1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "sysemu/tcg.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "semihosting/common-semi.h" 38 #endif 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 42 43 #ifndef CONFIG_USER_ONLY 44 45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 46 MMUAccessType access_type, ARMMMUIdx mmu_idx, 47 bool s1_is_el0, 48 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 49 target_ulong *page_size_ptr, 50 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 51 __attribute__((nonnull)); 52 #endif 53 54 static void switch_mode(CPUARMState *env, int mode); 55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 56 57 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 58 { 59 ARMCPU *cpu = env_archcpu(env); 60 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 61 62 /* VFP data registers are always little-endian. */ 63 if (reg < nregs) { 64 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); 65 } 66 if (arm_feature(env, ARM_FEATURE_NEON)) { 67 /* Aliases for Q regs. */ 68 nregs += 16; 69 if (reg < nregs) { 70 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 71 return gdb_get_reg128(buf, q[0], q[1]); 72 } 73 } 74 switch (reg - nregs) { 75 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; 76 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; 77 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; 78 } 79 return 0; 80 } 81 82 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 83 { 84 ARMCPU *cpu = env_archcpu(env); 85 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 86 87 if (reg < nregs) { 88 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 89 return 8; 90 } 91 if (arm_feature(env, ARM_FEATURE_NEON)) { 92 nregs += 16; 93 if (reg < nregs) { 94 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 95 q[0] = ldq_le_p(buf); 96 q[1] = ldq_le_p(buf + 8); 97 return 16; 98 } 99 } 100 switch (reg - nregs) { 101 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 102 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 103 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 104 } 105 return 0; 106 } 107 108 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 109 { 110 switch (reg) { 111 case 0 ... 31: 112 { 113 /* 128 bit FP register - quads are in LE order */ 114 uint64_t *q = aa64_vfp_qreg(env, reg); 115 return gdb_get_reg128(buf, q[1], q[0]); 116 } 117 case 32: 118 /* FPSR */ 119 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 120 case 33: 121 /* FPCR */ 122 return gdb_get_reg32(buf,vfp_get_fpcr(env)); 123 default: 124 return 0; 125 } 126 } 127 128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 129 { 130 switch (reg) { 131 case 0 ... 31: 132 /* 128 bit FP register */ 133 { 134 uint64_t *q = aa64_vfp_qreg(env, reg); 135 q[0] = ldq_le_p(buf); 136 q[1] = ldq_le_p(buf + 8); 137 return 16; 138 } 139 case 32: 140 /* FPSR */ 141 vfp_set_fpsr(env, ldl_p(buf)); 142 return 4; 143 case 33: 144 /* FPCR */ 145 vfp_set_fpcr(env, ldl_p(buf)); 146 return 4; 147 default: 148 return 0; 149 } 150 } 151 152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 153 { 154 assert(ri->fieldoffset); 155 if (cpreg_field_is_64bit(ri)) { 156 return CPREG_FIELD64(env, ri); 157 } else { 158 return CPREG_FIELD32(env, ri); 159 } 160 } 161 162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 163 uint64_t value) 164 { 165 assert(ri->fieldoffset); 166 if (cpreg_field_is_64bit(ri)) { 167 CPREG_FIELD64(env, ri) = value; 168 } else { 169 CPREG_FIELD32(env, ri) = value; 170 } 171 } 172 173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 174 { 175 return (char *)env + ri->fieldoffset; 176 } 177 178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 179 { 180 /* Raw read of a coprocessor register (as needed for migration, etc). */ 181 if (ri->type & ARM_CP_CONST) { 182 return ri->resetvalue; 183 } else if (ri->raw_readfn) { 184 return ri->raw_readfn(env, ri); 185 } else if (ri->readfn) { 186 return ri->readfn(env, ri); 187 } else { 188 return raw_read(env, ri); 189 } 190 } 191 192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 193 uint64_t v) 194 { 195 /* Raw write of a coprocessor register (as needed for migration, etc). 196 * Note that constant registers are treated as write-ignored; the 197 * caller should check for success by whether a readback gives the 198 * value written. 199 */ 200 if (ri->type & ARM_CP_CONST) { 201 return; 202 } else if (ri->raw_writefn) { 203 ri->raw_writefn(env, ri, v); 204 } else if (ri->writefn) { 205 ri->writefn(env, ri, v); 206 } else { 207 raw_write(env, ri, v); 208 } 209 } 210 211 /** 212 * arm_get/set_gdb_*: get/set a gdb register 213 * @env: the CPU state 214 * @buf: a buffer to copy to/from 215 * @reg: register number (offset from start of group) 216 * 217 * We return the number of bytes copied 218 */ 219 220 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) 221 { 222 ARMCPU *cpu = env_archcpu(env); 223 const ARMCPRegInfo *ri; 224 uint32_t key; 225 226 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; 227 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 228 if (ri) { 229 if (cpreg_field_is_64bit(ri)) { 230 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 231 } else { 232 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 233 } 234 } 235 return 0; 236 } 237 238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 239 { 240 return 0; 241 } 242 243 #ifdef TARGET_AARCH64 244 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) 245 { 246 ARMCPU *cpu = env_archcpu(env); 247 248 switch (reg) { 249 /* The first 32 registers are the zregs */ 250 case 0 ... 31: 251 { 252 int vq, len = 0; 253 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 254 len += gdb_get_reg128(buf, 255 env->vfp.zregs[reg].d[vq * 2 + 1], 256 env->vfp.zregs[reg].d[vq * 2]); 257 } 258 return len; 259 } 260 case 32: 261 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 262 case 33: 263 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 264 /* then 16 predicates and the ffr */ 265 case 34 ... 50: 266 { 267 int preg = reg - 34; 268 int vq, len = 0; 269 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 270 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 271 } 272 return len; 273 } 274 case 51: 275 { 276 /* 277 * We report in Vector Granules (VG) which is 64bit in a Z reg 278 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 279 */ 280 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; 281 return gdb_get_reg64(buf, vq * 2); 282 } 283 default: 284 /* gdbstub asked for something out our range */ 285 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 286 break; 287 } 288 289 return 0; 290 } 291 292 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) 293 { 294 ARMCPU *cpu = env_archcpu(env); 295 296 /* The first 32 registers are the zregs */ 297 switch (reg) { 298 /* The first 32 registers are the zregs */ 299 case 0 ... 31: 300 { 301 int vq, len = 0; 302 uint64_t *p = (uint64_t *) buf; 303 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 304 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 305 env->vfp.zregs[reg].d[vq * 2] = *p++; 306 len += 16; 307 } 308 return len; 309 } 310 case 32: 311 vfp_set_fpsr(env, *(uint32_t *)buf); 312 return 4; 313 case 33: 314 vfp_set_fpcr(env, *(uint32_t *)buf); 315 return 4; 316 case 34 ... 50: 317 { 318 int preg = reg - 34; 319 int vq, len = 0; 320 uint64_t *p = (uint64_t *) buf; 321 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 322 env->vfp.pregs[preg].p[vq / 4] = *p++; 323 len += 8; 324 } 325 return len; 326 } 327 case 51: 328 /* cannot set vg via gdbstub */ 329 return 0; 330 default: 331 /* gdbstub asked for something out our range */ 332 break; 333 } 334 335 return 0; 336 } 337 #endif /* TARGET_AARCH64 */ 338 339 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 340 { 341 /* Return true if the regdef would cause an assertion if you called 342 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 343 * program bug for it not to have the NO_RAW flag). 344 * NB that returning false here doesn't necessarily mean that calling 345 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 346 * read/write access functions which are safe for raw use" from "has 347 * read/write access functions which have side effects but has forgotten 348 * to provide raw access functions". 349 * The tests here line up with the conditions in read/write_raw_cp_reg() 350 * and assertions in raw_read()/raw_write(). 351 */ 352 if ((ri->type & ARM_CP_CONST) || 353 ri->fieldoffset || 354 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 355 return false; 356 } 357 return true; 358 } 359 360 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 361 { 362 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 363 int i; 364 bool ok = true; 365 366 for (i = 0; i < cpu->cpreg_array_len; i++) { 367 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 368 const ARMCPRegInfo *ri; 369 uint64_t newval; 370 371 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 372 if (!ri) { 373 ok = false; 374 continue; 375 } 376 if (ri->type & ARM_CP_NO_RAW) { 377 continue; 378 } 379 380 newval = read_raw_cp_reg(&cpu->env, ri); 381 if (kvm_sync) { 382 /* 383 * Only sync if the previous list->cpustate sync succeeded. 384 * Rather than tracking the success/failure state for every 385 * item in the list, we just recheck "does the raw write we must 386 * have made in write_list_to_cpustate() read back OK" here. 387 */ 388 uint64_t oldval = cpu->cpreg_values[i]; 389 390 if (oldval == newval) { 391 continue; 392 } 393 394 write_raw_cp_reg(&cpu->env, ri, oldval); 395 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 396 continue; 397 } 398 399 write_raw_cp_reg(&cpu->env, ri, newval); 400 } 401 cpu->cpreg_values[i] = newval; 402 } 403 return ok; 404 } 405 406 bool write_list_to_cpustate(ARMCPU *cpu) 407 { 408 int i; 409 bool ok = true; 410 411 for (i = 0; i < cpu->cpreg_array_len; i++) { 412 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 413 uint64_t v = cpu->cpreg_values[i]; 414 const ARMCPRegInfo *ri; 415 416 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 417 if (!ri) { 418 ok = false; 419 continue; 420 } 421 if (ri->type & ARM_CP_NO_RAW) { 422 continue; 423 } 424 /* Write value and confirm it reads back as written 425 * (to catch read-only registers and partially read-only 426 * registers where the incoming migration value doesn't match) 427 */ 428 write_raw_cp_reg(&cpu->env, ri, v); 429 if (read_raw_cp_reg(&cpu->env, ri) != v) { 430 ok = false; 431 } 432 } 433 return ok; 434 } 435 436 static void add_cpreg_to_list(gpointer key, gpointer opaque) 437 { 438 ARMCPU *cpu = opaque; 439 uint64_t regidx; 440 const ARMCPRegInfo *ri; 441 442 regidx = *(uint32_t *)key; 443 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 444 445 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 446 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 447 /* The value array need not be initialized at this point */ 448 cpu->cpreg_array_len++; 449 } 450 } 451 452 static void count_cpreg(gpointer key, gpointer opaque) 453 { 454 ARMCPU *cpu = opaque; 455 uint64_t regidx; 456 const ARMCPRegInfo *ri; 457 458 regidx = *(uint32_t *)key; 459 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 460 461 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 462 cpu->cpreg_array_len++; 463 } 464 } 465 466 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 467 { 468 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 469 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 470 471 if (aidx > bidx) { 472 return 1; 473 } 474 if (aidx < bidx) { 475 return -1; 476 } 477 return 0; 478 } 479 480 void init_cpreg_list(ARMCPU *cpu) 481 { 482 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 483 * Note that we require cpreg_tuples[] to be sorted by key ID. 484 */ 485 GList *keys; 486 int arraylen; 487 488 keys = g_hash_table_get_keys(cpu->cp_regs); 489 keys = g_list_sort(keys, cpreg_key_compare); 490 491 cpu->cpreg_array_len = 0; 492 493 g_list_foreach(keys, count_cpreg, cpu); 494 495 arraylen = cpu->cpreg_array_len; 496 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 497 cpu->cpreg_values = g_new(uint64_t, arraylen); 498 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 499 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 500 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 501 cpu->cpreg_array_len = 0; 502 503 g_list_foreach(keys, add_cpreg_to_list, cpu); 504 505 assert(cpu->cpreg_array_len == arraylen); 506 507 g_list_free(keys); 508 } 509 510 /* 511 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 512 */ 513 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 514 const ARMCPRegInfo *ri, 515 bool isread) 516 { 517 if (!is_a64(env) && arm_current_el(env) == 3 && 518 arm_is_secure_below_el3(env)) { 519 return CP_ACCESS_TRAP_UNCATEGORIZED; 520 } 521 return CP_ACCESS_OK; 522 } 523 524 /* Some secure-only AArch32 registers trap to EL3 if used from 525 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 526 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 527 * We assume that the .access field is set to PL1_RW. 528 */ 529 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 530 const ARMCPRegInfo *ri, 531 bool isread) 532 { 533 if (arm_current_el(env) == 3) { 534 return CP_ACCESS_OK; 535 } 536 if (arm_is_secure_below_el3(env)) { 537 if (env->cp15.scr_el3 & SCR_EEL2) { 538 return CP_ACCESS_TRAP_EL2; 539 } 540 return CP_ACCESS_TRAP_EL3; 541 } 542 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 543 return CP_ACCESS_TRAP_UNCATEGORIZED; 544 } 545 546 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 547 { 548 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 549 } 550 551 /* Check for traps to "powerdown debug" registers, which are controlled 552 * by MDCR.TDOSA 553 */ 554 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 555 bool isread) 556 { 557 int el = arm_current_el(env); 558 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 559 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 560 (arm_hcr_el2_eff(env) & HCR_TGE); 561 562 if (el < 2 && mdcr_el2_tdosa) { 563 return CP_ACCESS_TRAP_EL2; 564 } 565 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 566 return CP_ACCESS_TRAP_EL3; 567 } 568 return CP_ACCESS_OK; 569 } 570 571 /* Check for traps to "debug ROM" registers, which are controlled 572 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 573 */ 574 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 575 bool isread) 576 { 577 int el = arm_current_el(env); 578 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 579 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 580 (arm_hcr_el2_eff(env) & HCR_TGE); 581 582 if (el < 2 && mdcr_el2_tdra) { 583 return CP_ACCESS_TRAP_EL2; 584 } 585 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 586 return CP_ACCESS_TRAP_EL3; 587 } 588 return CP_ACCESS_OK; 589 } 590 591 /* Check for traps to general debug registers, which are controlled 592 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 593 */ 594 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 595 bool isread) 596 { 597 int el = arm_current_el(env); 598 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 599 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 600 (arm_hcr_el2_eff(env) & HCR_TGE); 601 602 if (el < 2 && mdcr_el2_tda) { 603 return CP_ACCESS_TRAP_EL2; 604 } 605 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 606 return CP_ACCESS_TRAP_EL3; 607 } 608 return CP_ACCESS_OK; 609 } 610 611 /* Check for traps to performance monitor registers, which are controlled 612 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 613 */ 614 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 615 bool isread) 616 { 617 int el = arm_current_el(env); 618 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 619 620 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 621 return CP_ACCESS_TRAP_EL2; 622 } 623 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 624 return CP_ACCESS_TRAP_EL3; 625 } 626 return CP_ACCESS_OK; 627 } 628 629 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 630 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 631 bool isread) 632 { 633 if (arm_current_el(env) == 1) { 634 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 635 if (arm_hcr_el2_eff(env) & trap) { 636 return CP_ACCESS_TRAP_EL2; 637 } 638 } 639 return CP_ACCESS_OK; 640 } 641 642 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 643 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 644 bool isread) 645 { 646 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 647 return CP_ACCESS_TRAP_EL2; 648 } 649 return CP_ACCESS_OK; 650 } 651 652 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 653 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 654 bool isread) 655 { 656 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 657 return CP_ACCESS_TRAP_EL2; 658 } 659 return CP_ACCESS_OK; 660 } 661 662 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 663 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 664 bool isread) 665 { 666 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 667 return CP_ACCESS_TRAP_EL2; 668 } 669 return CP_ACCESS_OK; 670 } 671 672 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 673 { 674 ARMCPU *cpu = env_archcpu(env); 675 676 raw_write(env, ri, value); 677 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 678 } 679 680 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 681 { 682 ARMCPU *cpu = env_archcpu(env); 683 684 if (raw_read(env, ri) != value) { 685 /* Unlike real hardware the qemu TLB uses virtual addresses, 686 * not modified virtual addresses, so this causes a TLB flush. 687 */ 688 tlb_flush(CPU(cpu)); 689 raw_write(env, ri, value); 690 } 691 } 692 693 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 694 uint64_t value) 695 { 696 ARMCPU *cpu = env_archcpu(env); 697 698 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 699 && !extended_addresses_enabled(env)) { 700 /* For VMSA (when not using the LPAE long descriptor page table 701 * format) this register includes the ASID, so do a TLB flush. 702 * For PMSA it is purely a process ID and no action is needed. 703 */ 704 tlb_flush(CPU(cpu)); 705 } 706 raw_write(env, ri, value); 707 } 708 709 /* IS variants of TLB operations must affect all cores */ 710 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 711 uint64_t value) 712 { 713 CPUState *cs = env_cpu(env); 714 715 tlb_flush_all_cpus_synced(cs); 716 } 717 718 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 719 uint64_t value) 720 { 721 CPUState *cs = env_cpu(env); 722 723 tlb_flush_all_cpus_synced(cs); 724 } 725 726 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 727 uint64_t value) 728 { 729 CPUState *cs = env_cpu(env); 730 731 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 732 } 733 734 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 735 uint64_t value) 736 { 737 CPUState *cs = env_cpu(env); 738 739 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 740 } 741 742 /* 743 * Non-IS variants of TLB operations are upgraded to 744 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 745 * force broadcast of these operations. 746 */ 747 static bool tlb_force_broadcast(CPUARMState *env) 748 { 749 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 750 } 751 752 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 753 uint64_t value) 754 { 755 /* Invalidate all (TLBIALL) */ 756 CPUState *cs = env_cpu(env); 757 758 if (tlb_force_broadcast(env)) { 759 tlb_flush_all_cpus_synced(cs); 760 } else { 761 tlb_flush(cs); 762 } 763 } 764 765 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 766 uint64_t value) 767 { 768 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 769 CPUState *cs = env_cpu(env); 770 771 value &= TARGET_PAGE_MASK; 772 if (tlb_force_broadcast(env)) { 773 tlb_flush_page_all_cpus_synced(cs, value); 774 } else { 775 tlb_flush_page(cs, value); 776 } 777 } 778 779 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 780 uint64_t value) 781 { 782 /* Invalidate by ASID (TLBIASID) */ 783 CPUState *cs = env_cpu(env); 784 785 if (tlb_force_broadcast(env)) { 786 tlb_flush_all_cpus_synced(cs); 787 } else { 788 tlb_flush(cs); 789 } 790 } 791 792 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 793 uint64_t value) 794 { 795 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 796 CPUState *cs = env_cpu(env); 797 798 value &= TARGET_PAGE_MASK; 799 if (tlb_force_broadcast(env)) { 800 tlb_flush_page_all_cpus_synced(cs, value); 801 } else { 802 tlb_flush_page(cs, value); 803 } 804 } 805 806 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 807 uint64_t value) 808 { 809 CPUState *cs = env_cpu(env); 810 811 tlb_flush_by_mmuidx(cs, 812 ARMMMUIdxBit_E10_1 | 813 ARMMMUIdxBit_E10_1_PAN | 814 ARMMMUIdxBit_E10_0); 815 } 816 817 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 818 uint64_t value) 819 { 820 CPUState *cs = env_cpu(env); 821 822 tlb_flush_by_mmuidx_all_cpus_synced(cs, 823 ARMMMUIdxBit_E10_1 | 824 ARMMMUIdxBit_E10_1_PAN | 825 ARMMMUIdxBit_E10_0); 826 } 827 828 829 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 830 uint64_t value) 831 { 832 CPUState *cs = env_cpu(env); 833 834 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 835 } 836 837 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 838 uint64_t value) 839 { 840 CPUState *cs = env_cpu(env); 841 842 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 843 } 844 845 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 846 uint64_t value) 847 { 848 CPUState *cs = env_cpu(env); 849 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 850 851 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 852 } 853 854 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 855 uint64_t value) 856 { 857 CPUState *cs = env_cpu(env); 858 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 859 860 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 861 ARMMMUIdxBit_E2); 862 } 863 864 static const ARMCPRegInfo cp_reginfo[] = { 865 /* Define the secure and non-secure FCSE identifier CP registers 866 * separately because there is no secure bank in V8 (no _EL3). This allows 867 * the secure register to be properly reset and migrated. There is also no 868 * v8 EL1 version of the register so the non-secure instance stands alone. 869 */ 870 { .name = "FCSEIDR", 871 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 872 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 873 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 874 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 875 { .name = "FCSEIDR_S", 876 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 877 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 878 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 879 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 880 /* Define the secure and non-secure context identifier CP registers 881 * separately because there is no secure bank in V8 (no _EL3). This allows 882 * the secure register to be properly reset and migrated. In the 883 * non-secure case, the 32-bit register will have reset and migration 884 * disabled during registration as it is handled by the 64-bit instance. 885 */ 886 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 887 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 888 .access = PL1_RW, .accessfn = access_tvm_trvm, 889 .secure = ARM_CP_SECSTATE_NS, 890 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 891 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 892 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 893 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 894 .access = PL1_RW, .accessfn = access_tvm_trvm, 895 .secure = ARM_CP_SECSTATE_S, 896 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 897 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 898 REGINFO_SENTINEL 899 }; 900 901 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 902 /* NB: Some of these registers exist in v8 but with more precise 903 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 904 */ 905 /* MMU Domain access control / MPU write buffer control */ 906 { .name = "DACR", 907 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 908 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 909 .writefn = dacr_write, .raw_writefn = raw_write, 910 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 911 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 912 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 913 * For v6 and v5, these mappings are overly broad. 914 */ 915 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 916 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 917 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 918 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 919 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 920 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 921 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 922 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 923 /* Cache maintenance ops; some of this space may be overridden later. */ 924 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 925 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 926 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 927 REGINFO_SENTINEL 928 }; 929 930 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 931 /* Not all pre-v6 cores implemented this WFI, so this is slightly 932 * over-broad. 933 */ 934 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 935 .access = PL1_W, .type = ARM_CP_WFI }, 936 REGINFO_SENTINEL 937 }; 938 939 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 940 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 941 * is UNPREDICTABLE; we choose to NOP as most implementations do). 942 */ 943 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 944 .access = PL1_W, .type = ARM_CP_WFI }, 945 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 946 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 947 * OMAPCP will override this space. 948 */ 949 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 950 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 951 .resetvalue = 0 }, 952 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 953 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 954 .resetvalue = 0 }, 955 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 956 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 957 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 958 .resetvalue = 0 }, 959 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 960 * implementing it as RAZ means the "debug architecture version" bits 961 * will read as a reserved value, which should cause Linux to not try 962 * to use the debug hardware. 963 */ 964 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 965 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 966 /* MMU TLB control. Note that the wildcarding means we cover not just 967 * the unified TLB ops but also the dside/iside/inner-shareable variants. 968 */ 969 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 970 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 971 .type = ARM_CP_NO_RAW }, 972 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 973 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 974 .type = ARM_CP_NO_RAW }, 975 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 976 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 977 .type = ARM_CP_NO_RAW }, 978 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 979 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 980 .type = ARM_CP_NO_RAW }, 981 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 982 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 983 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 984 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 985 REGINFO_SENTINEL 986 }; 987 988 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 989 uint64_t value) 990 { 991 uint32_t mask = 0; 992 993 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 994 if (!arm_feature(env, ARM_FEATURE_V8)) { 995 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 996 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 997 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 998 */ 999 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 1000 /* VFP coprocessor: cp10 & cp11 [23:20] */ 1001 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 1002 1003 if (!arm_feature(env, ARM_FEATURE_NEON)) { 1004 /* ASEDIS [31] bit is RAO/WI */ 1005 value |= (1 << 31); 1006 } 1007 1008 /* VFPv3 and upwards with NEON implement 32 double precision 1009 * registers (D0-D31). 1010 */ 1011 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 1012 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 1013 value |= (1 << 30); 1014 } 1015 } 1016 value &= mask; 1017 } 1018 1019 /* 1020 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1021 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1022 */ 1023 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1024 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1025 value &= ~(0xf << 20); 1026 value |= env->cp15.cpacr_el1 & (0xf << 20); 1027 } 1028 1029 env->cp15.cpacr_el1 = value; 1030 } 1031 1032 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1033 { 1034 /* 1035 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1036 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1037 */ 1038 uint64_t value = env->cp15.cpacr_el1; 1039 1040 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1041 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1042 value &= ~(0xf << 20); 1043 } 1044 return value; 1045 } 1046 1047 1048 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1049 { 1050 /* Call cpacr_write() so that we reset with the correct RAO bits set 1051 * for our CPU features. 1052 */ 1053 cpacr_write(env, ri, 0); 1054 } 1055 1056 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1057 bool isread) 1058 { 1059 if (arm_feature(env, ARM_FEATURE_V8)) { 1060 /* Check if CPACR accesses are to be trapped to EL2 */ 1061 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 1062 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 1063 return CP_ACCESS_TRAP_EL2; 1064 /* Check if CPACR accesses are to be trapped to EL3 */ 1065 } else if (arm_current_el(env) < 3 && 1066 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1067 return CP_ACCESS_TRAP_EL3; 1068 } 1069 } 1070 1071 return CP_ACCESS_OK; 1072 } 1073 1074 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1075 bool isread) 1076 { 1077 /* Check if CPTR accesses are set to trap to EL3 */ 1078 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1079 return CP_ACCESS_TRAP_EL3; 1080 } 1081 1082 return CP_ACCESS_OK; 1083 } 1084 1085 static const ARMCPRegInfo v6_cp_reginfo[] = { 1086 /* prefetch by MVA in v6, NOP in v7 */ 1087 { .name = "MVA_prefetch", 1088 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1089 .access = PL1_W, .type = ARM_CP_NOP }, 1090 /* We need to break the TB after ISB to execute self-modifying code 1091 * correctly and also to take any pending interrupts immediately. 1092 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1093 */ 1094 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1095 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1096 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1097 .access = PL0_W, .type = ARM_CP_NOP }, 1098 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1099 .access = PL0_W, .type = ARM_CP_NOP }, 1100 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1101 .access = PL1_RW, .accessfn = access_tvm_trvm, 1102 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1103 offsetof(CPUARMState, cp15.ifar_ns) }, 1104 .resetvalue = 0, }, 1105 /* Watchpoint Fault Address Register : should actually only be present 1106 * for 1136, 1176, 11MPCore. 1107 */ 1108 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1109 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1110 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1111 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1112 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1113 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1114 REGINFO_SENTINEL 1115 }; 1116 1117 /* Definitions for the PMU registers */ 1118 #define PMCRN_MASK 0xf800 1119 #define PMCRN_SHIFT 11 1120 #define PMCRLC 0x40 1121 #define PMCRDP 0x20 1122 #define PMCRX 0x10 1123 #define PMCRD 0x8 1124 #define PMCRC 0x4 1125 #define PMCRP 0x2 1126 #define PMCRE 0x1 1127 /* 1128 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1129 * which can be written as 1 to trigger behaviour but which stay RAZ). 1130 */ 1131 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1132 1133 #define PMXEVTYPER_P 0x80000000 1134 #define PMXEVTYPER_U 0x40000000 1135 #define PMXEVTYPER_NSK 0x20000000 1136 #define PMXEVTYPER_NSU 0x10000000 1137 #define PMXEVTYPER_NSH 0x08000000 1138 #define PMXEVTYPER_M 0x04000000 1139 #define PMXEVTYPER_MT 0x02000000 1140 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1141 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1142 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1143 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1144 PMXEVTYPER_EVTCOUNT) 1145 1146 #define PMCCFILTR 0xf8000000 1147 #define PMCCFILTR_M PMXEVTYPER_M 1148 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1149 1150 static inline uint32_t pmu_num_counters(CPUARMState *env) 1151 { 1152 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1153 } 1154 1155 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1156 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1157 { 1158 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1159 } 1160 1161 typedef struct pm_event { 1162 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1163 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1164 bool (*supported)(CPUARMState *); 1165 /* 1166 * Retrieve the current count of the underlying event. The programmed 1167 * counters hold a difference from the return value from this function 1168 */ 1169 uint64_t (*get_count)(CPUARMState *); 1170 /* 1171 * Return how many nanoseconds it will take (at a minimum) for count events 1172 * to occur. A negative value indicates the counter will never overflow, or 1173 * that the counter has otherwise arranged for the overflow bit to be set 1174 * and the PMU interrupt to be raised on overflow. 1175 */ 1176 int64_t (*ns_per_count)(uint64_t); 1177 } pm_event; 1178 1179 static bool event_always_supported(CPUARMState *env) 1180 { 1181 return true; 1182 } 1183 1184 static uint64_t swinc_get_count(CPUARMState *env) 1185 { 1186 /* 1187 * SW_INCR events are written directly to the pmevcntr's by writes to 1188 * PMSWINC, so there is no underlying count maintained by the PMU itself 1189 */ 1190 return 0; 1191 } 1192 1193 static int64_t swinc_ns_per(uint64_t ignored) 1194 { 1195 return -1; 1196 } 1197 1198 /* 1199 * Return the underlying cycle count for the PMU cycle counters. If we're in 1200 * usermode, simply return 0. 1201 */ 1202 static uint64_t cycles_get_count(CPUARMState *env) 1203 { 1204 #ifndef CONFIG_USER_ONLY 1205 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1206 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1207 #else 1208 return cpu_get_host_ticks(); 1209 #endif 1210 } 1211 1212 #ifndef CONFIG_USER_ONLY 1213 static int64_t cycles_ns_per(uint64_t cycles) 1214 { 1215 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1216 } 1217 1218 static bool instructions_supported(CPUARMState *env) 1219 { 1220 return icount_enabled() == 1; /* Precise instruction counting */ 1221 } 1222 1223 static uint64_t instructions_get_count(CPUARMState *env) 1224 { 1225 return (uint64_t)icount_get_raw(); 1226 } 1227 1228 static int64_t instructions_ns_per(uint64_t icount) 1229 { 1230 return icount_to_ns((int64_t)icount); 1231 } 1232 #endif 1233 1234 static bool pmu_8_1_events_supported(CPUARMState *env) 1235 { 1236 /* For events which are supported in any v8.1 PMU */ 1237 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1238 } 1239 1240 static bool pmu_8_4_events_supported(CPUARMState *env) 1241 { 1242 /* For events which are supported in any v8.1 PMU */ 1243 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1244 } 1245 1246 static uint64_t zero_event_get_count(CPUARMState *env) 1247 { 1248 /* For events which on QEMU never fire, so their count is always zero */ 1249 return 0; 1250 } 1251 1252 static int64_t zero_event_ns_per(uint64_t cycles) 1253 { 1254 /* An event which never fires can never overflow */ 1255 return -1; 1256 } 1257 1258 static const pm_event pm_events[] = { 1259 { .number = 0x000, /* SW_INCR */ 1260 .supported = event_always_supported, 1261 .get_count = swinc_get_count, 1262 .ns_per_count = swinc_ns_per, 1263 }, 1264 #ifndef CONFIG_USER_ONLY 1265 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1266 .supported = instructions_supported, 1267 .get_count = instructions_get_count, 1268 .ns_per_count = instructions_ns_per, 1269 }, 1270 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1271 .supported = event_always_supported, 1272 .get_count = cycles_get_count, 1273 .ns_per_count = cycles_ns_per, 1274 }, 1275 #endif 1276 { .number = 0x023, /* STALL_FRONTEND */ 1277 .supported = pmu_8_1_events_supported, 1278 .get_count = zero_event_get_count, 1279 .ns_per_count = zero_event_ns_per, 1280 }, 1281 { .number = 0x024, /* STALL_BACKEND */ 1282 .supported = pmu_8_1_events_supported, 1283 .get_count = zero_event_get_count, 1284 .ns_per_count = zero_event_ns_per, 1285 }, 1286 { .number = 0x03c, /* STALL */ 1287 .supported = pmu_8_4_events_supported, 1288 .get_count = zero_event_get_count, 1289 .ns_per_count = zero_event_ns_per, 1290 }, 1291 }; 1292 1293 /* 1294 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1295 * events (i.e. the statistical profiling extension), this implementation 1296 * should first be updated to something sparse instead of the current 1297 * supported_event_map[] array. 1298 */ 1299 #define MAX_EVENT_ID 0x3c 1300 #define UNSUPPORTED_EVENT UINT16_MAX 1301 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1302 1303 /* 1304 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1305 * of ARM event numbers to indices in our pm_events array. 1306 * 1307 * Note: Events in the 0x40XX range are not currently supported. 1308 */ 1309 void pmu_init(ARMCPU *cpu) 1310 { 1311 unsigned int i; 1312 1313 /* 1314 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1315 * events to them 1316 */ 1317 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1318 supported_event_map[i] = UNSUPPORTED_EVENT; 1319 } 1320 cpu->pmceid0 = 0; 1321 cpu->pmceid1 = 0; 1322 1323 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1324 const pm_event *cnt = &pm_events[i]; 1325 assert(cnt->number <= MAX_EVENT_ID); 1326 /* We do not currently support events in the 0x40xx range */ 1327 assert(cnt->number <= 0x3f); 1328 1329 if (cnt->supported(&cpu->env)) { 1330 supported_event_map[cnt->number] = i; 1331 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1332 if (cnt->number & 0x20) { 1333 cpu->pmceid1 |= event_mask; 1334 } else { 1335 cpu->pmceid0 |= event_mask; 1336 } 1337 } 1338 } 1339 } 1340 1341 /* 1342 * Check at runtime whether a PMU event is supported for the current machine 1343 */ 1344 static bool event_supported(uint16_t number) 1345 { 1346 if (number > MAX_EVENT_ID) { 1347 return false; 1348 } 1349 return supported_event_map[number] != UNSUPPORTED_EVENT; 1350 } 1351 1352 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1353 bool isread) 1354 { 1355 /* Performance monitor registers user accessibility is controlled 1356 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1357 * trapping to EL2 or EL3 for other accesses. 1358 */ 1359 int el = arm_current_el(env); 1360 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1361 1362 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1363 return CP_ACCESS_TRAP; 1364 } 1365 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1366 return CP_ACCESS_TRAP_EL2; 1367 } 1368 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1369 return CP_ACCESS_TRAP_EL3; 1370 } 1371 1372 return CP_ACCESS_OK; 1373 } 1374 1375 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1376 const ARMCPRegInfo *ri, 1377 bool isread) 1378 { 1379 /* ER: event counter read trap control */ 1380 if (arm_feature(env, ARM_FEATURE_V8) 1381 && arm_current_el(env) == 0 1382 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1383 && isread) { 1384 return CP_ACCESS_OK; 1385 } 1386 1387 return pmreg_access(env, ri, isread); 1388 } 1389 1390 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1391 const ARMCPRegInfo *ri, 1392 bool isread) 1393 { 1394 /* SW: software increment write trap control */ 1395 if (arm_feature(env, ARM_FEATURE_V8) 1396 && arm_current_el(env) == 0 1397 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1398 && !isread) { 1399 return CP_ACCESS_OK; 1400 } 1401 1402 return pmreg_access(env, ri, isread); 1403 } 1404 1405 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1406 const ARMCPRegInfo *ri, 1407 bool isread) 1408 { 1409 /* ER: event counter read trap control */ 1410 if (arm_feature(env, ARM_FEATURE_V8) 1411 && arm_current_el(env) == 0 1412 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1413 return CP_ACCESS_OK; 1414 } 1415 1416 return pmreg_access(env, ri, isread); 1417 } 1418 1419 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1420 const ARMCPRegInfo *ri, 1421 bool isread) 1422 { 1423 /* CR: cycle counter read trap control */ 1424 if (arm_feature(env, ARM_FEATURE_V8) 1425 && arm_current_el(env) == 0 1426 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1427 && isread) { 1428 return CP_ACCESS_OK; 1429 } 1430 1431 return pmreg_access(env, ri, isread); 1432 } 1433 1434 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1435 * the current EL, security state, and register configuration. 1436 */ 1437 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1438 { 1439 uint64_t filter; 1440 bool e, p, u, nsk, nsu, nsh, m; 1441 bool enabled, prohibited, filtered; 1442 bool secure = arm_is_secure(env); 1443 int el = arm_current_el(env); 1444 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1445 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1446 1447 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1448 return false; 1449 } 1450 1451 if (!arm_feature(env, ARM_FEATURE_EL2) || 1452 (counter < hpmn || counter == 31)) { 1453 e = env->cp15.c9_pmcr & PMCRE; 1454 } else { 1455 e = mdcr_el2 & MDCR_HPME; 1456 } 1457 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1458 1459 if (!secure) { 1460 if (el == 2 && (counter < hpmn || counter == 31)) { 1461 prohibited = mdcr_el2 & MDCR_HPMD; 1462 } else { 1463 prohibited = false; 1464 } 1465 } else { 1466 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1467 !(env->cp15.mdcr_el3 & MDCR_SPME); 1468 } 1469 1470 if (prohibited && counter == 31) { 1471 prohibited = env->cp15.c9_pmcr & PMCRDP; 1472 } 1473 1474 if (counter == 31) { 1475 filter = env->cp15.pmccfiltr_el0; 1476 } else { 1477 filter = env->cp15.c14_pmevtyper[counter]; 1478 } 1479 1480 p = filter & PMXEVTYPER_P; 1481 u = filter & PMXEVTYPER_U; 1482 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1483 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1484 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1485 m = arm_el_is_aa64(env, 1) && 1486 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1487 1488 if (el == 0) { 1489 filtered = secure ? u : u != nsu; 1490 } else if (el == 1) { 1491 filtered = secure ? p : p != nsk; 1492 } else if (el == 2) { 1493 filtered = !nsh; 1494 } else { /* EL3 */ 1495 filtered = m != p; 1496 } 1497 1498 if (counter != 31) { 1499 /* 1500 * If not checking PMCCNTR, ensure the counter is setup to an event we 1501 * support 1502 */ 1503 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1504 if (!event_supported(event)) { 1505 return false; 1506 } 1507 } 1508 1509 return enabled && !prohibited && !filtered; 1510 } 1511 1512 static void pmu_update_irq(CPUARMState *env) 1513 { 1514 ARMCPU *cpu = env_archcpu(env); 1515 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1516 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1517 } 1518 1519 /* 1520 * Ensure c15_ccnt is the guest-visible count so that operations such as 1521 * enabling/disabling the counter or filtering, modifying the count itself, 1522 * etc. can be done logically. This is essentially a no-op if the counter is 1523 * not enabled at the time of the call. 1524 */ 1525 static void pmccntr_op_start(CPUARMState *env) 1526 { 1527 uint64_t cycles = cycles_get_count(env); 1528 1529 if (pmu_counter_enabled(env, 31)) { 1530 uint64_t eff_cycles = cycles; 1531 if (env->cp15.c9_pmcr & PMCRD) { 1532 /* Increment once every 64 processor clock cycles */ 1533 eff_cycles /= 64; 1534 } 1535 1536 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1537 1538 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1539 1ull << 63 : 1ull << 31; 1540 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1541 env->cp15.c9_pmovsr |= (1 << 31); 1542 pmu_update_irq(env); 1543 } 1544 1545 env->cp15.c15_ccnt = new_pmccntr; 1546 } 1547 env->cp15.c15_ccnt_delta = cycles; 1548 } 1549 1550 /* 1551 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1552 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1553 * pmccntr_op_start. 1554 */ 1555 static void pmccntr_op_finish(CPUARMState *env) 1556 { 1557 if (pmu_counter_enabled(env, 31)) { 1558 #ifndef CONFIG_USER_ONLY 1559 /* Calculate when the counter will next overflow */ 1560 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1561 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1562 remaining_cycles = (uint32_t)remaining_cycles; 1563 } 1564 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1565 1566 if (overflow_in > 0) { 1567 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1568 overflow_in; 1569 ARMCPU *cpu = env_archcpu(env); 1570 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1571 } 1572 #endif 1573 1574 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1575 if (env->cp15.c9_pmcr & PMCRD) { 1576 /* Increment once every 64 processor clock cycles */ 1577 prev_cycles /= 64; 1578 } 1579 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1580 } 1581 } 1582 1583 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1584 { 1585 1586 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1587 uint64_t count = 0; 1588 if (event_supported(event)) { 1589 uint16_t event_idx = supported_event_map[event]; 1590 count = pm_events[event_idx].get_count(env); 1591 } 1592 1593 if (pmu_counter_enabled(env, counter)) { 1594 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1595 1596 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1597 env->cp15.c9_pmovsr |= (1 << counter); 1598 pmu_update_irq(env); 1599 } 1600 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1601 } 1602 env->cp15.c14_pmevcntr_delta[counter] = count; 1603 } 1604 1605 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1606 { 1607 if (pmu_counter_enabled(env, counter)) { 1608 #ifndef CONFIG_USER_ONLY 1609 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1610 uint16_t event_idx = supported_event_map[event]; 1611 uint64_t delta = UINT32_MAX - 1612 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1613 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1614 1615 if (overflow_in > 0) { 1616 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1617 overflow_in; 1618 ARMCPU *cpu = env_archcpu(env); 1619 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1620 } 1621 #endif 1622 1623 env->cp15.c14_pmevcntr_delta[counter] -= 1624 env->cp15.c14_pmevcntr[counter]; 1625 } 1626 } 1627 1628 void pmu_op_start(CPUARMState *env) 1629 { 1630 unsigned int i; 1631 pmccntr_op_start(env); 1632 for (i = 0; i < pmu_num_counters(env); i++) { 1633 pmevcntr_op_start(env, i); 1634 } 1635 } 1636 1637 void pmu_op_finish(CPUARMState *env) 1638 { 1639 unsigned int i; 1640 pmccntr_op_finish(env); 1641 for (i = 0; i < pmu_num_counters(env); i++) { 1642 pmevcntr_op_finish(env, i); 1643 } 1644 } 1645 1646 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1647 { 1648 pmu_op_start(&cpu->env); 1649 } 1650 1651 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1652 { 1653 pmu_op_finish(&cpu->env); 1654 } 1655 1656 void arm_pmu_timer_cb(void *opaque) 1657 { 1658 ARMCPU *cpu = opaque; 1659 1660 /* 1661 * Update all the counter values based on the current underlying counts, 1662 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1663 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1664 * counter may expire. 1665 */ 1666 pmu_op_start(&cpu->env); 1667 pmu_op_finish(&cpu->env); 1668 } 1669 1670 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1671 uint64_t value) 1672 { 1673 pmu_op_start(env); 1674 1675 if (value & PMCRC) { 1676 /* The counter has been reset */ 1677 env->cp15.c15_ccnt = 0; 1678 } 1679 1680 if (value & PMCRP) { 1681 unsigned int i; 1682 for (i = 0; i < pmu_num_counters(env); i++) { 1683 env->cp15.c14_pmevcntr[i] = 0; 1684 } 1685 } 1686 1687 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1688 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1689 1690 pmu_op_finish(env); 1691 } 1692 1693 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1694 uint64_t value) 1695 { 1696 unsigned int i; 1697 for (i = 0; i < pmu_num_counters(env); i++) { 1698 /* Increment a counter's count iff: */ 1699 if ((value & (1 << i)) && /* counter's bit is set */ 1700 /* counter is enabled and not filtered */ 1701 pmu_counter_enabled(env, i) && 1702 /* counter is SW_INCR */ 1703 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1704 pmevcntr_op_start(env, i); 1705 1706 /* 1707 * Detect if this write causes an overflow since we can't predict 1708 * PMSWINC overflows like we can for other events 1709 */ 1710 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1711 1712 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1713 env->cp15.c9_pmovsr |= (1 << i); 1714 pmu_update_irq(env); 1715 } 1716 1717 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1718 1719 pmevcntr_op_finish(env, i); 1720 } 1721 } 1722 } 1723 1724 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1725 { 1726 uint64_t ret; 1727 pmccntr_op_start(env); 1728 ret = env->cp15.c15_ccnt; 1729 pmccntr_op_finish(env); 1730 return ret; 1731 } 1732 1733 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1737 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1738 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1739 * accessed. 1740 */ 1741 env->cp15.c9_pmselr = value & 0x1f; 1742 } 1743 1744 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1745 uint64_t value) 1746 { 1747 pmccntr_op_start(env); 1748 env->cp15.c15_ccnt = value; 1749 pmccntr_op_finish(env); 1750 } 1751 1752 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1753 uint64_t value) 1754 { 1755 uint64_t cur_val = pmccntr_read(env, NULL); 1756 1757 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1758 } 1759 1760 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1761 uint64_t value) 1762 { 1763 pmccntr_op_start(env); 1764 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1765 pmccntr_op_finish(env); 1766 } 1767 1768 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1769 uint64_t value) 1770 { 1771 pmccntr_op_start(env); 1772 /* M is not accessible from AArch32 */ 1773 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1774 (value & PMCCFILTR); 1775 pmccntr_op_finish(env); 1776 } 1777 1778 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1779 { 1780 /* M is not visible in AArch32 */ 1781 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1782 } 1783 1784 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1785 uint64_t value) 1786 { 1787 value &= pmu_counter_mask(env); 1788 env->cp15.c9_pmcnten |= value; 1789 } 1790 1791 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1792 uint64_t value) 1793 { 1794 value &= pmu_counter_mask(env); 1795 env->cp15.c9_pmcnten &= ~value; 1796 } 1797 1798 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1799 uint64_t value) 1800 { 1801 value &= pmu_counter_mask(env); 1802 env->cp15.c9_pmovsr &= ~value; 1803 pmu_update_irq(env); 1804 } 1805 1806 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1807 uint64_t value) 1808 { 1809 value &= pmu_counter_mask(env); 1810 env->cp15.c9_pmovsr |= value; 1811 pmu_update_irq(env); 1812 } 1813 1814 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1815 uint64_t value, const uint8_t counter) 1816 { 1817 if (counter == 31) { 1818 pmccfiltr_write(env, ri, value); 1819 } else if (counter < pmu_num_counters(env)) { 1820 pmevcntr_op_start(env, counter); 1821 1822 /* 1823 * If this counter's event type is changing, store the current 1824 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1825 * pmevcntr_op_finish has the correct baseline when it converts back to 1826 * a delta. 1827 */ 1828 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1829 PMXEVTYPER_EVTCOUNT; 1830 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1831 if (old_event != new_event) { 1832 uint64_t count = 0; 1833 if (event_supported(new_event)) { 1834 uint16_t event_idx = supported_event_map[new_event]; 1835 count = pm_events[event_idx].get_count(env); 1836 } 1837 env->cp15.c14_pmevcntr_delta[counter] = count; 1838 } 1839 1840 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1841 pmevcntr_op_finish(env, counter); 1842 } 1843 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1844 * PMSELR value is equal to or greater than the number of implemented 1845 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1846 */ 1847 } 1848 1849 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1850 const uint8_t counter) 1851 { 1852 if (counter == 31) { 1853 return env->cp15.pmccfiltr_el0; 1854 } else if (counter < pmu_num_counters(env)) { 1855 return env->cp15.c14_pmevtyper[counter]; 1856 } else { 1857 /* 1858 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1859 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1860 */ 1861 return 0; 1862 } 1863 } 1864 1865 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1866 uint64_t value) 1867 { 1868 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1869 pmevtyper_write(env, ri, value, counter); 1870 } 1871 1872 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1873 uint64_t value) 1874 { 1875 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1876 env->cp15.c14_pmevtyper[counter] = value; 1877 1878 /* 1879 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1880 * pmu_op_finish calls when loading saved state for a migration. Because 1881 * we're potentially updating the type of event here, the value written to 1882 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1883 * different counter type. Therefore, we need to set this value to the 1884 * current count for the counter type we're writing so that pmu_op_finish 1885 * has the correct count for its calculation. 1886 */ 1887 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1888 if (event_supported(event)) { 1889 uint16_t event_idx = supported_event_map[event]; 1890 env->cp15.c14_pmevcntr_delta[counter] = 1891 pm_events[event_idx].get_count(env); 1892 } 1893 } 1894 1895 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1896 { 1897 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1898 return pmevtyper_read(env, ri, counter); 1899 } 1900 1901 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1902 uint64_t value) 1903 { 1904 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1905 } 1906 1907 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1908 { 1909 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1910 } 1911 1912 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1913 uint64_t value, uint8_t counter) 1914 { 1915 if (counter < pmu_num_counters(env)) { 1916 pmevcntr_op_start(env, counter); 1917 env->cp15.c14_pmevcntr[counter] = value; 1918 pmevcntr_op_finish(env, counter); 1919 } 1920 /* 1921 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1922 * are CONSTRAINED UNPREDICTABLE. 