xref: /openbmc/qemu/target/arm/helper.c (revision 62c2b876)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "exec/helper-proto.h"
15 #include "qemu/main-loop.h"
16 #include "qemu/timer.h"
17 #include "qemu/bitops.h"
18 #include "qemu/crc32c.h"
19 #include "qemu/qemu-print.h"
20 #include "exec/exec-all.h"
21 #include <zlib.h> /* For crc32 */
22 #include "hw/irq.h"
23 #include "sysemu/cpu-timers.h"
24 #include "sysemu/kvm.h"
25 #include "sysemu/tcg.h"
26 #include "qapi/error.h"
27 #include "qemu/guest-random.h"
28 #ifdef CONFIG_TCG
29 #include "semihosting/common-semi.h"
30 #endif
31 #include "cpregs.h"
32 
33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
34 
35 static void switch_mode(CPUARMState *env, int mode);
36 
37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
38 {
39     assert(ri->fieldoffset);
40     if (cpreg_field_is_64bit(ri)) {
41         return CPREG_FIELD64(env, ri);
42     } else {
43         return CPREG_FIELD32(env, ri);
44     }
45 }
46 
47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
48 {
49     assert(ri->fieldoffset);
50     if (cpreg_field_is_64bit(ri)) {
51         CPREG_FIELD64(env, ri) = value;
52     } else {
53         CPREG_FIELD32(env, ri) = value;
54     }
55 }
56 
57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
58 {
59     return (char *)env + ri->fieldoffset;
60 }
61 
62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
63 {
64     /* Raw read of a coprocessor register (as needed for migration, etc). */
65     if (ri->type & ARM_CP_CONST) {
66         return ri->resetvalue;
67     } else if (ri->raw_readfn) {
68         return ri->raw_readfn(env, ri);
69     } else if (ri->readfn) {
70         return ri->readfn(env, ri);
71     } else {
72         return raw_read(env, ri);
73     }
74 }
75 
76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
77                              uint64_t v)
78 {
79     /*
80      * Raw write of a coprocessor register (as needed for migration, etc).
81      * Note that constant registers are treated as write-ignored; the
82      * caller should check for success by whether a readback gives the
83      * value written.
84      */
85     if (ri->type & ARM_CP_CONST) {
86         return;
87     } else if (ri->raw_writefn) {
88         ri->raw_writefn(env, ri, v);
89     } else if (ri->writefn) {
90         ri->writefn(env, ri, v);
91     } else {
92         raw_write(env, ri, v);
93     }
94 }
95 
96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
97 {
98    /*
99     * Return true if the regdef would cause an assertion if you called
100     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
101     * program bug for it not to have the NO_RAW flag).
102     * NB that returning false here doesn't necessarily mean that calling
103     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
104     * read/write access functions which are safe for raw use" from "has
105     * read/write access functions which have side effects but has forgotten
106     * to provide raw access functions".
107     * The tests here line up with the conditions in read/write_raw_cp_reg()
108     * and assertions in raw_read()/raw_write().
109     */
110     if ((ri->type & ARM_CP_CONST) ||
111         ri->fieldoffset ||
112         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
113         return false;
114     }
115     return true;
116 }
117 
118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
119 {
120     /* Write the coprocessor state from cpu->env to the (index,value) list. */
121     int i;
122     bool ok = true;
123 
124     for (i = 0; i < cpu->cpreg_array_len; i++) {
125         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
126         const ARMCPRegInfo *ri;
127         uint64_t newval;
128 
129         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
130         if (!ri) {
131             ok = false;
132             continue;
133         }
134         if (ri->type & ARM_CP_NO_RAW) {
135             continue;
136         }
137 
138         newval = read_raw_cp_reg(&cpu->env, ri);
139         if (kvm_sync) {
140             /*
141              * Only sync if the previous list->cpustate sync succeeded.
142              * Rather than tracking the success/failure state for every
143              * item in the list, we just recheck "does the raw write we must
144              * have made in write_list_to_cpustate() read back OK" here.
145              */
146             uint64_t oldval = cpu->cpreg_values[i];
147 
148             if (oldval == newval) {
149                 continue;
150             }
151 
152             write_raw_cp_reg(&cpu->env, ri, oldval);
153             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
154                 continue;
155             }
156 
157             write_raw_cp_reg(&cpu->env, ri, newval);
158         }
159         cpu->cpreg_values[i] = newval;
160     }
161     return ok;
162 }
163 
164 bool write_list_to_cpustate(ARMCPU *cpu)
165 {
166     int i;
167     bool ok = true;
168 
169     for (i = 0; i < cpu->cpreg_array_len; i++) {
170         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
171         uint64_t v = cpu->cpreg_values[i];
172         const ARMCPRegInfo *ri;
173 
174         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
175         if (!ri) {
176             ok = false;
177             continue;
178         }
179         if (ri->type & ARM_CP_NO_RAW) {
180             continue;
181         }
182         /*
183          * Write value and confirm it reads back as written
184          * (to catch read-only registers and partially read-only
185          * registers where the incoming migration value doesn't match)
186          */
187         write_raw_cp_reg(&cpu->env, ri, v);
188         if (read_raw_cp_reg(&cpu->env, ri) != v) {
189             ok = false;
190         }
191     }
192     return ok;
193 }
194 
195 static void add_cpreg_to_list(gpointer key, gpointer opaque)
196 {
197     ARMCPU *cpu = opaque;
198     uint32_t regidx = (uintptr_t)key;
199     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
200 
201     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
202         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
203         /* The value array need not be initialized at this point */
204         cpu->cpreg_array_len++;
205     }
206 }
207 
208 static void count_cpreg(gpointer key, gpointer opaque)
209 {
210     ARMCPU *cpu = opaque;
211     const ARMCPRegInfo *ri;
212 
213     ri = g_hash_table_lookup(cpu->cp_regs, key);
214 
215     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
216         cpu->cpreg_array_len++;
217     }
218 }
219 
220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
221 {
222     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
223     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
224 
225     if (aidx > bidx) {
226         return 1;
227     }
228     if (aidx < bidx) {
229         return -1;
230     }
231     return 0;
232 }
233 
234 void init_cpreg_list(ARMCPU *cpu)
235 {
236     /*
237      * Initialise the cpreg_tuples[] array based on the cp_regs hash.
238      * Note that we require cpreg_tuples[] to be sorted by key ID.
239      */
240     GList *keys;
241     int arraylen;
242 
243     keys = g_hash_table_get_keys(cpu->cp_regs);
244     keys = g_list_sort(keys, cpreg_key_compare);
245 
246     cpu->cpreg_array_len = 0;
247 
248     g_list_foreach(keys, count_cpreg, cpu);
249 
250     arraylen = cpu->cpreg_array_len;
251     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
252     cpu->cpreg_values = g_new(uint64_t, arraylen);
253     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
254     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
255     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
256     cpu->cpreg_array_len = 0;
257 
258     g_list_foreach(keys, add_cpreg_to_list, cpu);
259 
260     assert(cpu->cpreg_array_len == arraylen);
261 
262     g_list_free(keys);
263 }
264 
265 /*
266  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
267  */
268 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
269                                         const ARMCPRegInfo *ri,
270                                         bool isread)
271 {
272     if (!is_a64(env) && arm_current_el(env) == 3 &&
273         arm_is_secure_below_el3(env)) {
274         return CP_ACCESS_TRAP_UNCATEGORIZED;
275     }
276     return CP_ACCESS_OK;
277 }
278 
279 /*
280  * Some secure-only AArch32 registers trap to EL3 if used from
281  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
282  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
283  * We assume that the .access field is set to PL1_RW.
284  */
285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
286                                             const ARMCPRegInfo *ri,
287                                             bool isread)
288 {
289     if (arm_current_el(env) == 3) {
290         return CP_ACCESS_OK;
291     }
292     if (arm_is_secure_below_el3(env)) {
293         if (env->cp15.scr_el3 & SCR_EEL2) {
294             return CP_ACCESS_TRAP_EL2;
295         }
296         return CP_ACCESS_TRAP_EL3;
297     }
298     /* This will be EL1 NS and EL2 NS, which just UNDEF */
299     return CP_ACCESS_TRAP_UNCATEGORIZED;
300 }
301 
302 /*
303  * Check for traps to performance monitor registers, which are controlled
304  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
305  */
306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
307                                  bool isread)
308 {
309     int el = arm_current_el(env);
310     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
311 
312     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
313         return CP_ACCESS_TRAP_EL2;
314     }
315     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
316         return CP_ACCESS_TRAP_EL3;
317     }
318     return CP_ACCESS_OK;
319 }
320 
321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
323                                       bool isread)
324 {
325     if (arm_current_el(env) == 1) {
326         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
327         if (arm_hcr_el2_eff(env) & trap) {
328             return CP_ACCESS_TRAP_EL2;
329         }
330     }
331     return CP_ACCESS_OK;
332 }
333 
334 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
336                                  bool isread)
337 {
338     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
339         return CP_ACCESS_TRAP_EL2;
340     }
341     return CP_ACCESS_OK;
342 }
343 
344 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
346                                   bool isread)
347 {
348     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
349         return CP_ACCESS_TRAP_EL2;
350     }
351     return CP_ACCESS_OK;
352 }
353 
354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
356                                   bool isread)
357 {
358     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
359         return CP_ACCESS_TRAP_EL2;
360     }
361     return CP_ACCESS_OK;
362 }
363 
364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
366                                     bool isread)
367 {
368     if (arm_current_el(env) == 1 &&
369         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
370         return CP_ACCESS_TRAP_EL2;
371     }
372     return CP_ACCESS_OK;
373 }
374 
375 #ifdef TARGET_AARCH64
376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
378                                     bool isread)
379 {
380     if (arm_current_el(env) == 1 &&
381         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
382         return CP_ACCESS_TRAP_EL2;
383     }
384     return CP_ACCESS_OK;
385 }
386 #endif
387 
388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
389 {
390     ARMCPU *cpu = env_archcpu(env);
391 
392     raw_write(env, ri, value);
393     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
394 }
395 
396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
397 {
398     ARMCPU *cpu = env_archcpu(env);
399 
400     if (raw_read(env, ri) != value) {
401         /*
402          * Unlike real hardware the qemu TLB uses virtual addresses,
403          * not modified virtual addresses, so this causes a TLB flush.
404          */
405         tlb_flush(CPU(cpu));
406         raw_write(env, ri, value);
407     }
408 }
409 
410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
411                              uint64_t value)
412 {
413     ARMCPU *cpu = env_archcpu(env);
414 
415     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
416         && !extended_addresses_enabled(env)) {
417         /*
418          * For VMSA (when not using the LPAE long descriptor page table
419          * format) this register includes the ASID, so do a TLB flush.
420          * For PMSA it is purely a process ID and no action is needed.
421          */
422         tlb_flush(CPU(cpu));
423     }
424     raw_write(env, ri, value);
425 }
426 
427 static int alle1_tlbmask(CPUARMState *env)
428 {
429     /*
430      * Note that the 'ALL' scope must invalidate both stage 1 and
431      * stage 2 translations, whereas most other scopes only invalidate
432      * stage 1 translations.
433      */
434     return (ARMMMUIdxBit_E10_1 |
435             ARMMMUIdxBit_E10_1_PAN |
436             ARMMMUIdxBit_E10_0 |
437             ARMMMUIdxBit_Stage2 |
438             ARMMMUIdxBit_Stage2_S);
439 }
440 
441 
442 /* IS variants of TLB operations must affect all cores */
443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
444                              uint64_t value)
445 {
446     CPUState *cs = env_cpu(env);
447 
448     tlb_flush_all_cpus_synced(cs);
449 }
450 
451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
452                              uint64_t value)
453 {
454     CPUState *cs = env_cpu(env);
455 
456     tlb_flush_all_cpus_synced(cs);
457 }
458 
459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
460                              uint64_t value)
461 {
462     CPUState *cs = env_cpu(env);
463 
464     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
465 }
466 
467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
468                              uint64_t value)
469 {
470     CPUState *cs = env_cpu(env);
471 
472     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
473 }
474 
475 /*
476  * Non-IS variants of TLB operations are upgraded to
477  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
478  * force broadcast of these operations.
479  */
480 static bool tlb_force_broadcast(CPUARMState *env)
481 {
482     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
483 }
484 
485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
486                           uint64_t value)
487 {
488     /* Invalidate all (TLBIALL) */
489     CPUState *cs = env_cpu(env);
490 
491     if (tlb_force_broadcast(env)) {
492         tlb_flush_all_cpus_synced(cs);
493     } else {
494         tlb_flush(cs);
495     }
496 }
497 
498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
499                           uint64_t value)
500 {
501     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
502     CPUState *cs = env_cpu(env);
503 
504     value &= TARGET_PAGE_MASK;
505     if (tlb_force_broadcast(env)) {
506         tlb_flush_page_all_cpus_synced(cs, value);
507     } else {
508         tlb_flush_page(cs, value);
509     }
510 }
511 
512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
513                            uint64_t value)
514 {
515     /* Invalidate by ASID (TLBIASID) */
516     CPUState *cs = env_cpu(env);
517 
518     if (tlb_force_broadcast(env)) {
519         tlb_flush_all_cpus_synced(cs);
520     } else {
521         tlb_flush(cs);
522     }
523 }
524 
525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
526                            uint64_t value)
527 {
528     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
529     CPUState *cs = env_cpu(env);
530 
531     value &= TARGET_PAGE_MASK;
532     if (tlb_force_broadcast(env)) {
533         tlb_flush_page_all_cpus_synced(cs, value);
534     } else {
535         tlb_flush_page(cs, value);
536     }
537 }
538 
539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
540                                uint64_t value)
541 {
542     CPUState *cs = env_cpu(env);
543 
544     tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
545 }
546 
547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
548                                   uint64_t value)
549 {
550     CPUState *cs = env_cpu(env);
551 
552     tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
553 }
554 
555 
556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
557                               uint64_t value)
558 {
559     CPUState *cs = env_cpu(env);
560 
561     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
562 }
563 
564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565                                  uint64_t value)
566 {
567     CPUState *cs = env_cpu(env);
568 
569     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
570 }
571 
572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
573                               uint64_t value)
574 {
575     CPUState *cs = env_cpu(env);
576     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
577 
578     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
579 }
580 
581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
582                                  uint64_t value)
583 {
584     CPUState *cs = env_cpu(env);
585     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
586 
587     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
588                                              ARMMMUIdxBit_E2);
589 }
590 
591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
592                                 uint64_t value)
593 {
594     CPUState *cs = env_cpu(env);
595     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
596 
597     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
598 }
599 
600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
601                                 uint64_t value)
602 {
603     CPUState *cs = env_cpu(env);
604     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
605 
606     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
607 }
608 
609 static const ARMCPRegInfo cp_reginfo[] = {
610     /*
611      * Define the secure and non-secure FCSE identifier CP registers
612      * separately because there is no secure bank in V8 (no _EL3).  This allows
613      * the secure register to be properly reset and migrated. There is also no
614      * v8 EL1 version of the register so the non-secure instance stands alone.
615      */
616     { .name = "FCSEIDR",
617       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
618       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
619       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
620       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
621     { .name = "FCSEIDR_S",
622       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
623       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
624       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
625       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
626     /*
627      * Define the secure and non-secure context identifier CP registers
628      * separately because there is no secure bank in V8 (no _EL3).  This allows
629      * the secure register to be properly reset and migrated.  In the
630      * non-secure case, the 32-bit register will have reset and migration
631      * disabled during registration as it is handled by the 64-bit instance.
632      */
633     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
634       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
635       .access = PL1_RW, .accessfn = access_tvm_trvm,
636       .fgt = FGT_CONTEXTIDR_EL1,
637       .secure = ARM_CP_SECSTATE_NS,
638       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
639       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
640     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
641       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
642       .access = PL1_RW, .accessfn = access_tvm_trvm,
643       .secure = ARM_CP_SECSTATE_S,
644       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
645       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
646 };
647 
648 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
649     /*
650      * NB: Some of these registers exist in v8 but with more precise
651      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
652      */
653     /* MMU Domain access control / MPU write buffer control */
654     { .name = "DACR",
655       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
656       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
657       .writefn = dacr_write, .raw_writefn = raw_write,
658       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
659                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
660     /*
661      * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
662      * For v6 and v5, these mappings are overly broad.
663      */
664     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
665       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
666     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
667       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
668     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
669       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
670     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
671       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
672     /* Cache maintenance ops; some of this space may be overridden later. */
673     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
674       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
675       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
676 };
677 
678 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
679     /*
680      * Not all pre-v6 cores implemented this WFI, so this is slightly
681      * over-broad.
682      */
683     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
684       .access = PL1_W, .type = ARM_CP_WFI },
685 };
686 
687 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
688     /*
689      * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
690      * is UNPREDICTABLE; we choose to NOP as most implementations do).
691      */
692     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
693       .access = PL1_W, .type = ARM_CP_WFI },
694     /*
695      * L1 cache lockdown. Not architectural in v6 and earlier but in practice
696      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
697      * OMAPCP will override this space.
698      */
699     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
700       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
701       .resetvalue = 0 },
702     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
703       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
704       .resetvalue = 0 },
705     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
706     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
707       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
708       .resetvalue = 0 },
709     /*
710      * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
711      * implementing it as RAZ means the "debug architecture version" bits
712      * will read as a reserved value, which should cause Linux to not try
713      * to use the debug hardware.
714      */
715     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
716       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
717     /*
718      * MMU TLB control. Note that the wildcarding means we cover not just
719      * the unified TLB ops but also the dside/iside/inner-shareable variants.
720      */
721     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
722       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
723       .type = ARM_CP_NO_RAW },
724     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
725       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
726       .type = ARM_CP_NO_RAW },
727     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
728       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
729       .type = ARM_CP_NO_RAW },
730     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
731       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
732       .type = ARM_CP_NO_RAW },
733     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
734       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
735     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
736       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
737 };
738 
739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
740                         uint64_t value)
741 {
742     uint32_t mask = 0;
743 
744     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
745     if (!arm_feature(env, ARM_FEATURE_V8)) {
746         /*
747          * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
748          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
749          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
750          */
751         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
752             /* VFP coprocessor: cp10 & cp11 [23:20] */
753             mask |= R_CPACR_ASEDIS_MASK |
754                     R_CPACR_D32DIS_MASK |
755                     R_CPACR_CP11_MASK |
756                     R_CPACR_CP10_MASK;
757 
758             if (!arm_feature(env, ARM_FEATURE_NEON)) {
759                 /* ASEDIS [31] bit is RAO/WI */
760                 value |= R_CPACR_ASEDIS_MASK;
761             }
762 
763             /*
764              * VFPv3 and upwards with NEON implement 32 double precision
765              * registers (D0-D31).
766              */
767             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
768                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
769                 value |= R_CPACR_D32DIS_MASK;
770             }
771         }
772         value &= mask;
773     }
774 
775     /*
776      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
777      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
778      */
779     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
780         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
781         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
782         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
783     }
784 
785     env->cp15.cpacr_el1 = value;
786 }
787 
788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
789 {
790     /*
791      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
793      */
794     uint64_t value = env->cp15.cpacr_el1;
795 
796     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
797         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
798         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
799     }
800     return value;
801 }
802 
803 
804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
805 {
806     /*
807      * Call cpacr_write() so that we reset with the correct RAO bits set
808      * for our CPU features.
809      */
810     cpacr_write(env, ri, 0);
811 }
812 
813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
814                                    bool isread)
815 {
816     if (arm_feature(env, ARM_FEATURE_V8)) {
817         /* Check if CPACR accesses are to be trapped to EL2 */
818         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
819             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
820             return CP_ACCESS_TRAP_EL2;
821         /* Check if CPACR accesses are to be trapped to EL3 */
822         } else if (arm_current_el(env) < 3 &&
823                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
824             return CP_ACCESS_TRAP_EL3;
825         }
826     }
827 
828     return CP_ACCESS_OK;
829 }
830 
831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
832                                   bool isread)
833 {
834     /* Check if CPTR accesses are set to trap to EL3 */
835     if (arm_current_el(env) == 2 &&
836         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
837         return CP_ACCESS_TRAP_EL3;
838     }
839 
840     return CP_ACCESS_OK;
841 }
842 
843 static const ARMCPRegInfo v6_cp_reginfo[] = {
844     /* prefetch by MVA in v6, NOP in v7 */
845     { .name = "MVA_prefetch",
846       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
847       .access = PL1_W, .type = ARM_CP_NOP },
848     /*
849      * We need to break the TB after ISB to execute self-modifying code
850      * correctly and also to take any pending interrupts immediately.
851      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
852      */
853     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
854       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
855     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
856       .access = PL0_W, .type = ARM_CP_NOP },
857     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
858       .access = PL0_W, .type = ARM_CP_NOP },
859     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
860       .access = PL1_RW, .accessfn = access_tvm_trvm,
861       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
862                              offsetof(CPUARMState, cp15.ifar_ns) },
863       .resetvalue = 0, },
864     /*
865      * Watchpoint Fault Address Register : should actually only be present
866      * for 1136, 1176, 11MPCore.
867      */
868     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
869       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
870     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
871       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
872       .fgt = FGT_CPACR_EL1,
873       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
874       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
875 };
876 
877 typedef struct pm_event {
878     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
879     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
880     bool (*supported)(CPUARMState *);
881     /*
882      * Retrieve the current count of the underlying event. The programmed
883      * counters hold a difference from the return value from this function
884      */
885     uint64_t (*get_count)(CPUARMState *);
886     /*
887      * Return how many nanoseconds it will take (at a minimum) for count events
888      * to occur. A negative value indicates the counter will never overflow, or
889      * that the counter has otherwise arranged for the overflow bit to be set
890      * and the PMU interrupt to be raised on overflow.
891      */
892     int64_t (*ns_per_count)(uint64_t);
893 } pm_event;
894 
895 static bool event_always_supported(CPUARMState *env)
896 {
897     return true;
898 }
899 
900 static uint64_t swinc_get_count(CPUARMState *env)
901 {
902     /*
903      * SW_INCR events are written directly to the pmevcntr's by writes to
904      * PMSWINC, so there is no underlying count maintained by the PMU itself
905      */
906     return 0;
907 }
908 
909 static int64_t swinc_ns_per(uint64_t ignored)
910 {
911     return -1;
912 }
913 
914 /*
915  * Return the underlying cycle count for the PMU cycle counters. If we're in
916  * usermode, simply return 0.
917  */
918 static uint64_t cycles_get_count(CPUARMState *env)
919 {
920 #ifndef CONFIG_USER_ONLY
921     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
922                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
923 #else
924     return cpu_get_host_ticks();
925 #endif
926 }
927 
928 #ifndef CONFIG_USER_ONLY
929 static int64_t cycles_ns_per(uint64_t cycles)
930 {
931     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
932 }
933 
934 static bool instructions_supported(CPUARMState *env)
935 {
936     return icount_enabled() == 1; /* Precise instruction counting */
937 }
938 
939 static uint64_t instructions_get_count(CPUARMState *env)
940 {
941     return (uint64_t)icount_get_raw();
942 }
943 
944 static int64_t instructions_ns_per(uint64_t icount)
945 {
946     return icount_to_ns((int64_t)icount);
947 }
948 #endif
949 
950 static bool pmuv3p1_events_supported(CPUARMState *env)
951 {
952     /* For events which are supported in any v8.1 PMU */
953     return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
954 }
955 
956 static bool pmuv3p4_events_supported(CPUARMState *env)
957 {
958     /* For events which are supported in any v8.1 PMU */
959     return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
960 }
961 
962 static uint64_t zero_event_get_count(CPUARMState *env)
963 {
964     /* For events which on QEMU never fire, so their count is always zero */
965     return 0;
966 }
967 
968 static int64_t zero_event_ns_per(uint64_t cycles)
969 {
970     /* An event which never fires can never overflow */
971     return -1;
972 }
973 
974 static const pm_event pm_events[] = {
975     { .number = 0x000, /* SW_INCR */
976       .supported = event_always_supported,
977       .get_count = swinc_get_count,
978       .ns_per_count = swinc_ns_per,
979     },
980 #ifndef CONFIG_USER_ONLY
981     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
982       .supported = instructions_supported,
983       .get_count = instructions_get_count,
984       .ns_per_count = instructions_ns_per,
985     },
986     { .number = 0x011, /* CPU_CYCLES, Cycle */
987       .supported = event_always_supported,
988       .get_count = cycles_get_count,
989       .ns_per_count = cycles_ns_per,
990     },
991 #endif
992     { .number = 0x023, /* STALL_FRONTEND */
993       .supported = pmuv3p1_events_supported,
994       .get_count = zero_event_get_count,
995       .ns_per_count = zero_event_ns_per,
996     },
997     { .number = 0x024, /* STALL_BACKEND */
998       .supported = pmuv3p1_events_supported,
999       .get_count = zero_event_get_count,
1000       .ns_per_count = zero_event_ns_per,
1001     },
1002     { .number = 0x03c, /* STALL */
1003       .supported = pmuv3p4_events_supported,
1004       .get_count = zero_event_get_count,
1005       .ns_per_count = zero_event_ns_per,
1006     },
1007 };
1008 
1009 /*
1010  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1011  * events (i.e. the statistical profiling extension), this implementation
1012  * should first be updated to something sparse instead of the current
1013  * supported_event_map[] array.
1014  */
1015 #define MAX_EVENT_ID 0x3c
1016 #define UNSUPPORTED_EVENT UINT16_MAX
1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1018 
1019 /*
1020  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1021  * of ARM event numbers to indices in our pm_events array.
1022  *
1023  * Note: Events in the 0x40XX range are not currently supported.
1024  */
1025 void pmu_init(ARMCPU *cpu)
1026 {
1027     unsigned int i;
1028 
1029     /*
1030      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1031      * events to them
1032      */
1033     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1034         supported_event_map[i] = UNSUPPORTED_EVENT;
1035     }
1036     cpu->pmceid0 = 0;
1037     cpu->pmceid1 = 0;
1038 
1039     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1040         const pm_event *cnt = &pm_events[i];
1041         assert(cnt->number <= MAX_EVENT_ID);
1042         /* We do not currently support events in the 0x40xx range */
1043         assert(cnt->number <= 0x3f);
1044 
1045         if (cnt->supported(&cpu->env)) {
1046             supported_event_map[cnt->number] = i;
1047             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1048             if (cnt->number & 0x20) {
1049                 cpu->pmceid1 |= event_mask;
1050             } else {
1051                 cpu->pmceid0 |= event_mask;
1052             }
1053         }
1054     }
1055 }
1056 
1057 /*
1058  * Check at runtime whether a PMU event is supported for the current machine
1059  */
1060 static bool event_supported(uint16_t number)
1061 {
1062     if (number > MAX_EVENT_ID) {
1063         return false;
1064     }
1065     return supported_event_map[number] != UNSUPPORTED_EVENT;
1066 }
1067 
1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1069                                    bool isread)
1070 {
1071     /*
1072      * Performance monitor registers user accessibility is controlled
1073      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1074      * trapping to EL2 or EL3 for other accesses.
1075      */
1076     int el = arm_current_el(env);
1077     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1078 
1079     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1080         return CP_ACCESS_TRAP;
1081     }
1082     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1083         return CP_ACCESS_TRAP_EL2;
1084     }
1085     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1086         return CP_ACCESS_TRAP_EL3;
1087     }
1088 
1089     return CP_ACCESS_OK;
1090 }
1091 
1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1093                                            const ARMCPRegInfo *ri,
1094                                            bool isread)
1095 {
1096     /* ER: event counter read trap control */
1097     if (arm_feature(env, ARM_FEATURE_V8)
1098         && arm_current_el(env) == 0
1099         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1100         && isread) {
1101         return CP_ACCESS_OK;
1102     }
1103 
1104     return pmreg_access(env, ri, isread);
1105 }
1106 
1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1108                                          const ARMCPRegInfo *ri,
1109                                          bool isread)
1110 {
1111     /* SW: software increment write trap control */
1112     if (arm_feature(env, ARM_FEATURE_V8)
1113         && arm_current_el(env) == 0
1114         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1115         && !isread) {
1116         return CP_ACCESS_OK;
1117     }
1118 
1119     return pmreg_access(env, ri, isread);
1120 }
1121 
1122 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1123                                         const ARMCPRegInfo *ri,
1124                                         bool isread)
1125 {
1126     /* ER: event counter read trap control */
1127     if (arm_feature(env, ARM_FEATURE_V8)
1128         && arm_current_el(env) == 0
1129         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1130         return CP_ACCESS_OK;
1131     }
1132 
1133     return pmreg_access(env, ri, isread);
1134 }
1135 
1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1137                                          const ARMCPRegInfo *ri,
1138                                          bool isread)
1139 {
1140     /* CR: cycle counter read trap control */
1141     if (arm_feature(env, ARM_FEATURE_V8)
1142         && arm_current_el(env) == 0
1143         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1144         && isread) {
1145         return CP_ACCESS_OK;
1146     }
1147 
1148     return pmreg_access(env, ri, isread);
1149 }
1150 
1151 /*
1152  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1153  * We use these to decide whether we need to wrap a write to MDCR_EL2
1154  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1155  */
1156 #define MDCR_EL2_PMU_ENABLE_BITS \
1157     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1159 
1160 /*
1161  * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1162  * the current EL, security state, and register configuration.
1163  */
1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1165 {
1166     uint64_t filter;
1167     bool e, p, u, nsk, nsu, nsh, m;
1168     bool enabled, prohibited = false, filtered;
1169     bool secure = arm_is_secure(env);
1170     int el = arm_current_el(env);
1171     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1172     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1173 
1174     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1175         return false;
1176     }
1177 
1178     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1179             (counter < hpmn || counter == 31)) {
1180         e = env->cp15.c9_pmcr & PMCRE;
1181     } else {
1182         e = mdcr_el2 & MDCR_HPME;
1183     }
1184     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1185 
1186     /* Is event counting prohibited? */
1187     if (el == 2 && (counter < hpmn || counter == 31)) {
1188         prohibited = mdcr_el2 & MDCR_HPMD;
1189     }
1190     if (secure) {
1191         prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1192     }
1193 
1194     if (counter == 31) {
1195         /*
1196          * The cycle counter defaults to running. PMCR.DP says "disable
1197          * the cycle counter when event counting is prohibited".
1198          * Some MDCR bits disable the cycle counter specifically.
1199          */
1200         prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1201         if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1202             if (secure) {
1203                 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1204             }
1205             if (el == 2) {
1206                 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1207             }
1208         }
1209     }
1210 
1211     if (counter == 31) {
1212         filter = env->cp15.pmccfiltr_el0;
1213     } else {
1214         filter = env->cp15.c14_pmevtyper[counter];
1215     }
1216 
1217     p   = filter & PMXEVTYPER_P;
1218     u   = filter & PMXEVTYPER_U;
1219     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1220     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1221     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1222     m   = arm_el_is_aa64(env, 1) &&
1223               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1224 
1225     if (el == 0) {
1226         filtered = secure ? u : u != nsu;
1227     } else if (el == 1) {
1228         filtered = secure ? p : p != nsk;
1229     } else if (el == 2) {
1230         filtered = !nsh;
1231     } else { /* EL3 */
1232         filtered = m != p;
1233     }
1234 
1235     if (counter != 31) {
1236         /*
1237          * If not checking PMCCNTR, ensure the counter is setup to an event we
1238          * support
1239          */
1240         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1241         if (!event_supported(event)) {
1242             return false;
1243         }
1244     }
1245 
1246     return enabled && !prohibited && !filtered;
1247 }
1248 
1249 static void pmu_update_irq(CPUARMState *env)
1250 {
1251     ARMCPU *cpu = env_archcpu(env);
1252     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1253             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1254 }
1255 
1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1257 {
1258     /*
1259      * Return true if the clock divider is enabled and the cycle counter
1260      * is supposed to tick only once every 64 clock cycles. This is
1261      * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1262      * (64-bit) cycle counter PMCR.D has no effect.
1263      */
1264     return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1265 }
1266 
1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1268 {
1269     /* Return true if the specified event counter is configured to be 64 bit */
1270 
1271     /* This isn't intended to be used with the cycle counter */
1272     assert(counter < 31);
1273 
1274     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1275         return false;
1276     }
1277 
1278     if (arm_feature(env, ARM_FEATURE_EL2)) {
1279         /*
1280          * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1281          * current security state, so we don't use arm_mdcr_el2_eff() here.
1282          */
1283         bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1284         int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1285 
1286         if (hpmn != 0 && counter >= hpmn) {
1287             return hlp;
1288         }
1289     }
1290     return env->cp15.c9_pmcr & PMCRLP;
1291 }
1292 
1293 /*
1294  * Ensure c15_ccnt is the guest-visible count so that operations such as
1295  * enabling/disabling the counter or filtering, modifying the count itself,
1296  * etc. can be done logically. This is essentially a no-op if the counter is
1297  * not enabled at the time of the call.
1298  */
1299 static void pmccntr_op_start(CPUARMState *env)
1300 {
1301     uint64_t cycles = cycles_get_count(env);
1302 
1303     if (pmu_counter_enabled(env, 31)) {
1304         uint64_t eff_cycles = cycles;
1305         if (pmccntr_clockdiv_enabled(env)) {
1306             eff_cycles /= 64;
1307         }
1308 
1309         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1310 
1311         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1312                                  1ull << 63 : 1ull << 31;
1313         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1314             env->cp15.c9_pmovsr |= (1ULL << 31);
1315             pmu_update_irq(env);
1316         }
1317 
1318         env->cp15.c15_ccnt = new_pmccntr;
1319     }
1320     env->cp15.c15_ccnt_delta = cycles;
1321 }
1322 
1323 /*
1324  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1325  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1326  * pmccntr_op_start.
