap = extract32(attrs, 4, 2); 10950 xn = extract32(attrs, 12, 1); 10951 10952 if (mmu_idx == ARMMMUIdx_Stage2) { 10953 ns = true; 10954 *prot = get_S2prot(env, ap, xn); 10955 } else { 10956 ns = extract32(attrs, 3, 1); 10957 pxn = extract32(attrs, 11, 1); 10958 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 10959 } 10960 10961 fault_type = ARMFault_Permission; 10962 if (!(*prot & (1 << access_type))) { 10963 goto do_fault; 10964 } 10965 10966 if (ns) { 10967 /* The NS bit will (as required by the architecture) have no effect if 10968 * the CPU doesn't support TZ or this is a non-secure translation 10969 * regime, because the attribute will already be non-secure. 10970 */ 10971 txattrs->secure = false; 10972 } 10973 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 10974 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 10975 txattrs->target_tlb_bit0 = true; 10976 } 10977 10978 if (cacheattrs != NULL) { 10979 if (mmu_idx == ARMMMUIdx_Stage2) { 10980 cacheattrs->attrs = convert_stage2_attrs(env, 10981 extract32(attrs, 0, 4)); 10982 } else { 10983 /* Index into MAIR registers for cache attributes */ 10984 uint8_t attrindx = extract32(attrs, 0, 3); 10985 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 10986 assert(attrindx <= 7); 10987 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 10988 } 10989 cacheattrs->shareability = extract32(attrs, 6, 2); 10990 } 10991 10992 *phys_ptr = descaddr; 10993 *page_size_ptr = page_size; 10994 return false; 10995 10996 do_fault: 10997 fi->type = fault_type; 10998 fi->level = level; 10999 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11000 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2); 11001 return true; 11002 } 11003 11004 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11005 ARMMMUIdx mmu_idx, 11006 int32_t address, int *prot) 11007 { 11008 if (!arm_feature(env, ARM_FEATURE_M)) { 11009 *prot = PAGE_READ | PAGE_WRITE; 11010 switch (address) { 11011 case 0xF0000000 ... 0xFFFFFFFF: 11012 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11013 /* hivecs execing is ok */ 11014 *prot |= PAGE_EXEC; 11015 } 11016 break; 11017 case 0x00000000 ... 0x7FFFFFFF: 11018 *prot |= PAGE_EXEC; 11019 break; 11020 } 11021 } else { 11022 /* Default system address map for M profile cores. 11023 * The architecture specifies which regions are execute-never; 11024 * at the MPU level no other checks are defined. 11025 */ 11026 switch (address) { 11027 case 0x00000000 ... 0x1fffffff: /* ROM */ 11028 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11029 case 0x60000000 ... 0x7fffffff: /* RAM */ 11030 case 0x80000000 ... 0x9fffffff: /* RAM */ 11031 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11032 break; 11033 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11034 case 0xa0000000 ... 0xbfffffff: /* Device */ 11035 case 0xc0000000 ... 0xdfffffff: /* Device */ 11036 case 0xe0000000 ... 0xffffffff: /* System */ 11037 *prot = PAGE_READ | PAGE_WRITE; 11038 break; 11039 default: 11040 g_assert_not_reached(); 11041 } 11042 } 11043 } 11044 11045 static bool pmsav7_use_background_region(ARMCPU *cpu, 11046 ARMMMUIdx mmu_idx, bool is_user) 11047 { 11048 /* Return true if we should use the default memory map as a 11049 * "background" region if there are no hits against any MPU regions. 11050 */ 11051 CPUARMState *env = &cpu->env; 11052 11053 if (is_user) { 11054 return false; 11055 } 11056 11057 if (arm_feature(env, ARM_FEATURE_M)) { 11058 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11059 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11060 } else { 11061 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11062 } 11063 } 11064 11065 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11066 { 11067 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11068 return arm_feature(env, ARM_FEATURE_M) && 11069 extract32(address, 20, 12) == 0xe00; 11070 } 11071 11072 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11073 { 11074 /* True if address is in the M profile system region 11075 * 0xe0000000 - 0xffffffff 11076 */ 11077 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11078 } 11079 11080 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11081 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11082 hwaddr *phys_ptr, int *prot, 11083 target_ulong *page_size, 11084 ARMMMUFaultInfo *fi) 11085 { 11086 ARMCPU *cpu = env_archcpu(env); 11087 int n; 11088 bool is_user = regime_is_user(env, mmu_idx); 11089 11090 *phys_ptr = address; 11091 *page_size = TARGET_PAGE_SIZE; 11092 *prot = 0; 11093 11094 if (regime_translation_disabled(env, mmu_idx) || 11095 m_is_ppb_region(env, address)) { 11096 /* MPU disabled or M profile PPB access: use default memory map. 11097 * The other case which uses the default memory map in the 11098 * v7M ARM ARM pseudocode is exception vector reads from the vector 11099 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11100 * which always does a direct read using address_space_ldl(), rather 11101 * than going via this function, so we don't need to check that here. 11102 */ 11103 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11104 } else { /* MPU enabled */ 11105 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11106 /* region search */ 11107 uint32_t base = env->pmsav7.drbar[n]; 11108 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11109 uint32_t rmask; 11110 bool srdis = false; 11111 11112 if (!(env->pmsav7.drsr[n] & 0x1)) { 11113 continue; 11114 } 11115 11116 if (!rsize) { 11117 qemu_log_mask(LOG_GUEST_ERROR, 11118 "DRSR[%d]: Rsize field cannot be 0\n", n); 11119 continue; 11120 } 11121 rsize++; 11122 rmask = (1ull << rsize) - 1; 11123 11124 if (base & rmask) { 11125 qemu_log_mask(LOG_GUEST_ERROR, 11126 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11127 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11128 n, base, rmask); 11129 continue; 11130 } 11131 11132 if (address < base || address > base + rmask) { 11133 /* 11134 * Address not in this region. We must check whether the 11135 * region covers addresses in the same page as our address. 11136 * In that case we must not report a size that covers the 11137 * whole page for a subsequent hit against a different MPU 11138 * region or the background region, because it would result in 11139 * incorrect TLB hits for subsequent accesses to addresses that 11140 * are in this MPU region. 11141 */ 11142 if (ranges_overlap(base, rmask, 11143 address & TARGET_PAGE_MASK, 11144 TARGET_PAGE_SIZE)) { 11145 *page_size = 1; 11146 } 11147 continue; 11148 } 11149 11150 /* Region matched */ 11151 11152 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11153 int i, snd; 11154 uint32_t srdis_mask; 11155 11156 rsize -= 3; /* sub region size (power of 2) */ 11157 snd = ((address - base) >> rsize) & 0x7; 11158 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11159 11160 srdis_mask = srdis ? 