1923 */ 1924 } 1925 1926 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1927 uint8_t counter) 1928 { 1929 if (counter < pmu_num_counters(env)) { 1930 uint64_t ret; 1931 pmevcntr_op_start(env, counter); 1932 ret = env->cp15.c14_pmevcntr[counter]; 1933 pmevcntr_op_finish(env, counter); 1934 return ret; 1935 } else { 1936 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1937 * are CONSTRAINED UNPREDICTABLE. */ 1938 return 0; 1939 } 1940 } 1941 1942 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1943 uint64_t value) 1944 { 1945 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1946 pmevcntr_write(env, ri, value, counter); 1947 } 1948 1949 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1950 { 1951 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1952 return pmevcntr_read(env, ri, counter); 1953 } 1954 1955 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1956 uint64_t value) 1957 { 1958 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1959 assert(counter < pmu_num_counters(env)); 1960 env->cp15.c14_pmevcntr[counter] = value; 1961 pmevcntr_write(env, ri, value, counter); 1962 } 1963 1964 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1965 { 1966 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1967 assert(counter < pmu_num_counters(env)); 1968 return env->cp15.c14_pmevcntr[counter]; 1969 } 1970 1971 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1972 uint64_t value) 1973 { 1974 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1975 } 1976 1977 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1978 { 1979 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1980 } 1981 1982 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1983 uint64_t value) 1984 { 1985 if (arm_feature(env, ARM_FEATURE_V8)) { 1986 env->cp15.c9_pmuserenr = value & 0xf; 1987 } else { 1988 env->cp15.c9_pmuserenr = value & 1; 1989 } 1990 } 1991 1992 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1993 uint64_t value) 1994 { 1995 /* We have no event counters so only the C bit can be changed */ 1996 value &= pmu_counter_mask(env); 1997 env->cp15.c9_pminten |= value; 1998 pmu_update_irq(env); 1999 } 2000 2001 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2002 uint64_t value) 2003 { 2004 value &= pmu_counter_mask(env); 2005 env->cp15.c9_pminten &= ~value; 2006 pmu_update_irq(env); 2007 } 2008 2009 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2010 uint64_t value) 2011 { 2012 /* Note that even though the AArch64 view of this register has bits 2013 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 2014 * architectural requirements for bits which are RES0 only in some 2015 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 2016 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 2017 */ 2018 raw_write(env, ri, value & ~0x1FULL); 2019 } 2020 2021 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2022 { 2023 /* Begin with base v8.0 state. */ 2024 uint32_t valid_mask = 0x3fff; 2025 ARMCPU *cpu = env_archcpu(env); 2026 2027 if (ri->state == ARM_CP_STATE_AA64) { 2028 if (arm_feature(env, ARM_FEATURE_AARCH64) && 2029 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 2030 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 2031 } 2032 valid_mask &= ~SCR_NET; 2033 2034 if (cpu_isar_feature(aa64_lor, cpu)) { 2035 valid_mask |= SCR_TLOR; 2036 } 2037 if (cpu_isar_feature(aa64_pauth, cpu)) { 2038 valid_mask |= SCR_API | SCR_APK; 2039 } 2040 if (cpu_isar_feature(aa64_sel2, cpu)) { 2041 valid_mask |= SCR_EEL2; 2042 } 2043 if (cpu_isar_feature(aa64_mte, cpu)) { 2044 valid_mask |= SCR_ATA; 2045 } 2046 } else { 2047 valid_mask &= ~(SCR_RW | SCR_ST); 2048 } 2049 2050 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2051 valid_mask &= ~SCR_HCE; 2052 2053 /* On ARMv7, SMD (or SCD as it is called in v7) is only 2054 * supported if EL2 exists. The bit is UNK/SBZP when 2055 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 2056 * when EL2 is unavailable. 2057 * On ARMv8, this bit is always available. 2058 */ 2059 if (arm_feature(env, ARM_FEATURE_V7) && 2060 !arm_feature(env, ARM_FEATURE_V8)) { 2061 valid_mask &= ~SCR_SMD; 2062 } 2063 } 2064 2065 /* Clear all-context RES0 bits. */ 2066 value &= valid_mask; 2067 raw_write(env, ri, value); 2068 } 2069 2070 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2071 { 2072 /* 2073 * scr_write will set the RES1 bits on an AArch64-only CPU. 2074 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 2075 */ 2076 scr_write(env, ri, 0); 2077 } 2078 2079 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2080 const ARMCPRegInfo *ri, 2081 bool isread) 2082 { 2083 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2084 return CP_ACCESS_TRAP_EL2; 2085 } 2086 2087 return CP_ACCESS_OK; 2088 } 2089 2090 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2091 { 2092 ARMCPU *cpu = env_archcpu(env); 2093 2094 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2095 * bank 2096 */ 2097 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2098 ri->secure & ARM_CP_SECSTATE_S); 2099 2100 return cpu->ccsidr[index]; 2101 } 2102 2103 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2104 uint64_t value) 2105 { 2106 raw_write(env, ri, value & 0xf); 2107 } 2108 2109 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2110 { 2111 CPUState *cs = env_cpu(env); 2112 bool el1 = arm_current_el(env) == 1; 2113 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 2114 uint64_t ret = 0; 2115 2116 if (hcr_el2 & HCR_IMO) { 2117 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2118 ret |= CPSR_I; 2119 } 2120 } else { 2121 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2122 ret |= CPSR_I; 2123 } 2124 } 2125 2126 if (hcr_el2 & HCR_FMO) { 2127 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2128 ret |= CPSR_F; 2129 } 2130 } else { 2131 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2132 ret |= CPSR_F; 2133 } 2134 } 2135 2136 /* External aborts are not possible in QEMU so A bit is always clear */ 2137 return ret; 2138 } 2139 2140 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2141 bool isread) 2142 { 2143 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2144 return CP_ACCESS_TRAP_EL2; 2145 } 2146 2147 return CP_ACCESS_OK; 2148 } 2149 2150 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2151 bool isread) 2152 { 2153 if (arm_feature(env, ARM_FEATURE_V8)) { 2154 return access_aa64_tid1(env, ri, isread); 2155 } 2156 2157 return CP_ACCESS_OK; 2158 } 2159 2160 static const ARMCPRegInfo v7_cp_reginfo[] = { 2161 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2162 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2163 .access = PL1_W, .type = ARM_CP_NOP }, 2164 /* Performance monitors are implementation defined in v7, 2165 * but with an ARM recommended set of registers, which we 2166 * follow. 2167 * 2168 * Performance registers fall into three categories: 2169 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2170 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2171 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2172 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2173 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2174 */ 2175 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2176 .access = PL0_RW, .type = ARM_CP_ALIAS, 2177 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2178 .writefn = pmcntenset_write, 2179 .accessfn = pmreg_access, 2180 .raw_writefn = raw_write }, 2181 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2182 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2183 .access = PL0_RW, .accessfn = pmreg_access, 2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2185 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2186 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2187 .access = PL0_RW, 2188 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2189 .accessfn = pmreg_access, 2190 .writefn = pmcntenclr_write, 2191 .type = ARM_CP_ALIAS }, 2192 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2193 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2194 .access = PL0_RW, .accessfn = pmreg_access, 2195 .type = ARM_CP_ALIAS, 2196 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2197 .writefn = pmcntenclr_write }, 2198 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2199 .access = PL0_RW, .type = ARM_CP_IO, 2200 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2201 .accessfn = pmreg_access, 2202 .writefn = pmovsr_write, 2203 .raw_writefn = raw_write }, 2204 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2205 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2206 .access = PL0_RW, .accessfn = pmreg_access, 2207 .type = ARM_CP_ALIAS | ARM_CP_IO, 2208 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2209 .writefn = pmovsr_write, 2210 .raw_writefn = raw_write }, 2211 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2212 .access = PL0_W, .accessfn = pmreg_access_swinc, 2213 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2214 .writefn = pmswinc_write }, 2215 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2216 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2217 .access = PL0_W, .accessfn = pmreg_access_swinc, 2218 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2219 .writefn = pmswinc_write }, 2220 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2221 .access = PL0_RW, .type = ARM_CP_ALIAS, 2222 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2223 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2224 .raw_writefn = raw_write}, 2225 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2226 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2227 .access = PL0_RW, .accessfn = pmreg_access_selr, 2228 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2229 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2230 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2231 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2232 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2233 .accessfn = pmreg_access_ccntr }, 2234 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2235 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2236 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2237 .type = ARM_CP_IO, 2238 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2239 .readfn = pmccntr_read, .writefn = pmccntr_write, 2240 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2241 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2242 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2243 .access = PL0_RW, .accessfn = pmreg_access, 2244 .type = ARM_CP_ALIAS | ARM_CP_IO, 2245 .resetvalue = 0, }, 2246 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2247 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2248 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2249 .access = PL0_RW, .accessfn = pmreg_access, 2250 .type = ARM_CP_IO, 2251 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2252 .resetvalue = 0, }, 2253 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2254 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2255 .accessfn = pmreg_access, 2256 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2257 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2258 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2259 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2260 .accessfn = pmreg_access, 2261 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2262 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2263 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2264 .accessfn = pmreg_access_xevcntr, 2265 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2266 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2267 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2268 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2269 .accessfn = pmreg_access_xevcntr, 2270 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2271 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2272 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2273 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2274 .resetvalue = 0, 2275 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2276 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2277 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2278 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2279 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2280 .resetvalue = 0, 2281 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2282 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2283 .access = PL1_RW, .accessfn = access_tpm, 2284 .type = ARM_CP_ALIAS | ARM_CP_IO, 2285 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2286 .resetvalue = 0, 2287 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2288 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2289 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2290 .access = PL1_RW, .accessfn = access_tpm, 2291 .type = ARM_CP_IO, 2292 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2293 .writefn = pmintenset_write, .raw_writefn = raw_write, 2294 .resetvalue = 0x0 }, 2295 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2296 .access = PL1_RW, .accessfn = access_tpm, 2297 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2298 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2299 .writefn = pmintenclr_write, }, 2300 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2301 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2302 .access = PL1_RW, .accessfn = access_tpm, 2303 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2304 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2305 .writefn = pmintenclr_write }, 2306 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2307 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2308 .access = PL1_R, 2309 .accessfn = access_aa64_tid2, 2310 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2311 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2312 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2313 .access = PL1_RW, 2314 .accessfn = access_aa64_tid2, 2315 .writefn = csselr_write, .resetvalue = 0, 2316 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2317 offsetof(CPUARMState, cp15.csselr_ns) } }, 2318 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2319 * just RAZ for all cores: 2320 */ 2321 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2322 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2323 .access = PL1_R, .type = ARM_CP_CONST, 2324 .accessfn = access_aa64_tid1, 2325 .resetvalue = 0 }, 2326 /* Auxiliary fault status registers: these also are IMPDEF, and we 2327 * choose to RAZ/WI for all cores. 2328 */ 2329 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2330 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2331 .access = PL1_RW, .accessfn = access_tvm_trvm, 2332 .type = ARM_CP_CONST, .resetvalue = 0 }, 2333 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2334 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2335 .access = PL1_RW, .accessfn = access_tvm_trvm, 2336 .type = ARM_CP_CONST, .resetvalue = 0 }, 2337 /* MAIR can just read-as-written because we don't implement caches 2338 * and so don't need to care about memory attributes. 2339 */ 2340 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2341 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2342 .access = PL1_RW, .accessfn = access_tvm_trvm, 2343 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2344 .resetvalue = 0 }, 2345 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2346 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2347 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2348 .resetvalue = 0 }, 2349 /* For non-long-descriptor page tables these are PRRR and NMRR; 2350 * regardless they still act as reads-as-written for QEMU. 2351 */ 2352 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2353 * allows them to assign the correct fieldoffset based on the endianness 2354 * handled in the field definitions. 2355 */ 2356 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2357 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2358 .access = PL1_RW, .accessfn = access_tvm_trvm, 2359 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2360 offsetof(CPUARMState, cp15.mair0_ns) }, 2361 .resetfn = arm_cp_reset_ignore }, 2362 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2363 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2364 .access = PL1_RW, .accessfn = access_tvm_trvm, 2365 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2366 offsetof(CPUARMState, cp15.mair1_ns) }, 2367 .resetfn = arm_cp_reset_ignore }, 2368 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2369 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2370 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2371 /* 32 bit ITLB invalidates */ 2372 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2373 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2374 .writefn = tlbiall_write }, 2375 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2376 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2377 .writefn = tlbimva_write }, 2378 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2379 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2380 .writefn = tlbiasid_write }, 2381 /* 32 bit DTLB invalidates */ 2382 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2383 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2384 .writefn = tlbiall_write }, 2385 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2386 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2387 .writefn = tlbimva_write }, 2388 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2389 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2390 .writefn = tlbiasid_write }, 2391 /* 32 bit TLB invalidates */ 2392 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2393 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2394 .writefn = tlbiall_write }, 2395 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2396 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2397 .writefn = tlbimva_write }, 2398 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2399 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2400 .writefn = tlbiasid_write }, 2401 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2402 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2403 .writefn = tlbimvaa_write }, 2404 REGINFO_SENTINEL 2405 }; 2406 2407 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2408 /* 32 bit TLB invalidates, Inner Shareable */ 2409 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2410 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2411 .writefn = tlbiall_is_write }, 2412 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2413 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2414 .writefn = tlbimva_is_write }, 2415 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2416 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2417 .writefn = tlbiasid_is_write }, 2418 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2419 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2420 .writefn = tlbimvaa_is_write }, 2421 REGINFO_SENTINEL 2422 }; 2423 2424 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2425 /* PMOVSSET is not implemented in v7 before v7ve */ 2426 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2427 .access = PL0_RW, .accessfn = pmreg_access, 2428 .type = ARM_CP_ALIAS | ARM_CP_IO, 2429 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2430 .writefn = pmovsset_write, 2431 .raw_writefn = raw_write }, 2432 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2433 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2434 .access = PL0_RW, .accessfn = pmreg_access, 2435 .type = ARM_CP_ALIAS | ARM_CP_IO, 2436 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2437 .writefn = pmovsset_write, 2438 .raw_writefn = raw_write }, 2439 REGINFO_SENTINEL 2440 }; 2441 2442 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2443 uint64_t value) 2444 { 2445 value &= 1; 2446 env->teecr = value; 2447 } 2448 2449 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2450 bool isread) 2451 { 2452 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2453 return CP_ACCESS_TRAP; 2454 } 2455 return CP_ACCESS_OK; 2456 } 2457 2458 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2459 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2460 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2461 .resetvalue = 0, 2462 .writefn = teecr_write }, 2463 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2464 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2465 .accessfn = teehbr_access, .resetvalue = 0 }, 2466 REGINFO_SENTINEL 2467 }; 2468 2469 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2470 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2471 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2472 .access = PL0_RW, 2473 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2474 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2475 .access = PL0_RW, 2476 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2477 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2478 .resetfn = arm_cp_reset_ignore }, 2479 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2480 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2481 .access = PL0_R|PL1_W, 2482 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2483 .resetvalue = 0}, 2484 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2485 .access = PL0_R|PL1_W, 2486 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2487 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2488 .resetfn = arm_cp_reset_ignore }, 2489 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2490 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2491 .access = PL1_RW, 2492 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2493 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2494 .access = PL1_RW, 2495 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2496 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2497 .resetvalue = 0 }, 2498 REGINFO_SENTINEL 2499 }; 2500 2501 #ifndef CONFIG_USER_ONLY 2502 2503 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2504 bool isread) 2505 { 2506 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2507 * Writable only at the highest implemented exception level. 2508 */ 2509 int el = arm_current_el(env); 2510 uint64_t hcr; 2511 uint32_t cntkctl; 2512 2513 switch (el) { 2514 case 0: 2515 hcr = arm_hcr_el2_eff(env); 2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2517 cntkctl = env->cp15.cnthctl_el2; 2518 } else { 2519 cntkctl = env->cp15.c14_cntkctl; 2520 } 2521 if (!extract32(cntkctl, 0, 2)) { 2522 return CP_ACCESS_TRAP; 2523 } 2524 break; 2525 case 1: 2526 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2527 arm_is_secure_below_el3(env)) { 2528 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2529 return CP_ACCESS_TRAP_UNCATEGORIZED; 2530 } 2531 break; 2532 case 2: 2533 case 3: 2534 break; 2535 } 2536 2537 if (!isread && el < arm_highest_el(env)) { 2538 return CP_ACCESS_TRAP_UNCATEGORIZED; 2539 } 2540 2541 return CP_ACCESS_OK; 2542 } 2543 2544 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2545 bool isread) 2546 { 2547 unsigned int cur_el = arm_current_el(env); 2548 bool has_el2 = arm_is_el2_enabled(env); 2549 uint64_t hcr = arm_hcr_el2_eff(env); 2550 2551 switch (cur_el) { 2552 case 0: 2553 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2554 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2555 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2556 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2557 } 2558 2559 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2560 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2561 return CP_ACCESS_TRAP; 2562 } 2563 2564 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2565 if (hcr & HCR_E2H) { 2566 if (timeridx == GTIMER_PHYS && 2567 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2568 return CP_ACCESS_TRAP_EL2; 2569 } 2570 } else { 2571 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2572 if (has_el2 && timeridx == GTIMER_PHYS && 2573 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2574 return CP_ACCESS_TRAP_EL2; 2575 } 2576 } 2577 break; 2578 2579 case 1: 2580 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2581 if (has_el2 && timeridx == GTIMER_PHYS && 2582 (hcr & HCR_E2H 2583 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2584 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2585 return CP_ACCESS_TRAP_EL2; 2586 } 2587 break; 2588 } 2589 return CP_ACCESS_OK; 2590 } 2591 2592 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2593 bool isread) 2594 { 2595 unsigned int cur_el = arm_current_el(env); 2596 bool has_el2 = arm_is_el2_enabled(env); 2597 uint64_t hcr = arm_hcr_el2_eff(env); 2598 2599 switch (cur_el) { 2600 case 0: 2601 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2602 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2603 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2604 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2605 } 2606 2607 /* 2608 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2609 * EL0 if EL0[PV]TEN is zero. 2610 */ 2611 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2612 return CP_ACCESS_TRAP; 2613 } 2614 /* fall through */ 2615 2616 case 1: 2617 if (has_el2 && timeridx == GTIMER_PHYS) { 2618 if (hcr & HCR_E2H) { 2619 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2620 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2621 return CP_ACCESS_TRAP_EL2; 2622 } 2623 } else { 2624 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2625 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2626 return CP_ACCESS_TRAP_EL2; 2627 } 2628 } 2629 } 2630 break; 2631 } 2632 return CP_ACCESS_OK; 2633 } 2634 2635 static CPAccessResult gt_pct_access(CPUARMState *env, 2636 const ARMCPRegInfo *ri, 2637 bool isread) 2638 { 2639 return gt_counter_access(env, GTIMER_PHYS, isread); 2640 } 2641 2642 static CPAccessResult gt_vct_access(CPUARMState *env, 2643 const ARMCPRegInfo *ri, 2644 bool isread) 2645 { 2646 return gt_counter_access(env, GTIMER_VIRT, isread); 2647 } 2648 2649 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2650 bool isread) 2651 { 2652 return gt_timer_access(env, GTIMER_PHYS, isread); 2653 } 2654 2655 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2656 bool isread) 2657 { 2658 return gt_timer_access(env, GTIMER_VIRT, isread); 2659 } 2660 2661 static CPAccessResult gt_stimer_access(CPUARMState *env, 2662 const ARMCPRegInfo *ri, 2663 bool isread) 2664 { 2665 /* The AArch64 register view of the secure physical timer is 2666 * always accessible from EL3, and configurably accessible from 2667 * Secure EL1. 2668 */ 2669 switch (arm_current_el(env)) { 2670 case 1: 2671 if (!arm_is_secure(env)) { 2672 return CP_ACCESS_TRAP; 2673 } 2674 if (!(env->cp15.scr_el3 & SCR_ST)) { 2675 return CP_ACCESS_TRAP_EL3; 2676 } 2677 return CP_ACCESS_OK; 2678 case 0: 2679 case 2: 2680 return CP_ACCESS_TRAP; 2681 case 3: 2682 return CP_ACCESS_OK; 2683 default: 2684 g_assert_not_reached(); 2685 } 2686 } 2687 2688 static uint64_t gt_get_countervalue(CPUARMState *env) 2689 { 2690 ARMCPU *cpu = env_archcpu(env); 2691 2692 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2693 } 2694 2695 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2696 { 2697 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2698 2699 if (gt->ctl & 1) { 2700 /* Timer enabled: calculate and set current ISTATUS, irq, and 2701 * reset timer to when ISTATUS next has to change 2702 */ 2703 uint64_t offset = timeridx == GTIMER_VIRT ? 2704 cpu->env.cp15.cntvoff_el2 : 0; 2705 uint64_t count = gt_get_countervalue(&cpu->env); 2706 /* Note that this must be unsigned 64 bit arithmetic: */ 2707 int istatus = count - offset >= gt->cval; 2708 uint64_t nexttick; 2709 int irqstate; 2710 2711 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2712 2713 irqstate = (istatus && !(gt->ctl & 2)); 2714 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2715 2716 if (istatus) { 2717 /* Next transition is when count rolls back over to zero */ 2718 nexttick = UINT64_MAX; 2719 } else { 2720 /* Next transition is when we hit cval */ 2721 nexttick = gt->cval + offset; 2722 } 2723 /* Note that the desired next expiry time might be beyond the 2724 * signed-64-bit range of a QEMUTimer -- in this case we just 2725 * set the timer for as far in the future as possible. When the 2726 * timer expires we will reset the timer for any remaining period. 2727 */ 2728 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2729 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2730 } else { 2731 timer_mod(cpu->gt_timer[timeridx], nexttick); 2732 } 2733 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2734 } else { 2735 /* Timer disabled: ISTATUS and timer output always clear */ 2736 gt->ctl &= ~4; 2737 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2738 timer_del(cpu->gt_timer[timeridx]); 2739 trace_arm_gt_recalc_disabled(timeridx); 2740 } 2741 } 2742 2743 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2744 int timeridx) 2745 { 2746 ARMCPU *cpu = env_archcpu(env); 2747 2748 timer_del(cpu->gt_timer[timeridx]); 2749 } 2750 2751 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2752 { 2753 return gt_get_countervalue(env); 2754 } 2755 2756 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2757 { 2758 uint64_t hcr; 2759 2760 switch (arm_current_el(env)) { 2761 case 2: 2762 hcr = arm_hcr_el2_eff(env); 2763 if (hcr & HCR_E2H) { 2764 return 0; 2765 } 2766 break; 2767 case 0: 2768 hcr = arm_hcr_el2_eff(env); 2769 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2770 return 0; 2771 } 2772 break; 2773 } 2774 2775 return env->cp15.cntvoff_el2; 2776 } 2777 2778 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2779 { 2780 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2781 } 2782 2783 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2784 int timeridx, 2785 uint64_t value) 2786 { 2787 trace_arm_gt_cval_write(timeridx, value); 2788 env->cp15.c14_timer[timeridx].cval = value; 2789 gt_recalc_timer(env_archcpu(env), timeridx); 2790 } 2791 2792 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2793 int timeridx) 2794 { 2795 uint64_t offset = 0; 2796 2797 switch (timeridx) { 2798 case GTIMER_VIRT: 2799 case GTIMER_HYPVIRT: 2800 offset = gt_virt_cnt_offset(env); 2801 break; 2802 } 2803 2804 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2805 (gt_get_countervalue(env) - offset)); 2806 } 2807 2808 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2809 int timeridx, 2810 uint64_t value) 2811 { 2812 uint64_t offset = 0; 2813 2814 switch (timeridx) { 2815 case GTIMER_VIRT: 2816 case GTIMER_HYPVIRT: 2817 offset = gt_virt_cnt_offset(env); 2818 break; 2819 } 2820 2821 trace_arm_gt_tval_write(timeridx, value); 2822 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2823 sextract64(value, 0, 32); 2824 gt_recalc_timer(env_archcpu(env), timeridx); 2825 } 2826 2827 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2828 int timeridx, 2829 uint64_t value) 2830 { 2831 ARMCPU *cpu = env_archcpu(env); 2832 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2833 2834 trace_arm_gt_ctl_write(timeridx, value); 2835 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2836 if ((oldval ^ value) & 1) { 2837 /* Enable toggled */ 2838 gt_recalc_timer(cpu, timeridx); 2839 } else if ((oldval ^ value) & 2) { 2840 /* IMASK toggled: don't need to recalculate, 2841 * just set the interrupt line based on ISTATUS 2842 */ 2843 int irqstate = (oldval & 4) && !(value & 2); 2844 2845 trace_arm_gt_imask_toggle(timeridx, irqstate); 2846 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2847 } 2848 } 2849 2850 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2851 { 2852 gt_timer_reset(env, ri, GTIMER_PHYS); 2853 } 2854 2855 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 gt_cval_write(env, ri, GTIMER_PHYS, value); 2859 } 2860 2861 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2862 { 2863 return gt_tval_read(env, ri, GTIMER_PHYS); 2864 } 2865 2866 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2867 uint64_t value) 2868 { 2869 gt_tval_write(env, ri, GTIMER_PHYS, value); 2870 } 2871 2872 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2873 uint64_t value) 2874 { 2875 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2876 } 2877 2878 static int gt_phys_redir_timeridx(CPUARMState *env) 2879 { 2880 switch (arm_mmu_idx(env)) { 2881 case ARMMMUIdx_E20_0: 2882 case ARMMMUIdx_E20_2: 2883 case ARMMMUIdx_E20_2_PAN: 2884 case ARMMMUIdx_SE20_0: 2885 case ARMMMUIdx_SE20_2: 2886 case ARMMMUIdx_SE20_2_PAN: 2887 return GTIMER_HYP; 2888 default: 2889 return GTIMER_PHYS; 2890 } 2891 } 2892 2893 static int gt_virt_redir_timeridx(CPUARMState *env) 2894 { 2895 switch (arm_mmu_idx(env)) { 2896 case ARMMMUIdx_E20_0: 2897 case ARMMMUIdx_E20_2: 2898 case ARMMMUIdx_E20_2_PAN: 2899 case ARMMMUIdx_SE20_0: 2900 case ARMMMUIdx_SE20_2: 2901 case ARMMMUIdx_SE20_2_PAN: 2902 return GTIMER_HYPVIRT; 2903 default: 2904 return GTIMER_VIRT; 2905 } 2906 } 2907 2908 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2909 const ARMCPRegInfo *ri) 2910 { 2911 int timeridx = gt_phys_redir_timeridx(env); 2912 return env->cp15.c14_timer[timeridx].cval; 2913 } 2914 2915 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2916 uint64_t value) 2917 { 2918 int timeridx = gt_phys_redir_timeridx(env); 2919 gt_cval_write(env, ri, timeridx, value); 2920 } 2921 2922 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2923 const ARMCPRegInfo *ri) 2924 { 2925 int timeridx = gt_phys_redir_timeridx(env); 2926 return gt_tval_read(env, ri, timeridx); 2927 } 2928 2929 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2930 uint64_t value) 2931 { 2932 int timeridx = gt_phys_redir_timeridx(env); 2933 gt_tval_write(env, ri, timeridx, value); 2934 } 2935 2936 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2937 const ARMCPRegInfo *ri) 2938 { 2939 int timeridx = gt_phys_redir_timeridx(env); 2940 return env->cp15.c14_timer[timeridx].ctl; 2941 } 2942 2943 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2944 uint64_t value) 2945 { 2946 int timeridx = gt_phys_redir_timeridx(env); 2947 gt_ctl_write(env, ri, timeridx, value); 2948 } 2949 2950 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2951 { 2952 gt_timer_reset(env, ri, GTIMER_VIRT); 2953 } 2954 2955 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2956 uint64_t value) 2957 { 2958 gt_cval_write(env, ri, GTIMER_VIRT, value); 2959 } 2960 2961 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2962 { 2963 return gt_tval_read(env, ri, GTIMER_VIRT); 2964 } 2965 2966 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2967 uint64_t value) 2968 { 2969 gt_tval_write(env, ri, GTIMER_VIRT, value); 2970 } 2971 2972 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2973 uint64_t value) 2974 { 2975 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2976 } 2977 2978 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2979 uint64_t value) 2980 { 2981 ARMCPU *cpu = env_archcpu(env); 2982 2983 trace_arm_gt_cntvoff_write(value); 2984 raw_write(env, ri, value); 2985 gt_recalc_timer(cpu, GTIMER_VIRT); 2986 } 2987 2988 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2989 const ARMCPRegInfo *ri) 2990 { 2991 int timeridx = gt_virt_redir_timeridx(env); 2992 return env->cp15.c14_timer[timeridx].cval; 2993 } 2994 2995 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2996 uint64_t value) 2997 { 2998 int timeridx = gt_virt_redir_timeridx(env); 2999 gt_cval_write(env, ri, timeridx, value); 3000 } 3001 3002 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 3003 const ARMCPRegInfo *ri) 3004 { 3005 int timeridx = gt_virt_redir_timeridx(env); 3006 return gt_tval_read(env, ri, timeridx); 3007 } 3008 3009 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3010 uint64_t value) 3011 { 3012 int timeridx = gt_virt_redir_timeridx(env); 3013 gt_tval_write(env, ri, timeridx, value); 3014 } 3015 3016 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3017 const ARMCPRegInfo *ri) 3018 { 3019 int timeridx = gt_virt_redir_timeridx(env); 3020 return env->cp15.c14_timer[timeridx].ctl; 3021 } 3022 3023 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3024 uint64_t value) 3025 { 3026 int timeridx = gt_virt_redir_timeridx(env); 3027 gt_ctl_write(env, ri, timeridx, value); 3028 } 3029 3030 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3031 { 3032 gt_timer_reset(env, ri, GTIMER_HYP); 3033 } 3034 3035 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3036 uint64_t value) 3037 { 3038 gt_cval_write(env, ri, GTIMER_HYP, value); 3039 } 3040 3041 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3042 { 3043 return gt_tval_read(env, ri, GTIMER_HYP); 3044 } 3045 3046 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3047 uint64_t value) 3048 { 3049 gt_tval_write(env, ri, GTIMER_HYP, value); 3050 } 3051 3052 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3053 uint64_t value) 3054 { 3055 gt_ctl_write(env, ri, GTIMER_HYP, value); 3056 } 3057 3058 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3059 { 3060 gt_timer_reset(env, ri, GTIMER_SEC); 3061 } 3062 3063 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3064 uint64_t value) 3065 { 3066 gt_cval_write(env, ri, GTIMER_SEC, value); 3067 } 3068 3069 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3070 { 3071 return gt_tval_read(env, ri, GTIMER_SEC); 3072 } 3073 3074 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3075 uint64_t value) 3076 { 3077 gt_tval_write(env, ri, GTIMER_SEC, value); 3078 } 3079 3080 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3081 uint64_t value) 3082 { 3083 gt_ctl_write(env, ri, GTIMER_SEC, value); 3084 } 3085 3086 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3087 { 3088 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3089 } 3090 3091 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3092 uint64_t value) 3093 { 3094 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3095 } 3096 3097 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3098 { 3099 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3100 } 3101 3102 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3103 uint64_t value) 3104 { 3105 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3106 } 3107 3108 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3109 uint64_t value) 3110 { 3111 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3112 } 3113 3114 void arm_gt_ptimer_cb(void *opaque) 3115 { 3116 ARMCPU *cpu = opaque; 3117 3118 gt_recalc_timer(cpu, GTIMER_PHYS); 3119 } 3120 3121 void arm_gt_vtimer_cb(void *opaque) 3122 { 3123 ARMCPU *cpu = opaque; 3124 3125 gt_recalc_timer(cpu, GTIMER_VIRT); 3126 } 3127 3128 void arm_gt_htimer_cb(void *opaque) 3129 { 3130 ARMCPU *cpu = opaque; 3131 3132 gt_recalc_timer(cpu, GTIMER_HYP); 3133 } 3134 3135 void arm_gt_stimer_cb(void *opaque) 3136 { 3137 ARMCPU *cpu = opaque; 3138 3139 gt_recalc_timer(cpu, GTIMER_SEC); 3140 } 3141 3142 void arm_gt_hvtimer_cb(void *opaque) 3143 { 3144 ARMCPU *cpu = opaque; 3145 3146 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3147 } 3148 3149 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3150 { 3151 ARMCPU *cpu = env_archcpu(env); 3152 3153 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3154 } 3155 3156 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3157 /* Note that CNTFRQ is purely reads-as-written for the benefit 3158 * of software; writing it doesn't actually change the timer frequency. 3159 * Our reset value matches the fixed frequency we implement the timer at. 3160 */ 3161 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3162 .type = ARM_CP_ALIAS, 3163 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3164 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3165 }, 3166 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3167 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3168 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3169 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3170 .resetfn = arm_gt_cntfrq_reset, 3171 }, 3172 /* overall control: mostly access permissions */ 3173 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3174 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3175 .access = PL1_RW, 3176 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3177 .resetvalue = 0, 3178 }, 3179 /* per-timer control */ 3180 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3181 .secure = ARM_CP_SECSTATE_NS, 3182 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3183 .accessfn = gt_ptimer_access, 3184 .fieldoffset = offsetoflow32(CPUARMState, 3185 cp15.c14_timer[GTIMER_PHYS].ctl), 3186 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3187 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3188 }, 3189 { .name = "CNTP_CTL_S", 3190 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3191 .secure = ARM_CP_SECSTATE_S, 3192 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3193 .accessfn = gt_ptimer_access, 3194 .fieldoffset = offsetoflow32(CPUARMState, 3195 cp15.c14_timer[GTIMER_SEC].ctl), 3196 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3197 }, 3198 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3199 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3200 .type = ARM_CP_IO, .access = PL0_RW, 3201 .accessfn = gt_ptimer_access, 3202 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3203 .resetvalue = 0, 3204 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3205 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3206 }, 3207 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3208 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3209 .accessfn = gt_vtimer_access, 3210 .fieldoffset = offsetoflow32(CPUARMState, 3211 cp15.c14_timer[GTIMER_VIRT].ctl), 3212 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3213 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3214 }, 3215 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3216 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3217 .type = ARM_CP_IO, .access = PL0_RW, 3218 .accessfn = gt_vtimer_access, 3219 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3220 .resetvalue = 0, 3221 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3222 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3223 }, 3224 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3225 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3226 .secure = ARM_CP_SECSTATE_NS, 3227 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3228 .accessfn = gt_ptimer_access, 3229 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3230 }, 3231 { .name = "CNTP_TVAL_S", 3232 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3233 .secure = ARM_CP_SECSTATE_S, 3234 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3235 .accessfn = gt_ptimer_access, 3236 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3237 }, 3238 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3239 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3240 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3241 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3242 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3243 }, 3244 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3245 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3246 .accessfn = gt_vtimer_access, 3247 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3248 }, 3249 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3250 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3251 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3252 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3253 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3254 }, 3255 /* The counter itself */ 3256 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3257 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3258 .accessfn = gt_pct_access, 3259 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3260 }, 3261 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3262 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3263 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3264 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3265 }, 3266 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3267 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3268 .accessfn = gt_vct_access, 3269 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3270 }, 3271 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3272 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3273 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3274 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3275 }, 3276 /* Comparison value, indicating when the timer goes off */ 3277 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3278 .secure = ARM_CP_SECSTATE_NS, 3279 .access = PL0_RW, 3280 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3281 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3282 .accessfn = gt_ptimer_access, 3283 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3284 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3285 }, 3286 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3287 .secure = ARM_CP_SECSTATE_S, 3288 .access = PL0_RW, 3289 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3290 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3291 .accessfn = gt_ptimer_access, 3292 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3293 }, 3294 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3295 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3296 .access = PL0_RW, 3297 .type = ARM_CP_IO, 3298 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3299 .resetvalue = 0, .accessfn = gt_ptimer_access, 3300 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3301 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3302 }, 3303 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3304 .access = PL0_RW, 3305 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3306 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3307 .accessfn = gt_vtimer_access, 3308 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3309 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3310 }, 3311 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3312 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3313 .access = PL0_RW, 3314 .type = ARM_CP_IO, 3315 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3316 .resetvalue = 0, .accessfn = gt_vtimer_access, 3317 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3318 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3319 }, 3320 /* Secure timer -- this is actually restricted to only EL3 3321 * and configurably Secure-EL1 via the accessfn. 3322 */ 3323 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3324 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3325 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3326 .accessfn = gt_stimer_access, 3327 .readfn = gt_sec_tval_read, 3328 .writefn = gt_sec_tval_write, 3329 .resetfn = gt_sec_timer_reset, 3330 }, 3331 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3332 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3333 .type = ARM_CP_IO, .access = PL1_RW, 3334 .accessfn = gt_stimer_access, 3335 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3336 .resetvalue = 0, 3337 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3338 }, 3339 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3340 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3341 .type = ARM_CP_IO, .access = PL1_RW, 3342 .accessfn = gt_stimer_access, 3343 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3344 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3345 }, 3346 REGINFO_SENTINEL 3347 }; 3348 3349 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3350 bool isread) 3351 { 3352 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3353 return CP_ACCESS_TRAP; 3354 } 3355 return CP_ACCESS_OK; 3356 } 3357 3358 #else 3359 3360 /* In user-mode most of the generic timer registers are inaccessible 3361 * however modern kernels (4.12+) allow access to cntvct_el0 3362 */ 3363 3364 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3365 { 3366 ARMCPU *cpu = env_archcpu(env); 3367 3368 /* Currently we have no support for QEMUTimer in linux-user so we 3369 * can't call gt_get_countervalue(env), instead we directly 3370 * call the lower level functions. 3371 */ 3372 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3373 } 3374 3375 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3376 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3377 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3378 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3379 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3380 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3381 }, 3382 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3383 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3384 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3385 .readfn = gt_virt_cnt_read, 3386 }, 3387 REGINFO_SENTINEL 3388 }; 3389 3390 #endif 3391 3392 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3393 { 3394 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3395 raw_write(env, ri, value); 3396 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3397 raw_write(env, ri, value & 0xfffff6ff); 3398 } else { 3399 raw_write(env, ri, value & 0xfffff1ff); 3400 } 3401 } 3402 3403 #ifndef CONFIG_USER_ONLY 3404 /* get_phys_addr() isn't present for user-mode-only targets */ 3405 3406 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3407 bool isread) 3408 { 3409 if (ri->opc2 & 4) { 3410 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3411 * Secure EL1 (which can only happen if EL3 is AArch64). 3412 * They are simply UNDEF if executed from NS EL1. 3413 * They function normally from EL2 or EL3. 3414 */ 3415 if (arm_current_el(env) == 1) { 3416 if (arm_is_secure_below_el3(env)) { 3417 if (env->cp15.scr_el3 & SCR_EEL2) { 3418 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3419 } 3420 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3421 } 3422 return CP_ACCESS_TRAP_UNCATEGORIZED; 3423 } 3424 } 3425 return CP_ACCESS_OK; 3426 } 3427 3428 #ifdef CONFIG_TCG 3429 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3430 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3431 { 3432 hwaddr phys_addr; 3433 target_ulong page_size; 3434 int prot; 3435 bool ret; 3436 uint64_t par64; 3437 bool format64 = false; 3438 MemTxAttrs attrs = {}; 3439 ARMMMUFaultInfo fi = {}; 3440 ARMCacheAttrs cacheattrs = {}; 3441 3442 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3443 &prot, &page_size, &fi, &cacheattrs); 3444 3445 if (ret) { 3446 /* 3447 * Some kinds of translation fault must cause exceptions rather 3448 * than being reported in the PAR. 3449 */ 3450 int current_el = arm_current_el(env); 3451 int target_el; 3452 uint32_t syn, fsr, fsc; 3453 bool take_exc = false; 3454 3455 if (fi.s1ptw && current_el == 1 3456 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3457 /* 3458 * Synchronous stage 2 fault on an access made as part of the 3459 * translation table walk for AT S1E0* or AT S1E1* insn 3460 * executed from NS EL1. If this is a synchronous external abort 3461 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3462 * to EL3. Otherwise the fault is taken as an exception to EL2, 3463 * and HPFAR_EL2 holds the faulting IPA. 3464 */ 3465 if (fi.type == ARMFault_SyncExternalOnWalk && 3466 (env->cp15.scr_el3 & SCR_EA)) { 3467 target_el = 3; 3468 } else { 3469 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3470 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3471 env->cp15.hpfar_el2 |= HPFAR_NS; 3472 } 3473 target_el = 2; 3474 } 3475 take_exc = true; 3476 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3477 /* 3478 * Synchronous external aborts during a translation table walk 3479 * are taken as Data Abort exceptions. 3480 */ 3481 if (fi.stage2) { 3482 if (current_el == 3) { 3483 target_el = 3; 3484 } else { 3485 target_el = 2; 3486 } 3487 } else { 3488 target_el = exception_target_el(env); 3489 } 3490 take_exc = true; 3491 } 3492 3493 if (take_exc) { 3494 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3495 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3496 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3497 fsr = arm_fi_to_lfsc(&fi); 3498 fsc = extract32(fsr, 0, 6); 3499 } else { 3500 fsr = arm_fi_to_sfsc(&fi); 3501 fsc = 0x3f; 3502 } 3503 /* 3504 * Report exception with ESR indicating a fault due to a 3505 * translation table walk for a cache maintenance instruction. 3506 */ 3507 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3508 fi.ea, 1, fi.s1ptw, 1, fsc); 3509 env->exception.vaddress = value; 3510 env->exception.fsr = fsr; 3511 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3512 } 3513 } 3514 3515 if (is_a64(env)) { 3516 format64 = true; 3517 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3518 /* 3519 * ATS1Cxx: 3520 * * TTBCR.EAE determines whether the result is returned using the 3521 * 32-bit or the 64-bit PAR format 3522 * * Instructions executed in Hyp mode always use the 64bit format 3523 * 3524 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3525 * * The Non-secure TTBCR.EAE bit is set to 1 3526 * * The implementation includes EL2, and the value of HCR.VM is 1 3527 * 3528 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3529 * 3530 * ATS1Hx always uses the 64bit format. 3531 */ 3532 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3533 3534 if (arm_feature(env, ARM_FEATURE_EL2)) { 3535 if (mmu_idx == ARMMMUIdx_E10_0 || 3536 mmu_idx == ARMMMUIdx_E10_1 || 3537 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3538 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3539 } else { 3540 format64 |= arm_current_el(env) == 2; 3541 } 3542 } 3543 } 3544 3545 if (format64) { 3546 /* Create a 64-bit PAR */ 3547 par64 = (1 << 11); /* LPAE bit always set */ 3548 if (!ret) { 3549 par64 |= phys_addr & ~0xfffULL; 3550 if (!attrs.secure) { 3551 par64 |= (1 << 9); /* NS */ 3552 } 3553 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3554 par64 |= cacheattrs.shareability << 7; /* SH */ 3555 } else { 3556 uint32_t fsr = arm_fi_to_lfsc(&fi); 3557 3558 par64 |= 1; /* F */ 3559 par64 |= (fsr & 0x3f) << 1; /* FS */ 3560 if (fi.stage2) { 3561 par64 |= (1 << 9); /* S */ 3562 } 3563 if (fi.s1ptw) { 3564 par64 |= (1 << 8); /* PTW */ 3565 } 3566 } 3567 } else { 3568 /* fsr is a DFSR/IFSR value for the short descriptor 3569 * translation table format (with WnR always clear). 3570 * Convert it to a 32-bit PAR. 3571 */ 3572 if (!ret) { 3573 /* We do not set any attribute bits in the PAR */ 3574 if (page_size == (1 << 24) 3575 && arm_feature(env, ARM_FEATURE_V7)) { 3576 par64 = (phys_addr & 0xff000000) | (1 << 1); 3577 } else { 3578 par64 = phys_addr & 0xfffff000; 3579 } 3580 if (!attrs.secure) { 3581 par64 |= (1 << 9); /* NS */ 3582 } 3583 } else { 3584 uint32_t fsr = arm_fi_to_sfsc(&fi); 3585 3586 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3587 ((fsr & 0xf) << 1) | 1; 3588 } 3589 } 3590 return par64; 3591 } 3592 #endif /* CONFIG_TCG */ 3593 3594 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3595 { 3596 #ifdef CONFIG_TCG 3597 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3598 uint64_t par64; 3599 ARMMMUIdx mmu_idx; 3600 int el = arm_current_el(env); 3601 bool secure = arm_is_secure_below_el3(env); 3602 3603 switch (ri->opc2 & 6) { 3604 case 0: 3605 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3606 switch (el) { 3607 case 3: 3608 mmu_idx = ARMMMUIdx_SE3; 3609 break; 3610 case 2: 3611 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3612 /* fall through */ 3613 case 1: 3614 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3615 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3616 : ARMMMUIdx_Stage1_E1_PAN); 3617 } else { 3618 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3619 } 3620 break; 3621 default: 3622 g_assert_not_reached(); 3623 } 3624 break; 3625 case 2: 3626 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3627 switch (el) { 3628 case 3: 3629 mmu_idx = ARMMMUIdx_SE10_0; 3630 break; 3631 case 2: 3632 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3633 mmu_idx = ARMMMUIdx_Stage1_E0; 3634 break; 3635 case 1: 3636 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3637 break; 3638 default: 3639 g_assert_not_reached(); 3640 } 3641 break; 3642 case 4: 3643 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3644 mmu_idx = ARMMMUIdx_E10_1; 3645 break; 3646 case 6: 3647 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3648 mmu_idx = ARMMMUIdx_E10_0; 3649 break; 3650 default: 3651 g_assert_not_reached(); 3652 } 3653 3654 par64 = do_ats_write(env, value, access_type, mmu_idx); 3655 3656 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3657 #else 3658 /* Handled by hardware accelerator. */ 3659 g_assert_not_reached(); 3660 #endif /* CONFIG_TCG */ 3661 } 3662 3663 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3664 uint64_t value) 3665 { 3666 #ifdef CONFIG_TCG 3667 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3668 uint64_t par64; 3669 3670 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3671 3672 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3673 #else 3674 /* Handled by hardware accelerator. */ 3675 g_assert_not_reached(); 3676 #endif /* CONFIG_TCG */ 3677 } 3678 3679 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3680 bool isread) 3681 { 3682 if (arm_current_el(env) == 3 && 3683 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3684 return CP_ACCESS_TRAP; 3685 } 3686 return CP_ACCESS_OK; 3687 } 3688 3689 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3690 uint64_t value) 3691 { 3692 #ifdef CONFIG_TCG 3693 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3694 ARMMMUIdx mmu_idx; 3695 int secure = arm_is_secure_below_el3(env); 3696 3697 switch (ri->opc2 & 6) { 3698 case 0: 3699 switch (ri->opc1) { 3700 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3701 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3702 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3703 : ARMMMUIdx_Stage1_E1_PAN); 3704 } else { 3705 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3706 } 3707 break; 3708 case 4: /* AT S1E2R, AT S1E2W */ 3709 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3710 break; 3711 case 6: /* AT S1E3R, AT S1E3W */ 3712 mmu_idx = ARMMMUIdx_SE3; 3713 break; 3714 default: 3715 g_assert_not_reached(); 3716 } 3717 break; 3718 case 2: /* AT S1E0R, AT S1E0W */ 3719 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3720 break; 3721 case 4: /* AT S12E1R, AT S12E1W */ 3722 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3723 break; 3724 case 6: /* AT S12E0R, AT S12E0W */ 3725 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3726 break; 3727 default: 3728 g_assert_not_reached(); 3729 } 3730 3731 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3732 #else 3733 /* Handled by hardware accelerator. */ 3734 g_assert_not_reached(); 3735 #endif /* CONFIG_TCG */ 3736 } 3737 #endif 3738 3739 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3740 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3741 .access = PL1_RW, .resetvalue = 0, 3742 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3743 offsetoflow32(CPUARMState, cp15.par_ns) }, 3744 .writefn = par_write }, 3745 #ifndef CONFIG_USER_ONLY 3746 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3747 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3748 .access = PL1_W, .accessfn = ats_access, 3749 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3750 #endif 3751 REGINFO_SENTINEL 3752 }; 3753 3754 /* Return basic MPU access permission bits. */ 3755 static uint32_t simple_mpu_ap_bits(uint32_t val) 3756 { 3757 uint32_t ret; 3758 uint32_t mask; 3759 int i; 3760 ret = 0; 3761 mask = 3; 3762 for (i = 0; i < 16; i += 2) { 3763 ret |= (val >> i) & mask; 3764 mask <<= 2; 3765 } 3766 return ret; 3767 } 3768 3769 /* Pad basic MPU access permission bits to extended format. */ 3770 static uint32_t extended_mpu_ap_bits(uint32_t val) 3771 { 3772 uint32_t ret; 3773 uint32_t mask; 3774 int i; 3775 ret = 0; 3776 mask = 3; 3777 for (i = 0; i < 16; i += 2) { 3778 ret |= (val & mask) << i; 3779 mask <<= 2; 3780 } 3781 return ret; 3782 } 3783 3784 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3785 uint64_t value) 3786 { 3787 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3788 } 3789 3790 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3791 { 3792 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3793 } 3794 3795 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3796 uint64_t value) 3797 { 3798 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3799 } 3800 3801 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3802 { 3803 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3804 } 3805 3806 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3807 { 3808 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3809 3810 if (!u32p) { 3811 return 0; 3812 } 3813 3814 u32p += env->pmsav7.rnr[M_REG_NS]; 3815 return *u32p; 3816 } 3817 3818 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3819 uint64_t value) 3820 { 3821 ARMCPU *cpu = env_archcpu(env); 3822 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3823 3824 if (!u32p) { 3825 return; 3826 } 3827 3828 u32p += env->pmsav7.rnr[M_REG_NS]; 3829 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3830 *u32p = value; 3831 } 3832 3833 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3834 uint64_t value) 3835 { 3836 ARMCPU *cpu = env_archcpu(env); 3837 uint32_t nrgs = cpu->pmsav7_dregion; 3838 3839 if (value >= nrgs) { 3840 qemu_log_mask(LOG_GUEST_ERROR, 3841 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3842 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3843 return; 3844 } 3845 3846 raw_write(env, ri, value); 3847 } 3848 3849 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3850 /* Reset for all these registers is handled in arm_cpu_reset(), 3851 * because the PMSAv7 is also used by M-profile CPUs, which do 3852 * not register cpregs but still need the state to be reset. 