1327  */
1328 static void pmccntr_op_finish(CPUARMState *env)
1329 {
1330     if (pmu_counter_enabled(env, 31)) {
1331 #ifndef CONFIG_USER_ONLY
1332         /* Calculate when the counter will next overflow */
1333         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1334         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1335             remaining_cycles = (uint32_t)remaining_cycles;
1336         }
1337         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1338 
1339         if (overflow_in > 0) {
1340             int64_t overflow_at;
1341 
1342             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1343                                  overflow_in, &overflow_at)) {
1344                 ARMCPU *cpu = env_archcpu(env);
1345                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1346             }
1347         }
1348 #endif
1349 
1350         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1351         if (pmccntr_clockdiv_enabled(env)) {
1352             prev_cycles /= 64;
1353         }
1354         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1355     }
1356 }
1357 
1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1359 {
1360 
1361     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1362     uint64_t count = 0;
1363     if (event_supported(event)) {
1364         uint16_t event_idx = supported_event_map[event];
1365         count = pm_events[event_idx].get_count(env);
1366     }
1367 
1368     if (pmu_counter_enabled(env, counter)) {
1369         uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1370         uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1371             1ULL << 63 : 1ULL << 31;
1372 
1373         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1374             env->cp15.c9_pmovsr |= (1 << counter);
1375             pmu_update_irq(env);
1376         }
1377         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1378     }
1379     env->cp15.c14_pmevcntr_delta[counter] = count;
1380 }
1381 
1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1383 {
1384     if (pmu_counter_enabled(env, counter)) {
1385 #ifndef CONFIG_USER_ONLY
1386         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1387         uint16_t event_idx = supported_event_map[event];
1388         uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1389         int64_t overflow_in;
1390 
1391         if (!pmevcntr_is_64_bit(env, counter)) {
1392             delta = (uint32_t)delta;
1393         }
1394         overflow_in = pm_events[event_idx].ns_per_count(delta);
1395 
1396         if (overflow_in > 0) {
1397             int64_t overflow_at;
1398 
1399             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1400                                  overflow_in, &overflow_at)) {
1401                 ARMCPU *cpu = env_archcpu(env);
1402                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1403             }
1404         }
1405 #endif
1406 
1407         env->cp15.c14_pmevcntr_delta[counter] -=
1408             env->cp15.c14_pmevcntr[counter];
1409     }
1410 }
1411 
1412 void pmu_op_start(CPUARMState *env)
1413 {
1414     unsigned int i;
1415     pmccntr_op_start(env);
1416     for (i = 0; i < pmu_num_counters(env); i++) {
1417         pmevcntr_op_start(env, i);
1418     }
1419 }
1420 
1421 void pmu_op_finish(CPUARMState *env)
1422 {
1423     unsigned int i;
1424     pmccntr_op_finish(env);
1425     for (i = 0; i < pmu_num_counters(env); i++) {
1426         pmevcntr_op_finish(env, i);
1427     }
1428 }
1429 
1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1431 {
1432     pmu_op_start(&cpu->env);
1433 }
1434 
1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1436 {
1437     pmu_op_finish(&cpu->env);
1438 }
1439 
1440 void arm_pmu_timer_cb(void *opaque)
1441 {
1442     ARMCPU *cpu = opaque;
1443 
1444     /*
1445      * Update all the counter values based on the current underlying counts,
1446      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1447      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1448      * counter may expire.
1449      */
1450     pmu_op_start(&cpu->env);
1451     pmu_op_finish(&cpu->env);
1452 }
1453 
1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1455                        uint64_t value)
1456 {
1457     pmu_op_start(env);
1458 
1459     if (value & PMCRC) {
1460         /* The counter has been reset */
1461         env->cp15.c15_ccnt = 0;
1462     }
1463 
1464     if (value & PMCRP) {
1465         unsigned int i;
1466         for (i = 0; i < pmu_num_counters(env); i++) {
1467             env->cp15.c14_pmevcntr[i] = 0;
1468         }
1469     }
1470 
1471     env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1472     env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1473 
1474     pmu_op_finish(env);
1475 }
1476 
1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478                           uint64_t value)
1479 {
1480     unsigned int i;
1481     uint64_t overflow_mask, new_pmswinc;
1482 
1483     for (i = 0; i < pmu_num_counters(env); i++) {
1484         /* Increment a counter's count iff: */
1485         if ((value & (1 << i)) && /* counter's bit is set */
1486                 /* counter is enabled and not filtered */
1487                 pmu_counter_enabled(env, i) &&
1488                 /* counter is SW_INCR */
1489                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1490             pmevcntr_op_start(env, i);
1491 
1492             /*
1493              * Detect if this write causes an overflow since we can't predict
1494              * PMSWINC overflows like we can for other events
1495              */
1496             new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1497 
1498             overflow_mask = pmevcntr_is_64_bit(env, i) ?
1499                 1ULL << 63 : 1ULL << 31;
1500 
1501             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1502                 env->cp15.c9_pmovsr |= (1 << i);
1503                 pmu_update_irq(env);
1504             }
1505 
1506             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1507 
1508             pmevcntr_op_finish(env, i);
1509         }
1510     }
1511 }
1512 
1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1514 {
1515     uint64_t ret;
1516     pmccntr_op_start(env);
1517     ret = env->cp15.c15_ccnt;
1518     pmccntr_op_finish(env);
1519     return ret;
1520 }
1521 
1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523                          uint64_t value)
1524 {
1525     /*
1526      * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1527      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1528      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1529      * accessed.
1530      */
1531     env->cp15.c9_pmselr = value & 0x1f;
1532 }
1533 
1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1535                         uint64_t value)
1536 {
1537     pmccntr_op_start(env);
1538     env->cp15.c15_ccnt = value;
1539     pmccntr_op_finish(env);
1540 }
1541 
1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1543                             uint64_t value)
1544 {
1545     uint64_t cur_val = pmccntr_read(env, NULL);
1546 
1547     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1548 }
1549 
1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1551                             uint64_t value)
1552 {
1553     pmccntr_op_start(env);
1554     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1555     pmccntr_op_finish(env);
1556 }
1557 
1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1559                             uint64_t value)
1560 {
1561     pmccntr_op_start(env);
1562     /* M is not accessible from AArch32 */
1563     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1564         (value & PMCCFILTR);
1565     pmccntr_op_finish(env);
1566 }
1567 
1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1569 {
1570     /* M is not visible in AArch32 */
1571     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1572 }
1573 
1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1575                             uint64_t value)
1576 {
1577     pmu_op_start(env);
1578     value &= pmu_counter_mask(env);
1579     env->cp15.c9_pmcnten |= value;
1580     pmu_op_finish(env);
1581 }
1582 
1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1584                              uint64_t value)
1585 {
1586     pmu_op_start(env);
1587     value &= pmu_counter_mask(env);
1588     env->cp15.c9_pmcnten &= ~value;
1589     pmu_op_finish(env);
1590 }
1591 
1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1593                          uint64_t value)
1594 {
1595     value &= pmu_counter_mask(env);
1596     env->cp15.c9_pmovsr &= ~value;
1597     pmu_update_irq(env);
1598 }
1599 
1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1601                          uint64_t value)
1602 {
1603     value &= pmu_counter_mask(env);
1604     env->cp15.c9_pmovsr |= value;
1605     pmu_update_irq(env);
1606 }
1607 
1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1609                              uint64_t value, const uint8_t counter)
1610 {
1611     if (counter == 31) {
1612         pmccfiltr_write(env, ri, value);
1613     } else if (counter < pmu_num_counters(env)) {
1614         pmevcntr_op_start(env, counter);
1615 
1616         /*
1617          * If this counter's event type is changing, store the current
1618          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1619          * pmevcntr_op_finish has the correct baseline when it converts back to
1620          * a delta.
1621          */
1622         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1623             PMXEVTYPER_EVTCOUNT;
1624         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1625         if (old_event != new_event) {
1626             uint64_t count = 0;
1627             if (event_supported(new_event)) {
1628                 uint16_t event_idx = supported_event_map[new_event];
1629                 count = pm_events[event_idx].get_count(env);
1630             }
1631             env->cp15.c14_pmevcntr_delta[counter] = count;
1632         }
1633 
1634         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1635         pmevcntr_op_finish(env, counter);
1636     }
1637     /*
1638      * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1639      * PMSELR value is equal to or greater than the number of implemented
1640      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1641      */
1642 }
1643 
1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1645                                const uint8_t counter)
1646 {
1647     if (counter == 31) {
1648         return env->cp15.pmccfiltr_el0;
1649     } else if (counter < pmu_num_counters(env)) {
1650         return env->cp15.c14_pmevtyper[counter];
1651     } else {
1652       /*
1653        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1654        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1655        */
1656         return 0;
1657     }
1658 }
1659 
1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1661                               uint64_t value)
1662 {
1663     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1664     pmevtyper_write(env, ri, value, counter);
1665 }
1666 
1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1668                                uint64_t value)
1669 {
1670     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1671     env->cp15.c14_pmevtyper[counter] = value;
1672 
1673     /*
1674      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1675      * pmu_op_finish calls when loading saved state for a migration. Because
1676      * we're potentially updating the type of event here, the value written to
1677      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1678      * different counter type. Therefore, we need to set this value to the
1679      * current count for the counter type we're writing so that pmu_op_finish
1680      * has the correct count for its calculation.
1681      */
1682     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1683     if (event_supported(event)) {
1684         uint16_t event_idx = supported_event_map[event];
1685         env->cp15.c14_pmevcntr_delta[counter] =
1686             pm_events[event_idx].get_count(env);
1687     }
1688 }
1689 
1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1691 {
1692     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693     return pmevtyper_read(env, ri, counter);
1694 }
1695 
1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1697                              uint64_t value)
1698 {
1699     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1700 }
1701 
1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1703 {
1704     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1705 }
1706 
1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1708                              uint64_t value, uint8_t counter)
1709 {
1710     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1711         /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1712         value &= MAKE_64BIT_MASK(0, 32);
1713     }
1714     if (counter < pmu_num_counters(env)) {
1715         pmevcntr_op_start(env, counter);
1716         env->cp15.c14_pmevcntr[counter] = value;
1717         pmevcntr_op_finish(env, counter);
1718     }
1719     /*
1720      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1721      * are CONSTRAINED UNPREDICTABLE.
1722      */
1723 }
1724 
1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1726                               uint8_t counter)
1727 {
1728     if (counter < pmu_num_counters(env)) {
1729         uint64_t ret;
1730         pmevcntr_op_start(env, counter);
1731         ret = env->cp15.c14_pmevcntr[counter];
1732         pmevcntr_op_finish(env, counter);
1733         if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1734             /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1735             ret &= MAKE_64BIT_MASK(0, 32);
1736         }
1737         return ret;
1738     } else {
1739       /*
1740        * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1741        * are CONSTRAINED UNPREDICTABLE.
1742        */
1743         return 0;
1744     }
1745 }
1746 
1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1748                              uint64_t value)
1749 {
1750     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751     pmevcntr_write(env, ri, value, counter);
1752 }
1753 
1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1755 {
1756     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1757     return pmevcntr_read(env, ri, counter);
1758 }
1759 
1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1761                              uint64_t value)
1762 {
1763     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1764     assert(counter < pmu_num_counters(env));
1765     env->cp15.c14_pmevcntr[counter] = value;
1766     pmevcntr_write(env, ri, value, counter);
1767 }
1768 
1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1770 {
1771     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1772     assert(counter < pmu_num_counters(env));
1773     return env->cp15.c14_pmevcntr[counter];
1774 }
1775 
1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1777                              uint64_t value)
1778 {
1779     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1780 }
1781 
1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1783 {
1784     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1785 }
1786 
1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1788                             uint64_t value)
1789 {
1790     if (arm_feature(env, ARM_FEATURE_V8)) {
1791         env->cp15.c9_pmuserenr = value & 0xf;
1792     } else {
1793         env->cp15.c9_pmuserenr = value & 1;
1794     }
1795 }
1796 
1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1798                              uint64_t value)
1799 {
1800     /* We have no event counters so only the C bit can be changed */
1801     value &= pmu_counter_mask(env);
1802     env->cp15.c9_pminten |= value;
1803     pmu_update_irq(env);
1804 }
1805 
1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                              uint64_t value)
1808 {
1809     value &= pmu_counter_mask(env);
1810     env->cp15.c9_pminten &= ~value;
1811     pmu_update_irq(env);
1812 }
1813 
1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                        uint64_t value)
1816 {
1817     /*
1818      * Note that even though the AArch64 view of this register has bits
1819      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1820      * architectural requirements for bits which are RES0 only in some
1821      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1822      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1823      */
1824     raw_write(env, ri, value & ~0x1FULL);
1825 }
1826 
1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1828 {
1829     /* Begin with base v8.0 state.  */
1830     uint64_t valid_mask = 0x3fff;
1831     ARMCPU *cpu = env_archcpu(env);
1832     uint64_t changed;
1833 
1834     /*
1835      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1836      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1837      * Instead, choose the format based on the mode of EL3.
1838      */
1839     if (arm_el_is_aa64(env, 3)) {
1840         value |= SCR_FW | SCR_AW;      /* RES1 */
1841         valid_mask &= ~SCR_NET;        /* RES0 */
1842 
1843         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1844             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1845             value |= SCR_RW;           /* RAO/WI */
1846         }
1847         if (cpu_isar_feature(aa64_ras, cpu)) {
1848             valid_mask |= SCR_TERR;
1849         }
1850         if (cpu_isar_feature(aa64_lor, cpu)) {
1851             valid_mask |= SCR_TLOR;
1852         }
1853         if (cpu_isar_feature(aa64_pauth, cpu)) {
1854             valid_mask |= SCR_API | SCR_APK;
1855         }
1856         if (cpu_isar_feature(aa64_sel2, cpu)) {
1857             valid_mask |= SCR_EEL2;
1858         } else if (cpu_isar_feature(aa64_rme, cpu)) {
1859             /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1860             value |= SCR_NS;
1861         }
1862         if (cpu_isar_feature(aa64_mte, cpu)) {
1863             valid_mask |= SCR_ATA;
1864         }
1865         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1866             valid_mask |= SCR_ENSCXT;
1867         }
1868         if (cpu_isar_feature(aa64_doublefault, cpu)) {
1869             valid_mask |= SCR_EASE | SCR_NMEA;
1870         }
1871         if (cpu_isar_feature(aa64_sme, cpu)) {
1872             valid_mask |= SCR_ENTP2;
1873         }
1874         if (cpu_isar_feature(aa64_hcx, cpu)) {
1875             valid_mask |= SCR_HXEN;
1876         }
1877         if (cpu_isar_feature(aa64_fgt, cpu)) {
1878             valid_mask |= SCR_FGTEN;
1879         }
1880         if (cpu_isar_feature(aa64_rme, cpu)) {
1881             valid_mask |= SCR_NSE | SCR_GPF;
1882         }
1883     } else {
1884         valid_mask &= ~(SCR_RW | SCR_ST);
1885         if (cpu_isar_feature(aa32_ras, cpu)) {
1886             valid_mask |= SCR_TERR;
1887         }
1888     }
1889 
1890     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1891         valid_mask &= ~SCR_HCE;
1892 
1893         /*
1894          * On ARMv7, SMD (or SCD as it is called in v7) is only
1895          * supported if EL2 exists. The bit is UNK/SBZP when
1896          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1897          * when EL2 is unavailable.
1898          * On ARMv8, this bit is always available.
1899          */
1900         if (arm_feature(env, ARM_FEATURE_V7) &&
1901             !arm_feature(env, ARM_FEATURE_V8)) {
1902             valid_mask &= ~SCR_SMD;
1903         }
1904     }
1905 
1906     /* Clear all-context RES0 bits.  */
1907     value &= valid_mask;
1908     changed = env->cp15.scr_el3 ^ value;
1909     env->cp15.scr_el3 = value;
1910 
1911     /*
1912      * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1913      * we must invalidate all TLBs below EL3.
1914      */
1915     if (changed & (SCR_NS | SCR_NSE)) {
1916         tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1917                                            ARMMMUIdxBit_E20_0 |
1918                                            ARMMMUIdxBit_E10_1 |
1919                                            ARMMMUIdxBit_E20_2 |
1920                                            ARMMMUIdxBit_E10_1_PAN |
1921                                            ARMMMUIdxBit_E20_2_PAN |
1922                                            ARMMMUIdxBit_E2));
1923     }
1924 }
1925 
1926 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1927 {
1928     /*
1929      * scr_write will set the RES1 bits on an AArch64-only CPU.
1930      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1931      */
1932     scr_write(env, ri, 0);
1933 }
1934 
1935 static CPAccessResult access_tid4(CPUARMState *env,
1936                                   const ARMCPRegInfo *ri,
1937                                   bool isread)
1938 {
1939     if (arm_current_el(env) == 1 &&
1940         (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1941         return CP_ACCESS_TRAP_EL2;
1942     }
1943 
1944     return CP_ACCESS_OK;
1945 }
1946 
1947 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1948 {
1949     ARMCPU *cpu = env_archcpu(env);
1950 
1951     /*
1952      * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1953      * bank
1954      */
1955     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1956                                         ri->secure & ARM_CP_SECSTATE_S);
1957 
1958     return cpu->ccsidr[index];
1959 }
1960 
1961 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1962                          uint64_t value)
1963 {
1964     raw_write(env, ri, value & 0xf);
1965 }
1966 
1967 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1968 {
1969     CPUState *cs = env_cpu(env);
1970     bool el1 = arm_current_el(env) == 1;
1971     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1972     uint64_t ret = 0;
1973 
1974     if (hcr_el2 & HCR_IMO) {
1975         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1976             ret |= CPSR_I;
1977         }
1978     } else {
1979         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1980             ret |= CPSR_I;
1981         }
1982     }
1983 
1984     if (hcr_el2 & HCR_FMO) {
1985         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1986             ret |= CPSR_F;
1987         }
1988     } else {
1989         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1990             ret |= CPSR_F;
1991         }
1992     }
1993 
1994     if (hcr_el2 & HCR_AMO) {
1995         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1996             ret |= CPSR_A;
1997         }
1998     }
1999 
2000     return ret;
2001 }
2002 
2003 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2004                                        bool isread)
2005 {
2006     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2007         return CP_ACCESS_TRAP_EL2;
2008     }
2009 
2010     return CP_ACCESS_OK;
2011 }
2012 
2013 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2014                                        bool isread)
2015 {
2016     if (arm_feature(env, ARM_FEATURE_V8)) {
2017         return access_aa64_tid1(env, ri, isread);
2018     }
2019 
2020     return CP_ACCESS_OK;
2021 }
2022 
2023 static const ARMCPRegInfo v7_cp_reginfo[] = {
2024     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2025     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2026       .access = PL1_W, .type = ARM_CP_NOP },
2027     /*
2028      * Performance monitors are implementation defined in v7,
2029      * but with an ARM recommended set of registers, which we
2030      * follow.
2031      *
2032      * Performance registers fall into three categories:
2033      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2034      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2035      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2036      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2037      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2038      */
2039     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2040       .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2041       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2042       .writefn = pmcntenset_write,
2043       .accessfn = pmreg_access,
2044       .fgt = FGT_PMCNTEN,
2045       .raw_writefn = raw_write },
2046     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2047       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2048       .access = PL0_RW, .accessfn = pmreg_access,
2049       .fgt = FGT_PMCNTEN,
2050       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2051       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2052     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2053       .access = PL0_RW,
2054       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2055       .accessfn = pmreg_access,
2056       .fgt = FGT_PMCNTEN,
2057       .writefn = pmcntenclr_write,
2058       .type = ARM_CP_ALIAS | ARM_CP_IO },
2059     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2060       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2061       .access = PL0_RW, .accessfn = pmreg_access,
2062       .fgt = FGT_PMCNTEN,
2063       .type = ARM_CP_ALIAS | ARM_CP_IO,
2064       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2065       .writefn = pmcntenclr_write },
2066     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2067       .access = PL0_RW, .type = ARM_CP_IO,
2068       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2069       .accessfn = pmreg_access,
2070       .fgt = FGT_PMOVS,
2071       .writefn = pmovsr_write,
2072       .raw_writefn = raw_write },
2073     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2074       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2075       .access = PL0_RW, .accessfn = pmreg_access,
2076       .fgt = FGT_PMOVS,
2077       .type = ARM_CP_ALIAS | ARM_CP_IO,
2078       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2079       .writefn = pmovsr_write,
2080       .raw_writefn = raw_write },
2081     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2082       .access = PL0_W, .accessfn = pmreg_access_swinc,
2083       .fgt = FGT_PMSWINC_EL0,
2084       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2085       .writefn = pmswinc_write },
2086     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2087       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2088       .access = PL0_W, .accessfn = pmreg_access_swinc,
2089       .fgt = FGT_PMSWINC_EL0,
2090       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2091       .writefn = pmswinc_write },
2092     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2093       .access = PL0_RW, .type = ARM_CP_ALIAS,
2094       .fgt = FGT_PMSELR_EL0,
2095       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2096       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2097       .raw_writefn = raw_write},
2098     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2099       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2100       .access = PL0_RW, .accessfn = pmreg_access_selr,
2101       .fgt = FGT_PMSELR_EL0,
2102       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2103       .writefn = pmselr_write, .raw_writefn = raw_write, },
2104     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2105       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2106       .fgt = FGT_PMCCNTR_EL0,
2107       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2108       .accessfn = pmreg_access_ccntr },
2109     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2110       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2111       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2112       .fgt = FGT_PMCCNTR_EL0,
2113       .type = ARM_CP_IO,
2114       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2115       .readfn = pmccntr_read, .writefn = pmccntr_write,
2116       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2117     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2118       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2119       .access = PL0_RW, .accessfn = pmreg_access,
2120       .fgt = FGT_PMCCFILTR_EL0,
2121       .type = ARM_CP_ALIAS | ARM_CP_IO,
2122       .resetvalue = 0, },
2123     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2124       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2125       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2126       .access = PL0_RW, .accessfn = pmreg_access,
2127       .fgt = FGT_PMCCFILTR_EL0,
2128       .type = ARM_CP_IO,
2129       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2130       .resetvalue = 0, },
2131     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2132       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2133       .accessfn = pmreg_access,
2134       .fgt = FGT_PMEVTYPERN_EL0,
2135       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2136     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2137       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2138       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2139       .accessfn = pmreg_access,
2140       .fgt = FGT_PMEVTYPERN_EL0,
2141       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2142     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2143       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2144       .accessfn = pmreg_access_xevcntr,
2145       .fgt = FGT_PMEVCNTRN_EL0,
2146       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2147     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2148       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2149       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2150       .accessfn = pmreg_access_xevcntr,
2151       .fgt = FGT_PMEVCNTRN_EL0,
2152       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2153     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2154       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2155       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2156       .resetvalue = 0,
2157       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2158     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2159       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2160       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2161       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2162       .resetvalue = 0,
2163       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2164     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2165       .access = PL1_RW, .accessfn = access_tpm,
2166       .fgt = FGT_PMINTEN,
2167       .type = ARM_CP_ALIAS | ARM_CP_IO,
2168       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2169       .resetvalue = 0,
2170       .writefn = pmintenset_write, .raw_writefn = raw_write },
2171     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2172       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2173       .access = PL1_RW, .accessfn = access_tpm,
2174       .fgt = FGT_PMINTEN,
2175       .type = ARM_CP_IO,
2176       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2177       .writefn = pmintenset_write, .raw_writefn = raw_write,
2178       .resetvalue = 0x0 },
2179     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2180       .access = PL1_RW, .accessfn = access_tpm,
2181       .fgt = FGT_PMINTEN,
2182       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2183       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2184       .writefn = pmintenclr_write, },
2185     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2186       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2187       .access = PL1_RW, .accessfn = access_tpm,
2188       .fgt = FGT_PMINTEN,
2189       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2190       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2191       .writefn = pmintenclr_write },
2192     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2193       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2194       .access = PL1_R,
2195       .accessfn = access_tid4,
2196       .fgt = FGT_CCSIDR_EL1,
2197       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2198     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2199       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2200       .access = PL1_RW,
2201       .accessfn = access_tid4,
2202       .fgt = FGT_CSSELR_EL1,
2203       .writefn = csselr_write, .resetvalue = 0,
2204       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2205                              offsetof(CPUARMState, cp15.csselr_ns) } },
2206     /*
2207      * Auxiliary ID register: this actually has an IMPDEF value but for now
2208      * just RAZ for all cores:
2209      */
2210     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2211       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2212       .access = PL1_R, .type = ARM_CP_CONST,
2213       .accessfn = access_aa64_tid1,
2214       .fgt = FGT_AIDR_EL1,
2215       .resetvalue = 0 },
2216     /*
2217      * Auxiliary fault status registers: these also are IMPDEF, and we
2218      * choose to RAZ/WI for all cores.
2219      */
2220     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2221       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2222       .access = PL1_RW, .accessfn = access_tvm_trvm,
2223       .fgt = FGT_AFSR0_EL1,
2224       .type = ARM_CP_CONST, .resetvalue = 0 },
2225     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2226       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2227       .access = PL1_RW, .accessfn = access_tvm_trvm,
2228       .fgt = FGT_AFSR1_EL1,
2229       .type = ARM_CP_CONST, .resetvalue = 0 },
2230     /*
2231      * MAIR can just read-as-written because we don't implement caches
2232      * and so don't need to care about memory attributes.
2233      */
2234     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2235       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2236       .access = PL1_RW, .accessfn = access_tvm_trvm,
2237       .fgt = FGT_MAIR_EL1,
2238       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2239       .resetvalue = 0 },
2240     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2241       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2242       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2243       .resetvalue = 0 },
2244     /*
2245      * For non-long-descriptor page tables these are PRRR and NMRR;
2246      * regardless they still act as reads-as-written for QEMU.
2247      */
2248      /*
2249       * MAIR0/1 are defined separately from their 64-bit counterpart which
2250       * allows them to assign the correct fieldoffset based on the endianness
2251       * handled in the field definitions.
2252       */
2253     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2254       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2255       .access = PL1_RW, .accessfn = access_tvm_trvm,
2256       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2257                              offsetof(CPUARMState, cp15.mair0_ns) },
2258       .resetfn = arm_cp_reset_ignore },
2259     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2260       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2261       .access = PL1_RW, .accessfn = access_tvm_trvm,
2262       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2263                              offsetof(CPUARMState, cp15.mair1_ns) },
2264       .resetfn = arm_cp_reset_ignore },
2265     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2266       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2267       .fgt = FGT_ISR_EL1,
2268       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2269     /* 32 bit ITLB invalidates */
2270     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2271       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2272       .writefn = tlbiall_write },
2273     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2274       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2275       .writefn = tlbimva_write },
2276     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2277       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2278       .writefn = tlbiasid_write },
2279     /* 32 bit DTLB invalidates */
2280     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2281       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2282       .writefn = tlbiall_write },
2283     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2284       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2285       .writefn = tlbimva_write },
2286     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2287       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2288       .writefn = tlbiasid_write },
2289     /* 32 bit TLB invalidates */
2290     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2291       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2292       .writefn = tlbiall_write },
2293     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2294       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2295       .writefn = tlbimva_write },
2296     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2297       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2298       .writefn = tlbiasid_write },
2299     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2300       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2301       .writefn = tlbimvaa_write },
2302 };
2303 
2304 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2305     /* 32 bit TLB invalidates, Inner Shareable */
2306     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2307       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2308       .writefn = tlbiall_is_write },
2309     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2310       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2311       .writefn = tlbimva_is_write },
2312     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2313       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2314       .writefn = tlbiasid_is_write },
2315     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2316       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2317       .writefn = tlbimvaa_is_write },
2318 };
2319 
2320 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2321     /* PMOVSSET is not implemented in v7 before v7ve */
2322     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2323       .access = PL0_RW, .accessfn = pmreg_access,
2324       .fgt = FGT_PMOVS,
2325       .type = ARM_CP_ALIAS | ARM_CP_IO,
2326       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2327       .writefn = pmovsset_write,
2328       .raw_writefn = raw_write },
2329     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2330       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2331       .access = PL0_RW, .accessfn = pmreg_access,
2332       .fgt = FGT_PMOVS,
2333       .type = ARM_CP_ALIAS | ARM_CP_IO,
2334       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2335       .writefn = pmovsset_write,
2336       .raw_writefn = raw_write },
2337 };
2338 
2339 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2340                         uint64_t value)
2341 {
2342     value &= 1;
2343     env->teecr = value;
2344 }
2345 
2346 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2347                                    bool isread)
2348 {
2349     /*
2350      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2351      * at all, so we don't need to check whether we're v8A.
2352      */
2353     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2354         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2355         return CP_ACCESS_TRAP_EL2;
2356     }
2357     return CP_ACCESS_OK;
2358 }
2359 
2360 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2361                                     bool isread)
2362 {
2363     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2364         return CP_ACCESS_TRAP;
2365     }
2366     return teecr_access(env, ri, isread);
2367 }
2368 
2369 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2370     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2371       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2372       .resetvalue = 0,
2373       .writefn = teecr_write, .accessfn = teecr_access },
2374     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2375       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2376       .accessfn = teehbr_access, .resetvalue = 0 },
2377 };
2378 
2379 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2380     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2381       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2382       .access = PL0_RW,
2383       .fgt = FGT_TPIDR_EL0,
2384       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2385     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2386       .access = PL0_RW,
2387       .fgt = FGT_TPIDR_EL0,
2388       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2389                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2390       .resetfn = arm_cp_reset_ignore },
2391     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2392       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2393       .access = PL0_R | PL1_W,
2394       .fgt = FGT_TPIDRRO_EL0,
2395       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2396       .resetvalue = 0},
2397     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2398       .access = PL0_R | PL1_W,
2399       .fgt = FGT_TPIDRRO_EL0,
2400       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2401                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2402       .resetfn = arm_cp_reset_ignore },
2403     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2404       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2405       .access = PL1_RW,
2406       .fgt = FGT_TPIDR_EL1,
2407       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2408     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2409       .access = PL1_RW,
2410       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2411                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2412       .resetvalue = 0 },
2413 };
2414 
2415 #ifndef CONFIG_USER_ONLY
2416 
2417 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2418                                        bool isread)
2419 {
2420     /*
2421      * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2422      * Writable only at the highest implemented exception level.
2423      */
2424     int el = arm_current_el(env);
2425     uint64_t hcr;
2426     uint32_t cntkctl;
2427 
2428     switch (el) {
2429     case 0:
2430         hcr = arm_hcr_el2_eff(env);
2431         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2432             cntkctl = env->cp15.cnthctl_el2;
2433         } else {
2434             cntkctl = env->cp15.c14_cntkctl;
2435         }
2436         if (!extract32(cntkctl, 0, 2)) {
2437             return CP_ACCESS_TRAP;
2438         }
2439         break;
2440     case 1:
2441         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2442             arm_is_secure_below_el3(env)) {
2443             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2444             return CP_ACCESS_TRAP_UNCATEGORIZED;
2445         }
2446         break;
2447     case 2:
2448     case 3:
2449         break;
2450     }
2451 
2452     if (!isread && el < arm_highest_el(env)) {
2453         return CP_ACCESS_TRAP_UNCATEGORIZED;
2454     }
2455 
2456     return CP_ACCESS_OK;
2457 }
2458 
2459 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2460                                         bool isread)
2461 {
2462     unsigned int cur_el = arm_current_el(env);
2463     bool has_el2 = arm_is_el2_enabled(env);
2464     uint64_t hcr = arm_hcr_el2_eff(env);
2465 
2466     switch (cur_el) {
2467     case 0:
2468         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2469         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2470             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2471                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2472         }
2473 
2474         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2475         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2476             return CP_ACCESS_TRAP;
2477         }
2478 
2479         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2480         if (hcr & HCR_E2H) {
2481             if (timeridx == GTIMER_PHYS &&
2482                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2483                 return CP_ACCESS_TRAP_EL2;
2484             }
2485         } else {
2486             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2487             if (has_el2 && timeridx == GTIMER_PHYS &&
2488                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2489                 return CP_ACCESS_TRAP_EL2;
2490             }
2491         }
2492         break;
2493 
2494     case 1:
2495         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2496         if (has_el2 && timeridx == GTIMER_PHYS &&
2497             (hcr & HCR_E2H
2498              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2499              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2500             return CP_ACCESS_TRAP_EL2;
2501         }
2502         break;
2503     }
2504     return CP_ACCESS_OK;
2505 }
2506 
2507 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2508                                       bool isread)
2509 {
2510     unsigned int cur_el = arm_current_el(env);
2511     bool has_el2 = arm_is_el2_enabled(env);
2512     uint64_t hcr = arm_hcr_el2_eff(env);
2513 
2514     switch (cur_el) {
2515     case 0:
2516         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2517             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2518             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2519                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2520         }
2521 
2522         /*
2523          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2524          * EL0 if EL0[PV]TEN is zero.