0x3 : 0x0; 11161 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11162 /* This will check in groups of 2, 4 and then 8, whether 11163 * the subregion bits are consistent. rsize is incremented 11164 * back up to give the region size, considering consistent 11165 * adjacent subregions as one region. Stop testing if rsize 11166 * is already big enough for an entire QEMU page. 11167 */ 11168 int snd_rounded = snd & ~(i - 1); 11169 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11170 snd_rounded + 8, i); 11171 if (srdis_mask ^ srdis_multi) { 11172 break; 11173 } 11174 srdis_mask = (srdis_mask << i) | srdis_mask; 11175 rsize++; 11176 } 11177 } 11178 if (srdis) { 11179 continue; 11180 } 11181 if (rsize < TARGET_PAGE_BITS) { 11182 *page_size = 1 << rsize; 11183 } 11184 break; 11185 } 11186 11187 if (n == -1) { /* no hits */ 11188 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11189 /* background fault */ 11190 fi->type = ARMFault_Background; 11191 return true; 11192 } 11193 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11194 } else { /* a MPU hit! */ 11195 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11196 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11197 11198 if (m_is_system_region(env, address)) { 11199 /* System space is always execute never */ 11200 xn = 1; 11201 } 11202 11203 if (is_user) { /* User mode AP bit decoding */ 11204 switch (ap) { 11205 case 0: 11206 case 1: 11207 case 5: 11208 break; /* no access */ 11209 case 3: 11210 *prot |= PAGE_WRITE; 11211 /* fall through */ 11212 case 2: 11213 case 6: 11214 *prot |= PAGE_READ | PAGE_EXEC; 11215 break; 11216 case 7: 11217 /* for v7M, same as 6; for R profile a reserved value */ 11218 if (arm_feature(env, ARM_FEATURE_M)) { 11219 *prot |= PAGE_READ | PAGE_EXEC; 11220 break; 11221 } 11222 /* fall through */ 11223 default: 11224 qemu_log_mask(LOG_GUEST_ERROR, 11225 "DRACR[%d]: Bad value for AP bits: 0x%" 11226 PRIx32 "\n", n, ap); 11227 } 11228 } else { /* Priv. mode AP bits decoding */ 11229 switch (ap) { 11230 case 0: 11231 break; /* no access */ 11232 case 1: 11233 case 2: 11234 case 3: 11235 *prot |= PAGE_WRITE; 11236 /* fall through */ 11237 case 5: 11238 case 6: 11239 *prot |= PAGE_READ | PAGE_EXEC; 11240 break; 11241 case 7: 11242 /* for v7M, same as 6; for R profile a reserved value */ 11243 if (arm_feature(env, ARM_FEATURE_M)) { 11244 *prot |= PAGE_READ | PAGE_EXEC; 11245 break; 11246 } 11247 /* fall through */ 11248 default: 11249 qemu_log_mask(LOG_GUEST_ERROR, 11250 "DRACR[%d]: Bad value for AP bits: 0x%" 11251 PRIx32 "\n", n, ap); 11252 } 11253 } 11254 11255 /* execute never */ 11256 if (xn) { 11257 *prot &= ~PAGE_EXEC; 11258 } 11259 } 11260 } 11261 11262 fi->type = ARMFault_Permission; 11263 fi->level = 1; 11264 return !(*prot & (1 << access_type)); 11265 } 11266 11267 static bool v8m_is_sau_exempt(CPUARMState *env, 11268 uint32_t address, MMUAccessType access_type) 11269 { 11270 /* The architecture specifies that certain address ranges are 11271 * exempt from v8M SAU/IDAU checks. 11272 */ 11273 return 11274 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11275 (address >= 0xe0000000 && address <= 0xe0002fff) || 11276 (address >= 0xe000e000 && address <= 0xe000efff) || 11277 (address >= 0xe002e000 && address <= 0xe002efff) || 11278 (address >= 0xe0040000 && address <= 0xe0041fff) || 11279 (address >= 0xe00ff000 && address <= 0xe00fffff); 11280 } 11281 11282 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11283 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11284 V8M_SAttributes *sattrs) 11285 { 11286 /* Look up the security attributes for this address. Compare the 11287 * pseudocode SecurityCheck() function. 11288 * We assume the caller has zero-initialized *sattrs. 11289 */ 11290 ARMCPU *cpu = env_archcpu(env); 11291 int r; 11292 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11293 int idau_region = IREGION_NOTVALID; 11294 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11295 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11296 11297 if (cpu->idau) { 11298 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11299 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11300 11301 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11302 &idau_nsc); 11303 } 11304 11305 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11306 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11307 return; 11308 } 11309 11310 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11311 sattrs->ns = !regime_is_secure(env, mmu_idx); 11312 return; 11313 } 11314 11315 if (idau_region != IREGION_NOTVALID) { 11316 sattrs->irvalid = true; 11317 sattrs->iregion = idau_region; 11318 } 11319 11320 switch (env->sau.ctrl & 3) { 11321 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11322 break; 11323 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11324 sattrs->ns = true; 11325 break; 11326 default: /* SAU.ENABLE == 1 */ 11327 for (r = 0; r < cpu->sau_sregion; r++) { 11328 if (env->sau.rlar[r] & 1) { 11329 uint32_t base = env->sau.rbar[r] & ~0x1f; 11330 uint32_t limit = env->sau.rlar[r] | 0x1f; 11331 11332 if (base <= address && limit >= address) { 11333 if (base > addr_page_base || limit < addr_page_limit) { 11334 sattrs->subpage = true; 11335 } 11336 if (sattrs->srvalid) { 11337 /* If we hit in more than one region then we must report 11338 * as Secure, not NS-Callable, with no valid region 11339 * number info. 11340 */ 11341 sattrs->ns = false; 11342 sattrs->nsc = false; 11343 sattrs->sregion = 0; 11344 sattrs->srvalid = false; 11345 break; 11346 } else { 11347 if (env->sau.rlar[r] & 2) { 11348 sattrs->nsc = true; 11349 } else { 11350 sattrs->ns = true; 11351 } 11352 sattrs->srvalid = true; 11353 sattrs->sregion = r; 11354 } 11355 } else { 11356 /* 11357 * Address not in this region. We must check whether the 11358 * region covers addresses in the same page as our address. 11359 * In that case we must not report a size that covers the 11360 * whole page for a subsequent hit against a different MPU 11361 * region or the background region, because it would result 11362 * in incorrect TLB hits for subsequent accesses to 11363 * addresses that are in this MPU region. 11364 */ 11365 if (limit >= base && 11366 ranges_overlap(base, limit - base + 1, 11367 addr_page_base, 11368 TARGET_PAGE_SIZE)) { 11369 sattrs->subpage = true; 11370 } 11371 } 11372 } 11373 } 11374 break; 11375 } 11376 11377 /* 11378 * The IDAU will override the SAU lookup results if it specifies 11379 * higher security than the SAU does. 11380 */ 11381 if (!idau_ns) { 11382 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11383 sattrs->ns = false; 11384 sattrs->nsc = idau_nsc; 11385 } 11386 } 11387 } 11388 11389 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11390 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11391 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11392 int *prot, bool *is_subpage, 11393 ARMMMUFaultInfo *fi, uint32_t *mregion) 11394 { 11395 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11396 * that a full phys-to-virt translation does). 11397 * mregion is (if not NULL) set to the region number which matched, 11398 * or -1 if no region number is returned (MPU off, address did not 11399 * hit a region, address hit in multiple regions). 11400 * We set is_subpage to true if the region hit doesn't cover the 11401 * entire TARGET_PAGE the address is within. 11402 */ 11403 ARMCPU *cpu = env_archcpu(env); 11404 bool is_user = regime_is_user(env, mmu_idx); 11405 uint32_t secure = regime_is_secure(env, mmu_idx); 11406 int n; 11407 int matchregion = -1; 11408 bool hit = false; 11409 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11410 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11411 11412 *is_subpage = false; 11413 *phys_ptr = address; 11414 *prot = 0; 11415 if (mregion) { 11416 *mregion = -1; 11417 } 11418 11419 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11420 * was an exception vector read from the vector table (which is always 11421 * done using the default system address map), because those accesses 11422 * are done in arm_v7m_load_vector(), which always does a direct 11423 * read using address_space_ldl(), rather than going via this function. 