3853 */ 3854 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3855 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3856 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3857 .readfn = pmsav7_read, .writefn = pmsav7_write, 3858 .resetfn = arm_cp_reset_ignore }, 3859 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3860 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3861 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3862 .readfn = pmsav7_read, .writefn = pmsav7_write, 3863 .resetfn = arm_cp_reset_ignore }, 3864 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3865 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3866 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3867 .readfn = pmsav7_read, .writefn = pmsav7_write, 3868 .resetfn = arm_cp_reset_ignore }, 3869 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3870 .access = PL1_RW, 3871 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3872 .writefn = pmsav7_rgnr_write, 3873 .resetfn = arm_cp_reset_ignore }, 3874 REGINFO_SENTINEL 3875 }; 3876 3877 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3878 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3879 .access = PL1_RW, .type = ARM_CP_ALIAS, 3880 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3881 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3882 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3883 .access = PL1_RW, .type = ARM_CP_ALIAS, 3884 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3885 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3886 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3887 .access = PL1_RW, 3888 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3889 .resetvalue = 0, }, 3890 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3891 .access = PL1_RW, 3892 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3893 .resetvalue = 0, }, 3894 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3895 .access = PL1_RW, 3896 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3897 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3898 .access = PL1_RW, 3899 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3900 /* Protection region base and size registers */ 3901 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3902 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3903 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3904 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3905 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3906 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3907 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3908 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3909 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3910 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3911 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3912 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3913 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3914 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3915 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3916 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3917 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3918 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3919 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3920 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3921 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3922 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3923 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3924 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3925 REGINFO_SENTINEL 3926 }; 3927 3928 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3929 uint64_t value) 3930 { 3931 TCR *tcr = raw_ptr(env, ri); 3932 int maskshift = extract32(value, 0, 3); 3933 3934 if (!arm_feature(env, ARM_FEATURE_V8)) { 3935 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3936 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3937 * using Long-desciptor translation table format */ 3938 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3939 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3940 /* In an implementation that includes the Security Extensions 3941 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3942 * Short-descriptor translation table format. 3943 */ 3944 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3945 } else { 3946 value &= TTBCR_N; 3947 } 3948 } 3949 3950 /* Update the masks corresponding to the TCR bank being written 3951 * Note that we always calculate mask and base_mask, but 3952 * they are only used for short-descriptor tables (ie if EAE is 0); 3953 * for long-descriptor tables the TCR fields are used differently 3954 * and the mask and base_mask values are meaningless. 3955 */ 3956 tcr->raw_tcr = value; 3957 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3958 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3959 } 3960 3961 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3962 uint64_t value) 3963 { 3964 ARMCPU *cpu = env_archcpu(env); 3965 TCR *tcr = raw_ptr(env, ri); 3966 3967 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3968 /* With LPAE the TTBCR could result in a change of ASID 3969 * via the TTBCR.A1 bit, so do a TLB flush. 3970 */ 3971 tlb_flush(CPU(cpu)); 3972 } 3973 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3974 value = deposit64(tcr->raw_tcr, 0, 32, value); 3975 vmsa_ttbcr_raw_write(env, ri, value); 3976 } 3977 3978 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3979 { 3980 TCR *tcr = raw_ptr(env, ri); 3981 3982 /* Reset both the TCR as well as the masks corresponding to the bank of 3983 * the TCR being reset. 3984 */ 3985 tcr->raw_tcr = 0; 3986 tcr->mask = 0; 3987 tcr->base_mask = 0xffffc000u; 3988 } 3989 3990 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3991 uint64_t value) 3992 { 3993 ARMCPU *cpu = env_archcpu(env); 3994 TCR *tcr = raw_ptr(env, ri); 3995 3996 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3997 tlb_flush(CPU(cpu)); 3998 tcr->raw_tcr = value; 3999 } 4000 4001 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4002 uint64_t value) 4003 { 4004 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4005 if (cpreg_field_is_64bit(ri) && 4006 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4007 ARMCPU *cpu = env_archcpu(env); 4008 tlb_flush(CPU(cpu)); 4009 } 4010 raw_write(env, ri, value); 4011 } 4012 4013 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4014 uint64_t value) 4015 { 4016 /* 4017 * If we are running with E2&0 regime, then an ASID is active. 4018 * Flush if that might be changing. Note we're not checking 4019 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4020 * holds the active ASID, only checking the field that might. 4021 */ 4022 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4023 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4024 uint16_t mask = ARMMMUIdxBit_E20_2 | 4025 ARMMMUIdxBit_E20_2_PAN | 4026 ARMMMUIdxBit_E20_0; 4027 4028 if (arm_is_secure_below_el3(env)) { 4029 mask >>= ARM_MMU_IDX_A_NS; 4030 } 4031 4032 tlb_flush_by_mmuidx(env_cpu(env), mask); 4033 } 4034 raw_write(env, ri, value); 4035 } 4036 4037 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4038 uint64_t value) 4039 { 4040 ARMCPU *cpu = env_archcpu(env); 4041 CPUState *cs = CPU(cpu); 4042 4043 /* 4044 * A change in VMID to the stage2 page table (Stage2) invalidates 4045 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 4046 */ 4047 if (raw_read(env, ri) != value) { 4048 uint16_t mask = ARMMMUIdxBit_E10_1 | 4049 ARMMMUIdxBit_E10_1_PAN | 4050 ARMMMUIdxBit_E10_0; 4051 4052 if (arm_is_secure_below_el3(env)) { 4053 mask >>= ARM_MMU_IDX_A_NS; 4054 } 4055 4056 tlb_flush_by_mmuidx(cs, mask); 4057 raw_write(env, ri, value); 4058 } 4059 } 4060 4061 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4062 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4063 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4064 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4065 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4066 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4067 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4068 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4069 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4070 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4071 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4072 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4073 offsetof(CPUARMState, cp15.dfar_ns) } }, 4074 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4075 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4076 .access = PL1_RW, .accessfn = access_tvm_trvm, 4077 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4078 .resetvalue = 0, }, 4079 REGINFO_SENTINEL 4080 }; 4081 4082 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4083 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4084 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4085 .access = PL1_RW, .accessfn = access_tvm_trvm, 4086 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4087 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4088 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4089 .access = PL1_RW, .accessfn = access_tvm_trvm, 4090 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4091 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4092 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4093 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4094 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4095 .access = PL1_RW, .accessfn = access_tvm_trvm, 4096 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4097 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4098 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4099 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4100 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4101 .access = PL1_RW, .accessfn = access_tvm_trvm, 4102 .writefn = vmsa_tcr_el12_write, 4103 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 4104 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4105 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4106 .access = PL1_RW, .accessfn = access_tvm_trvm, 4107 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4108 .raw_writefn = vmsa_ttbcr_raw_write, 4109 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 4110 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 4111 offsetof(CPUARMState, cp15.tcr_el[1])} }, 4112 REGINFO_SENTINEL 4113 }; 4114 4115 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4116 * qemu tlbs nor adjusting cached masks. 4117 */ 4118 static const ARMCPRegInfo ttbcr2_reginfo = { 4119 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4120 .access = PL1_RW, .accessfn = access_tvm_trvm, 4121 .type = ARM_CP_ALIAS, 4122 .bank_fieldoffsets = { 4123 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 4124 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 4125 }, 4126 }; 4127 4128 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4129 uint64_t value) 4130 { 4131 env->cp15.c15_ticonfig = value & 0xe7; 4132 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4133 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4134 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4135 } 4136 4137 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4138 uint64_t value) 4139 { 4140 env->cp15.c15_threadid = value & 0xffff; 4141 } 4142 4143 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4144 uint64_t value) 4145 { 4146 /* Wait-for-interrupt (deprecated) */ 4147 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4148 } 4149 4150 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4151 uint64_t value) 4152 { 4153 /* On OMAP there are registers indicating the max/min index of dcache lines 4154 * containing a dirty line; cache flush operations have to reset these. 4155 */ 4156 env->cp15.c15_i_max = 0x000; 4157 env->cp15.c15_i_min = 0xff0; 4158 } 4159 4160 static const ARMCPRegInfo omap_cp_reginfo[] = { 4161 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4162 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4163 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4164 .resetvalue = 0, }, 4165 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4166 .access = PL1_RW, .type = ARM_CP_NOP }, 4167 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4168 .access = PL1_RW, 4169 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4170 .writefn = omap_ticonfig_write }, 4171 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4172 .access = PL1_RW, 4173 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4174 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4175 .access = PL1_RW, .resetvalue = 0xff0, 4176 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4177 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4178 .access = PL1_RW, 4179 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4180 .writefn = omap_threadid_write }, 4181 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4182 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4183 .type = ARM_CP_NO_RAW, 4184 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4185 /* TODO: Peripheral port remap register: 4186 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4187 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4188 * when MMU is off. 4189 */ 4190 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4191 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4192 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4193 .writefn = omap_cachemaint_write }, 4194 { .name = "C9", .cp = 15, .crn = 9, 4195 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4196 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4197 REGINFO_SENTINEL 4198 }; 4199 4200 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4201 uint64_t value) 4202 { 4203 env->cp15.c15_cpar = value & 0x3fff; 4204 } 4205 4206 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4207 { .name = "XSCALE_CPAR", 4208 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4209 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4210 .writefn = xscale_cpar_write, }, 4211 { .name = "XSCALE_AUXCR", 4212 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4213 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4214 .resetvalue = 0, }, 4215 /* XScale specific cache-lockdown: since we have no cache we NOP these 4216 * and hope the guest does not really rely on cache behaviour. 4217 */ 4218 { .name = "XSCALE_LOCK_ICACHE_LINE", 4219 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4220 .access = PL1_W, .type = ARM_CP_NOP }, 4221 { .name = "XSCALE_UNLOCK_ICACHE", 4222 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4223 .access = PL1_W, .type = ARM_CP_NOP }, 4224 { .name = "XSCALE_DCACHE_LOCK", 4225 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4226 .access = PL1_RW, .type = ARM_CP_NOP }, 4227 { .name = "XSCALE_UNLOCK_DCACHE", 4228 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4229 .access = PL1_W, .type = ARM_CP_NOP }, 4230 REGINFO_SENTINEL 4231 }; 4232 4233 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4234 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4235 * implementation of this implementation-defined space. 4236 * Ideally this should eventually disappear in favour of actually 4237 * implementing the correct behaviour for all cores. 4238 */ 4239 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4240 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4241 .access = PL1_RW, 4242 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4243 .resetvalue = 0 }, 4244 REGINFO_SENTINEL 4245 }; 4246 4247 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4248 /* Cache status: RAZ because we have no cache so it's always clean */ 4249 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4250 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4251 .resetvalue = 0 }, 4252 REGINFO_SENTINEL 4253 }; 4254 4255 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4256 /* We never have a a block transfer operation in progress */ 4257 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4258 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4259 .resetvalue = 0 }, 4260 /* The cache ops themselves: these all NOP for QEMU */ 4261 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4262 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4263 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4264 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4265 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4266 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4267 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4268 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4269 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4270 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4271 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4272 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4273 REGINFO_SENTINEL 4274 }; 4275 4276 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4277 /* The cache test-and-clean instructions always return (1 << 30) 4278 * to indicate that there are no dirty cache lines. 4279 */ 4280 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4281 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4282 .resetvalue = (1 << 30) }, 4283 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4284 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4285 .resetvalue = (1 << 30) }, 4286 REGINFO_SENTINEL 4287 }; 4288 4289 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4290 /* Ignore ReadBuffer accesses */ 4291 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4292 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4293 .access = PL1_RW, .resetvalue = 0, 4294 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4295 REGINFO_SENTINEL 4296 }; 4297 4298 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4299 { 4300 unsigned int cur_el = arm_current_el(env); 4301 4302 if (arm_is_el2_enabled(env) && cur_el == 1) { 4303 return env->cp15.vpidr_el2; 4304 } 4305 return raw_read(env, ri); 4306 } 4307 4308 static uint64_t mpidr_read_val(CPUARMState *env) 4309 { 4310 ARMCPU *cpu = env_archcpu(env); 4311 uint64_t mpidr = cpu->mp_affinity; 4312 4313 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4314 mpidr |= (1U << 31); 4315 /* Cores which are uniprocessor (non-coherent) 4316 * but still implement the MP extensions set 4317 * bit 30. (For instance, Cortex-R5). 4318 */ 4319 if (cpu->mp_is_up) { 4320 mpidr |= (1u << 30); 4321 } 4322 } 4323 return mpidr; 4324 } 4325 4326 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4327 { 4328 unsigned int cur_el = arm_current_el(env); 4329 4330 if (arm_is_el2_enabled(env) && cur_el == 1) { 4331 return env->cp15.vmpidr_el2; 4332 } 4333 return mpidr_read_val(env); 4334 } 4335 4336 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4337 /* NOP AMAIR0/1 */ 4338 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4339 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4340 .access = PL1_RW, .accessfn = access_tvm_trvm, 4341 .type = ARM_CP_CONST, .resetvalue = 0 }, 4342 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4343 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4344 .access = PL1_RW, .accessfn = access_tvm_trvm, 4345 .type = ARM_CP_CONST, .resetvalue = 0 }, 4346 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4347 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4348 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4349 offsetof(CPUARMState, cp15.par_ns)} }, 4350 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4351 .access = PL1_RW, .accessfn = access_tvm_trvm, 4352 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4353 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4354 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4355 .writefn = vmsa_ttbr_write, }, 4356 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4357 .access = PL1_RW, .accessfn = access_tvm_trvm, 4358 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4359 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4360 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4361 .writefn = vmsa_ttbr_write, }, 4362 REGINFO_SENTINEL 4363 }; 4364 4365 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4366 { 4367 return vfp_get_fpcr(env); 4368 } 4369 4370 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4371 uint64_t value) 4372 { 4373 vfp_set_fpcr(env, value); 4374 } 4375 4376 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4377 { 4378 return vfp_get_fpsr(env); 4379 } 4380 4381 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4382 uint64_t value) 4383 { 4384 vfp_set_fpsr(env, value); 4385 } 4386 4387 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4388 bool isread) 4389 { 4390 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4391 return CP_ACCESS_TRAP; 4392 } 4393 return CP_ACCESS_OK; 4394 } 4395 4396 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4397 uint64_t value) 4398 { 4399 env->daif = value & PSTATE_DAIF; 4400 } 4401 4402 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4403 { 4404 return env->pstate & PSTATE_PAN; 4405 } 4406 4407 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4408 uint64_t value) 4409 { 4410 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4411 } 4412 4413 static const ARMCPRegInfo pan_reginfo = { 4414 .name = "PAN", .state = ARM_CP_STATE_AA64, 4415 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4416 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4417 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4418 }; 4419 4420 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4421 { 4422 return env->pstate & PSTATE_UAO; 4423 } 4424 4425 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4426 uint64_t value) 4427 { 4428 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4429 } 4430 4431 static const ARMCPRegInfo uao_reginfo = { 4432 .name = "UAO", .state = ARM_CP_STATE_AA64, 4433 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4434 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4435 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4436 }; 4437 4438 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4439 { 4440 return env->pstate & PSTATE_DIT; 4441 } 4442 4443 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4444 uint64_t value) 4445 { 4446 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4447 } 4448 4449 static const ARMCPRegInfo dit_reginfo = { 4450 .name = "DIT", .state = ARM_CP_STATE_AA64, 4451 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4452 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4453 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4454 }; 4455 4456 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4457 { 4458 return env->pstate & PSTATE_SSBS; 4459 } 4460 4461 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4462 uint64_t value) 4463 { 4464 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4465 } 4466 4467 static const ARMCPRegInfo ssbs_reginfo = { 4468 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4469 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4470 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4471 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4472 }; 4473 4474 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4475 const ARMCPRegInfo *ri, 4476 bool isread) 4477 { 4478 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4479 switch (arm_current_el(env)) { 4480 case 0: 4481 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4482 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4483 return CP_ACCESS_TRAP; 4484 } 4485 /* fall through */ 4486 case 1: 4487 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4488 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4489 return CP_ACCESS_TRAP_EL2; 4490 } 4491 break; 4492 } 4493 return CP_ACCESS_OK; 4494 } 4495 4496 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4497 const ARMCPRegInfo *ri, 4498 bool isread) 4499 { 4500 /* Cache invalidate/clean to Point of Unification... */ 4501 switch (arm_current_el(env)) { 4502 case 0: 4503 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4504 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4505 return CP_ACCESS_TRAP; 4506 } 4507 /* fall through */ 4508 case 1: 4509 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4510 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4511 return CP_ACCESS_TRAP_EL2; 4512 } 4513 break; 4514 } 4515 return CP_ACCESS_OK; 4516 } 4517 4518 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4519 * Page D4-1736 (DDI0487A.b) 4520 */ 4521 4522 static int vae1_tlbmask(CPUARMState *env) 4523 { 4524 uint64_t hcr = arm_hcr_el2_eff(env); 4525 uint16_t mask; 4526 4527 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4528 mask = ARMMMUIdxBit_E20_2 | 4529 ARMMMUIdxBit_E20_2_PAN | 4530 ARMMMUIdxBit_E20_0; 4531 } else { 4532 mask = ARMMMUIdxBit_E10_1 | 4533 ARMMMUIdxBit_E10_1_PAN | 4534 ARMMMUIdxBit_E10_0; 4535 } 4536 4537 if (arm_is_secure_below_el3(env)) { 4538 mask >>= ARM_MMU_IDX_A_NS; 4539 } 4540 4541 return mask; 4542 } 4543 4544 /* Return 56 if TBI is enabled, 64 otherwise. */ 4545 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4546 uint64_t addr) 4547 { 4548 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4549 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4550 int select = extract64(addr, 55, 1); 4551 4552 return (tbi >> select) & 1 ? 56 : 64; 4553 } 4554 4555 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4556 { 4557 uint64_t hcr = arm_hcr_el2_eff(env); 4558 ARMMMUIdx mmu_idx; 4559 4560 /* Only the regime of the mmu_idx below is significant. */ 4561 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4562 mmu_idx = ARMMMUIdx_E20_0; 4563 } else { 4564 mmu_idx = ARMMMUIdx_E10_0; 4565 } 4566 4567 if (arm_is_secure_below_el3(env)) { 4568 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4569 } 4570 4571 return tlbbits_for_regime(env, mmu_idx, addr); 4572 } 4573 4574 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4575 uint64_t value) 4576 { 4577 CPUState *cs = env_cpu(env); 4578 int mask = vae1_tlbmask(env); 4579 4580 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4581 } 4582 4583 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4584 uint64_t value) 4585 { 4586 CPUState *cs = env_cpu(env); 4587 int mask = vae1_tlbmask(env); 4588 4589 if (tlb_force_broadcast(env)) { 4590 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4591 } else { 4592 tlb_flush_by_mmuidx(cs, mask); 4593 } 4594 } 4595 4596 static int alle1_tlbmask(CPUARMState *env) 4597 { 4598 /* 4599 * Note that the 'ALL' scope must invalidate both stage 1 and 4600 * stage 2 translations, whereas most other scopes only invalidate 4601 * stage 1 translations. 4602 */ 4603 if (arm_is_secure_below_el3(env)) { 4604 return ARMMMUIdxBit_SE10_1 | 4605 ARMMMUIdxBit_SE10_1_PAN | 4606 ARMMMUIdxBit_SE10_0; 4607 } else { 4608 return ARMMMUIdxBit_E10_1 | 4609 ARMMMUIdxBit_E10_1_PAN | 4610 ARMMMUIdxBit_E10_0; 4611 } 4612 } 4613 4614 static int e2_tlbmask(CPUARMState *env) 4615 { 4616 if (arm_is_secure_below_el3(env)) { 4617 return ARMMMUIdxBit_SE20_0 | 4618 ARMMMUIdxBit_SE20_2 | 4619 ARMMMUIdxBit_SE20_2_PAN | 4620 ARMMMUIdxBit_SE2; 4621 } else { 4622 return ARMMMUIdxBit_E20_0 | 4623 ARMMMUIdxBit_E20_2 | 4624 ARMMMUIdxBit_E20_2_PAN | 4625 ARMMMUIdxBit_E2; 4626 } 4627 } 4628 4629 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4630 uint64_t value) 4631 { 4632 CPUState *cs = env_cpu(env); 4633 int mask = alle1_tlbmask(env); 4634 4635 tlb_flush_by_mmuidx(cs, mask); 4636 } 4637 4638 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4639 uint64_t value) 4640 { 4641 CPUState *cs = env_cpu(env); 4642 int mask = e2_tlbmask(env); 4643 4644 tlb_flush_by_mmuidx(cs, mask); 4645 } 4646 4647 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4648 uint64_t value) 4649 { 4650 ARMCPU *cpu = env_archcpu(env); 4651 CPUState *cs = CPU(cpu); 4652 4653 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4654 } 4655 4656 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4657 uint64_t value) 4658 { 4659 CPUState *cs = env_cpu(env); 4660 int mask = alle1_tlbmask(env); 4661 4662 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4663 } 4664 4665 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4666 uint64_t value) 4667 { 4668 CPUState *cs = env_cpu(env); 4669 int mask = e2_tlbmask(env); 4670 4671 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4672 } 4673 4674 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4675 uint64_t value) 4676 { 4677 CPUState *cs = env_cpu(env); 4678 4679 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4680 } 4681 4682 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4683 uint64_t value) 4684 { 4685 /* Invalidate by VA, EL2 4686 * Currently handles both VAE2 and VALE2, since we don't support 4687 * flush-last-level-only. 4688 */ 4689 CPUState *cs = env_cpu(env); 4690 int mask = e2_tlbmask(env); 4691 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4692 4693 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4694 } 4695 4696 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4697 uint64_t value) 4698 { 4699 /* Invalidate by VA, EL3 4700 * Currently handles both VAE3 and VALE3, since we don't support 4701 * flush-last-level-only. 4702 */ 4703 ARMCPU *cpu = env_archcpu(env); 4704 CPUState *cs = CPU(cpu); 4705 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4706 4707 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4708 } 4709 4710 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4711 uint64_t value) 4712 { 4713 CPUState *cs = env_cpu(env); 4714 int mask = vae1_tlbmask(env); 4715 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4716 int bits = vae1_tlbbits(env, pageaddr); 4717 4718 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4719 } 4720 4721 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4722 uint64_t value) 4723 { 4724 /* Invalidate by VA, EL1&0 (AArch64 version). 4725 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4726 * since we don't support flush-for-specific-ASID-only or 4727 * flush-last-level-only. 4728 */ 4729 CPUState *cs = env_cpu(env); 4730 int mask = vae1_tlbmask(env); 4731 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4732 int bits = vae1_tlbbits(env, pageaddr); 4733 4734 if (tlb_force_broadcast(env)) { 4735 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4736 } else { 4737 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4738 } 4739 } 4740 4741 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4742 uint64_t value) 4743 { 4744 CPUState *cs = env_cpu(env); 4745 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4746 bool secure = arm_is_secure_below_el3(env); 4747 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4748 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4749 pageaddr); 4750 4751 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4752 } 4753 4754 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4755 uint64_t value) 4756 { 4757 CPUState *cs = env_cpu(env); 4758 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4759 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4760 4761 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4762 ARMMMUIdxBit_SE3, bits); 4763 } 4764 4765 #ifdef TARGET_AARCH64 4766 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env, 4767 uint64_t value) 4768 { 4769 unsigned int page_shift; 4770 unsigned int page_size_granule; 4771 uint64_t num; 4772 uint64_t scale; 4773 uint64_t exponent; 4774 uint64_t length; 4775 4776 num = extract64(value, 39, 4); 4777 scale = extract64(value, 44, 2); 4778 page_size_granule = extract64(value, 46, 2); 4779 4780 page_shift = page_size_granule * 2 + 12; 4781 4782 if (page_size_granule == 0) { 4783 qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n", 4784 page_size_granule); 4785 return 0; 4786 } 4787 4788 exponent = (5 * scale) + 1; 4789 length = (num + 1) << (exponent + page_shift); 4790 4791 return length; 4792 } 4793 4794 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value, 4795 bool two_ranges) 4796 { 4797 /* TODO: ARMv8.7 FEAT_LPA2 */ 4798 uint64_t pageaddr; 4799 4800 if (two_ranges) { 4801 pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS; 4802 } else { 4803 pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS; 4804 } 4805 4806 return pageaddr; 4807 } 4808 4809 static void do_rvae_write(CPUARMState *env, uint64_t value, 4810 int idxmap, bool synced) 4811 { 4812 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4813 bool two_ranges = regime_has_2_ranges(one_idx); 4814 uint64_t baseaddr, length; 4815 int bits; 4816 4817 baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges); 4818 length = tlbi_aa64_range_get_length(env, value); 4819 bits = tlbbits_for_regime(env, one_idx, baseaddr); 4820 4821 if (synced) { 4822 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4823 baseaddr, 4824 length, 4825 idxmap, 4826 bits); 4827 } else { 4828 tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr, 4829 length, idxmap, bits); 4830 } 4831 } 4832 4833 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4834 const ARMCPRegInfo *ri, 4835 uint64_t value) 4836 { 4837 /* 4838 * Invalidate by VA range, EL1&0. 4839 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4840 * since we don't support flush-for-specific-ASID-only or 4841 * flush-last-level-only. 4842 */ 4843 4844 do_rvae_write(env, value, vae1_tlbmask(env), 4845 tlb_force_broadcast(env)); 4846 } 4847 4848 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4849 const ARMCPRegInfo *ri, 4850 uint64_t value) 4851 { 4852 /* 4853 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4854 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4855 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4856 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4857 * shareable specific flushes. 4858 */ 4859 4860 do_rvae_write(env, value, vae1_tlbmask(env), true); 4861 } 4862 4863 static int vae2_tlbmask(CPUARMState *env) 4864 { 4865 return (arm_is_secure_below_el3(env) 4866 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4867 } 4868 4869 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4870 const ARMCPRegInfo *ri, 4871 uint64_t value) 4872 { 4873 /* 4874 * Invalidate by VA range, EL2. 4875 * Currently handles all of RVAE2 and RVALE2, 4876 * since we don't support flush-for-specific-ASID-only or 4877 * flush-last-level-only. 4878 */ 4879 4880 do_rvae_write(env, value, vae2_tlbmask(env), 4881 tlb_force_broadcast(env)); 4882 4883 4884 } 4885 4886 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4887 const ARMCPRegInfo *ri, 4888 uint64_t value) 4889 { 4890 /* 4891 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4892 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4893 * since we don't support flush-for-specific-ASID-only, 4894 * flush-last-level-only or inner/outer shareable specific flushes. 4895 */ 4896 4897 do_rvae_write(env, value, vae2_tlbmask(env), true); 4898 4899 } 4900 4901 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4902 const ARMCPRegInfo *ri, 4903 uint64_t value) 4904 { 4905 /* 4906 * Invalidate by VA range, EL3. 4907 * Currently handles all of RVAE3 and RVALE3, 4908 * since we don't support flush-for-specific-ASID-only or 4909 * flush-last-level-only. 4910 */ 4911 4912 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4913 tlb_force_broadcast(env)); 4914 } 4915 4916 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4917 const ARMCPRegInfo *ri, 4918 uint64_t value) 4919 { 4920 /* 4921 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4922 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4923 * since we don't support flush-for-specific-ASID-only, 4924 * flush-last-level-only or inner/outer specific flushes. 4925 */ 4926 4927 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4928 } 4929 #endif 4930 4931 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4932 bool isread) 4933 { 4934 int cur_el = arm_current_el(env); 4935 4936 if (cur_el < 2) { 4937 uint64_t hcr = arm_hcr_el2_eff(env); 4938 4939 if (cur_el == 0) { 4940 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4941 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4942 return CP_ACCESS_TRAP_EL2; 4943 } 4944 } else { 4945 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4946 return CP_ACCESS_TRAP; 4947 } 4948 if (hcr & HCR_TDZ) { 4949 return CP_ACCESS_TRAP_EL2; 4950 } 4951 } 4952 } else if (hcr & HCR_TDZ) { 4953 return CP_ACCESS_TRAP_EL2; 4954 } 4955 } 4956 return CP_ACCESS_OK; 4957 } 4958 4959 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4960 { 4961 ARMCPU *cpu = env_archcpu(env); 4962 int dzp_bit = 1 << 4; 4963 4964 /* DZP indicates whether DC ZVA access is allowed */ 4965 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4966 dzp_bit = 0; 4967 } 4968 return cpu->dcz_blocksize | dzp_bit; 4969 } 4970 4971 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4972 bool isread) 4973 { 4974 if (!(env->pstate & PSTATE_SP)) { 4975 /* Access to SP_EL0 is undefined if it's being used as 4976 * the stack pointer. 4977 */ 4978 return CP_ACCESS_TRAP_UNCATEGORIZED; 4979 } 4980 return CP_ACCESS_OK; 4981 } 4982 4983 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4984 { 4985 return env->pstate & PSTATE_SP; 4986 } 4987 4988 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4989 { 4990 update_spsel(env, val); 4991 } 4992 4993 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4994 uint64_t value) 4995 { 4996 ARMCPU *cpu = env_archcpu(env); 4997 4998 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4999 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5000 value &= ~SCTLR_M; 5001 } 5002 5003 /* ??? Lots of these bits are not implemented. */ 5004 5005 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5006 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5007 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5008 } else { 5009 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5010 SCTLR_ATA0 | SCTLR_ATA); 5011 } 5012 } 5013 5014 if (raw_read(env, ri) == value) { 5015 /* Skip the TLB flush if nothing actually changed; Linux likes 5016 * to do a lot of pointless SCTLR writes. 5017 */ 5018 return; 5019 } 5020 5021 raw_write(env, ri, value); 5022 5023 /* This may enable/disable the MMU, so do a TLB flush. */ 5024 tlb_flush(CPU(cpu)); 5025 5026 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 5027 /* 5028 * Normally we would always end the TB on an SCTLR write; see the 5029 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5030 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5031 * of hflags from the translator, so do it here. 5032 */ 5033 arm_rebuild_hflags(env); 5034 } 5035 } 5036 5037 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 5038 bool isread) 5039 { 5040 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 5041 return CP_ACCESS_TRAP_FP_EL2; 5042 } 5043 if (env->cp15.cptr_el[3] & CPTR_TFP) { 5044 return CP_ACCESS_TRAP_FP_EL3; 5045 } 5046 return CP_ACCESS_OK; 5047 } 5048 5049 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5050 uint64_t value) 5051 { 5052 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 5053 } 5054 5055 static const ARMCPRegInfo v8_cp_reginfo[] = { 5056 /* Minimal set of EL0-visible registers. This will need to be expanded 5057 * significantly for system emulation of AArch64 CPUs. 5058 */ 5059 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5060 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5061 .access = PL0_RW, .type = ARM_CP_NZCV }, 5062 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5063 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5064 .type = ARM_CP_NO_RAW, 5065 .access = PL0_RW, .accessfn = aa64_daif_access, 5066 .fieldoffset = offsetof(CPUARMState, daif), 5067 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5068 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5069 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5070 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5071 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5072 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5073 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5074 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5075 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5076 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5077 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5078 .access = PL0_R, .type = ARM_CP_NO_RAW, 5079 .readfn = aa64_dczid_read }, 5080 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5081 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5082 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5083 #ifndef CONFIG_USER_ONLY 5084 /* Avoid overhead of an access check that always passes in user-mode */ 5085 .accessfn = aa64_zva_access, 5086 #endif 5087 }, 5088 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5089 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5090 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5091 /* Cache ops: all NOPs since we don't emulate caches */ 5092 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5093 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5094 .access = PL1_W, .type = ARM_CP_NOP, 5095 .accessfn = aa64_cacheop_pou_access }, 5096 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5097 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5098 .access = PL1_W, .type = ARM_CP_NOP, 5099 .accessfn = aa64_cacheop_pou_access }, 5100 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5101 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5102 .access = PL0_W, .type = ARM_CP_NOP, 5103 .accessfn = aa64_cacheop_pou_access }, 5104 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5105 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5106 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5107 .type = ARM_CP_NOP }, 5108 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5109 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5110 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5111 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5112 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5113 .access = PL0_W, .type = ARM_CP_NOP, 5114 .accessfn = aa64_cacheop_poc_access }, 5115 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5116 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5117 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5118 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5119 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5120 .access = PL0_W, .type = ARM_CP_NOP, 5121 .accessfn = aa64_cacheop_pou_access }, 5122 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5123 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5124 .access = PL0_W, .type = ARM_CP_NOP, 5125 .accessfn = aa64_cacheop_poc_access }, 5126 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5127 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5128 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5129 /* TLBI operations */ 5130 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5131 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5132 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5133 .writefn = tlbi_aa64_vmalle1is_write }, 5134 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5135 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5136 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5137 .writefn = tlbi_aa64_vae1is_write }, 5138 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5139 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5140 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5141 .writefn = tlbi_aa64_vmalle1is_write }, 5142 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5143 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5144 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5145 .writefn = tlbi_aa64_vae1is_write }, 5146 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5147 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5148 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5149 .writefn = tlbi_aa64_vae1is_write }, 5150 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5151 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5152 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5153 .writefn = tlbi_aa64_vae1is_write }, 5154 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5155 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5156 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5157 .writefn = tlbi_aa64_vmalle1_write }, 5158 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5159 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5160 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5161 .writefn = tlbi_aa64_vae1_write }, 5162 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5163 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5164 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5165 .writefn = tlbi_aa64_vmalle1_write }, 5166 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5167 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5168 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5169 .writefn = tlbi_aa64_vae1_write }, 5170 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5171 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5172 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5173 .writefn = tlbi_aa64_vae1_write }, 5174 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5175 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5176 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5177 .writefn = tlbi_aa64_vae1_write }, 5178 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5179 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5180 .access = PL2_W, .type = ARM_CP_NOP }, 5181 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5182 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5183 .access = PL2_W, .type = ARM_CP_NOP }, 5184 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5185 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5186 .access = PL2_W, .type = ARM_CP_NO_RAW, 5187 .writefn = tlbi_aa64_alle1is_write }, 5188 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5189 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5190 .access = PL2_W, .type = ARM_CP_NO_RAW, 5191 .writefn = tlbi_aa64_alle1is_write }, 5192 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5193 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5194 .access = PL2_W, .type = ARM_CP_NOP }, 5195 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5196 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5197 .access = PL2_W, .type = ARM_CP_NOP }, 5198 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5199 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5200 .access = PL2_W, .type = ARM_CP_NO_RAW, 5201 .writefn = tlbi_aa64_alle1_write }, 5202 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5203 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5204 .access = PL2_W, .type = ARM_CP_NO_RAW, 5205 .writefn = tlbi_aa64_alle1is_write }, 5206 #ifndef CONFIG_USER_ONLY 5207 /* 64 bit address translation operations */ 5208 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5209 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5210 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5211 .writefn = ats_write64 }, 5212 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5213 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5214 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5215 .writefn = ats_write64 }, 5216 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5217 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5218 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5219 .writefn = ats_write64 }, 5220 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5221 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5222 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5223 .writefn = ats_write64 }, 5224 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5225 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5226 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5227 .writefn = ats_write64 }, 5228 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5229 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5230 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5231 .writefn = ats_write64 }, 5232 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5233 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5234 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5235 .writefn = ats_write64 }, 5236 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5237 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5238 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5239 .writefn = ats_write64 }, 5240 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5241 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5242 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5243 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5244 .writefn = ats_write64 }, 5245 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5246 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5247 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5248 .writefn = ats_write64 }, 5249 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5250 .type = ARM_CP_ALIAS, 5251 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5252 .access = PL1_RW, .resetvalue = 0, 5253 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5254 .writefn = par_write }, 5255 #endif 5256 /* TLB invalidate last level of translation table walk */ 5257 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5258 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5259 .writefn = tlbimva_is_write }, 5260 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5261 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5262 .writefn = tlbimvaa_is_write }, 5263 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5264 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5265 .writefn = tlbimva_write }, 5266 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5267 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5268 .writefn = tlbimvaa_write }, 5269 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5270 .type = ARM_CP_NO_RAW, .access = PL2_W, 5271 .writefn = tlbimva_hyp_write }, 5272 { .name = "TLBIMVALHIS", 5273 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5274 .type = ARM_CP_NO_RAW, .access = PL2_W, 5275 .writefn = tlbimva_hyp_is_write }, 5276 { .name = "TLBIIPAS2", 5277 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5278 .type = ARM_CP_NOP, .access = PL2_W }, 5279 { .name = "TLBIIPAS2IS", 5280 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5281 .type = ARM_CP_NOP, .access = PL2_W }, 5282 { .name = "TLBIIPAS2L", 5283 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5284 .type = ARM_CP_NOP, .access = PL2_W }, 5285 { .name = "TLBIIPAS2LIS", 5286 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5287 .type = ARM_CP_NOP, .access = PL2_W }, 5288 /* 32 bit cache operations */ 5289 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5290 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5291 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5292 .type = ARM_CP_NOP, .access = PL1_W }, 5293 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5294 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5295 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5296 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5297 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5298 .type = ARM_CP_NOP, .access = PL1_W }, 5299 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5300 .type = ARM_CP_NOP, .access = PL1_W }, 5301 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5302 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5303 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5304 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5305 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5306 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5307 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5308 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5309 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5310 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5311 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5312 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5313 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5314 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5315 /* MMU Domain access control / MPU write buffer control */ 5316 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5317 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5318 .writefn = dacr_write, .raw_writefn = raw_write, 5319 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5320 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5321 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5322 .type = ARM_CP_ALIAS, 5323 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5324 .access = PL1_RW, 5325 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5326 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5327 .type = ARM_CP_ALIAS, 5328 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5329 .access = PL1_RW, 5330 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5331 /* We rely on the access checks not allowing the guest to write to the 5332 * state field when SPSel indicates that it's being used as the stack 5333 * pointer. 