2525          */
2526         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2527             return CP_ACCESS_TRAP;
2528         }
2529         /* fall through */
2530 
2531     case 1:
2532         if (has_el2 && timeridx == GTIMER_PHYS) {
2533             if (hcr & HCR_E2H) {
2534                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2535                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2536                     return CP_ACCESS_TRAP_EL2;
2537                 }
2538             } else {
2539                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2540                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2541                     return CP_ACCESS_TRAP_EL2;
2542                 }
2543             }
2544         }
2545         break;
2546     }
2547     return CP_ACCESS_OK;
2548 }
2549 
2550 static CPAccessResult gt_pct_access(CPUARMState *env,
2551                                     const ARMCPRegInfo *ri,
2552                                     bool isread)
2553 {
2554     return gt_counter_access(env, GTIMER_PHYS, isread);
2555 }
2556 
2557 static CPAccessResult gt_vct_access(CPUARMState *env,
2558                                     const ARMCPRegInfo *ri,
2559                                     bool isread)
2560 {
2561     return gt_counter_access(env, GTIMER_VIRT, isread);
2562 }
2563 
2564 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2565                                        bool isread)
2566 {
2567     return gt_timer_access(env, GTIMER_PHYS, isread);
2568 }
2569 
2570 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2571                                        bool isread)
2572 {
2573     return gt_timer_access(env, GTIMER_VIRT, isread);
2574 }
2575 
2576 static CPAccessResult gt_stimer_access(CPUARMState *env,
2577                                        const ARMCPRegInfo *ri,
2578                                        bool isread)
2579 {
2580     /*
2581      * The AArch64 register view of the secure physical timer is
2582      * always accessible from EL3, and configurably accessible from
2583      * Secure EL1.
2584      */
2585     switch (arm_current_el(env)) {
2586     case 1:
2587         if (!arm_is_secure(env)) {
2588             return CP_ACCESS_TRAP;
2589         }
2590         if (!(env->cp15.scr_el3 & SCR_ST)) {
2591             return CP_ACCESS_TRAP_EL3;
2592         }
2593         return CP_ACCESS_OK;
2594     case 0:
2595     case 2:
2596         return CP_ACCESS_TRAP;
2597     case 3:
2598         return CP_ACCESS_OK;
2599     default:
2600         g_assert_not_reached();
2601     }
2602 }
2603 
2604 static uint64_t gt_get_countervalue(CPUARMState *env)
2605 {
2606     ARMCPU *cpu = env_archcpu(env);
2607 
2608     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2609 }
2610 
2611 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2612 {
2613     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2614 
2615     if (gt->ctl & 1) {
2616         /*
2617          * Timer enabled: calculate and set current ISTATUS, irq, and
2618          * reset timer to when ISTATUS next has to change
2619          */
2620         uint64_t offset = timeridx == GTIMER_VIRT ?
2621                                       cpu->env.cp15.cntvoff_el2 : 0;
2622         uint64_t count = gt_get_countervalue(&cpu->env);
2623         /* Note that this must be unsigned 64 bit arithmetic: */
2624         int istatus = count - offset >= gt->cval;
2625         uint64_t nexttick;
2626         int irqstate;
2627 
2628         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2629 
2630         irqstate = (istatus && !(gt->ctl & 2));
2631         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2632 
2633         if (istatus) {
2634             /* Next transition is when count rolls back over to zero */
2635             nexttick = UINT64_MAX;
2636         } else {
2637             /* Next transition is when we hit cval */
2638             nexttick = gt->cval + offset;
2639         }
2640         /*
2641          * Note that the desired next expiry time might be beyond the
2642          * signed-64-bit range of a QEMUTimer -- in this case we just
2643          * set the timer for as far in the future as possible. When the
2644          * timer expires we will reset the timer for any remaining period.
2645          */
2646         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2647             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2648         } else {
2649             timer_mod(cpu->gt_timer[timeridx], nexttick);
2650         }
2651         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2652     } else {
2653         /* Timer disabled: ISTATUS and timer output always clear */
2654         gt->ctl &= ~4;
2655         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2656         timer_del(cpu->gt_timer[timeridx]);
2657         trace_arm_gt_recalc_disabled(timeridx);
2658     }
2659 }
2660 
2661 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2662                            int timeridx)
2663 {
2664     ARMCPU *cpu = env_archcpu(env);
2665 
2666     timer_del(cpu->gt_timer[timeridx]);
2667 }
2668 
2669 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2670 {
2671     return gt_get_countervalue(env);
2672 }
2673 
2674 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2675 {
2676     uint64_t hcr;
2677 
2678     switch (arm_current_el(env)) {
2679     case 2:
2680         hcr = arm_hcr_el2_eff(env);
2681         if (hcr & HCR_E2H) {
2682             return 0;
2683         }
2684         break;
2685     case 0:
2686         hcr = arm_hcr_el2_eff(env);
2687         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2688             return 0;
2689         }
2690         break;
2691     }
2692 
2693     return env->cp15.cntvoff_el2;
2694 }
2695 
2696 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2697 {
2698     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2699 }
2700 
2701 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2702                           int timeridx,
2703                           uint64_t value)
2704 {
2705     trace_arm_gt_cval_write(timeridx, value);
2706     env->cp15.c14_timer[timeridx].cval = value;
2707     gt_recalc_timer(env_archcpu(env), timeridx);
2708 }
2709 
2710 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2711                              int timeridx)
2712 {
2713     uint64_t offset = 0;
2714 
2715     switch (timeridx) {
2716     case GTIMER_VIRT:
2717     case GTIMER_HYPVIRT:
2718         offset = gt_virt_cnt_offset(env);
2719         break;
2720     }
2721 
2722     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2723                       (gt_get_countervalue(env) - offset));
2724 }
2725 
2726 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2727                           int timeridx,
2728                           uint64_t value)
2729 {
2730     uint64_t offset = 0;
2731 
2732     switch (timeridx) {
2733     case GTIMER_VIRT:
2734     case GTIMER_HYPVIRT:
2735         offset = gt_virt_cnt_offset(env);
2736         break;
2737     }
2738 
2739     trace_arm_gt_tval_write(timeridx, value);
2740     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2741                                          sextract64(value, 0, 32);
2742     gt_recalc_timer(env_archcpu(env), timeridx);
2743 }
2744 
2745 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2746                          int timeridx,
2747                          uint64_t value)
2748 {
2749     ARMCPU *cpu = env_archcpu(env);
2750     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2751 
2752     trace_arm_gt_ctl_write(timeridx, value);
2753     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2754     if ((oldval ^ value) & 1) {
2755         /* Enable toggled */
2756         gt_recalc_timer(cpu, timeridx);
2757     } else if ((oldval ^ value) & 2) {
2758         /*
2759          * IMASK toggled: don't need to recalculate,
2760          * just set the interrupt line based on ISTATUS
2761          */
2762         int irqstate = (oldval & 4) && !(value & 2);
2763 
2764         trace_arm_gt_imask_toggle(timeridx, irqstate);
2765         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2766     }
2767 }
2768 
2769 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2770 {
2771     gt_timer_reset(env, ri, GTIMER_PHYS);
2772 }
2773 
2774 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2775                                uint64_t value)
2776 {
2777     gt_cval_write(env, ri, GTIMER_PHYS, value);
2778 }
2779 
2780 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2781 {
2782     return gt_tval_read(env, ri, GTIMER_PHYS);
2783 }
2784 
2785 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2786                                uint64_t value)
2787 {
2788     gt_tval_write(env, ri, GTIMER_PHYS, value);
2789 }
2790 
2791 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2792                               uint64_t value)
2793 {
2794     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2795 }
2796 
2797 static int gt_phys_redir_timeridx(CPUARMState *env)
2798 {
2799     switch (arm_mmu_idx(env)) {
2800     case ARMMMUIdx_E20_0:
2801     case ARMMMUIdx_E20_2:
2802     case ARMMMUIdx_E20_2_PAN:
2803         return GTIMER_HYP;
2804     default:
2805         return GTIMER_PHYS;
2806     }
2807 }
2808 
2809 static int gt_virt_redir_timeridx(CPUARMState *env)
2810 {
2811     switch (arm_mmu_idx(env)) {
2812     case ARMMMUIdx_E20_0:
2813     case ARMMMUIdx_E20_2:
2814     case ARMMMUIdx_E20_2_PAN:
2815         return GTIMER_HYPVIRT;
2816     default:
2817         return GTIMER_VIRT;
2818     }
2819 }
2820 
2821 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2822                                         const ARMCPRegInfo *ri)
2823 {
2824     int timeridx = gt_phys_redir_timeridx(env);
2825     return env->cp15.c14_timer[timeridx].cval;
2826 }
2827 
2828 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2829                                      uint64_t value)
2830 {
2831     int timeridx = gt_phys_redir_timeridx(env);
2832     gt_cval_write(env, ri, timeridx, value);
2833 }
2834 
2835 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2836                                         const ARMCPRegInfo *ri)
2837 {
2838     int timeridx = gt_phys_redir_timeridx(env);
2839     return gt_tval_read(env, ri, timeridx);
2840 }
2841 
2842 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2843                                      uint64_t value)
2844 {
2845     int timeridx = gt_phys_redir_timeridx(env);
2846     gt_tval_write(env, ri, timeridx, value);
2847 }
2848 
2849 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2850                                        const ARMCPRegInfo *ri)
2851 {
2852     int timeridx = gt_phys_redir_timeridx(env);
2853     return env->cp15.c14_timer[timeridx].ctl;
2854 }
2855 
2856 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2857                                     uint64_t value)
2858 {
2859     int timeridx = gt_phys_redir_timeridx(env);
2860     gt_ctl_write(env, ri, timeridx, value);
2861 }
2862 
2863 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2864 {
2865     gt_timer_reset(env, ri, GTIMER_VIRT);
2866 }
2867 
2868 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2869                                uint64_t value)
2870 {
2871     gt_cval_write(env, ri, GTIMER_VIRT, value);
2872 }
2873 
2874 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2875 {
2876     return gt_tval_read(env, ri, GTIMER_VIRT);
2877 }
2878 
2879 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2880                                uint64_t value)
2881 {
2882     gt_tval_write(env, ri, GTIMER_VIRT, value);
2883 }
2884 
2885 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2886                               uint64_t value)
2887 {
2888     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2889 }
2890 
2891 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2892                               uint64_t value)
2893 {
2894     ARMCPU *cpu = env_archcpu(env);
2895 
2896     trace_arm_gt_cntvoff_write(value);
2897     raw_write(env, ri, value);
2898     gt_recalc_timer(cpu, GTIMER_VIRT);
2899 }
2900 
2901 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2902                                         const ARMCPRegInfo *ri)
2903 {
2904     int timeridx = gt_virt_redir_timeridx(env);
2905     return env->cp15.c14_timer[timeridx].cval;
2906 }
2907 
2908 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2909                                      uint64_t value)
2910 {
2911     int timeridx = gt_virt_redir_timeridx(env);
2912     gt_cval_write(env, ri, timeridx, value);
2913 }
2914 
2915 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2916                                         const ARMCPRegInfo *ri)
2917 {
2918     int timeridx = gt_virt_redir_timeridx(env);
2919     return gt_tval_read(env, ri, timeridx);
2920 }
2921 
2922 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2923                                      uint64_t value)
2924 {
2925     int timeridx = gt_virt_redir_timeridx(env);
2926     gt_tval_write(env, ri, timeridx, value);
2927 }
2928 
2929 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2930                                        const ARMCPRegInfo *ri)
2931 {
2932     int timeridx = gt_virt_redir_timeridx(env);
2933     return env->cp15.c14_timer[timeridx].ctl;
2934 }
2935 
2936 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2937                                     uint64_t value)
2938 {
2939     int timeridx = gt_virt_redir_timeridx(env);
2940     gt_ctl_write(env, ri, timeridx, value);
2941 }
2942 
2943 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2944 {
2945     gt_timer_reset(env, ri, GTIMER_HYP);
2946 }
2947 
2948 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2949                               uint64_t value)
2950 {
2951     gt_cval_write(env, ri, GTIMER_HYP, value);
2952 }
2953 
2954 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2955 {
2956     return gt_tval_read(env, ri, GTIMER_HYP);
2957 }
2958 
2959 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2960                               uint64_t value)
2961 {
2962     gt_tval_write(env, ri, GTIMER_HYP, value);
2963 }
2964 
2965 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2966                               uint64_t value)
2967 {
2968     gt_ctl_write(env, ri, GTIMER_HYP, value);
2969 }
2970 
2971 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2972 {
2973     gt_timer_reset(env, ri, GTIMER_SEC);
2974 }
2975 
2976 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2977                               uint64_t value)
2978 {
2979     gt_cval_write(env, ri, GTIMER_SEC, value);
2980 }
2981 
2982 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2983 {
2984     return gt_tval_read(env, ri, GTIMER_SEC);
2985 }
2986 
2987 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2988                               uint64_t value)
2989 {
2990     gt_tval_write(env, ri, GTIMER_SEC, value);
2991 }
2992 
2993 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2994                               uint64_t value)
2995 {
2996     gt_ctl_write(env, ri, GTIMER_SEC, value);
2997 }
2998 
2999 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3000 {
3001     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3002 }
3003 
3004 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005                              uint64_t value)
3006 {
3007     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3008 }
3009 
3010 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3011 {
3012     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3013 }
3014 
3015 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016                              uint64_t value)
3017 {
3018     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3019 }
3020 
3021 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3022                             uint64_t value)
3023 {
3024     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3025 }
3026 
3027 void arm_gt_ptimer_cb(void *opaque)
3028 {
3029     ARMCPU *cpu = opaque;
3030 
3031     gt_recalc_timer(cpu, GTIMER_PHYS);
3032 }
3033 
3034 void arm_gt_vtimer_cb(void *opaque)
3035 {
3036     ARMCPU *cpu = opaque;
3037 
3038     gt_recalc_timer(cpu, GTIMER_VIRT);
3039 }
3040 
3041 void arm_gt_htimer_cb(void *opaque)
3042 {
3043     ARMCPU *cpu = opaque;
3044 
3045     gt_recalc_timer(cpu, GTIMER_HYP);
3046 }
3047 
3048 void arm_gt_stimer_cb(void *opaque)
3049 {
3050     ARMCPU *cpu = opaque;
3051 
3052     gt_recalc_timer(cpu, GTIMER_SEC);
3053 }
3054 
3055 void arm_gt_hvtimer_cb(void *opaque)
3056 {
3057     ARMCPU *cpu = opaque;
3058 
3059     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3060 }
3061 
3062 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3063 {
3064     ARMCPU *cpu = env_archcpu(env);
3065 
3066     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3067 }
3068 
3069 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3070     /*
3071      * Note that CNTFRQ is purely reads-as-written for the benefit
3072      * of software; writing it doesn't actually change the timer frequency.
3073      * Our reset value matches the fixed frequency we implement the timer at.
3074      */
3075     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3076       .type = ARM_CP_ALIAS,
3077       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3078       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3079     },
3080     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3081       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3082       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3083       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3084       .resetfn = arm_gt_cntfrq_reset,
3085     },
3086     /* overall control: mostly access permissions */
3087     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3088       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3089       .access = PL1_RW,
3090       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3091       .resetvalue = 0,
3092     },
3093     /* per-timer control */
3094     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3095       .secure = ARM_CP_SECSTATE_NS,
3096       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3097       .accessfn = gt_ptimer_access,
3098       .fieldoffset = offsetoflow32(CPUARMState,
3099                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3100       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3101       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3102     },
3103     { .name = "CNTP_CTL_S",
3104       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3105       .secure = ARM_CP_SECSTATE_S,
3106       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3107       .accessfn = gt_ptimer_access,
3108       .fieldoffset = offsetoflow32(CPUARMState,
3109                                    cp15.c14_timer[GTIMER_SEC].ctl),
3110       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3111     },
3112     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3113       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3114       .type = ARM_CP_IO, .access = PL0_RW,
3115       .accessfn = gt_ptimer_access,
3116       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3117       .resetvalue = 0,
3118       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3119       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3120     },
3121     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3122       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3123       .accessfn = gt_vtimer_access,
3124       .fieldoffset = offsetoflow32(CPUARMState,
3125                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3126       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3127       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3128     },
3129     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3130       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3131       .type = ARM_CP_IO, .access = PL0_RW,
3132       .accessfn = gt_vtimer_access,
3133       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3134       .resetvalue = 0,
3135       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3136       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3137     },
3138     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3139     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3140       .secure = ARM_CP_SECSTATE_NS,
3141       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3142       .accessfn = gt_ptimer_access,
3143       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3144     },
3145     { .name = "CNTP_TVAL_S",
3146       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3147       .secure = ARM_CP_SECSTATE_S,
3148       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3149       .accessfn = gt_ptimer_access,
3150       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3151     },
3152     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3153       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3154       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3155       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3156       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3157     },
3158     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3159       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3160       .accessfn = gt_vtimer_access,
3161       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3162     },
3163     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3164       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3165       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3166       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3167       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3168     },
3169     /* The counter itself */
3170     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3171       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3172       .accessfn = gt_pct_access,
3173       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3174     },
3175     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3176       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3177       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3178       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3179     },
3180     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3181       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3182       .accessfn = gt_vct_access,
3183       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3184     },
3185     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3186       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3187       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3188       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3189     },
3190     /* Comparison value, indicating when the timer goes off */
3191     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3192       .secure = ARM_CP_SECSTATE_NS,
3193       .access = PL0_RW,
3194       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3195       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3196       .accessfn = gt_ptimer_access,
3197       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3198       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3199     },
3200     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3201       .secure = ARM_CP_SECSTATE_S,
3202       .access = PL0_RW,
3203       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3204       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3205       .accessfn = gt_ptimer_access,
3206       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3207     },
3208     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3209       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3210       .access = PL0_RW,
3211       .type = ARM_CP_IO,
3212       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3213       .resetvalue = 0, .accessfn = gt_ptimer_access,
3214       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3215       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3216     },
3217     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3218       .access = PL0_RW,
3219       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3220       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3221       .accessfn = gt_vtimer_access,
3222       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3223       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3224     },
3225     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3226       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3227       .access = PL0_RW,
3228       .type = ARM_CP_IO,
3229       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3230       .resetvalue = 0, .accessfn = gt_vtimer_access,
3231       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3232       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3233     },
3234     /*
3235      * Secure timer -- this is actually restricted to only EL3
3236      * and configurably Secure-EL1 via the accessfn.
3237      */
3238     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3239       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3240       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3241       .accessfn = gt_stimer_access,
3242       .readfn = gt_sec_tval_read,
3243       .writefn = gt_sec_tval_write,
3244       .resetfn = gt_sec_timer_reset,
3245     },
3246     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3247       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3248       .type = ARM_CP_IO, .access = PL1_RW,
3249       .accessfn = gt_stimer_access,
3250       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3251       .resetvalue = 0,
3252       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3253     },
3254     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3255       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3256       .type = ARM_CP_IO, .access = PL1_RW,
3257       .accessfn = gt_stimer_access,
3258       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3259       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3260     },
3261 };
3262 
3263 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3264                                  bool isread)
3265 {
3266     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3267         return CP_ACCESS_TRAP;
3268     }
3269     return CP_ACCESS_OK;
3270 }
3271 
3272 #else
3273 
3274 /*
3275  * In user-mode most of the generic timer registers are inaccessible
3276  * however modern kernels (4.12+) allow access to cntvct_el0
3277  */
3278 
3279 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3280 {
3281     ARMCPU *cpu = env_archcpu(env);
3282 
3283     /*
3284      * Currently we have no support for QEMUTimer in linux-user so we
3285      * can't call gt_get_countervalue(env), instead we directly
3286      * call the lower level functions.
3287      */
3288     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3289 }
3290 
3291 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3292     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3293       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3294       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3295       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3296       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3297     },
3298     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3299       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3300       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3301       .readfn = gt_virt_cnt_read,
3302     },
3303 };
3304 
3305 #endif
3306 
3307 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3308 {
3309     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3310         raw_write(env, ri, value);
3311     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3312         raw_write(env, ri, value & 0xfffff6ff);
3313     } else {
3314         raw_write(env, ri, value & 0xfffff1ff);
3315     }
3316 }
3317 
3318 #ifndef CONFIG_USER_ONLY
3319 /* get_phys_addr() isn't present for user-mode-only targets */
3320 
3321 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3322                                  bool isread)
3323 {
3324     if (ri->opc2 & 4) {
3325         /*
3326          * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3327          * Secure EL1 (which can only happen if EL3 is AArch64).
3328          * They are simply UNDEF if executed from NS EL1.
3329          * They function normally from EL2 or EL3.
3330          */
3331         if (arm_current_el(env) == 1) {
3332             if (arm_is_secure_below_el3(env)) {
3333                 if (env->cp15.scr_el3 & SCR_EEL2) {
3334                     return CP_ACCESS_TRAP_EL2;
3335                 }
3336                 return CP_ACCESS_TRAP_EL3;
3337             }
3338             return CP_ACCESS_TRAP_UNCATEGORIZED;
3339         }
3340     }
3341     return CP_ACCESS_OK;
3342 }
3343 
3344 #ifdef CONFIG_TCG
3345 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3346                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
3347                              bool is_secure)
3348 {
3349     bool ret;
3350     uint64_t par64;
3351     bool format64 = false;
3352     ARMMMUFaultInfo fi = {};
3353     GetPhysAddrResult res = {};
3354 
3355     ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx,
3356                                     is_secure, &res, &fi);
3357 
3358     /*
3359      * ATS operations only do S1 or S1+S2 translations, so we never
3360      * have to deal with the ARMCacheAttrs format for S2 only.
3361      */
3362     assert(!res.cacheattrs.is_s2_format);
3363 
3364     if (ret) {
3365         /*
3366          * Some kinds of translation fault must cause exceptions rather
3367          * than being reported in the PAR.
3368          */
3369         int current_el = arm_current_el(env);
3370         int target_el;
3371         uint32_t syn, fsr, fsc;
3372         bool take_exc = false;
3373 
3374         if (fi.s1ptw && current_el == 1
3375             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3376             /*
3377              * Synchronous stage 2 fault on an access made as part of the
3378              * translation table walk for AT S1E0* or AT S1E1* insn
3379              * executed from NS EL1. If this is a synchronous external abort
3380              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3381              * to EL3. Otherwise the fault is taken as an exception to EL2,
3382              * and HPFAR_EL2 holds the faulting IPA.
3383              */
3384             if (fi.type == ARMFault_SyncExternalOnWalk &&
3385                 (env->cp15.scr_el3 & SCR_EA)) {
3386                 target_el = 3;
3387             } else {
3388                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3389                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3390                     env->cp15.hpfar_el2 |= HPFAR_NS;
3391                 }
3392                 target_el = 2;
3393             }
3394             take_exc = true;
3395         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3396             /*
3397              * Synchronous external aborts during a translation table walk
3398              * are taken as Data Abort exceptions.
3399              */
3400             if (fi.stage2) {
3401                 if (current_el == 3) {
3402                     target_el = 3;
3403                 } else {
3404                     target_el = 2;
3405                 }
3406             } else {
3407                 target_el = exception_target_el(env);
3408             }
3409             take_exc = true;
3410         }
3411 
3412         if (take_exc) {
3413             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3414             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3415                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3416                 fsr = arm_fi_to_lfsc(&fi);
3417                 fsc = extract32(fsr, 0, 6);
3418             } else {
3419                 fsr = arm_fi_to_sfsc(&fi);
3420                 fsc = 0x3f;
3421             }
3422             /*
3423              * Report exception with ESR indicating a fault due to a
3424              * translation table walk for a cache maintenance instruction.
3425              */
3426             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3427                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3428             env->exception.vaddress = value;
3429             env->exception.fsr = fsr;
3430             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3431         }
3432     }
3433 
3434     if (is_a64(env)) {
3435         format64 = true;
3436     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3437         /*
3438          * ATS1Cxx:
3439          * * TTBCR.EAE determines whether the result is returned using the
3440          *   32-bit or the 64-bit PAR format
3441          * * Instructions executed in Hyp mode always use the 64bit format
3442          *
3443          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3444          * * The Non-secure TTBCR.EAE bit is set to 1
3445          * * The implementation includes EL2, and the value of HCR.VM is 1
3446          *
3447          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3448          *
3449          * ATS1Hx always uses the 64bit format.
3450          */
3451         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3452 
3453         if (arm_feature(env, ARM_FEATURE_EL2)) {
3454             if (mmu_idx == ARMMMUIdx_E10_0 ||
3455                 mmu_idx == ARMMMUIdx_E10_1 ||
3456                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3457                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3458             } else {
3459                 format64 |= arm_current_el(env) == 2;
3460             }
3461         }
3462     }
3463 
3464     if (format64) {
3465         /* Create a 64-bit PAR */
3466         par64 = (1 << 11); /* LPAE bit always set */
3467         if (!ret) {
3468             par64 |= res.f.phys_addr & ~0xfffULL;
3469             if (!res.f.attrs.secure) {
3470                 par64 |= (1 << 9); /* NS */
3471             }
3472             par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3473             par64 |= res.cacheattrs.shareability << 7; /* SH */
3474         } else {
3475             uint32_t fsr = arm_fi_to_lfsc(&fi);
3476 
3477             par64 |= 1; /* F */
3478             par64 |= (fsr & 0x3f) << 1; /* FS */
3479             if (fi.stage2) {
3480                 par64 |= (1 << 9); /* S */
3481             }
3482             if (fi.s1ptw) {
3483                 par64 |= (1 << 8); /* PTW */
3484             }
3485         }
3486     } else {
3487         /*
3488          * fsr is a DFSR/IFSR value for the short descriptor
3489          * translation table format (with WnR always clear).
3490          * Convert it to a 32-bit PAR.
3491          */
3492         if (!ret) {
3493             /* We do not set any attribute bits in the PAR */
3494             if (res.f.lg_page_size == 24
3495                 && arm_feature(env, ARM_FEATURE_V7)) {
3496                 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3497             } else {
3498                 par64 = res.f.phys_addr & 0xfffff000;
3499             }
3500             if (!res.f.attrs.secure) {
3501                 par64 |= (1 << 9); /* NS */
3502             }
3503         } else {
3504             uint32_t fsr = arm_fi_to_sfsc(&fi);
3505 
3506             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3507                     ((fsr & 0xf) << 1) | 1;
3508         }
3509     }
3510     return par64;
3511 }
3512 #endif /* CONFIG_TCG */
3513 
3514 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3515 {
3516 #ifdef CONFIG_TCG
3517     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3518     uint64_t par64;
3519     ARMMMUIdx mmu_idx;
3520     int el = arm_current_el(env);
3521     bool secure = arm_is_secure_below_el3(env);
3522 
3523     switch (ri->opc2 & 6) {
3524     case 0:
3525         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3526         switch (el) {
3527         case 3:
3528             mmu_idx = ARMMMUIdx_E3;
3529             secure = true;
3530             break;
3531         case 2:
3532             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3533             /* fall through */
3534         case 1:
3535             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3536                 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3537             } else {
3538                 mmu_idx = ARMMMUIdx_Stage1_E1;
3539             }
3540             break;
3541         default:
3542             g_assert_not_reached();
3543         }
3544         break;
3545     case 2:
3546         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3547         switch (el) {
3548         case 3:
3549             mmu_idx = ARMMMUIdx_E10_0;
3550             secure = true;
3551             break;
3552         case 2:
3553             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3554             mmu_idx = ARMMMUIdx_Stage1_E0;
3555             break;
3556         case 1:
3557             mmu_idx = ARMMMUIdx_Stage1_E0;
3558             break;
3559         default:
3560             g_assert_not_reached();
3561         }
3562         break;
3563     case 4:
3564         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3565         mmu_idx = ARMMMUIdx_E10_1;
3566         secure = false;
3567         break;
3568     case 6:
3569         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3570         mmu_idx = ARMMMUIdx_E10_0;
3571         secure = false;
3572         break;
3573     default:
3574         g_assert_not_reached();
3575     }
3576 
3577     par64 = do_ats_write(env, value, access_type, mmu_idx, secure);
3578 
3579     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3580 #else
3581     /* Handled by hardware accelerator. */
3582     g_assert_not_reached();
3583 #endif /* CONFIG_TCG */
3584 }
3585 
3586 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3587                         uint64_t value)
3588 {
3589 #ifdef CONFIG_TCG
3590     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3591     uint64_t par64;
3592 
3593     /* There is no SecureEL2 for AArch32. */
3594     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false);
3595 
3596     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3597 #else
3598     /* Handled by hardware accelerator. */
3599     g_assert_not_reached();
3600 #endif /* CONFIG_TCG */
3601 }
3602 
3603 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3604                                      bool isread)
3605 {
3606     if (arm_current_el(env) == 3 &&
3607         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3608         return CP_ACCESS_TRAP;
3609     }
3610     return CP_ACCESS_OK;
3611 }
3612 
3613 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3614                         uint64_t value)
3615 {
3616 #ifdef CONFIG_TCG
3617     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3618     ARMMMUIdx mmu_idx;
3619     int secure = arm_is_secure_below_el3(env);
3620     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3621     bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3622 
3623     switch (ri->opc2 & 6) {
3624     case 0:
3625         switch (ri->opc1) {
3626         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3627             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3628                 mmu_idx = regime_e20 ?
3629                           ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3630             } else {
3631                 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3632             }
3633             break;
3634         case 4: /* AT S1E2R, AT S1E2W */
3635             mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3636             break;
3637         case 6: /* AT S1E3R, AT S1E3W */
3638             mmu_idx = ARMMMUIdx_E3;
3639             secure = true;
3640             break;
3641         default:
3642             g_assert_not_reached();
3643         }
3644         break;
3645     case 2: /* AT S1E0R, AT S1E0W */
3646         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3647         break;
3648     case 4: /* AT S12E1R, AT S12E1W */
3649         mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3650         break;
3651     case 6: /* AT S12E0R, AT S12E0W */
3652         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3653         break;
3654     default:
3655         g_assert_not_reached();
3656     }
3657 
3658     env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3659                                        mmu_idx, secure);
3660 #else
3661     /* Handled by hardware accelerator. */
3662     g_assert_not_reached();
3663 #endif /* CONFIG_TCG */
3664 }
3665 #endif
3666 
3667 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3668     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3669       .access = PL1_RW, .resetvalue = 0,
3670       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3671                              offsetoflow32(CPUARMState, cp15.par_ns) },
3672       .writefn = par_write },
3673 #ifndef CONFIG_USER_ONLY
3674     /* This underdecoding is safe because the reginfo is NO_RAW. */
3675     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3676       .access = PL1_W, .accessfn = ats_access,
3677       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3678 #endif
3679 };
3680 
3681 /* Return basic MPU access permission bits.  */
3682 static uint32_t simple_mpu_ap_bits(uint32_t val)
3683 {
3684     uint32_t ret;
3685     uint32_t mask;
3686     int i;
3687     ret = 0;
3688     mask = 3;
3689     for (i = 0; i < 16; i += 2) {
3690         ret |= (val >> i) & mask;
3691         mask <<= 2;
3692     }
3693     return ret;
3694 }
3695 
3696 /* Pad basic MPU access permission bits to extended format.  */
3697 static uint32_t extended_mpu_ap_bits(uint32_t val)
3698 {
3699     uint32_t ret;
3700     uint32_t mask;
3701     int i;
3702     ret = 0;
3703     mask = 3;
3704     for (i = 0; i < 16; i += 2) {
3705         ret |= (val & mask) << i;
3706         mask <<= 2;
3707     }
3708     return ret;
3709 }
3710 
3711 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3712                                  uint64_t value)
3713 {
3714     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3715 }
3716 
3717 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3718 {
3719     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3720 }
3721 
3722 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3723                                  uint64_t value)
3724 {
3725     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3726 }
3727 
3728 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3729 {
3730     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3731 }
3732 
3733 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3734 {
3735     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3736 
3737     if (!u32p) {
3738         return 0;
3739     }
3740 
3741     u32p += env->pmsav7.rnr[M_REG_NS];
3742     return *u32p;
3743 }
3744 
3745 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3746                          uint64_t value)
3747 {
3748     ARMCPU *cpu = env_archcpu(env);
3749     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3750 
3751     if (!u32p) {
3752         return;
3753     }
3754 
3755     u32p += env->pmsav7.rnr[M_REG_NS];
3756     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3757     *u32p = value;
3758 }
3759 
3760 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3761                               uint64_t value)
3762 {
3763     ARMCPU *cpu = env_archcpu(env);
3764     uint32_t nrgs = cpu->pmsav7_dregion;
3765 
3766     if (value >= nrgs) {
3767         qemu_log_mask(LOG_GUEST_ERROR,
3768                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3769                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3770         return;
3771     }
3772 
3773     raw_write(env, ri, value);
3774 }
3775 
3776 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3777                           uint64_t value)
3778 {
3779     ARMCPU *cpu = env_archcpu(env);
3780 
3781     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3782     env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3783 }
3784 
3785 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3786 {
3787     return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3788 }
3789 
3790 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3791                           uint64_t value)
3792 {
3793     ARMCPU *cpu = env_archcpu(env);
3794 
3795     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3796     env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3797 }
3798 
3799 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3800 {
3801     return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3802 }
3803 
3804 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3805                            uint64_t value)
3806 {
3807     ARMCPU *cpu = env_archcpu(env);
3808 
3809     /*
3810      * Ignore writes that would select not implemented region.
3811      * This is architecturally UNPREDICTABLE.