11424 */ 11425 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11426 hit = true; 11427 } else if (m_is_ppb_region(env, address)) { 11428 hit = true; 11429 } else { 11430 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11431 hit = true; 11432 } 11433 11434 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11435 /* region search */ 11436 /* Note that the base address is bits [31:5] from the register 11437 * with bits [4:0] all zeroes, but the limit address is bits 11438 * [31:5] from the register with bits [4:0] all ones. 11439 */ 11440 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11441 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 11442 11443 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 11444 /* Region disabled */ 11445 continue; 11446 } 11447 11448 if (address < base || address > limit) { 11449 /* 11450 * Address not in this region. We must check whether the 11451 * region covers addresses in the same page as our address. 11452 * In that case we must not report a size that covers the 11453 * whole page for a subsequent hit against a different MPU 11454 * region or the background region, because it would result in 11455 * incorrect TLB hits for subsequent accesses to addresses that 11456 * are in this MPU region. 11457 */ 11458 if (limit >= base && 11459 ranges_overlap(base, limit - base + 1, 11460 addr_page_base, 11461 TARGET_PAGE_SIZE)) { 11462 *is_subpage = true; 11463 } 11464 continue; 11465 } 11466 11467 if (base > addr_page_base || limit < addr_page_limit) { 11468 *is_subpage = true; 11469 } 11470 11471 if (matchregion != -1) { 11472 /* Multiple regions match -- always a failure (unlike 11473 * PMSAv7 where highest-numbered-region wins) 11474 */ 11475 fi->type = ARMFault_Permission; 11476 fi->level = 1; 11477 return true; 11478 } 11479 11480 matchregion = n; 11481 hit = true; 11482 } 11483 } 11484 11485 if (!hit) { 11486 /* background fault */ 11487 fi->type = ARMFault_Background; 11488 return true; 11489 } 11490 11491 if (matchregion == -1) { 11492 /* hit using the background region */ 11493 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11494 } else { 11495 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 11496 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 11497 11498 if (m_is_system_region(env, address)) { 11499 /* System space is always execute never */ 11500 xn = 1; 11501 } 11502 11503 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 11504 if (*prot && !xn) { 11505 *prot |= PAGE_EXEC; 11506 } 11507 /* We don't need to look the attribute up in the MAIR0/MAIR1 11508 * registers because that only tells us about cacheability. 11509 */ 11510 if (mregion) { 11511 *mregion = matchregion; 11512 } 11513 } 11514 11515 fi->type = ARMFault_Permission; 11516 fi->level = 1; 11517 return !(*prot & (1 << access_type)); 11518 } 11519 11520 11521 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 11522 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11523 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11524 int *prot, target_ulong *page_size, 11525 ARMMMUFaultInfo *fi) 11526 { 11527 uint32_t secure = regime_is_secure(env, mmu_idx); 11528 V8M_SAttributes sattrs = {}; 11529 bool ret; 11530 bool mpu_is_subpage; 11531 11532 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11533 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 11534 if (access_type == MMU_INST_FETCH) { 11535 /* Instruction fetches always use the MMU bank and the 11536 * transaction attribute determined by the fetch address, 11537 * regardless of CPU state. This is painful for QEMU 11538 * to handle, because it would mean we need to encode 11539 * into the mmu_idx not just the (user, negpri) information 11540 * for the current security state but also that for the 11541 * other security state, which would balloon the number 11542 * of mmu_idx values needed alarmingly. 11543 * Fortunately we can avoid this because it's not actually 11544 * possible to arbitrarily execute code from memory with 11545 * the wrong security attribute: it will always generate 11546 * an exception of some kind or another, apart from the 11547 * special case of an NS CPU executing an SG instruction 11548 * in S&NSC memory. So we always just fail the translation 11549 * here and sort things out in the exception handler 11550 * (including possibly emulating an SG instruction). 11551 */ 11552 if (sattrs.ns != !secure) { 11553 if (sattrs.nsc) { 11554 fi->type = ARMFault_QEMU_NSCExec; 11555 } else { 11556 fi->type = ARMFault_QEMU_SFault; 11557 } 11558 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11559 *phys_ptr = address; 11560 *prot = 0; 11561 return true; 11562 } 11563 } else { 11564 /* For data accesses we always use the MMU bank indicated 11565 * by the current CPU state, but the security attributes 11566 * might downgrade a secure access to nonsecure. 11567 */ 11568 if (sattrs.ns) { 11569 txattrs->secure = false; 11570 } else if (!secure) { 11571 /* NS access to S memory must fault. 11572 * Architecturally we should first check whether the 11573 * MPU information for this address indicates that we 11574 * are doing an unaligned access to Device memory, which 11575 * should generate a UsageFault instead. QEMU does not 11576 * currently check for that kind of unaligned access though. 11577 * If we added it we would need to do so as a special case 11578 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 11579 */ 11580 fi->type = ARMFault_QEMU_SFault; 11581 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11582 *phys_ptr = address; 11583 *prot = 0; 11584 return true; 11585 } 11586 } 11587 } 11588 11589 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 11590 txattrs, prot, &mpu_is_subpage, fi, NULL); 11591 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 11592 return ret; 11593 } 11594 11595 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 11596 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11597 hwaddr *phys_ptr, int *prot, 11598 ARMMMUFaultInfo *fi) 11599 { 11600 int n; 11601 uint32_t mask; 11602 uint32_t base; 11603 bool is_user = regime_is_user(env, mmu_idx); 11604 11605 if (regime_translation_disabled(env, mmu_idx)) { 11606 /* MPU disabled. */ 11607 *phys_ptr = address; 11608 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11609 return false; 11610 } 11611 11612 *phys_ptr = address; 11613 for (n = 7; n >= 0; n--) { 11614 base = env->cp15.c6_region[n]; 11615 if ((base & 1) == 0) { 11616 continue; 11617 } 11618 mask = 1 << ((base >> 1) & 0x1f); 11619 /* Keep this shift separate from the above to avoid an 11620 (undefined) << 32. */ 11621 mask = (mask << 1) - 1; 11622 if (((base ^ address) & ~mask) == 0) { 11623 break; 11624 } 11625 } 11626 if (n < 0) { 11627 fi->type = ARMFault_Background; 11628 return true; 11629 } 11630 11631 if (access_type == MMU_INST_FETCH) { 11632 mask = env->cp15.pmsav5_insn_ap; 11633 } else { 11634 mask = env->cp15.pmsav5_data_ap; 11635 } 11636 mask = (mask >> (n * 4)) & 0xf; 11637 switch (mask) { 11638 case 0: 11639 fi->type = ARMFault_Permission; 11640 fi->level = 1; 11641 return true; 11642 case 1: 11643 if (is_user) { 11644 fi->type = ARMFault_Permission; 11645 fi->level = 1; 11646 return true; 11647 } 11648 *prot = PAGE_READ | PAGE_WRITE; 11649 break; 11650 case 2: 11651 *prot = PAGE_READ; 11652 if (!is_user) { 11653 *prot |= PAGE_WRITE; 11654 } 11655 break; 11656 case 3: 11657 *prot = PAGE_READ | PAGE_WRITE; 11658 break; 11659 case 5: 11660 if (is_user) { 11661 fi->type = ARMFault_Permission; 11662 fi->level = 1; 11663 return true; 11664 } 11665 *prot = PAGE_READ; 11666 break; 11667 case 6: 11668 *prot = PAGE_READ; 11669 break; 11670 default: 11671 /* Bad permission. */ 11672 fi->type = ARMFault_Permission; 11673 fi->level = 1; 11674 return true; 11675 } 11676 *prot |= PAGE_EXEC; 11677 return false; 11678 } 11679 11680 /* Combine either inner or outer cacheability attributes for normal 11681 * memory, according to table D4-42 and pseudocode procedure 11682 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 11683 * 11684 * NB: only stage 1 includes allocation hints (RW bits), leading to 11685 * some asymmetry. 