5334 */ 5335 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5336 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5337 .access = PL1_RW, .accessfn = sp_el0_access, 5338 .type = ARM_CP_ALIAS, 5339 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5340 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5341 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5342 .access = PL2_RW, .type = ARM_CP_ALIAS, 5343 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5344 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5345 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5346 .type = ARM_CP_NO_RAW, 5347 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5348 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5349 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5350 .type = ARM_CP_ALIAS, 5351 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5352 .access = PL2_RW, .accessfn = fpexc32_access }, 5353 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5354 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5355 .access = PL2_RW, .resetvalue = 0, 5356 .writefn = dacr_write, .raw_writefn = raw_write, 5357 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5358 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5359 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5360 .access = PL2_RW, .resetvalue = 0, 5361 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5362 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5363 .type = ARM_CP_ALIAS, 5364 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5365 .access = PL2_RW, 5366 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5367 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5368 .type = ARM_CP_ALIAS, 5369 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5370 .access = PL2_RW, 5371 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5372 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5373 .type = ARM_CP_ALIAS, 5374 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5375 .access = PL2_RW, 5376 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5377 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5378 .type = ARM_CP_ALIAS, 5379 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5380 .access = PL2_RW, 5381 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5382 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5383 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5384 .resetvalue = 0, 5385 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5386 { .name = "SDCR", .type = ARM_CP_ALIAS, 5387 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5388 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5389 .writefn = sdcr_write, 5390 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5391 REGINFO_SENTINEL 5392 }; 5393 5394 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5395 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5396 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5397 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5398 .access = PL2_RW, 5399 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5400 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5401 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5402 .access = PL2_RW, 5403 .type = ARM_CP_CONST, .resetvalue = 0 }, 5404 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5405 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5406 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5407 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5408 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5409 .access = PL2_RW, 5410 .type = ARM_CP_CONST, .resetvalue = 0 }, 5411 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5412 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5413 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5414 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5415 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5416 .access = PL2_RW, .type = ARM_CP_CONST, 5417 .resetvalue = 0 }, 5418 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5419 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5420 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5421 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5422 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5423 .access = PL2_RW, .type = ARM_CP_CONST, 5424 .resetvalue = 0 }, 5425 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5426 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5427 .access = PL2_RW, .type = ARM_CP_CONST, 5428 .resetvalue = 0 }, 5429 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5430 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5431 .access = PL2_RW, .type = ARM_CP_CONST, 5432 .resetvalue = 0 }, 5433 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5434 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5435 .access = PL2_RW, .type = ARM_CP_CONST, 5436 .resetvalue = 0 }, 5437 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5438 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5439 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5440 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5441 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5442 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5443 .type = ARM_CP_CONST, .resetvalue = 0 }, 5444 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5445 .cp = 15, .opc1 = 6, .crm = 2, 5446 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5447 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5448 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5449 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5450 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5451 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5452 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5453 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5454 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5455 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5456 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5457 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5458 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5459 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5460 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5461 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5462 .resetvalue = 0 }, 5463 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5464 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5465 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5466 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5467 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5468 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5469 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5470 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5471 .resetvalue = 0 }, 5472 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5473 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5474 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5475 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5476 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5477 .resetvalue = 0 }, 5478 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5479 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5480 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5481 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5482 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5483 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5484 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5485 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5486 .access = PL2_RW, .accessfn = access_tda, 5487 .type = ARM_CP_CONST, .resetvalue = 0 }, 5488 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5489 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5490 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5491 .type = ARM_CP_CONST, .resetvalue = 0 }, 5492 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5493 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5494 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5495 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5496 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5497 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5498 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5499 .type = ARM_CP_CONST, 5500 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5501 .access = PL2_RW, .resetvalue = 0 }, 5502 REGINFO_SENTINEL 5503 }; 5504 5505 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5506 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5507 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5508 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5509 .access = PL2_RW, 5510 .type = ARM_CP_CONST, .resetvalue = 0 }, 5511 REGINFO_SENTINEL 5512 }; 5513 5514 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5515 { 5516 ARMCPU *cpu = env_archcpu(env); 5517 5518 if (arm_feature(env, ARM_FEATURE_V8)) { 5519 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5520 } else { 5521 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5522 } 5523 5524 if (arm_feature(env, ARM_FEATURE_EL3)) { 5525 valid_mask &= ~HCR_HCD; 5526 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5527 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5528 * However, if we're using the SMC PSCI conduit then QEMU is 5529 * effectively acting like EL3 firmware and so the guest at 5530 * EL2 should retain the ability to prevent EL1 from being 5531 * able to make SMC calls into the ersatz firmware, so in 5532 * that case HCR.TSC should be read/write. 5533 */ 5534 valid_mask &= ~HCR_TSC; 5535 } 5536 5537 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5538 if (cpu_isar_feature(aa64_vh, cpu)) { 5539 valid_mask |= HCR_E2H; 5540 } 5541 if (cpu_isar_feature(aa64_lor, cpu)) { 5542 valid_mask |= HCR_TLOR; 5543 } 5544 if (cpu_isar_feature(aa64_pauth, cpu)) { 5545 valid_mask |= HCR_API | HCR_APK; 5546 } 5547 if (cpu_isar_feature(aa64_mte, cpu)) { 5548 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5549 } 5550 } 5551 5552 /* Clear RES0 bits. */ 5553 value &= valid_mask; 5554 5555 /* 5556 * These bits change the MMU setup: 5557 * HCR_VM enables stage 2 translation 5558 * HCR_PTW forbids certain page-table setups 5559 * HCR_DC disables stage1 and enables stage2 translation 5560 * HCR_DCT enables tagging on (disabled) stage1 translation 5561 */ 5562 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5563 tlb_flush(CPU(cpu)); 5564 } 5565 env->cp15.hcr_el2 = value; 5566 5567 /* 5568 * Updates to VI and VF require us to update the status of 5569 * virtual interrupts, which are the logical OR of these bits 5570 * and the state of the input lines from the GIC. (This requires 5571 * that we have the iothread lock, which is done by marking the 5572 * reginfo structs as ARM_CP_IO.) 5573 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5574 * possible for it to be taken immediately, because VIRQ and 5575 * VFIQ are masked unless running at EL0 or EL1, and HCR 5576 * can only be written at EL2. 5577 */ 5578 g_assert(qemu_mutex_iothread_locked()); 5579 arm_cpu_update_virq(cpu); 5580 arm_cpu_update_vfiq(cpu); 5581 } 5582 5583 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5584 { 5585 do_hcr_write(env, value, 0); 5586 } 5587 5588 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5589 uint64_t value) 5590 { 5591 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5592 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5593 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5594 } 5595 5596 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5597 uint64_t value) 5598 { 5599 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5600 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5601 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5602 } 5603 5604 /* 5605 * Return the effective value of HCR_EL2. 5606 * Bits that are not included here: 5607 * RW (read from SCR_EL3.RW as needed) 5608 */ 5609 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5610 { 5611 uint64_t ret = env->cp15.hcr_el2; 5612 5613 if (!arm_is_el2_enabled(env)) { 5614 /* 5615 * "This register has no effect if EL2 is not enabled in the 5616 * current Security state". This is ARMv8.4-SecEL2 speak for 5617 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5618 * 5619 * Prior to that, the language was "In an implementation that 5620 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5621 * as if this field is 0 for all purposes other than a direct 5622 * read or write access of HCR_EL2". With lots of enumeration 5623 * on a per-field basis. In current QEMU, this is condition 5624 * is arm_is_secure_below_el3. 5625 * 5626 * Since the v8.4 language applies to the entire register, and 5627 * appears to be backward compatible, use that. 5628 */ 5629 return 0; 5630 } 5631 5632 /* 5633 * For a cpu that supports both aarch64 and aarch32, we can set bits 5634 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5635 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5636 */ 5637 if (!arm_el_is_aa64(env, 2)) { 5638 uint64_t aa32_valid; 5639 5640 /* 5641 * These bits are up-to-date as of ARMv8.6. 5642 * For HCR, it's easiest to list just the 2 bits that are invalid. 5643 * For HCR2, list those that are valid. 5644 */ 5645 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5646 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5647 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5648 ret &= aa32_valid; 5649 } 5650 5651 if (ret & HCR_TGE) { 5652 /* These bits are up-to-date as of ARMv8.6. */ 5653 if (ret & HCR_E2H) { 5654 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5655 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5656 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5657 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5658 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5659 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5660 } else { 5661 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5662 } 5663 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5664 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5665 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5666 HCR_TLOR); 5667 } 5668 5669 return ret; 5670 } 5671 5672 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5673 uint64_t value) 5674 { 5675 /* 5676 * For A-profile AArch32 EL3, if NSACR.CP10 5677 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5678 */ 5679 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5680 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5681 value &= ~(0x3 << 10); 5682 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5683 } 5684 env->cp15.cptr_el[2] = value; 5685 } 5686 5687 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5688 { 5689 /* 5690 * For A-profile AArch32 EL3, if NSACR.CP10 5691 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5692 */ 5693 uint64_t value = env->cp15.cptr_el[2]; 5694 5695 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5696 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5697 value |= 0x3 << 10; 5698 } 5699 return value; 5700 } 5701 5702 static const ARMCPRegInfo el2_cp_reginfo[] = { 5703 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5704 .type = ARM_CP_IO, 5705 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5706 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5707 .writefn = hcr_write }, 5708 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5709 .type = ARM_CP_ALIAS | ARM_CP_IO, 5710 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5711 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5712 .writefn = hcr_writelow }, 5713 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5714 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5715 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5716 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5717 .type = ARM_CP_ALIAS, 5718 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5719 .access = PL2_RW, 5720 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5721 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5722 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5723 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5724 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5725 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5726 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5727 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5728 .type = ARM_CP_ALIAS, 5729 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5730 .access = PL2_RW, 5731 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5732 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5733 .type = ARM_CP_ALIAS, 5734 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5735 .access = PL2_RW, 5736 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5737 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5738 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5739 .access = PL2_RW, .writefn = vbar_write, 5740 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5741 .resetvalue = 0 }, 5742 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5743 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5744 .access = PL3_RW, .type = ARM_CP_ALIAS, 5745 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5746 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5747 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5748 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5749 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5750 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5751 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5752 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5753 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5754 .resetvalue = 0 }, 5755 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5756 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5757 .access = PL2_RW, .type = ARM_CP_ALIAS, 5758 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5759 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5760 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5761 .access = PL2_RW, .type = ARM_CP_CONST, 5762 .resetvalue = 0 }, 5763 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5764 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5765 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5766 .access = PL2_RW, .type = ARM_CP_CONST, 5767 .resetvalue = 0 }, 5768 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5769 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5770 .access = PL2_RW, .type = ARM_CP_CONST, 5771 .resetvalue = 0 }, 5772 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5773 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5774 .access = PL2_RW, .type = ARM_CP_CONST, 5775 .resetvalue = 0 }, 5776 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5777 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5778 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5779 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5780 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5781 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5782 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5783 .type = ARM_CP_ALIAS, 5784 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5785 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5786 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5787 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5788 .access = PL2_RW, 5789 /* no .writefn needed as this can't cause an ASID change; 5790 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5791 */ 5792 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5793 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5794 .cp = 15, .opc1 = 6, .crm = 2, 5795 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5796 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5797 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5798 .writefn = vttbr_write }, 5799 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5800 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5801 .access = PL2_RW, .writefn = vttbr_write, 5802 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5803 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5804 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5805 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5806 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5807 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5808 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5809 .access = PL2_RW, .resetvalue = 0, 5810 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5811 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5812 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5813 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5814 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5815 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5816 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5817 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5818 { .name = "TLBIALLNSNH", 5819 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5820 .type = ARM_CP_NO_RAW, .access = PL2_W, 5821 .writefn = tlbiall_nsnh_write }, 5822 { .name = "TLBIALLNSNHIS", 5823 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5824 .type = ARM_CP_NO_RAW, .access = PL2_W, 5825 .writefn = tlbiall_nsnh_is_write }, 5826 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5827 .type = ARM_CP_NO_RAW, .access = PL2_W, 5828 .writefn = tlbiall_hyp_write }, 5829 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5830 .type = ARM_CP_NO_RAW, .access = PL2_W, 5831 .writefn = tlbiall_hyp_is_write }, 5832 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5833 .type = ARM_CP_NO_RAW, .access = PL2_W, 5834 .writefn = tlbimva_hyp_write }, 5835 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5836 .type = ARM_CP_NO_RAW, .access = PL2_W, 5837 .writefn = tlbimva_hyp_is_write }, 5838 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5839 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5840 .type = ARM_CP_NO_RAW, .access = PL2_W, 5841 .writefn = tlbi_aa64_alle2_write }, 5842 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5843 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5844 .type = ARM_CP_NO_RAW, .access = PL2_W, 5845 .writefn = tlbi_aa64_vae2_write }, 5846 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5847 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5848 .access = PL2_W, .type = ARM_CP_NO_RAW, 5849 .writefn = tlbi_aa64_vae2_write }, 5850 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5851 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5852 .access = PL2_W, .type = ARM_CP_NO_RAW, 5853 .writefn = tlbi_aa64_alle2is_write }, 5854 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5855 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5856 .type = ARM_CP_NO_RAW, .access = PL2_W, 5857 .writefn = tlbi_aa64_vae2is_write }, 5858 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5859 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5860 .access = PL2_W, .type = ARM_CP_NO_RAW, 5861 .writefn = tlbi_aa64_vae2is_write }, 5862 #ifndef CONFIG_USER_ONLY 5863 /* Unlike the other EL2-related AT operations, these must 5864 * UNDEF from EL3 if EL2 is not implemented, which is why we 5865 * define them here rather than with the rest of the AT ops. 5866 */ 5867 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5868 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5869 .access = PL2_W, .accessfn = at_s1e2_access, 5870 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5871 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5872 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5873 .access = PL2_W, .accessfn = at_s1e2_access, 5874 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5875 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5876 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5877 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5878 * to behave as if SCR.NS was 1. 5879 */ 5880 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5881 .access = PL2_W, 5882 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5883 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5884 .access = PL2_W, 5885 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5886 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5887 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5888 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5889 * reset values as IMPDEF. We choose to reset to 3 to comply with 5890 * both ARMv7 and ARMv8. 5891 */ 5892 .access = PL2_RW, .resetvalue = 3, 5893 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5894 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5895 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5896 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5897 .writefn = gt_cntvoff_write, 5898 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5899 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5900 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5901 .writefn = gt_cntvoff_write, 5902 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5903 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5904 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5905 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5906 .type = ARM_CP_IO, .access = PL2_RW, 5907 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5908 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5909 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5910 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5911 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5912 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5913 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5914 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5915 .resetfn = gt_hyp_timer_reset, 5916 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5917 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5918 .type = ARM_CP_IO, 5919 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5920 .access = PL2_RW, 5921 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5922 .resetvalue = 0, 5923 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5924 #endif 5925 /* The only field of MDCR_EL2 that has a defined architectural reset value 5926 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5927 */ 5928 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5929 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5930 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5931 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5932 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5933 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5934 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5935 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5936 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5937 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5938 .access = PL2_RW, 5939 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5940 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5941 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5942 .access = PL2_RW, 5943 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5944 REGINFO_SENTINEL 5945 }; 5946 5947 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5948 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5949 .type = ARM_CP_ALIAS | ARM_CP_IO, 5950 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5951 .access = PL2_RW, 5952 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5953 .writefn = hcr_writehigh }, 5954 REGINFO_SENTINEL 5955 }; 5956 5957 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5958 bool isread) 5959 { 5960 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5961 return CP_ACCESS_OK; 5962 } 5963 return CP_ACCESS_TRAP_UNCATEGORIZED; 5964 } 5965 5966 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5967 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5968 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5969 .access = PL2_RW, .accessfn = sel2_access, 5970 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5971 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5972 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5973 .access = PL2_RW, .accessfn = sel2_access, 5974 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5975 REGINFO_SENTINEL 5976 }; 5977 5978 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5979 bool isread) 5980 { 5981 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5982 * At Secure EL1 it traps to EL3 or EL2. 5983 */ 5984 if (arm_current_el(env) == 3) { 5985 return CP_ACCESS_OK; 5986 } 5987 if (arm_is_secure_below_el3(env)) { 5988 if (env->cp15.scr_el3 & SCR_EEL2) { 5989 return CP_ACCESS_TRAP_EL2; 5990 } 5991 return CP_ACCESS_TRAP_EL3; 5992 } 5993 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5994 if (isread) { 5995 return CP_ACCESS_OK; 5996 } 5997 return CP_ACCESS_TRAP_UNCATEGORIZED; 5998 } 5999 6000 static const ARMCPRegInfo el3_cp_reginfo[] = { 6001 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6002 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6003 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6004 .resetfn = scr_reset, .writefn = scr_write }, 6005 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6006 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6007 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6008 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6009 .writefn = scr_write }, 6010 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6011 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6012 .access = PL3_RW, .resetvalue = 0, 6013 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6014 { .name = "SDER", 6015 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6016 .access = PL3_RW, .resetvalue = 0, 6017 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6018 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6019 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6020 .writefn = vbar_write, .resetvalue = 0, 6021 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6022 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6023 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6024 .access = PL3_RW, .resetvalue = 0, 6025 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6026 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6027 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6028 .access = PL3_RW, 6029 /* no .writefn needed as this can't cause an ASID change; 6030 * we must provide a .raw_writefn and .resetfn because we handle 6031 * reset and migration for the AArch32 TTBCR(S), which might be 6032 * using mask and base_mask. 6033 */ 6034 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 6035 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6036 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6037 .type = ARM_CP_ALIAS, 6038 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6039 .access = PL3_RW, 6040 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6041 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6042 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6043 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6044 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6045 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6046 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6047 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6048 .type = ARM_CP_ALIAS, 6049 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6050 .access = PL3_RW, 6051 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6052 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6053 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6054 .access = PL3_RW, .writefn = vbar_write, 6055 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6056 .resetvalue = 0 }, 6057 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6058 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6059 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6060 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6061 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6062 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6063 .access = PL3_RW, .resetvalue = 0, 6064 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6065 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6066 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6067 .access = PL3_RW, .type = ARM_CP_CONST, 6068 .resetvalue = 0 }, 6069 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6070 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6071 .access = PL3_RW, .type = ARM_CP_CONST, 6072 .resetvalue = 0 }, 6073 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6074 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6075 .access = PL3_RW, .type = ARM_CP_CONST, 6076 .resetvalue = 0 }, 6077 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6078 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6079 .access = PL3_W, .type = ARM_CP_NO_RAW, 6080 .writefn = tlbi_aa64_alle3is_write }, 6081 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6082 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6083 .access = PL3_W, .type = ARM_CP_NO_RAW, 6084 .writefn = tlbi_aa64_vae3is_write }, 6085 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6086 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6087 .access = PL3_W, .type = ARM_CP_NO_RAW, 6088 .writefn = tlbi_aa64_vae3is_write }, 6089 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6090 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6091 .access = PL3_W, .type = ARM_CP_NO_RAW, 6092 .writefn = tlbi_aa64_alle3_write }, 6093 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6094 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6095 .access = PL3_W, .type = ARM_CP_NO_RAW, 6096 .writefn = tlbi_aa64_vae3_write }, 6097 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6098 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6099 .access = PL3_W, .type = ARM_CP_NO_RAW, 6100 .writefn = tlbi_aa64_vae3_write }, 6101 REGINFO_SENTINEL 6102 }; 6103 6104 #ifndef CONFIG_USER_ONLY 6105 /* Test if system register redirection is to occur in the current state. */ 6106 static bool redirect_for_e2h(CPUARMState *env) 6107 { 6108 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6109 } 6110 6111 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6112 { 6113 CPReadFn *readfn; 6114 6115 if (redirect_for_e2h(env)) { 6116 /* Switch to the saved EL2 version of the register. */ 6117 ri = ri->opaque; 6118 readfn = ri->readfn; 6119 } else { 6120 readfn = ri->orig_readfn; 6121 } 6122 if (readfn == NULL) { 6123 readfn = raw_read; 6124 } 6125 return readfn(env, ri); 6126 } 6127 6128 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6129 uint64_t value) 6130 { 6131 CPWriteFn *writefn; 6132 6133 if (redirect_for_e2h(env)) { 6134 /* Switch to the saved EL2 version of the register. */ 6135 ri = ri->opaque; 6136 writefn = ri->writefn; 6137 } else { 6138 writefn = ri->orig_writefn; 6139 } 6140 if (writefn == NULL) { 6141 writefn = raw_write; 6142 } 6143 writefn(env, ri, value); 6144 } 6145 6146 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6147 { 6148 struct E2HAlias { 6149 uint32_t src_key, dst_key, new_key; 6150 const char *src_name, *dst_name, *new_name; 6151 bool (*feature)(const ARMISARegisters *id); 6152 }; 6153 6154 #define K(op0, op1, crn, crm, op2) \ 6155 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6156 6157 static const struct E2HAlias aliases[] = { 6158 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6159 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6160 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6161 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6162 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6163 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6164 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6165 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6166 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6167 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6168 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6169 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6170 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6171 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6172 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6173 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6174 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6175 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6176 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6177 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6178 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6179 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6180 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6181 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6182 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6183 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6184 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6185 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6186 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6187 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6188 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6189 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6190 6191 /* 6192 * Note that redirection of ZCR is mentioned in the description 6193 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6194 * not in the summary table. 6195 */ 6196 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6197 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6198 6199 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6200 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6201 6202 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6203 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6204 }; 6205 #undef K 6206 6207 size_t i; 6208 6209 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6210 const struct E2HAlias *a = &aliases[i]; 6211 ARMCPRegInfo *src_reg, *dst_reg; 6212 6213 if (a->feature && !a->feature(&cpu->isar)) { 6214 continue; 6215 } 6216 6217 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 6218 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 6219 g_assert(src_reg != NULL); 6220 g_assert(dst_reg != NULL); 6221 6222 /* Cross-compare names to detect typos in the keys. */ 6223 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6224 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6225 6226 /* None of the core system registers use opaque; we will. */ 6227 g_assert(src_reg->opaque == NULL); 6228 6229 /* Create alias before redirection so we dup the right data. */ 6230 if (a->new_key) { 6231 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6232 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 6233 bool ok; 6234 6235 new_reg->name = a->new_name; 6236 new_reg->type |= ARM_CP_ALIAS; 6237 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6238 new_reg->access &= PL2_RW | PL3_RW; 6239 6240 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 6241 g_assert(ok); 6242 } 6243 6244 src_reg->opaque = dst_reg; 6245 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6246 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6247 if (!src_reg->raw_readfn) { 6248 src_reg->raw_readfn = raw_read; 6249 } 6250 if (!src_reg->raw_writefn) { 6251 src_reg->raw_writefn = raw_write; 6252 } 6253 src_reg->readfn = el2_e2h_read; 6254 src_reg->writefn = el2_e2h_write; 6255 } 6256 } 6257 #endif 6258 6259 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6260 bool isread) 6261 { 6262 int cur_el = arm_current_el(env); 6263 6264 if (cur_el < 2) { 6265 uint64_t hcr = arm_hcr_el2_eff(env); 6266 6267 if (cur_el == 0) { 6268 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6269 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6270 return CP_ACCESS_TRAP_EL2; 6271 } 6272 } else { 6273 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6274 return CP_ACCESS_TRAP; 6275 } 6276 if (hcr & HCR_TID2) { 6277 return CP_ACCESS_TRAP_EL2; 6278 } 6279 } 6280 } else if (hcr & HCR_TID2) { 6281 return CP_ACCESS_TRAP_EL2; 6282 } 6283 } 6284 6285 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6286 return CP_ACCESS_TRAP_EL2; 6287 } 6288 6289 return CP_ACCESS_OK; 6290 } 6291 6292 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6293 uint64_t value) 6294 { 6295 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6296 * read via a bit in OSLSR_EL1. 6297 */ 6298 int oslock; 6299 6300 if (ri->state == ARM_CP_STATE_AA32) { 6301 oslock = (value == 0xC5ACCE55); 6302 } else { 6303 oslock = value & 1; 6304 } 6305 6306 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6307 } 6308 6309 static const ARMCPRegInfo debug_cp_reginfo[] = { 6310 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6311 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6312 * unlike DBGDRAR it is never accessible from EL0. 6313 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6314 * accessor. 6315 */ 6316 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6317 .access = PL0_R, .accessfn = access_tdra, 6318 .type = ARM_CP_CONST, .resetvalue = 0 }, 6319 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6320 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6321 .access = PL1_R, .accessfn = access_tdra, 6322 .type = ARM_CP_CONST, .resetvalue = 0 }, 6323 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6324 .access = PL0_R, .accessfn = access_tdra, 6325 .type = ARM_CP_CONST, .resetvalue = 0 }, 6326 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6327 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6328 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6329 .access = PL1_RW, .accessfn = access_tda, 6330 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6331 .resetvalue = 0 }, 6332 /* 6333 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 6334 * Debug Communication Channel is not implemented. 6335 */ 6336 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 6337 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 6338 .access = PL0_R, .accessfn = access_tda, 6339 .type = ARM_CP_CONST, .resetvalue = 0 }, 6340 /* 6341 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 6342 * it is unlikely a guest will care. 6343 * We don't implement the configurable EL0 access. 6344 */ 6345 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 6346 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6347 .type = ARM_CP_ALIAS, 6348 .access = PL1_R, .accessfn = access_tda, 6349 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6350 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6351 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6352 .access = PL1_W, .type = ARM_CP_NO_RAW, 6353 .accessfn = access_tdosa, 6354 .writefn = oslar_write }, 6355 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6356 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6357 .access = PL1_R, .resetvalue = 10, 6358 .accessfn = access_tdosa, 6359 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6360 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6361 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6362 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6363 .access = PL1_RW, .accessfn = access_tdosa, 6364 .type = ARM_CP_NOP }, 6365 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6366 * implement vector catch debug events yet. 6367 */ 6368 { .name = "DBGVCR", 6369 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6370 .access = PL1_RW, .accessfn = access_tda, 6371 .type = ARM_CP_NOP }, 6372 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6373 * to save and restore a 32-bit guest's DBGVCR) 6374 */ 6375 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6376 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6377 .access = PL2_RW, .accessfn = access_tda, 6378 .type = ARM_CP_NOP }, 6379 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6380 * Channel but Linux may try to access this register. The 32-bit 6381 * alias is DBGDCCINT. 6382 */ 6383 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6384 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6385 .access = PL1_RW, .accessfn = access_tda, 6386 .type = ARM_CP_NOP }, 6387 REGINFO_SENTINEL 6388 }; 6389 6390 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6391 /* 64 bit access versions of the (dummy) debug registers */ 6392 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6393 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6394 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6395 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6396 REGINFO_SENTINEL 6397 }; 6398 6399 /* Return the exception level to which exceptions should be taken 6400 * via SVEAccessTrap. If an exception should be routed through 6401 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6402 * take care of raising that exception. 6403 * C.f. the ARM pseudocode function CheckSVEEnabled. 6404 */ 6405 int sve_exception_el(CPUARMState *env, int el) 6406 { 6407 #ifndef CONFIG_USER_ONLY 6408 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6409 6410 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6411 bool disabled = false; 6412 6413 /* The CPACR.ZEN controls traps to EL1: 6414 * 0, 2 : trap EL0 and EL1 accesses 6415 * 1 : trap only EL0 accesses 6416 * 3 : trap no accesses 6417 */ 6418 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6419 disabled = true; 6420 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6421 disabled = el == 0; 6422 } 6423 if (disabled) { 6424 /* route_to_el2 */ 6425 return hcr_el2 & HCR_TGE ? 2 : 1; 6426 } 6427 6428 /* Check CPACR.FPEN. */ 6429 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6430 disabled = true; 6431 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6432 disabled = el == 0; 6433 } 6434 if (disabled) { 6435 return 0; 6436 } 6437 } 6438 6439 /* CPTR_EL2. Since TZ and TFP are positive, 6440 * they will be zero when EL2 is not present. 6441 */ 6442 if (el <= 2 && arm_is_el2_enabled(env)) { 6443 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6444 return 2; 6445 } 6446 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6447 return 0; 6448 } 6449 } 6450 6451 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6452 if (arm_feature(env, ARM_FEATURE_EL3) 6453 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6454 return 3; 6455 } 6456 #endif 6457 return 0; 6458 } 6459 6460 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6461 { 6462 uint32_t end_len; 6463 6464 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6465 end_len = start_len; 6466 6467 if (!test_bit(start_len, cpu->sve_vq_map)) { 6468 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6469 assert(end_len < start_len); 6470 } 6471 return end_len; 6472 } 6473 6474 /* 6475 * Given that SVE is enabled, return the vector length for EL. 6476 */ 6477 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6478 { 6479 ARMCPU *cpu = env_archcpu(env); 6480 uint32_t zcr_len = cpu->sve_max_vq - 1; 6481 6482 if (el <= 1) { 6483 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6484 } 6485 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6486 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6487 } 6488 if (arm_feature(env, ARM_FEATURE_EL3)) { 6489 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6490 } 6491 6492 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6493 } 6494 6495 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6496 uint64_t value) 6497 { 6498 int cur_el = arm_current_el(env); 6499 int old_len = sve_zcr_len_for_el(env, cur_el); 6500 int new_len; 6501 6502 /* Bits other than [3:0] are RAZ/WI. */ 6503 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6504 raw_write(env, ri, value & 0xf); 6505 6506 /* 6507 * Because we arrived here, we know both FP and SVE are enabled; 6508 * otherwise we would have trapped access to the ZCR_ELn register. 6509 */ 6510 new_len = sve_zcr_len_for_el(env, cur_el); 6511 if (new_len < old_len) { 6512 aarch64_sve_narrow_vq(env, new_len + 1); 6513 } 6514 } 6515 6516 static const ARMCPRegInfo zcr_el1_reginfo = { 6517 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6518 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6519 .access = PL1_RW, .type = ARM_CP_SVE, 6520 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6521 .writefn = zcr_write, .raw_writefn = raw_write 6522 }; 6523 6524 static const ARMCPRegInfo zcr_el2_reginfo = { 6525 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6526 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6527 .access = PL2_RW, .type = ARM_CP_SVE, 6528 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6529 .writefn = zcr_write, .raw_writefn = raw_write 6530 }; 6531 6532 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6533 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6534 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6535 .access = PL2_RW, .type = ARM_CP_SVE, 6536 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6537 }; 6538 6539 static const ARMCPRegInfo zcr_el3_reginfo = { 6540 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6541 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6542 .access = PL3_RW, .type = ARM_CP_SVE, 6543 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6544 .writefn = zcr_write, .raw_writefn = raw_write 6545 }; 6546 6547 void hw_watchpoint_update(ARMCPU *cpu, int n) 6548 { 6549 CPUARMState *env = &cpu->env; 6550 vaddr len = 0; 6551 vaddr wvr = env->cp15.dbgwvr[n]; 6552 uint64_t wcr = env->cp15.dbgwcr[n]; 6553 int mask; 6554 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6555 6556 if (env->cpu_watchpoint[n]) { 6557 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6558 env->cpu_watchpoint[n] = NULL; 6559 } 6560 6561 if (!extract64(wcr, 0, 1)) { 6562 /* E bit clear : watchpoint disabled */ 6563 return; 6564 } 6565 6566 switch (extract64(wcr, 3, 2)) { 6567 case 0: 6568 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6569 return; 6570 case 1: 6571 flags |= BP_MEM_READ; 6572 break; 6573 case 2: 6574 flags |= BP_MEM_WRITE; 6575 break; 6576 case 3: 6577 flags |= BP_MEM_ACCESS; 6578 break; 6579 } 6580 6581 /* Attempts to use both MASK and BAS fields simultaneously are 6582 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6583 * thus generating a watchpoint for every byte in the masked region. 6584 */ 6585 mask = extract64(wcr, 24, 4); 6586 if (mask == 1 || mask == 2) { 6587 /* Reserved values of MASK; we must act as if the mask value was 6588 * some non-reserved value, or as if the watchpoint were disabled. 6589 * We choose the latter. 6590 */ 6591 return; 6592 } else if (mask) { 6593 /* Watchpoint covers an aligned area up to 2GB in size */ 6594 len = 1ULL << mask; 6595 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6596 * whether the watchpoint fires when the unmasked bits match; we opt 6597 * to generate the exceptions. 6598 */ 6599 wvr &= ~(len - 1); 6600 } else { 6601 /* Watchpoint covers bytes defined by the byte address select bits */ 6602 int bas = extract64(wcr, 5, 8); 6603 int basstart; 6604 6605 if (extract64(wvr, 2, 1)) { 6606 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6607 * ignored, and BAS[3:0] define which bytes to watch. 6608 */ 6609 bas &= 0xf; 6610 } 6611 6612 if (bas == 0) { 6613 /* This must act as if the watchpoint is disabled */ 6614 return; 6615 } 6616 6617 /* The BAS bits are supposed to be programmed to indicate a contiguous 6618 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6619 * we fire for each byte in the word/doubleword addressed by the WVR. 6620 * We choose to ignore any non-zero bits after the first range of 1s. 6621 */ 6622 basstart = ctz32(bas); 6623 len = cto32(bas >> basstart); 6624 wvr += basstart; 6625 } 6626 6627 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6628 &env->cpu_watchpoint[n]); 6629 } 6630 6631 void hw_watchpoint_update_all(ARMCPU *cpu) 6632 { 6633 int i; 6634 CPUARMState *env = &cpu->env; 6635 6636 /* Completely clear out existing QEMU watchpoints and our array, to 6637 * avoid possible stale entries following migration load. 6638 */ 6639 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6640 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6641 6642 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6643 hw_watchpoint_update(cpu, i); 6644 } 6645 } 6646 6647 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6648 uint64_t value) 6649 { 6650 ARMCPU *cpu = env_archcpu(env); 6651 int i = ri->crm; 6652 6653 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6654 * register reads and behaves as if values written are sign extended. 6655 * Bits [1:0] are RES0. 6656 */ 6657 value = sextract64(value, 0, 49) & ~3ULL; 6658 6659 raw_write(env, ri, value); 6660 hw_watchpoint_update(cpu, i); 6661 } 6662 6663 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6664 uint64_t value) 6665 { 6666 ARMCPU *cpu = env_archcpu(env); 6667 int i = ri->crm; 6668 6669 raw_write(env, ri, value); 6670 hw_watchpoint_update(cpu, i); 6671 } 6672 6673 void hw_breakpoint_update(ARMCPU *cpu, int n) 6674 { 6675 CPUARMState *env = &cpu->env; 6676 uint64_t bvr = env->cp15.dbgbvr[n]; 6677 uint64_t bcr = env->cp15.dbgbcr[n]; 6678 vaddr addr; 6679 int bt; 6680 int flags = BP_CPU; 6681 6682 if (env->cpu_breakpoint[n]) { 6683 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6684 env->cpu_breakpoint[n] = NULL; 6685 } 6686 6687 if (!extract64(bcr, 0, 1)) { 6688 /* E bit clear : watchpoint disabled */ 6689 return; 6690 } 6691 6692 bt = extract64(bcr, 20, 4); 6693 6694 switch (bt) { 6695 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6696 case 5: /* linked address mismatch (reserved if AArch64) */ 6697 qemu_log_mask(LOG_UNIMP, 6698 "arm: address mismatch breakpoint types not implemented\n"); 6699 return; 6700 case 0: /* unlinked address match */ 6701 case 1: /* linked address match */ 6702 { 6703 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6704 * we behave as if the register was sign extended. Bits [1:0] are 6705 * RES0. The BAS field is used to allow setting breakpoints on 16 6706 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6707 * a bp will fire if the addresses covered by the bp and the addresses 6708 * covered by the insn overlap but the insn doesn't start at the 6709 * start of the bp address range. We choose to require the insn and 6710 * the bp to have the same address. The constraints on writing to 6711 * BAS enforced in dbgbcr_write mean we have only four cases: 6712 * 0b0000 => no breakpoint 6713 * 0b0011 => breakpoint on addr 6714 * 0b1100 => breakpoint on addr + 2 6715 * 0b1111 => breakpoint on addr 6716 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6717 */ 6718 int bas = extract64(bcr, 5, 4); 6719 addr = sextract64(bvr, 0, 49) & ~3ULL; 6720 if (bas == 0) { 6721 return; 6722 } 6723 if (bas == 0xc) { 6724 addr += 2; 6725 } 6726 break; 6727 } 6728 case 2: /* unlinked context ID match */ 6729 case 8: /* unlinked VMID match (reserved if no EL2) */ 6730 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6731 qemu_log_mask(LOG_UNIMP, 6732 "arm: unlinked context breakpoint types not implemented\n"); 6733 return; 6734 case 9: /* linked VMID match (reserved if no EL2) */ 6735 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6736 case 3: /* linked context ID match */ 6737 default: 6738 /* We must generate no events for Linked context matches (unless 6739 * they are linked to by some other bp/wp, which is handled in 6740 * updates for the linking bp/wp). We choose to also generate no events 6741 * for reserved values. 6742 */ 6743 return; 6744 } 6745 6746 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6747 } 6748 6749 void hw_breakpoint_update_all(ARMCPU *cpu) 6750 { 6751 int i; 6752 CPUARMState *env = &cpu->env; 6753 6754 /* Completely clear out existing QEMU breakpoints and our array, to 6755 * avoid possible stale entries following migration load. 6756 */ 6757 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6758 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6759 6760 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6761 hw_breakpoint_update(cpu, i); 6762 } 6763 } 6764 6765 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6766 uint64_t value) 6767 { 6768 ARMCPU *cpu = env_archcpu(env); 6769 int i = ri->crm; 6770 6771 raw_write(env, ri, value); 6772 hw_breakpoint_update(cpu, i); 6773 } 6774 6775 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6776 uint64_t value) 6777 { 6778 ARMCPU *cpu = env_archcpu(env); 6779 int i = ri->crm; 6780 6781 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6782 * copy of BAS[0]. 6783 */ 6784 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6785 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6786 6787 raw_write(env, ri, value); 6788 hw_breakpoint_update(cpu, i); 6789 } 6790 6791 static void define_debug_regs(ARMCPU *cpu) 6792 { 6793 /* Define v7 and v8 architectural debug registers. 6794 * These are just dummy implementations for now. 6795 */ 6796 int i; 6797 int wrps, brps, ctx_cmps; 6798 6799 /* 6800 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6801 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6802 * the register must not exist for this cpu. 6803 */ 6804 if (cpu->isar.dbgdidr != 0) { 6805 ARMCPRegInfo dbgdidr = { 6806 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6807 .opc1 = 0, .opc2 = 0, 6808 .access = PL0_R, .accessfn = access_tda, 6809 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6810 }; 6811 define_one_arm_cp_reg(cpu, &dbgdidr); 6812 } 6813 6814 /* Note that all these register fields hold "number of Xs minus 1". */ 6815 brps = arm_num_brps(cpu); 6816 wrps = arm_num_wrps(cpu); 6817 ctx_cmps = arm_num_ctx_cmps(cpu); 6818 6819 assert(ctx_cmps <= brps); 6820 6821 define_arm_cp_regs(cpu, debug_cp_reginfo); 6822 6823 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6824 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6825 } 6826 6827 for (i = 0; i < brps; i++) { 6828 ARMCPRegInfo dbgregs[] = { 6829 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6830 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6831 .access = PL1_RW, .accessfn = access_tda, 6832 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6833 .writefn = dbgbvr_write, .raw_writefn = raw_write 6834 }, 6835 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6836 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6837 .access = PL1_RW, .accessfn = access_tda, 6838 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6839 .writefn = dbgbcr_write, .raw_writefn = raw_write 6840 }, 6841 REGINFO_SENTINEL 6842 }; 6843 define_arm_cp_regs(cpu, dbgregs); 6844 } 6845 6846 for (i = 0; i < wrps; i++) { 6847 ARMCPRegInfo dbgregs[] = { 6848 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6849 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6850 .access = PL1_RW, .accessfn = access_tda, 6851 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6852 .writefn = dbgwvr_write, .raw_writefn = raw_write 6853 }, 6854 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6855 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6856 .access = PL1_RW, .accessfn = access_tda, 6857 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6858 .writefn = dbgwcr_write, .raw_writefn = raw_write 6859 }, 6860 REGINFO_SENTINEL 6861 }; 6862 define_arm_cp_regs(cpu, dbgregs); 6863 } 6864 } 6865 6866 static void define_pmu_regs(ARMCPU *cpu) 6867 { 6868 /* 6869 * v7 performance monitor control register: same implementor 6870 * field as main ID register, and we implement four counters in 6871 * addition to the cycle count register. 