3812      */
3813     if (value >= cpu->pmsav7_dregion) {
3814         return;
3815     }
3816 
3817     env->pmsav7.rnr[M_REG_NS] = value;
3818 }
3819 
3820 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3821                           uint64_t value)
3822 {
3823     ARMCPU *cpu = env_archcpu(env);
3824 
3825     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3826     env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3827 }
3828 
3829 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3830 {
3831     return env->pmsav8.hprbar[env->pmsav8.hprselr];
3832 }
3833 
3834 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3835                           uint64_t value)
3836 {
3837     ARMCPU *cpu = env_archcpu(env);
3838 
3839     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3840     env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3841 }
3842 
3843 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3844 {
3845     return env->pmsav8.hprlar[env->pmsav8.hprselr];
3846 }
3847 
3848 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3849                           uint64_t value)
3850 {
3851     uint32_t n;
3852     uint32_t bit;
3853     ARMCPU *cpu = env_archcpu(env);
3854 
3855     /* Ignore writes to unimplemented regions */
3856     int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3857     value &= MAKE_64BIT_MASK(0, rmax);
3858 
3859     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3860 
3861     /* Register alias is only valid for first 32 indexes */
3862     for (n = 0; n < rmax; ++n) {
3863         bit = extract32(value, n, 1);
3864         env->pmsav8.hprlar[n] = deposit32(
3865                     env->pmsav8.hprlar[n], 0, 1, bit);
3866     }
3867 }
3868 
3869 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3870 {
3871     uint32_t n;
3872     uint32_t result = 0x0;
3873     ARMCPU *cpu = env_archcpu(env);
3874 
3875     /* Register alias is only valid for first 32 indexes */
3876     for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3877         if (env->pmsav8.hprlar[n] & 0x1) {
3878             result |= (0x1 << n);
3879         }
3880     }
3881     return result;
3882 }
3883 
3884 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3885                            uint64_t value)
3886 {
3887     ARMCPU *cpu = env_archcpu(env);
3888 
3889     /*
3890      * Ignore writes that would select not implemented region.
3891      * This is architecturally UNPREDICTABLE.
3892      */
3893     if (value >= cpu->pmsav8r_hdregion) {
3894         return;
3895     }
3896 
3897     env->pmsav8.hprselr = value;
3898 }
3899 
3900 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3901                           uint64_t value)
3902 {
3903     ARMCPU *cpu = env_archcpu(env);
3904     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3905                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3906 
3907     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3908 
3909     if (ri->opc1 & 4) {
3910         if (index >= cpu->pmsav8r_hdregion) {
3911             return;
3912         }
3913         if (ri->opc2 & 0x1) {
3914             env->pmsav8.hprlar[index] = value;
3915         } else {
3916             env->pmsav8.hprbar[index] = value;
3917         }
3918     } else {
3919         if (index >= cpu->pmsav7_dregion) {
3920             return;
3921         }
3922         if (ri->opc2 & 0x1) {
3923             env->pmsav8.rlar[M_REG_NS][index] = value;
3924         } else {
3925             env->pmsav8.rbar[M_REG_NS][index] = value;
3926         }
3927     }
3928 }
3929 
3930 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3931 {
3932     ARMCPU *cpu = env_archcpu(env);
3933     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3934                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3935 
3936     if (ri->opc1 & 4) {
3937         if (index >= cpu->pmsav8r_hdregion) {
3938             return 0x0;
3939         }
3940         if (ri->opc2 & 0x1) {
3941             return env->pmsav8.hprlar[index];
3942         } else {
3943             return env->pmsav8.hprbar[index];
3944         }
3945     } else {
3946         if (index >= cpu->pmsav7_dregion) {
3947             return 0x0;
3948         }
3949         if (ri->opc2 & 0x1) {
3950             return env->pmsav8.rlar[M_REG_NS][index];
3951         } else {
3952             return env->pmsav8.rbar[M_REG_NS][index];
3953         }
3954     }
3955 }
3956 
3957 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
3958     { .name = "PRBAR",
3959       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
3960       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3961       .accessfn = access_tvm_trvm,
3962       .readfn = prbar_read, .writefn = prbar_write },
3963     { .name = "PRLAR",
3964       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
3965       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3966       .accessfn = access_tvm_trvm,
3967       .readfn = prlar_read, .writefn = prlar_write },
3968     { .name = "PRSELR", .resetvalue = 0,
3969       .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
3970       .access = PL1_RW, .accessfn = access_tvm_trvm,
3971       .writefn = prselr_write,
3972       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
3973     { .name = "HPRBAR", .resetvalue = 0,
3974       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
3975       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3976       .readfn = hprbar_read, .writefn = hprbar_write },
3977     { .name = "HPRLAR",
3978       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
3979       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3980       .readfn = hprlar_read, .writefn = hprlar_write },
3981     { .name = "HPRSELR", .resetvalue = 0,
3982       .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
3983       .access = PL2_RW,
3984       .writefn = hprselr_write,
3985       .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
3986     { .name = "HPRENR",
3987       .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
3988       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3989       .readfn = hprenr_read, .writefn = hprenr_write },
3990 };
3991 
3992 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3993     /*
3994      * Reset for all these registers is handled in arm_cpu_reset(),
3995      * because the PMSAv7 is also used by M-profile CPUs, which do
3996      * not register cpregs but still need the state to be reset.
3997      */
3998     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3999       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4000       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4001       .readfn = pmsav7_read, .writefn = pmsav7_write,
4002       .resetfn = arm_cp_reset_ignore },
4003     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4004       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4005       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4006       .readfn = pmsav7_read, .writefn = pmsav7_write,
4007       .resetfn = arm_cp_reset_ignore },
4008     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4009       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4010       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4011       .readfn = pmsav7_read, .writefn = pmsav7_write,
4012       .resetfn = arm_cp_reset_ignore },
4013     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4014       .access = PL1_RW,
4015       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4016       .writefn = pmsav7_rgnr_write,
4017       .resetfn = arm_cp_reset_ignore },
4018 };
4019 
4020 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4021     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4022       .access = PL1_RW, .type = ARM_CP_ALIAS,
4023       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4024       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4025     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4026       .access = PL1_RW, .type = ARM_CP_ALIAS,
4027       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4028       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4029     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4030       .access = PL1_RW,
4031       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4032       .resetvalue = 0, },
4033     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4034       .access = PL1_RW,
4035       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4036       .resetvalue = 0, },
4037     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4038       .access = PL1_RW,
4039       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4040     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4041       .access = PL1_RW,
4042       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4043     /* Protection region base and size registers */
4044     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4045       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4046       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4047     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4048       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4049       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4050     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4051       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4052       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4053     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4054       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4055       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4056     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4057       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4058       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4059     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4060       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4061       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4062     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4063       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4064       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4065     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4066       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4067       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4068 };
4069 
4070 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4071                              uint64_t value)
4072 {
4073     ARMCPU *cpu = env_archcpu(env);
4074 
4075     if (!arm_feature(env, ARM_FEATURE_V8)) {
4076         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4077             /*
4078              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4079              * using Long-descriptor translation table format
4080              */
4081             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4082         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4083             /*
4084              * In an implementation that includes the Security Extensions
4085              * TTBCR has additional fields PD0 [4] and PD1 [5] for
4086              * Short-descriptor translation table format.
4087              */
4088             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4089         } else {
4090             value &= TTBCR_N;
4091         }
4092     }
4093 
4094     if (arm_feature(env, ARM_FEATURE_LPAE)) {
4095         /*
4096          * With LPAE the TTBCR could result in a change of ASID
4097          * via the TTBCR.A1 bit, so do a TLB flush.
4098          */
4099         tlb_flush(CPU(cpu));
4100     }
4101     raw_write(env, ri, value);
4102 }
4103 
4104 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4105                                uint64_t value)
4106 {
4107     ARMCPU *cpu = env_archcpu(env);
4108 
4109     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4110     tlb_flush(CPU(cpu));
4111     raw_write(env, ri, value);
4112 }
4113 
4114 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4115                             uint64_t value)
4116 {
4117     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4118     if (cpreg_field_is_64bit(ri) &&
4119         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4120         ARMCPU *cpu = env_archcpu(env);
4121         tlb_flush(CPU(cpu));
4122     }
4123     raw_write(env, ri, value);
4124 }
4125 
4126 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4127                                     uint64_t value)
4128 {
4129     /*
4130      * If we are running with E2&0 regime, then an ASID is active.
4131      * Flush if that might be changing.  Note we're not checking
4132      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4133      * holds the active ASID, only checking the field that might.
4134      */
4135     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4136         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4137         uint16_t mask = ARMMMUIdxBit_E20_2 |
4138                         ARMMMUIdxBit_E20_2_PAN |
4139                         ARMMMUIdxBit_E20_0;
4140         tlb_flush_by_mmuidx(env_cpu(env), mask);
4141     }
4142     raw_write(env, ri, value);
4143 }
4144 
4145 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4146                         uint64_t value)
4147 {
4148     ARMCPU *cpu = env_archcpu(env);
4149     CPUState *cs = CPU(cpu);
4150 
4151     /*
4152      * A change in VMID to the stage2 page table (Stage2) invalidates
4153      * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4154      */
4155     if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4156         tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4157     }
4158     raw_write(env, ri, value);
4159 }
4160 
4161 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4162     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4163       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4164       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4165                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4166     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4167       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4168       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4169                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4170     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4171       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4172       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4173                              offsetof(CPUARMState, cp15.dfar_ns) } },
4174     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4175       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4176       .access = PL1_RW, .accessfn = access_tvm_trvm,
4177       .fgt = FGT_FAR_EL1,
4178       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4179       .resetvalue = 0, },
4180 };
4181 
4182 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4183     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4184       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4185       .access = PL1_RW, .accessfn = access_tvm_trvm,
4186       .fgt = FGT_ESR_EL1,
4187       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4188     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4189       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4190       .access = PL1_RW, .accessfn = access_tvm_trvm,
4191       .fgt = FGT_TTBR0_EL1,
4192       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4193       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4194                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4195     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4196       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4197       .access = PL1_RW, .accessfn = access_tvm_trvm,
4198       .fgt = FGT_TTBR1_EL1,
4199       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4200       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4201                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4202     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4203       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4204       .access = PL1_RW, .accessfn = access_tvm_trvm,
4205       .fgt = FGT_TCR_EL1,
4206       .writefn = vmsa_tcr_el12_write,
4207       .raw_writefn = raw_write,
4208       .resetvalue = 0,
4209       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4210     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4211       .access = PL1_RW, .accessfn = access_tvm_trvm,
4212       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4213       .raw_writefn = raw_write,
4214       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4215                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4216 };
4217 
4218 /*
4219  * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4220  * qemu tlbs nor adjusting cached masks.
4221  */
4222 static const ARMCPRegInfo ttbcr2_reginfo = {
4223     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4224     .access = PL1_RW, .accessfn = access_tvm_trvm,
4225     .type = ARM_CP_ALIAS,
4226     .bank_fieldoffsets = {
4227         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4228         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4229     },
4230 };
4231 
4232 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4233                                 uint64_t value)
4234 {
4235     env->cp15.c15_ticonfig = value & 0xe7;
4236     /* The OS_TYPE bit in this register changes the reported CPUID! */
4237     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4238         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4239 }
4240 
4241 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4242                                 uint64_t value)
4243 {
4244     env->cp15.c15_threadid = value & 0xffff;
4245 }
4246 
4247 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4248                            uint64_t value)
4249 {
4250     /* Wait-for-interrupt (deprecated) */
4251     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4252 }
4253 
4254 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4255                                   uint64_t value)
4256 {
4257     /*
4258      * On OMAP there are registers indicating the max/min index of dcache lines
4259      * containing a dirty line; cache flush operations have to reset these.
4260      */
4261     env->cp15.c15_i_max = 0x000;
4262     env->cp15.c15_i_min = 0xff0;
4263 }
4264 
4265 static const ARMCPRegInfo omap_cp_reginfo[] = {
4266     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4267       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4268       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4269       .resetvalue = 0, },
4270     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4271       .access = PL1_RW, .type = ARM_CP_NOP },
4272     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4273       .access = PL1_RW,
4274       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4275       .writefn = omap_ticonfig_write },
4276     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4277       .access = PL1_RW,
4278       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4279     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4280       .access = PL1_RW, .resetvalue = 0xff0,
4281       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4282     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4283       .access = PL1_RW,
4284       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4285       .writefn = omap_threadid_write },
4286     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4287       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4288       .type = ARM_CP_NO_RAW,
4289       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4290     /*
4291      * TODO: Peripheral port remap register:
4292      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4293      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4294      * when MMU is off.
4295      */
4296     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4297       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4298       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4299       .writefn = omap_cachemaint_write },
4300     { .name = "C9", .cp = 15, .crn = 9,
4301       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4302       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4303 };
4304 
4305 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4306                               uint64_t value)
4307 {
4308     env->cp15.c15_cpar = value & 0x3fff;
4309 }
4310 
4311 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4312     { .name = "XSCALE_CPAR",
4313       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4314       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4315       .writefn = xscale_cpar_write, },
4316     { .name = "XSCALE_AUXCR",
4317       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4318       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4319       .resetvalue = 0, },
4320     /*
4321      * XScale specific cache-lockdown: since we have no cache we NOP these
4322      * and hope the guest does not really rely on cache behaviour.
4323      */
4324     { .name = "XSCALE_LOCK_ICACHE_LINE",
4325       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4326       .access = PL1_W, .type = ARM_CP_NOP },
4327     { .name = "XSCALE_UNLOCK_ICACHE",
4328       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4329       .access = PL1_W, .type = ARM_CP_NOP },
4330     { .name = "XSCALE_DCACHE_LOCK",
4331       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4332       .access = PL1_RW, .type = ARM_CP_NOP },
4333     { .name = "XSCALE_UNLOCK_DCACHE",
4334       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4335       .access = PL1_W, .type = ARM_CP_NOP },
4336 };
4337 
4338 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4339     /*
4340      * RAZ/WI the whole crn=15 space, when we don't have a more specific
4341      * implementation of this implementation-defined space.
4342      * Ideally this should eventually disappear in favour of actually
4343      * implementing the correct behaviour for all cores.
4344      */
4345     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4346       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4347       .access = PL1_RW,
4348       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4349       .resetvalue = 0 },
4350 };
4351 
4352 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4353     /* Cache status: RAZ because we have no cache so it's always clean */
4354     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4355       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4356       .resetvalue = 0 },
4357 };
4358 
4359 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4360     /* We never have a block transfer operation in progress */
4361     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4362       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4363       .resetvalue = 0 },
4364     /* The cache ops themselves: these all NOP for QEMU */
4365     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4366       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4367     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4368       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4369     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4370       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4371     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4372       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4373     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4374       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4375     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4376       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4377 };
4378 
4379 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4380     /*
4381      * The cache test-and-clean instructions always return (1 << 30)
4382      * to indicate that there are no dirty cache lines.
4383      */
4384     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4385       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4386       .resetvalue = (1 << 30) },
4387     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4388       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4389       .resetvalue = (1 << 30) },
4390 };
4391 
4392 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4393     /* Ignore ReadBuffer accesses */
4394     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4395       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4396       .access = PL1_RW, .resetvalue = 0,
4397       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4398 };
4399 
4400 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4401 {
4402     unsigned int cur_el = arm_current_el(env);
4403 
4404     if (arm_is_el2_enabled(env) && cur_el == 1) {
4405         return env->cp15.vpidr_el2;
4406     }
4407     return raw_read(env, ri);
4408 }
4409 
4410 static uint64_t mpidr_read_val(CPUARMState *env)
4411 {
4412     ARMCPU *cpu = env_archcpu(env);
4413     uint64_t mpidr = cpu->mp_affinity;
4414 
4415     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4416         mpidr |= (1U << 31);
4417         /*
4418          * Cores which are uniprocessor (non-coherent)
4419          * but still implement the MP extensions set
4420          * bit 30. (For instance, Cortex-R5).
4421          */
4422         if (cpu->mp_is_up) {
4423             mpidr |= (1u << 30);
4424         }
4425     }
4426     return mpidr;
4427 }
4428 
4429 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4430 {
4431     unsigned int cur_el = arm_current_el(env);
4432 
4433     if (arm_is_el2_enabled(env) && cur_el == 1) {
4434         return env->cp15.vmpidr_el2;
4435     }
4436     return mpidr_read_val(env);
4437 }
4438 
4439 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4440     /* NOP AMAIR0/1 */
4441     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4442       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4443       .access = PL1_RW, .accessfn = access_tvm_trvm,
4444       .fgt = FGT_AMAIR_EL1,
4445       .type = ARM_CP_CONST, .resetvalue = 0 },
4446     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4447     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4448       .access = PL1_RW, .accessfn = access_tvm_trvm,
4449       .type = ARM_CP_CONST, .resetvalue = 0 },
4450     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4451       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4452       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4453                              offsetof(CPUARMState, cp15.par_ns)} },
4454     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4455       .access = PL1_RW, .accessfn = access_tvm_trvm,
4456       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4457       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4458                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4459       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4460     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4461       .access = PL1_RW, .accessfn = access_tvm_trvm,
4462       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4463       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4464                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4465       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4466 };
4467 
4468 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4469 {
4470     return vfp_get_fpcr(env);
4471 }
4472 
4473 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4474                             uint64_t value)
4475 {
4476     vfp_set_fpcr(env, value);
4477 }
4478 
4479 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4480 {
4481     return vfp_get_fpsr(env);
4482 }
4483 
4484 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4485                             uint64_t value)
4486 {
4487     vfp_set_fpsr(env, value);
4488 }
4489 
4490 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4491                                        bool isread)
4492 {
4493     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4494         return CP_ACCESS_TRAP;
4495     }
4496     return CP_ACCESS_OK;
4497 }
4498 
4499 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4500                             uint64_t value)
4501 {
4502     env->daif = value & PSTATE_DAIF;
4503 }
4504 
4505 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4506 {
4507     return env->pstate & PSTATE_PAN;
4508 }
4509 
4510 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4511                            uint64_t value)
4512 {
4513     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4514 }
4515 
4516 static const ARMCPRegInfo pan_reginfo = {
4517     .name = "PAN", .state = ARM_CP_STATE_AA64,
4518     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4519     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4520     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4521 };
4522 
4523 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4524 {
4525     return env->pstate & PSTATE_UAO;
4526 }
4527 
4528 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4529                            uint64_t value)
4530 {
4531     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4532 }
4533 
4534 static const ARMCPRegInfo uao_reginfo = {
4535     .name = "UAO", .state = ARM_CP_STATE_AA64,
4536     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4537     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4538     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4539 };
4540 
4541 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4542 {
4543     return env->pstate & PSTATE_DIT;
4544 }
4545 
4546 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4547                            uint64_t value)
4548 {
4549     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4550 }
4551 
4552 static const ARMCPRegInfo dit_reginfo = {
4553     .name = "DIT", .state = ARM_CP_STATE_AA64,
4554     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4555     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4556     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4557 };
4558 
4559 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4560 {
4561     return env->pstate & PSTATE_SSBS;
4562 }
4563 
4564 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4565                            uint64_t value)
4566 {
4567     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4568 }
4569 
4570 static const ARMCPRegInfo ssbs_reginfo = {
4571     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4572     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4573     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4574     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4575 };
4576 
4577 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4578                                               const ARMCPRegInfo *ri,
4579                                               bool isread)
4580 {
4581     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4582     switch (arm_current_el(env)) {
4583     case 0:
4584         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4585         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4586             return CP_ACCESS_TRAP;
4587         }
4588         /* fall through */
4589     case 1:
4590         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4591         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4592             return CP_ACCESS_TRAP_EL2;
4593         }
4594         break;
4595     }
4596     return CP_ACCESS_OK;
4597 }
4598 
4599 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4600 {
4601     /* Cache invalidate/clean to Point of Unification... */
4602     switch (arm_current_el(env)) {
4603     case 0:
4604         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4605         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4606             return CP_ACCESS_TRAP;
4607         }
4608         /* fall through */
4609     case 1:
4610         /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
4611         if (arm_hcr_el2_eff(env) & hcrflags) {
4612             return CP_ACCESS_TRAP_EL2;
4613         }
4614         break;
4615     }
4616     return CP_ACCESS_OK;
4617 }
4618 
4619 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4620                                    bool isread)
4621 {
4622     return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4623 }
4624 
4625 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4626                                   bool isread)
4627 {
4628     return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4629 }
4630 
4631 /*
4632  * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4633  * Page D4-1736 (DDI0487A.b)
4634  */
4635 
4636 static int vae1_tlbmask(CPUARMState *env)
4637 {
4638     uint64_t hcr = arm_hcr_el2_eff(env);
4639     uint16_t mask;
4640 
4641     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4642         mask = ARMMMUIdxBit_E20_2 |
4643                ARMMMUIdxBit_E20_2_PAN |
4644                ARMMMUIdxBit_E20_0;
4645     } else {
4646         mask = ARMMMUIdxBit_E10_1 |
4647                ARMMMUIdxBit_E10_1_PAN |
4648                ARMMMUIdxBit_E10_0;
4649     }
4650     return mask;
4651 }
4652 
4653 /* Return 56 if TBI is enabled, 64 otherwise. */
4654 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4655                               uint64_t addr)
4656 {
4657     uint64_t tcr = regime_tcr(env, mmu_idx);
4658     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4659     int select = extract64(addr, 55, 1);
4660 
4661     return (tbi >> select) & 1 ? 56 : 64;
4662 }
4663 
4664 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4665 {
4666     uint64_t hcr = arm_hcr_el2_eff(env);
4667     ARMMMUIdx mmu_idx;
4668 
4669     /* Only the regime of the mmu_idx below is significant. */
4670     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4671         mmu_idx = ARMMMUIdx_E20_0;
4672     } else {
4673         mmu_idx = ARMMMUIdx_E10_0;
4674     }
4675 
4676     return tlbbits_for_regime(env, mmu_idx, addr);
4677 }
4678 
4679 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4680                                       uint64_t value)
4681 {
4682     CPUState *cs = env_cpu(env);
4683     int mask = vae1_tlbmask(env);
4684 
4685     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4686 }
4687 
4688 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4689                                     uint64_t value)
4690 {
4691     CPUState *cs = env_cpu(env);
4692     int mask = vae1_tlbmask(env);
4693 
4694     if (tlb_force_broadcast(env)) {
4695         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4696     } else {
4697         tlb_flush_by_mmuidx(cs, mask);
4698     }
4699 }
4700 
4701 static int e2_tlbmask(CPUARMState *env)
4702 {
4703     return (ARMMMUIdxBit_E20_0 |
4704             ARMMMUIdxBit_E20_2 |
4705             ARMMMUIdxBit_E20_2_PAN |
4706             ARMMMUIdxBit_E2);
4707 }
4708 
4709 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4710                                   uint64_t value)
4711 {
4712     CPUState *cs = env_cpu(env);
4713     int mask = alle1_tlbmask(env);
4714 
4715     tlb_flush_by_mmuidx(cs, mask);
4716 }
4717 
4718 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4719                                   uint64_t value)
4720 {
4721     CPUState *cs = env_cpu(env);
4722     int mask = e2_tlbmask(env);
4723 
4724     tlb_flush_by_mmuidx(cs, mask);
4725 }
4726 
4727 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4728                                   uint64_t value)
4729 {
4730     ARMCPU *cpu = env_archcpu(env);
4731     CPUState *cs = CPU(cpu);
4732 
4733     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4734 }
4735 
4736 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4737                                     uint64_t value)
4738 {
4739     CPUState *cs = env_cpu(env);
4740     int mask = alle1_tlbmask(env);
4741 
4742     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4743 }
4744 
4745 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4746                                     uint64_t value)
4747 {
4748     CPUState *cs = env_cpu(env);
4749     int mask = e2_tlbmask(env);
4750 
4751     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4752 }
4753 
4754 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4755                                     uint64_t value)
4756 {
4757     CPUState *cs = env_cpu(env);
4758 
4759     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4760 }
4761 
4762 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4763                                  uint64_t value)
4764 {
4765     /*
4766      * Invalidate by VA, EL2
4767      * Currently handles both VAE2 and VALE2, since we don't support
4768      * flush-last-level-only.
4769      */
4770     CPUState *cs = env_cpu(env);
4771     int mask = e2_tlbmask(env);
4772     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4773 
4774     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4775 }
4776 
4777 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4778                                  uint64_t value)
4779 {
4780     /*
4781      * Invalidate by VA, EL3
4782      * Currently handles both VAE3 and VALE3, since we don't support
4783      * flush-last-level-only.
4784      */
4785     ARMCPU *cpu = env_archcpu(env);
4786     CPUState *cs = CPU(cpu);
4787     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4788 
4789     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4790 }
4791 
4792 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4793                                    uint64_t value)
4794 {
4795     CPUState *cs = env_cpu(env);
4796     int mask = vae1_tlbmask(env);
4797     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4798     int bits = vae1_tlbbits(env, pageaddr);
4799 
4800     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4801 }
4802 
4803 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4804                                  uint64_t value)
4805 {
4806     /*
4807      * Invalidate by VA, EL1&0 (AArch64 version).
4808      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4809      * since we don't support flush-for-specific-ASID-only or
4810      * flush-last-level-only.
4811      */
4812     CPUState *cs = env_cpu(env);
4813     int mask = vae1_tlbmask(env);
4814     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4815     int bits = vae1_tlbbits(env, pageaddr);
4816 
4817     if (tlb_force_broadcast(env)) {
4818         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4819     } else {
4820         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4821     }
4822 }
4823 
4824 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4825                                    uint64_t value)
4826 {
4827     CPUState *cs = env_cpu(env);
4828     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4829     int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr);
4830 
4831     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4832                                                   ARMMMUIdxBit_E2, bits);
4833 }
4834 
4835 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4836                                    uint64_t value)
4837 {
4838     CPUState *cs = env_cpu(env);
4839     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4840     int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4841 
4842     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4843                                                   ARMMMUIdxBit_E3, bits);
4844 }
4845 
4846 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4847 {
4848     /*
4849      * The MSB of value is the NS field, which only applies if SEL2
4850      * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4851      */
4852     return (value >= 0
4853             && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4854             && arm_is_secure_below_el3(env)
4855             ? ARMMMUIdxBit_Stage2_S
4856             : ARMMMUIdxBit_Stage2);
4857 }
4858 
4859 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4860                                     uint64_t value)
4861 {
4862     CPUState *cs = env_cpu(env);
4863     int mask = ipas2e1_tlbmask(env, value);
4864     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4865 
4866     if (tlb_force_broadcast(env)) {
4867         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4868     } else {
4869         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4870     }
4871 }
4872 
4873 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4874                                       uint64_t value)
4875 {
4876     CPUState *cs = env_cpu(env);
4877     int mask = ipas2e1_tlbmask(env, value);
4878     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4879 
4880     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4881 }
4882 
4883 #ifdef TARGET_AARCH64
4884 typedef struct {
4885     uint64_t base;
4886     uint64_t length;
4887 } TLBIRange;
4888 
4889 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4890 {
4891     /*
4892      * Note that the TLBI range TG field encoding differs from both
4893      * TG0 and TG1 encodings.
4894      */
4895     switch (tg) {
4896     case 1:
4897         return Gran4K;
4898     case 2:
4899         return Gran16K;
4900     case 3:
4901         return Gran64K;
4902     default:
4903         return GranInvalid;
4904     }
4905 }
4906 
4907 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4908                                      uint64_t value)
4909 {
4910     unsigned int page_size_granule, page_shift, num, scale, exponent;
4911     /* Extract one bit to represent the va selector in use. */
4912     uint64_t select = sextract64(value, 36, 1);
4913     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
4914     TLBIRange ret = { };
4915     ARMGranuleSize gran;
4916 
4917     page_size_granule = extract64(value, 46, 2);
4918     gran = tlbi_range_tg_to_gran_size(page_size_granule);
4919 
4920     /* The granule encoded in value must match the granule in use. */
4921     if (gran != param.gran) {
4922         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4923                       page_size_granule);
4924         return ret;
4925     }
4926 
4927     page_shift = arm_granule_bits(gran);
4928     num = extract64(value, 39, 5);
4929     scale = extract64(value, 44, 2);
4930     exponent = (5 * scale) + 1;
4931 
4932     ret.length = (num + 1) << (exponent + page_shift);
4933 
4934     if (param.select) {
4935         ret.base = sextract64(value, 0, 37);
4936     } else {
4937         ret.base = extract64(value, 0, 37);
4938     }
4939     if (param.ds) {
4940         /*
4941          * With DS=1, BaseADDR is always shifted 16 so that it is able
4942          * to address all 52 va bits.  The input address is perforce
4943          * aligned on a 64k boundary regardless of translation granule.
4944          */
4945         page_shift = 16;
4946     }
4947     ret.base <<= page_shift;
4948 
4949     return ret;
4950 }
4951 
4952 static void do_rvae_write(CPUARMState *env, uint64_t value,
4953                           int idxmap, bool synced)
4954 {
4955     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4956     TLBIRange range;
4957     int bits;
4958 
4959     range = tlbi_aa64_get_range(env, one_idx, value);
4960     bits = tlbbits_for_regime(env, one_idx, range.base);
4961 
4962     if (synced) {
4963         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4964                                                   range.base,
4965                                                   range.length,
4966                                                   idxmap,
4967                                                   bits);
4968     } else {
4969         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4970                                   range.length, idxmap, bits);
4971     }
4972 }
4973 
4974 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4975                                   const ARMCPRegInfo *ri,
4976                                   uint64_t value)
4977 {
4978     /*
4979      * Invalidate by VA range, EL1&0.
4980      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4981      * since we don't support flush-for-specific-ASID-only or
4982      * flush-last-level-only.
4983      */
4984 
4985     do_rvae_write(env, value, vae1_tlbmask(env),
4986                   tlb_force_broadcast(env));
4987 }
4988 
4989 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4990                                     const ARMCPRegInfo *ri,
4991                                     uint64_t value)
4992 {
4993     /*
4994      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4995      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4996      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4997      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4998      * shareable specific flushes.
4999      */
5000 
5001     do_rvae_write(env, value, vae1_tlbmask(env), true);
5002 }
5003 
5004 static int vae2_tlbmask(CPUARMState *env)
5005 {
5006     return ARMMMUIdxBit_E2;
5007 }
5008 
5009 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5010                                   const ARMCPRegInfo *ri,
5011                                   uint64_t value)
5012 {
5013     /*
5014      * Invalidate by VA range, EL2.
5015      * Currently handles all of RVAE2 and RVALE2,
5016      * since we don't support flush-for-specific-ASID-only or
5017      * flush-last-level-only.
5018      */
5019 
5020     do_rvae_write(env, value, vae2_tlbmask(env),
5021                   tlb_force_broadcast(env));
5022 
5023 
5024 }
5025 
5026 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5027                                     const ARMCPRegInfo *ri,
5028                                     uint64_t value)
5029 {
5030     /*
5031      * Invalidate by VA range, Inner/Outer Shareable, EL2.
5032      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5033      * since we don't support flush-for-specific-ASID-only,
5034      * flush-last-level-only or inner/outer shareable specific flushes.
5035      */
5036 
5037     do_rvae_write(env, value, vae2_tlbmask(env), true);
5038 
5039 }
5040 
5041 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5042                                   const ARMCPRegInfo *ri,
5043                                   uint64_t value)
5044 {
5045     /*
5046      * Invalidate by VA range, EL3.
5047      * Currently handles all of RVAE3 and RVALE3,
5048      * since we don't support flush-for-specific-ASID-only or
5049      * flush-last-level-only.
5050      */
5051 
5052     do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5053 }
5054 
5055 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5056                                     const ARMCPRegInfo *ri,
5057                                     uint64_t value)
5058 {
5059     /*
5060      * Invalidate by VA range, EL3, Inner/Outer Shareable.
5061      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5062      * since we don't support flush-for-specific-ASID-only,
5063      * flush-last-level-only or inner/outer specific flushes.
5064      */
5065 
5066     do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5067 }
5068 
5069 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5070                                      uint64_t value)
5071 {
5072     do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5073                   tlb_force_broadcast(env));
5074 }
5075 
5076 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5077                                        const ARMCPRegInfo *ri,
5078                                        uint64_t value)
5079 {
5080     do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5081 }
5082 #endif
5083 
5084 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5085                                       bool isread)
5086 {
5087     int cur_el = arm_current_el(env);
5088 
5089     if (cur_el < 2) {
5090         uint64_t hcr = arm_hcr_el2_eff(env);
5091 
5092         if (cur_el == 0) {
5093             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5094                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5095                     return CP_ACCESS_TRAP_EL2;
5096                 }
5097             } else {
5098                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5099                     return CP_ACCESS_TRAP;
5100                 }
5101                 if (hcr & HCR_TDZ) {
5102                     return CP_ACCESS_TRAP_EL2;
5103                 }
5104             }
5105         } else if (hcr & HCR_TDZ) {
5106             return CP_ACCESS_TRAP_EL2;
5107         }
5108     }
5109     return CP_ACCESS_OK;
5110 }
5111 
5112 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5113 {
5114     ARMCPU *cpu = env_archcpu(env);
5115     int dzp_bit = 1 << 4;
5116 
5117     /* DZP indicates whether DC ZVA access is allowed */
5118     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5119         dzp_bit = 0;
5120     }
5121     return cpu->dcz_blocksize | dzp_bit;
5122 }
5123 
5124 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5125                                     bool isread)
5126 {
5127     if (!(env->pstate & PSTATE_SP)) {
5128         /*
5129          * Access to SP_EL0 is undefined if it's being used as
5130          * the stack pointer.