11686 */ 11687 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 11688 { 11689 if (s1 == 4 || s2 == 4) { 11690 /* non-cacheable has precedence */ 11691 return 4; 11692 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 11693 /* stage 1 write-through takes precedence */ 11694 return s1; 11695 } else if (extract32(s2, 2, 2) == 2) { 11696 /* stage 2 write-through takes precedence, but the allocation hint 11697 * is still taken from stage 1 11698 */ 11699 return (2 << 2) | extract32(s1, 0, 2); 11700 } else { /* write-back */ 11701 return s1; 11702 } 11703 } 11704 11705 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 11706 * and CombineS1S2Desc() 11707 * 11708 * @s1: Attributes from stage 1 walk 11709 * @s2: Attributes from stage 2 walk 11710 */ 11711 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 11712 { 11713 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 11714 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 11715 ARMCacheAttrs ret; 11716 11717 /* Combine shareability attributes (table D4-43) */ 11718 if (s1.shareability == 2 || s2.shareability == 2) { 11719 /* if either are outer-shareable, the result is outer-shareable */ 11720 ret.shareability = 2; 11721 } else if (s1.shareability == 3 || s2.shareability == 3) { 11722 /* if either are inner-shareable, the result is inner-shareable */ 11723 ret.shareability = 3; 11724 } else { 11725 /* both non-shareable */ 11726 ret.shareability = 0; 11727 } 11728 11729 /* Combine memory type and cacheability attributes */ 11730 if (s1hi == 0 || s2hi == 0) { 11731 /* Device has precedence over normal */ 11732 if (s1lo == 0 || s2lo == 0) { 11733 /* nGnRnE has precedence over anything */ 11734 ret.attrs = 0; 11735 } else if (s1lo == 4 || s2lo == 4) { 11736 /* non-Reordering has precedence over Reordering */ 11737 ret.attrs = 4; /* nGnRE */ 11738 } else if (s1lo == 8 || s2lo == 8) { 11739 /* non-Gathering has precedence over Gathering */ 11740 ret.attrs = 8; /* nGRE */ 11741 } else { 11742 ret.attrs = 0xc; /* GRE */ 11743 } 11744 11745 /* Any location for which the resultant memory type is any 11746 * type of Device memory is always treated as Outer Shareable. 11747 */ 11748 ret.shareability = 2; 11749 } else { /* Normal memory */ 11750 /* Outer/inner cacheability combine independently */ 11751 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 11752 | combine_cacheattr_nibble(s1lo, s2lo); 11753 11754 if (ret.attrs == 0x44) { 11755 /* Any location for which the resultant memory type is Normal 11756 * Inner Non-cacheable, Outer Non-cacheable is always treated 11757 * as Outer Shareable. 11758 */ 11759 ret.shareability = 2; 11760 } 11761 } 11762 11763 return ret; 11764 } 11765 11766 11767 /* get_phys_addr - get the physical address for this virtual address 11768 * 11769 * Find the physical address corresponding to the given virtual address, 11770 * by doing a translation table walk on MMU based systems or using the 11771 * MPU state on MPU based systems. 11772 * 11773 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11774 * prot and page_size may not be filled in, and the populated fsr value provides 11775 * information on why the translation aborted, in the format of a 11776 * DFSR/IFSR fault register, with the following caveats: 11777 * * we honour the short vs long DFSR format differences. 11778 * * the WnR bit is never set (the caller must do this). 11779 * * for PSMAv5 based systems we don't bother to return a full FSR format 11780 * value. 11781 * 11782 * @env: CPUARMState 11783 * @address: virtual address to get physical address for 11784 * @access_type: 0 for read, 1 for write, 2 for execute 11785 * @mmu_idx: MMU index indicating required translation regime 11786 * @phys_ptr: set to the physical address corresponding to the virtual address 11787 * @attrs: set to the memory transaction attributes to use 11788 * @prot: set to the permissions for the page containing phys_ptr 11789 * @page_size: set to the size of the page containing phys_ptr 11790 * @fi: set to fault info if the translation fails 11791 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11792 */ 11793 bool get_phys_addr(CPUARMState *env, target_ulong address, 11794 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11795 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 11796 target_ulong *page_size, 11797 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11798 { 11799 if (mmu_idx == ARMMMUIdx_E10_0 || 11800 mmu_idx == ARMMMUIdx_E10_1 || 11801 mmu_idx == ARMMMUIdx_E10_1_PAN) { 11802 /* Call ourselves recursively to do the stage 1 and then stage 2 11803 * translations. 11804 */ 11805 if (arm_feature(env, ARM_FEATURE_EL2)) { 11806 hwaddr ipa; 11807 int s2_prot; 11808 int ret; 11809 ARMCacheAttrs cacheattrs2 = {}; 11810 11811 ret = get_phys_addr(env, address, access_type, 11812 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 11813 prot, page_size, fi, cacheattrs); 11814 11815 /* If S1 fails or S2 is disabled, return early. */ 11816 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 11817 *phys_ptr = ipa; 11818 return ret; 11819 } 11820 11821 /* S1 is done. Now do S2 translation. */ 11822 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2, 11823 phys_ptr, attrs, &s2_prot, 11824 page_size, fi, 11825 cacheattrs != NULL ? &cacheattrs2 : NULL); 11826 fi->s2addr = ipa; 11827 /* Combine the S1 and S2 perms. */ 11828 *prot &= s2_prot; 11829 11830 /* Combine the S1 and S2 cache attributes, if needed */ 11831 if (!ret && cacheattrs != NULL) { 11832 if (env->cp15.hcr_el2 & HCR_DC) { 11833 /* 11834 * HCR.DC forces the first stage attributes to 11835 * Normal Non-Shareable, 11836 * Inner Write-Back Read-Allocate Write-Allocate, 11837 * Outer Write-Back Read-Allocate Write-Allocate. 11838 */ 11839 cacheattrs->attrs = 0xff; 11840 cacheattrs->shareability = 0; 11841 } 11842 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 11843 } 11844 11845 return ret; 11846 } else { 11847 /* 11848 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 11849 */ 11850 mmu_idx = stage_1_mmu_idx(mmu_idx); 11851 } 11852 } 11853 11854 /* The page table entries may downgrade secure to non-secure, but 11855 * cannot upgrade an non-secure translation regime's attributes 11856 * to secure. 11857 */ 11858 attrs->secure = regime_is_secure(env, mmu_idx); 11859 attrs->user = regime_is_user(env, mmu_idx); 11860 11861 /* Fast Context Switch Extension. This doesn't exist at all in v8. 11862 * In v7 and earlier it affects all stage 1 translations. 