6872 */ 6873 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6874 ARMCPRegInfo pmcr = { 6875 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6876 .access = PL0_RW, 6877 .type = ARM_CP_IO | ARM_CP_ALIAS, 6878 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6879 .accessfn = pmreg_access, .writefn = pmcr_write, 6880 .raw_writefn = raw_write, 6881 }; 6882 ARMCPRegInfo pmcr64 = { 6883 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6884 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6885 .access = PL0_RW, .accessfn = pmreg_access, 6886 .type = ARM_CP_IO, 6887 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6888 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6889 PMCRLC, 6890 .writefn = pmcr_write, .raw_writefn = raw_write, 6891 }; 6892 define_one_arm_cp_reg(cpu, &pmcr); 6893 define_one_arm_cp_reg(cpu, &pmcr64); 6894 for (i = 0; i < pmcrn; i++) { 6895 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6896 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6897 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6898 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6899 ARMCPRegInfo pmev_regs[] = { 6900 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6901 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6902 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6903 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6904 .accessfn = pmreg_access }, 6905 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6906 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6907 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6908 .type = ARM_CP_IO, 6909 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6910 .raw_readfn = pmevcntr_rawread, 6911 .raw_writefn = pmevcntr_rawwrite }, 6912 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6913 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6914 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6915 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6916 .accessfn = pmreg_access }, 6917 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6918 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6919 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6920 .type = ARM_CP_IO, 6921 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6922 .raw_writefn = pmevtyper_rawwrite }, 6923 REGINFO_SENTINEL 6924 }; 6925 define_arm_cp_regs(cpu, pmev_regs); 6926 g_free(pmevcntr_name); 6927 g_free(pmevcntr_el0_name); 6928 g_free(pmevtyper_name); 6929 g_free(pmevtyper_el0_name); 6930 } 6931 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6932 ARMCPRegInfo v81_pmu_regs[] = { 6933 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6934 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6935 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6936 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6937 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6938 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6939 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6940 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6941 REGINFO_SENTINEL 6942 }; 6943 define_arm_cp_regs(cpu, v81_pmu_regs); 6944 } 6945 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6946 static const ARMCPRegInfo v84_pmmir = { 6947 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6948 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6949 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6950 .resetvalue = 0 6951 }; 6952 define_one_arm_cp_reg(cpu, &v84_pmmir); 6953 } 6954 } 6955 6956 /* We don't know until after realize whether there's a GICv3 6957 * attached, and that is what registers the gicv3 sysregs. 6958 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6959 * at runtime. 6960 */ 6961 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6962 { 6963 ARMCPU *cpu = env_archcpu(env); 6964 uint64_t pfr1 = cpu->isar.id_pfr1; 6965 6966 if (env->gicv3state) { 6967 pfr1 |= 1 << 28; 6968 } 6969 return pfr1; 6970 } 6971 6972 #ifndef CONFIG_USER_ONLY 6973 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6974 { 6975 ARMCPU *cpu = env_archcpu(env); 6976 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6977 6978 if (env->gicv3state) { 6979 pfr0 |= 1 << 24; 6980 } 6981 return pfr0; 6982 } 6983 #endif 6984 6985 /* Shared logic between LORID and the rest of the LOR* registers. 6986 * Secure state exclusion has already been dealt with. 6987 */ 6988 static CPAccessResult access_lor_ns(CPUARMState *env, 6989 const ARMCPRegInfo *ri, bool isread) 6990 { 6991 int el = arm_current_el(env); 6992 6993 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6994 return CP_ACCESS_TRAP_EL2; 6995 } 6996 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6997 return CP_ACCESS_TRAP_EL3; 6998 } 6999 return CP_ACCESS_OK; 7000 } 7001 7002 static CPAccessResult access_lor_other(CPUARMState *env, 7003 const ARMCPRegInfo *ri, bool isread) 7004 { 7005 if (arm_is_secure_below_el3(env)) { 7006 /* Access denied in secure mode. */ 7007 return CP_ACCESS_TRAP; 7008 } 7009 return access_lor_ns(env, ri, isread); 7010 } 7011 7012 /* 7013 * A trivial implementation of ARMv8.1-LOR leaves all of these 7014 * registers fixed at 0, which indicates that there are zero 7015 * supported Limited Ordering regions. 7016 */ 7017 static const ARMCPRegInfo lor_reginfo[] = { 7018 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7019 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7020 .access = PL1_RW, .accessfn = access_lor_other, 7021 .type = ARM_CP_CONST, .resetvalue = 0 }, 7022 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7023 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7024 .access = PL1_RW, .accessfn = access_lor_other, 7025 .type = ARM_CP_CONST, .resetvalue = 0 }, 7026 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7027 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7028 .access = PL1_RW, .accessfn = access_lor_other, 7029 .type = ARM_CP_CONST, .resetvalue = 0 }, 7030 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7031 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7032 .access = PL1_RW, .accessfn = access_lor_other, 7033 .type = ARM_CP_CONST, .resetvalue = 0 }, 7034 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7035 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7036 .access = PL1_R, .accessfn = access_lor_ns, 7037 .type = ARM_CP_CONST, .resetvalue = 0 }, 7038 REGINFO_SENTINEL 7039 }; 7040 7041 #ifdef TARGET_AARCH64 7042 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7043 bool isread) 7044 { 7045 int el = arm_current_el(env); 7046 7047 if (el < 2 && 7048 arm_feature(env, ARM_FEATURE_EL2) && 7049 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7050 return CP_ACCESS_TRAP_EL2; 7051 } 7052 if (el < 3 && 7053 arm_feature(env, ARM_FEATURE_EL3) && 7054 !(env->cp15.scr_el3 & SCR_APK)) { 7055 return CP_ACCESS_TRAP_EL3; 7056 } 7057 return CP_ACCESS_OK; 7058 } 7059 7060 static const ARMCPRegInfo pauth_reginfo[] = { 7061 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7062 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7063 .access = PL1_RW, .accessfn = access_pauth, 7064 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7065 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7066 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7067 .access = PL1_RW, .accessfn = access_pauth, 7068 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7069 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7070 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7071 .access = PL1_RW, .accessfn = access_pauth, 7072 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7073 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7074 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7075 .access = PL1_RW, .accessfn = access_pauth, 7076 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7077 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7078 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7079 .access = PL1_RW, .accessfn = access_pauth, 7080 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7081 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7082 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7083 .access = PL1_RW, .accessfn = access_pauth, 7084 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7085 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7086 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7087 .access = PL1_RW, .accessfn = access_pauth, 7088 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7089 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7090 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7091 .access = PL1_RW, .accessfn = access_pauth, 7092 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7093 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7094 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7095 .access = PL1_RW, .accessfn = access_pauth, 7096 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7097 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7098 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7099 .access = PL1_RW, .accessfn = access_pauth, 7100 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7101 REGINFO_SENTINEL 7102 }; 7103 7104 static const ARMCPRegInfo tlbirange_reginfo[] = { 7105 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7106 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7107 .access = PL1_W, .type = ARM_CP_NO_RAW, 7108 .writefn = tlbi_aa64_rvae1is_write }, 7109 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7110 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7111 .access = PL1_W, .type = ARM_CP_NO_RAW, 7112 .writefn = tlbi_aa64_rvae1is_write }, 7113 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7114 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7115 .access = PL1_W, .type = ARM_CP_NO_RAW, 7116 .writefn = tlbi_aa64_rvae1is_write }, 7117 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7118 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7119 .access = PL1_W, .type = ARM_CP_NO_RAW, 7120 .writefn = tlbi_aa64_rvae1is_write }, 7121 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7122 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7123 .access = PL1_W, .type = ARM_CP_NO_RAW, 7124 .writefn = tlbi_aa64_rvae1is_write }, 7125 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7126 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7127 .access = PL1_W, .type = ARM_CP_NO_RAW, 7128 .writefn = tlbi_aa64_rvae1is_write }, 7129 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7130 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7131 .access = PL1_W, .type = ARM_CP_NO_RAW, 7132 .writefn = tlbi_aa64_rvae1is_write }, 7133 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7134 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7135 .access = PL1_W, .type = ARM_CP_NO_RAW, 7136 .writefn = tlbi_aa64_rvae1is_write }, 7137 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7138 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7139 .access = PL1_W, .type = ARM_CP_NO_RAW, 7140 .writefn = tlbi_aa64_rvae1_write }, 7141 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7142 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7143 .access = PL1_W, .type = ARM_CP_NO_RAW, 7144 .writefn = tlbi_aa64_rvae1_write }, 7145 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7146 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7147 .access = PL1_W, .type = ARM_CP_NO_RAW, 7148 .writefn = tlbi_aa64_rvae1_write }, 7149 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7150 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7151 .access = PL1_W, .type = ARM_CP_NO_RAW, 7152 .writefn = tlbi_aa64_rvae1_write }, 7153 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7154 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7155 .access = PL2_W, .type = ARM_CP_NOP }, 7156 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7157 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7158 .access = PL2_W, .type = ARM_CP_NOP }, 7159 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7160 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7161 .access = PL2_W, .type = ARM_CP_NO_RAW, 7162 .writefn = tlbi_aa64_rvae2is_write }, 7163 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7164 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7165 .access = PL2_W, .type = ARM_CP_NO_RAW, 7166 .writefn = tlbi_aa64_rvae2is_write }, 7167 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7168 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7169 .access = PL2_W, .type = ARM_CP_NOP }, 7170 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7171 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7172 .access = PL2_W, .type = ARM_CP_NOP }, 7173 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7174 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7175 .access = PL2_W, .type = ARM_CP_NO_RAW, 7176 .writefn = tlbi_aa64_rvae2is_write }, 7177 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7178 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7179 .access = PL2_W, .type = ARM_CP_NO_RAW, 7180 .writefn = tlbi_aa64_rvae2is_write }, 7181 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7182 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7183 .access = PL2_W, .type = ARM_CP_NO_RAW, 7184 .writefn = tlbi_aa64_rvae2_write }, 7185 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7186 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7187 .access = PL2_W, .type = ARM_CP_NO_RAW, 7188 .writefn = tlbi_aa64_rvae2_write }, 7189 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7190 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7191 .access = PL3_W, .type = ARM_CP_NO_RAW, 7192 .writefn = tlbi_aa64_rvae3is_write }, 7193 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7194 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7195 .access = PL3_W, .type = ARM_CP_NO_RAW, 7196 .writefn = tlbi_aa64_rvae3is_write }, 7197 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7198 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7199 .access = PL3_W, .type = ARM_CP_NO_RAW, 7200 .writefn = tlbi_aa64_rvae3is_write }, 7201 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7202 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7203 .access = PL3_W, .type = ARM_CP_NO_RAW, 7204 .writefn = tlbi_aa64_rvae3is_write }, 7205 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7206 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7207 .access = PL3_W, .type = ARM_CP_NO_RAW, 7208 .writefn = tlbi_aa64_rvae3_write }, 7209 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7210 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7211 .access = PL3_W, .type = ARM_CP_NO_RAW, 7212 .writefn = tlbi_aa64_rvae3_write }, 7213 REGINFO_SENTINEL 7214 }; 7215 7216 static const ARMCPRegInfo tlbios_reginfo[] = { 7217 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7218 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7219 .access = PL1_W, .type = ARM_CP_NO_RAW, 7220 .writefn = tlbi_aa64_vmalle1is_write }, 7221 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7222 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7223 .access = PL1_W, .type = ARM_CP_NO_RAW, 7224 .writefn = tlbi_aa64_vmalle1is_write }, 7225 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7226 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7227 .access = PL2_W, .type = ARM_CP_NO_RAW, 7228 .writefn = tlbi_aa64_alle2is_write }, 7229 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7230 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7231 .access = PL2_W, .type = ARM_CP_NO_RAW, 7232 .writefn = tlbi_aa64_alle1is_write }, 7233 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7234 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7235 .access = PL2_W, .type = ARM_CP_NO_RAW, 7236 .writefn = tlbi_aa64_alle1is_write }, 7237 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7238 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7239 .access = PL2_W, .type = ARM_CP_NOP }, 7240 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7241 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7242 .access = PL2_W, .type = ARM_CP_NOP }, 7243 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7244 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7245 .access = PL2_W, .type = ARM_CP_NOP }, 7246 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7247 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7248 .access = PL2_W, .type = ARM_CP_NOP }, 7249 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7250 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7251 .access = PL3_W, .type = ARM_CP_NO_RAW, 7252 .writefn = tlbi_aa64_alle3is_write }, 7253 REGINFO_SENTINEL 7254 }; 7255 7256 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7257 { 7258 Error *err = NULL; 7259 uint64_t ret; 7260 7261 /* Success sets NZCV = 0000. */ 7262 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7263 7264 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7265 /* 7266 * ??? Failed, for unknown reasons in the crypto subsystem. 7267 * The best we can do is log the reason and return the 7268 * timed-out indication to the guest. There is no reason 7269 * we know to expect this failure to be transitory, so the 7270 * guest may well hang retrying the operation. 7271 */ 7272 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7273 ri->name, error_get_pretty(err)); 7274 error_free(err); 7275 7276 env->ZF = 0; /* NZCF = 0100 */ 7277 return 0; 7278 } 7279 return ret; 7280 } 7281 7282 /* We do not support re-seeding, so the two registers operate the same. */ 7283 static const ARMCPRegInfo rndr_reginfo[] = { 7284 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7285 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7286 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7287 .access = PL0_R, .readfn = rndr_readfn }, 7288 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7289 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7290 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7291 .access = PL0_R, .readfn = rndr_readfn }, 7292 REGINFO_SENTINEL 7293 }; 7294 7295 #ifndef CONFIG_USER_ONLY 7296 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7297 uint64_t value) 7298 { 7299 ARMCPU *cpu = env_archcpu(env); 7300 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7301 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7302 uint64_t vaddr_in = (uint64_t) value; 7303 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7304 void *haddr; 7305 int mem_idx = cpu_mmu_index(env, false); 7306 7307 /* This won't be crossing page boundaries */ 7308 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7309 if (haddr) { 7310 7311 ram_addr_t offset; 7312 MemoryRegion *mr; 7313 7314 /* RCU lock is already being held */ 7315 mr = memory_region_from_host(haddr, &offset); 7316 7317 if (mr) { 7318 memory_region_writeback(mr, offset, dline_size); 7319 } 7320 } 7321 } 7322 7323 static const ARMCPRegInfo dcpop_reg[] = { 7324 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7325 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7326 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7327 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7328 REGINFO_SENTINEL 7329 }; 7330 7331 static const ARMCPRegInfo dcpodp_reg[] = { 7332 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7333 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7334 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7335 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7336 REGINFO_SENTINEL 7337 }; 7338 #endif /*CONFIG_USER_ONLY*/ 7339 7340 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7341 bool isread) 7342 { 7343 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7344 return CP_ACCESS_TRAP_EL2; 7345 } 7346 7347 return CP_ACCESS_OK; 7348 } 7349 7350 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7351 bool isread) 7352 { 7353 int el = arm_current_el(env); 7354 7355 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7356 uint64_t hcr = arm_hcr_el2_eff(env); 7357 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7358 return CP_ACCESS_TRAP_EL2; 7359 } 7360 } 7361 if (el < 3 && 7362 arm_feature(env, ARM_FEATURE_EL3) && 7363 !(env->cp15.scr_el3 & SCR_ATA)) { 7364 return CP_ACCESS_TRAP_EL3; 7365 } 7366 return CP_ACCESS_OK; 7367 } 7368 7369 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7370 { 7371 return env->pstate & PSTATE_TCO; 7372 } 7373 7374 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7375 { 7376 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7377 } 7378 7379 static const ARMCPRegInfo mte_reginfo[] = { 7380 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7381 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7382 .access = PL1_RW, .accessfn = access_mte, 7383 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7384 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7385 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7386 .access = PL1_RW, .accessfn = access_mte, 7387 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7388 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7389 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7390 .access = PL2_RW, .accessfn = access_mte, 7391 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7392 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7393 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7394 .access = PL3_RW, 7395 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7396 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7397 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7398 .access = PL1_RW, .accessfn = access_mte, 7399 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7400 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7401 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7402 .access = PL1_RW, .accessfn = access_mte, 7403 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7404 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7405 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7406 .access = PL1_R, .accessfn = access_aa64_tid5, 7407 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7408 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7409 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7410 .type = ARM_CP_NO_RAW, 7411 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7412 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7413 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7414 .type = ARM_CP_NOP, .access = PL1_W, 7415 .accessfn = aa64_cacheop_poc_access }, 7416 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7417 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7418 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7419 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7420 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7421 .type = ARM_CP_NOP, .access = PL1_W, 7422 .accessfn = aa64_cacheop_poc_access }, 7423 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7424 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7425 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7426 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7427 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7428 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7429 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7430 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7431 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7432 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7433 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7434 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7435 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7436 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7437 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7438 REGINFO_SENTINEL 7439 }; 7440 7441 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7442 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7443 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7444 .type = ARM_CP_CONST, .access = PL0_RW, }, 7445 REGINFO_SENTINEL 7446 }; 7447 7448 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7449 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7450 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7451 .type = ARM_CP_NOP, .access = PL0_W, 7452 .accessfn = aa64_cacheop_poc_access }, 7453 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7454 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7455 .type = ARM_CP_NOP, .access = PL0_W, 7456 .accessfn = aa64_cacheop_poc_access }, 7457 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7458 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7459 .type = ARM_CP_NOP, .access = PL0_W, 7460 .accessfn = aa64_cacheop_poc_access }, 7461 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7462 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7463 .type = ARM_CP_NOP, .access = PL0_W, 7464 .accessfn = aa64_cacheop_poc_access }, 7465 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7466 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7467 .type = ARM_CP_NOP, .access = PL0_W, 7468 .accessfn = aa64_cacheop_poc_access }, 7469 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7470 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7471 .type = ARM_CP_NOP, .access = PL0_W, 7472 .accessfn = aa64_cacheop_poc_access }, 7473 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7474 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7475 .type = ARM_CP_NOP, .access = PL0_W, 7476 .accessfn = aa64_cacheop_poc_access }, 7477 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7478 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7479 .type = ARM_CP_NOP, .access = PL0_W, 7480 .accessfn = aa64_cacheop_poc_access }, 7481 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7482 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7483 .access = PL0_W, .type = ARM_CP_DC_GVA, 7484 #ifndef CONFIG_USER_ONLY 7485 /* Avoid overhead of an access check that always passes in user-mode */ 7486 .accessfn = aa64_zva_access, 7487 #endif 7488 }, 7489 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7490 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7491 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7492 #ifndef CONFIG_USER_ONLY 7493 /* Avoid overhead of an access check that always passes in user-mode */ 7494 .accessfn = aa64_zva_access, 7495 #endif 7496 }, 7497 REGINFO_SENTINEL 7498 }; 7499 7500 #endif 7501 7502 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7503 bool isread) 7504 { 7505 int el = arm_current_el(env); 7506 7507 if (el == 0) { 7508 uint64_t sctlr = arm_sctlr(env, el); 7509 if (!(sctlr & SCTLR_EnRCTX)) { 7510 return CP_ACCESS_TRAP; 7511 } 7512 } else if (el == 1) { 7513 uint64_t hcr = arm_hcr_el2_eff(env); 7514 if (hcr & HCR_NV) { 7515 return CP_ACCESS_TRAP_EL2; 7516 } 7517 } 7518 return CP_ACCESS_OK; 7519 } 7520 7521 static const ARMCPRegInfo predinv_reginfo[] = { 7522 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7523 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7524 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7525 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7526 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7527 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7528 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7529 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7530 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7531 /* 7532 * Note the AArch32 opcodes have a different OPC1. 7533 */ 7534 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7535 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7536 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7537 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7538 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7539 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7540 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7541 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7542 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7543 REGINFO_SENTINEL 7544 }; 7545 7546 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7547 { 7548 /* Read the high 32 bits of the current CCSIDR */ 7549 return extract64(ccsidr_read(env, ri), 32, 32); 7550 } 7551 7552 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7553 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7554 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7555 .access = PL1_R, 7556 .accessfn = access_aa64_tid2, 7557 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7558 REGINFO_SENTINEL 7559 }; 7560 7561 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7562 bool isread) 7563 { 7564 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7565 return CP_ACCESS_TRAP_EL2; 7566 } 7567 7568 return CP_ACCESS_OK; 7569 } 7570 7571 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7572 bool isread) 7573 { 7574 if (arm_feature(env, ARM_FEATURE_V8)) { 7575 return access_aa64_tid3(env, ri, isread); 7576 } 7577 7578 return CP_ACCESS_OK; 7579 } 7580 7581 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7582 bool isread) 7583 { 7584 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7585 return CP_ACCESS_TRAP_EL2; 7586 } 7587 7588 return CP_ACCESS_OK; 7589 } 7590 7591 static const ARMCPRegInfo jazelle_regs[] = { 7592 { .name = "JIDR", 7593 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7594 .access = PL1_R, .accessfn = access_jazelle, 7595 .type = ARM_CP_CONST, .resetvalue = 0 }, 7596 { .name = "JOSCR", 7597 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7598 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7599 { .name = "JMCR", 7600 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7601 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7602 REGINFO_SENTINEL 7603 }; 7604 7605 static const ARMCPRegInfo vhe_reginfo[] = { 7606 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7607 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7608 .access = PL2_RW, 7609 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7610 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7611 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7612 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7613 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7614 #ifndef CONFIG_USER_ONLY 7615 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7616 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7617 .fieldoffset = 7618 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7619 .type = ARM_CP_IO, .access = PL2_RW, 7620 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7621 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7622 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7623 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7624 .resetfn = gt_hv_timer_reset, 7625 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7626 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7627 .type = ARM_CP_IO, 7628 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7629 .access = PL2_RW, 7630 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7631 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7632 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7633 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7634 .type = ARM_CP_IO | ARM_CP_ALIAS, 7635 .access = PL2_RW, .accessfn = e2h_access, 7636 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7637 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7638 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7639 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7640 .type = ARM_CP_IO | ARM_CP_ALIAS, 7641 .access = PL2_RW, .accessfn = e2h_access, 7642 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7643 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7644 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7645 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7646 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7647 .access = PL2_RW, .accessfn = e2h_access, 7648 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7649 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7650 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7651 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7652 .access = PL2_RW, .accessfn = e2h_access, 7653 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7654 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7655 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7656 .type = ARM_CP_IO | ARM_CP_ALIAS, 7657 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7658 .access = PL2_RW, .accessfn = e2h_access, 7659 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7660 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7661 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7662 .type = ARM_CP_IO | ARM_CP_ALIAS, 7663 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7664 .access = PL2_RW, .accessfn = e2h_access, 7665 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7666 #endif 7667 REGINFO_SENTINEL 7668 }; 7669 7670 #ifndef CONFIG_USER_ONLY 7671 static const ARMCPRegInfo ats1e1_reginfo[] = { 7672 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7673 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7674 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7675 .writefn = ats_write64 }, 7676 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7677 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7678 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7679 .writefn = ats_write64 }, 7680 REGINFO_SENTINEL 7681 }; 7682 7683 static const ARMCPRegInfo ats1cp_reginfo[] = { 7684 { .name = "ATS1CPRP", 7685 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7686 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7687 .writefn = ats_write }, 7688 { .name = "ATS1CPWP", 7689 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7690 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7691 .writefn = ats_write }, 7692 REGINFO_SENTINEL 7693 }; 7694 #endif 7695 7696 /* 7697 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7698 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7699 * is non-zero, which is never for ARMv7, optionally in ARMv8 7700 * and mandatorily for ARMv8.2 and up. 7701 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7702 * implementation is RAZ/WI we can ignore this detail, as we 7703 * do for ACTLR. 7704 */ 7705 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7706 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7707 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7708 .access = PL1_RW, .accessfn = access_tacr, 7709 .type = ARM_CP_CONST, .resetvalue = 0 }, 7710 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7711 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7712 .access = PL2_RW, .type = ARM_CP_CONST, 7713 .resetvalue = 0 }, 7714 REGINFO_SENTINEL 7715 }; 7716 7717 void register_cp_regs_for_features(ARMCPU *cpu) 7718 { 7719 /* Register all the coprocessor registers based on feature bits */ 7720 CPUARMState *env = &cpu->env; 7721 if (arm_feature(env, ARM_FEATURE_M)) { 7722 /* M profile has no coprocessor registers */ 7723 return; 7724 } 7725 7726 define_arm_cp_regs(cpu, cp_reginfo); 7727 if (!arm_feature(env, ARM_FEATURE_V8)) { 7728 /* Must go early as it is full of wildcards that may be 7729 * overridden by later definitions. 7730 */ 7731 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7732 } 7733 7734 if (arm_feature(env, ARM_FEATURE_V6)) { 7735 /* The ID registers all have impdef reset values */ 7736 ARMCPRegInfo v6_idregs[] = { 7737 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7738 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7739 .access = PL1_R, .type = ARM_CP_CONST, 7740 .accessfn = access_aa32_tid3, 7741 .resetvalue = cpu->isar.id_pfr0 }, 7742 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7743 * the value of the GIC field until after we define these regs. 7744 */ 7745 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7746 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7747 .access = PL1_R, .type = ARM_CP_NO_RAW, 7748 .accessfn = access_aa32_tid3, 7749 .readfn = id_pfr1_read, 7750 .writefn = arm_cp_write_ignore }, 7751 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7753 .access = PL1_R, .type = ARM_CP_CONST, 7754 .accessfn = access_aa32_tid3, 7755 .resetvalue = cpu->isar.id_dfr0 }, 7756 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7757 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7758 .access = PL1_R, .type = ARM_CP_CONST, 7759 .accessfn = access_aa32_tid3, 7760 .resetvalue = cpu->id_afr0 }, 7761 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7763 .access = PL1_R, .type = ARM_CP_CONST, 7764 .accessfn = access_aa32_tid3, 7765 .resetvalue = cpu->isar.id_mmfr0 }, 7766 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7768 .access = PL1_R, .type = ARM_CP_CONST, 7769 .accessfn = access_aa32_tid3, 7770 .resetvalue = cpu->isar.id_mmfr1 }, 7771 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7773 .access = PL1_R, .type = ARM_CP_CONST, 7774 .accessfn = access_aa32_tid3, 7775 .resetvalue = cpu->isar.id_mmfr2 }, 7776 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7778 .access = PL1_R, .type = ARM_CP_CONST, 7779 .accessfn = access_aa32_tid3, 7780 .resetvalue = cpu->isar.id_mmfr3 }, 7781 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7783 .access = PL1_R, .type = ARM_CP_CONST, 7784 .accessfn = access_aa32_tid3, 7785 .resetvalue = cpu->isar.id_isar0 }, 7786 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7788 .access = PL1_R, .type = ARM_CP_CONST, 7789 .accessfn = access_aa32_tid3, 7790 .resetvalue = cpu->isar.id_isar1 }, 7791 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7793 .access = PL1_R, .type = ARM_CP_CONST, 7794 .accessfn = access_aa32_tid3, 7795 .resetvalue = cpu->isar.id_isar2 }, 7796 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7798 .access = PL1_R, .type = ARM_CP_CONST, 7799 .accessfn = access_aa32_tid3, 7800 .resetvalue = cpu->isar.id_isar3 }, 7801 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7803 .access = PL1_R, .type = ARM_CP_CONST, 7804 .accessfn = access_aa32_tid3, 7805 .resetvalue = cpu->isar.id_isar4 }, 7806 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7808 .access = PL1_R, .type = ARM_CP_CONST, 7809 .accessfn = access_aa32_tid3, 7810 .resetvalue = cpu->isar.id_isar5 }, 7811 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7813 .access = PL1_R, .type = ARM_CP_CONST, 7814 .accessfn = access_aa32_tid3, 7815 .resetvalue = cpu->isar.id_mmfr4 }, 7816 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7817 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7818 .access = PL1_R, .type = ARM_CP_CONST, 7819 .accessfn = access_aa32_tid3, 7820 .resetvalue = cpu->isar.id_isar6 }, 7821 REGINFO_SENTINEL 7822 }; 7823 define_arm_cp_regs(cpu, v6_idregs); 7824 define_arm_cp_regs(cpu, v6_cp_reginfo); 7825 } else { 7826 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7827 } 7828 if (arm_feature(env, ARM_FEATURE_V6K)) { 7829 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7830 } 7831 if (arm_feature(env, ARM_FEATURE_V7MP) && 7832 !arm_feature(env, ARM_FEATURE_PMSA)) { 7833 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7834 } 7835 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7836 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7837 } 7838 if (arm_feature(env, ARM_FEATURE_V7)) { 7839 ARMCPRegInfo clidr = { 7840 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7841 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7842 .access = PL1_R, .type = ARM_CP_CONST, 7843 .accessfn = access_aa64_tid2, 7844 .resetvalue = cpu->clidr 7845 }; 7846 define_one_arm_cp_reg(cpu, &clidr); 7847 define_arm_cp_regs(cpu, v7_cp_reginfo); 7848 define_debug_regs(cpu); 7849 define_pmu_regs(cpu); 7850 } else { 7851 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7852 } 7853 if (arm_feature(env, ARM_FEATURE_V8)) { 7854 /* AArch64 ID registers, which all have impdef reset values. 7855 * Note that within the ID register ranges the unused slots 7856 * must all RAZ, not UNDEF; future architecture versions may 7857 * define new registers here. 7858 */ 7859 ARMCPRegInfo v8_idregs[] = { 7860 /* 7861 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7862 * emulation because we don't know the right value for the 7863 * GIC field until after we define these regs. 7864 */ 7865 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7866 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7867 .access = PL1_R, 7868 #ifdef CONFIG_USER_ONLY 7869 .type = ARM_CP_CONST, 7870 .resetvalue = cpu->isar.id_aa64pfr0 7871 #else 7872 .type = ARM_CP_NO_RAW, 7873 .accessfn = access_aa64_tid3, 7874 .readfn = id_aa64pfr0_read, 7875 .writefn = arm_cp_write_ignore 7876 #endif 7877 }, 7878 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7879 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7880 .access = PL1_R, .type = ARM_CP_CONST, 7881 .accessfn = access_aa64_tid3, 7882 .resetvalue = cpu->isar.id_aa64pfr1}, 7883 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7884 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7885 .access = PL1_R, .type = ARM_CP_CONST, 7886 .accessfn = access_aa64_tid3, 7887 .resetvalue = 0 }, 7888 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7889 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7890 .access = PL1_R, .type = ARM_CP_CONST, 7891 .accessfn = access_aa64_tid3, 7892 .resetvalue = 0 }, 7893 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7894 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7895 .access = PL1_R, .type = ARM_CP_CONST, 7896 .accessfn = access_aa64_tid3, 7897 .resetvalue = cpu->isar.id_aa64zfr0 }, 7898 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7899 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7900 .access = PL1_R, .type = ARM_CP_CONST, 7901 .accessfn = access_aa64_tid3, 7902 .resetvalue = 0 }, 7903 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7904 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7905 .access = PL1_R, .type = ARM_CP_CONST, 7906 .accessfn = access_aa64_tid3, 7907 .resetvalue = 0 }, 7908 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7909 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7910 .access = PL1_R, .type = ARM_CP_CONST, 7911 .accessfn = access_aa64_tid3, 7912 .resetvalue = 0 }, 7913 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7914 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7915 .access = PL1_R, .type = ARM_CP_CONST, 7916 .accessfn = access_aa64_tid3, 7917 .resetvalue = cpu->isar.id_aa64dfr0 }, 7918 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7919 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7920 .access = PL1_R, .type = ARM_CP_CONST, 7921 .accessfn = access_aa64_tid3, 7922 .resetvalue = cpu->isar.id_aa64dfr1 }, 7923 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7924 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7925 .access = PL1_R, .type = ARM_CP_CONST, 7926 .accessfn = access_aa64_tid3, 7927 .resetvalue = 0 }, 7928 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7929 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7930 .access = PL1_R, .type = ARM_CP_CONST, 7931 .accessfn = access_aa64_tid3, 7932 .resetvalue = 0 }, 7933 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7934 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7935 .access = PL1_R, .type = ARM_CP_CONST, 7936 .accessfn = access_aa64_tid3, 7937 .resetvalue = cpu->id_aa64afr0 }, 7938 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7939 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7940 .access = PL1_R, .type = ARM_CP_CONST, 7941 .accessfn = access_aa64_tid3, 7942 .resetvalue = cpu->id_aa64afr1 }, 7943 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7944 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7945 .access = PL1_R, .type = ARM_CP_CONST, 7946 .accessfn = access_aa64_tid3, 7947 .resetvalue = 0 }, 7948 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7949 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7950 .access = PL1_R, .type = ARM_CP_CONST, 7951 .accessfn = access_aa64_tid3, 7952 .resetvalue = 0 }, 7953 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7954 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7955 .access = PL1_R, .type = ARM_CP_CONST, 7956 .accessfn = access_aa64_tid3, 7957 .resetvalue = cpu->isar.id_aa64isar0 }, 7958 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7959 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7960 .access = PL1_R, .type = ARM_CP_CONST, 7961 .accessfn = access_aa64_tid3, 7962 .resetvalue = cpu->isar.id_aa64isar1 }, 7963 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7964 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7965 .access = PL1_R, .type = ARM_CP_CONST, 7966 .accessfn = access_aa64_tid3, 7967 .resetvalue = 0 }, 7968 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7969 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7970 .access = PL1_R, .type = ARM_CP_CONST, 7971 .accessfn = access_aa64_tid3, 7972 .resetvalue = 0 }, 7973 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7974 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7975 .access = PL1_R, .type = ARM_CP_CONST, 7976 .accessfn = access_aa64_tid3, 7977 .resetvalue = 0 }, 7978 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7979 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7980 .access = PL1_R, .type = ARM_CP_CONST, 7981 .accessfn = access_aa64_tid3, 7982 .resetvalue = 0 }, 7983 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7984 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7985 .access = PL1_R, .type = ARM_CP_CONST, 7986 .accessfn = access_aa64_tid3, 7987 .resetvalue = 0 }, 7988 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7989 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7990 .access = PL1_R, .type = ARM_CP_CONST, 7991 .accessfn = access_aa64_tid3, 7992 .resetvalue = 0 }, 7993 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7994 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7995 .access = PL1_R, .type = ARM_CP_CONST, 7996 .accessfn = access_aa64_tid3, 7997 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7998 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7999 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8000 .access = PL1_R, .type = ARM_CP_CONST, 8001 .accessfn = access_aa64_tid3, 8002 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8003 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8004 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8005 .access = PL1_R, .type = ARM_CP_CONST, 8006 .accessfn = access_aa64_tid3, 8007 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8008 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8009 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8010 .access = PL1_R, .type = ARM_CP_CONST, 8011 .accessfn = access_aa64_tid3, 8012 .resetvalue = 0 }, 8013 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8015 .access = PL1_R, .type = ARM_CP_CONST, 8016 .accessfn = access_aa64_tid3, 8017 .resetvalue = 0 }, 8018 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8019 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8020 .access = PL1_R, .type = ARM_CP_CONST, 8021 .accessfn = access_aa64_tid3, 8022 .resetvalue = 0 }, 8023 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8024 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8025 .access = PL1_R, .type = ARM_CP_CONST, 8026 .accessfn = access_aa64_tid3, 8027 .resetvalue = 0 }, 8028 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8029 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8030 .access = PL1_R, .type = ARM_CP_CONST, 8031 .accessfn = access_aa64_tid3, 8032 .resetvalue = 0 }, 8033 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8035 .access = PL1_R, .type = ARM_CP_CONST, 8036 .accessfn = access_aa64_tid3, 8037 .resetvalue = cpu->isar.mvfr0 }, 8038 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8039 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8040 .access = PL1_R, .type = ARM_CP_CONST, 8041 .accessfn = access_aa64_tid3, 8042 .resetvalue = cpu->isar.mvfr1 }, 8043 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8044 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8045 .access = PL1_R, .type = ARM_CP_CONST, 8046 .accessfn = access_aa64_tid3, 8047 .resetvalue = cpu->isar.mvfr2 }, 8048 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8049 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8050 .access = PL1_R, .type = ARM_CP_CONST, 8051 .accessfn = access_aa64_tid3, 8052 .resetvalue = 0 }, 8053 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8055 .access = PL1_R, .type = ARM_CP_CONST, 8056 .accessfn = access_aa64_tid3, 8057 .resetvalue = cpu->isar.id_pfr2 }, 8058 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8059 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8060 .access = PL1_R, .type = ARM_CP_CONST, 8061 .accessfn = access_aa64_tid3, 8062 .resetvalue = 0 }, 8063 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8064 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8065 .access = PL1_R, .type = ARM_CP_CONST, 8066 .accessfn = access_aa64_tid3, 8067 .resetvalue = 0 }, 8068 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8069 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8070 .access = PL1_R, .type = ARM_CP_CONST, 8071 .accessfn = access_aa64_tid3, 8072 .resetvalue = 0 }, 8073 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8074 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8075 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8076 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8077 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8078 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8079 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8080 .resetvalue = cpu->pmceid0 }, 8081 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8082 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8083 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8084 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8085 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8086 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8087 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8088 .resetvalue = cpu->pmceid1 }, 8089 REGINFO_SENTINEL 8090 }; 8091 #ifdef CONFIG_USER_ONLY 8092 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8093 { .name = "ID_AA64PFR0_EL1", 8094 .exported_bits = 0x000f000f00ff0000, 8095 .fixed_bits = 0x0000000000000011 }, 8096 { .name = "ID_AA64PFR1_EL1", 8097 .exported_bits = 0x00000000000000f0 }, 8098 { .name = "ID_AA64PFR*_EL1_RESERVED", 8099 .is_glob = true }, 8100 { .name = "ID_AA64ZFR0_EL1" }, 8101 { .name = "ID_AA64MMFR0_EL1", 8102 .fixed_bits = 0x00000000ff000000 }, 8103 { .name = "ID_AA64MMFR1_EL1" }, 8104 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8105 .is_glob = true }, 8106 { .name = "ID_AA64DFR0_EL1", 8107 .fixed_bits = 0x0000000000000006 }, 8108 { .name = "ID_AA64DFR1_EL1" }, 8109 { .name = "ID_AA64DFR*_EL1_RESERVED", 8110 .is_glob = true }, 8111 { .name = "ID_AA64AFR*", 8112 .is_glob = true }, 8113 { .name = "ID_AA64ISAR0_EL1", 8114 .exported_bits = 0x00fffffff0fffff0 }, 8115 { .name = "ID_AA64ISAR1_EL1", 8116 .exported_bits = 0x000000f0ffffffff }, 8117 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8118 .is_glob = true }, 8119 REGUSERINFO_SENTINEL 8120 }; 8121 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8122 #endif 8123 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 8124 if (!arm_feature(env, ARM_FEATURE_EL3) && 8125 !arm_feature(env, ARM_FEATURE_EL2)) { 8126 ARMCPRegInfo rvbar = { 8127 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 8128 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8129 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 8130 }; 8131 define_one_arm_cp_reg(cpu, &rvbar); 8132 } 8133 define_arm_cp_regs(cpu, v8_idregs); 8134 define_arm_cp_regs(cpu, v8_cp_reginfo); 8135 } 8136 if (arm_feature(env, ARM_FEATURE_EL2)) { 8137 uint64_t vmpidr_def = mpidr_read_val(env); 8138 ARMCPRegInfo vpidr_regs[] = { 8139 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8140 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8141 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8142 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 8143 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8144 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8145 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8146 .access = PL2_RW, .resetvalue = cpu->midr, 8147 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8148 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8149 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8150 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8151 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 8152 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8153 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8154 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8155 .access = PL2_RW, 8156 .resetvalue = vmpidr_def, 8157 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8158 REGINFO_SENTINEL 8159 }; 8160 define_arm_cp_regs(cpu, vpidr_regs); 8161 define_arm_cp_regs(cpu, el2_cp_reginfo); 8162 if (arm_feature(env, ARM_FEATURE_V8)) { 8163 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8164 } 8165 if (cpu_isar_feature(aa64_sel2, cpu)) { 8166 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8167 } 8168 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8169 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8170 ARMCPRegInfo rvbar = { 8171 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8172 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8173 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 8174 }; 8175 define_one_arm_cp_reg(cpu, &rvbar); 8176 } 8177 } else { 8178 /* If EL2 is missing but higher ELs are enabled, we need to 8179 * register the no_el2 reginfos. 8180 */ 8181 if (arm_feature(env, ARM_FEATURE_EL3)) { 8182 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 8183 * of MIDR_EL1 and MPIDR_EL1. 8184 */ 8185 ARMCPRegInfo vpidr_regs[] = { 8186 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8187 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8188 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8189 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 8190 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8191 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8192 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8193 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8194 .type = ARM_CP_NO_RAW, 8195 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 8196 REGINFO_SENTINEL 8197 }; 8198 define_arm_cp_regs(cpu, vpidr_regs); 8199 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 8200 if (arm_feature(env, ARM_FEATURE_V8)) { 8201 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 8202 } 8203 } 8204 } 8205 if (arm_feature(env, ARM_FEATURE_EL3)) { 8206 define_arm_cp_regs(cpu, el3_cp_reginfo); 8207 ARMCPRegInfo el3_regs[] = { 8208 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8209 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8210 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 8211 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8212 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8213 .access = PL3_RW, 8214 .raw_writefn = raw_write, .writefn = sctlr_write, 8215 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8216 .resetvalue = cpu->reset_sctlr }, 8217 REGINFO_SENTINEL 8218 }; 8219 8220 define_arm_cp_regs(cpu, el3_regs); 8221 } 8222 /* The behaviour of NSACR is sufficiently various that we don't 8223 * try to describe it in a single reginfo: 8224 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8225 * reads as constant 0xc00 from NS EL1 and NS EL2 8226 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8227 * if v7 without EL3, register doesn't exist 8228 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8229 */ 8230 if (arm_feature(env, ARM_FEATURE_EL3)) { 8231 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8232 ARMCPRegInfo nsacr = { 8233 .name = "NSACR", .type = ARM_CP_CONST, 8234 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8235 .access = PL1_RW, .accessfn = nsacr_access, 8236 .resetvalue = 0xc00 8237 }; 8238 define_one_arm_cp_reg(cpu, &nsacr); 8239 } else { 8240 ARMCPRegInfo nsacr = { 8241 .name = "NSACR", 8242 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8243 .access = PL3_RW | PL1_R, 8244 .resetvalue = 0, 8245 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8246 }; 8247 define_one_arm_cp_reg(cpu, &nsacr); 8248 } 8249 } else { 8250 if (arm_feature(env, ARM_FEATURE_V8)) { 8251 ARMCPRegInfo nsacr = { 8252 .name = "NSACR", .type = ARM_CP_CONST, 8253 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8254 .access = PL1_R, 8255 .resetvalue = 0xc00 8256 }; 8257 define_one_arm_cp_reg(cpu, &nsacr); 8258 } 8259 } 8260 8261 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8262 if (arm_feature(env, ARM_FEATURE_V6)) { 8263 /* PMSAv6 not implemented */ 8264 assert(arm_feature(env, ARM_FEATURE_V7)); 8265 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8266 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8267 } else { 8268 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8269 } 8270 } else { 8271 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8272 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8273 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8274 if (cpu_isar_feature(aa32_hpd, cpu)) { 8275 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8276 } 8277 } 8278 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8279 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8280 } 8281 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8282 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8283 } 8284 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8285 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8286 } 8287 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8288 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8289 } 8290 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8291 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8292 } 8293 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8294 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8295 } 8296 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8297 define_arm_cp_regs(cpu, omap_cp_reginfo); 8298 } 8299 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8300 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8301 } 8302 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8303 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8304 } 8305 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8306 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8307 } 8308 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8309 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8310 } 8311 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8312 define_arm_cp_regs(cpu, jazelle_regs); 8313 } 8314 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8315 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8316 * be read-only (ie write causes UNDEF exception). 