5131          */
5132         return CP_ACCESS_TRAP_UNCATEGORIZED;
5133     }
5134     return CP_ACCESS_OK;
5135 }
5136 
5137 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5138 {
5139     return env->pstate & PSTATE_SP;
5140 }
5141 
5142 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5143 {
5144     update_spsel(env, val);
5145 }
5146 
5147 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5148                         uint64_t value)
5149 {
5150     ARMCPU *cpu = env_archcpu(env);
5151 
5152     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5153         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5154         value &= ~SCTLR_M;
5155     }
5156 
5157     /* ??? Lots of these bits are not implemented.  */
5158 
5159     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5160         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5161             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5162         } else {
5163             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5164                        SCTLR_ATA0 | SCTLR_ATA);
5165         }
5166     }
5167 
5168     if (raw_read(env, ri) == value) {
5169         /*
5170          * Skip the TLB flush if nothing actually changed; Linux likes
5171          * to do a lot of pointless SCTLR writes.
5172          */
5173         return;
5174     }
5175 
5176     raw_write(env, ri, value);
5177 
5178     /* This may enable/disable the MMU, so do a TLB flush.  */
5179     tlb_flush(CPU(cpu));
5180 
5181     if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5182         /*
5183          * Normally we would always end the TB on an SCTLR write; see the
5184          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5185          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5186          * of hflags from the translator, so do it here.
5187          */
5188         arm_rebuild_hflags(env);
5189     }
5190 }
5191 
5192 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5193                            uint64_t value)
5194 {
5195     /*
5196      * Some MDCR_EL3 bits affect whether PMU counters are running:
5197      * if we are trying to change any of those then we must
5198      * bracket this update with PMU start/finish calls.
5199      */
5200     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5201 
5202     if (pmu_op) {
5203         pmu_op_start(env);
5204     }
5205     env->cp15.mdcr_el3 = value;
5206     if (pmu_op) {
5207         pmu_op_finish(env);
5208     }
5209 }
5210 
5211 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5212                        uint64_t value)
5213 {
5214     /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5215     mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5216 }
5217 
5218 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5219                            uint64_t value)
5220 {
5221     /*
5222      * Some MDCR_EL2 bits affect whether PMU counters are running:
5223      * if we are trying to change any of those then we must
5224      * bracket this update with PMU start/finish calls.
5225      */
5226     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5227 
5228     if (pmu_op) {
5229         pmu_op_start(env);
5230     }
5231     env->cp15.mdcr_el2 = value;
5232     if (pmu_op) {
5233         pmu_op_finish(env);
5234     }
5235 }
5236 
5237 static const ARMCPRegInfo v8_cp_reginfo[] = {
5238     /*
5239      * Minimal set of EL0-visible registers. This will need to be expanded
5240      * significantly for system emulation of AArch64 CPUs.
5241      */
5242     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5243       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5244       .access = PL0_RW, .type = ARM_CP_NZCV },
5245     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5246       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5247       .type = ARM_CP_NO_RAW,
5248       .access = PL0_RW, .accessfn = aa64_daif_access,
5249       .fieldoffset = offsetof(CPUARMState, daif),
5250       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5251     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5252       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5253       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5254       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5255     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5256       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5257       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5258       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5259     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5260       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5261       .access = PL0_R, .type = ARM_CP_NO_RAW,
5262       .fgt = FGT_DCZID_EL0,
5263       .readfn = aa64_dczid_read },
5264     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5265       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5266       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5267 #ifndef CONFIG_USER_ONLY
5268       /* Avoid overhead of an access check that always passes in user-mode */
5269       .accessfn = aa64_zva_access,
5270       .fgt = FGT_DCZVA,
5271 #endif
5272     },
5273     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5274       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5275       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5276     /* Cache ops: all NOPs since we don't emulate caches */
5277     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5278       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5279       .access = PL1_W, .type = ARM_CP_NOP,
5280       .fgt = FGT_ICIALLUIS,
5281       .accessfn = access_ticab },
5282     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5283       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5284       .access = PL1_W, .type = ARM_CP_NOP,
5285       .fgt = FGT_ICIALLU,
5286       .accessfn = access_tocu },
5287     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5288       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5289       .access = PL0_W, .type = ARM_CP_NOP,
5290       .fgt = FGT_ICIVAU,
5291       .accessfn = access_tocu },
5292     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5293       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5294       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5295       .fgt = FGT_DCIVAC,
5296       .type = ARM_CP_NOP },
5297     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5298       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5299       .fgt = FGT_DCISW,
5300       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5301     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5302       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5303       .access = PL0_W, .type = ARM_CP_NOP,
5304       .fgt = FGT_DCCVAC,
5305       .accessfn = aa64_cacheop_poc_access },
5306     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5307       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5308       .fgt = FGT_DCCSW,
5309       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5310     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5311       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5312       .access = PL0_W, .type = ARM_CP_NOP,
5313       .fgt = FGT_DCCVAU,
5314       .accessfn = access_tocu },
5315     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5316       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5317       .access = PL0_W, .type = ARM_CP_NOP,
5318       .fgt = FGT_DCCIVAC,
5319       .accessfn = aa64_cacheop_poc_access },
5320     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5321       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5322       .fgt = FGT_DCCISW,
5323       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5324     /* TLBI operations */
5325     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5326       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5327       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5328       .fgt = FGT_TLBIVMALLE1IS,
5329       .writefn = tlbi_aa64_vmalle1is_write },
5330     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5331       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5332       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5333       .fgt = FGT_TLBIVAE1IS,
5334       .writefn = tlbi_aa64_vae1is_write },
5335     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5336       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5337       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5338       .fgt = FGT_TLBIASIDE1IS,
5339       .writefn = tlbi_aa64_vmalle1is_write },
5340     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5341       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5342       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5343       .fgt = FGT_TLBIVAAE1IS,
5344       .writefn = tlbi_aa64_vae1is_write },
5345     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5346       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5347       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5348       .fgt = FGT_TLBIVALE1IS,
5349       .writefn = tlbi_aa64_vae1is_write },
5350     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5351       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5352       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5353       .fgt = FGT_TLBIVAALE1IS,
5354       .writefn = tlbi_aa64_vae1is_write },
5355     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5356       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5357       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5358       .fgt = FGT_TLBIVMALLE1,
5359       .writefn = tlbi_aa64_vmalle1_write },
5360     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5361       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5362       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5363       .fgt = FGT_TLBIVAE1,
5364       .writefn = tlbi_aa64_vae1_write },
5365     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5366       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5367       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5368       .fgt = FGT_TLBIASIDE1,
5369       .writefn = tlbi_aa64_vmalle1_write },
5370     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5371       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5372       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5373       .fgt = FGT_TLBIVAAE1,
5374       .writefn = tlbi_aa64_vae1_write },
5375     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5376       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5377       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5378       .fgt = FGT_TLBIVALE1,
5379       .writefn = tlbi_aa64_vae1_write },
5380     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5381       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5382       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5383       .fgt = FGT_TLBIVAALE1,
5384       .writefn = tlbi_aa64_vae1_write },
5385     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5386       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5387       .access = PL2_W, .type = ARM_CP_NO_RAW,
5388       .writefn = tlbi_aa64_ipas2e1is_write },
5389     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5390       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5391       .access = PL2_W, .type = ARM_CP_NO_RAW,
5392       .writefn = tlbi_aa64_ipas2e1is_write },
5393     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5394       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5395       .access = PL2_W, .type = ARM_CP_NO_RAW,
5396       .writefn = tlbi_aa64_alle1is_write },
5397     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5398       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5399       .access = PL2_W, .type = ARM_CP_NO_RAW,
5400       .writefn = tlbi_aa64_alle1is_write },
5401     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5402       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5403       .access = PL2_W, .type = ARM_CP_NO_RAW,
5404       .writefn = tlbi_aa64_ipas2e1_write },
5405     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5406       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5407       .access = PL2_W, .type = ARM_CP_NO_RAW,
5408       .writefn = tlbi_aa64_ipas2e1_write },
5409     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5410       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5411       .access = PL2_W, .type = ARM_CP_NO_RAW,
5412       .writefn = tlbi_aa64_alle1_write },
5413     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5414       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5415       .access = PL2_W, .type = ARM_CP_NO_RAW,
5416       .writefn = tlbi_aa64_alle1is_write },
5417 #ifndef CONFIG_USER_ONLY
5418     /* 64 bit address translation operations */
5419     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5420       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5421       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5422       .fgt = FGT_ATS1E1R,
5423       .writefn = ats_write64 },
5424     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5425       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5426       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5427       .fgt = FGT_ATS1E1W,
5428       .writefn = ats_write64 },
5429     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5430       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5431       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5432       .fgt = FGT_ATS1E0R,
5433       .writefn = ats_write64 },
5434     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5435       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5436       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5437       .fgt = FGT_ATS1E0W,
5438       .writefn = ats_write64 },
5439     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5440       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5441       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5442       .writefn = ats_write64 },
5443     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5444       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5445       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5446       .writefn = ats_write64 },
5447     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5448       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5449       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5450       .writefn = ats_write64 },
5451     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5452       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5453       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5454       .writefn = ats_write64 },
5455     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5456     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5457       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5458       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5459       .writefn = ats_write64 },
5460     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5461       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5462       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5463       .writefn = ats_write64 },
5464     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5465       .type = ARM_CP_ALIAS,
5466       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5467       .access = PL1_RW, .resetvalue = 0,
5468       .fgt = FGT_PAR_EL1,
5469       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5470       .writefn = par_write },
5471 #endif
5472     /* TLB invalidate last level of translation table walk */
5473     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5474       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5475       .writefn = tlbimva_is_write },
5476     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5477       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5478       .writefn = tlbimvaa_is_write },
5479     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5480       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5481       .writefn = tlbimva_write },
5482     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5483       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5484       .writefn = tlbimvaa_write },
5485     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5486       .type = ARM_CP_NO_RAW, .access = PL2_W,
5487       .writefn = tlbimva_hyp_write },
5488     { .name = "TLBIMVALHIS",
5489       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5490       .type = ARM_CP_NO_RAW, .access = PL2_W,
5491       .writefn = tlbimva_hyp_is_write },
5492     { .name = "TLBIIPAS2",
5493       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5494       .type = ARM_CP_NO_RAW, .access = PL2_W,
5495       .writefn = tlbiipas2_hyp_write },
5496     { .name = "TLBIIPAS2IS",
5497       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5498       .type = ARM_CP_NO_RAW, .access = PL2_W,
5499       .writefn = tlbiipas2is_hyp_write },
5500     { .name = "TLBIIPAS2L",
5501       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5502       .type = ARM_CP_NO_RAW, .access = PL2_W,
5503       .writefn = tlbiipas2_hyp_write },
5504     { .name = "TLBIIPAS2LIS",
5505       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5506       .type = ARM_CP_NO_RAW, .access = PL2_W,
5507       .writefn = tlbiipas2is_hyp_write },
5508     /* 32 bit cache operations */
5509     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5510       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5511     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5512       .type = ARM_CP_NOP, .access = PL1_W },
5513     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5514       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5515     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5516       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5517     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5518       .type = ARM_CP_NOP, .access = PL1_W },
5519     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5520       .type = ARM_CP_NOP, .access = PL1_W },
5521     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5522       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5523     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5524       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5525     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5526       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5527     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5528       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5529     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5530       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5531     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5532       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5533     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5534       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5535     /* MMU Domain access control / MPU write buffer control */
5536     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5537       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5538       .writefn = dacr_write, .raw_writefn = raw_write,
5539       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5540                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5541     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5542       .type = ARM_CP_ALIAS,
5543       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5544       .access = PL1_RW,
5545       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5546     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5547       .type = ARM_CP_ALIAS,
5548       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5549       .access = PL1_RW,
5550       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5551     /*
5552      * We rely on the access checks not allowing the guest to write to the
5553      * state field when SPSel indicates that it's being used as the stack
5554      * pointer.
5555      */
5556     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5557       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5558       .access = PL1_RW, .accessfn = sp_el0_access,
5559       .type = ARM_CP_ALIAS,
5560       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5561     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5562       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5563       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5564       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5565     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5566       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5567       .type = ARM_CP_NO_RAW,
5568       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5569     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5570       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5571       .access = PL2_RW,
5572       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5573       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5574     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5575       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5576       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5577       .writefn = dacr_write, .raw_writefn = raw_write,
5578       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5579     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5580       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5581       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5582       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5583     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5584       .type = ARM_CP_ALIAS,
5585       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5586       .access = PL2_RW,
5587       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5588     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5589       .type = ARM_CP_ALIAS,
5590       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5591       .access = PL2_RW,
5592       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5593     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5594       .type = ARM_CP_ALIAS,
5595       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5596       .access = PL2_RW,
5597       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5598     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5599       .type = ARM_CP_ALIAS,
5600       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5601       .access = PL2_RW,
5602       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5603     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5604       .type = ARM_CP_IO,
5605       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5606       .resetvalue = 0,
5607       .access = PL3_RW,
5608       .writefn = mdcr_el3_write,
5609       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5610     { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5611       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5612       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5613       .writefn = sdcr_write,
5614       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5615 };
5616 
5617 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5618 {
5619     ARMCPU *cpu = env_archcpu(env);
5620 
5621     if (arm_feature(env, ARM_FEATURE_V8)) {
5622         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5623     } else {
5624         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5625     }
5626 
5627     if (arm_feature(env, ARM_FEATURE_EL3)) {
5628         valid_mask &= ~HCR_HCD;
5629     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5630         /*
5631          * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5632          * However, if we're using the SMC PSCI conduit then QEMU is
5633          * effectively acting like EL3 firmware and so the guest at
5634          * EL2 should retain the ability to prevent EL1 from being
5635          * able to make SMC calls into the ersatz firmware, so in
5636          * that case HCR.TSC should be read/write.
5637          */
5638         valid_mask &= ~HCR_TSC;
5639     }
5640 
5641     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5642         if (cpu_isar_feature(aa64_vh, cpu)) {
5643             valid_mask |= HCR_E2H;
5644         }
5645         if (cpu_isar_feature(aa64_ras, cpu)) {
5646             valid_mask |= HCR_TERR | HCR_TEA;
5647         }
5648         if (cpu_isar_feature(aa64_lor, cpu)) {
5649             valid_mask |= HCR_TLOR;
5650         }
5651         if (cpu_isar_feature(aa64_pauth, cpu)) {
5652             valid_mask |= HCR_API | HCR_APK;
5653         }
5654         if (cpu_isar_feature(aa64_mte, cpu)) {
5655             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5656         }
5657         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5658             valid_mask |= HCR_ENSCXT;
5659         }
5660         if (cpu_isar_feature(aa64_fwb, cpu)) {
5661             valid_mask |= HCR_FWB;
5662         }
5663         if (cpu_isar_feature(aa64_rme, cpu)) {
5664             valid_mask |= HCR_GPF;
5665         }
5666     }
5667 
5668     if (cpu_isar_feature(any_evt, cpu)) {
5669         valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5670     } else if (cpu_isar_feature(any_half_evt, cpu)) {
5671         valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5672     }
5673 
5674     /* Clear RES0 bits.  */
5675     value &= valid_mask;
5676 
5677     /*
5678      * These bits change the MMU setup:
5679      * HCR_VM enables stage 2 translation
5680      * HCR_PTW forbids certain page-table setups
5681      * HCR_DC disables stage1 and enables stage2 translation
5682      * HCR_DCT enables tagging on (disabled) stage1 translation
5683      * HCR_FWB changes the interpretation of stage2 descriptor bits
5684      */
5685     if ((env->cp15.hcr_el2 ^ value) &
5686         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5687         tlb_flush(CPU(cpu));
5688     }
5689     env->cp15.hcr_el2 = value;
5690 
5691     /*
5692      * Updates to VI and VF require us to update the status of
5693      * virtual interrupts, which are the logical OR of these bits
5694      * and the state of the input lines from the GIC. (This requires
5695      * that we have the iothread lock, which is done by marking the
5696      * reginfo structs as ARM_CP_IO.)
5697      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5698      * possible for it to be taken immediately, because VIRQ and
5699      * VFIQ are masked unless running at EL0 or EL1, and HCR
5700      * can only be written at EL2.
5701      */
5702     g_assert(qemu_mutex_iothread_locked());
5703     arm_cpu_update_virq(cpu);
5704     arm_cpu_update_vfiq(cpu);
5705     arm_cpu_update_vserr(cpu);
5706 }
5707 
5708 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5709 {
5710     do_hcr_write(env, value, 0);
5711 }
5712 
5713 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5714                           uint64_t value)
5715 {
5716     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5717     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5718     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5719 }
5720 
5721 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5722                          uint64_t value)
5723 {
5724     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5725     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5726     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5727 }
5728 
5729 /*
5730  * Return the effective value of HCR_EL2, at the given security state.
5731  * Bits that are not included here:
5732  * RW       (read from SCR_EL3.RW as needed)
5733  */
5734 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure)
5735 {
5736     uint64_t ret = env->cp15.hcr_el2;
5737 
5738     if (!arm_is_el2_enabled_secstate(env, secure)) {
5739         /*
5740          * "This register has no effect if EL2 is not enabled in the
5741          * current Security state".  This is ARMv8.4-SecEL2 speak for
5742          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5743          *
5744          * Prior to that, the language was "In an implementation that
5745          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5746          * as if this field is 0 for all purposes other than a direct
5747          * read or write access of HCR_EL2".  With lots of enumeration
5748          * on a per-field basis.  In current QEMU, this is condition
5749          * is arm_is_secure_below_el3.
5750          *
5751          * Since the v8.4 language applies to the entire register, and
5752          * appears to be backward compatible, use that.
5753          */
5754         return 0;
5755     }
5756 
5757     /*
5758      * For a cpu that supports both aarch64 and aarch32, we can set bits
5759      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5760      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5761      */
5762     if (!arm_el_is_aa64(env, 2)) {
5763         uint64_t aa32_valid;
5764 
5765         /*
5766          * These bits are up-to-date as of ARMv8.6.
5767          * For HCR, it's easiest to list just the 2 bits that are invalid.
5768          * For HCR2, list those that are valid.
5769          */
5770         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5771         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5772                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5773         ret &= aa32_valid;
5774     }
5775 
5776     if (ret & HCR_TGE) {
5777         /* These bits are up-to-date as of ARMv8.6.  */
5778         if (ret & HCR_E2H) {
5779             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5780                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5781                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5782                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5783                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5784                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5785         } else {
5786             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5787         }
5788         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5789                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5790                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5791                  HCR_TLOR);
5792     }
5793 
5794     return ret;
5795 }
5796 
5797 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5798 {
5799     if (arm_feature(env, ARM_FEATURE_M)) {
5800         return 0;
5801     }
5802     return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env));
5803 }
5804 
5805 /*
5806  * Corresponds to ARM pseudocode function ELIsInHost().
5807  */
5808 bool el_is_in_host(CPUARMState *env, int el)
5809 {
5810     uint64_t mask;
5811 
5812     /*
5813      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5814      * Perform the simplest bit tests first, and validate EL2 afterward.
5815      */
5816     if (el & 1) {
5817         return false; /* EL1 or EL3 */
5818     }
5819 
5820     /*
5821      * Note that hcr_write() checks isar_feature_aa64_vh(),
5822      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5823      */
5824     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5825     if ((env->cp15.hcr_el2 & mask) != mask) {
5826         return false;
5827     }
5828 
5829     /* TGE and/or E2H set: double check those bits are currently legal. */
5830     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5831 }
5832 
5833 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5834                        uint64_t value)
5835 {
5836     uint64_t valid_mask = 0;
5837 
5838     /* No features adding bits to HCRX are implemented. */
5839 
5840     /* Clear RES0 bits.  */
5841     env->cp15.hcrx_el2 = value & valid_mask;
5842 }
5843 
5844 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5845                                   bool isread)
5846 {
5847     if (arm_current_el(env) < 3
5848         && arm_feature(env, ARM_FEATURE_EL3)
5849         && !(env->cp15.scr_el3 & SCR_HXEN)) {
5850         return CP_ACCESS_TRAP_EL3;
5851     }
5852     return CP_ACCESS_OK;
5853 }
5854 
5855 static const ARMCPRegInfo hcrx_el2_reginfo = {
5856     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5857     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5858     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5859     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5860 };
5861 
5862 /* Return the effective value of HCRX_EL2.  */
5863 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5864 {
5865     /*
5866      * The bits in this register behave as 0 for all purposes other than
5867      * direct reads of the register if:
5868      *   - EL2 is not enabled in the current security state,
5869      *   - SCR_EL3.HXEn is 0.
5870      */
5871     if (!arm_is_el2_enabled(env)
5872         || (arm_feature(env, ARM_FEATURE_EL3)
5873             && !(env->cp15.scr_el3 & SCR_HXEN))) {
5874         return 0;
5875     }
5876     return env->cp15.hcrx_el2;
5877 }
5878 
5879 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5880                            uint64_t value)
5881 {
5882     /*
5883      * For A-profile AArch32 EL3, if NSACR.CP10
5884      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5885      */
5886     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5887         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5888         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5889         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5890     }
5891     env->cp15.cptr_el[2] = value;
5892 }
5893 
5894 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5895 {
5896     /*
5897      * For A-profile AArch32 EL3, if NSACR.CP10
5898      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5899      */
5900     uint64_t value = env->cp15.cptr_el[2];
5901 
5902     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5903         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5904         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5905     }
5906     return value;
5907 }
5908 
5909 static const ARMCPRegInfo el2_cp_reginfo[] = {
5910     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5911       .type = ARM_CP_IO,
5912       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5913       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5914       .writefn = hcr_write, .raw_writefn = raw_write },
5915     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5916       .type = ARM_CP_ALIAS | ARM_CP_IO,
5917       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5918       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5919       .writefn = hcr_writelow },
5920     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5921       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5922       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5923     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5924       .type = ARM_CP_ALIAS,
5925       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5926       .access = PL2_RW,
5927       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5928     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5929       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5930       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5931     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5932       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5933       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5934     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5935       .type = ARM_CP_ALIAS,
5936       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5937       .access = PL2_RW,
5938       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5939     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5940       .type = ARM_CP_ALIAS,
5941       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5942       .access = PL2_RW,
5943       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5944     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5945       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5946       .access = PL2_RW, .writefn = vbar_write,
5947       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5948       .resetvalue = 0 },
5949     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5950       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5951       .access = PL3_RW, .type = ARM_CP_ALIAS,
5952       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5953     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5954       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5955       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5956       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5957       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5958     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5959       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5960       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5961       .resetvalue = 0 },
5962     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5963       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5964       .access = PL2_RW, .type = ARM_CP_ALIAS,
5965       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5966     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5967       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5968       .access = PL2_RW, .type = ARM_CP_CONST,
5969       .resetvalue = 0 },
5970     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5971     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5972       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5973       .access = PL2_RW, .type = ARM_CP_CONST,
5974       .resetvalue = 0 },
5975     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5976       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5977       .access = PL2_RW, .type = ARM_CP_CONST,
5978       .resetvalue = 0 },
5979     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5980       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5981       .access = PL2_RW, .type = ARM_CP_CONST,
5982       .resetvalue = 0 },
5983     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5984       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5985       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5986       .raw_writefn = raw_write,
5987       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5988     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5989       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5990       .type = ARM_CP_ALIAS,
5991       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5992       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
5993     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5994       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5995       .access = PL2_RW,
5996       /* no .writefn needed as this can't cause an ASID change */
5997       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5998     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5999       .cp = 15, .opc1 = 6, .crm = 2,
6000       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6001       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6002       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6003       .writefn = vttbr_write, .raw_writefn = raw_write },
6004     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6005       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6006       .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6007       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6008     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6009       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6010       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6011       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6012     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6013       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6014       .access = PL2_RW, .resetvalue = 0,
6015       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6016     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6017       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6018       .access = PL2_RW, .resetvalue = 0,
6019       .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6020       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6021     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6022       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6023       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6024     { .name = "TLBIALLNSNH",
6025       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6026       .type = ARM_CP_NO_RAW, .access = PL2_W,
6027       .writefn = tlbiall_nsnh_write },
6028     { .name = "TLBIALLNSNHIS",
6029       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6030       .type = ARM_CP_NO_RAW, .access = PL2_W,
6031       .writefn = tlbiall_nsnh_is_write },
6032     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6033       .type = ARM_CP_NO_RAW, .access = PL2_W,
6034       .writefn = tlbiall_hyp_write },
6035     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6036       .type = ARM_CP_NO_RAW, .access = PL2_W,
6037       .writefn = tlbiall_hyp_is_write },
6038     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6039       .type = ARM_CP_NO_RAW, .access = PL2_W,
6040       .writefn = tlbimva_hyp_write },
6041     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6042       .type = ARM_CP_NO_RAW, .access = PL2_W,
6043       .writefn = tlbimva_hyp_is_write },
6044     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6045       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6046       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6047       .writefn = tlbi_aa64_alle2_write },
6048     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6049       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6050       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6051       .writefn = tlbi_aa64_vae2_write },
6052     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6053       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6054       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6055       .writefn = tlbi_aa64_vae2_write },
6056     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6057       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6058       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6059       .writefn = tlbi_aa64_alle2is_write },
6060     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6061       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6062       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6063       .writefn = tlbi_aa64_vae2is_write },
6064     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6065       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6066       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6067       .writefn = tlbi_aa64_vae2is_write },
6068 #ifndef CONFIG_USER_ONLY
6069     /*
6070      * Unlike the other EL2-related AT operations, these must
6071      * UNDEF from EL3 if EL2 is not implemented, which is why we
6072      * define them here rather than with the rest of the AT ops.
6073      */
6074     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6075       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6076       .access = PL2_W, .accessfn = at_s1e2_access,
6077       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6078       .writefn = ats_write64 },
6079     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6080       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6081       .access = PL2_W, .accessfn = at_s1e2_access,
6082       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6083       .writefn = ats_write64 },
6084     /*
6085      * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6086      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6087      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6088      * to behave as if SCR.NS was 1.
6089      */
6090     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6091       .access = PL2_W,
6092       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6093     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6094       .access = PL2_W,
6095       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6096     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6097       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6098       /*
6099        * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6100        * reset values as IMPDEF. We choose to reset to 3 to comply with
6101        * both ARMv7 and ARMv8.
6102        */
6103       .access = PL2_RW, .resetvalue = 3,
6104       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6105     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6106       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6107       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6108       .writefn = gt_cntvoff_write,
6109       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6110     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6111       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6112       .writefn = gt_cntvoff_write,
6113       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6114     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6115       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6116       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6117       .type = ARM_CP_IO, .access = PL2_RW,
6118       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6119     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6120       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6121       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6122       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6123     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6124       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6125       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6126       .resetfn = gt_hyp_timer_reset,
6127       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6128     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6129       .type = ARM_CP_IO,
6130       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6131       .access = PL2_RW,
6132       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6133       .resetvalue = 0,
6134       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6135 #endif
6136     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6137       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6138       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6139       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6140     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6141       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6142       .access = PL2_RW,
6143       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6144     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6145       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6146       .access = PL2_RW,
6147       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6148 };
6149 
6150 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6151     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6152       .type = ARM_CP_ALIAS | ARM_CP_IO,
6153       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6154       .access = PL2_RW,
6155       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6156       .writefn = hcr_writehigh },
6157 };
6158 
6159 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6160                                   bool isread)
6161 {
6162     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6163         return CP_ACCESS_OK;
6164     }
6165     return CP_ACCESS_TRAP_UNCATEGORIZED;
6166 }
6167 
6168 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6169     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6170       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6171       .access = PL2_RW, .accessfn = sel2_access,
6172       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6173     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6174       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6175       .access = PL2_RW, .accessfn = sel2_access,
6176       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6177 };
6178 
6179 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6180                                    bool isread)
6181 {
6182     /*
6183      * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6184      * At Secure EL1 it traps to EL3 or EL2.
6185      */
6186     if (arm_current_el(env) == 3) {
6187         return CP_ACCESS_OK;
6188     }
6189     if (arm_is_secure_below_el3(env)) {
6190         if (env->cp15.scr_el3 & SCR_EEL2) {
6191             return CP_ACCESS_TRAP_EL2;
6192         }
6193         return CP_ACCESS_TRAP_EL3;
6194     }
6195     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6196     if (isread) {
6197         return CP_ACCESS_OK;
6198     }
6199     return CP_ACCESS_TRAP_UNCATEGORIZED;
6200 }
6201 
6202 static const ARMCPRegInfo el3_cp_reginfo[] = {
6203     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6204       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6205       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6206       .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6207     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6208       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6209       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6210       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6211       .writefn = scr_write, .raw_writefn = raw_write },
6212     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6213       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6214       .access = PL3_RW, .resetvalue = 0,
6215       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6216     { .name = "SDER",
6217       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6218       .access = PL3_RW, .resetvalue = 0,
6219       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6220     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6221       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6222       .writefn = vbar_write, .resetvalue = 0,
6223       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6224     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6225       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6226       .access = PL3_RW, .resetvalue = 0,
6227       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6228     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6229       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6230       .access = PL3_RW,
6231       /* no .writefn needed as this can't cause an ASID change */
6232       .resetvalue = 0,
6233       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6234     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6235       .type = ARM_CP_ALIAS,
6236       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6237       .access = PL3_RW,
6238       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6239     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6240       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6241       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6242     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6243       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6244       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6245     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6246       .type = ARM_CP_ALIAS,
6247       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6248       .access = PL3_RW,
6249       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6250     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6251       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6252       .access = PL3_RW, .writefn = vbar_write,
6253       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6254       .resetvalue = 0 },
6255     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6256       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6257       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6258       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6259     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6260       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6261       .access = PL3_RW, .resetvalue = 0,
6262       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6263     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6264       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6265       .access = PL3_RW, .type = ARM_CP_CONST,
6266       .resetvalue = 0 },
6267     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6268       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6269       .access = PL3_RW, .type = ARM_CP_CONST,
6270       .resetvalue = 0 },
6271     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6272       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6273       .access = PL3_RW, .type = ARM_CP_CONST,
6274       .resetvalue = 0 },
6275     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6276       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6277       .access = PL3_W, .type = ARM_CP_NO_RAW,
6278       .writefn = tlbi_aa64_alle3is_write },
6279     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6280       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6281       .access = PL3_W, .type = ARM_CP_NO_RAW,
6282       .writefn = tlbi_aa64_vae3is_write },
6283     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6284       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6285       .access = PL3_W, .type = ARM_CP_NO_RAW,
6286       .writefn = tlbi_aa64_vae3is_write },
6287     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6288       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6289       .access = PL3_W, .type = ARM_CP_NO_RAW,
6290       .writefn = tlbi_aa64_alle3_write },
6291     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6292       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6293       .access = PL3_W, .type = ARM_CP_NO_RAW,
6294       .writefn = tlbi_aa64_vae3_write },
6295     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6296       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6297       .access = PL3_W, .type = ARM_CP_NO_RAW,
6298       .writefn = tlbi_aa64_vae3_write },
6299 };
6300 
6301 #ifndef CONFIG_USER_ONLY
6302 /* Test if system register redirection is to occur in the current state.  */
6303 static bool redirect_for_e2h(CPUARMState *env)
6304 {
6305     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6306 }
6307 
6308 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6309 {
6310     CPReadFn *readfn;
6311 
6312     if (redirect_for_e2h(env)) {
6313         /* Switch to the saved EL2 version of the register.  */
6314         ri = ri->opaque;
6315         readfn = ri->readfn;
6316     } else {
6317         readfn = ri->orig_readfn;
6318     }
6319     if (readfn == NULL) {
6320         readfn = raw_read;
6321     }
6322     return readfn(env, ri);
6323 }
6324 
6325 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6326                           uint64_t value)
6327 {
6328     CPWriteFn *writefn;
6329 
6330     if (redirect_for_e2h(env)) {
6331         /* Switch to the saved EL2 version of the register.  */
6332         ri = ri->opaque;
6333         writefn = ri->writefn;
6334     } else {
6335         writefn = ri->orig_writefn;
6336     }
6337     if (writefn == NULL) {
6338         writefn = raw_write;
6339     }
6340     writefn(env, ri, value);
6341 }
6342 
6343 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6344 {
6345     struct E2HAlias {
6346         uint32_t src_key, dst_key, new_key;
6347         const char *src_name, *dst_name, *new_name;
6348         bool (*feature)(const ARMISARegisters *id);
6349     };
6350 
6351 #define K(op0, op1, crn, crm, op2) \
6352     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6353 
6354     static const struct E2HAlias aliases[] = {
6355         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6356           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6357         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6358           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6359         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6360           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6361         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6362           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6363         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6364           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6365         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6366           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6367         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6368           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6369         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6370           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6371         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6372           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6373         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6374           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6375         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6376           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6377         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6378           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6379         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6380           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6381         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6382           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6383         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6384           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6385         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6386           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6387 
6388         /*
6389          * Note that redirection of ZCR is mentioned in the description
6390          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6391          * not in the summary table.