11863 */ 11864 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 11865 && !arm_feature(env, ARM_FEATURE_V8)) { 11866 if (regime_el(env, mmu_idx) == 3) { 11867 address += env->cp15.fcseidr_s; 11868 } else { 11869 address += env->cp15.fcseidr_ns; 11870 } 11871 } 11872 11873 if (arm_feature(env, ARM_FEATURE_PMSA)) { 11874 bool ret; 11875 *page_size = TARGET_PAGE_SIZE; 11876 11877 if (arm_feature(env, ARM_FEATURE_V8)) { 11878 /* PMSAv8 */ 11879 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 11880 phys_ptr, attrs, prot, page_size, fi); 11881 } else if (arm_feature(env, ARM_FEATURE_V7)) { 11882 /* PMSAv7 */ 11883 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 11884 phys_ptr, prot, page_size, fi); 11885 } else { 11886 /* Pre-v7 MPU */ 11887 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 11888 phys_ptr, prot, fi); 11889 } 11890 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 11891 " mmu_idx %u -> %s (prot %c%c%c)\n", 11892 access_type == MMU_DATA_LOAD ? "reading" : 11893 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 11894 (uint32_t)address, mmu_idx, 11895 ret ? "Miss" : "Hit", 11896 *prot & PAGE_READ ? 'r' : '-', 11897 *prot & PAGE_WRITE ? 'w' : '-', 11898 *prot & PAGE_EXEC ? 'x' : '-'); 11899 11900 return ret; 11901 } 11902 11903 /* Definitely a real MMU, not an MPU */ 11904 11905 if (regime_translation_disabled(env, mmu_idx)) { 11906 /* 11907 * MMU disabled. S1 addresses within aa64 translation regimes are 11908 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 11909 */ 11910 if (mmu_idx != ARMMMUIdx_Stage2) { 11911 int r_el = regime_el(env, mmu_idx); 11912 if (arm_el_is_aa64(env, r_el)) { 11913 int pamax = arm_pamax(env_archcpu(env)); 11914 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 11915 int addrtop, tbi; 11916 11917 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11918 if (access_type == MMU_INST_FETCH) { 11919 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11920 } 11921 tbi = (tbi >> extract64(address, 55, 1)) & 1; 11922 addrtop = (tbi ? 55 : 63); 11923 11924 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 11925 fi->type = ARMFault_AddressSize; 11926 fi->level = 0; 11927 fi->stage2 = false; 11928 return 1; 11929 } 11930 11931 /* 11932 * When TBI is disabled, we've just validated that all of the 11933 * bits above PAMax are zero, so logically we only need to 11934 * clear the top byte for TBI. But it's clearer to follow 11935 * the pseudocode set of addrdesc.paddress. 11936 */ 11937 address = extract64(address, 0, 52); 11938 } 11939 } 11940 *phys_ptr = address; 11941 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11942 *page_size = TARGET_PAGE_SIZE; 11943 return 0; 11944 } 11945 11946 if (regime_using_lpae_format(env, mmu_idx)) { 11947 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 11948 phys_ptr, attrs, prot, page_size, 11949 fi, cacheattrs); 11950 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 11951 return get_phys_addr_v6(env, address, access_type, mmu_idx, 11952 phys_ptr, attrs, prot, page_size, fi); 11953 } else { 11954 return get_phys_addr_v5(env, address, access_type, mmu_idx, 11955 phys_ptr, prot, page_size, fi); 11956 } 11957 } 11958 11959 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 11960 MemTxAttrs *attrs) 11961 { 11962 ARMCPU *cpu = ARM_CPU(cs); 11963 CPUARMState *env = &cpu->env; 11964 hwaddr phys_addr; 11965 target_ulong page_size; 11966 int prot; 11967 bool ret; 11968 ARMMMUFaultInfo fi = {}; 11969 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 11970 11971 *attrs = (MemTxAttrs) {}; 11972 11973 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 11974 attrs, &prot, &page_size, &fi, NULL); 11975 11976 if (ret) { 11977 return -1; 11978 } 11979 return phys_addr; 11980 } 11981 11982 #endif 11983 11984 /* Note that signed overflow is undefined in C. The following routines are 11985 careful to use unsigned types where modulo arithmetic is required. 11986 Failure to do so _will_ break on newer gcc. */ 11987 11988 /* Signed saturating arithmetic. */ 11989 11990 /* Perform 16-bit signed saturating addition. */ 11991 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11992 { 11993 uint16_t res; 11994 11995 res = a + b; 11996 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11997 if (a & 0x8000) 11998 res = 0x8000; 11999 else 12000 res = 0x7fff; 12001 } 12002 return res; 12003 } 12004 12005 /* Perform 8-bit signed saturating addition. */ 12006 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12007 { 12008 uint8_t res; 12009 12010 res = a + b; 12011 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12012 if (a & 0x80) 12013 res = 0x80; 12014 else 12015 res = 0x7f; 12016 } 12017 return res; 12018 } 12019 12020 /* Perform 16-bit signed saturating subtraction. */ 12021 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12022 { 12023 uint16_t res; 12024 12025 res = a - b; 12026 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12027 if (a & 0x8000) 12028 res = 0x8000; 12029 else 12030 res = 0x7fff; 12031 } 12032 return res; 12033 } 12034 12035 /* Perform 8-bit signed saturating subtraction. */ 12036 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12037 { 12038 uint8_t res; 12039 12040 res = a - b; 12041 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12042 if (a & 0x80) 12043 res = 0x80; 12044 else 12045 res = 0x7f; 12046 } 12047 return res; 12048 } 12049 12050 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12051 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12052 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12053 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12054 #define PFX q 12055 12056 #include "op_addsub.h" 12057 12058 /* Unsigned saturating arithmetic. */ 12059 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12060 { 12061 uint16_t res; 12062 res = a + b; 12063 if (res < a) 12064 res = 0xffff; 12065 return res; 12066 } 12067 12068 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12069 { 12070 if (a > b) 12071 return a - b; 12072 else 12073 return 0; 12074 } 12075 12076 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12077 { 12078 uint8_t res; 12079 res = a + b; 12080 if (res < a) 12081 res = 0xff; 12082 return res; 12083 } 12084 12085 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12086 { 12087 if (a > b) 12088 return a - b; 12089 else 12090 return 0; 12091 } 12092 12093 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12094 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12095 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12096 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12097 #define PFX uq 12098 12099 #include "op_addsub.h" 12100 12101 /* Signed modulo arithmetic. */ 12102 #define SARITH16(a, b, n, op) do { \ 12103 int32_t sum; \ 12104 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12105 RESULT(sum, n, 16); \ 12106 if (sum >= 0) \ 12107 ge |= 3 << (n * 2); \ 12108 } while(0) 12109 12110 #define SARITH8(a, b, n, op) do { \ 12111 int32_t sum; \ 12112 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12113 RESULT(sum, n, 8); \ 12114 if (sum >= 0) \ 12115 ge |= 1 << n; \ 12116 } while(0) 12117 12118 12119 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12120 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12121 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12122 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12123 #define PFX s 12124 #define ARITH_GE 12125 12126 #include "op_addsub.h" 12127 12128 /* Unsigned modulo arithmetic. */ 12129 #define ADD16(a, b, n) do { \ 12130 uint32_t sum; \ 12131 