8317 */ 8318 { 8319 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8320 /* Pre-v8 MIDR space. 8321 * Note that the MIDR isn't a simple constant register because 8322 * of the TI925 behaviour where writes to another register can 8323 * cause the MIDR value to change. 8324 * 8325 * Unimplemented registers in the c15 0 0 0 space default to 8326 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8327 * and friends override accordingly. 8328 */ 8329 { .name = "MIDR", 8330 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8331 .access = PL1_R, .resetvalue = cpu->midr, 8332 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8333 .readfn = midr_read, 8334 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8335 .type = ARM_CP_OVERRIDE }, 8336 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8337 { .name = "DUMMY", 8338 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8339 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8340 { .name = "DUMMY", 8341 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8342 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8343 { .name = "DUMMY", 8344 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8345 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8346 { .name = "DUMMY", 8347 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8348 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8349 { .name = "DUMMY", 8350 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8351 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8352 REGINFO_SENTINEL 8353 }; 8354 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8355 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8356 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8357 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8358 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8359 .readfn = midr_read }, 8360 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8361 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8362 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8363 .access = PL1_R, .resetvalue = cpu->midr }, 8364 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8365 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8366 .access = PL1_R, .resetvalue = cpu->midr }, 8367 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8368 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8369 .access = PL1_R, 8370 .accessfn = access_aa64_tid1, 8371 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8372 REGINFO_SENTINEL 8373 }; 8374 ARMCPRegInfo id_cp_reginfo[] = { 8375 /* These are common to v8 and pre-v8 */ 8376 { .name = "CTR", 8377 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8378 .access = PL1_R, .accessfn = ctr_el0_access, 8379 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8380 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8381 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8382 .access = PL0_R, .accessfn = ctr_el0_access, 8383 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8384 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8385 { .name = "TCMTR", 8386 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8387 .access = PL1_R, 8388 .accessfn = access_aa32_tid1, 8389 .type = ARM_CP_CONST, .resetvalue = 0 }, 8390 REGINFO_SENTINEL 8391 }; 8392 /* TLBTR is specific to VMSA */ 8393 ARMCPRegInfo id_tlbtr_reginfo = { 8394 .name = "TLBTR", 8395 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8396 .access = PL1_R, 8397 .accessfn = access_aa32_tid1, 8398 .type = ARM_CP_CONST, .resetvalue = 0, 8399 }; 8400 /* MPUIR is specific to PMSA V6+ */ 8401 ARMCPRegInfo id_mpuir_reginfo = { 8402 .name = "MPUIR", 8403 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8404 .access = PL1_R, .type = ARM_CP_CONST, 8405 .resetvalue = cpu->pmsav7_dregion << 8 8406 }; 8407 ARMCPRegInfo crn0_wi_reginfo = { 8408 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8409 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8410 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8411 }; 8412 #ifdef CONFIG_USER_ONLY 8413 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8414 { .name = "MIDR_EL1", 8415 .exported_bits = 0x00000000ffffffff }, 8416 { .name = "REVIDR_EL1" }, 8417 REGUSERINFO_SENTINEL 8418 }; 8419 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8420 #endif 8421 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8422 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8423 ARMCPRegInfo *r; 8424 /* Register the blanket "writes ignored" value first to cover the 8425 * whole space. Then update the specific ID registers to allow write 8426 * access, so that they ignore writes rather than causing them to 8427 * UNDEF. 8428 */ 8429 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8430 for (r = id_pre_v8_midr_cp_reginfo; 8431 r->type != ARM_CP_SENTINEL; r++) { 8432 r->access = PL1_RW; 8433 } 8434 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8435 r->access = PL1_RW; 8436 } 8437 id_mpuir_reginfo.access = PL1_RW; 8438 id_tlbtr_reginfo.access = PL1_RW; 8439 } 8440 if (arm_feature(env, ARM_FEATURE_V8)) { 8441 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8442 } else { 8443 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8444 } 8445 define_arm_cp_regs(cpu, id_cp_reginfo); 8446 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8447 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8448 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8449 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8450 } 8451 } 8452 8453 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8454 ARMCPRegInfo mpidr_cp_reginfo[] = { 8455 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8456 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8457 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8458 REGINFO_SENTINEL 8459 }; 8460 #ifdef CONFIG_USER_ONLY 8461 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8462 { .name = "MPIDR_EL1", 8463 .fixed_bits = 0x0000000080000000 }, 8464 REGUSERINFO_SENTINEL 8465 }; 8466 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8467 #endif 8468 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8469 } 8470 8471 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8472 ARMCPRegInfo auxcr_reginfo[] = { 8473 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8474 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8475 .access = PL1_RW, .accessfn = access_tacr, 8476 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8477 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8478 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8479 .access = PL2_RW, .type = ARM_CP_CONST, 8480 .resetvalue = 0 }, 8481 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8482 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8483 .access = PL3_RW, .type = ARM_CP_CONST, 8484 .resetvalue = 0 }, 8485 REGINFO_SENTINEL 8486 }; 8487 define_arm_cp_regs(cpu, auxcr_reginfo); 8488 if (cpu_isar_feature(aa32_ac2, cpu)) { 8489 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8490 } 8491 } 8492 8493 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8494 /* 8495 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8496 * There are two flavours: 8497 * (1) older 32-bit only cores have a simple 32-bit CBAR 8498 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8499 * 32-bit register visible to AArch32 at a different encoding 8500 * to the "flavour 1" register and with the bits rearranged to 8501 * be able to squash a 64-bit address into the 32-bit view. 8502 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8503 * in future if we support AArch32-only configs of some of the 8504 * AArch64 cores we might need to add a specific feature flag 8505 * to indicate cores with "flavour 2" CBAR. 8506 */ 8507 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8508 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8509 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8510 | extract64(cpu->reset_cbar, 32, 12); 8511 ARMCPRegInfo cbar_reginfo[] = { 8512 { .name = "CBAR", 8513 .type = ARM_CP_CONST, 8514 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8515 .access = PL1_R, .resetvalue = cbar32 }, 8516 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8517 .type = ARM_CP_CONST, 8518 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8519 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8520 REGINFO_SENTINEL 8521 }; 8522 /* We don't implement a r/w 64 bit CBAR currently */ 8523 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8524 define_arm_cp_regs(cpu, cbar_reginfo); 8525 } else { 8526 ARMCPRegInfo cbar = { 8527 .name = "CBAR", 8528 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8529 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8530 .fieldoffset = offsetof(CPUARMState, 8531 cp15.c15_config_base_address) 8532 }; 8533 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8534 cbar.access = PL1_R; 8535 cbar.fieldoffset = 0; 8536 cbar.type = ARM_CP_CONST; 8537 } 8538 define_one_arm_cp_reg(cpu, &cbar); 8539 } 8540 } 8541 8542 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8543 ARMCPRegInfo vbar_cp_reginfo[] = { 8544 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8545 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8546 .access = PL1_RW, .writefn = vbar_write, 8547 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8548 offsetof(CPUARMState, cp15.vbar_ns) }, 8549 .resetvalue = 0 }, 8550 REGINFO_SENTINEL 8551 }; 8552 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8553 } 8554 8555 /* Generic registers whose values depend on the implementation */ 8556 { 8557 ARMCPRegInfo sctlr = { 8558 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8559 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8560 .access = PL1_RW, .accessfn = access_tvm_trvm, 8561 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8562 offsetof(CPUARMState, cp15.sctlr_ns) }, 8563 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8564 .raw_writefn = raw_write, 8565 }; 8566 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8567 /* Normally we would always end the TB on an SCTLR write, but Linux 8568 * arch/arm/mach-pxa/sleep.S expects two instructions following 8569 * an MMU enable to execute from cache. Imitate this behaviour. 8570 */ 8571 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8572 } 8573 define_one_arm_cp_reg(cpu, &sctlr); 8574 } 8575 8576 if (cpu_isar_feature(aa64_lor, cpu)) { 8577 define_arm_cp_regs(cpu, lor_reginfo); 8578 } 8579 if (cpu_isar_feature(aa64_pan, cpu)) { 8580 define_one_arm_cp_reg(cpu, &pan_reginfo); 8581 } 8582 #ifndef CONFIG_USER_ONLY 8583 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8584 define_arm_cp_regs(cpu, ats1e1_reginfo); 8585 } 8586 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8587 define_arm_cp_regs(cpu, ats1cp_reginfo); 8588 } 8589 #endif 8590 if (cpu_isar_feature(aa64_uao, cpu)) { 8591 define_one_arm_cp_reg(cpu, &uao_reginfo); 8592 } 8593 8594 if (cpu_isar_feature(aa64_dit, cpu)) { 8595 define_one_arm_cp_reg(cpu, &dit_reginfo); 8596 } 8597 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8598 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8599 } 8600 8601 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8602 define_arm_cp_regs(cpu, vhe_reginfo); 8603 } 8604 8605 if (cpu_isar_feature(aa64_sve, cpu)) { 8606 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8607 if (arm_feature(env, ARM_FEATURE_EL2)) { 8608 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8609 } else { 8610 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8611 } 8612 if (arm_feature(env, ARM_FEATURE_EL3)) { 8613 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8614 } 8615 } 8616 8617 #ifdef TARGET_AARCH64 8618 if (cpu_isar_feature(aa64_pauth, cpu)) { 8619 define_arm_cp_regs(cpu, pauth_reginfo); 8620 } 8621 if (cpu_isar_feature(aa64_rndr, cpu)) { 8622 define_arm_cp_regs(cpu, rndr_reginfo); 8623 } 8624 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8625 define_arm_cp_regs(cpu, tlbirange_reginfo); 8626 } 8627 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8628 define_arm_cp_regs(cpu, tlbios_reginfo); 8629 } 8630 #ifndef CONFIG_USER_ONLY 8631 /* Data Cache clean instructions up to PoP */ 8632 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8633 define_one_arm_cp_reg(cpu, dcpop_reg); 8634 8635 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8636 define_one_arm_cp_reg(cpu, dcpodp_reg); 8637 } 8638 } 8639 #endif /*CONFIG_USER_ONLY*/ 8640 8641 /* 8642 * If full MTE is enabled, add all of the system registers. 8643 * If only "instructions available at EL0" are enabled, 8644 * then define only a RAZ/WI version of PSTATE.TCO. 8645 */ 8646 if (cpu_isar_feature(aa64_mte, cpu)) { 8647 define_arm_cp_regs(cpu, mte_reginfo); 8648 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8649 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8650 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8651 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8652 } 8653 #endif 8654 8655 if (cpu_isar_feature(any_predinv, cpu)) { 8656 define_arm_cp_regs(cpu, predinv_reginfo); 8657 } 8658 8659 if (cpu_isar_feature(any_ccidx, cpu)) { 8660 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8661 } 8662 8663 #ifndef CONFIG_USER_ONLY 8664 /* 8665 * Register redirections and aliases must be done last, 8666 * after the registers from the other extensions have been defined. 8667 */ 8668 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8669 define_arm_vh_e2h_redirects_aliases(cpu); 8670 } 8671 #endif 8672 } 8673 8674 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 8675 { 8676 CPUState *cs = CPU(cpu); 8677 CPUARMState *env = &cpu->env; 8678 8679 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8680 /* 8681 * The lower part of each SVE register aliases to the FPU 8682 * registers so we don't need to include both. 8683 */ 8684 #ifdef TARGET_AARCH64 8685 if (isar_feature_aa64_sve(&cpu->isar)) { 8686 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, 8687 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), 8688 "sve-registers.xml", 0); 8689 } else 8690 #endif 8691 { 8692 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 8693 aarch64_fpu_gdb_set_reg, 8694 34, "aarch64-fpu.xml", 0); 8695 } 8696 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 8697 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8698 51, "arm-neon.xml", 0); 8699 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 8700 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8701 35, "arm-vfp3.xml", 0); 8702 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 8703 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8704 19, "arm-vfp.xml", 0); 8705 } 8706 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 8707 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), 8708 "system-registers.xml", 0); 8709 8710 } 8711 8712 /* Sort alphabetically by type name, except for "any". */ 8713 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8714 { 8715 ObjectClass *class_a = (ObjectClass *)a; 8716 ObjectClass *class_b = (ObjectClass *)b; 8717 const char *name_a, *name_b; 8718 8719 name_a = object_class_get_name(class_a); 8720 name_b = object_class_get_name(class_b); 8721 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8722 return 1; 8723 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8724 return -1; 8725 } else { 8726 return strcmp(name_a, name_b); 8727 } 8728 } 8729 8730 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8731 { 8732 ObjectClass *oc = data; 8733 const char *typename; 8734 char *name; 8735 8736 typename = object_class_get_name(oc); 8737 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8738 qemu_printf(" %s\n", name); 8739 g_free(name); 8740 } 8741 8742 void arm_cpu_list(void) 8743 { 8744 GSList *list; 8745 8746 list = object_class_get_list(TYPE_ARM_CPU, false); 8747 list = g_slist_sort(list, arm_cpu_list_compare); 8748 qemu_printf("Available CPUs:\n"); 8749 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8750 g_slist_free(list); 8751 } 8752 8753 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8754 { 8755 ObjectClass *oc = data; 8756 CpuDefinitionInfoList **cpu_list = user_data; 8757 CpuDefinitionInfo *info; 8758 const char *typename; 8759 8760 typename = object_class_get_name(oc); 8761 info = g_malloc0(sizeof(*info)); 8762 info->name = g_strndup(typename, 8763 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8764 info->q_typename = g_strdup(typename); 8765 8766 QAPI_LIST_PREPEND(*cpu_list, info); 8767 } 8768 8769 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8770 { 8771 CpuDefinitionInfoList *cpu_list = NULL; 8772 GSList *list; 8773 8774 list = object_class_get_list(TYPE_ARM_CPU, false); 8775 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8776 g_slist_free(list); 8777 8778 return cpu_list; 8779 } 8780 8781 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8782 void *opaque, int state, int secstate, 8783 int crm, int opc1, int opc2, 8784 const char *name) 8785 { 8786 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8787 * add a single reginfo struct to the hash table. 8788 */ 8789 uint32_t *key = g_new(uint32_t, 1); 8790 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8791 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8792 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8793 8794 r2->name = g_strdup(name); 8795 /* Reset the secure state to the specific incoming state. This is 8796 * necessary as the register may have been defined with both states. 8797 */ 8798 r2->secure = secstate; 8799 8800 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8801 /* Register is banked (using both entries in array). 8802 * Overwriting fieldoffset as the array is only used to define 8803 * banked registers but later only fieldoffset is used. 8804 */ 8805 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8806 } 8807 8808 if (state == ARM_CP_STATE_AA32) { 8809 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8810 /* If the register is banked then we don't need to migrate or 8811 * reset the 32-bit instance in certain cases: 8812 * 8813 * 1) If the register has both 32-bit and 64-bit instances then we 8814 * can count on the 64-bit instance taking care of the 8815 * non-secure bank. 8816 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8817 * taking care of the secure bank. This requires that separate 8818 * 32 and 64-bit definitions are provided. 8819 */ 8820 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8821 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8822 r2->type |= ARM_CP_ALIAS; 8823 } 8824 } else if ((secstate != r->secure) && !ns) { 8825 /* The register is not banked so we only want to allow migration of 8826 * the non-secure instance. 8827 */ 8828 r2->type |= ARM_CP_ALIAS; 8829 } 8830 8831 if (r->state == ARM_CP_STATE_BOTH) { 8832 /* We assume it is a cp15 register if the .cp field is left unset. 8833 */ 8834 if (r2->cp == 0) { 8835 r2->cp = 15; 8836 } 8837 8838 #ifdef HOST_WORDS_BIGENDIAN 8839 if (r2->fieldoffset) { 8840 r2->fieldoffset += sizeof(uint32_t); 8841 } 8842 #endif 8843 } 8844 } 8845 if (state == ARM_CP_STATE_AA64) { 8846 /* To allow abbreviation of ARMCPRegInfo 8847 * definitions, we treat cp == 0 as equivalent to 8848 * the value for "standard guest-visible sysreg". 8849 * STATE_BOTH definitions are also always "standard 8850 * sysreg" in their AArch64 view (the .cp value may 8851 * be non-zero for the benefit of the AArch32 view). 8852 */ 8853 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8854 r2->cp = CP_REG_ARM64_SYSREG_CP; 8855 } 8856 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8857 r2->opc0, opc1, opc2); 8858 } else { 8859 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8860 } 8861 if (opaque) { 8862 r2->opaque = opaque; 8863 } 8864 /* reginfo passed to helpers is correct for the actual access, 8865 * and is never ARM_CP_STATE_BOTH: 8866 */ 8867 r2->state = state; 8868 /* Make sure reginfo passed to helpers for wildcarded regs 8869 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8870 */ 8871 r2->crm = crm; 8872 r2->opc1 = opc1; 8873 r2->opc2 = opc2; 8874 /* By convention, for wildcarded registers only the first 8875 * entry is used for migration; the others are marked as 8876 * ALIAS so we don't try to transfer the register 8877 * multiple times. Special registers (ie NOP/WFI) are 8878 * never migratable and not even raw-accessible. 8879 */ 8880 if ((r->type & ARM_CP_SPECIAL)) { 8881 r2->type |= ARM_CP_NO_RAW; 8882 } 8883 if (((r->crm == CP_ANY) && crm != 0) || 8884 ((r->opc1 == CP_ANY) && opc1 != 0) || 8885 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8886 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8887 } 8888 8889 /* Check that raw accesses are either forbidden or handled. Note that 8890 * we can't assert this earlier because the setup of fieldoffset for 8891 * banked registers has to be done first. 8892 */ 8893 if (!(r2->type & ARM_CP_NO_RAW)) { 8894 assert(!raw_accessors_invalid(r2)); 8895 } 8896 8897 /* Overriding of an existing definition must be explicitly 8898 * requested. 8899 */ 8900 if (!(r->type & ARM_CP_OVERRIDE)) { 8901 ARMCPRegInfo *oldreg; 8902 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8903 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8904 fprintf(stderr, "Register redefined: cp=%d %d bit " 8905 "crn=%d crm=%d opc1=%d opc2=%d, " 8906 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8907 r2->crn, r2->crm, r2->opc1, r2->opc2, 8908 oldreg->name, r2->name); 8909 g_assert_not_reached(); 8910 } 8911 } 8912 g_hash_table_insert(cpu->cp_regs, key, r2); 8913 } 8914 8915 8916 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8917 const ARMCPRegInfo *r, void *opaque) 8918 { 8919 /* Define implementations of coprocessor registers. 8920 * We store these in a hashtable because typically 8921 * there are less than 150 registers in a space which 8922 * is 16*16*16*8*8 = 262144 in size. 8923 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8924 * If a register is defined twice then the second definition is 8925 * used, so this can be used to define some generic registers and 8926 * then override them with implementation specific variations. 8927 * At least one of the original and the second definition should 8928 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8929 * against accidental use. 8930 * 8931 * The state field defines whether the register is to be 8932 * visible in the AArch32 or AArch64 execution state. If the 8933 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8934 * reginfo structure for the AArch32 view, which sees the lower 8935 * 32 bits of the 64 bit register. 8936 * 8937 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8938 * be wildcarded. AArch64 registers are always considered to be 64 8939 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8940 * the register, if any. 8941 */ 8942 int crm, opc1, opc2, state; 8943 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8944 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8945 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8946 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8947 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8948 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8949 /* 64 bit registers have only CRm and Opc1 fields */ 8950 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8951 /* op0 only exists in the AArch64 encodings */ 8952 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8953 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8954 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8955 /* 8956 * This API is only for Arm's system coprocessors (14 and 15) or 8957 * (M-profile or v7A-and-earlier only) for implementation defined 8958 * coprocessors in the range 0..7. Our decode assumes this, since 8959 * 8..13 can be used for other insns including VFP and Neon. See 8960 * valid_cp() in translate.c. Assert here that we haven't tried 8961 * to use an invalid coprocessor number. 8962 */ 8963 switch (r->state) { 8964 case ARM_CP_STATE_BOTH: 8965 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8966 if (r->cp == 0) { 8967 break; 8968 } 8969 /* fall through */ 8970 case ARM_CP_STATE_AA32: 8971 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8972 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8973 assert(r->cp >= 14 && r->cp <= 15); 8974 } else { 8975 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8976 } 8977 break; 8978 case ARM_CP_STATE_AA64: 8979 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8980 break; 8981 default: 8982 g_assert_not_reached(); 8983 } 8984 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8985 * encodes a minimum access level for the register. We roll this 8986 * runtime check into our general permission check code, so check 8987 * here that the reginfo's specified permissions are strict enough 8988 * to encompass the generic architectural permission check. 8989 */ 8990 if (r->state != ARM_CP_STATE_AA32) { 8991 int mask = 0; 8992 switch (r->opc1) { 8993 case 0: 8994 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8995 mask = PL0U_R | PL1_RW; 8996 break; 8997 case 1: case 2: 8998 /* min_EL EL1 */ 8999 mask = PL1_RW; 9000 break; 9001 case 3: 9002 /* min_EL EL0 */ 9003 mask = PL0_RW; 9004 break; 9005 case 4: 9006 case 5: 9007 /* min_EL EL2 */ 9008 mask = PL2_RW; 9009 break; 9010 case 6: 9011 /* min_EL EL3 */ 9012 mask = PL3_RW; 9013 break; 9014 case 7: 9015 /* min_EL EL1, secure mode only (we don't check the latter) */ 9016 mask = PL1_RW; 9017 break; 9018 default: 9019 /* broken reginfo with out-of-range opc1 */ 9020 assert(false); 9021 break; 9022 } 9023 /* assert our permissions are not too lax (stricter is fine) */ 9024 assert((r->access & ~mask) == 0); 9025 } 9026 9027 /* Check that the register definition has enough info to handle 9028 * reads and writes if they are permitted. 9029 */ 9030 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 9031 if (r->access & PL3_R) { 9032 assert((r->fieldoffset || 9033 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9034 r->readfn); 9035 } 9036 if (r->access & PL3_W) { 9037 assert((r->fieldoffset || 9038 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9039 r->writefn); 9040 } 9041 } 9042 /* Bad type field probably means missing sentinel at end of reg list */ 9043 assert(cptype_valid(r->type)); 9044 for (crm = crmmin; crm <= crmmax; crm++) { 9045 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9046 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9047 for (state = ARM_CP_STATE_AA32; 9048 state <= ARM_CP_STATE_AA64; state++) { 9049 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9050 continue; 9051 } 9052 if (state == ARM_CP_STATE_AA32) { 9053 /* Under AArch32 CP registers can be common 9054 * (same for secure and non-secure world) or banked. 9055 */ 9056 char *name; 9057 9058 switch (r->secure) { 9059 case ARM_CP_SECSTATE_S: 9060 case ARM_CP_SECSTATE_NS: 9061 add_cpreg_to_hashtable(cpu, r, opaque, state, 9062 r->secure, crm, opc1, opc2, 9063 r->name); 9064 break; 9065 default: 9066 name = g_strdup_printf("%s_S", r->name); 9067 add_cpreg_to_hashtable(cpu, r, opaque, state, 9068 ARM_CP_SECSTATE_S, 9069 crm, opc1, opc2, name); 9070 g_free(name); 9071 add_cpreg_to_hashtable(cpu, r, opaque, state, 9072 ARM_CP_SECSTATE_NS, 9073 crm, opc1, opc2, r->name); 9074 break; 9075 } 9076 } else { 9077 /* AArch64 registers get mapped to non-secure instance 9078 * of AArch32 */ 9079 add_cpreg_to_hashtable(cpu, r, opaque, state, 9080 ARM_CP_SECSTATE_NS, 9081 crm, opc1, opc2, r->name); 9082 } 9083 } 9084 } 9085 } 9086 } 9087 } 9088 9089 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 9090 const ARMCPRegInfo *regs, void *opaque) 9091 { 9092 /* Define a whole list of registers */ 9093 const ARMCPRegInfo *r; 9094 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 9095 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 9096 } 9097 } 9098 9099 /* 9100 * Modify ARMCPRegInfo for access from userspace. 9101 * 9102 * This is a data driven modification directed by 9103 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9104 * user-space cannot alter any values and dynamic values pertaining to 9105 * execution state are hidden from user space view anyway. 9106 */ 9107 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 9108 { 9109 const ARMCPRegUserSpaceInfo *m; 9110 ARMCPRegInfo *r; 9111 9112 for (m = mods; m->name; m++) { 9113 GPatternSpec *pat = NULL; 9114 if (m->is_glob) { 9115 pat = g_pattern_spec_new(m->name); 9116 } 9117 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 9118 if (pat && g_pattern_match_string(pat, r->name)) { 9119 r->type = ARM_CP_CONST; 9120 r->access = PL0U_R; 9121 r->resetvalue = 0; 9122 /* continue */ 9123 } else if (strcmp(r->name, m->name) == 0) { 9124 r->type = ARM_CP_CONST; 9125 r->access = PL0U_R; 9126 r->resetvalue &= m->exported_bits; 9127 r->resetvalue |= m->fixed_bits; 9128 break; 9129 } 9130 } 9131 if (pat) { 9132 g_pattern_spec_free(pat); 9133 } 9134 } 9135 } 9136 9137 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9138 { 9139 return g_hash_table_lookup(cpregs, &encoded_cp); 9140 } 9141 9142 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9143 uint64_t value) 9144 { 9145 /* Helper coprocessor write function for write-ignore registers */ 9146 } 9147 9148 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9149 { 9150 /* Helper coprocessor write function for read-as-zero registers */ 9151 return 0; 9152 } 9153 9154 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9155 { 9156 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9157 } 9158 9159 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9160 { 9161 /* Return true if it is not valid for us to switch to 9162 * this CPU mode (ie all the UNPREDICTABLE cases in 9163 * the ARM ARM CPSRWriteByInstr pseudocode). 9164 */ 9165 9166 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9167 if (write_type == CPSRWriteByInstr && 9168 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9169 mode == ARM_CPU_MODE_HYP)) { 9170 return 1; 9171 } 9172 9173 switch (mode) { 9174 case ARM_CPU_MODE_USR: 9175 return 0; 9176 case ARM_CPU_MODE_SYS: 9177 case ARM_CPU_MODE_SVC: 9178 case ARM_CPU_MODE_ABT: 9179 case ARM_CPU_MODE_UND: 9180 case ARM_CPU_MODE_IRQ: 9181 case ARM_CPU_MODE_FIQ: 9182 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 9183 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9184 */ 9185 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9186 * and CPS are treated as illegal mode changes. 9187 */ 9188 if (write_type == CPSRWriteByInstr && 9189 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9190 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9191 return 1; 9192 } 9193 return 0; 9194 case ARM_CPU_MODE_HYP: 9195 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9196 case ARM_CPU_MODE_MON: 9197 return arm_current_el(env) < 3; 9198 default: 9199 return 1; 9200 } 9201 } 9202 9203 uint32_t cpsr_read(CPUARMState *env) 9204 { 9205 int ZF; 9206 ZF = (env->ZF == 0); 9207 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9208 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9209 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9210 | ((env->condexec_bits & 0xfc) << 8) 9211 | (env->GE << 16) | (env->daif & CPSR_AIF); 9212 } 9213 9214 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9215 CPSRWriteType write_type) 9216 { 9217 uint32_t changed_daif; 9218 9219 if (mask & CPSR_NZCV) { 9220 env->ZF = (~val) & CPSR_Z; 9221 env->NF = val; 9222 env->CF = (val >> 29) & 1; 9223 env->VF = (val << 3) & 0x80000000; 9224 } 9225 if (mask & CPSR_Q) 9226 env->QF = ((val & CPSR_Q) != 0); 9227 if (mask & CPSR_T) 9228 env->thumb = ((val & CPSR_T) != 0); 9229 if (mask & CPSR_IT_0_1) { 9230 env->condexec_bits &= ~3; 9231 env->condexec_bits |= (val >> 25) & 3; 9232 } 9233 if (mask & CPSR_IT_2_7) { 9234 env->condexec_bits &= 3; 9235 env->condexec_bits |= (val >> 8) & 0xfc; 9236 } 9237 if (mask & CPSR_GE) { 9238 env->GE = (val >> 16) & 0xf; 9239 } 9240 9241 /* In a V7 implementation that includes the security extensions but does 9242 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9243 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9244 * bits respectively. 9245 * 9246 * In a V8 implementation, it is permitted for privileged software to 9247 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9248 */ 9249 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9250 arm_feature(env, ARM_FEATURE_EL3) && 9251 !arm_feature(env, ARM_FEATURE_EL2) && 9252 !arm_is_secure(env)) { 9253 9254 changed_daif = (env->daif ^ val) & mask; 9255 9256 if (changed_daif & CPSR_A) { 9257 /* Check to see if we are allowed to change the masking of async 9258 * abort exceptions from a non-secure state. 9259 */ 9260 if (!(env->cp15.scr_el3 & SCR_AW)) { 9261 qemu_log_mask(LOG_GUEST_ERROR, 9262 "Ignoring attempt to switch CPSR_A flag from " 9263 "non-secure world with SCR.AW bit clear\n"); 9264 mask &= ~CPSR_A; 9265 } 9266 } 9267 9268 if (changed_daif & CPSR_F) { 9269 /* Check to see if we are allowed to change the masking of FIQ 9270 * exceptions from a non-secure state. 9271 */ 9272 if (!(env->cp15.scr_el3 & SCR_FW)) { 9273 qemu_log_mask(LOG_GUEST_ERROR, 9274 "Ignoring attempt to switch CPSR_F flag from " 9275 "non-secure world with SCR.FW bit clear\n"); 9276 mask &= ~CPSR_F; 9277 } 9278 9279 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9280 * If this bit is set software is not allowed to mask 9281 * FIQs, but is allowed to set CPSR_F to 0. 9282 */ 9283 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9284 (val & CPSR_F)) { 9285 qemu_log_mask(LOG_GUEST_ERROR, 9286 "Ignoring attempt to enable CPSR_F flag " 9287 "(non-maskable FIQ [NMFI] support enabled)\n"); 9288 mask &= ~CPSR_F; 9289 } 9290 } 9291 } 9292 9293 env->daif &= ~(CPSR_AIF & mask); 9294 env->daif |= val & CPSR_AIF & mask; 9295 9296 if (write_type != CPSRWriteRaw && 9297 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9298 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9299 /* Note that we can only get here in USR mode if this is a 9300 * gdb stub write; for this case we follow the architectural 9301 * behaviour for guest writes in USR mode of ignoring an attempt 9302 * to switch mode. (Those are caught by translate.c for writes 9303 * triggered by guest instructions.) 9304 */ 9305 mask &= ~CPSR_M; 9306 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9307 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9308 * v7, and has defined behaviour in v8: 9309 * + leave CPSR.M untouched 9310 * + allow changes to the other CPSR fields 9311 * + set PSTATE.IL 9312 * For user changes via the GDB stub, we don't set PSTATE.IL, 9313 * as this would be unnecessarily harsh for a user error. 9314 */ 9315 mask &= ~CPSR_M; 9316 if (write_type != CPSRWriteByGDBStub && 9317 arm_feature(env, ARM_FEATURE_V8)) { 9318 mask |= CPSR_IL; 9319 val |= CPSR_IL; 9320 } 9321 qemu_log_mask(LOG_GUEST_ERROR, 9322 "Illegal AArch32 mode switch attempt from %s to %s\n", 9323 aarch32_mode_name(env->uncached_cpsr), 9324 aarch32_mode_name(val)); 9325 } else { 9326 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9327 write_type == CPSRWriteExceptionReturn ? 9328 "Exception return from AArch32" : 9329 "AArch32 mode switch from", 9330 aarch32_mode_name(env->uncached_cpsr), 9331 aarch32_mode_name(val), env->regs[15]); 9332 switch_mode(env, val & CPSR_M); 9333 } 9334 } 9335 mask &= ~CACHED_CPSR_BITS; 9336 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9337 } 9338 9339 /* Sign/zero extend */ 9340 uint32_t HELPER(sxtb16)(uint32_t x) 9341 { 9342 uint32_t res; 9343 res = (uint16_t)(int8_t)x; 9344 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9345 return res; 9346 } 9347 9348 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9349 { 9350 /* 9351 * Take a division-by-zero exception if necessary; otherwise return 9352 * to get the usual non-trapping division behaviour (result of 0) 9353 */ 9354 if (arm_feature(env, ARM_FEATURE_M) 9355 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9356 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9357 } 9358 } 9359 9360 uint32_t HELPER(uxtb16)(uint32_t x) 9361 { 9362 uint32_t res; 9363 res = (uint16_t)(uint8_t)x; 9364 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9365 return res; 9366 } 9367 9368 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9369 { 9370 if (den == 0) { 9371 handle_possible_div0_trap(env, GETPC()); 9372 return 0; 9373 } 9374 if (num == INT_MIN && den == -1) { 9375 return INT_MIN; 9376 } 9377 return num / den; 9378 } 9379 9380 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9381 { 9382 if (den == 0) { 9383 handle_possible_div0_trap(env, GETPC()); 9384 return 0; 9385 } 9386 return num / den; 9387 } 9388 9389 uint32_t HELPER(rbit)(uint32_t x) 9390 { 9391 return revbit32(x); 9392 } 9393 9394 #ifdef CONFIG_USER_ONLY 9395 9396 static void switch_mode(CPUARMState *env, int mode) 9397 { 9398 ARMCPU *cpu = env_archcpu(env); 9399 9400 if (mode != ARM_CPU_MODE_USR) { 9401 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9402 } 9403 } 9404 9405 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9406 uint32_t cur_el, bool secure) 9407 { 9408 return 1; 9409 } 9410 9411 void aarch64_sync_64_to_32(CPUARMState *env) 9412 { 9413 g_assert_not_reached(); 9414 } 9415 9416 #else 9417 9418 static void switch_mode(CPUARMState *env, int mode) 9419 { 9420 int old_mode; 9421 int i; 9422 9423 old_mode = env->uncached_cpsr & CPSR_M; 9424 if (mode == old_mode) 9425 return; 9426 9427 if (old_mode == ARM_CPU_MODE_FIQ) { 9428 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9429 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9430 } else if (mode == ARM_CPU_MODE_FIQ) { 9431 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9432 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9433 } 9434 9435 i = bank_number(old_mode); 9436 env->banked_r13[i] = env->regs[13]; 9437 env->banked_spsr[i] = env->spsr; 9438 9439 i = bank_number(mode); 9440 env->regs[13] = env->banked_r13[i]; 9441 env->spsr = env->banked_spsr[i]; 9442 9443 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9444 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9445 } 9446 9447 /* Physical Interrupt Target EL Lookup Table 9448 * 9449 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9450 * 9451 * The below multi-dimensional table is used for looking up the target 9452 * exception level given numerous condition criteria. Specifically, the 9453 * target EL is based on SCR and HCR routing controls as well as the 9454 * currently executing EL and secure state. 9455 * 9456 * Dimensions: 9457 * target_el_table[2][2][2][2][2][4] 9458 * | | | | | +--- Current EL 9459 * | | | | +------ Non-secure(0)/Secure(1) 9460 * | | | +--------- HCR mask override 9461 * | | +------------ SCR exec state control 9462 * | +--------------- SCR mask override 9463 * +------------------ 32-bit(0)/64-bit(1) EL3 9464 * 9465 * The table values are as such: 9466 * 0-3 = EL0-EL3 9467 * -1 = Cannot occur 9468 * 9469 * The ARM ARM target EL table includes entries indicating that an "exception 9470 * is not taken". The two cases where this is applicable are: 9471 * 1) An exception is taken from EL3 but the SCR does not have the exception 9472 * routed to EL3. 9473 * 2) An exception is taken from EL2 but the HCR does not have the exception 9474 * routed to EL2. 9475 * In these two cases, the below table contain a target of EL1. This value is 9476 * returned as it is expected that the consumer of the table data will check 9477 * for "target EL >= current EL" to ensure the exception is not taken. 9478 * 9479 * SCR HCR 9480 * 64 EA AMO From 9481 * BIT IRQ IMO Non-secure Secure 9482 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9483 */ 9484 static const int8_t target_el_table[2][2][2][2][2][4] = { 9485 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9486 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9487 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9488 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9489 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9490 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9491 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9492 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9493 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9494 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9495 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9496 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9497 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9498 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9499 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9500 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9501 }; 9502 9503 /* 9504 * Determine the target EL for physical exceptions 9505 */ 9506 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9507 uint32_t cur_el, bool secure) 9508 { 9509 CPUARMState *env = cs->env_ptr; 9510 bool rw; 9511 bool scr; 9512 bool hcr; 9513 int target_el; 9514 /* Is the highest EL AArch64? */ 9515 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9516 uint64_t hcr_el2; 9517 9518 if (arm_feature(env, ARM_FEATURE_EL3)) { 9519 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9520 } else { 9521 /* Either EL2 is the highest EL (and so the EL2 register width 9522 * is given by is64); or there is no EL2 or EL3, in which case 9523 * the value of 'rw' does not affect the table lookup anyway. 9524 */ 9525 rw = is64; 9526 } 9527 9528 hcr_el2 = arm_hcr_el2_eff(env); 9529 switch (excp_idx) { 9530 case EXCP_IRQ: 9531 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9532 hcr = hcr_el2 & HCR_IMO; 9533 break; 9534 case EXCP_FIQ: 9535 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9536 hcr = hcr_el2 & HCR_FMO; 9537 break; 9538 default: 9539 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9540 hcr = hcr_el2 & HCR_AMO; 9541 break; 9542 }; 9543 9544 /* 9545 * For these purposes, TGE and AMO/IMO/FMO both force the 9546 * interrupt to EL2. Fold TGE into the bit extracted above. 9547 */ 9548 hcr |= (hcr_el2 & HCR_TGE) != 0; 9549 9550 /* Perform a table-lookup for the target EL given the current state */ 9551 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9552 9553 assert(target_el > 0); 9554 9555 return target_el; 9556 } 9557 9558 void arm_log_exception(int idx) 9559 { 9560 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9561 const char *exc = NULL; 9562 static const char * const excnames[] = { 9563 [EXCP_UDEF] = "Undefined Instruction", 9564 [EXCP_SWI] = "SVC", 9565 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9566 [EXCP_DATA_ABORT] = "Data Abort", 9567 [EXCP_IRQ] = "IRQ", 9568 [EXCP_FIQ] = "FIQ", 9569 [EXCP_BKPT] = "Breakpoint", 9570 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9571 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9572 [EXCP_HVC] = "Hypervisor Call", 9573 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9574 [EXCP_SMC] = "Secure Monitor Call", 9575 [EXCP_VIRQ] = "Virtual IRQ", 9576 [EXCP_VFIQ] = "Virtual FIQ", 9577 [EXCP_SEMIHOST] = "Semihosting call", 9578 [EXCP_NOCP] = "v7M NOCP UsageFault", 9579 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9580 [EXCP_STKOF] = "v8M STKOF UsageFault", 9581 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9582 [EXCP_LSERR] = "v8M LSERR UsageFault", 9583 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9584 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9585 }; 9586 9587 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9588 exc = excnames[idx]; 9589 } 9590 if (!exc) { 9591 exc = "unknown"; 9592 } 9593 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 9594 } 9595 } 9596 9597 /* 9598 * Function used to synchronize QEMU's AArch64 register set with AArch32 9599 * register set. This is necessary when switching between AArch32 and AArch64 9600 * execution state. 9601 */ 9602 void aarch64_sync_32_to_64(CPUARMState *env) 9603 { 9604 int i; 9605 uint32_t mode = env->uncached_cpsr & CPSR_M; 9606 9607 /* We can blanket copy R[0:7] to X[0:7] */ 9608 for (i = 0; i < 8; i++) { 9609 env->xregs[i] = env->regs[i]; 9610 } 9611 9612 /* 9613 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9614 * Otherwise, they come from the banked user regs. 9615 */ 9616 if (mode == ARM_CPU_MODE_FIQ) { 9617 for (i = 8; i < 13; i++) { 9618 env->xregs[i] = env->usr_regs[i - 8]; 9619 } 9620 } else { 9621 for (i = 8; i < 13; i++) { 9622 env->xregs[i] = env->regs[i]; 9623 } 9624 } 9625 9626 /* 9627 * Registers x13-x23 are the various mode SP and FP registers. Registers 9628 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9629 * from the mode banked register. 9630 */ 9631 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9632 env->xregs[13] = env->regs[13]; 9633 env->xregs[14] = env->regs[14]; 9634 } else { 9635 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9636 /* HYP is an exception in that it is copied from r14 */ 9637 if (mode == ARM_CPU_MODE_HYP) { 9638 env->xregs[14] = env->regs[14]; 9639 } else { 9640 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9641 } 9642 } 9643 9644 if (mode == ARM_CPU_MODE_HYP) { 9645 env->xregs[15] = env->regs[13]; 9646 } else { 9647 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9648 } 9649 9650 if (mode == ARM_CPU_MODE_IRQ) { 9651 env->xregs[16] = env->regs[14]; 9652 env->xregs[17] = env->regs[13]; 9653 } else { 9654 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9655 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9656 } 9657 9658 if (mode == ARM_CPU_MODE_SVC) { 9659 env->xregs[18] = env->regs[14]; 9660 env->xregs[19] = env->regs[13]; 9661 } else { 9662 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9663 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9664 } 9665 9666 if (mode == ARM_CPU_MODE_ABT) { 9667 env->xregs[20] = env->regs[14]; 9668 env->xregs[21] = env->regs[13]; 9669 } else { 9670 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9671 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9672 } 9673 9674 if (mode == ARM_CPU_MODE_UND) { 9675 env->xregs[22] = env->regs[14]; 9676 env->xregs[23] = env->regs[13]; 9677 } else { 9678 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9679 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9680 } 9681 9682 /* 9683 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9684 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9685 * FIQ bank for r8-r14. 9686 */ 9687 if (mode == ARM_CPU_MODE_FIQ) { 9688 for (i = 24; i < 31; i++) { 9689 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9690 } 9691 } else { 9692 for (i = 24; i < 29; i++) { 9693 env->xregs[i] = env->fiq_regs[i - 24]; 9694 } 9695 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9696 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9697 } 9698 9699 env->pc = env->regs[15]; 9700 } 9701 9702 /* 9703 * Function used to synchronize QEMU's AArch32 register set with AArch64 9704 * register set. This is necessary when switching between AArch32 and AArch64 9705 * execution state. 9706 */ 9707 void aarch64_sync_64_to_32(CPUARMState *env) 9708 { 9709 int i; 9710 uint32_t mode = env->uncached_cpsr & CPSR_M; 9711 9712 /* We can blanket copy X[0:7] to R[0:7] */ 9713 for (i = 0; i < 8; i++) { 9714 env->regs[i] = env->xregs[i]; 9715 } 9716 9717 /* 9718 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9719 * Otherwise, we copy x8-x12 into the banked user regs. 9720 */ 9721 if (mode == ARM_CPU_MODE_FIQ) { 9722 for (i = 8; i < 13; i++) { 9723 env->usr_regs[i - 8] = env->xregs[i]; 9724 } 9725 } else { 9726 for (i = 8; i < 13; i++) { 9727 env->regs[i] = env->xregs[i]; 9728 } 9729 } 9730 9731 /* 9732 * Registers r13 & r14 depend on the current mode. 9733 * If we are in a given mode, we copy the corresponding x registers to r13 9734 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9735 * for the mode. 9736 */ 9737 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9738 env->regs[13] = env->xregs[13]; 9739 env->regs[14] = env->xregs[14]; 9740 } else { 9741 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9742 9743 /* 9744 * HYP is an exception in that it does not have its own banked r14 but 9745 * shares the USR r14 9746 */ 9747 if (mode == ARM_CPU_MODE_HYP) { 9748 env->regs[14] = env->xregs[14]; 9749 } else { 9750 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9751 } 9752 } 9753 9754 if (mode == ARM_CPU_MODE_HYP) { 9755 env->regs[13] = env->xregs[15]; 9756 } else { 9757 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9758 } 9759 9760 if (mode == ARM_CPU_MODE_IRQ) { 9761 env->regs[14] = env->xregs[16]; 9762 env->regs[13] = env->xregs[17]; 9763 } else { 9764 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9765 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9766 } 9767 9768 if (mode == ARM_CPU_MODE_SVC) { 9769 env->regs[14] = env->xregs[18]; 9770 env->regs[13] = env->xregs[19]; 9771 } else { 9772 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9773 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9774 } 9775 9776 if (mode == ARM_CPU_MODE_ABT) { 9777 env->regs[14] = env->xregs[20]; 9778 env->regs[13] = env->xregs[21]; 9779 } else { 9780 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9781 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9782 } 9783 9784 if (mode == ARM_CPU_MODE_UND) { 9785 env->regs[14] = env->xregs[22]; 9786 env->regs[13] = env->xregs[23]; 9787 } else { 9788 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9789 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9790 } 9791 9792 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9793 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9794 * FIQ bank for r8-r14. 9795 */ 9796 if (mode == ARM_CPU_MODE_FIQ) { 9797 for (i = 24; i < 31; i++) { 9798 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9799 } 9800 } else { 9801 for (i = 24; i < 29; i++) { 9802 env->fiq_regs[i - 24] = env->xregs[i]; 9803 } 9804 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9805 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9806 } 9807 9808 env->regs[15] = env->pc; 9809 } 9810 9811 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9812 uint32_t mask, uint32_t offset, 9813 uint32_t newpc) 9814 { 9815 int new_el; 9816 9817 /* Change the CPU state so as to actually take the exception. */ 9818 switch_mode(env, new_mode); 9819 9820 /* 9821 * For exceptions taken to AArch32 we must clear the SS bit in both 9822 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9823 */ 9824 env->pstate &= ~PSTATE_SS; 9825 env->spsr = cpsr_read(env); 9826 /* Clear IT bits. */ 9827 env->condexec_bits = 0; 9828 /* Switch to the new mode, and to the correct instruction set. */ 9829 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9830 9831 /* This must be after mode switching. */ 9832 new_el = arm_current_el(env); 9833 9834 /* Set new mode endianness */ 9835 env->uncached_cpsr &= ~CPSR_E; 9836 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9837 env->uncached_cpsr |= CPSR_E; 9838 } 9839 /* J and IL must always be cleared for exception entry */ 9840 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9841 env->daif |= mask; 9842 9843 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9844 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9845 env->uncached_cpsr |= CPSR_SSBS; 9846 } else { 9847 env->uncached_cpsr &= ~CPSR_SSBS; 9848 } 9849 } 9850 9851 if (new_mode == ARM_CPU_MODE_HYP) { 9852 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9853 env->elr_el[2] = env->regs[15]; 9854 } else { 9855 /* CPSR.PAN is normally preserved preserved unless... */ 9856 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9857 switch (new_el) { 9858 case 3: 9859 if (!arm_is_secure_below_el3(env)) { 9860 /* ... the target is EL3, from non-secure state. */ 9861 env->uncached_cpsr &= ~CPSR_PAN; 9862 break; 9863 } 9864 /* ... the target is EL3, from secure state ... */ 9865 /* fall through */ 9866 case 1: 9867 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9868 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9869 env->uncached_cpsr |= CPSR_PAN; 9870 } 9871 break; 9872 } 9873 } 9874 /* 9875 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9876 * and we should just guard the thumb mode on V4 9877 */ 9878 if (arm_feature(env, ARM_FEATURE_V4T)) { 9879 env->thumb = 9880 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9881 } 9882 env->regs[14] = env->regs[15] + offset; 9883 } 9884 env->regs[15] = newpc; 9885 arm_rebuild_hflags(env); 9886 } 9887 9888 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9889 { 9890 /* 9891 * Handle exception entry to Hyp mode; this is sufficiently 9892 * different to entry to other AArch32 modes that we handle it 9893 * separately here. 9894 * 9895 * The vector table entry used is always the 0x14 Hyp mode entry point, 9896 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9897 * The offset applied to the preferred return address is always zero 9898 * (see DDI0487C.a section G1.12.3). 9899 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9900 */ 9901 uint32_t addr, mask; 9902 ARMCPU *cpu = ARM_CPU(cs); 9903 CPUARMState *env = &cpu->env; 9904 9905 switch (cs->exception_index) { 9906 case EXCP_UDEF: 9907 addr = 0x04; 9908 break; 9909 case EXCP_SWI: 9910 addr = 0x14; 9911 break; 9912 case EXCP_BKPT: 9913 /* Fall through to prefetch abort. */ 9914 case EXCP_PREFETCH_ABORT: 9915 env->cp15.ifar_s = env->exception.vaddress; 9916 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9917 (uint32_t)env->exception.vaddress); 9918 addr = 0x0c; 9919 break; 9920 case EXCP_DATA_ABORT: 9921 env->cp15.dfar_s = env->exception.vaddress; 9922 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9923 (uint32_t)env->exception.vaddress); 9924 addr = 0x10; 9925 break; 9926 case EXCP_IRQ: 9927 addr = 0x18; 9928 break; 9929 case EXCP_FIQ: 9930 addr = 0x1c; 9931 break; 9932 case EXCP_HVC: 9933 addr = 0x08; 9934 break; 9935 case EXCP_HYP_TRAP: 9936 addr = 0x14; 9937 break; 9938 default: 9939 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9940 } 9941 9942 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9943 if (!arm_feature(env, ARM_FEATURE_V8)) { 9944 /* 9945 * QEMU syndrome values are v8-style. v7 has the IL bit 9946 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9947 * If this is a v7 CPU, squash the IL bit in those cases. 9948 */ 9949 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9950 (cs->exception_index == EXCP_DATA_ABORT && 9951 !(env->exception.syndrome & ARM_EL_ISV)) || 9952 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9953 env->exception.syndrome &= ~ARM_EL_IL; 9954 } 9955 } 9956 env->cp15.esr_el[2] = env->exception.syndrome; 9957 } 9958 9959 if (arm_current_el(env) != 2 && addr < 0x14) { 9960 addr = 0x14; 9961 } 9962 9963 mask = 0; 9964 if (!