6392          */
6393         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6394           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6395         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
6396           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6397 
6398         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6399           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6400 
6401         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6402           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6403           isar_feature_aa64_scxtnum },
6404 
6405         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6406         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6407     };
6408 #undef K
6409 
6410     size_t i;
6411 
6412     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6413         const struct E2HAlias *a = &aliases[i];
6414         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6415         bool ok;
6416 
6417         if (a->feature && !a->feature(&cpu->isar)) {
6418             continue;
6419         }
6420 
6421         src_reg = g_hash_table_lookup(cpu->cp_regs,
6422                                       (gpointer)(uintptr_t)a->src_key);
6423         dst_reg = g_hash_table_lookup(cpu->cp_regs,
6424                                       (gpointer)(uintptr_t)a->dst_key);
6425         g_assert(src_reg != NULL);
6426         g_assert(dst_reg != NULL);
6427 
6428         /* Cross-compare names to detect typos in the keys.  */
6429         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6430         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6431 
6432         /* None of the core system registers use opaque; we will.  */
6433         g_assert(src_reg->opaque == NULL);
6434 
6435         /* Create alias before redirection so we dup the right data. */
6436         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6437 
6438         new_reg->name = a->new_name;
6439         new_reg->type |= ARM_CP_ALIAS;
6440         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6441         new_reg->access &= PL2_RW | PL3_RW;
6442 
6443         ok = g_hash_table_insert(cpu->cp_regs,
6444                                  (gpointer)(uintptr_t)a->new_key, new_reg);
6445         g_assert(ok);
6446 
6447         src_reg->opaque = dst_reg;
6448         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6449         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6450         if (!src_reg->raw_readfn) {
6451             src_reg->raw_readfn = raw_read;
6452         }
6453         if (!src_reg->raw_writefn) {
6454             src_reg->raw_writefn = raw_write;
6455         }
6456         src_reg->readfn = el2_e2h_read;
6457         src_reg->writefn = el2_e2h_write;
6458     }
6459 }
6460 #endif
6461 
6462 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6463                                      bool isread)
6464 {
6465     int cur_el = arm_current_el(env);
6466 
6467     if (cur_el < 2) {
6468         uint64_t hcr = arm_hcr_el2_eff(env);
6469 
6470         if (cur_el == 0) {
6471             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6472                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6473                     return CP_ACCESS_TRAP_EL2;
6474                 }
6475             } else {
6476                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6477                     return CP_ACCESS_TRAP;
6478                 }
6479                 if (hcr & HCR_TID2) {
6480                     return CP_ACCESS_TRAP_EL2;
6481                 }
6482             }
6483         } else if (hcr & HCR_TID2) {
6484             return CP_ACCESS_TRAP_EL2;
6485         }
6486     }
6487 
6488     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6489         return CP_ACCESS_TRAP_EL2;
6490     }
6491 
6492     return CP_ACCESS_OK;
6493 }
6494 
6495 /*
6496  * Check for traps to RAS registers, which are controlled
6497  * by HCR_EL2.TERR and SCR_EL3.TERR.
6498  */
6499 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6500                                   bool isread)
6501 {
6502     int el = arm_current_el(env);
6503 
6504     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6505         return CP_ACCESS_TRAP_EL2;
6506     }
6507     if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6508         return CP_ACCESS_TRAP_EL3;
6509     }
6510     return CP_ACCESS_OK;
6511 }
6512 
6513 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6514 {
6515     int el = arm_current_el(env);
6516 
6517     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6518         return env->cp15.vdisr_el2;
6519     }
6520     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6521         return 0; /* RAZ/WI */
6522     }
6523     return env->cp15.disr_el1;
6524 }
6525 
6526 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6527 {
6528     int el = arm_current_el(env);
6529 
6530     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6531         env->cp15.vdisr_el2 = val;
6532         return;
6533     }
6534     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6535         return; /* RAZ/WI */
6536     }
6537     env->cp15.disr_el1 = val;
6538 }
6539 
6540 /*
6541  * Minimal RAS implementation with no Error Records.
6542  * Which means that all of the Error Record registers:
6543  *   ERXADDR_EL1
6544  *   ERXCTLR_EL1
6545  *   ERXFR_EL1
6546  *   ERXMISC0_EL1
6547  *   ERXMISC1_EL1
6548  *   ERXMISC2_EL1
6549  *   ERXMISC3_EL1
6550  *   ERXPFGCDN_EL1  (RASv1p1)
6551  *   ERXPFGCTL_EL1  (RASv1p1)
6552  *   ERXPFGF_EL1    (RASv1p1)
6553  *   ERXSTATUS_EL1
6554  * and
6555  *   ERRSELR_EL1
6556  * may generate UNDEFINED, which is the effect we get by not
6557  * listing them at all.
6558  *
6559  * These registers have fine-grained trap bits, but UNDEF-to-EL1
6560  * is higher priority than FGT-to-EL2 so we do not need to list them
6561  * in order to check for an FGT.
6562  */
6563 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6564     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6565       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6566       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6567       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6568     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6569       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6570       .access = PL1_R, .accessfn = access_terr,
6571       .fgt = FGT_ERRIDR_EL1,
6572       .type = ARM_CP_CONST, .resetvalue = 0 },
6573     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6574       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6575       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6576     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6577       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6578       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6579 };
6580 
6581 /*
6582  * Return the exception level to which exceptions should be taken
6583  * via SVEAccessTrap.  This excludes the check for whether the exception
6584  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
6585  * be found by testing 0 < fp_exception_el < sve_exception_el.
6586  *
6587  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
6588  * pseudocode does *not* separate out the FP trap checks, but has them
6589  * all in one function.
6590  */
6591 int sve_exception_el(CPUARMState *env, int el)
6592 {
6593 #ifndef CONFIG_USER_ONLY
6594     if (el <= 1 && !el_is_in_host(env, el)) {
6595         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6596         case 1:
6597             if (el != 0) {
6598                 break;
6599             }
6600             /* fall through */
6601         case 0:
6602         case 2:
6603             return 1;
6604         }
6605     }
6606 
6607     if (el <= 2 && arm_is_el2_enabled(env)) {
6608         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6609         if (env->cp15.hcr_el2 & HCR_E2H) {
6610             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6611             case 1:
6612                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6613                     break;
6614                 }
6615                 /* fall through */
6616             case 0:
6617             case 2:
6618                 return 2;
6619             }
6620         } else {
6621             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6622                 return 2;
6623             }
6624         }
6625     }
6626 
6627     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6628     if (arm_feature(env, ARM_FEATURE_EL3)
6629         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6630         return 3;
6631     }
6632 #endif
6633     return 0;
6634 }
6635 
6636 /*
6637  * Return the exception level to which exceptions should be taken for SME.
6638  * C.f. the ARM pseudocode function CheckSMEAccess.
6639  */
6640 int sme_exception_el(CPUARMState *env, int el)
6641 {
6642 #ifndef CONFIG_USER_ONLY
6643     if (el <= 1 && !el_is_in_host(env, el)) {
6644         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6645         case 1:
6646             if (el != 0) {
6647                 break;
6648             }
6649             /* fall through */
6650         case 0:
6651         case 2:
6652             return 1;
6653         }
6654     }
6655 
6656     if (el <= 2 && arm_is_el2_enabled(env)) {
6657         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6658         if (env->cp15.hcr_el2 & HCR_E2H) {
6659             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6660             case 1:
6661                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6662                     break;
6663                 }
6664                 /* fall through */
6665             case 0:
6666             case 2:
6667                 return 2;
6668             }
6669         } else {
6670             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6671                 return 2;
6672             }
6673         }
6674     }
6675 
6676     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
6677     if (arm_feature(env, ARM_FEATURE_EL3)
6678         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6679         return 3;
6680     }
6681 #endif
6682     return 0;
6683 }
6684 
6685 /*
6686  * Given that SVE is enabled, return the vector length for EL.
6687  */
6688 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6689 {
6690     ARMCPU *cpu = env_archcpu(env);
6691     uint64_t *cr = env->vfp.zcr_el;
6692     uint32_t map = cpu->sve_vq.map;
6693     uint32_t len = ARM_MAX_VQ - 1;
6694 
6695     if (sm) {
6696         cr = env->vfp.smcr_el;
6697         map = cpu->sme_vq.map;
6698     }
6699 
6700     if (el <= 1 && !el_is_in_host(env, el)) {
6701         len = MIN(len, 0xf & (uint32_t)cr[1]);
6702     }
6703     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6704         len = MIN(len, 0xf & (uint32_t)cr[2]);
6705     }
6706     if (arm_feature(env, ARM_FEATURE_EL3)) {
6707         len = MIN(len, 0xf & (uint32_t)cr[3]);
6708     }
6709 
6710     map &= MAKE_64BIT_MASK(0, len + 1);
6711     if (map != 0) {
6712         return 31 - clz32(map);
6713     }
6714 
6715     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6716     assert(sm);
6717     return ctz32(cpu->sme_vq.map);
6718 }
6719 
6720 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6721 {
6722     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6723 }
6724 
6725 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6726                       uint64_t value)
6727 {
6728     int cur_el = arm_current_el(env);
6729     int old_len = sve_vqm1_for_el(env, cur_el);
6730     int new_len;
6731 
6732     /* Bits other than [3:0] are RAZ/WI.  */
6733     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6734     raw_write(env, ri, value & 0xf);
6735 
6736     /*
6737      * Because we arrived here, we know both FP and SVE are enabled;
6738      * otherwise we would have trapped access to the ZCR_ELn register.
6739      */
6740     new_len = sve_vqm1_for_el(env, cur_el);
6741     if (new_len < old_len) {
6742         aarch64_sve_narrow_vq(env, new_len + 1);
6743     }
6744 }
6745 
6746 static const ARMCPRegInfo zcr_reginfo[] = {
6747     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6748       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6749       .access = PL1_RW, .type = ARM_CP_SVE,
6750       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6751       .writefn = zcr_write, .raw_writefn = raw_write },
6752     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6753       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6754       .access = PL2_RW, .type = ARM_CP_SVE,
6755       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6756       .writefn = zcr_write, .raw_writefn = raw_write },
6757     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6758       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6759       .access = PL3_RW, .type = ARM_CP_SVE,
6760       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6761       .writefn = zcr_write, .raw_writefn = raw_write },
6762 };
6763 
6764 #ifdef TARGET_AARCH64
6765 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6766                                     bool isread)
6767 {
6768     int el = arm_current_el(env);
6769 
6770     if (el == 0) {
6771         uint64_t sctlr = arm_sctlr(env, el);
6772         if (!(sctlr & SCTLR_EnTP2)) {
6773             return CP_ACCESS_TRAP;
6774         }
6775     }
6776     /* TODO: FEAT_FGT */
6777     if (el < 3
6778         && arm_feature(env, ARM_FEATURE_EL3)
6779         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6780         return CP_ACCESS_TRAP_EL3;
6781     }
6782     return CP_ACCESS_OK;
6783 }
6784 
6785 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6786                                  bool isread)
6787 {
6788     /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6789     if (arm_current_el(env) < 3
6790         && arm_feature(env, ARM_FEATURE_EL3)
6791         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6792         return CP_ACCESS_TRAP_EL3;
6793     }
6794     return CP_ACCESS_OK;
6795 }
6796 
6797 /* ResetSVEState */
6798 static void arm_reset_sve_state(CPUARMState *env)
6799 {
6800     memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6801     /* Recall that FFR is stored as pregs[16]. */
6802     memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6803     vfp_set_fpcr(env, 0x0800009f);
6804 }
6805 
6806 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6807 {
6808     uint64_t change = (env->svcr ^ new) & mask;
6809 
6810     if (change == 0) {
6811         return;
6812     }
6813     env->svcr ^= change;
6814 
6815     if (change & R_SVCR_SM_MASK) {
6816         arm_reset_sve_state(env);
6817     }
6818 
6819     /*
6820      * ResetSMEState.
6821      *
6822      * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
6823      * on enable: while disabled, the storage is inaccessible and the
6824      * value does not matter.  We're not saving the storage in vmstate
6825      * when disabled either.
6826      */
6827     if (change & new & R_SVCR_ZA_MASK) {
6828         memset(env->zarray, 0, sizeof(env->zarray));
6829     }
6830 
6831     if (tcg_enabled()) {
6832         arm_rebuild_hflags(env);
6833     }
6834 }
6835 
6836 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6837                        uint64_t value)
6838 {
6839     aarch64_set_svcr(env, value, -1);
6840 }
6841 
6842 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6843                        uint64_t value)
6844 {
6845     int cur_el = arm_current_el(env);
6846     int old_len = sve_vqm1_for_el(env, cur_el);
6847     int new_len;
6848 
6849     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6850     value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6851     raw_write(env, ri, value);
6852 
6853     /*
6854      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6855      * when SVL is widened (old values kept, or zeros).  Choose to keep the
6856      * current values for simplicity.  But for QEMU internals, we must still
6857      * apply the narrower SVL to the Zregs and Pregs -- see the comment
6858      * above aarch64_sve_narrow_vq.
6859      */
6860     new_len = sve_vqm1_for_el(env, cur_el);
6861     if (new_len < old_len) {
6862         aarch64_sve_narrow_vq(env, new_len + 1);
6863     }
6864 }
6865 
6866 static const ARMCPRegInfo sme_reginfo[] = {
6867     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6868       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6869       .access = PL0_RW, .accessfn = access_tpidr2,
6870       .fgt = FGT_NTPIDR2_EL0,
6871       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6872     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6873       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6874       .access = PL0_RW, .type = ARM_CP_SME,
6875       .fieldoffset = offsetof(CPUARMState, svcr),
6876       .writefn = svcr_write, .raw_writefn = raw_write },
6877     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6878       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6879       .access = PL1_RW, .type = ARM_CP_SME,
6880       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6881       .writefn = smcr_write, .raw_writefn = raw_write },
6882     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6883       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6884       .access = PL2_RW, .type = ARM_CP_SME,
6885       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6886       .writefn = smcr_write, .raw_writefn = raw_write },
6887     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6888       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6889       .access = PL3_RW, .type = ARM_CP_SME,
6890       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6891       .writefn = smcr_write, .raw_writefn = raw_write },
6892     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6893       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6894       .access = PL1_R, .accessfn = access_aa64_tid1,
6895       /*
6896        * IMPLEMENTOR = 0 (software)
6897        * REVISION    = 0 (implementation defined)
6898        * SMPS        = 0 (no streaming execution priority in QEMU)
6899        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
6900        */
6901       .type = ARM_CP_CONST, .resetvalue = 0, },
6902     /*
6903      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6904      */
6905     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6906       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6907       .access = PL1_RW, .accessfn = access_esm,
6908       .fgt = FGT_NSMPRI_EL1,
6909       .type = ARM_CP_CONST, .resetvalue = 0 },
6910     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6911       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6912       .access = PL2_RW, .accessfn = access_esm,
6913       .type = ARM_CP_CONST, .resetvalue = 0 },
6914 };
6915 
6916 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
6917                                   uint64_t value)
6918 {
6919     CPUState *cs = env_cpu(env);
6920 
6921     tlb_flush(cs);
6922 }
6923 
6924 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6925                         uint64_t value)
6926 {
6927     /* L0GPTSZ is RO; other bits not mentioned are RES0. */
6928     uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
6929         R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
6930         R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
6931 
6932     env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
6933 }
6934 
6935 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
6936 {
6937     env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
6938                                      env_archcpu(env)->reset_l0gptsz);
6939 }
6940 
6941 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
6942                                     uint64_t value)
6943 {
6944     CPUState *cs = env_cpu(env);
6945 
6946     tlb_flush_all_cpus_synced(cs);
6947 }
6948 
6949 static const ARMCPRegInfo rme_reginfo[] = {
6950     { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
6951       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
6952       .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
6953       .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
6954     { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
6955       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
6956       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
6957     { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
6958       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
6959       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
6960     { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
6961       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
6962       .access = PL3_W, .type = ARM_CP_NO_RAW,
6963       .writefn = tlbi_aa64_paall_write },
6964     { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
6965       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
6966       .access = PL3_W, .type = ARM_CP_NO_RAW,
6967       .writefn = tlbi_aa64_paallos_write },
6968     /*
6969      * QEMU does not have a way to invalidate by physical address, thus
6970      * invalidating a range of physical addresses is accomplished by
6971      * flushing all tlb entries in the outer sharable domain,
6972      * just like PAALLOS.
6973      */
6974     { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
6975       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
6976       .access = PL3_W, .type = ARM_CP_NO_RAW,
6977       .writefn = tlbi_aa64_paallos_write },
6978     { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
6979       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
6980       .access = PL3_W, .type = ARM_CP_NO_RAW,
6981       .writefn = tlbi_aa64_paallos_write },
6982     { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
6983       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
6984       .access = PL3_W, .type = ARM_CP_NOP },
6985 };
6986 
6987 static const ARMCPRegInfo rme_mte_reginfo[] = {
6988     { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
6989       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
6990       .access = PL3_W, .type = ARM_CP_NOP },
6991 };
6992 #endif /* TARGET_AARCH64 */
6993 
6994 static void define_pmu_regs(ARMCPU *cpu)
6995 {
6996     /*
6997      * v7 performance monitor control register: same implementor
6998      * field as main ID register, and we implement four counters in
6999      * addition to the cycle count register.
7000      */
7001     unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7002     ARMCPRegInfo pmcr = {
7003         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7004         .access = PL0_RW,
7005         .fgt = FGT_PMCR_EL0,
7006         .type = ARM_CP_IO | ARM_CP_ALIAS,
7007         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7008         .accessfn = pmreg_access, .writefn = pmcr_write,
7009         .raw_writefn = raw_write,
7010     };
7011     ARMCPRegInfo pmcr64 = {
7012         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7013         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7014         .access = PL0_RW, .accessfn = pmreg_access,
7015         .fgt = FGT_PMCR_EL0,
7016         .type = ARM_CP_IO,
7017         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7018         .resetvalue = cpu->isar.reset_pmcr_el0,
7019         .writefn = pmcr_write, .raw_writefn = raw_write,
7020     };
7021 
7022     define_one_arm_cp_reg(cpu, &pmcr);
7023     define_one_arm_cp_reg(cpu, &pmcr64);
7024     for (i = 0; i < pmcrn; i++) {
7025         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7026         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7027         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7028         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7029         ARMCPRegInfo pmev_regs[] = {
7030             { .name = pmevcntr_name, .cp = 15, .crn = 14,
7031               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7032               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7033               .fgt = FGT_PMEVCNTRN_EL0,
7034               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7035               .accessfn = pmreg_access_xevcntr },
7036             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7037               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7038               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7039               .type = ARM_CP_IO,
7040               .fgt = FGT_PMEVCNTRN_EL0,
7041               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7042               .raw_readfn = pmevcntr_rawread,
7043               .raw_writefn = pmevcntr_rawwrite },
7044             { .name = pmevtyper_name, .cp = 15, .crn = 14,
7045               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7046               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7047               .fgt = FGT_PMEVTYPERN_EL0,
7048               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7049               .accessfn = pmreg_access },
7050             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7051               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7052               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7053               .fgt = FGT_PMEVTYPERN_EL0,
7054               .type = ARM_CP_IO,
7055               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7056               .raw_writefn = pmevtyper_rawwrite },
7057         };
7058         define_arm_cp_regs(cpu, pmev_regs);
7059         g_free(pmevcntr_name);
7060         g_free(pmevcntr_el0_name);
7061         g_free(pmevtyper_name);
7062         g_free(pmevtyper_el0_name);
7063     }
7064     if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7065         ARMCPRegInfo v81_pmu_regs[] = {
7066             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7067               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7068               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7069               .fgt = FGT_PMCEIDN_EL0,
7070               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7071             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7072               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7073               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7074               .fgt = FGT_PMCEIDN_EL0,
7075               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7076         };
7077         define_arm_cp_regs(cpu, v81_pmu_regs);
7078     }
7079     if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7080         static const ARMCPRegInfo v84_pmmir = {
7081             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7082             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7083             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7084             .fgt = FGT_PMMIR_EL1,
7085             .resetvalue = 0
7086         };
7087         define_one_arm_cp_reg(cpu, &v84_pmmir);
7088     }
7089 }
7090 
7091 #ifndef CONFIG_USER_ONLY
7092 /*
7093  * We don't know until after realize whether there's a GICv3
7094  * attached, and that is what registers the gicv3 sysregs.
7095  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7096  * at runtime.
7097  */
7098 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7099 {
7100     ARMCPU *cpu = env_archcpu(env);
7101     uint64_t pfr1 = cpu->isar.id_pfr1;
7102 
7103     if (env->gicv3state) {
7104         pfr1 |= 1 << 28;
7105     }
7106     return pfr1;
7107 }
7108 
7109 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7110 {
7111     ARMCPU *cpu = env_archcpu(env);
7112     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7113 
7114     if (env->gicv3state) {
7115         pfr0 |= 1 << 24;
7116     }
7117     return pfr0;
7118 }
7119 #endif
7120 
7121 /*
7122  * Shared logic between LORID and the rest of the LOR* registers.
7123  * Secure state exclusion has already been dealt with.
7124  */
7125 static CPAccessResult access_lor_ns(CPUARMState *env,
7126                                     const ARMCPRegInfo *ri, bool isread)
7127 {
7128     int el = arm_current_el(env);
7129 
7130     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7131         return CP_ACCESS_TRAP_EL2;
7132     }
7133     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7134         return CP_ACCESS_TRAP_EL3;
7135     }
7136     return CP_ACCESS_OK;
7137 }
7138 
7139 static CPAccessResult access_lor_other(CPUARMState *env,
7140                                        const ARMCPRegInfo *ri, bool isread)
7141 {
7142     if (arm_is_secure_below_el3(env)) {
7143         /* Access denied in secure mode.  */
7144         return CP_ACCESS_TRAP;
7145     }
7146     return access_lor_ns(env, ri, isread);
7147 }
7148 
7149 /*
7150  * A trivial implementation of ARMv8.1-LOR leaves all of these
7151  * registers fixed at 0, which indicates that there are zero
7152  * supported Limited Ordering regions.
7153  */
7154 static const ARMCPRegInfo lor_reginfo[] = {
7155     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7156       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7157       .access = PL1_RW, .accessfn = access_lor_other,
7158       .fgt = FGT_LORSA_EL1,
7159       .type = ARM_CP_CONST, .resetvalue = 0 },
7160     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7161       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7162       .access = PL1_RW, .accessfn = access_lor_other,
7163       .fgt = FGT_LOREA_EL1,
7164       .type = ARM_CP_CONST, .resetvalue = 0 },
7165     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7166       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7167       .access = PL1_RW, .accessfn = access_lor_other,
7168       .fgt = FGT_LORN_EL1,
7169       .type = ARM_CP_CONST, .resetvalue = 0 },
7170     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7171       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7172       .access = PL1_RW, .accessfn = access_lor_other,
7173       .fgt = FGT_LORC_EL1,
7174       .type = ARM_CP_CONST, .resetvalue = 0 },
7175     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7176       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7177       .access = PL1_R, .accessfn = access_lor_ns,
7178       .fgt = FGT_LORID_EL1,
7179       .type = ARM_CP_CONST, .resetvalue = 0 },
7180 };
7181 
7182 #ifdef TARGET_AARCH64
7183 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7184                                    bool isread)
7185 {
7186     int el = arm_current_el(env);
7187 
7188     if (el < 2 &&
7189         arm_is_el2_enabled(env) &&
7190         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7191         return CP_ACCESS_TRAP_EL2;
7192     }
7193     if (el < 3 &&
7194         arm_feature(env, ARM_FEATURE_EL3) &&
7195         !(env->cp15.scr_el3 & SCR_APK)) {
7196         return CP_ACCESS_TRAP_EL3;
7197     }
7198     return CP_ACCESS_OK;
7199 }
7200 
7201 static const ARMCPRegInfo pauth_reginfo[] = {
7202     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7203       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7204       .access = PL1_RW, .accessfn = access_pauth,
7205       .fgt = FGT_APDAKEY,
7206       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7207     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7208       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7209       .access = PL1_RW, .accessfn = access_pauth,
7210       .fgt = FGT_APDAKEY,
7211       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7212     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7213       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7214       .access = PL1_RW, .accessfn = access_pauth,
7215       .fgt = FGT_APDBKEY,
7216       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7217     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7218       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7219       .access = PL1_RW, .accessfn = access_pauth,
7220       .fgt = FGT_APDBKEY,
7221       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7222     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7223       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7224       .access = PL1_RW, .accessfn = access_pauth,
7225       .fgt = FGT_APGAKEY,
7226       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7227     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7228       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7229       .access = PL1_RW, .accessfn = access_pauth,
7230       .fgt = FGT_APGAKEY,
7231       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7232     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7233       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7234       .access = PL1_RW, .accessfn = access_pauth,
7235       .fgt = FGT_APIAKEY,
7236       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7237     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7238       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7239       .access = PL1_RW, .accessfn = access_pauth,
7240       .fgt = FGT_APIAKEY,
7241       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7242     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7243       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7244       .access = PL1_RW, .accessfn = access_pauth,
7245       .fgt = FGT_APIBKEY,
7246       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7247     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7248       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7249       .access = PL1_RW, .accessfn = access_pauth,
7250       .fgt = FGT_APIBKEY,
7251       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7252 };
7253 
7254 static const ARMCPRegInfo tlbirange_reginfo[] = {
7255     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7256       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7257       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7258       .fgt = FGT_TLBIRVAE1IS,
7259       .writefn = tlbi_aa64_rvae1is_write },
7260     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7261       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7262       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7263       .fgt = FGT_TLBIRVAAE1IS,
7264       .writefn = tlbi_aa64_rvae1is_write },
7265    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7266       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7267       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7268       .fgt = FGT_TLBIRVALE1IS,
7269       .writefn = tlbi_aa64_rvae1is_write },
7270     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7271       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7272       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7273       .fgt = FGT_TLBIRVAALE1IS,
7274       .writefn = tlbi_aa64_rvae1is_write },
7275     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7276       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7277       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7278       .fgt = FGT_TLBIRVAE1OS,
7279       .writefn = tlbi_aa64_rvae1is_write },
7280     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7281       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7282       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7283       .fgt = FGT_TLBIRVAAE1OS,
7284       .writefn = tlbi_aa64_rvae1is_write },
7285    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7286       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7287       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7288       .fgt = FGT_TLBIRVALE1OS,
7289       .writefn = tlbi_aa64_rvae1is_write },
7290     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7291       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7292       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7293       .fgt = FGT_TLBIRVAALE1OS,
7294       .writefn = tlbi_aa64_rvae1is_write },
7295     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7296       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7297       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7298       .fgt = FGT_TLBIRVAE1,
7299       .writefn = tlbi_aa64_rvae1_write },
7300     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7301       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7302       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7303       .fgt = FGT_TLBIRVAAE1,
7304       .writefn = tlbi_aa64_rvae1_write },
7305    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7306       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7307       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7308       .fgt = FGT_TLBIRVALE1,
7309       .writefn = tlbi_aa64_rvae1_write },
7310     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7311       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7312       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7313       .fgt = FGT_TLBIRVAALE1,
7314       .writefn = tlbi_aa64_rvae1_write },
7315     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7316       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7317       .access = PL2_W, .type = ARM_CP_NO_RAW,
7318       .writefn = tlbi_aa64_ripas2e1is_write },
7319     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7320       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7321       .access = PL2_W, .type = ARM_CP_NO_RAW,
7322       .writefn = tlbi_aa64_ripas2e1is_write },
7323     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7324       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7325       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7326       .writefn = tlbi_aa64_rvae2is_write },
7327    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7328       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7329       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7330       .writefn = tlbi_aa64_rvae2is_write },
7331     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7332       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7333       .access = PL2_W, .type = ARM_CP_NO_RAW,
7334       .writefn = tlbi_aa64_ripas2e1_write },
7335     { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7336       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7337       .access = PL2_W, .type = ARM_CP_NO_RAW,
7338       .writefn = tlbi_aa64_ripas2e1_write },
7339    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7340       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7341       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7342       .writefn = tlbi_aa64_rvae2is_write },
7343    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7344       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7345       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7346       .writefn = tlbi_aa64_rvae2is_write },
7347     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7348       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7349       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7350       .writefn = tlbi_aa64_rvae2_write },
7351    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7352       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7353       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7354       .writefn = tlbi_aa64_rvae2_write },
7355    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7356       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7357       .access = PL3_W, .type = ARM_CP_NO_RAW,
7358       .writefn = tlbi_aa64_rvae3is_write },
7359    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7360       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7361       .access = PL3_W, .type = ARM_CP_NO_RAW,
7362       .writefn = tlbi_aa64_rvae3is_write },
7363    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7364       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7365       .access = PL3_W, .type = ARM_CP_NO_RAW,
7366       .writefn = tlbi_aa64_rvae3is_write },
7367    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7368       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7369       .access = PL3_W, .type = ARM_CP_NO_RAW,
7370       .writefn = tlbi_aa64_rvae3is_write },
7371    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7372       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7373       .access = PL3_W, .type = ARM_CP_NO_RAW,
7374       .writefn = tlbi_aa64_rvae3_write },
7375    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7376       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7377       .access = PL3_W, .type = ARM_CP_NO_RAW,
7378       .writefn = tlbi_aa64_rvae3_write },
7379 };
7380 
7381 static const ARMCPRegInfo tlbios_reginfo[] = {
7382     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7383       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7384       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7385       .fgt = FGT_TLBIVMALLE1OS,
7386       .writefn = tlbi_aa64_vmalle1is_write },
7387     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7388       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7389       .fgt = FGT_TLBIVAE1OS,
7390       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7391       .writefn = tlbi_aa64_vae1is_write },
7392     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7393       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7394       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7395       .fgt = FGT_TLBIASIDE1OS,
7396       .writefn = tlbi_aa64_vmalle1is_write },
7397     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7398       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7399       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7400       .fgt = FGT_TLBIVAAE1OS,
7401       .writefn = tlbi_aa64_vae1is_write },
7402     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7403       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7404       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7405       .fgt = FGT_TLBIVALE1OS,
7406       .writefn = tlbi_aa64_vae1is_write },
7407     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7408       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7409       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7410       .fgt = FGT_TLBIVAALE1OS,
7411       .writefn = tlbi_aa64_vae1is_write },
7412     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7413       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7414       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7415       .writefn = tlbi_aa64_alle2is_write },
7416     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7417       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7418       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7419       .writefn = tlbi_aa64_vae2is_write },
7420    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7421       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7422       .access = PL2_W, .type = ARM_CP_NO_RAW,
7423       .writefn = tlbi_aa64_alle1is_write },
7424     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7425       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7426       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7427       .writefn = tlbi_aa64_vae2is_write },
7428     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7429       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7430       .access = PL2_W, .type = ARM_CP_NO_RAW,
7431       .writefn = tlbi_aa64_alle1is_write },
7432     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7433       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7434       .access = PL2_W, .type = ARM_CP_NOP },
7435     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7436       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7437       .access = PL2_W, .type = ARM_CP_NOP },
7438     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7439       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7440       .access = PL2_W, .type = ARM_CP_NOP },
7441     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7442       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7443       .access = PL2_W, .type = ARM_CP_NOP },
7444     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7445       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7446       .access = PL3_W, .type = ARM_CP_NO_RAW,
7447       .writefn = tlbi_aa64_alle3is_write },
7448     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7449       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7450       .access = PL3_W, .type = ARM_CP_NO_RAW,
7451       .writefn = tlbi_aa64_vae3is_write },
7452     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7453       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7454       .access = PL3_W, .type = ARM_CP_NO_RAW,
7455       .writefn = tlbi_aa64_vae3is_write },
7456 };
7457 
7458 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7459 {
7460     Error *err = NULL;
7461     uint64_t ret;
7462 
7463     /* Success sets NZCV = 0000.  */
7464     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7465 
7466     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7467         /*
7468          * ??? Failed, for unknown reasons in the crypto subsystem.
7469          * The best we can do is log the reason and return the
7470          * timed-out indication to the guest.  There is no reason
7471          * we know to expect this failure to be transitory, so the
7472          * guest may well hang retrying the operation.