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12132 RESULT(sum, n, 16); \ 12133 if ((sum >> 16) == 1) \ 12134 ge |= 3 << (n * 2); \ 12135 } while(0) 12136 12137 #define ADD8(a, b, n) do { \ 12138 uint32_t sum; \ 12139 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12140 RESULT(sum, n, 8); \ 12141 if ((sum >> 8) == 1) \ 12142 ge |= 1 << n; \ 12143 } while(0) 12144 12145 #define SUB16(a, b, n) do { \ 12146 uint32_t sum; \ 12147 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12148 RESULT(sum, n, 16); \ 12149 if ((sum >> 16) == 0) \ 12150 ge |= 3 << (n * 2); \ 12151 } while(0) 12152 12153 #define SUB8(a, b, n) do { \ 12154 uint32_t sum; \ 12155 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12156 RESULT(sum, n, 8); \ 12157 if ((sum >> 8) == 0) \ 12158 ge |= 1 << n; \ 12159 } while(0) 12160 12161 #define PFX u 12162 #define ARITH_GE 12163 12164 #include "op_addsub.h" 12165 12166 /* Halved signed arithmetic. */ 12167 #define ADD16(a, b, n) \ 12168 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12169 #define SUB16(a, b, n) \ 12170 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12171 #define ADD8(a, b, n) \ 12172 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12173 #define SUB8(a, b, n) \ 12174 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12175 #define PFX sh 12176 12177 #include "op_addsub.h" 12178 12179 /* Halved unsigned arithmetic. */ 12180 #define ADD16(a, b, n) \ 12181 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12182 #define SUB16(a, b, n) \ 12183 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12184 #define ADD8(a, b, n) \ 12185 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12186 #define SUB8(a, b, n) \ 12187 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12188 #define PFX uh 12189 12190 #include "op_addsub.h" 12191 12192 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12193 { 12194 if (a > b) 12195 return a - b; 12196 else 12197 return b - a; 12198 } 12199 12200 /* Unsigned sum of absolute byte differences. */ 12201 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12202 { 12203 uint32_t sum; 12204 sum = do_usad(a, b); 12205 sum += do_usad(a >> 8, b >> 8); 12206 sum += do_usad(a >> 16, b >>16); 12207 sum += do_usad(a >> 24, b >> 24); 12208 return sum; 12209 } 12210 12211 /* For ARMv6 SEL instruction. */ 12212 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12213 { 12214 uint32_t mask; 12215 12216 mask = 0; 12217 if (flags & 1) 12218 mask |= 0xff; 12219 if (flags & 2) 12220 mask |= 0xff00; 12221 if (flags & 4) 12222 mask |= 0xff0000; 12223 if (flags & 8) 12224 mask |= 0xff000000; 12225 return (a & mask) | (b & ~mask); 12226 } 12227 12228 /* CRC helpers. 12229 * The upper bytes of val (above the number specified by 'bytes') must have 12230 * been zeroed out by the caller. 12231 */ 12232 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12233 { 12234 uint8_t buf[4]; 12235 12236 stl_le_p(buf, val); 12237 12238 /* zlib crc32 converts the accumulator and output to one's complement. */ 12239 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12240 } 12241 12242 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12243 { 12244 uint8_t buf[4]; 12245 12246 stl_le_p(buf, val); 12247 12248 /* Linux crc32c converts the output to one's complement. */ 12249 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12250 } 12251 12252 /* Return the exception level to which FP-disabled exceptions should 12253 * be taken, or 0 if FP is enabled. 12254 */ 12255 int fp_exception_el(CPUARMState *env, int cur_el) 12256 { 12257 #ifndef CONFIG_USER_ONLY 12258 /* CPACR and the CPTR registers don't exist before v6, so FP is 12259 * always accessible 12260 */ 12261 if (!arm_feature(env, ARM_FEATURE_V6)) { 12262 return 0; 12263 } 12264 12265 if (arm_feature(env, ARM_FEATURE_M)) { 12266 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12267 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12268 return 1; 12269 } 12270 12271 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12272 if (!extract32(env->v7m.nsacr, 10, 1)) { 12273 /* FP insns cause a NOCP UsageFault taken to Secure */ 12274 return 3; 12275 } 12276 } 12277 12278 return 0; 12279 } 12280 12281 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12282 * 0, 2 : trap EL0 and EL1/PL1 accesses 12283 * 1 : trap only EL0 accesses 12284 * 3 : trap no accesses 12285 * This register is ignored if E2H+TGE are both set. 12286 */ 12287 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12288 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12289 12290 switch (fpen) { 12291 case 0: 12292 case 2: 12293 if (cur_el == 0 || cur_el == 1) { 12294 /* Trap to PL1, which might be EL1 or EL3 */ 12295 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12296 return 3; 12297 } 12298 return 1; 12299 } 12300 if (cur_el == 3 && !is_a64(env)) { 12301 /* Secure PL1 running at EL3 */ 12302 return 3; 12303 } 12304 break; 12305 case 1: 12306 if (cur_el == 0) { 12307 return 1; 12308 } 12309 break; 12310 case 3: 12311 break; 12312 } 12313 } 12314 12315 /* 12316 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12317 * to control non-secure access to the FPU. It doesn't have any 12318 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12319 */ 12320 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12321 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12322 if (!extract32(env->cp15.nsacr, 10, 1)) { 12323 /* FP insns act as UNDEF */ 12324 return cur_el == 2 ? 2 : 1; 12325 } 12326 } 12327 12328 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12329 * check because zero bits in the registers mean "don't trap". 12330 */ 12331 12332 /* CPTR_EL2 : present in v7VE or v8 */ 12333 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12334 && !arm_is_secure_below_el3(env)) { 12335 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12336 return 2; 12337 } 12338 12339 /* CPTR_EL3 : present in v8 */ 12340 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12341 /* Trap all FP ops to EL3 */ 12342 return 3; 12343 } 12344 #endif 12345 return 0; 12346 } 12347 12348 /* Return the exception level we're running at if this is our mmu_idx */ 12349 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12350 { 12351 if (mmu_idx & ARM_MMU_IDX_M) { 12352 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12353 } 12354 12355 switch (mmu_idx) { 12356 case ARMMMUIdx_E10_0: 12357 case ARMMMUIdx_E20_0: 12358 case ARMMMUIdx_SE10_0: 12359 return 0; 12360 case ARMMMUIdx_E10_1: 12361 case ARMMMUIdx_E10_1_PAN: 12362 case ARMMMUIdx_SE10_1: 12363 case ARMMMUIdx_SE10_1_PAN: 12364 return 1; 12365 case ARMMMUIdx_E2: 12366 case ARMMMUIdx_E20_2: 12367 case ARMMMUIdx_E20_2_PAN: 12368 return 2; 12369 case ARMMMUIdx_SE3: 12370 return 3; 12371 default: 12372 g_assert_not_reached(); 12373 } 12374 } 12375 12376 #ifndef CONFIG_TCG 12377 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12378 { 12379 g_assert_not_reached(); 12380 } 12381 #endif 12382 12383 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12384 { 12385 if (arm_feature(env, ARM_FEATURE_M)) { 12386 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12387 } 12388 12389 /* See ARM pseudo-function ELIsInHost. */ 12390 switch (el) { 12391 case 0: 12392 if (arm_is_secure_below_el3(env)) { 12393 return ARMMMUIdx_SE10_0; 12394 } 12395 if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE) 12396 && arm_el_is_aa64(env, 2)) { 12397 return ARMMMUIdx_E20_0; 12398 } 12399 return ARMMMUIdx_E10_0; 