(env->cp15.scr_el3 & SCR_EA)) { 9965 mask |= CPSR_A; 9966 } 9967 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9968 mask |= CPSR_I; 9969 } 9970 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9971 mask |= CPSR_F; 9972 } 9973 9974 addr += env->cp15.hvbar; 9975 9976 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9977 } 9978 9979 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9980 { 9981 ARMCPU *cpu = ARM_CPU(cs); 9982 CPUARMState *env = &cpu->env; 9983 uint32_t addr; 9984 uint32_t mask; 9985 int new_mode; 9986 uint32_t offset; 9987 uint32_t moe; 9988 9989 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9990 switch (syn_get_ec(env->exception.syndrome)) { 9991 case EC_BREAKPOINT: 9992 case EC_BREAKPOINT_SAME_EL: 9993 moe = 1; 9994 break; 9995 case EC_WATCHPOINT: 9996 case EC_WATCHPOINT_SAME_EL: 9997 moe = 10; 9998 break; 9999 case EC_AA32_BKPT: 10000 moe = 3; 10001 break; 10002 case EC_VECTORCATCH: 10003 moe = 5; 10004 break; 10005 default: 10006 moe = 0; 10007 break; 10008 } 10009 10010 if (moe) { 10011 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10012 } 10013 10014 if (env->exception.target_el == 2) { 10015 arm_cpu_do_interrupt_aarch32_hyp(cs); 10016 return; 10017 } 10018 10019 switch (cs->exception_index) { 10020 case EXCP_UDEF: 10021 new_mode = ARM_CPU_MODE_UND; 10022 addr = 0x04; 10023 mask = CPSR_I; 10024 if (env->thumb) 10025 offset = 2; 10026 else 10027 offset = 4; 10028 break; 10029 case EXCP_SWI: 10030 new_mode = ARM_CPU_MODE_SVC; 10031 addr = 0x08; 10032 mask = CPSR_I; 10033 /* The PC already points to the next instruction. */ 10034 offset = 0; 10035 break; 10036 case EXCP_BKPT: 10037 /* Fall through to prefetch abort. */ 10038 case EXCP_PREFETCH_ABORT: 10039 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10040 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10041 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10042 env->exception.fsr, (uint32_t)env->exception.vaddress); 10043 new_mode = ARM_CPU_MODE_ABT; 10044 addr = 0x0c; 10045 mask = CPSR_A | CPSR_I; 10046 offset = 4; 10047 break; 10048 case EXCP_DATA_ABORT: 10049 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10050 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10051 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10052 env->exception.fsr, 10053 (uint32_t)env->exception.vaddress); 10054 new_mode = ARM_CPU_MODE_ABT; 10055 addr = 0x10; 10056 mask = CPSR_A | CPSR_I; 10057 offset = 8; 10058 break; 10059 case EXCP_IRQ: 10060 new_mode = ARM_CPU_MODE_IRQ; 10061 addr = 0x18; 10062 /* Disable IRQ and imprecise data aborts. */ 10063 mask = CPSR_A | CPSR_I; 10064 offset = 4; 10065 if (env->cp15.scr_el3 & SCR_IRQ) { 10066 /* IRQ routed to monitor mode */ 10067 new_mode = ARM_CPU_MODE_MON; 10068 mask |= CPSR_F; 10069 } 10070 break; 10071 case EXCP_FIQ: 10072 new_mode = ARM_CPU_MODE_FIQ; 10073 addr = 0x1c; 10074 /* Disable FIQ, IRQ and imprecise data aborts. */ 10075 mask = CPSR_A | CPSR_I | CPSR_F; 10076 if (env->cp15.scr_el3 & SCR_FIQ) { 10077 /* FIQ routed to monitor mode */ 10078 new_mode = ARM_CPU_MODE_MON; 10079 } 10080 offset = 4; 10081 break; 10082 case EXCP_VIRQ: 10083 new_mode = ARM_CPU_MODE_IRQ; 10084 addr = 0x18; 10085 /* Disable IRQ and imprecise data aborts. */ 10086 mask = CPSR_A | CPSR_I; 10087 offset = 4; 10088 break; 10089 case EXCP_VFIQ: 10090 new_mode = ARM_CPU_MODE_FIQ; 10091 addr = 0x1c; 10092 /* Disable FIQ, IRQ and imprecise data aborts. */ 10093 mask = CPSR_A | CPSR_I | CPSR_F; 10094 offset = 4; 10095 break; 10096 case EXCP_SMC: 10097 new_mode = ARM_CPU_MODE_MON; 10098 addr = 0x08; 10099 mask = CPSR_A | CPSR_I | CPSR_F; 10100 offset = 0; 10101 break; 10102 default: 10103 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10104 return; /* Never happens. Keep compiler happy. */ 10105 } 10106 10107 if (new_mode == ARM_CPU_MODE_MON) { 10108 addr += env->cp15.mvbar; 10109 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10110 /* High vectors. When enabled, base address cannot be remapped. */ 10111 addr += 0xffff0000; 10112 } else { 10113 /* ARM v7 architectures provide a vector base address register to remap 10114 * the interrupt vector table. 10115 * This register is only followed in non-monitor mode, and is banked. 10116 * Note: only bits 31:5 are valid. 10117 */ 10118 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10119 } 10120 10121 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10122 env->cp15.scr_el3 &= ~SCR_NS; 10123 } 10124 10125 take_aarch32_exception(env, new_mode, mask, offset, addr); 10126 } 10127 10128 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10129 { 10130 /* 10131 * Return the register number of the AArch64 view of the AArch32 10132 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10133 * be that of the AArch32 mode the exception came from. 10134 */ 10135 int mode = env->uncached_cpsr & CPSR_M; 10136 10137 switch (aarch32_reg) { 10138 case 0 ... 7: 10139 return aarch32_reg; 10140 case 8 ... 12: 10141 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10142 case 13: 10143 switch (mode) { 10144 case ARM_CPU_MODE_USR: 10145 case ARM_CPU_MODE_SYS: 10146 return 13; 10147 case ARM_CPU_MODE_HYP: 10148 return 15; 10149 case ARM_CPU_MODE_IRQ: 10150 return 17; 10151 case ARM_CPU_MODE_SVC: 10152 return 19; 10153 case ARM_CPU_MODE_ABT: 10154 return 21; 10155 case ARM_CPU_MODE_UND: 10156 return 23; 10157 case ARM_CPU_MODE_FIQ: 10158 return 29; 10159 default: 10160 g_assert_not_reached(); 10161 } 10162 case 14: 10163 switch (mode) { 10164 case ARM_CPU_MODE_USR: 10165 case ARM_CPU_MODE_SYS: 10166 case ARM_CPU_MODE_HYP: 10167 return 14; 10168 case ARM_CPU_MODE_IRQ: 10169 return 16; 10170 case ARM_CPU_MODE_SVC: 10171 return 18; 10172 case ARM_CPU_MODE_ABT: 10173 return 20; 10174 case ARM_CPU_MODE_UND: 10175 return 22; 10176 case ARM_CPU_MODE_FIQ: 10177 return 30; 10178 default: 10179 g_assert_not_reached(); 10180 } 10181 case 15: 10182 return 31; 10183 default: 10184 g_assert_not_reached(); 10185 } 10186 } 10187 10188 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10189 { 10190 uint32_t ret = cpsr_read(env); 10191 10192 /* Move DIT to the correct location for SPSR_ELx */ 10193 if (ret & CPSR_DIT) { 10194 ret &= ~CPSR_DIT; 10195 ret |= PSTATE_DIT; 10196 } 10197 /* Merge PSTATE.SS into SPSR_ELx */ 10198 ret |= env->pstate & PSTATE_SS; 10199 10200 return ret; 10201 } 10202 10203 /* Handle exception entry to a target EL which is using AArch64 */ 10204 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10205 { 10206 ARMCPU *cpu = ARM_CPU(cs); 10207 CPUARMState *env = &cpu->env; 10208 unsigned int new_el = env->exception.target_el; 10209 target_ulong addr = env->cp15.vbar_el[new_el]; 10210 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10211 unsigned int old_mode; 10212 unsigned int cur_el = arm_current_el(env); 10213 int rt; 10214 10215 /* 10216 * Note that new_el can never be 0. If cur_el is 0, then 10217 * el0_a64 is is_a64(), else el0_a64 is ignored. 10218 */ 10219 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10220 10221 if (cur_el < new_el) { 10222 /* Entry vector offset depends on whether the implemented EL 10223 * immediately lower than the target level is using AArch32 or AArch64 10224 */ 10225 bool is_aa64; 10226 uint64_t hcr; 10227 10228 switch (new_el) { 10229 case 3: 10230 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10231 break; 10232 case 2: 10233 hcr = arm_hcr_el2_eff(env); 10234 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10235 is_aa64 = (hcr & HCR_RW) != 0; 10236 break; 10237 } 10238 /* fall through */ 10239 case 1: 10240 is_aa64 = is_a64(env); 10241 break; 10242 default: 10243 g_assert_not_reached(); 10244 } 10245 10246 if (is_aa64) { 10247 addr += 0x400; 10248 } else { 10249 addr += 0x600; 10250 } 10251 } else if (pstate_read(env) & PSTATE_SP) { 10252 addr += 0x200; 10253 } 10254 10255 switch (cs->exception_index) { 10256 case EXCP_PREFETCH_ABORT: 10257 case EXCP_DATA_ABORT: 10258 env->cp15.far_el[new_el] = env->exception.vaddress; 10259 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10260 env->cp15.far_el[new_el]); 10261 /* fall through */ 10262 case EXCP_BKPT: 10263 case EXCP_UDEF: 10264 case EXCP_SWI: 10265 case EXCP_HVC: 10266 case EXCP_HYP_TRAP: 10267 case EXCP_SMC: 10268 switch (syn_get_ec(env->exception.syndrome)) { 10269 case EC_ADVSIMDFPACCESSTRAP: 10270 /* 10271 * QEMU internal FP/SIMD syndromes from AArch32 include the 10272 * TA and coproc fields which are only exposed if the exception 10273 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10274 * AArch64 format syndrome. 10275 */ 10276 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10277 break; 10278 case EC_CP14RTTRAP: 10279 case EC_CP15RTTRAP: 10280 case EC_CP14DTTRAP: 10281 /* 10282 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10283 * the raw register field from the insn; when taking this to 10284 * AArch64 we must convert it to the AArch64 view of the register 10285 * number. Notice that we read a 4-bit AArch32 register number and 10286 * write back a 5-bit AArch64 one. 10287 */ 10288 rt = extract32(env->exception.syndrome, 5, 4); 10289 rt = aarch64_regnum(env, rt); 10290 env->exception.syndrome = deposit32(env->exception.syndrome, 10291 5, 5, rt); 10292 break; 10293 case EC_CP15RRTTRAP: 10294 case EC_CP14RRTTRAP: 10295 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10296 rt = extract32(env->exception.syndrome, 5, 4); 10297 rt = aarch64_regnum(env, rt); 10298 env->exception.syndrome = deposit32(env->exception.syndrome, 10299 5, 5, rt); 10300 rt = extract32(env->exception.syndrome, 10, 4); 10301 rt = aarch64_regnum(env, rt); 10302 env->exception.syndrome = deposit32(env->exception.syndrome, 10303 10, 5, rt); 10304 break; 10305 } 10306 env->cp15.esr_el[new_el] = env->exception.syndrome; 10307 break; 10308 case EXCP_IRQ: 10309 case EXCP_VIRQ: 10310 addr += 0x80; 10311 break; 10312 case EXCP_FIQ: 10313 case EXCP_VFIQ: 10314 addr += 0x100; 10315 break; 10316 default: 10317 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10318 } 10319 10320 if (is_a64(env)) { 10321 old_mode = pstate_read(env); 10322 aarch64_save_sp(env, arm_current_el(env)); 10323 env->elr_el[new_el] = env->pc; 10324 } else { 10325 old_mode = cpsr_read_for_spsr_elx(env); 10326 env->elr_el[new_el] = env->regs[15]; 10327 10328 aarch64_sync_32_to_64(env); 10329 10330 env->condexec_bits = 0; 10331 } 10332 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10333 10334 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10335 env->elr_el[new_el]); 10336 10337 if (cpu_isar_feature(aa64_pan, cpu)) { 10338 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10339 new_mode |= old_mode & PSTATE_PAN; 10340 switch (new_el) { 10341 case 2: 10342 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10343 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10344 != (HCR_E2H | HCR_TGE)) { 10345 break; 10346 } 10347 /* fall through */ 10348 case 1: 10349 /* ... the target is EL1 ... */ 10350 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10351 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10352 new_mode |= PSTATE_PAN; 10353 } 10354 break; 10355 } 10356 } 10357 if (cpu_isar_feature(aa64_mte, cpu)) { 10358 new_mode |= PSTATE_TCO; 10359 } 10360 10361 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10362 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10363 new_mode |= PSTATE_SSBS; 10364 } else { 10365 new_mode &= ~PSTATE_SSBS; 10366 } 10367 } 10368 10369 pstate_write(env, PSTATE_DAIF | new_mode); 10370 env->aarch64 = 1; 10371 aarch64_restore_sp(env, new_el); 10372 helper_rebuild_hflags_a64(env, new_el); 10373 10374 env->pc = addr; 10375 10376 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10377 new_el, env->pc, pstate_read(env)); 10378 } 10379 10380 /* 10381 * Do semihosting call and set the appropriate return value. All the 10382 * permission and validity checks have been done at translate time. 10383 * 10384 * We only see semihosting exceptions in TCG only as they are not 10385 * trapped to the hypervisor in KVM. 10386 */ 10387 #ifdef CONFIG_TCG 10388 static void handle_semihosting(CPUState *cs) 10389 { 10390 ARMCPU *cpu = ARM_CPU(cs); 10391 CPUARMState *env = &cpu->env; 10392 10393 if (is_a64(env)) { 10394 qemu_log_mask(CPU_LOG_INT, 10395 "...handling as semihosting call 0x%" PRIx64 "\n", 10396 env->xregs[0]); 10397 env->xregs[0] = do_common_semihosting(cs); 10398 env->pc += 4; 10399 } else { 10400 qemu_log_mask(CPU_LOG_INT, 10401 "...handling as semihosting call 0x%x\n", 10402 env->regs[0]); 10403 env->regs[0] = do_common_semihosting(cs); 10404 env->regs[15] += env->thumb ? 2 : 4; 10405 } 10406 } 10407 #endif 10408 10409 /* Handle a CPU exception for A and R profile CPUs. 10410 * Do any appropriate logging, handle PSCI calls, and then hand off 10411 * to the AArch64-entry or AArch32-entry function depending on the 10412 * target exception level's register width. 10413 * 10414 * Note: this is used for both TCG (as the do_interrupt tcg op), 10415 * and KVM to re-inject guest debug exceptions, and to 10416 * inject a Synchronous-External-Abort. 10417 */ 10418 void arm_cpu_do_interrupt(CPUState *cs) 10419 { 10420 ARMCPU *cpu = ARM_CPU(cs); 10421 CPUARMState *env = &cpu->env; 10422 unsigned int new_el = env->exception.target_el; 10423 10424 assert(!arm_feature(env, ARM_FEATURE_M)); 10425 10426 arm_log_exception(cs->exception_index); 10427 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10428 new_el); 10429 if (qemu_loglevel_mask(CPU_LOG_INT) 10430 && !excp_is_internal(cs->exception_index)) { 10431 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10432 syn_get_ec(env->exception.syndrome), 10433 env->exception.syndrome); 10434 } 10435 10436 if (arm_is_psci_call(cpu, cs->exception_index)) { 10437 arm_handle_psci_call(cpu); 10438 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10439 return; 10440 } 10441 10442 /* 10443 * Semihosting semantics depend on the register width of the code 10444 * that caused the exception, not the target exception level, so 10445 * must be handled here. 10446 */ 10447 #ifdef CONFIG_TCG 10448 if (cs->exception_index == EXCP_SEMIHOST) { 10449 handle_semihosting(cs); 10450 return; 10451 } 10452 #endif 10453 10454 /* Hooks may change global state so BQL should be held, also the 10455 * BQL needs to be held for any modification of 10456 * cs->interrupt_request. 10457 */ 10458 g_assert(qemu_mutex_iothread_locked()); 10459 10460 arm_call_pre_el_change_hook(cpu); 10461 10462 assert(!excp_is_internal(cs->exception_index)); 10463 if (arm_el_is_aa64(env, new_el)) { 10464 arm_cpu_do_interrupt_aarch64(cs); 10465 } else { 10466 arm_cpu_do_interrupt_aarch32(cs); 10467 } 10468 10469 arm_call_el_change_hook(cpu); 10470 10471 if (!kvm_enabled()) { 10472 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10473 } 10474 } 10475 #endif /* !CONFIG_USER_ONLY */ 10476 10477 uint64_t arm_sctlr(CPUARMState *env, int el) 10478 { 10479 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10480 if (el == 0) { 10481 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10482 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10483 ? 2 : 1; 10484 } 10485 return env->cp15.sctlr_el[el]; 10486 } 10487 10488 /* Return the SCTLR value which controls this address translation regime */ 10489 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10490 { 10491 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10492 } 10493 10494 #ifndef CONFIG_USER_ONLY 10495 10496 /* Return true if the specified stage of address translation is disabled */ 10497 static inline bool regime_translation_disabled(CPUARMState *env, 10498 ARMMMUIdx mmu_idx) 10499 { 10500 uint64_t hcr_el2; 10501 10502 if (arm_feature(env, ARM_FEATURE_M)) { 10503 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10504 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10505 case R_V7M_MPU_CTRL_ENABLE_MASK: 10506 /* Enabled, but not for HardFault and NMI */ 10507 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10508 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10509 /* Enabled for all cases */ 10510 return false; 10511 case 0: 10512 default: 10513 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10514 * we warned about that in armv7m_nvic.c when the guest set it. 10515 */ 10516 return true; 10517 } 10518 } 10519 10520 hcr_el2 = arm_hcr_el2_eff(env); 10521 10522 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10523 /* HCR.DC means HCR.VM behaves as 1 */ 10524 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10525 } 10526 10527 if (hcr_el2 & HCR_TGE) { 10528 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10529 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10530 return true; 10531 } 10532 } 10533 10534 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10535 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10536 return true; 10537 } 10538 10539 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10540 } 10541 10542 static inline bool regime_translation_big_endian(CPUARMState *env, 10543 ARMMMUIdx mmu_idx) 10544 { 10545 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10546 } 10547 10548 /* Return the TTBR associated with this translation regime */ 10549 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10550 int ttbrn) 10551 { 10552 if (mmu_idx == ARMMMUIdx_Stage2) { 10553 return env->cp15.vttbr_el2; 10554 } 10555 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10556 return env->cp15.vsttbr_el2; 10557 } 10558 if (ttbrn == 0) { 10559 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10560 } else { 10561 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10562 } 10563 } 10564 10565 #endif /* !CONFIG_USER_ONLY */ 10566 10567 /* Convert a possible stage1+2 MMU index into the appropriate 10568 * stage 1 MMU index 10569 */ 10570 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10571 { 10572 switch (mmu_idx) { 10573 case ARMMMUIdx_SE10_0: 10574 return ARMMMUIdx_Stage1_SE0; 10575 case ARMMMUIdx_SE10_1: 10576 return ARMMMUIdx_Stage1_SE1; 10577 case ARMMMUIdx_SE10_1_PAN: 10578 return ARMMMUIdx_Stage1_SE1_PAN; 10579 case ARMMMUIdx_E10_0: 10580 return ARMMMUIdx_Stage1_E0; 10581 case ARMMMUIdx_E10_1: 10582 return ARMMMUIdx_Stage1_E1; 10583 case ARMMMUIdx_E10_1_PAN: 10584 return ARMMMUIdx_Stage1_E1_PAN; 10585 default: 10586 return mmu_idx; 10587 } 10588 } 10589 10590 /* Return true if the translation regime is using LPAE format page tables */ 10591 static inline bool regime_using_lpae_format(CPUARMState *env, 10592 ARMMMUIdx mmu_idx) 10593 { 10594 int el = regime_el(env, mmu_idx); 10595 if (el == 2 || arm_el_is_aa64(env, el)) { 10596 return true; 10597 } 10598 if (arm_feature(env, ARM_FEATURE_LPAE) 10599 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10600 return true; 10601 } 10602 return false; 10603 } 10604 10605 /* Returns true if the stage 1 translation regime is using LPAE format page 10606 * tables. Used when raising alignment exceptions, whose FSR changes depending 10607 * on whether the long or short descriptor format is in use. */ 10608 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10609 { 10610 mmu_idx = stage_1_mmu_idx(mmu_idx); 10611 10612 return regime_using_lpae_format(env, mmu_idx); 10613 } 10614 10615 #ifndef CONFIG_USER_ONLY 10616 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10617 { 10618 switch (mmu_idx) { 10619 case ARMMMUIdx_SE10_0: 10620 case ARMMMUIdx_E20_0: 10621 case ARMMMUIdx_SE20_0: 10622 case ARMMMUIdx_Stage1_E0: 10623 case ARMMMUIdx_Stage1_SE0: 10624 case ARMMMUIdx_MUser: 10625 case ARMMMUIdx_MSUser: 10626 case ARMMMUIdx_MUserNegPri: 10627 case ARMMMUIdx_MSUserNegPri: 10628 return true; 10629 default: 10630 return false; 10631 case ARMMMUIdx_E10_0: 10632 case ARMMMUIdx_E10_1: 10633 case ARMMMUIdx_E10_1_PAN: 10634 g_assert_not_reached(); 10635 } 10636 } 10637 10638 /* Translate section/page access permissions to page 10639 * R/W protection flags 10640 * 10641 * @env: CPUARMState 10642 * @mmu_idx: MMU index indicating required translation regime 10643 * @ap: The 3-bit access permissions (AP[2:0]) 10644 * @domain_prot: The 2-bit domain access permissions 10645 */ 10646 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10647 int ap, int domain_prot) 10648 { 10649 bool is_user = regime_is_user(env, mmu_idx); 10650 10651 if (domain_prot == 3) { 10652 return PAGE_READ | PAGE_WRITE; 10653 } 10654 10655 switch (ap) { 10656 case 0: 10657 if (arm_feature(env, ARM_FEATURE_V7)) { 10658 return 0; 10659 } 10660 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10661 case SCTLR_S: 10662 return is_user ? 0 : PAGE_READ; 10663 case SCTLR_R: 10664 return PAGE_READ; 10665 default: 10666 return 0; 10667 } 10668 case 1: 10669 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10670 case 2: 10671 if (is_user) { 10672 return PAGE_READ; 10673 } else { 10674 return PAGE_READ | PAGE_WRITE; 10675 } 10676 case 3: 10677 return PAGE_READ | PAGE_WRITE; 10678 case 4: /* Reserved. */ 10679 return 0; 10680 case 5: 10681 return is_user ? 0 : PAGE_READ; 10682 case 6: 10683 return PAGE_READ; 10684 case 7: 10685 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10686 return 0; 10687 } 10688 return PAGE_READ; 10689 default: 10690 g_assert_not_reached(); 10691 } 10692 } 10693 10694 /* Translate section/page access permissions to page 10695 * R/W protection flags. 10696 * 10697 * @ap: The 2-bit simple AP (AP[2:1]) 10698 * @is_user: TRUE if accessing from PL0 10699 */ 10700 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10701 { 10702 switch (ap) { 10703 case 0: 10704 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10705 case 1: 10706 return PAGE_READ | PAGE_WRITE; 10707 case 2: 10708 return is_user ? 0 : PAGE_READ; 10709 case 3: 10710 return PAGE_READ; 10711 default: 10712 g_assert_not_reached(); 10713 } 10714 } 10715 10716 static inline int 10717 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10718 { 10719 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10720 } 10721 10722 /* Translate S2 section/page access permissions to protection flags 10723 * 10724 * @env: CPUARMState 10725 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10726 * @xn: XN (execute-never) bits 10727 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10728 */ 10729 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10730 { 10731 int prot = 0; 10732 10733 if (s2ap & 1) { 10734 prot |= PAGE_READ; 10735 } 10736 if (s2ap & 2) { 10737 prot |= PAGE_WRITE; 10738 } 10739 10740 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10741 switch (xn) { 10742 case 0: 10743 prot |= PAGE_EXEC; 10744 break; 10745 case 1: 10746 if (s1_is_el0) { 10747 prot |= PAGE_EXEC; 10748 } 10749 break; 10750 case 2: 10751 break; 10752 case 3: 10753 if (!s1_is_el0) { 10754 prot |= PAGE_EXEC; 10755 } 10756 break; 10757 default: 10758 g_assert_not_reached(); 10759 } 10760 } else { 10761 if (!extract32(xn, 1, 1)) { 10762 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10763 prot |= PAGE_EXEC; 10764 } 10765 } 10766 } 10767 return prot; 10768 } 10769 10770 /* Translate section/page access permissions to protection flags 10771 * 10772 * @env: CPUARMState 10773 * @mmu_idx: MMU index indicating required translation regime 10774 * @is_aa64: TRUE if AArch64 10775 * @ap: The 2-bit simple AP (AP[2:1]) 10776 * @ns: NS (non-secure) bit 10777 * @xn: XN (execute-never) bit 10778 * @pxn: PXN (privileged execute-never) bit 10779 */ 10780 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10781 int ap, int ns, int xn, int pxn) 10782 { 10783 bool is_user = regime_is_user(env, mmu_idx); 10784 int prot_rw, user_rw; 10785 bool have_wxn; 10786 int wxn = 0; 10787 10788 assert(mmu_idx != ARMMMUIdx_Stage2); 10789 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10790 10791 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10792 if (is_user) { 10793 prot_rw = user_rw; 10794 } else { 10795 if (user_rw && regime_is_pan(env, mmu_idx)) { 10796 /* PAN forbids data accesses but doesn't affect insn fetch */ 10797 prot_rw = 0; 10798 } else { 10799 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10800 } 10801 } 10802 10803 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10804 return prot_rw; 10805 } 10806 10807 /* TODO have_wxn should be replaced with 10808 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10809 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10810 * compatible processors have EL2, which is required for [U]WXN. 10811 */ 10812 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10813 10814 if (have_wxn) { 10815 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10816 } 10817 10818 if (is_aa64) { 10819 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10820 xn = pxn || (user_rw & PAGE_WRITE); 10821 } 10822 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10823 switch (regime_el(env, mmu_idx)) { 10824 case 1: 10825 case 3: 10826 if (is_user) { 10827 xn = xn || !(user_rw & PAGE_READ); 10828 } else { 10829 int uwxn = 0; 10830 if (have_wxn) { 10831 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10832 } 10833 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10834 (uwxn && (user_rw & PAGE_WRITE)); 10835 } 10836 break; 10837 case 2: 10838 break; 10839 } 10840 } else { 10841 xn = wxn = 0; 10842 } 10843 10844 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10845 return prot_rw; 10846 } 10847 return prot_rw | PAGE_EXEC; 10848 } 10849 10850 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10851 uint32_t *table, uint32_t address) 10852 { 10853 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10854 TCR *tcr = regime_tcr(env, mmu_idx); 10855 10856 if (address & tcr->mask) { 10857 if (tcr->raw_tcr & TTBCR_PD1) { 10858 /* Translation table walk disabled for TTBR1 */ 10859 return false; 10860 } 10861 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10862 } else { 10863 if (tcr->raw_tcr & TTBCR_PD0) { 10864 /* Translation table walk disabled for TTBR0 */ 10865 return false; 10866 } 10867 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10868 } 10869 *table |= (address >> 18) & 0x3ffc; 10870 return true; 10871 } 10872 10873 /* Translate a S1 pagetable walk through S2 if needed. */ 10874 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10875 hwaddr addr, bool *is_secure, 10876 ARMMMUFaultInfo *fi) 10877 { 10878 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10879 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10880 target_ulong s2size; 10881 hwaddr s2pa; 10882 int s2prot; 10883 int ret; 10884 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10885 : ARMMMUIdx_Stage2; 10886 ARMCacheAttrs cacheattrs = {}; 10887 MemTxAttrs txattrs = {}; 10888 10889 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10890 &s2pa, &txattrs, &s2prot, &s2size, fi, 10891 &cacheattrs); 10892 if (ret) { 10893 assert(fi->type != ARMFault_None); 10894 fi->s2addr = addr; 10895 fi->stage2 = true; 10896 fi->s1ptw = true; 10897 fi->s1ns = !*is_secure; 10898 return ~0; 10899 } 10900 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10901 (cacheattrs.attrs & 0xf0) == 0) { 10902 /* 10903 * PTW set and S1 walk touched S2 Device memory: 10904 * generate Permission fault. 10905 */ 10906 fi->type = ARMFault_Permission; 10907 fi->s2addr = addr; 10908 fi->stage2 = true; 10909 fi->s1ptw = true; 10910 fi->s1ns = !*is_secure; 10911 return ~0; 10912 } 10913 10914 if (arm_is_secure_below_el3(env)) { 10915 /* Check if page table walk is to secure or non-secure PA space. */ 10916 if (*is_secure) { 10917 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10918 } else { 10919 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10920 } 10921 } else { 10922 assert(!*is_secure); 10923 } 10924 10925 addr = s2pa; 10926 } 10927 return addr; 10928 } 10929 10930 /* All loads done in the course of a page table walk go through here. */ 10931 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10932 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10933 { 10934 ARMCPU *cpu = ARM_CPU(cs); 10935 CPUARMState *env = &cpu->env; 10936 MemTxAttrs attrs = {}; 10937 MemTxResult result = MEMTX_OK; 10938 AddressSpace *as; 10939 uint32_t data; 10940 10941 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10942 attrs.secure = is_secure; 10943 as = arm_addressspace(cs, attrs); 10944 if (fi->s1ptw) { 10945 return 0; 10946 } 10947 if (regime_translation_big_endian(env, mmu_idx)) { 10948 data = address_space_ldl_be(as, addr, attrs, &result); 10949 } else { 10950 data = address_space_ldl_le(as, addr, attrs, &result); 10951 } 10952 if (result == MEMTX_OK) { 10953 return data; 10954 } 10955 fi->type = ARMFault_SyncExternalOnWalk; 10956 fi->ea = arm_extabort_type(result); 10957 return 0; 10958 } 10959 10960 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10961 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10962 { 10963 ARMCPU *cpu = ARM_CPU(cs); 10964 CPUARMState *env = &cpu->env; 10965 MemTxAttrs attrs = {}; 10966 MemTxResult result = MEMTX_OK; 10967 AddressSpace *as; 10968 uint64_t data; 10969 10970 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10971 attrs.secure = is_secure; 10972 as = arm_addressspace(cs, attrs); 10973 if (fi->s1ptw) { 10974 return 0; 10975 } 10976 if (regime_translation_big_endian(env, mmu_idx)) { 10977 data = address_space_ldq_be(as, addr, attrs, &result); 10978 } else { 10979 data = address_space_ldq_le(as, addr, attrs, &result); 10980 } 10981 if (result == MEMTX_OK) { 10982 return data; 10983 } 10984 fi->type = ARMFault_SyncExternalOnWalk; 10985 fi->ea = arm_extabort_type(result); 10986 return 0; 10987 } 10988 10989 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10990 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10991 hwaddr *phys_ptr, int *prot, 10992 target_ulong *page_size, 10993 ARMMMUFaultInfo *fi) 10994 { 10995 CPUState *cs = env_cpu(env); 10996 int level = 1; 10997 uint32_t table; 10998 uint32_t desc; 10999 int type; 11000 int ap; 11001 int domain = 0; 11002 int domain_prot; 11003 hwaddr phys_addr; 11004 uint32_t dacr; 11005 11006 /* Pagetable walk. */ 11007 /* Lookup l1 descriptor. */ 11008 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 11009 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 11010 fi->type = ARMFault_Translation; 11011 goto do_fault; 11012 } 11013 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11014 mmu_idx, fi); 11015 if (fi->type != ARMFault_None) { 11016 goto do_fault; 11017 } 11018 type = (desc & 3); 11019 domain = (desc >> 5) & 0x0f; 11020 if (regime_el(env, mmu_idx) == 1) { 11021 dacr = env->cp15.dacr_ns; 11022 } else { 11023 dacr = env->cp15.dacr_s; 11024 } 11025 domain_prot = (dacr >> (domain * 2)) & 3; 11026 if (type == 0) { 11027 /* Section translation fault. */ 11028 fi->type = ARMFault_Translation; 11029 goto do_fault; 11030 } 11031 if (type != 2) { 11032 level = 2; 11033 } 11034 if (domain_prot == 0 || domain_prot == 2) { 11035 fi->type = ARMFault_Domain; 11036 goto do_fault; 11037 } 11038 if (type == 2) { 11039 /* 1Mb section. */ 11040 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 11041 ap = (desc >> 10) & 3; 11042 *page_size = 1024 * 1024; 11043 } else { 11044 /* Lookup l2 entry. */ 11045 if (type == 1) { 11046 /* Coarse pagetable. */ 11047 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11048 } else { 11049 /* Fine pagetable. */ 11050 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 11051 } 11052 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11053 mmu_idx, fi); 11054 if (fi->type != ARMFault_None) { 11055 goto do_fault; 11056 } 11057 switch (desc & 3) { 11058 case 0: /* Page translation fault. */ 11059 fi->type = ARMFault_Translation; 11060 goto do_fault; 11061 case 1: /* 64k page. */ 11062 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11063 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 11064 *page_size = 0x10000; 11065 break; 11066 case 2: /* 4k page. */ 11067 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11068 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 11069 *page_size = 0x1000; 11070 break; 11071 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 11072 if (type == 1) { 11073 /* ARMv6/XScale extended small page format */ 11074 if (arm_feature(env, ARM_FEATURE_XSCALE) 11075 || arm_feature(env, ARM_FEATURE_V6)) { 11076 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11077 *page_size = 0x1000; 11078 } else { 11079 /* UNPREDICTABLE in ARMv5; we choose to take a 11080 * page translation fault. 11081 */ 11082 fi->type = ARMFault_Translation; 11083 goto do_fault; 11084 } 11085 } else { 11086 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 11087 *page_size = 0x400; 11088 } 11089 ap = (desc >> 4) & 3; 11090 break; 11091 default: 11092 /* Never happens, but compiler isn't smart enough to tell. */ 11093 abort(); 11094 } 11095 } 11096 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11097 *prot |= *prot ? PAGE_EXEC : 0; 11098 if (!(*prot & (1 << access_type))) { 11099 /* Access permission fault. */ 11100 fi->type = ARMFault_Permission; 11101 goto do_fault; 11102 } 11103 *phys_ptr = phys_addr; 11104 return false; 11105 do_fault: 11106 fi->domain = domain; 11107 fi->level = level; 11108 return true; 11109 } 11110 11111 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 11112 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11113 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 11114 target_ulong *page_size, ARMMMUFaultInfo *fi) 11115 { 11116 CPUState *cs = env_cpu(env); 11117 ARMCPU *cpu = env_archcpu(env); 11118 int level = 1; 11119 uint32_t table; 11120 uint32_t desc; 11121 uint32_t xn; 11122 uint32_t pxn = 0; 11123 int type; 11124 int ap; 11125 int domain = 0; 11126 int domain_prot; 11127 hwaddr phys_addr; 11128 uint32_t dacr; 11129 bool ns; 11130 11131 /* Pagetable walk. */ 11132 /* Lookup l1 descriptor. */ 11133 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 11134 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 11135 fi->type = ARMFault_Translation; 11136 goto do_fault; 11137 } 11138 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11139 mmu_idx, fi); 11140 if (fi->type != ARMFault_None) { 11141 goto do_fault; 11142 } 11143 type = (desc & 3); 11144 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 11145 /* Section translation fault, or attempt to use the encoding 11146 * which is Reserved on implementations without PXN. 11147 */ 11148 fi->type = ARMFault_Translation; 11149 goto do_fault; 11150 } 11151 if ((type == 1) || !(desc & (1 << 18))) { 11152 /* Page or Section. */ 11153 domain = (desc >> 5) & 0x0f; 11154 } 11155 if (regime_el(env, mmu_idx) == 1) { 11156 dacr = env->cp15.dacr_ns; 11157 } else { 11158 dacr = env->cp15.dacr_s; 11159 } 11160 if (type == 1) { 11161 level = 2; 11162 } 11163 domain_prot = (dacr >> (domain * 2)) & 3; 11164 if (domain_prot == 0 || domain_prot == 2) { 11165 /* Section or Page domain fault */ 11166 fi->type = ARMFault_Domain; 11167 goto do_fault; 11168 } 11169 if (type != 1) { 11170 if (desc & (1 << 18)) { 11171 /* Supersection. */ 11172 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 11173 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 11174 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 11175 *page_size = 0x1000000; 11176 } else { 11177 /* Section. */ 11178 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 11179 *page_size = 0x100000; 11180 } 11181 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 11182 xn = desc & (1 << 4); 11183 pxn = desc & 1; 11184 ns = extract32(desc, 19, 1); 11185 } else { 11186 if (cpu_isar_feature(aa32_pxn, cpu)) { 11187 pxn = (desc >> 2) & 1; 11188 } 11189 ns = extract32(desc, 3, 1); 11190 /* Lookup l2 entry. */ 11191 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11192 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11193 mmu_idx, fi); 11194 if (fi->type != ARMFault_None) { 11195 goto do_fault; 11196 } 11197 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 11198 switch (desc & 3) { 11199 case 0: /* Page translation fault. */ 11200 fi->type = ARMFault_Translation; 11201 goto do_fault; 11202 case 1: /* 64k page. */ 11203 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11204 xn = desc & (1 << 15); 11205 *page_size = 0x10000; 11206 break; 11207 case 2: case 3: /* 4k page. */ 11208 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11209 xn = desc & 1; 11210 *page_size = 0x1000; 11211 break; 11212 default: 11213 /* Never happens, but compiler isn't smart enough to tell. */ 11214 abort(); 11215 } 11216 } 11217 if (domain_prot == 3) { 11218 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11219 } else { 11220 if (pxn && !regime_is_user(env, mmu_idx)) { 11221 xn = 1; 11222 } 11223 if (xn && access_type == MMU_INST_FETCH) { 11224 fi->type = ARMFault_Permission; 11225 goto do_fault; 11226 } 11227 11228 if (arm_feature(env, ARM_FEATURE_V6K) && 11229 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11230 /* The simplified model uses AP[0] as an access control bit. */ 11231 if ((ap & 1) == 0) { 11232 /* Access flag fault. */ 11233 fi->type = ARMFault_AccessFlag; 11234 goto do_fault; 11235 } 11236 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11237 } else { 11238 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11239 } 11240 if (*prot && !xn) { 11241 *prot |= PAGE_EXEC; 11242 } 11243 if (!(*prot & (1 << access_type))) { 11244 /* Access permission fault. */ 11245 fi->type = ARMFault_Permission; 11246 goto do_fault; 11247 } 11248 } 11249 if (ns) { 11250 /* The NS bit will (as required by the architecture) have no effect if 11251 * the CPU doesn't support TZ or this is a non-secure translation 11252 * regime, because the attribute will already be non-secure. 11253 */ 11254 attrs->secure = false; 11255 } 11256 *phys_ptr = phys_addr; 11257 return false; 11258 do_fault: 11259 fi->domain = domain; 11260 fi->level = level; 11261 return true; 11262 } 11263 11264 /* 11265 * check_s2_mmu_setup 11266 * @cpu: ARMCPU 11267 * @is_aa64: True if the translation regime is in AArch64 state 11268 * @startlevel: Suggested starting level 11269 * @inputsize: Bitsize of IPAs 11270 * @stride: Page-table stride (See the ARM ARM) 11271 * 11272 * Returns true if the suggested S2 translation parameters are OK and 11273 * false otherwise. 11274 */ 11275 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11276 int inputsize, int stride) 11277 { 11278 const int grainsize = stride + 3; 11279 int startsizecheck; 11280 11281 /* Negative levels are never allowed. */ 11282 if (level < 0) { 11283 return false; 11284 } 11285 11286 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11287 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11288 return false; 11289 } 11290 11291 if (is_aa64) { 11292 CPUARMState *env = &cpu->env; 11293 unsigned int pamax = arm_pamax(cpu); 11294 11295 switch (stride) { 11296 case 13: /* 64KB Pages. */ 11297 if (level == 0 || (level == 1 && pamax <= 42)) { 11298 return false; 11299 } 11300 break; 11301 case 11: /* 16KB Pages. */ 11302 if (level == 0 || (level == 1 && pamax <= 40)) { 11303 return false; 11304 } 11305 break; 11306 case 9: /* 4KB Pages. */ 11307 if (level == 0 && pamax <= 42) { 11308 return false; 11309 } 11310 break; 11311 default: 11312 g_assert_not_reached(); 11313 } 11314 11315 /* Inputsize checks. */ 11316 if (inputsize > pamax && 11317 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 11318 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11319 return false; 11320 } 11321 } else { 11322 /* AArch32 only supports 4KB pages. Assert on that. */ 11323 assert(stride == 9); 11324 11325 if (level == 0) { 11326 return false; 11327 } 11328 } 11329 return true; 11330 } 11331 11332 /* Translate from the 4-bit stage 2 representation of 11333 * memory attributes (without cache-allocation hints) to 11334 * the 8-bit representation of the stage 1 MAIR registers 11335 * (which includes allocation hints). 11336 * 11337 * ref: shared/translation/attrs/S2AttrDecode() 11338 * .../S2ConvertAttrsHints() 11339 */ 11340 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11341 { 11342 uint8_t hiattr = extract32(s2attrs, 2, 2); 11343 uint8_t loattr = extract32(s2attrs, 0, 2); 11344 uint8_t hihint = 0, lohint = 0; 11345 11346 if (hiattr != 0) { /* normal memory */ 11347 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11348 hiattr = loattr = 1; /* non-cacheable */ 11349 } else { 11350 if (hiattr != 1) { /* Write-through or write-back */ 11351 hihint = 3; /* RW allocate */ 11352 } 11353 if (loattr != 1) { /* Write-through or write-back */ 11354 lohint = 3; /* RW allocate */ 11355 } 11356 } 11357 } 11358 11359 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11360 } 11361 #endif /* !CONFIG_USER_ONLY */ 11362 11363 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11364 { 11365 if (regime_has_2_ranges(mmu_idx)) { 11366 return extract64(tcr, 37, 2); 11367 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11368 return 0; /* VTCR_EL2 */ 11369 } else { 11370 /* Replicate the single TBI bit so we always have 2 bits. */ 11371 return extract32(tcr, 20, 1) * 3; 11372 } 11373 } 11374 11375 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11376 { 11377 if (regime_has_2_ranges(mmu_idx)) { 11378 return extract64(tcr, 51, 2); 11379 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11380 return 0; /* VTCR_EL2 */ 11381 } else { 11382 /* Replicate the single TBID bit so we always have 2 bits. */ 11383 return extract32(tcr, 29, 1) * 3; 11384 } 11385 } 11386 11387 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11388 { 11389 if (regime_has_2_ranges(mmu_idx)) { 11390 return extract64(tcr, 57, 2); 11391 } else { 11392 /* Replicate the single TCMA bit so we always have 2 bits. */ 11393 return extract32(tcr, 30, 1) * 3; 11394 } 11395 } 11396 11397 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11398 ARMMMUIdx mmu_idx, bool data) 11399 { 11400 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11401 bool epd, hpd, using16k, using64k; 11402 int select, tsz, tbi, max_tsz; 11403 11404 if (!regime_has_2_ranges(mmu_idx)) { 11405 select = 0; 11406 tsz = extract32(tcr, 0, 6); 11407 using64k = extract32(tcr, 14, 1); 11408 using16k = extract32(tcr, 15, 1); 11409 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11410 /* VTCR_EL2 */ 11411 hpd = false; 11412 } else { 11413 hpd = extract32(tcr, 24, 1); 11414 } 11415 epd = false; 11416 } else { 11417 /* 11418 * Bit 55 is always between the two regions, and is canonical for 11419 * determining if address tagging is enabled. 11420 */ 11421 select = extract64(va, 55, 1); 11422 if (!select) { 11423 tsz = extract32(tcr, 0, 6); 11424 epd = extract32(tcr, 7, 1); 11425 using64k = extract32(tcr, 14, 1); 11426 using16k = extract32(tcr, 15, 1); 11427 hpd = extract64(tcr, 41, 1); 11428 } else { 11429 int tg = extract32(tcr, 30, 2); 11430 using16k = tg == 1; 11431 using64k = tg == 3; 11432 tsz = extract32(tcr, 16, 6); 11433 epd = extract32(tcr, 23, 1); 11434 hpd = extract64(tcr, 42, 1); 11435 } 11436 } 11437 11438 if (cpu_isar_feature(aa64_st, env_archcpu(env))) { 11439 max_tsz = 48 - using64k; 11440 } else { 11441 max_tsz = 39; 11442 } 11443 11444 tsz = MIN(tsz, max_tsz); 11445 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 11446 11447 /* Present TBI as a composite with TBID. */ 11448 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11449 if (!data) { 11450 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11451 } 11452 tbi = (tbi >> select) & 1; 11453 11454 return (ARMVAParameters) { 11455 .tsz = tsz, 11456 .select = select, 11457 .tbi = tbi, 11458 .epd = epd, 11459 .hpd = hpd, 11460 .using16k = using16k, 11461 .using64k = using64k, 11462 }; 11463 } 11464 11465 #ifndef CONFIG_USER_ONLY 11466 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11467 ARMMMUIdx mmu_idx) 11468 { 11469 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11470 uint32_t el = regime_el(env, mmu_idx); 11471 int select, tsz; 11472 bool epd, hpd; 11473 11474 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11475 11476 if (mmu_idx == ARMMMUIdx_Stage2) { 11477 /* VTCR */ 11478 bool sext = extract32(tcr, 4, 1); 11479 bool sign = extract32(tcr, 3, 1); 11480 11481 /* 11482 * If the sign-extend bit is not the same as t0sz[3], the result 11483 * is unpredictable. Flag this as a guest error. 11484 */ 11485 if (sign != sext) { 11486 qemu_log_mask(LOG_GUEST_ERROR, 11487 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11488 } 11489 tsz = sextract32(tcr, 0, 4) + 8; 11490 select = 0; 11491 hpd = false; 11492 epd = false; 11493 } else if (el == 2) { 11494 /* HTCR */ 11495 tsz = extract32(tcr, 0, 3); 11496 select = 0; 11497 hpd = extract64(tcr, 24, 1); 11498 epd = false; 11499 } else { 11500 int t0sz = extract32(tcr, 0, 3); 11501 int t1sz = extract32(tcr, 16, 3); 11502 11503 if (t1sz == 0) { 11504 select = va > (0xffffffffu >> t0sz); 11505 } else { 11506 /* Note that we will detect errors later. */ 11507 select = va >= ~(0xffffffffu >> t1sz); 11508 } 11509 if (!select) { 11510 tsz = t0sz; 11511 epd = extract32(tcr, 7, 1); 11512 hpd = extract64(tcr, 41, 1); 11513 } else { 11514 tsz = t1sz; 11515 epd = extract32(tcr, 23, 1); 11516 hpd = extract64(tcr, 42, 1); 11517 } 11518 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11519 hpd &= extract32(tcr, 6, 1); 11520 } 11521 11522 return (ARMVAParameters) { 11523 .tsz = tsz, 11524 .select = select, 11525 .epd = epd, 11526 .hpd = hpd, 11527 }; 11528 } 11529 11530 /** 11531 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11532 * 11533 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11534 * prot and page_size may not be filled in, and the populated fsr value provides 11535 * information on why the translation aborted, in the format of a long-format 11536 * DFSR/IFSR fault register, with the following caveats: 11537 * * the WnR bit is never set (the caller must do this). 11538 * 11539 * @env: CPUARMState 11540 * @address: virtual address to get physical address for 11541 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11542 * @mmu_idx: MMU index indicating required translation regime 11543 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11544 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11545 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11546 * @phys_ptr: set to the physical address corresponding to the virtual address 11547 * @attrs: set to the memory transaction attributes to use 11548 * @prot: set to the permissions for the page containing phys_ptr 11549 * @page_size_ptr: set to the size of the page containing phys_ptr 11550 * @fi: set to fault info if the translation fails 11551 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11552 */ 11553 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11554 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11555 bool s1_is_el0, 11556 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11557 target_ulong *page_size_ptr, 11558 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11559 { 11560 ARMCPU *cpu = env_archcpu(env); 11561 CPUState *cs = CPU(cpu); 11562 /* Read an LPAE long-descriptor translation table. */ 11563 ARMFaultType fault_type = ARMFault_Translation; 11564 uint32_t level; 11565 ARMVAParameters param; 11566 uint64_t ttbr; 11567 hwaddr descaddr, indexmask, indexmask_grainsize; 11568 uint32_t tableattrs; 11569 target_ulong page_size; 11570 uint32_t attrs; 11571 int32_t stride; 11572 int addrsize, inputsize; 11573 TCR *tcr = regime_tcr(env, mmu_idx); 11574 int ap, ns, xn, pxn; 11575 uint32_t el = regime_el(env, mmu_idx); 11576 uint64_t descaddrmask; 11577 bool aarch64 = arm_el_is_aa64(env, el); 11578 bool guarded = false; 11579 11580 /* TODO: This code does not support shareability levels. */ 11581 if (aarch64) { 11582 param = aa64_va_parameters(env, address, mmu_idx, 11583 access_type != MMU_INST_FETCH); 11584 level = 0; 11585 addrsize = 64 - 8 * param.tbi; 11586 inputsize = 64 - param.tsz; 11587 } else { 11588 param = aa32_va_parameters(env, address, mmu_idx); 11589 level = 1; 11590 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11591 inputsize = addrsize - param.tsz; 11592 } 11593 11594 /* 11595 * We determined the region when collecting the parameters, but we 11596 * have not yet validated that the address is valid for the region. 11597 * Extract the top bits and verify that they all match select. 11598 * 11599 * For aa32, if inputsize == addrsize, then we have selected the 11600 * region by exclusion in aa32_va_parameters and there is no more 11601 * validation to do here. 11602 */ 11603 if (inputsize < addrsize) { 11604 target_ulong top_bits = sextract64(address, inputsize, 11605 addrsize - inputsize); 11606 if (-top_bits != param.select) { 11607 /* The gap between the two regions is a Translation fault */ 11608 fault_type = ARMFault_Translation; 11609 goto do_fault; 11610 } 11611 } 11612 11613 if (param.using64k) { 11614 stride = 13; 11615 } else if (param.using16k) { 11616 stride = 11; 11617 } else { 11618 stride = 9; 11619 } 11620 11621 /* Note that QEMU ignores shareability and cacheability attributes, 11622 * so we don't need to do anything with the SH, ORGN, IRGN fields 11623 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11624 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11625 * implement any ASID-like capability so we can ignore it (instead 11626 * we will always flush the TLB any time the ASID is changed). 11627 */ 11628 ttbr = regime_ttbr(env, mmu_idx, param.select); 11629 11630 /* Here we should have set up all the parameters for the translation: 11631 * inputsize, ttbr, epd, stride, tbi 11632 */ 11633 11634 if (param.epd) { 11635 /* Translation table walk disabled => Translation fault on TLB miss 11636 * Note: This is always 0 on 64-bit EL2 and EL3. 11637 */ 11638 goto do_fault; 11639 } 11640 11641 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11642 /* The starting level depends on the virtual address size (which can 11643 * be up to 48 bits) and the translation granule size. It indicates 11644 * the number of strides (stride bits at a time) needed to 11645 * consume the bits of the input address. In the pseudocode this is: 11646 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11647 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11648 * our 'stride + 3' and 'stride' is our 'stride'. 11649 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11650 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11651 * = 4 - (inputsize - 4) / stride; 11652 */ 11653 level = 4 - (inputsize - 4) / stride; 11654 } else { 11655 /* For stage 2 translations the starting level is specified by the 11656 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11657 */ 11658 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11659 uint32_t startlevel; 11660 bool ok; 11661 11662 if (!aarch64 || stride == 9) { 11663 /* AArch32 or 4KB pages */ 11664 startlevel = 2 - sl0; 11665 11666 if (cpu_isar_feature(aa64_st, cpu)) { 11667 startlevel &= 3; 11668 } 11669 } else { 11670 /* 16KB or 64KB pages */ 11671 startlevel = 3 - sl0; 11672 } 11673 11674 /* Check that the starting level is valid. */ 11675 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11676 inputsize, stride); 11677 if (!ok) { 11678 fault_type = ARMFault_Translation; 11679 goto do_fault; 11680 } 11681 level = startlevel; 11682 } 11683 11684 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11685 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11686 11687 /* Now we can extract the actual base address from the TTBR */ 11688 descaddr = extract64(ttbr, 0, 48); 11689 /* 11690 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11691 * and also to mask out CnP (bit 0) which could validly be non-zero. 11692 */ 11693 descaddr &= ~indexmask; 11694 11695 /* The address field in the descriptor goes up to bit 39 for ARMv7 11696 * but up to bit 47 for ARMv8, but we use the descaddrmask 11697 * up to bit 39 for AArch32, because we don't need other bits in that case 11698 * to construct next descriptor address (anyway they should be all zeroes). 11699 */ 11700 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11701 ~indexmask_grainsize; 11702 11703 /* Secure accesses start with the page table in secure memory and 11704 * can be downgraded to non-secure at any step. Non-secure accesses 11705 * remain non-secure. We implement this by just ORing in the NSTable/NS 11706 * bits at each step. 11707 */ 11708 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11709 for (;;) { 11710 uint64_t descriptor; 11711 bool nstable; 11712 11713 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11714 descaddr &= ~7ULL; 11715 nstable = extract32(tableattrs, 4, 1); 11716 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11717 if (fi->type != ARMFault_None) { 11718 goto do_fault; 11719 } 11720 11721 if (!(descriptor & 1) || 11722 (!(descriptor & 2) && (level == 3))) { 11723 /* Invalid, or the Reserved level 3 encoding */ 11724 goto do_fault; 11725 } 11726 descaddr = descriptor & descaddrmask; 11727 11728 if ((descriptor & 2) && (level < 3)) { 11729 /* Table entry. The top five bits are attributes which may 11730 * propagate down through lower levels of the table (and 11731 * which are all arranged so that 0 means "no effect", so 11732 * we can gather them up by ORing in the bits at each level). 11733 */ 11734 tableattrs |= extract64(descriptor, 59, 5); 11735 level++; 11736 indexmask = indexmask_grainsize; 11737 continue; 11738 } 11739 /* Block entry at level 1 or 2, or page entry at level 3. 11740 * These are basically the same thing, although the number 11741 * of bits we pull in from the vaddr varies. 11742 */ 11743 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11744 descaddr |= (address & (page_size - 1)); 11745 /* Extract attributes from the descriptor */ 11746 attrs = extract64(descriptor, 2, 10) 11747 | (extract64(descriptor, 52, 12) << 10); 11748 11749 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11750 /* Stage 2 table descriptors do not include any attribute fields */ 11751 break; 11752 } 11753 /* Merge in attributes from table descriptors */ 11754 attrs |= nstable << 3; /* NS */ 11755 guarded = extract64(descriptor, 50, 1); /* GP */ 11756 if (param.hpd) { 11757 /* HPD disables all the table attributes except NSTable. */ 11758 break; 11759 } 11760 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11761 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11762 * means "force PL1 access only", which means forcing AP[1] to 0. 11763 */ 11764 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11765 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11766 break; 11767 } 11768 /* Here descaddr is the final physical address, and attributes 11769 * are all in attrs. 11770 */ 11771 fault_type = ARMFault_AccessFlag; 11772 if ((attrs & (1 << 8)) == 0) { 11773 /* Access flag */ 11774 goto do_fault; 11775 } 11776 11777 ap = extract32(attrs, 4, 2); 11778 11779 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11780 ns = mmu_idx == ARMMMUIdx_Stage2; 11781 xn = extract32(attrs, 11, 2); 11782 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11783 } else { 11784 ns = extract32(attrs, 3, 1); 11785 xn = extract32(attrs, 12, 1); 11786 pxn = extract32(attrs, 11, 1); 11787 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11788 } 11789 11790 fault_type = ARMFault_Permission; 11791 if (!(*prot & (1 << access_type))) { 11792 goto do_fault; 11793 } 11794 11795 if (ns) { 11796 /* The NS bit will (as required by the architecture) have no effect if 11797 * the CPU doesn't support TZ or this is a non-secure translation 11798 * regime, because the attribute will already be non-secure. 11799 */ 11800 txattrs->secure = false; 11801 } 11802 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11803 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11804 arm_tlb_bti_gp(txattrs) = true; 11805 } 11806 11807 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11808 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11809 } else { 11810 /* Index into MAIR registers for cache attributes */ 11811 uint8_t attrindx = extract32(attrs, 0, 3); 11812 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11813 assert(attrindx <= 7); 11814 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11815 } 11816 cacheattrs->shareability = extract32(attrs, 6, 2); 11817 11818 *phys_ptr = descaddr; 11819 *page_size_ptr = page_size; 11820 return false; 11821 11822 do_fault: 11823 fi->type = fault_type; 11824 fi->level = level; 11825 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11826 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11827 mmu_idx == ARMMMUIdx_Stage2_S); 11828 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11829 return true; 11830 } 11831 11832 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11833 ARMMMUIdx mmu_idx, 11834 int32_t address, int *prot) 11835 { 11836 if (!arm_feature(env, ARM_FEATURE_M)) { 11837 *prot = PAGE_READ | PAGE_WRITE; 11838 switch (address) { 11839 case 0xF0000000 ... 0xFFFFFFFF: 11840 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11841 /* hivecs execing is ok */ 11842 *prot |= PAGE_EXEC; 11843 } 11844 break; 11845 case 0x00000000 ... 0x7FFFFFFF: 11846 *prot |= PAGE_EXEC; 11847 break; 11848 } 11849 } else { 11850 /* Default system address map for M profile cores. 11851 * The architecture specifies which regions are execute-never; 11852 * at the MPU level no other checks are defined. 11853 */ 11854 switch (address) { 11855 case 0x00000000 ... 0x1fffffff: /* ROM */ 11856 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11857 case 0x60000000 ... 0x7fffffff: /* RAM */ 11858 case 0x80000000 ... 0x9fffffff: /* RAM */ 11859 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11860 break; 11861 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11862 case 0xa0000000 ... 0xbfffffff: /* Device */ 11863 case 0xc0000000 ... 0xdfffffff: /* Device */ 11864 case 0xe0000000 ... 0xffffffff: /* System */ 11865 *prot = PAGE_READ | PAGE_WRITE; 11866 break; 11867 default: 11868 g_assert_not_reached(); 11869 } 11870 } 11871 } 11872 11873 static bool pmsav7_use_background_region(ARMCPU *cpu, 11874 ARMMMUIdx mmu_idx, bool is_user) 11875 { 11876 /* Return true if we should use the default memory map as a 11877 * "background" region if there are no hits against any MPU regions. 11878 */ 11879 CPUARMState *env = &cpu->env; 11880 11881 if (is_user) { 11882 return false; 11883 } 11884 11885 if (arm_feature(env, ARM_FEATURE_M)) { 11886 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11887 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11888 } else { 11889 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11890 } 11891 } 11892 11893 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11894 { 11895 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11896 return arm_feature(env, ARM_FEATURE_M) && 11897 extract32(address, 20, 12) == 0xe00; 11898 } 11899 11900 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11901 { 11902 /* True if address is in the M profile system region 11903 * 0xe0000000 - 0xffffffff 11904 */ 11905 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11906 } 11907 11908 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11909 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11910 hwaddr *phys_ptr, int *prot, 11911 target_ulong *page_size, 11912 ARMMMUFaultInfo *fi) 11913 { 11914 ARMCPU *cpu = env_archcpu(env); 11915 int n; 11916 bool is_user = regime_is_user(env, mmu_idx); 11917 11918 *phys_ptr = address; 11919 *page_size = TARGET_PAGE_SIZE; 11920 *prot = 0; 11921 11922 if (regime_translation_disabled(env, mmu_idx) || 11923 m_is_ppb_region(env, address)) { 11924 /* MPU disabled or M profile PPB access: use default memory map. 11925 * The other case which uses the default memory map in the 11926 * v7M ARM ARM pseudocode is exception vector reads from the vector 11927 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11928 * which always does a direct read using address_space_ldl(), rather 11929 * than going via this function, so we don't need to check that here. 11930 */ 11931 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11932 } else { /* MPU enabled */ 11933 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11934 /* region search */ 11935 uint32_t base = env->pmsav7.drbar[n]; 11936 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11937 uint32_t rmask; 11938 bool srdis = false; 11939 11940 if (!