7473          */
7474         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7475                       ri->name, error_get_pretty(err));
7476         error_free(err);
7477 
7478         env->ZF = 0; /* NZCF = 0100 */
7479         return 0;
7480     }
7481     return ret;
7482 }
7483 
7484 /* We do not support re-seeding, so the two registers operate the same.  */
7485 static const ARMCPRegInfo rndr_reginfo[] = {
7486     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7487       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7488       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7489       .access = PL0_R, .readfn = rndr_readfn },
7490     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7491       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7492       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7493       .access = PL0_R, .readfn = rndr_readfn },
7494 };
7495 
7496 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7497                           uint64_t value)
7498 {
7499     ARMCPU *cpu = env_archcpu(env);
7500     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7501     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7502     uint64_t vaddr_in = (uint64_t) value;
7503     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7504     void *haddr;
7505     int mem_idx = cpu_mmu_index(env, false);
7506 
7507     /* This won't be crossing page boundaries */
7508     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7509     if (haddr) {
7510 #ifndef CONFIG_USER_ONLY
7511 
7512         ram_addr_t offset;
7513         MemoryRegion *mr;
7514 
7515         /* RCU lock is already being held */
7516         mr = memory_region_from_host(haddr, &offset);
7517 
7518         if (mr) {
7519             memory_region_writeback(mr, offset, dline_size);
7520         }
7521 #endif /*CONFIG_USER_ONLY*/
7522     }
7523 }
7524 
7525 static const ARMCPRegInfo dcpop_reg[] = {
7526     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7527       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7528       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7529       .fgt = FGT_DCCVAP,
7530       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7531 };
7532 
7533 static const ARMCPRegInfo dcpodp_reg[] = {
7534     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7535       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7536       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7537       .fgt = FGT_DCCVADP,
7538       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7539 };
7540 
7541 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7542                                        bool isread)
7543 {
7544     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7545         return CP_ACCESS_TRAP_EL2;
7546     }
7547 
7548     return CP_ACCESS_OK;
7549 }
7550 
7551 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7552                                  bool isread)
7553 {
7554     int el = arm_current_el(env);
7555 
7556     if (el < 2 && arm_is_el2_enabled(env)) {
7557         uint64_t hcr = arm_hcr_el2_eff(env);
7558         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7559             return CP_ACCESS_TRAP_EL2;
7560         }
7561     }
7562     if (el < 3 &&
7563         arm_feature(env, ARM_FEATURE_EL3) &&
7564         !(env->cp15.scr_el3 & SCR_ATA)) {
7565         return CP_ACCESS_TRAP_EL3;
7566     }
7567     return CP_ACCESS_OK;
7568 }
7569 
7570 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7571 {
7572     return env->pstate & PSTATE_TCO;
7573 }
7574 
7575 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7576 {
7577     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7578 }
7579 
7580 static const ARMCPRegInfo mte_reginfo[] = {
7581     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7582       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7583       .access = PL1_RW, .accessfn = access_mte,
7584       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7585     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7586       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7587       .access = PL1_RW, .accessfn = access_mte,
7588       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7589     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7590       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7591       .access = PL2_RW, .accessfn = access_mte,
7592       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7593     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7594       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7595       .access = PL3_RW,
7596       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7597     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7598       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7599       .access = PL1_RW, .accessfn = access_mte,
7600       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7601     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7602       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7603       .access = PL1_RW, .accessfn = access_mte,
7604       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7605     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7606       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7607       .access = PL1_R, .accessfn = access_aa64_tid5,
7608       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7609     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7610       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7611       .type = ARM_CP_NO_RAW,
7612       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7613     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7614       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7615       .type = ARM_CP_NOP, .access = PL1_W,
7616       .fgt = FGT_DCIVAC,
7617       .accessfn = aa64_cacheop_poc_access },
7618     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7619       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7620       .fgt = FGT_DCISW,
7621       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7622     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7623       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7624       .type = ARM_CP_NOP, .access = PL1_W,
7625       .fgt = FGT_DCIVAC,
7626       .accessfn = aa64_cacheop_poc_access },
7627     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7628       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7629       .fgt = FGT_DCISW,
7630       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7631     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7632       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7633       .fgt = FGT_DCCSW,
7634       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7635     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7636       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7637       .fgt = FGT_DCCSW,
7638       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7639     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7640       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7641       .fgt = FGT_DCCISW,
7642       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7643     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7644       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7645       .fgt = FGT_DCCISW,
7646       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7647 };
7648 
7649 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7650     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7651       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7652       .type = ARM_CP_CONST, .access = PL0_RW, },
7653 };
7654 
7655 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7656     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7657       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7658       .type = ARM_CP_NOP, .access = PL0_W,
7659       .fgt = FGT_DCCVAC,
7660       .accessfn = aa64_cacheop_poc_access },
7661     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7662       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7663       .type = ARM_CP_NOP, .access = PL0_W,
7664       .fgt = FGT_DCCVAC,
7665       .accessfn = aa64_cacheop_poc_access },
7666     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7667       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7668       .type = ARM_CP_NOP, .access = PL0_W,
7669       .fgt = FGT_DCCVAP,
7670       .accessfn = aa64_cacheop_poc_access },
7671     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7672       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7673       .type = ARM_CP_NOP, .access = PL0_W,
7674       .fgt = FGT_DCCVAP,
7675       .accessfn = aa64_cacheop_poc_access },
7676     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7677       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7678       .type = ARM_CP_NOP, .access = PL0_W,
7679       .fgt = FGT_DCCVADP,
7680       .accessfn = aa64_cacheop_poc_access },
7681     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7682       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7683       .type = ARM_CP_NOP, .access = PL0_W,
7684       .fgt = FGT_DCCVADP,
7685       .accessfn = aa64_cacheop_poc_access },
7686     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7687       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7688       .type = ARM_CP_NOP, .access = PL0_W,
7689       .fgt = FGT_DCCIVAC,
7690       .accessfn = aa64_cacheop_poc_access },
7691     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7692       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7693       .type = ARM_CP_NOP, .access = PL0_W,
7694       .fgt = FGT_DCCIVAC,
7695       .accessfn = aa64_cacheop_poc_access },
7696     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7697       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7698       .access = PL0_W, .type = ARM_CP_DC_GVA,
7699 #ifndef CONFIG_USER_ONLY
7700       /* Avoid overhead of an access check that always passes in user-mode */
7701       .accessfn = aa64_zva_access,
7702       .fgt = FGT_DCZVA,
7703 #endif
7704     },
7705     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7706       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7707       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7708 #ifndef CONFIG_USER_ONLY
7709       /* Avoid overhead of an access check that always passes in user-mode */
7710       .accessfn = aa64_zva_access,
7711       .fgt = FGT_DCZVA,
7712 #endif
7713     },
7714 };
7715 
7716 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7717                                      bool isread)
7718 {
7719     uint64_t hcr = arm_hcr_el2_eff(env);
7720     int el = arm_current_el(env);
7721 
7722     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7723         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7724             if (hcr & HCR_TGE) {
7725                 return CP_ACCESS_TRAP_EL2;
7726             }
7727             return CP_ACCESS_TRAP;
7728         }
7729     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7730         return CP_ACCESS_TRAP_EL2;
7731     }
7732     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7733         return CP_ACCESS_TRAP_EL2;
7734     }
7735     if (el < 3
7736         && arm_feature(env, ARM_FEATURE_EL3)
7737         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7738         return CP_ACCESS_TRAP_EL3;
7739     }
7740     return CP_ACCESS_OK;
7741 }
7742 
7743 static const ARMCPRegInfo scxtnum_reginfo[] = {
7744     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7745       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7746       .access = PL0_RW, .accessfn = access_scxtnum,
7747       .fgt = FGT_SCXTNUM_EL0,
7748       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7749     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7750       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7751       .access = PL1_RW, .accessfn = access_scxtnum,
7752       .fgt = FGT_SCXTNUM_EL1,
7753       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7754     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7755       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7756       .access = PL2_RW, .accessfn = access_scxtnum,
7757       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7758     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7759       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7760       .access = PL3_RW,
7761       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7762 };
7763 
7764 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7765                                  bool isread)
7766 {
7767     if (arm_current_el(env) == 2 &&
7768         arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7769         return CP_ACCESS_TRAP_EL3;
7770     }
7771     return CP_ACCESS_OK;
7772 }
7773 
7774 static const ARMCPRegInfo fgt_reginfo[] = {
7775     { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7776       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7777       .access = PL2_RW, .accessfn = access_fgt,
7778       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7779     { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7780       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7781       .access = PL2_RW, .accessfn = access_fgt,
7782       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7783     { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7784       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7785       .access = PL2_RW, .accessfn = access_fgt,
7786       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7787     { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7788       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7789       .access = PL2_RW, .accessfn = access_fgt,
7790       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7791     { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7792       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7793       .access = PL2_RW, .accessfn = access_fgt,
7794       .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7795 };
7796 #endif /* TARGET_AARCH64 */
7797 
7798 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7799                                      bool isread)
7800 {
7801     int el = arm_current_el(env);
7802 
7803     if (el == 0) {
7804         uint64_t sctlr = arm_sctlr(env, el);
7805         if (!(sctlr & SCTLR_EnRCTX)) {
7806             return CP_ACCESS_TRAP;
7807         }
7808     } else if (el == 1) {
7809         uint64_t hcr = arm_hcr_el2_eff(env);
7810         if (hcr & HCR_NV) {
7811             return CP_ACCESS_TRAP_EL2;
7812         }
7813     }
7814     return CP_ACCESS_OK;
7815 }
7816 
7817 static const ARMCPRegInfo predinv_reginfo[] = {
7818     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7819       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7820       .fgt = FGT_CFPRCTX,
7821       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7822     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7823       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7824       .fgt = FGT_DVPRCTX,
7825       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7826     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7827       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7828       .fgt = FGT_CPPRCTX,
7829       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7830     /*
7831      * Note the AArch32 opcodes have a different OPC1.
7832      */
7833     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7834       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7835       .fgt = FGT_CFPRCTX,
7836       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7837     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7838       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7839       .fgt = FGT_DVPRCTX,
7840       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7841     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7842       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7843       .fgt = FGT_CPPRCTX,
7844       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7845 };
7846 
7847 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7848 {
7849     /* Read the high 32 bits of the current CCSIDR */
7850     return extract64(ccsidr_read(env, ri), 32, 32);
7851 }
7852 
7853 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7854     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7855       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7856       .access = PL1_R,
7857       .accessfn = access_tid4,
7858       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7859 };
7860 
7861 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7862                                        bool isread)
7863 {
7864     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7865         return CP_ACCESS_TRAP_EL2;
7866     }
7867 
7868     return CP_ACCESS_OK;
7869 }
7870 
7871 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7872                                        bool isread)
7873 {
7874     if (arm_feature(env, ARM_FEATURE_V8)) {
7875         return access_aa64_tid3(env, ri, isread);
7876     }
7877 
7878     return CP_ACCESS_OK;
7879 }
7880 
7881 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7882                                      bool isread)
7883 {
7884     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7885         return CP_ACCESS_TRAP_EL2;
7886     }
7887 
7888     return CP_ACCESS_OK;
7889 }
7890 
7891 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7892                                         const ARMCPRegInfo *ri, bool isread)
7893 {
7894     /*
7895      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7896      * in v7A, not in v8A.
7897      */
7898     if (!arm_feature(env, ARM_FEATURE_V8) &&
7899         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7900         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7901         return CP_ACCESS_TRAP_EL2;
7902     }
7903     return CP_ACCESS_OK;
7904 }
7905 
7906 static const ARMCPRegInfo jazelle_regs[] = {
7907     { .name = "JIDR",
7908       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7909       .access = PL1_R, .accessfn = access_jazelle,
7910       .type = ARM_CP_CONST, .resetvalue = 0 },
7911     { .name = "JOSCR",
7912       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7913       .accessfn = access_joscr_jmcr,
7914       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7915     { .name = "JMCR",
7916       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7917       .accessfn = access_joscr_jmcr,
7918       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7919 };
7920 
7921 static const ARMCPRegInfo contextidr_el2 = {
7922     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7923     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7924     .access = PL2_RW,
7925     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7926 };
7927 
7928 static const ARMCPRegInfo vhe_reginfo[] = {
7929     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7930       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7931       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7932       .raw_writefn = raw_write,
7933       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7934 #ifndef CONFIG_USER_ONLY
7935     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7936       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7937       .fieldoffset =
7938         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7939       .type = ARM_CP_IO, .access = PL2_RW,
7940       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7941     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7942       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7943       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7944       .resetfn = gt_hv_timer_reset,
7945       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7946     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7947       .type = ARM_CP_IO,
7948       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7949       .access = PL2_RW,
7950       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7951       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7952     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7953       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7954       .type = ARM_CP_IO | ARM_CP_ALIAS,
7955       .access = PL2_RW, .accessfn = e2h_access,
7956       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7957       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7958     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7959       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7960       .type = ARM_CP_IO | ARM_CP_ALIAS,
7961       .access = PL2_RW, .accessfn = e2h_access,
7962       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7963       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7964     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7965       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7966       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7967       .access = PL2_RW, .accessfn = e2h_access,
7968       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7969     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7970       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7971       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7972       .access = PL2_RW, .accessfn = e2h_access,
7973       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7974     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7975       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7976       .type = ARM_CP_IO | ARM_CP_ALIAS,
7977       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7978       .access = PL2_RW, .accessfn = e2h_access,
7979       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7980     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7981       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7982       .type = ARM_CP_IO | ARM_CP_ALIAS,
7983       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7984       .access = PL2_RW, .accessfn = e2h_access,
7985       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7986 #endif
7987 };
7988 
7989 #ifndef CONFIG_USER_ONLY
7990 static const ARMCPRegInfo ats1e1_reginfo[] = {
7991     { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
7992       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7993       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7994       .fgt = FGT_ATS1E1RP,
7995       .writefn = ats_write64 },
7996     { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
7997       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7998       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7999       .fgt = FGT_ATS1E1WP,
8000       .writefn = ats_write64 },
8001 };
8002 
8003 static const ARMCPRegInfo ats1cp_reginfo[] = {
8004     { .name = "ATS1CPRP",
8005       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8006       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8007       .writefn = ats_write },
8008     { .name = "ATS1CPWP",
8009       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8010       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8011       .writefn = ats_write },
8012 };
8013 #endif
8014 
8015 /*
8016  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8017  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8018  * is non-zero, which is never for ARMv7, optionally in ARMv8
8019  * and mandatorily for ARMv8.2 and up.
8020  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8021  * implementation is RAZ/WI we can ignore this detail, as we
8022  * do for ACTLR.
8023  */
8024 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8025     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8026       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8027       .access = PL1_RW, .accessfn = access_tacr,
8028       .type = ARM_CP_CONST, .resetvalue = 0 },
8029     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8030       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8031       .access = PL2_RW, .type = ARM_CP_CONST,
8032       .resetvalue = 0 },
8033 };
8034 
8035 void register_cp_regs_for_features(ARMCPU *cpu)
8036 {
8037     /* Register all the coprocessor registers based on feature bits */
8038     CPUARMState *env = &cpu->env;
8039     if (arm_feature(env, ARM_FEATURE_M)) {
8040         /* M profile has no coprocessor registers */
8041         return;
8042     }
8043 
8044     define_arm_cp_regs(cpu, cp_reginfo);
8045     if (!arm_feature(env, ARM_FEATURE_V8)) {
8046         /*
8047          * Must go early as it is full of wildcards that may be
8048          * overridden by later definitions.
8049          */
8050         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8051     }
8052 
8053     if (arm_feature(env, ARM_FEATURE_V6)) {
8054         /* The ID registers all have impdef reset values */
8055         ARMCPRegInfo v6_idregs[] = {
8056             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8057               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8058               .access = PL1_R, .type = ARM_CP_CONST,
8059               .accessfn = access_aa32_tid3,
8060               .resetvalue = cpu->isar.id_pfr0 },
8061             /*
8062              * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8063              * the value of the GIC field until after we define these regs.
8064              */
8065             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8066               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8067               .access = PL1_R, .type = ARM_CP_NO_RAW,
8068               .accessfn = access_aa32_tid3,
8069 #ifdef CONFIG_USER_ONLY
8070               .type = ARM_CP_CONST,
8071               .resetvalue = cpu->isar.id_pfr1,
8072 #else
8073               .type = ARM_CP_NO_RAW,
8074               .accessfn = access_aa32_tid3,
8075               .readfn = id_pfr1_read,
8076               .writefn = arm_cp_write_ignore
8077 #endif
8078             },
8079             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8080               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8081               .access = PL1_R, .type = ARM_CP_CONST,
8082               .accessfn = access_aa32_tid3,
8083               .resetvalue = cpu->isar.id_dfr0 },
8084             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8085               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8086               .access = PL1_R, .type = ARM_CP_CONST,
8087               .accessfn = access_aa32_tid3,
8088               .resetvalue = cpu->id_afr0 },
8089             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8090               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8091               .access = PL1_R, .type = ARM_CP_CONST,
8092               .accessfn = access_aa32_tid3,
8093               .resetvalue = cpu->isar.id_mmfr0 },
8094             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8095               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8096               .access = PL1_R, .type = ARM_CP_CONST,
8097               .accessfn = access_aa32_tid3,
8098               .resetvalue = cpu->isar.id_mmfr1 },
8099             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8100               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8101               .access = PL1_R, .type = ARM_CP_CONST,
8102               .accessfn = access_aa32_tid3,
8103               .resetvalue = cpu->isar.id_mmfr2 },
8104             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8105               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8106               .access = PL1_R, .type = ARM_CP_CONST,
8107               .accessfn = access_aa32_tid3,
8108               .resetvalue = cpu->isar.id_mmfr3 },
8109             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8110               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8111               .access = PL1_R, .type = ARM_CP_CONST,
8112               .accessfn = access_aa32_tid3,
8113               .resetvalue = cpu->isar.id_isar0 },
8114             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8115               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8116               .access = PL1_R, .type = ARM_CP_CONST,
8117               .accessfn = access_aa32_tid3,
8118               .resetvalue = cpu->isar.id_isar1 },
8119             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8120               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8121               .access = PL1_R, .type = ARM_CP_CONST,
8122               .accessfn = access_aa32_tid3,
8123               .resetvalue = cpu->isar.id_isar2 },
8124             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8125               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8126               .access = PL1_R, .type = ARM_CP_CONST,
8127               .accessfn = access_aa32_tid3,
8128               .resetvalue = cpu->isar.id_isar3 },
8129             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8130               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8131               .access = PL1_R, .type = ARM_CP_CONST,
8132               .accessfn = access_aa32_tid3,
8133               .resetvalue = cpu->isar.id_isar4 },
8134             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8135               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8136               .access = PL1_R, .type = ARM_CP_CONST,
8137               .accessfn = access_aa32_tid3,
8138               .resetvalue = cpu->isar.id_isar5 },
8139             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8140               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8141               .access = PL1_R, .type = ARM_CP_CONST,
8142               .accessfn = access_aa32_tid3,
8143               .resetvalue = cpu->isar.id_mmfr4 },
8144             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8145               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8146               .access = PL1_R, .type = ARM_CP_CONST,
8147               .accessfn = access_aa32_tid3,
8148               .resetvalue = cpu->isar.id_isar6 },
8149         };
8150         define_arm_cp_regs(cpu, v6_idregs);
8151         define_arm_cp_regs(cpu, v6_cp_reginfo);
8152     } else {
8153         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8154     }
8155     if (arm_feature(env, ARM_FEATURE_V6K)) {
8156         define_arm_cp_regs(cpu, v6k_cp_reginfo);
8157     }
8158     if (arm_feature(env, ARM_FEATURE_V7MP) &&
8159         !arm_feature(env, ARM_FEATURE_PMSA)) {
8160         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8161     }
8162     if (arm_feature(env, ARM_FEATURE_V7VE)) {
8163         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8164     }
8165     if (arm_feature(env, ARM_FEATURE_V7)) {
8166         ARMCPRegInfo clidr = {
8167             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8168             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8169             .access = PL1_R, .type = ARM_CP_CONST,
8170             .accessfn = access_tid4,
8171             .fgt = FGT_CLIDR_EL1,
8172             .resetvalue = cpu->clidr
8173         };
8174         define_one_arm_cp_reg(cpu, &clidr);
8175         define_arm_cp_regs(cpu, v7_cp_reginfo);
8176         define_debug_regs(cpu);
8177         define_pmu_regs(cpu);
8178     } else {
8179         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8180     }
8181     if (arm_feature(env, ARM_FEATURE_V8)) {
8182         /*
8183          * v8 ID registers, which all have impdef reset values.
8184          * Note that within the ID register ranges the unused slots
8185          * must all RAZ, not UNDEF; future architecture versions may
8186          * define new registers here.
8187          * ID registers which are AArch64 views of the AArch32 ID registers
8188          * which already existed in v6 and v7 are handled elsewhere,
8189          * in v6_idregs[].
8190          */
8191         int i;
8192         ARMCPRegInfo v8_idregs[] = {
8193             /*
8194              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8195              * emulation because we don't know the right value for the
8196              * GIC field until after we define these regs.
8197              */
8198             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8199               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8200               .access = PL1_R,
8201 #ifdef CONFIG_USER_ONLY
8202               .type = ARM_CP_CONST,
8203               .resetvalue = cpu->isar.id_aa64pfr0
8204 #else
8205               .type = ARM_CP_NO_RAW,
8206               .accessfn = access_aa64_tid3,
8207               .readfn = id_aa64pfr0_read,
8208               .writefn = arm_cp_write_ignore
8209 #endif
8210             },
8211             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8212               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8213               .access = PL1_R, .type = ARM_CP_CONST,
8214               .accessfn = access_aa64_tid3,
8215               .resetvalue = cpu->isar.id_aa64pfr1},
8216             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8217               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8218               .access = PL1_R, .type = ARM_CP_CONST,
8219               .accessfn = access_aa64_tid3,
8220               .resetvalue = 0 },
8221             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8222               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8223               .access = PL1_R, .type = ARM_CP_CONST,
8224               .accessfn = access_aa64_tid3,
8225               .resetvalue = 0 },
8226             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8227               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8228               .access = PL1_R, .type = ARM_CP_CONST,
8229               .accessfn = access_aa64_tid3,
8230               .resetvalue = cpu->isar.id_aa64zfr0 },
8231             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8232               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8233               .access = PL1_R, .type = ARM_CP_CONST,
8234               .accessfn = access_aa64_tid3,
8235               .resetvalue = cpu->isar.id_aa64smfr0 },
8236             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8237               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8238               .access = PL1_R, .type = ARM_CP_CONST,
8239               .accessfn = access_aa64_tid3,
8240               .resetvalue = 0 },
8241             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8242               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8243               .access = PL1_R, .type = ARM_CP_CONST,
8244               .accessfn = access_aa64_tid3,
8245               .resetvalue = 0 },
8246             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8247               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8248               .access = PL1_R, .type = ARM_CP_CONST,
8249               .accessfn = access_aa64_tid3,
8250               .resetvalue = cpu->isar.id_aa64dfr0 },
8251             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8252               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8253               .access = PL1_R, .type = ARM_CP_CONST,
8254               .accessfn = access_aa64_tid3,
8255               .resetvalue = cpu->isar.id_aa64dfr1 },
8256             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8257               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8258               .access = PL1_R, .type = ARM_CP_CONST,
8259               .accessfn = access_aa64_tid3,
8260               .resetvalue = 0 },
8261             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8262               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8263               .access = PL1_R, .type = ARM_CP_CONST,
8264               .accessfn = access_aa64_tid3,
8265               .resetvalue = 0 },
8266             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8267               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8268               .access = PL1_R, .type = ARM_CP_CONST,
8269               .accessfn = access_aa64_tid3,
8270               .resetvalue = cpu->id_aa64afr0 },
8271             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8272               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8273               .access = PL1_R, .type = ARM_CP_CONST,
8274               .accessfn = access_aa64_tid3,
8275               .resetvalue = cpu->id_aa64afr1 },
8276             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8277               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8278               .access = PL1_R, .type = ARM_CP_CONST,
8279               .accessfn = access_aa64_tid3,
8280               .resetvalue = 0 },
8281             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8282               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8283               .access = PL1_R, .type = ARM_CP_CONST,
8284               .accessfn = access_aa64_tid3,
8285               .resetvalue = 0 },
8286             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8287               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8288               .access = PL1_R, .type = ARM_CP_CONST,
8289               .accessfn = access_aa64_tid3,
8290               .resetvalue = cpu->isar.id_aa64isar0 },
8291             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8292               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8293               .access = PL1_R, .type = ARM_CP_CONST,
8294               .accessfn = access_aa64_tid3,
8295               .resetvalue = cpu->isar.id_aa64isar1 },
8296             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8297               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8298               .access = PL1_R, .type = ARM_CP_CONST,
8299               .accessfn = access_aa64_tid3,
8300               .resetvalue = 0 },
8301             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8302               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8303               .access = PL1_R, .type = ARM_CP_CONST,
8304               .accessfn = access_aa64_tid3,
8305               .resetvalue = 0 },
8306             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8307               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8308               .access = PL1_R, .type = ARM_CP_CONST,
8309               .accessfn = access_aa64_tid3,
8310               .resetvalue = 0 },
8311             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8312               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8313               .access = PL1_R, .type = ARM_CP_CONST,
8314               .accessfn = access_aa64_tid3,
8315               .resetvalue = 0 },
8316             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8317               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8318               .access = PL1_R, .type = ARM_CP_CONST,
8319               .accessfn = access_aa64_tid3,
8320               .resetvalue = 0 },
8321             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8322               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8323               .access = PL1_R, .type = ARM_CP_CONST,
8324               .accessfn = access_aa64_tid3,
8325               .resetvalue = 0 },
8326             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8327               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8328               .access = PL1_R, .type = ARM_CP_CONST,
8329               .accessfn = access_aa64_tid3,
8330               .resetvalue = cpu->isar.id_aa64mmfr0 },
8331             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8332               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8333               .access = PL1_R, .type = ARM_CP_CONST,
8334               .accessfn = access_aa64_tid3,
8335               .resetvalue = cpu->isar.id_aa64mmfr1 },
8336             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8337               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8338               .access = PL1_R, .type = ARM_CP_CONST,
8339               .accessfn = access_aa64_tid3,
8340               .resetvalue = cpu->isar.id_aa64mmfr2 },
8341             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8342               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8343               .access = PL1_R, .type = ARM_CP_CONST,
8344               .accessfn = access_aa64_tid3,
8345               .resetvalue = 0 },
8346             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8347               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8348               .access = PL1_R, .type = ARM_CP_CONST,
8349               .accessfn = access_aa64_tid3,
8350               .resetvalue = 0 },
8351             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8352               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8353               .access = PL1_R, .type = ARM_CP_CONST,
8354               .accessfn = access_aa64_tid3,
8355               .resetvalue = 0 },
8356             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8357               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8358               .access = PL1_R, .type = ARM_CP_CONST,
8359               .accessfn = access_aa64_tid3,
8360               .resetvalue = 0 },
8361             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8362               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8363               .access = PL1_R, .type = ARM_CP_CONST,
8364               .accessfn = access_aa64_tid3,
8365               .resetvalue = 0 },
8366             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8367               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8368               .access = PL1_R, .type = ARM_CP_CONST,
8369               .accessfn = access_aa64_tid3,
8370               .resetvalue = cpu->isar.mvfr0 },
8371             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8372               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8373               .access = PL1_R, .type = ARM_CP_CONST,
8374               .accessfn = access_aa64_tid3,
8375               .resetvalue = cpu->isar.mvfr1 },
8376             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8377               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8378               .access = PL1_R, .type = ARM_CP_CONST,
8379               .accessfn = access_aa64_tid3,
8380               .resetvalue = cpu->isar.mvfr2 },
8381             /*
8382              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8383              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8384              * as RAZ, since it is in the "reserved for future ID
8385              * registers, RAZ" part of the AArch32 encoding space.
8386              */
8387             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8388               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8389               .access = PL1_R, .type = ARM_CP_CONST,
8390               .accessfn = access_aa64_tid3,
8391               .resetvalue = 0 },
8392             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8393               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8394               .access = PL1_R, .type = ARM_CP_CONST,
8395               .accessfn = access_aa64_tid3,
8396               .resetvalue = 0 },
8397             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8398               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8399               .access = PL1_R, .type = ARM_CP_CONST,
8400               .accessfn = access_aa64_tid3,
8401               .resetvalue = 0 },
8402             /*
8403              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8404              * they're also RAZ for AArch64, and in v8 are gradually
8405              * being filled with AArch64-view-of-AArch32-ID-register
8406              * for new ID registers.
8407              */
8408             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8409               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8410               .access = PL1_R, .type = ARM_CP_CONST,
8411               .accessfn = access_aa64_tid3,
8412               .resetvalue = 0 },
8413             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8414               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8415               .access = PL1_R, .type = ARM_CP_CONST,
8416               .accessfn = access_aa64_tid3,
8417               .resetvalue = cpu->isar.id_pfr2 },
8418             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8419               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8420               .access = PL1_R, .type = ARM_CP_CONST,
8421               .accessfn = access_aa64_tid3,
8422               .resetvalue = cpu->isar.id_dfr1 },
8423             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8424               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8425               .access = PL1_R, .type = ARM_CP_CONST,
8426               .accessfn = access_aa64_tid3,
8427               .resetvalue = cpu->isar.id_mmfr5 },
8428             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8429               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8430               .access = PL1_R, .type = ARM_CP_CONST,
8431               .accessfn = access_aa64_tid3,
8432               .resetvalue = 0 },
8433             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8434               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8435               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8436               .fgt = FGT_PMCEIDN_EL0,
8437               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8438             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8439               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8440               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8441               .fgt = FGT_PMCEIDN_EL0,
8442               .resetvalue = cpu->pmceid0 },
8443             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8444               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8445               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8446               .fgt = FGT_PMCEIDN_EL0,
8447               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8448             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8449               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8450               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8451               .fgt = FGT_PMCEIDN_EL0,
8452               .resetvalue = cpu->pmceid1 },
8453         };
8454 #ifdef CONFIG_USER_ONLY
8455         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8456             { .name = "ID_AA64PFR0_EL1",
8457               .exported_bits = R_ID_AA64PFR0_FP_MASK |
8458                                R_ID_AA64PFR0_ADVSIMD_MASK |
8459                                R_ID_AA64PFR0_SVE_MASK |
8460                                R_ID_AA64PFR0_DIT_MASK,
8461               .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8462                             (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8463             { .name = "ID_AA64PFR1_EL1",
8464               .exported_bits = R_ID_AA64PFR1_BT_MASK |
8465                                R_ID_AA64PFR1_SSBS_MASK |
8466                                R_ID_AA64PFR1_MTE_MASK |
8467                                R_ID_AA64PFR1_SME_MASK },
8468             { .name = "ID_AA64PFR*_EL1_RESERVED",
8469               .is_glob = true },
8470             { .name = "ID_AA64ZFR0_EL1",
8471               .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8472                                R_ID_AA64ZFR0_AES_MASK |
8473                                R_ID_AA64ZFR0_BITPERM_MASK |
8474                                R_ID_AA64ZFR0_BFLOAT16_MASK |
8475                                R_ID_AA64ZFR0_SHA3_MASK |
8476                                R_ID_AA64ZFR0_SM4_MASK |
8477                                R_ID_AA64ZFR0_I8MM_MASK |
8478                                R_ID_AA64ZFR0_F32MM_MASK |
8479                                R_ID_AA64ZFR0_F64MM_MASK },
8480             { .name = "ID_AA64SMFR0_EL1",
8481               .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8482                                R_ID_AA64SMFR0_B16F32_MASK |
8483                                R_ID_AA64SMFR0_F16F32_MASK |
8484                                R_ID_AA64SMFR0_I8I32_MASK |
8485                                R_ID_AA64SMFR0_F64F64_MASK |
8486                                R_ID_AA64SMFR0_I16I64_MASK |
8487                                R_ID_AA64SMFR0_FA64_MASK },
8488             { .name = "ID_AA64MMFR0_EL1",
8489               .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8490               .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8491                             (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8492             { .name = "ID_AA64MMFR1_EL1",
8493               .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8494             { .name = "ID_AA64MMFR2_EL1",
8495               .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8496             { .name = "ID_AA64MMFR*_EL1_RESERVED",
8497               .is_glob = true },
8498             { .name = "ID_AA64DFR0_EL1",
8499               .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8500             { .name = "ID_AA64DFR1_EL1" },
8501             { .name = "ID_AA64DFR*_EL1_RESERVED",
8502               .is_glob = true },
8503             { .name = "ID_AA64AFR*",
8504               .is_glob = true },
8505             { .name = "ID_AA64ISAR0_EL1",
8506               .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8507                                R_ID_AA64ISAR0_SHA1_MASK |
8508                                R_ID_AA64ISAR0_SHA2_MASK |
8509                                R_ID_AA64ISAR0_CRC32_MASK |
8510                                R_ID_AA64ISAR0_ATOMIC_MASK |
8511                                R_ID_AA64ISAR0_RDM_MASK |
8512                                R_ID_AA64ISAR0_SHA3_MASK |
8513                                R_ID_AA64ISAR0_SM3_MASK |
8514                                R_ID_AA64ISAR0_SM4_MASK |
8515                                R_ID_AA64ISAR0_DP_MASK |
8516                                R_ID_AA64ISAR0_FHM_MASK |
8517                                R_ID_AA64ISAR0_TS_MASK |
8518                                R_ID_AA64ISAR0_RNDR_MASK },
8519             { .name = "ID_AA64ISAR1_EL1",
8520               .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8521                                R_ID_AA64ISAR1_APA_MASK |
8522                                R_ID_AA64ISAR1_API_MASK |
8523                                R_ID_AA64ISAR1_JSCVT_MASK |
8524                                R_ID_AA64ISAR1_FCMA_MASK |
8525                                R_ID_AA64ISAR1_LRCPC_MASK |
8526                                R_ID_AA64ISAR1_GPA_MASK |
8527                                R_ID_AA64ISAR1_GPI_MASK |
8528                                R_ID_AA64ISAR1_FRINTTS_MASK |
8529                                R_ID_AA64ISAR1_SB_MASK |
8530                                R_ID_AA64ISAR1_BF16_MASK |
8531                                R_ID_AA64ISAR1_DGH_MASK |
8532                                R_ID_AA64ISAR1_I8MM_MASK },
8533             { .name = "ID_AA64ISAR2_EL1",
8534               .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8535                                R_ID_AA64ISAR2_RPRES_MASK |
8536                                R_ID_AA64ISAR2_GPA3_MASK |
8537                                R_ID_AA64ISAR2_APA3_MASK },
8538             { .name = "ID_AA64ISAR*_EL1_RESERVED",
8539               .is_glob = true },
8540         };
8541         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8542 #endif
8543         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8544         if (!arm_feature(env, ARM_FEATURE_EL3) &&
8545             !arm_feature(env, ARM_FEATURE_EL2)) {
8546             ARMCPRegInfo rvbar = {
8547                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8548                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8549                 .access = PL1_R,
8550                 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8551             };
8552             define_one_arm_cp_reg(cpu, &rvbar);
8553         }
8554         define_arm_cp_regs(cpu, v8_idregs);
8555         define_arm_cp_regs(cpu, v8_cp_reginfo);
8556 
8557         for (i = 4; i < 16; i++) {
8558             /*
8559              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8560              * For pre-v8 cores there are RAZ patterns for these in
8561              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8562              * v8 extends the "must RAZ" part of the ID register space
8563              * to also cover c0, 0, c{8-15}, {0-7}.