12400 case 1: 12401 if (arm_is_secure_below_el3(env)) { 12402 if (env->pstate & PSTATE_PAN) { 12403 return ARMMMUIdx_SE10_1_PAN; 12404 } 12405 return ARMMMUIdx_SE10_1; 12406 } 12407 if (env->pstate & PSTATE_PAN) { 12408 return ARMMMUIdx_E10_1_PAN; 12409 } 12410 return ARMMMUIdx_E10_1; 12411 case 2: 12412 /* TODO: ARMv8.4-SecEL2 */ 12413 /* Note that TGE does not apply at EL2. */ 12414 if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) { 12415 if (env->pstate & PSTATE_PAN) { 12416 return ARMMMUIdx_E20_2_PAN; 12417 } 12418 return ARMMMUIdx_E20_2; 12419 } 12420 return ARMMMUIdx_E2; 12421 case 3: 12422 return ARMMMUIdx_SE3; 12423 default: 12424 g_assert_not_reached(); 12425 } 12426 } 12427 12428 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12429 { 12430 return arm_mmu_idx_el(env, arm_current_el(env)); 12431 } 12432 12433 #ifndef CONFIG_USER_ONLY 12434 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 12435 { 12436 return stage_1_mmu_idx(arm_mmu_idx(env)); 12437 } 12438 #endif 12439 12440 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 12441 ARMMMUIdx mmu_idx, uint32_t flags) 12442 { 12443 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 12444 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 12445 arm_to_core_mmu_idx(mmu_idx)); 12446 12447 if (arm_singlestep_active(env)) { 12448 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 12449 } 12450 return flags; 12451 } 12452 12453 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 12454 ARMMMUIdx mmu_idx, uint32_t flags) 12455 { 12456 bool sctlr_b = arm_sctlr_b(env); 12457 12458 if (sctlr_b) { 12459 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 12460 } 12461 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 12462 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12463 } 12464 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 12465 12466 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12467 } 12468 12469 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 12470 ARMMMUIdx mmu_idx) 12471 { 12472 uint32_t flags = 0; 12473 12474 if (arm_v7m_is_handler_mode(env)) { 12475 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1); 12476 } 12477 12478 /* 12479 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 12480 * is suppressing them because the requested execution priority 12481 * is less than 0. 12482 */ 12483 if (arm_feature(env, ARM_FEATURE_V8) && 12484 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 12485 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 12486 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1); 12487 } 12488 12489 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12490 } 12491 12492 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 12493 { 12494 int flags = 0; 12495 12496 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 12497 arm_debug_target_el(env)); 12498 return flags; 12499 } 12500 12501 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 12502 ARMMMUIdx mmu_idx) 12503 { 12504 uint32_t flags = rebuild_hflags_aprofile(env); 12505 12506 if (arm_el_is_aa64(env, 1)) { 12507 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 12508 } 12509 12510 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && 12511 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12512 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); 12513 } 12514 12515 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12516 } 12517 12518 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 12519 ARMMMUIdx mmu_idx) 12520 { 12521 uint32_t flags = rebuild_hflags_aprofile(env); 12522 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 12523 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 12524 uint64_t sctlr; 12525 int tbii, tbid; 12526 12527 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 12528 12529 /* Get control bits for tagged addresses. */ 12530 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 12531 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 12532 12533 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 12534 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 12535 12536 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 12537 int sve_el = sve_exception_el(env, el); 12538 uint32_t zcr_len; 12539 12540 /* 12541 * If SVE is disabled, but FP is enabled, 12542 * then the effective len is 0. 12543 */ 12544 if (sve_el != 0 && fp_el == 0) { 12545 zcr_len = 0; 12546 } else { 12547 zcr_len = sve_zcr_len_for_el(env, el); 12548 } 12549 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 12550 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 12551 } 12552 12553 sctlr = regime_sctlr(env, stage1); 12554 12555 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 12556 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12557 } 12558 12559 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 12560 /* 12561 * In order to save space in flags, we record only whether 12562 * pauth is "inactive", meaning all insns are implemented as 12563 * a nop, or "active" when some action must be performed. 12564 * The decision of which action to take is left to a helper. 12565 */ 12566 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 12567 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 12568 } 12569 } 12570 12571 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12572 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 12573 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 12574 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 12575 } 12576 } 12577 12578 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 12579 if (!(env->pstate & PSTATE_UAO)) { 12580 switch (mmu_idx) { 12581 case ARMMMUIdx_E10_1: 12582 case ARMMMUIdx_E10_1_PAN: 12583 case ARMMMUIdx_SE10_1: 12584 case ARMMMUIdx_SE10_1_PAN: 12585 /* TODO: ARMv8.3-NV */ 12586 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12587 break; 12588 case ARMMMUIdx_E20_2: 12589 case ARMMMUIdx_E20_2_PAN: 12590 /* TODO: ARMv8.4-SecEL2 */ 12591 /* 12592 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 12593 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 12594 */ 12595 if (env->cp15.hcr_el2 & HCR_TGE) { 12596 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12597 } 12598 break; 12599 default: 12600 break; 12601 } 12602 } 12603 12604 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12605 } 12606 12607 static uint32_t rebuild_hflags_internal(CPUARMState *env) 12608 { 12609 int el = arm_current_el(env); 12610 int fp_el = fp_exception_el(env, el); 12611 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12612 12613 if (is_a64(env)) { 12614 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12615 } else if (arm_feature(env, ARM_FEATURE_M)) { 12616 return rebuild_hflags_m32(env, fp_el, mmu_idx); 12617 } else { 12618 return rebuild_hflags_a32(env, fp_el, mmu_idx); 12619 } 12620 } 12621 12622 void arm_rebuild_hflags(CPUARMState *env) 12623 { 12624 env->hflags = rebuild_hflags_internal(env); 12625 } 12626 12627 /* 12628 * If we have triggered a EL state change we can't rely on the 12629 * translator having passed it to us, we need to recompute. 12630 */ 12631 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 12632 { 12633 int el = arm_current_el(env); 12634 int fp_el = fp_exception_el(env, el); 12635 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12636 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12637 } 12638 12639 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 12640 { 12641 int fp_el = fp_exception_el(env, el); 12642 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12643 12644 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12645 } 12646 12647 /* 12648 * If we have triggered a EL state change we can't rely on the 12649 * translator having passed it to us, we need to recompute. 