(env->pmsav7.drsr[n] & 0x1)) { 11941 continue; 11942 } 11943 11944 if (!rsize) { 11945 qemu_log_mask(LOG_GUEST_ERROR, 11946 "DRSR[%d]: Rsize field cannot be 0\n", n); 11947 continue; 11948 } 11949 rsize++; 11950 rmask = (1ull << rsize) - 1; 11951 11952 if (base & rmask) { 11953 qemu_log_mask(LOG_GUEST_ERROR, 11954 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11955 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11956 n, base, rmask); 11957 continue; 11958 } 11959 11960 if (address < base || address > base + rmask) { 11961 /* 11962 * Address not in this region. We must check whether the 11963 * region covers addresses in the same page as our address. 11964 * In that case we must not report a size that covers the 11965 * whole page for a subsequent hit against a different MPU 11966 * region or the background region, because it would result in 11967 * incorrect TLB hits for subsequent accesses to addresses that 11968 * are in this MPU region. 11969 */ 11970 if (ranges_overlap(base, rmask, 11971 address & TARGET_PAGE_MASK, 11972 TARGET_PAGE_SIZE)) { 11973 *page_size = 1; 11974 } 11975 continue; 11976 } 11977 11978 /* Region matched */ 11979 11980 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11981 int i, snd; 11982 uint32_t srdis_mask; 11983 11984 rsize -= 3; /* sub region size (power of 2) */ 11985 snd = ((address - base) >> rsize) & 0x7; 11986 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11987 11988 srdis_mask = srdis ? 0x3 : 0x0; 11989 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11990 /* This will check in groups of 2, 4 and then 8, whether 11991 * the subregion bits are consistent. rsize is incremented 11992 * back up to give the region size, considering consistent 11993 * adjacent subregions as one region. Stop testing if rsize 11994 * is already big enough for an entire QEMU page. 11995 */ 11996 int snd_rounded = snd & ~(i - 1); 11997 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11998 snd_rounded + 8, i); 11999 if (srdis_mask ^ srdis_multi) { 12000 break; 12001 } 12002 srdis_mask = (srdis_mask << i) | srdis_mask; 12003 rsize++; 12004 } 12005 } 12006 if (srdis) { 12007 continue; 12008 } 12009 if (rsize < TARGET_PAGE_BITS) { 12010 *page_size = 1 << rsize; 12011 } 12012 break; 12013 } 12014 12015 if (n == -1) { /* no hits */ 12016 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12017 /* background fault */ 12018 fi->type = ARMFault_Background; 12019 return true; 12020 } 12021 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12022 } else { /* a MPU hit! */ 12023 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 12024 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 12025 12026 if (m_is_system_region(env, address)) { 12027 /* System space is always execute never */ 12028 xn = 1; 12029 } 12030 12031 if (is_user) { /* User mode AP bit decoding */ 12032 switch (ap) { 12033 case 0: 12034 case 1: 12035 case 5: 12036 break; /* no access */ 12037 case 3: 12038 *prot |= PAGE_WRITE; 12039 /* fall through */ 12040 case 2: 12041 case 6: 12042 *prot |= PAGE_READ | PAGE_EXEC; 12043 break; 12044 case 7: 12045 /* for v7M, same as 6; for R profile a reserved value */ 12046 if (arm_feature(env, ARM_FEATURE_M)) { 12047 *prot |= PAGE_READ | PAGE_EXEC; 12048 break; 12049 } 12050 /* fall through */ 12051 default: 12052 qemu_log_mask(LOG_GUEST_ERROR, 12053 "DRACR[%d]: Bad value for AP bits: 0x%" 12054 PRIx32 "\n", n, ap); 12055 } 12056 } else { /* Priv. mode AP bits decoding */ 12057 switch (ap) { 12058 case 0: 12059 break; /* no access */ 12060 case 1: 12061 case 2: 12062 case 3: 12063 *prot |= PAGE_WRITE; 12064 /* fall through */ 12065 case 5: 12066 case 6: 12067 *prot |= PAGE_READ | PAGE_EXEC; 12068 break; 12069 case 7: 12070 /* for v7M, same as 6; for R profile a reserved value */ 12071 if (arm_feature(env, ARM_FEATURE_M)) { 12072 *prot |= PAGE_READ | PAGE_EXEC; 12073 break; 12074 } 12075 /* fall through */ 12076 default: 12077 qemu_log_mask(LOG_GUEST_ERROR, 12078 "DRACR[%d]: Bad value for AP bits: 0x%" 12079 PRIx32 "\n", n, ap); 12080 } 12081 } 12082 12083 /* execute never */ 12084 if (xn) { 12085 *prot &= ~PAGE_EXEC; 12086 } 12087 } 12088 } 12089 12090 fi->type = ARMFault_Permission; 12091 fi->level = 1; 12092 return !(*prot & (1 << access_type)); 12093 } 12094 12095 static bool v8m_is_sau_exempt(CPUARMState *env, 12096 uint32_t address, MMUAccessType access_type) 12097 { 12098 /* The architecture specifies that certain address ranges are 12099 * exempt from v8M SAU/IDAU checks. 12100 */ 12101 return 12102 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 12103 (address >= 0xe0000000 && address <= 0xe0002fff) || 12104 (address >= 0xe000e000 && address <= 0xe000efff) || 12105 (address >= 0xe002e000 && address <= 0xe002efff) || 12106 (address >= 0xe0040000 && address <= 0xe0041fff) || 12107 (address >= 0xe00ff000 && address <= 0xe00fffff); 12108 } 12109 12110 void v8m_security_lookup(CPUARMState *env, uint32_t address, 12111 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12112 V8M_SAttributes *sattrs) 12113 { 12114 /* Look up the security attributes for this address. Compare the 12115 * pseudocode SecurityCheck() function. 12116 * We assume the caller has zero-initialized *sattrs. 12117 */ 12118 ARMCPU *cpu = env_archcpu(env); 12119 int r; 12120 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12121 int idau_region = IREGION_NOTVALID; 12122 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12123 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12124 12125 if (cpu->idau) { 12126 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12127 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12128 12129 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12130 &idau_nsc); 12131 } 12132 12133 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12134 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12135 return; 12136 } 12137 12138 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12139 sattrs->ns = !regime_is_secure(env, mmu_idx); 12140 return; 12141 } 12142 12143 if (idau_region != IREGION_NOTVALID) { 12144 sattrs->irvalid = true; 12145 sattrs->iregion = idau_region; 12146 } 12147 12148 switch (env->sau.ctrl & 3) { 12149 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12150 break; 12151 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12152 sattrs->ns = true; 12153 break; 12154 default: /* SAU.ENABLE == 1 */ 12155 for (r = 0; r < cpu->sau_sregion; r++) { 12156 if (env->sau.rlar[r] & 1) { 12157 uint32_t base = env->sau.rbar[r] & ~0x1f; 12158 uint32_t limit = env->sau.rlar[r] | 0x1f; 12159 12160 if (base <= address && limit >= address) { 12161 if (base > addr_page_base || limit < addr_page_limit) { 12162 sattrs->subpage = true; 12163 } 12164 if (sattrs->srvalid) { 12165 /* If we hit in more than one region then we must report 12166 * as Secure, not NS-Callable, with no valid region 12167 * number info. 12168 */ 12169 sattrs->ns = false; 12170 sattrs->nsc = false; 12171 sattrs->sregion = 0; 12172 sattrs->srvalid = false; 12173 break; 12174 } else { 12175 if (env->sau.rlar[r] & 2) { 12176 sattrs->nsc = true; 12177 } else { 12178 sattrs->ns = true; 12179 } 12180 sattrs->srvalid = true; 12181 sattrs->sregion = r; 12182 } 12183 } else { 12184 /* 12185 * Address not in this region. We must check whether the 12186 * region covers addresses in the same page as our address. 12187 * In that case we must not report a size that covers the 12188 * whole page for a subsequent hit against a different MPU 12189 * region or the background region, because it would result 12190 * in incorrect TLB hits for subsequent accesses to 12191 * addresses that are in this MPU region. 12192 */ 12193 if (limit >= base && 12194 ranges_overlap(base, limit - base + 1, 12195 addr_page_base, 12196 TARGET_PAGE_SIZE)) { 12197 sattrs->subpage = true; 12198 } 12199 } 12200 } 12201 } 12202 break; 12203 } 12204 12205 /* 12206 * The IDAU will override the SAU lookup results if it specifies 12207 * higher security than the SAU does. 12208 */ 12209 if (!idau_ns) { 12210 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12211 sattrs->ns = false; 12212 sattrs->nsc = idau_nsc; 12213 } 12214 } 12215 } 12216 12217 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12218 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12219 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12220 int *prot, bool *is_subpage, 12221 ARMMMUFaultInfo *fi, uint32_t *mregion) 12222 { 12223 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12224 * that a full phys-to-virt translation does). 12225 * mregion is (if not NULL) set to the region number which matched, 12226 * or -1 if no region number is returned (MPU off, address did not 12227 * hit a region, address hit in multiple regions). 12228 * We set is_subpage to true if the region hit doesn't cover the 12229 * entire TARGET_PAGE the address is within. 12230 */ 12231 ARMCPU *cpu = env_archcpu(env); 12232 bool is_user = regime_is_user(env, mmu_idx); 12233 uint32_t secure = regime_is_secure(env, mmu_idx); 12234 int n; 12235 int matchregion = -1; 12236 bool hit = false; 12237 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12238 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12239 12240 *is_subpage = false; 12241 *phys_ptr = address; 12242 *prot = 0; 12243 if (mregion) { 12244 *mregion = -1; 12245 } 12246 12247 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12248 * was an exception vector read from the vector table (which is always 12249 * done using the default system address map), because those accesses 12250 * are done in arm_v7m_load_vector(), which always does a direct 12251 * read using address_space_ldl(), rather than going via this function. 12252 */ 12253 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12254 hit = true; 12255 } else if (m_is_ppb_region(env, address)) { 12256 hit = true; 12257 } else { 12258 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12259 hit = true; 12260 } 12261 12262 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12263 /* region search */ 12264 /* Note that the base address is bits [31:5] from the register 12265 * with bits [4:0] all zeroes, but the limit address is bits 12266 * [31:5] from the register with bits [4:0] all ones. 12267 */ 12268 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12269 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12270 12271 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12272 /* Region disabled */ 12273 continue; 12274 } 12275 12276 if (address < base || address > limit) { 12277 /* 12278 * Address not in this region. We must check whether the 12279 * region covers addresses in the same page as our address. 12280 * In that case we must not report a size that covers the 12281 * whole page for a subsequent hit against a different MPU 12282 * region or the background region, because it would result in 12283 * incorrect TLB hits for subsequent accesses to addresses that 12284 * are in this MPU region. 12285 */ 12286 if (limit >= base && 12287 ranges_overlap(base, limit - base + 1, 12288 addr_page_base, 12289 TARGET_PAGE_SIZE)) { 12290 *is_subpage = true; 12291 } 12292 continue; 12293 } 12294 12295 if (base > addr_page_base || limit < addr_page_limit) { 12296 *is_subpage = true; 12297 } 12298 12299 if (matchregion != -1) { 12300 /* Multiple regions match -- always a failure (unlike 12301 * PMSAv7 where highest-numbered-region wins) 12302 */ 12303 fi->type = ARMFault_Permission; 12304 fi->level = 1; 12305 return true; 12306 } 12307 12308 matchregion = n; 12309 hit = true; 12310 } 12311 } 12312 12313 if (!hit) { 12314 /* background fault */ 12315 fi->type = ARMFault_Background; 12316 return true; 12317 } 12318 12319 if (matchregion == -1) { 12320 /* hit using the background region */ 12321 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12322 } else { 12323 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12324 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12325 bool pxn = false; 12326 12327 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12328 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12329 } 12330 12331 if (m_is_system_region(env, address)) { 12332 /* System space is always execute never */ 12333 xn = 1; 12334 } 12335 12336 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12337 if (*prot && !xn && !(pxn && !is_user)) { 12338 *prot |= PAGE_EXEC; 12339 } 12340 /* We don't need to look the attribute up in the MAIR0/MAIR1 12341 * registers because that only tells us about cacheability. 12342 */ 12343 if (mregion) { 12344 *mregion = matchregion; 12345 } 12346 } 12347 12348 fi->type = ARMFault_Permission; 12349 fi->level = 1; 12350 return !(*prot & (1 << access_type)); 12351 } 12352 12353 12354 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12355 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12356 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12357 int *prot, target_ulong *page_size, 12358 ARMMMUFaultInfo *fi) 12359 { 12360 uint32_t secure = regime_is_secure(env, mmu_idx); 12361 V8M_SAttributes sattrs = {}; 12362 bool ret; 12363 bool mpu_is_subpage; 12364 12365 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12366 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12367 if (access_type == MMU_INST_FETCH) { 12368 /* Instruction fetches always use the MMU bank and the 12369 * transaction attribute determined by the fetch address, 12370 * regardless of CPU state. This is painful for QEMU 12371 * to handle, because it would mean we need to encode 12372 * into the mmu_idx not just the (user, negpri) information 12373 * for the current security state but also that for the 12374 * other security state, which would balloon the number 12375 * of mmu_idx values needed alarmingly. 12376 * Fortunately we can avoid this because it's not actually 12377 * possible to arbitrarily execute code from memory with 12378 * the wrong security attribute: it will always generate 12379 * an exception of some kind or another, apart from the 12380 * special case of an NS CPU executing an SG instruction 12381 * in S&NSC memory. So we always just fail the translation 12382 * here and sort things out in the exception handler 12383 * (including possibly emulating an SG instruction). 12384 */ 12385 if (sattrs.ns != !secure) { 12386 if (sattrs.nsc) { 12387 fi->type = ARMFault_QEMU_NSCExec; 12388 } else { 12389 fi->type = ARMFault_QEMU_SFault; 12390 } 12391 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12392 *phys_ptr = address; 12393 *prot = 0; 12394 return true; 12395 } 12396 } else { 12397 /* For data accesses we always use the MMU bank indicated 12398 * by the current CPU state, but the security attributes 12399 * might downgrade a secure access to nonsecure. 12400 */ 12401 if (sattrs.ns) { 12402 txattrs->secure = false; 12403 } else if (!secure) { 12404 /* NS access to S memory must fault. 12405 * Architecturally we should first check whether the 12406 * MPU information for this address indicates that we 12407 * are doing an unaligned access to Device memory, which 12408 * should generate a UsageFault instead. QEMU does not 12409 * currently check for that kind of unaligned access though. 12410 * If we added it we would need to do so as a special case 12411 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12412 */ 12413 fi->type = ARMFault_QEMU_SFault; 12414 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12415 *phys_ptr = address; 12416 *prot = 0; 12417 return true; 12418 } 12419 } 12420 } 12421 12422 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12423 txattrs, prot, &mpu_is_subpage, fi, NULL); 12424 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12425 return ret; 12426 } 12427 12428 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12429 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12430 hwaddr *phys_ptr, int *prot, 12431 ARMMMUFaultInfo *fi) 12432 { 12433 int n; 12434 uint32_t mask; 12435 uint32_t base; 12436 bool is_user = regime_is_user(env, mmu_idx); 12437 12438 if (regime_translation_disabled(env, mmu_idx)) { 12439 /* MPU disabled. */ 12440 *phys_ptr = address; 12441 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12442 return false; 12443 } 12444 12445 *phys_ptr = address; 12446 for (n = 7; n >= 0; n--) { 12447 base = env->cp15.c6_region[n]; 12448 if ((base & 1) == 0) { 12449 continue; 12450 } 12451 mask = 1 << ((base >> 1) & 0x1f); 12452 /* Keep this shift separate from the above to avoid an 12453 (undefined) << 32. */ 12454 mask = (mask << 1) - 1; 12455 if (((base ^ address) & ~mask) == 0) { 12456 break; 12457 } 12458 } 12459 if (n < 0) { 12460 fi->type = ARMFault_Background; 12461 return true; 12462 } 12463 12464 if (access_type == MMU_INST_FETCH) { 12465 mask = env->cp15.pmsav5_insn_ap; 12466 } else { 12467 mask = env->cp15.pmsav5_data_ap; 12468 } 12469 mask = (mask >> (n * 4)) & 0xf; 12470 switch (mask) { 12471 case 0: 12472 fi->type = ARMFault_Permission; 12473 fi->level = 1; 12474 return true; 12475 case 1: 12476 if (is_user) { 12477 fi->type = ARMFault_Permission; 12478 fi->level = 1; 12479 return true; 12480 } 12481 *prot = PAGE_READ | PAGE_WRITE; 12482 break; 12483 case 2: 12484 *prot = PAGE_READ; 12485 if (!is_user) { 12486 *prot |= PAGE_WRITE; 12487 } 12488 break; 12489 case 3: 12490 *prot = PAGE_READ | PAGE_WRITE; 12491 break; 12492 case 5: 12493 if (is_user) { 12494 fi->type = ARMFault_Permission; 12495 fi->level = 1; 12496 return true; 12497 } 12498 *prot = PAGE_READ; 12499 break; 12500 case 6: 12501 *prot = PAGE_READ; 12502 break; 12503 default: 12504 /* Bad permission. */ 12505 fi->type = ARMFault_Permission; 12506 fi->level = 1; 12507 return true; 12508 } 12509 *prot |= PAGE_EXEC; 12510 return false; 12511 } 12512 12513 /* Combine either inner or outer cacheability attributes for normal 12514 * memory, according to table D4-42 and pseudocode procedure 12515 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12516 * 12517 * NB: only stage 1 includes allocation hints (RW bits), leading to 12518 * some asymmetry. 12519 */ 12520 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12521 { 12522 if (s1 == 4 || s2 == 4) { 12523 /* non-cacheable has precedence */ 12524 return 4; 12525 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12526 /* stage 1 write-through takes precedence */ 12527 return s1; 12528 } else if (extract32(s2, 2, 2) == 2) { 12529 /* stage 2 write-through takes precedence, but the allocation hint 12530 * is still taken from stage 1 12531 */ 12532 return (2 << 2) | extract32(s1, 0, 2); 12533 } else { /* write-back */ 12534 return s1; 12535 } 12536 } 12537 12538 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12539 * and CombineS1S2Desc() 12540 * 12541 * @s1: Attributes from stage 1 walk 12542 * @s2: Attributes from stage 2 walk 12543 */ 12544 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12545 { 12546 uint8_t s1lo, s2lo, s1hi, s2hi; 12547 ARMCacheAttrs ret; 12548 bool tagged = false; 12549 12550 if (s1.attrs == 0xf0) { 12551 tagged = true; 12552 s1.attrs = 0xff; 12553 } 12554 12555 s1lo = extract32(s1.attrs, 0, 4); 12556 s2lo = extract32(s2.attrs, 0, 4); 12557 s1hi = extract32(s1.attrs, 4, 4); 12558 s2hi = extract32(s2.attrs, 4, 4); 12559 12560 /* Combine shareability attributes (table D4-43) */ 12561 if (s1.shareability == 2 || s2.shareability == 2) { 12562 /* if either are outer-shareable, the result is outer-shareable */ 12563 ret.shareability = 2; 12564 } else if (s1.shareability == 3 || s2.shareability == 3) { 12565 /* if either are inner-shareable, the result is inner-shareable */ 12566 ret.shareability = 3; 12567 } else { 12568 /* both non-shareable */ 12569 ret.shareability = 0; 12570 } 12571 12572 /* Combine memory type and cacheability attributes */ 12573 if (s1hi == 0 || s2hi == 0) { 12574 /* Device has precedence over normal */ 12575 if (s1lo == 0 || s2lo == 0) { 12576 /* nGnRnE has precedence over anything */ 12577 ret.attrs = 0; 12578 } else if (s1lo == 4 || s2lo == 4) { 12579 /* non-Reordering has precedence over Reordering */ 12580 ret.attrs = 4; /* nGnRE */ 12581 } else if (s1lo == 8 || s2lo == 8) { 12582 /* non-Gathering has precedence over Gathering */ 12583 ret.attrs = 8; /* nGRE */ 12584 } else { 12585 ret.attrs = 0xc; /* GRE */ 12586 } 12587 12588 /* Any location for which the resultant memory type is any 12589 * type of Device memory is always treated as Outer Shareable. 12590 */ 12591 ret.shareability = 2; 12592 } else { /* Normal memory */ 12593 /* Outer/inner cacheability combine independently */ 12594 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12595 | combine_cacheattr_nibble(s1lo, s2lo); 12596 12597 if (ret.attrs == 0x44) { 12598 /* Any location for which the resultant memory type is Normal 12599 * Inner Non-cacheable, Outer Non-cacheable is always treated 12600 * as Outer Shareable. 12601 */ 12602 ret.shareability = 2; 12603 } 12604 } 12605 12606 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12607 if (tagged && ret.attrs == 0xff) { 12608 ret.attrs = 0xf0; 12609 } 12610 12611 return ret; 12612 } 12613 12614 12615 /* get_phys_addr - get the physical address for this virtual address 12616 * 12617 * Find the physical address corresponding to the given virtual address, 12618 * by doing a translation table walk on MMU based systems or using the 12619 * MPU state on MPU based systems. 12620 * 12621 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12622 * prot and page_size may not be filled in, and the populated fsr value provides 12623 * information on why the translation aborted, in the format of a 12624 * DFSR/IFSR fault register, with the following caveats: 12625 * * we honour the short vs long DFSR format differences. 12626 * * the WnR bit is never set (the caller must do this). 12627 * * for PSMAv5 based systems we don't bother to return a full FSR format 12628 * value. 12629 * 12630 * @env: CPUARMState 12631 * @address: virtual address to get physical address for 12632 * @access_type: 0 for read, 1 for write, 2 for execute 12633 * @mmu_idx: MMU index indicating required translation regime 12634 * @phys_ptr: set to the physical address corresponding to the virtual address 12635 * @attrs: set to the memory transaction attributes to use 12636 * @prot: set to the permissions for the page containing phys_ptr 12637 * @page_size: set to the size of the page containing phys_ptr 12638 * @fi: set to fault info if the translation fails 12639 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12640 */ 12641 bool get_phys_addr(CPUARMState *env, target_ulong address, 12642 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12643 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12644 target_ulong *page_size, 12645 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12646 { 12647 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12648 12649 if (mmu_idx != s1_mmu_idx) { 12650 /* Call ourselves recursively to do the stage 1 and then stage 2 12651 * translations if mmu_idx is a two-stage regime. 12652 */ 12653 if (arm_feature(env, ARM_FEATURE_EL2)) { 12654 hwaddr ipa; 12655 int s2_prot; 12656 int ret; 12657 ARMCacheAttrs cacheattrs2 = {}; 12658 ARMMMUIdx s2_mmu_idx; 12659 bool is_el0; 12660 12661 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12662 attrs, prot, page_size, fi, cacheattrs); 12663 12664 /* If S1 fails or S2 is disabled, return early. */ 12665 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12666 *phys_ptr = ipa; 12667 return ret; 12668 } 12669 12670 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12671 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12672 12673 /* S1 is done. Now do S2 translation. */ 12674 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12675 phys_ptr, attrs, &s2_prot, 12676 page_size, fi, &cacheattrs2); 12677 fi->s2addr = ipa; 12678 /* Combine the S1 and S2 perms. */ 12679 *prot &= s2_prot; 12680 12681 /* If S2 fails, return early. */ 12682 if (ret) { 12683 return ret; 12684 } 12685 12686 /* Combine the S1 and S2 cache attributes. */ 12687 if (arm_hcr_el2_eff(env) & HCR_DC) { 12688 /* 12689 * HCR.DC forces the first stage attributes to 12690 * Normal Non-Shareable, 12691 * Inner Write-Back Read-Allocate Write-Allocate, 12692 * Outer Write-Back Read-Allocate Write-Allocate. 12693 * Do not overwrite Tagged within attrs. 12694 */ 12695 if (cacheattrs->attrs != 0xf0) { 12696 cacheattrs->attrs = 0xff; 12697 } 12698 cacheattrs->shareability = 0; 12699 } 12700 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12701 12702 /* Check if IPA translates to secure or non-secure PA space. */ 12703 if (arm_is_secure_below_el3(env)) { 12704 if (attrs->secure) { 12705 attrs->secure = 12706 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12707 } else { 12708 attrs->secure = 12709 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12710 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA)); 12711 } 12712 } 12713 return 0; 12714 } else { 12715 /* 12716 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12717 */ 12718 mmu_idx = stage_1_mmu_idx(mmu_idx); 12719 } 12720 } 12721 12722 /* The page table entries may downgrade secure to non-secure, but 12723 * cannot upgrade an non-secure translation regime's attributes 12724 * to secure. 12725 */ 12726 attrs->secure = regime_is_secure(env, mmu_idx); 12727 attrs->user = regime_is_user(env, mmu_idx); 12728 12729 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12730 * In v7 and earlier it affects all stage 1 translations. 12731 */ 12732 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12733 && !arm_feature(env, ARM_FEATURE_V8)) { 12734 if (regime_el(env, mmu_idx) == 3) { 12735 address += env->cp15.fcseidr_s; 12736 } else { 12737 address += env->cp15.fcseidr_ns; 12738 } 12739 } 12740 12741 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12742 bool ret; 12743 *page_size = TARGET_PAGE_SIZE; 12744 12745 if (arm_feature(env, ARM_FEATURE_V8)) { 12746 /* PMSAv8 */ 12747 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12748 phys_ptr, attrs, prot, page_size, fi); 12749 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12750 /* PMSAv7 */ 12751 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12752 phys_ptr, prot, page_size, fi); 12753 } else { 12754 /* Pre-v7 MPU */ 12755 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12756 phys_ptr, prot, fi); 12757 } 12758 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12759 " mmu_idx %u -> %s (prot %c%c%c)\n", 12760 access_type == MMU_DATA_LOAD ? "reading" : 12761 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12762 (uint32_t)address, mmu_idx, 12763 ret ? "Miss" : "Hit", 12764 *prot & PAGE_READ ? 'r' : '-', 12765 *prot & PAGE_WRITE ? 'w' : '-', 12766 *prot & PAGE_EXEC ? 'x' : '-'); 12767 12768 return ret; 12769 } 12770 12771 /* Definitely a real MMU, not an MPU */ 12772 12773 if (regime_translation_disabled(env, mmu_idx)) { 12774 uint64_t hcr; 12775 uint8_t memattr; 12776 12777 /* 12778 * MMU disabled. S1 addresses within aa64 translation regimes are 12779 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12780 */ 12781 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12782 int r_el = regime_el(env, mmu_idx); 12783 if (arm_el_is_aa64(env, r_el)) { 12784 int pamax = arm_pamax(env_archcpu(env)); 12785 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12786 int addrtop, tbi; 12787 12788 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12789 if (access_type == MMU_INST_FETCH) { 12790 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12791 } 12792 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12793 addrtop = (tbi ? 55 : 63); 12794 12795 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12796 fi->type = ARMFault_AddressSize; 12797 fi->level = 0; 12798 fi->stage2 = false; 12799 return 1; 12800 } 12801 12802 /* 12803 * When TBI is disabled, we've just validated that all of the 12804 * bits above PAMax are zero, so logically we only need to 12805 * clear the top byte for TBI. But it's clearer to follow 12806 * the pseudocode set of addrdesc.paddress. 12807 */ 12808 address = extract64(address, 0, 52); 12809 } 12810 } 12811 *phys_ptr = address; 12812 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12813 *page_size = TARGET_PAGE_SIZE; 12814 12815 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12816 hcr = arm_hcr_el2_eff(env); 12817 cacheattrs->shareability = 0; 12818 if (hcr & HCR_DC) { 12819 if (hcr & HCR_DCT) { 12820 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12821 } else { 12822 memattr = 0xff; /* Normal, WB, RWA */ 12823 } 12824 } else if (access_type == MMU_INST_FETCH) { 12825 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12826 memattr = 0xee; /* Normal, WT, RA, NT */ 12827 } else { 12828 memattr = 0x44; /* Normal, NC, No */ 12829 } 12830 cacheattrs->shareability = 2; /* outer sharable */ 12831 } else { 12832 memattr = 0x00; /* Device, nGnRnE */ 12833 } 12834 cacheattrs->attrs = memattr; 12835 return 0; 12836 } 12837 12838 if (regime_using_lpae_format(env, mmu_idx)) { 12839 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12840 phys_ptr, attrs, prot, page_size, 12841 fi, cacheattrs); 12842 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12843 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12844 phys_ptr, attrs, prot, page_size, fi); 12845 } else { 12846 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12847 phys_ptr, prot, page_size, fi); 12848 } 12849 } 12850 12851 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12852 MemTxAttrs *attrs) 12853 { 12854 ARMCPU *cpu = ARM_CPU(cs); 12855 CPUARMState *env = &cpu->env; 12856 hwaddr phys_addr; 12857 target_ulong page_size; 12858 int prot; 12859 bool ret; 12860 ARMMMUFaultInfo fi = {}; 12861 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12862 ARMCacheAttrs cacheattrs = {}; 12863 12864 *attrs = (MemTxAttrs) {}; 12865 12866 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12867 attrs, &prot, &page_size, &fi, &cacheattrs); 12868 12869 if (ret) { 12870 return -1; 12871 } 12872 return phys_addr; 12873 } 12874 12875 #endif 12876 12877 /* Note that signed overflow is undefined in C. The following routines are 12878 careful to use unsigned types where modulo arithmetic is required. 12879 Failure to do so _will_ break on newer gcc. */ 12880 12881 /* Signed saturating arithmetic. */ 12882 12883 /* Perform 16-bit signed saturating addition. */ 12884 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12885 { 12886 uint16_t res; 12887 12888 res = a + b; 12889 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12890 if (a & 0x8000) 12891 res = 0x8000; 12892 else 12893 res = 0x7fff; 12894 } 12895 return res; 12896 } 12897 12898 /* Perform 8-bit signed saturating addition. */ 12899 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12900 { 12901 uint8_t res; 12902 12903 res = a + b; 12904 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12905 if (a & 0x80) 12906 res = 0x80; 12907 else 12908 res = 0x7f; 12909 } 12910 return res; 12911 } 12912 12913 /* Perform 16-bit signed saturating subtraction. */ 12914 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12915 { 12916 uint16_t res; 12917 12918 res = a - b; 12919 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12920 if (a & 0x8000) 12921 res = 0x8000; 12922 else 12923 res = 0x7fff; 12924 } 12925 return res; 12926 } 12927 12928 /* Perform 8-bit signed saturating subtraction. */ 12929 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12930 { 12931 uint8_t res; 12932 12933 res = a - b; 12934 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12935 if (a & 0x80) 12936 res = 0x80; 12937 else 12938 res = 0x7f; 12939 } 12940 return res; 12941 } 12942 12943 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12944 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12945 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12946 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12947 #define PFX q 12948 12949 #include "op_addsub.h" 12950 12951 /* Unsigned saturating arithmetic. */ 12952 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12953 { 12954 uint16_t res; 12955 res = a + b; 12956 if (res < a) 12957 res = 0xffff; 12958 return res; 12959 } 12960 12961 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12962 { 12963 if (a > b) 12964 return a - b; 12965 else 12966 return 0; 12967 } 12968 12969 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12970 { 12971 uint8_t res; 12972 res = a + b; 12973 if (res < a) 12974 res = 0xff; 12975 return res; 12976 } 12977 12978 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12979 { 12980 if (a > b) 12981 return a - b; 12982 else 12983 return 0; 12984 } 12985 12986 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12987 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12988 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12989 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12990 #define PFX uq 12991 12992 #include "op_addsub.h" 12993 12994 /* Signed modulo arithmetic. */ 12995 #define SARITH16(a, b, n, op) do { \ 12996 int32_t sum; \ 12997 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12998 RESULT(sum, n, 16); \ 12999 if (sum >= 0) \ 13000 ge |= 3 << (n * 2); \ 13001 } while(0) 13002 13003 #define SARITH8(a, b, n, op) do { \ 13004 int32_t sum; \ 13005 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 13006 RESULT(sum, n, 8); \ 13007 if (sum >= 0) \ 13008 ge |= 1 << n; \ 13009 } while(0) 13010 13011 13012 #define ADD16(a, b, n) SARITH16(a, b, n, +) 13013 #define SUB16(a, b, n) SARITH16(a, b, n, -) 13014 #define ADD8(a, b, n) SARITH8(a, b, n, +) 13015 #define SUB8(a, b, n) SARITH8(a, b, n, -) 13016 #define PFX s 13017 #define ARITH_GE 13018 13019 #include "op_addsub.h" 13020 13021 /* Unsigned modulo arithmetic. */ 13022 #define ADD16(a, b, n) do { \ 13023 uint32_t sum; \ 13024 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 13025 RESULT(sum, n, 16); \ 13026 if ((sum >> 16) == 1) \ 13027 ge |= 3 << (n * 2); \ 13028 } while(0) 13029 13030 #define ADD8(a, b, n) do { \ 13031 uint32_t sum; \ 13032 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 13033 RESULT(sum, n, 8); \ 13034 if ((sum >> 8) == 1) \ 13035 ge |= 1 << n; \ 13036 } while(0) 13037 13038 #define SUB16(a, b, n) do { \ 13039 uint32_t sum; \ 13040 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 13041 RESULT(sum, n, 16); \ 13042 if ((sum >> 16) == 0) \ 13043 ge |= 3 << (n * 2); \ 13044 } while(0) 13045 13046 #define SUB8(a, b, n) do { \ 13047 uint32_t sum; \ 13048 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 13049 RESULT(sum, n, 8); \ 13050 if ((sum >> 8) == 0) \ 13051 ge |= 1 << n; \ 13052 } while(0) 13053 13054 #define PFX u 13055 #define ARITH_GE 13056 13057 #include "op_addsub.h" 13058 13059 /* Halved signed arithmetic. */ 13060 #define ADD16(a, b, n) \ 13061 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 13062 #define SUB16(a, b, n) \ 13063 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 13064 #define ADD8(a, b, n) \ 13065 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 13066 #define SUB8(a, b, n) \ 13067 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 13068 #define PFX sh 13069 13070 #include "op_addsub.h" 13071 13072 /* Halved unsigned arithmetic. */ 13073 #define ADD16(a, b, n) \ 13074 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13075 #define SUB16(a, b, n) \ 13076 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13077 #define ADD8(a, b, n) \ 13078 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13079 #define SUB8(a, b, n) \ 13080 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13081 #define PFX uh 13082 13083 #include "op_addsub.h" 13084 13085 static inline uint8_t do_usad(uint8_t a, uint8_t b) 13086 { 13087 if (a > b) 13088 return a - b; 13089 else 13090 return b - a; 13091 } 13092 13093 /* Unsigned sum of absolute byte differences. */ 13094 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 13095 { 13096 uint32_t sum; 13097 sum = do_usad(a, b); 13098 sum += do_usad(a >> 8, b >> 8); 13099 sum += do_usad(a >> 16, b >> 16); 13100 sum += do_usad(a >> 24, b >> 24); 13101 return sum; 13102 } 13103 13104 /* For ARMv6 SEL instruction. */ 13105 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13106 { 13107 uint32_t mask; 13108 13109 mask = 0; 13110 if (flags & 1) 13111 mask |= 0xff; 13112 if (flags & 2) 13113 mask |= 0xff00; 13114 if (flags & 4) 13115 mask |= 0xff0000; 13116 if (flags & 8) 13117 mask |= 0xff000000; 13118 return (a & mask) | (b & ~mask); 13119 } 13120 13121 /* CRC helpers. 13122 * The upper bytes of val (above the number specified by 'bytes') must have 13123 * been zeroed out by the caller. 13124 */ 13125 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13126 { 13127 uint8_t buf[4]; 13128 13129 stl_le_p(buf, val); 13130 13131 /* zlib crc32 converts the accumulator and output to one's complement. */ 13132 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13133 } 13134 13135 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13136 { 13137 uint8_t buf[4]; 13138 13139 stl_le_p(buf, val); 13140 13141 /* Linux crc32c converts the output to one's complement. */ 13142 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13143 } 13144 13145 /* Return the exception level to which FP-disabled exceptions should 13146 * be taken, or 0 if FP is enabled. 13147 */ 13148 int fp_exception_el(CPUARMState *env, int cur_el) 13149 { 13150 #ifndef CONFIG_USER_ONLY 13151 /* CPACR and the CPTR registers don't exist before v6, so FP is 13152 * always accessible 13153 */ 13154 if (!arm_feature(env, ARM_FEATURE_V6)) { 13155 return 0; 13156 } 13157 13158 if (arm_feature(env, ARM_FEATURE_M)) { 13159 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13160 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13161 return 1; 13162 } 13163 13164 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13165 if (!extract32(env->v7m.nsacr, 10, 1)) { 13166 /* FP insns cause a NOCP UsageFault taken to Secure */ 13167 return 3; 13168 } 13169 } 13170 13171 return 0; 13172 } 13173 13174 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13175 * 0, 2 : trap EL0 and EL1/PL1 accesses 13176 * 1 : trap only EL0 accesses 13177 * 3 : trap no accesses 13178 * This register is ignored if E2H+TGE are both set. 13179 */ 13180 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13181 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13182 13183 switch (fpen) { 13184 case 0: 13185 case 2: 13186 if (cur_el == 0 || cur_el == 1) { 13187 /* Trap to PL1, which might be EL1 or EL3 */ 13188 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13189 return 3; 13190 } 13191 return 1; 13192 } 13193 if (cur_el == 3 && !is_a64(env)) { 13194 /* Secure PL1 running at EL3 */ 13195 return 3; 13196 } 13197 break; 13198 case 1: 13199 if (cur_el == 0) { 13200 return 1; 13201 } 13202 break; 13203 case 3: 13204 break; 13205 } 13206 } 13207 13208 /* 13209 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13210 * to control non-secure access to the FPU. It doesn't have any 13211 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13212 */ 13213 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13214 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13215 if (!extract32(env->cp15.nsacr, 10, 1)) { 13216 /* FP insns act as UNDEF */ 13217 return cur_el == 2 ? 2 : 1; 13218 } 13219 } 13220 13221 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 13222 * check because zero bits in the registers mean "don't trap". 13223 */ 13224 13225 /* CPTR_EL2 : present in v7VE or v8 */ 13226 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 13227 && arm_is_el2_enabled(env)) { 13228 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 13229 return 2; 13230 } 13231 13232 /* CPTR_EL3 : present in v8 */ 13233 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 13234 /* Trap all FP ops to EL3 */ 13235 return 3; 13236 } 13237 #endif 13238 return 0; 13239 } 13240 13241 /* Return the exception level we're running at if this is our mmu_idx */ 13242 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13243 { 13244 if (mmu_idx & ARM_MMU_IDX_M) { 13245 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13246 } 13247 13248 switch (mmu_idx) { 13249 case ARMMMUIdx_E10_0: 13250 case ARMMMUIdx_E20_0: 13251 case ARMMMUIdx_SE10_0: 13252 case ARMMMUIdx_SE20_0: 13253 return 0; 13254 case ARMMMUIdx_E10_1: 13255 case ARMMMUIdx_E10_1_PAN: 13256 case ARMMMUIdx_SE10_1: 13257 case ARMMMUIdx_SE10_1_PAN: 13258 return 1; 13259 case ARMMMUIdx_E2: 13260 case ARMMMUIdx_E20_2: 13261 case ARMMMUIdx_E20_2_PAN: 13262 case ARMMMUIdx_SE2: 13263 case ARMMMUIdx_SE20_2: 13264 case ARMMMUIdx_SE20_2_PAN: 13265 return 2; 13266 case ARMMMUIdx_SE3: 13267 return 3; 13268 default: 13269 g_assert_not_reached(); 13270 } 13271 } 13272 13273 #ifndef CONFIG_TCG 13274 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13275 { 13276 g_assert_not_reached(); 13277 } 13278 #endif 13279 13280 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13281 { 13282 ARMMMUIdx idx; 13283 uint64_t hcr; 13284 13285 if (arm_feature(env, ARM_FEATURE_M)) { 13286 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13287 } 13288 13289 /* See ARM pseudo-function ELIsInHost. */ 13290 switch (el) { 13291 case 0: 13292 hcr = arm_hcr_el2_eff(env); 13293 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13294 idx = ARMMMUIdx_E20_0; 13295 } else { 13296 idx = ARMMMUIdx_E10_0; 13297 } 13298 break; 13299 case 1: 13300 if (env->pstate & PSTATE_PAN) { 13301 idx = ARMMMUIdx_E10_1_PAN; 13302 } else { 13303 idx = ARMMMUIdx_E10_1; 13304 } 13305 break; 13306 case 2: 13307 /* Note that TGE does not apply at EL2. */ 13308 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13309 if (env->pstate & PSTATE_PAN) { 13310 idx = ARMMMUIdx_E20_2_PAN; 13311 } else { 13312 idx = ARMMMUIdx_E20_2; 13313 } 13314 } else { 13315 idx = ARMMMUIdx_E2; 13316 } 13317 break; 13318 case 3: 13319 return ARMMMUIdx_SE3; 13320 default: 13321 g_assert_not_reached(); 13322 } 13323 13324 if (arm_is_secure_below_el3(env)) { 13325 idx &= ~ARM_MMU_IDX_A_NS; 13326 } 13327 13328 return idx; 13329 } 13330 13331 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13332 { 13333 return arm_mmu_idx_el(env, arm_current_el(env)); 13334 } 13335 13336 #ifndef CONFIG_USER_ONLY 13337 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13338 { 13339 return stage_1_mmu_idx(arm_mmu_idx(env)); 13340 } 13341 #endif 13342 13343 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13344 ARMMMUIdx mmu_idx, 13345 CPUARMTBFlags flags) 13346 { 13347 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13348 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13349 13350 if (arm_singlestep_active(env)) { 13351 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13352 } 13353 return flags; 13354 } 13355 13356 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13357 ARMMMUIdx mmu_idx, 13358 CPUARMTBFlags flags) 13359 { 13360 bool sctlr_b = arm_sctlr_b(env); 13361 13362 if (sctlr_b) { 13363 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13364 } 13365 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13366 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13367 } 13368 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13369 13370 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13371 } 13372 13373 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13374 ARMMMUIdx mmu_idx) 13375 { 13376 CPUARMTBFlags flags = {}; 13377 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13378 13379 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13380 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13381 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13382 } 13383 13384 if (arm_v7m_is_handler_mode(env)) { 13385 DP_TBFLAG_M32(flags, HANDLER, 1); 13386 } 13387 13388 /* 13389 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13390 * is suppressing them because the requested execution priority 13391 * is less than 0. 13392 */ 13393 if (arm_feature(env, ARM_FEATURE_V8) && 13394 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13395 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13396 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13397 } 13398 13399 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13400 } 13401 13402 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13403 { 13404 CPUARMTBFlags flags = {}; 13405 13406 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13407 return flags; 13408 } 13409 13410 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13411 ARMMMUIdx mmu_idx) 13412 { 13413 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13414 int el = arm_current_el(env); 13415 13416 if (arm_sctlr(env, el) & SCTLR_A) { 13417 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13418 } 13419 13420 if (arm_el_is_aa64(env, 1)) { 13421 DP_TBFLAG_A32(flags, VFPEN, 1); 13422 } 13423 13424 if (el < 2 && env->cp15.hstr_el2 && 13425 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13426 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13427 } 13428 13429 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13430 } 13431 13432 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13433 ARMMMUIdx mmu_idx) 13434 { 13435 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13436 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13437 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13438 uint64_t sctlr; 13439 int tbii, tbid; 13440 13441 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13442 13443 /* Get control bits for tagged addresses. */ 13444 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13445 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13446 13447 DP_TBFLAG_A64(flags, TBII, tbii); 13448 DP_TBFLAG_A64(flags, TBID, tbid); 13449 13450 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13451 int sve_el = sve_exception_el(env, el); 13452 uint32_t zcr_len; 13453 13454 /* 13455 * If SVE is disabled, but FP is enabled, 13456 * then the effective len is 0. 13457 */ 13458 if (sve_el != 0 && fp_el == 0) { 13459 zcr_len = 0; 13460 } else { 13461 zcr_len = sve_zcr_len_for_el(env, el); 13462 } 13463 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13464 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13465 } 13466 13467 sctlr = regime_sctlr(env, stage1); 13468 13469 if (sctlr & SCTLR_A) { 13470 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13471 } 13472 13473 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13474 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13475 } 13476 13477 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13478 /* 13479 * In order to save space in flags, we record only whether 13480 * pauth is "inactive", meaning all insns are implemented as 13481 * a nop, or "active" when some action must be performed. 13482 * The decision of which action to take is left to a helper. 13483 */ 13484 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13485 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13486 } 13487 } 13488 13489 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13490 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13491 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13492 DP_TBFLAG_A64(flags, BT, 1); 13493 } 13494 } 13495 13496 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13497 if (!(env->pstate & PSTATE_UAO)) { 13498 switch (mmu_idx) { 13499 case ARMMMUIdx_E10_1: 13500 case ARMMMUIdx_E10_1_PAN: 13501 case ARMMMUIdx_SE10_1: 13502 case ARMMMUIdx_SE10_1_PAN: 13503 /* TODO: ARMv8.3-NV */ 13504 DP_TBFLAG_A64(flags, UNPRIV, 1); 13505 break; 13506 case ARMMMUIdx_E20_2: 13507 case ARMMMUIdx_E20_2_PAN: 13508 case ARMMMUIdx_SE20_2: 13509 case ARMMMUIdx_SE20_2_PAN: 13510 /* 13511 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13512 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13513 */ 13514 if (env->cp15.hcr_el2 & HCR_TGE) { 13515 DP_TBFLAG_A64(flags, UNPRIV, 1); 13516 } 13517 break; 13518 default: 13519 break; 13520 } 13521 } 13522 13523 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13524 /* 13525 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13526 * if all accesses must be Unchecked: 13527 * 1) If no TBI, then there are no tags in the address to check, 13528 * 2) If Tag Check Override, then all accesses are Unchecked, 13529 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13530 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13531 */ 13532 if (allocation_tag_access_enabled(env, el, sctlr)) { 13533 DP_TBFLAG_A64(flags, ATA, 1); 13534 if (tbid 13535 && !(env->pstate & PSTATE_TCO) 13536 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13537 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13538 } 13539 } 13540 /* And again for unprivileged accesses, if required. */ 13541 if (EX_TBFLAG_A64(flags, UNPRIV) 13542 && tbid 13543 && !(env->pstate & PSTATE_TCO) 13544 && (sctlr & SCTLR_TCF0) 13545 && allocation_tag_access_enabled(env, 0, sctlr)) { 13546 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13547 } 13548 /* Cache TCMA as well as TBI. */ 13549 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13550 } 13551 13552 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13553 } 13554 13555 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13556 { 13557 int el = arm_current_el(env); 13558 int fp_el = fp_exception_el(env, el); 13559 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13560 13561 if (is_a64(env)) { 13562 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13563 } else if (arm_feature(env, ARM_FEATURE_M)) { 13564 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13565 } else { 13566 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13567 } 13568 } 13569 13570 void arm_rebuild_hflags(CPUARMState *env) 13571 { 13572 env->hflags = rebuild_hflags_internal(env); 13573 } 13574 13575 /* 13576 * If we have triggered a EL state change we can't rely on the 13577 * translator having passed it to us, we need to recompute. 13578 */ 13579 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13580 { 13581 int el = arm_current_el(env); 13582 int fp_el = fp_exception_el(env, el); 13583 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13584 13585 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13586 } 13587 13588 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13589 { 13590 int fp_el = fp_exception_el(env, el); 13591 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13592 13593 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13594 } 13595 13596 /* 13597 * If we have triggered a EL state change we can't rely on the 13598 * translator having passed it to us, we need to recompute. 13599 */ 13600 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13601 { 13602 int el = arm_current_el(env); 13603 int fp_el = fp_exception_el(env, el); 13604 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13605 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13606 } 13607 13608 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13609 { 13610 int fp_el = fp_exception_el(env, el); 13611 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13612 13613 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13614 } 13615 13616 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13617 { 13618 int fp_el = fp_exception_el(env, el); 13619 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13620 13621 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13622 } 13623 13624 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13625 { 13626 #ifdef CONFIG_DEBUG_TCG 13627 CPUARMTBFlags c = env->hflags; 13628 CPUARMTBFlags r = rebuild_hflags_internal(env); 13629 13630 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13631 fprintf(stderr, "TCG hflags mismatch " 13632 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13633 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13634 c.flags, c.flags2, r.flags, r.flags2); 13635 abort(); 13636 } 13637 #endif 13638 } 13639 13640 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13641 target_ulong *cs_base, uint32_t *pflags) 13642 { 13643 CPUARMTBFlags flags; 13644 13645 assert_hflags_rebuild_correctly(env); 13646 flags = env->hflags; 13647 13648 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13649 *pc = env->pc; 13650 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13651 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13652 } 13653 } else { 13654 *pc = env->regs[15]; 13655 13656 if (arm_feature(env, ARM_FEATURE_M)) { 13657 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13658 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13659 != env->v7m.secure) { 13660 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13661 } 13662 13663 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13664 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13665 (env->v7m.secure && 13666 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13667 /* 13668 * ASPEN is set, but FPCA/SFPA indicate that there is no 13669 * active FP context; we must create a new FP context before 13670 * executing any FP insn. 13671 */ 13672 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13673 } 13674 13675 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13676 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13677 DP_TBFLAG_M32(flags, LSPACT, 1); 13678 } 13679 } else { 13680 /* 13681 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13682 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13683 */ 13684 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13685 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13686 } else { 13687 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13688 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13689 } 13690 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13691 DP_TBFLAG_A32(flags, VFPEN, 1); 13692 } 13693 } 13694 13695 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13696 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13697 } 13698 13699 /* 13700 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13701 * states defined in the ARM ARM for software singlestep: 13702 * SS_ACTIVE PSTATE.SS State 13703 * 0 x Inactive (the TB flag for SS is always 0) 13704 * 1 0 Active-pending 13705 * 1 1 Active-not-pending 13706 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13707 */ 13708 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13709 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13710 } 13711 13712 *pflags = flags.flags; 13713 *cs_base = flags.flags2; 13714 } 13715 13716 #ifdef TARGET_AARCH64 13717 /* 13718 * The manual says that when SVE is enabled and VQ is widened the 13719 * implementation is allowed to zero the previously inaccessible 13720 * portion of the registers. The corollary to that is that when 13721 * SVE is enabled and VQ is narrowed we are also allowed to zero 13722 * the now inaccessible portion of the registers. 13723 * 13724 * The intent of this is that no predicate bit beyond VQ is ever set. 13725 * Which means that some operations on predicate registers themselves 13726 * may operate on full uint64_t or even unrolled across the maximum 13727 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13728 * may well be cheaper than conditionals to restrict the operation 13729 * to the relevant portion of a uint16_t[16]. 13730 */ 13731 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13732 { 13733 int i, j; 13734 uint64_t pmask; 13735 13736 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13737 assert(vq <= env_archcpu(env)->sve_max_vq); 13738 13739 /* Zap the high bits of the zregs. */ 13740 for (i = 0; i < 32; i++) { 13741 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13742 } 13743 13744 /* Zap the high bits of the pregs and ffr. */ 13745 pmask = 0; 13746 if (vq & 3) { 13747 pmask = ~(-1ULL << (16 * (vq & 3))); 13748 } 13749 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13750 for (i = 0; i < 17; ++i) { 13751 env->vfp.pregs[i].p[j] &= pmask; 13752 } 13753 pmask = 0; 13754 } 13755 } 13756 13757 /* 13758 * Notice a change in SVE vector size when changing EL. 13759 */ 13760 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13761 int new_el, bool el0_a64) 13762 { 13763 ARMCPU *cpu = env_archcpu(env); 13764 int old_len, new_len; 13765 bool old_a64, new_a64; 13766 13767 /* Nothing to do if no SVE. */ 13768 if (!cpu_isar_feature(aa64_sve, cpu)) { 13769 return; 13770 } 13771 13772 /* Nothing to do if FP is disabled in either EL. */ 13773 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13774 return; 13775 } 13776 13777 /* 13778 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13779 * at ELx, or not available because the EL is in AArch32 state, then 13780 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13781 * has an effective value of 0". 13782 * 13783 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13784 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13785 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13786 * we already have the correct register contents when encountering the 13787 * vq0->vq0 transition between EL0->EL1. 13788 */ 13789 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13790 old_len = (old_a64 && !sve_exception_el(env, old_el) 13791 ? sve_zcr_len_for_el(env, old_el) : 0); 13792 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13793 new_len = (new_a64 && !sve_exception_el(env, new_el) 13794 ? sve_zcr_len_for_el(env, new_el) : 0); 13795 13796 /* When changing vector length, clear inaccessible state. */ 13797 if (new_len < old_len) { 13798 aarch64_sve_narrow_vq(env, new_len + 1); 13799 } 13800 } 13801 #endif 13802