12650 */ 12651 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 12652 { 12653 int el = arm_current_el(env); 12654 int fp_el = fp_exception_el(env, el); 12655 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12656 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12657 } 12658 12659 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 12660 { 12661 int fp_el = fp_exception_el(env, el); 12662 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12663 12664 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12665 } 12666 12667 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 12668 { 12669 int fp_el = fp_exception_el(env, el); 12670 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12671 12672 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12673 } 12674 12675 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 12676 { 12677 #ifdef CONFIG_DEBUG_TCG 12678 uint32_t env_flags_current = env->hflags; 12679 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); 12680 12681 if (unlikely(env_flags_current != env_flags_rebuilt)) { 12682 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", 12683 env_flags_current, env_flags_rebuilt); 12684 abort(); 12685 } 12686 #endif 12687 } 12688 12689 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12690 target_ulong *cs_base, uint32_t *pflags) 12691 { 12692 uint32_t flags = env->hflags; 12693 uint32_t pstate_for_ss; 12694 12695 *cs_base = 0; 12696 assert_hflags_rebuild_correctly(env); 12697 12698 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 12699 *pc = env->pc; 12700 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12701 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 12702 } 12703 pstate_for_ss = env->pstate; 12704 } else { 12705 *pc = env->regs[15]; 12706 12707 if (arm_feature(env, ARM_FEATURE_M)) { 12708 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12709 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12710 != env->v7m.secure) { 12711 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1); 12712 } 12713 12714 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12715 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12716 (env->v7m.secure && 12717 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12718 /* 12719 * ASPEN is set, but FPCA/SFPA indicate that there is no 12720 * active FP context; we must create a new FP context before 12721 * executing any FP insn. 12722 */ 12723 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1); 12724 } 12725 12726 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12727 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12728 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1); 12729 } 12730 } else { 12731 /* 12732 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12733 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12734 */ 12735 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12736 flags = FIELD_DP32(flags, TBFLAG_A32, 12737 XSCALE_CPAR, env->cp15.c15_cpar); 12738 } else { 12739 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 12740 env->vfp.vec_len); 12741 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 12742 env->vfp.vec_stride); 12743 } 12744 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12745 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 12746 } 12747 } 12748 12749 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb); 12750 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits); 12751 pstate_for_ss = env->uncached_cpsr; 12752 } 12753 12754 /* 12755 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12756 * states defined in the ARM ARM for software singlestep: 12757 * SS_ACTIVE PSTATE.SS State 12758 * 0 x Inactive (the TB flag for SS is always 0) 12759 * 1 0 Active-pending 12760 * 1 1 Active-not-pending 12761 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 12762 */ 12763 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 12764 (pstate_for_ss & PSTATE_SS)) { 12765 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 12766 } 12767 12768 *pflags = flags; 12769 } 12770 12771 #ifdef TARGET_AARCH64 12772 /* 12773 * The manual says that when SVE is enabled and VQ is widened the 12774 * implementation is allowed to zero the previously inaccessible 12775 * portion of the registers. The corollary to that is that when 12776 * SVE is enabled and VQ is narrowed we are also allowed to zero 12777 * the now inaccessible portion of the registers. 12778 * 12779 * The intent of this is that no predicate bit beyond VQ is ever set. 12780 * Which means that some operations on predicate registers themselves 12781 * may operate on full uint64_t or even unrolled across the maximum 12782 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12783 * may well be cheaper than conditionals to restrict the operation 12784 * to the relevant portion of a uint16_t[16]. 12785 */ 12786 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12787 { 12788 int i, j; 12789 uint64_t pmask; 12790 12791 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12792 assert(vq <= env_archcpu(env)->sve_max_vq); 12793 12794 /* Zap the high bits of the zregs. */ 12795 for (i = 0; i < 32; i++) { 12796 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12797 } 12798 12799 /* Zap the high bits of the pregs and ffr. */ 12800 pmask = 0; 12801 if (vq & 3) { 12802 pmask = ~(-1ULL << (16 * (vq & 3))); 12803 } 12804 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12805 for (i = 0; i < 17; ++i) { 12806 env->vfp.pregs[i].p[j] &= pmask; 12807 } 12808 pmask = 0; 12809 } 12810 } 12811 12812 /* 12813 * Notice a change in SVE vector size when changing EL. 12814 */ 12815 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12816 int new_el, bool el0_a64) 12817 { 12818 ARMCPU *cpu = env_archcpu(env); 12819 int old_len, new_len; 12820 bool old_a64, new_a64; 12821 12822 /* Nothing to do if no SVE. */ 12823 if (!cpu_isar_feature(aa64_sve, cpu)) { 12824 return; 12825 } 12826 12827 /* Nothing to do if FP is disabled in either EL. */ 12828 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12829 return; 12830 } 12831 12832 /* 12833 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12834 * at ELx, or not available because the EL is in AArch32 state, then 12835 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12836 * has an effective value of 0". 12837 * 12838 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12839 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12840 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12841 * we already have the correct register contents when encountering the 12842 * vq0->vq0 transition between EL0->EL1. 12843 */ 12844 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12845 old_len = (old_a64 && !sve_exception_el(env, old_el) 12846 ? sve_zcr_len_for_el(env, old_el) : 0); 12847 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12848 new_len = (new_a64 && !sve_exception_el(env, new_el) 12849 ? sve_zcr_len_for_el(env, new_el) : 0); 12850 12851 /* When changing vector length, clear inaccessible state. */ 12852 if (new_len < old_len) { 12853 aarch64_sve_narrow_vq(env, new_len + 1); 12854 } 12855 } 12856 #endif 12857