8564              * These are STATE_AA32 because in the AArch64 sysreg space
8565              * c4-c7 is where the AArch64 ID registers live (and we've
8566              * already defined those in v8_idregs[]), and c8-c15 are not
8567              * "must RAZ" for AArch64.
8568              */
8569             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8570             ARMCPRegInfo v8_aa32_raz_idregs = {
8571                 .name = name,
8572                 .state = ARM_CP_STATE_AA32,
8573                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8574                 .access = PL1_R, .type = ARM_CP_CONST,
8575                 .accessfn = access_aa64_tid3,
8576                 .resetvalue = 0 };
8577             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8578         }
8579     }
8580 
8581     /*
8582      * Register the base EL2 cpregs.
8583      * Pre v8, these registers are implemented only as part of the
8584      * Virtualization Extensions (EL2 present).  Beginning with v8,
8585      * if EL2 is missing but EL3 is enabled, mostly these become
8586      * RES0 from EL3, with some specific exceptions.
8587      */
8588     if (arm_feature(env, ARM_FEATURE_EL2)
8589         || (arm_feature(env, ARM_FEATURE_EL3)
8590             && arm_feature(env, ARM_FEATURE_V8))) {
8591         uint64_t vmpidr_def = mpidr_read_val(env);
8592         ARMCPRegInfo vpidr_regs[] = {
8593             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8594               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8595               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8596               .resetvalue = cpu->midr,
8597               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8598               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8599             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8600               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8601               .access = PL2_RW, .resetvalue = cpu->midr,
8602               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8603               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8604             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8605               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8606               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8607               .resetvalue = vmpidr_def,
8608               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8609               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8610             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8611               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8612               .access = PL2_RW, .resetvalue = vmpidr_def,
8613               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8614               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8615         };
8616         /*
8617          * The only field of MDCR_EL2 that has a defined architectural reset
8618          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8619          */
8620         ARMCPRegInfo mdcr_el2 = {
8621             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8622             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8623             .writefn = mdcr_el2_write,
8624             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8625             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8626         };
8627         define_one_arm_cp_reg(cpu, &mdcr_el2);
8628         define_arm_cp_regs(cpu, vpidr_regs);
8629         define_arm_cp_regs(cpu, el2_cp_reginfo);
8630         if (arm_feature(env, ARM_FEATURE_V8)) {
8631             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8632         }
8633         if (cpu_isar_feature(aa64_sel2, cpu)) {
8634             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8635         }
8636         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8637         if (!arm_feature(env, ARM_FEATURE_EL3)) {
8638             ARMCPRegInfo rvbar[] = {
8639                 {
8640                     .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8641                     .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8642                     .access = PL2_R,
8643                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8644                 },
8645                 {   .name = "RVBAR", .type = ARM_CP_ALIAS,
8646                     .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8647                     .access = PL2_R,
8648                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8649                 },
8650             };
8651             define_arm_cp_regs(cpu, rvbar);
8652         }
8653     }
8654 
8655     /* Register the base EL3 cpregs. */
8656     if (arm_feature(env, ARM_FEATURE_EL3)) {
8657         define_arm_cp_regs(cpu, el3_cp_reginfo);
8658         ARMCPRegInfo el3_regs[] = {
8659             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8660               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8661               .access = PL3_R,
8662               .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8663             },
8664             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8665               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8666               .access = PL3_RW,
8667               .raw_writefn = raw_write, .writefn = sctlr_write,
8668               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8669               .resetvalue = cpu->reset_sctlr },
8670         };
8671 
8672         define_arm_cp_regs(cpu, el3_regs);
8673     }
8674     /*
8675      * The behaviour of NSACR is sufficiently various that we don't
8676      * try to describe it in a single reginfo:
8677      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8678      *     reads as constant 0xc00 from NS EL1 and NS EL2
8679      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8680      *  if v7 without EL3, register doesn't exist
8681      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8682      */
8683     if (arm_feature(env, ARM_FEATURE_EL3)) {
8684         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8685             static const ARMCPRegInfo nsacr = {
8686                 .name = "NSACR", .type = ARM_CP_CONST,
8687                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8688                 .access = PL1_RW, .accessfn = nsacr_access,
8689                 .resetvalue = 0xc00
8690             };
8691             define_one_arm_cp_reg(cpu, &nsacr);
8692         } else {
8693             static const ARMCPRegInfo nsacr = {
8694                 .name = "NSACR",
8695                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8696                 .access = PL3_RW | PL1_R,
8697                 .resetvalue = 0,
8698                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8699             };
8700             define_one_arm_cp_reg(cpu, &nsacr);
8701         }
8702     } else {
8703         if (arm_feature(env, ARM_FEATURE_V8)) {
8704             static const ARMCPRegInfo nsacr = {
8705                 .name = "NSACR", .type = ARM_CP_CONST,
8706                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8707                 .access = PL1_R,
8708                 .resetvalue = 0xc00
8709             };
8710             define_one_arm_cp_reg(cpu, &nsacr);
8711         }
8712     }
8713 
8714     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8715         if (arm_feature(env, ARM_FEATURE_V6)) {
8716             /* PMSAv6 not implemented */
8717             assert(arm_feature(env, ARM_FEATURE_V7));
8718             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8719             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8720         } else {
8721             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8722         }
8723     } else {
8724         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8725         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8726         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8727         if (cpu_isar_feature(aa32_hpd, cpu)) {
8728             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8729         }
8730     }
8731     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8732         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8733     }
8734     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8735         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8736     }
8737     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8738         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8739     }
8740     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8741         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8742     }
8743     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8744         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8745     }
8746     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8747         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8748     }
8749     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8750         define_arm_cp_regs(cpu, omap_cp_reginfo);
8751     }
8752     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8753         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8754     }
8755     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8756         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8757     }
8758     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8759         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8760     }
8761     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8762         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8763     }
8764     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8765         define_arm_cp_regs(cpu, jazelle_regs);
8766     }
8767     /*
8768      * Slightly awkwardly, the OMAP and StrongARM cores need all of
8769      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8770      * be read-only (ie write causes UNDEF exception).
8771      */
8772     {
8773         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8774             /*
8775              * Pre-v8 MIDR space.
8776              * Note that the MIDR isn't a simple constant register because
8777              * of the TI925 behaviour where writes to another register can
8778              * cause the MIDR value to change.
8779              *
8780              * Unimplemented registers in the c15 0 0 0 space default to
8781              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8782              * and friends override accordingly.
8783              */
8784             { .name = "MIDR",
8785               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8786               .access = PL1_R, .resetvalue = cpu->midr,
8787               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8788               .readfn = midr_read,
8789               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8790               .type = ARM_CP_OVERRIDE },
8791             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8792             { .name = "DUMMY",
8793               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8794               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8795             { .name = "DUMMY",
8796               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8797               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8798             { .name = "DUMMY",
8799               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8800               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8801             { .name = "DUMMY",
8802               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8803               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8804             { .name = "DUMMY",
8805               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8806               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8807         };
8808         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8809             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8810               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8811               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8812               .fgt = FGT_MIDR_EL1,
8813               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8814               .readfn = midr_read },
8815             /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8816             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8817               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8818               .access = PL1_R, .resetvalue = cpu->midr },
8819             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8820               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8821               .access = PL1_R,
8822               .accessfn = access_aa64_tid1,
8823               .fgt = FGT_REVIDR_EL1,
8824               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8825         };
8826         ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
8827             .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8828             .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8829             .access = PL1_R, .resetvalue = cpu->midr
8830         };
8831         ARMCPRegInfo id_cp_reginfo[] = {
8832             /* These are common to v8 and pre-v8 */
8833             { .name = "CTR",
8834               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8835               .access = PL1_R, .accessfn = ctr_el0_access,
8836               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8837             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8838               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8839               .access = PL0_R, .accessfn = ctr_el0_access,
8840               .fgt = FGT_CTR_EL0,
8841               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8842             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8843             { .name = "TCMTR",
8844               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8845               .access = PL1_R,
8846               .accessfn = access_aa32_tid1,
8847               .type = ARM_CP_CONST, .resetvalue = 0 },
8848         };
8849         /* TLBTR is specific to VMSA */
8850         ARMCPRegInfo id_tlbtr_reginfo = {
8851               .name = "TLBTR",
8852               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8853               .access = PL1_R,
8854               .accessfn = access_aa32_tid1,
8855               .type = ARM_CP_CONST, .resetvalue = 0,
8856         };
8857         /* MPUIR is specific to PMSA V6+ */
8858         ARMCPRegInfo id_mpuir_reginfo = {
8859               .name = "MPUIR",
8860               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8861               .access = PL1_R, .type = ARM_CP_CONST,
8862               .resetvalue = cpu->pmsav7_dregion << 8
8863         };
8864         /* HMPUIR is specific to PMSA V8 */
8865         ARMCPRegInfo id_hmpuir_reginfo = {
8866             .name = "HMPUIR",
8867             .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
8868             .access = PL2_R, .type = ARM_CP_CONST,
8869             .resetvalue = cpu->pmsav8r_hdregion
8870         };
8871         static const ARMCPRegInfo crn0_wi_reginfo = {
8872             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8873             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8874             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8875         };
8876 #ifdef CONFIG_USER_ONLY
8877         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8878             { .name = "MIDR_EL1",
8879               .exported_bits = R_MIDR_EL1_REVISION_MASK |
8880                                R_MIDR_EL1_PARTNUM_MASK |
8881                                R_MIDR_EL1_ARCHITECTURE_MASK |
8882                                R_MIDR_EL1_VARIANT_MASK |
8883                                R_MIDR_EL1_IMPLEMENTER_MASK },
8884             { .name = "REVIDR_EL1" },
8885         };
8886         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8887 #endif
8888         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8889             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8890             size_t i;
8891             /*
8892              * Register the blanket "writes ignored" value first to cover the
8893              * whole space. Then update the specific ID registers to allow write
8894              * access, so that they ignore writes rather than causing them to
8895              * UNDEF.
8896              */
8897             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8898             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8899                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8900             }
8901             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8902                 id_cp_reginfo[i].access = PL1_RW;
8903             }
8904             id_mpuir_reginfo.access = PL1_RW;
8905             id_tlbtr_reginfo.access = PL1_RW;
8906         }
8907         if (arm_feature(env, ARM_FEATURE_V8)) {
8908             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8909             if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8910                 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
8911             }
8912         } else {
8913             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8914         }
8915         define_arm_cp_regs(cpu, id_cp_reginfo);
8916         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8917             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8918         } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
8919                    arm_feature(env, ARM_FEATURE_V8)) {
8920             uint32_t i = 0;
8921             char *tmp_string;
8922 
8923             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8924             define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
8925             define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
8926 
8927             /* Register alias is only valid for first 32 indexes */
8928             for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
8929                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8930                 uint8_t opc1 = extract32(i, 4, 1);
8931                 uint8_t opc2 = extract32(i, 0, 1) << 2;
8932 
8933                 tmp_string = g_strdup_printf("PRBAR%u", i);
8934                 ARMCPRegInfo tmp_prbarn_reginfo = {
8935                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8936                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8937                     .access = PL1_RW, .resetvalue = 0,
8938                     .accessfn = access_tvm_trvm,
8939                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8940                 };
8941                 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
8942                 g_free(tmp_string);
8943 
8944                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8945                 tmp_string = g_strdup_printf("PRLAR%u", i);
8946                 ARMCPRegInfo tmp_prlarn_reginfo = {
8947                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8948                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8949                     .access = PL1_RW, .resetvalue = 0,
8950                     .accessfn = access_tvm_trvm,
8951                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8952                 };
8953                 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
8954                 g_free(tmp_string);
8955             }
8956 
8957             /* Register alias is only valid for first 32 indexes */
8958             for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
8959                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8960                 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
8961                 uint8_t opc2 = extract32(i, 0, 1) << 2;
8962 
8963                 tmp_string = g_strdup_printf("HPRBAR%u", i);
8964                 ARMCPRegInfo tmp_hprbarn_reginfo = {
8965                     .name = tmp_string,
8966                     .type = ARM_CP_NO_RAW,
8967                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8968                     .access = PL2_RW, .resetvalue = 0,
8969                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8970                 };
8971                 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
8972                 g_free(tmp_string);
8973 
8974                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8975                 tmp_string = g_strdup_printf("HPRLAR%u", i);
8976                 ARMCPRegInfo tmp_hprlarn_reginfo = {
8977                     .name = tmp_string,
8978                     .type = ARM_CP_NO_RAW,
8979                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8980                     .access = PL2_RW, .resetvalue = 0,
8981                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8982                 };
8983                 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
8984                 g_free(tmp_string);
8985             }
8986         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8987             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8988         }
8989     }
8990 
8991     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8992         ARMCPRegInfo mpidr_cp_reginfo[] = {
8993             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8994               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8995               .fgt = FGT_MPIDR_EL1,
8996               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8997         };
8998 #ifdef CONFIG_USER_ONLY
8999         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9000             { .name = "MPIDR_EL1",
9001               .fixed_bits = 0x0000000080000000 },
9002         };
9003         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9004 #endif
9005         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9006     }
9007 
9008     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9009         ARMCPRegInfo auxcr_reginfo[] = {
9010             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9011               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9012               .access = PL1_RW, .accessfn = access_tacr,
9013               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9014             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9015               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9016               .access = PL2_RW, .type = ARM_CP_CONST,
9017               .resetvalue = 0 },
9018             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9019               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9020               .access = PL3_RW, .type = ARM_CP_CONST,
9021               .resetvalue = 0 },
9022         };
9023         define_arm_cp_regs(cpu, auxcr_reginfo);
9024         if (cpu_isar_feature(aa32_ac2, cpu)) {
9025             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9026         }
9027     }
9028 
9029     if (arm_feature(env, ARM_FEATURE_CBAR)) {
9030         /*
9031          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9032          * There are two flavours:
9033          *  (1) older 32-bit only cores have a simple 32-bit CBAR
9034          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9035          *      32-bit register visible to AArch32 at a different encoding
9036          *      to the "flavour 1" register and with the bits rearranged to
9037          *      be able to squash a 64-bit address into the 32-bit view.
9038          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9039          * in future if we support AArch32-only configs of some of the
9040          * AArch64 cores we might need to add a specific feature flag
9041          * to indicate cores with "flavour 2" CBAR.
9042          */
9043         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9044             /* 32 bit view is [31:18] 0...0 [43:32]. */
9045             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9046                 | extract64(cpu->reset_cbar, 32, 12);
9047             ARMCPRegInfo cbar_reginfo[] = {
9048                 { .name = "CBAR",
9049                   .type = ARM_CP_CONST,
9050                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9051                   .access = PL1_R, .resetvalue = cbar32 },
9052                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9053                   .type = ARM_CP_CONST,
9054                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9055                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
9056             };
9057             /* We don't implement a r/w 64 bit CBAR currently */
9058             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9059             define_arm_cp_regs(cpu, cbar_reginfo);
9060         } else {
9061             ARMCPRegInfo cbar = {
9062                 .name = "CBAR",
9063                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9064                 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9065                 .fieldoffset = offsetof(CPUARMState,
9066                                         cp15.c15_config_base_address)
9067             };
9068             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9069                 cbar.access = PL1_R;
9070                 cbar.fieldoffset = 0;
9071                 cbar.type = ARM_CP_CONST;
9072             }
9073             define_one_arm_cp_reg(cpu, &cbar);
9074         }
9075     }
9076 
9077     if (arm_feature(env, ARM_FEATURE_VBAR)) {
9078         static const ARMCPRegInfo vbar_cp_reginfo[] = {
9079             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9080               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9081               .access = PL1_RW, .writefn = vbar_write,
9082               .fgt = FGT_VBAR_EL1,
9083               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9084                                      offsetof(CPUARMState, cp15.vbar_ns) },
9085               .resetvalue = 0 },
9086         };
9087         define_arm_cp_regs(cpu, vbar_cp_reginfo);
9088     }
9089 
9090     /* Generic registers whose values depend on the implementation */
9091     {
9092         ARMCPRegInfo sctlr = {
9093             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9094             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9095             .access = PL1_RW, .accessfn = access_tvm_trvm,
9096             .fgt = FGT_SCTLR_EL1,
9097             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9098                                    offsetof(CPUARMState, cp15.sctlr_ns) },
9099             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9100             .raw_writefn = raw_write,
9101         };
9102         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9103             /*
9104              * Normally we would always end the TB on an SCTLR write, but Linux
9105              * arch/arm/mach-pxa/sleep.S expects two instructions following
9106              * an MMU enable to execute from cache.  Imitate this behaviour.
9107              */
9108             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9109         }
9110         define_one_arm_cp_reg(cpu, &sctlr);
9111 
9112         if (arm_feature(env, ARM_FEATURE_PMSA) &&
9113             arm_feature(env, ARM_FEATURE_V8)) {
9114             ARMCPRegInfo vsctlr = {
9115                 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9116                 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9117                 .access = PL2_RW, .resetvalue = 0x0,
9118                 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9119             };
9120             define_one_arm_cp_reg(cpu, &vsctlr);
9121         }
9122     }
9123 
9124     if (cpu_isar_feature(aa64_lor, cpu)) {
9125         define_arm_cp_regs(cpu, lor_reginfo);
9126     }
9127     if (cpu_isar_feature(aa64_pan, cpu)) {
9128         define_one_arm_cp_reg(cpu, &pan_reginfo);
9129     }
9130 #ifndef CONFIG_USER_ONLY
9131     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9132         define_arm_cp_regs(cpu, ats1e1_reginfo);
9133     }
9134     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9135         define_arm_cp_regs(cpu, ats1cp_reginfo);
9136     }
9137 #endif
9138     if (cpu_isar_feature(aa64_uao, cpu)) {
9139         define_one_arm_cp_reg(cpu, &uao_reginfo);
9140     }
9141 
9142     if (cpu_isar_feature(aa64_dit, cpu)) {
9143         define_one_arm_cp_reg(cpu, &dit_reginfo);
9144     }
9145     if (cpu_isar_feature(aa64_ssbs, cpu)) {
9146         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9147     }
9148     if (cpu_isar_feature(any_ras, cpu)) {
9149         define_arm_cp_regs(cpu, minimal_ras_reginfo);
9150     }
9151 
9152     if (cpu_isar_feature(aa64_vh, cpu) ||
9153         cpu_isar_feature(aa64_debugv8p2, cpu)) {
9154         define_one_arm_cp_reg(cpu, &contextidr_el2);
9155     }
9156     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9157         define_arm_cp_regs(cpu, vhe_reginfo);
9158     }
9159 
9160     if (cpu_isar_feature(aa64_sve, cpu)) {
9161         define_arm_cp_regs(cpu, zcr_reginfo);
9162     }
9163 
9164     if (cpu_isar_feature(aa64_hcx, cpu)) {
9165         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9166     }
9167 
9168 #ifdef TARGET_AARCH64
9169     if (cpu_isar_feature(aa64_sme, cpu)) {
9170         define_arm_cp_regs(cpu, sme_reginfo);
9171     }
9172     if (cpu_isar_feature(aa64_pauth, cpu)) {
9173         define_arm_cp_regs(cpu, pauth_reginfo);
9174     }
9175     if (cpu_isar_feature(aa64_rndr, cpu)) {
9176         define_arm_cp_regs(cpu, rndr_reginfo);
9177     }
9178     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9179         define_arm_cp_regs(cpu, tlbirange_reginfo);
9180     }
9181     if (cpu_isar_feature(aa64_tlbios, cpu)) {
9182         define_arm_cp_regs(cpu, tlbios_reginfo);
9183     }
9184     /* Data Cache clean instructions up to PoP */
9185     if (cpu_isar_feature(aa64_dcpop, cpu)) {
9186         define_one_arm_cp_reg(cpu, dcpop_reg);
9187 
9188         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9189             define_one_arm_cp_reg(cpu, dcpodp_reg);
9190         }
9191     }
9192 
9193     /*
9194      * If full MTE is enabled, add all of the system registers.
9195      * If only "instructions available at EL0" are enabled,
9196      * then define only a RAZ/WI version of PSTATE.TCO.
9197      */
9198     if (cpu_isar_feature(aa64_mte, cpu)) {
9199         define_arm_cp_regs(cpu, mte_reginfo);
9200         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9201     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9202         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9203         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9204     }
9205 
9206     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9207         define_arm_cp_regs(cpu, scxtnum_reginfo);
9208     }
9209 
9210     if (cpu_isar_feature(aa64_fgt, cpu)) {
9211         define_arm_cp_regs(cpu, fgt_reginfo);
9212     }
9213 
9214     if (cpu_isar_feature(aa64_rme, cpu)) {
9215         define_arm_cp_regs(cpu, rme_reginfo);
9216         if (cpu_isar_feature(aa64_mte, cpu)) {
9217             define_arm_cp_regs(cpu, rme_mte_reginfo);
9218         }
9219     }
9220 #endif
9221 
9222     if (cpu_isar_feature(any_predinv, cpu)) {
9223         define_arm_cp_regs(cpu, predinv_reginfo);
9224     }
9225 
9226     if (cpu_isar_feature(any_ccidx, cpu)) {
9227         define_arm_cp_regs(cpu, ccsidr2_reginfo);
9228     }
9229 
9230 #ifndef CONFIG_USER_ONLY
9231     /*
9232      * Register redirections and aliases must be done last,
9233      * after the registers from the other extensions have been defined.
9234      */
9235     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9236         define_arm_vh_e2h_redirects_aliases(cpu);
9237     }
9238 #endif
9239 }
9240 
9241 /* Sort alphabetically by type name, except for "any". */
9242 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9243 {
9244     ObjectClass *class_a = (ObjectClass *)a;
9245     ObjectClass *class_b = (ObjectClass *)b;
9246     const char *name_a, *name_b;
9247 
9248     name_a = object_class_get_name(class_a);
9249     name_b = object_class_get_name(class_b);
9250     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9251         return 1;
9252     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9253         return -1;
9254     } else {
9255         return strcmp(name_a, name_b);
9256     }
9257 }
9258 
9259 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9260 {
9261     ObjectClass *oc = data;
9262     CPUClass *cc = CPU_CLASS(oc);
9263     const char *typename;
9264     char *name;
9265 
9266     typename = object_class_get_name(oc);
9267     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9268     if (cc->deprecation_note) {
9269         qemu_printf("  %s (deprecated)\n", name);
9270     } else {
9271         qemu_printf("  %s\n", name);
9272     }
9273     g_free(name);
9274 }
9275 
9276 void arm_cpu_list(void)
9277 {
9278     GSList *list;
9279 
9280     list = object_class_get_list(TYPE_ARM_CPU, false);
9281     list = g_slist_sort(list, arm_cpu_list_compare);
9282     qemu_printf("Available CPUs:\n");
9283     g_slist_foreach(list, arm_cpu_list_entry, NULL);
9284     g_slist_free(list);
9285 }
9286 
9287 /*
9288  * Private utility function for define_one_arm_cp_reg_with_opaque():
9289  * add a single reginfo struct to the hash table.
9290  */
9291 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9292                                    void *opaque, CPState state,
9293                                    CPSecureState secstate,
9294                                    int crm, int opc1, int opc2,
9295                                    const char *name)
9296 {
9297     CPUARMState *env = &cpu->env;
9298     uint32_t key;
9299     ARMCPRegInfo *r2;
9300     bool is64 = r->type & ARM_CP_64BIT;
9301     bool ns = secstate & ARM_CP_SECSTATE_NS;
9302     int cp = r->cp;
9303     size_t name_len;
9304     bool make_const;
9305 
9306     switch (state) {
9307     case ARM_CP_STATE_AA32:
9308         /* We assume it is a cp15 register if the .cp field is left unset. */
9309         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9310             cp = 15;
9311         }
9312         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9313         break;
9314     case ARM_CP_STATE_AA64:
9315         /*
9316          * To allow abbreviation of ARMCPRegInfo definitions, we treat
9317          * cp == 0 as equivalent to the value for "standard guest-visible
9318          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
9319          * in their AArch64 view (the .cp value may be non-zero for the
9320          * benefit of the AArch32 view).
9321          */
9322         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9323             cp = CP_REG_ARM64_SYSREG_CP;
9324         }
9325         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9326         break;
9327     default:
9328         g_assert_not_reached();
9329     }
9330 
9331     /* Overriding of an existing definition must be explicitly requested. */
9332     if (!(r->type & ARM_CP_OVERRIDE)) {
9333         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9334         if (oldreg) {
9335             assert(oldreg->type & ARM_CP_OVERRIDE);
9336         }
9337     }
9338 
9339     /*
9340      * Eliminate registers that are not present because the EL is missing.
9341      * Doing this here makes it easier to put all registers for a given
9342      * feature into the same ARMCPRegInfo array and define them all at once.
9343      */
9344     make_const = false;
9345     if (arm_feature(env, ARM_FEATURE_EL3)) {
9346         /*
9347          * An EL2 register without EL2 but with EL3 is (usually) RES0.
9348          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9349          */
9350         int min_el = ctz32(r->access) / 2;
9351         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9352             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9353                 return;
9354             }
9355             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9356         }
9357     } else {
9358         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9359                                  ? PL2_RW : PL1_RW);
9360         if ((r->access & max_el) == 0) {
9361             return;
9362         }
9363     }
9364 
9365     /* Combine cpreg and name into one allocation. */
9366     name_len = strlen(name) + 1;
9367     r2 = g_malloc(sizeof(*r2) + name_len);
9368     *r2 = *r;
9369     r2->name = memcpy(r2 + 1, name, name_len);
9370 
9371     /*
9372      * Update fields to match the instantiation, overwiting wildcards
9373      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9374      */
9375     r2->cp = cp;
9376     r2->crm = crm;
9377     r2->opc1 = opc1;
9378     r2->opc2 = opc2;
9379     r2->state = state;
9380     r2->secure = secstate;
9381     if (opaque) {
9382         r2->opaque = opaque;
9383     }
9384 
9385     if (make_const) {
9386         /* This should not have been a very special register to begin. */
9387         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9388         assert(old_special == 0 || old_special == ARM_CP_NOP);
9389         /*
9390          * Set the special function to CONST, retaining the other flags.
9391          * This is important for e.g. ARM_CP_SVE so that we still
9392          * take the SVE trap if CPTR_EL3.EZ == 0.
9393          */
9394         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9395         /*
9396          * Usually, these registers become RES0, but there are a few
9397          * special cases like VPIDR_EL2 which have a constant non-zero
9398          * value with writes ignored.
9399          */
9400         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9401             r2->resetvalue = 0;
9402         }
9403         /*
9404          * ARM_CP_CONST has precedence, so removing the callbacks and
9405          * offsets are not strictly necessary, but it is potentially
9406          * less confusing to debug later.
9407          */
9408         r2->readfn = NULL;
9409         r2->writefn = NULL;
9410         r2->raw_readfn = NULL;
9411         r2->raw_writefn = NULL;
9412         r2->resetfn = NULL;
9413         r2->fieldoffset = 0;
9414         r2->bank_fieldoffsets[0] = 0;
9415         r2->bank_fieldoffsets[1] = 0;
9416     } else {
9417         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9418 
9419         if (isbanked) {
9420             /*
9421              * Register is banked (using both entries in array).
9422              * Overwriting fieldoffset as the array is only used to define
9423              * banked registers but later only fieldoffset is used.
9424              */
9425             r2->fieldoffset = r->bank_fieldoffsets[ns];
9426         }
9427         if (state == ARM_CP_STATE_AA32) {
9428             if (isbanked) {
9429                 /*
9430                  * If the register is banked then we don't need to migrate or
9431                  * reset the 32-bit instance in certain cases:
9432                  *
9433                  * 1) If the register has both 32-bit and 64-bit instances
9434                  *    then we can count on the 64-bit instance taking care
9435                  *    of the non-secure bank.
9436                  * 2) If ARMv8 is enabled then we can count on a 64-bit
9437                  *    version taking care of the secure bank.  This requires
9438                  *    that separate 32 and 64-bit definitions are provided.
9439                  */
9440                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9441                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9442                     r2->type |= ARM_CP_ALIAS;
9443                 }
9444             } else if ((secstate != r->secure) && !ns) {
9445                 /*
9446                  * The register is not banked so we only want to allow
9447                  * migration of the non-secure instance.
9448                  */
9449                 r2->type |= ARM_CP_ALIAS;
9450             }
9451 
9452             if (HOST_BIG_ENDIAN &&
9453                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9454                 r2->fieldoffset += sizeof(uint32_t);
9455             }
9456         }
9457     }
9458 
9459     /*
9460      * By convention, for wildcarded registers only the first
9461      * entry is used for migration; the others are marked as
9462      * ALIAS so we don't try to transfer the register
9463      * multiple times. Special registers (ie NOP/WFI) are
9464      * never migratable and not even raw-accessible.
9465      */
9466     if (r2->type & ARM_CP_SPECIAL_MASK) {
9467         r2->type |= ARM_CP_NO_RAW;
9468     }
9469     if (((r->crm == CP_ANY) && crm != 0) ||
9470         ((r->opc1 == CP_ANY) && opc1 != 0) ||
9471         ((r->opc2 == CP_ANY) && opc2 != 0)) {
9472         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9473     }
9474 
9475     /*
9476      * Check that raw accesses are either forbidden or handled. Note that
9477      * we can't assert this earlier because the setup of fieldoffset for
9478      * banked registers has to be done first.
9479      */
9480     if (!(r2->type & ARM_CP_NO_RAW)) {
9481         assert(!raw_accessors_invalid(r2));
9482     }
9483 
9484     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9485 }
9486 
9487 
9488 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9489                                        const ARMCPRegInfo *r, void *opaque)
9490 {
9491     /*
9492      * Define implementations of coprocessor registers.
9493      * We store these in a hashtable because typically
9494      * there are less than 150 registers in a space which
9495      * is 16*16*16*8*8 = 262144 in size.
9496      * Wildcarding is supported for the crm, opc1 and opc2 fields.
9497      * If a register is defined twice then the second definition is
9498      * used, so this can be used to define some generic registers and
9499      * then override them with implementation specific variations.
9500      * At least one of the original and the second definition should
9501      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9502      * against accidental use.
9503      *
9504      * The state field defines whether the register is to be
9505      * visible in the AArch32 or AArch64 execution state. If the
9506      * state is set to ARM_CP_STATE_BOTH then we synthesise a
9507      * reginfo structure for the AArch32 view, which sees the lower
9508      * 32 bits of the 64 bit register.
9509      *
9510      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9511      * be wildcarded. AArch64 registers are always considered to be 64
9512      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9513      * the register, if any.
9514      */
9515     int crm, opc1, opc2;
9516     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9517     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9518     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9519     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9520     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9521     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9522     CPState state;
9523 
9524     /* 64 bit registers have only CRm and Opc1 fields */
9525     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9526     /* op0 only exists in the AArch64 encodings */
9527     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9528     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9529     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9530     /*
9531      * This API is only for Arm's system coprocessors (14 and 15) or
9532      * (M-profile or v7A-and-earlier only) for implementation defined
9533      * coprocessors in the range 0..7.  Our decode assumes this, since
9534      * 8..13 can be used for other insns including VFP and Neon. See
9535      * valid_cp() in translate.c.  Assert here that we haven't tried
9536      * to use an invalid coprocessor number.
9537      */
9538     switch (r->state) {
9539     case ARM_CP_STATE_BOTH:
9540         /* 0 has a special meaning, but otherwise the same rules as AA32. */
9541         if (r->cp == 0) {
9542             break;
9543         }
9544         /* fall through */
9545     case ARM_CP_STATE_AA32:
9546         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9547             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9548             assert(r->cp >= 14 && r->cp <= 15);
9549         } else {
9550             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9551         }
9552         break;
9553     case ARM_CP_STATE_AA64:
9554         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9555         break;
9556     default:
9557         g_assert_not_reached();
9558     }
9559     /*
9560      * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9561      * encodes a minimum access level for the register. We roll this
9562      * runtime check into our general permission check code, so check
9563      * here that the reginfo's specified permissions are strict enough
9564      * to encompass the generic architectural permission check.
9565      */
9566     if (r->state != ARM_CP_STATE_AA32) {
9567         CPAccessRights mask;
9568         switch (r->opc1) {
9569         case 0:
9570             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9571             mask = PL0U_R | PL1_RW;
9572             break;
9573         case 1: case 2:
9574             /* min_EL EL1 */
9575             mask = PL1_RW;
9576             break;
9577         case 3:
9578             /* min_EL EL0 */
9579             mask = PL0_RW;
9580             break;
9581         case 4:
9582         case 5:
9583             /* min_EL EL2 */
9584             mask = PL2_RW;
9585             break;
9586         case 6:
9587             /* min_EL EL3 */
9588             mask = PL3_RW;
9589             break;
9590         case 7:
9591             /* min_EL EL1, secure mode only (we don't check the latter) */
9592             mask = PL1_RW;
9593             break;
9594         default:
9595             /* broken reginfo with out-of-range opc1 */
9596             g_assert_not_reached();
9597         }
9598         /* assert our permissions are not too lax (stricter is fine) */
9599         assert((r->access & ~mask) == 0);
9600     }
9601 
9602     /*
9603      * Check that the register definition has enough info to handle
9604      * reads and writes if they are permitted.
9605      */
9606     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9607         if (r->access & PL3_R) {
9608             assert((r->fieldoffset ||
9609                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9610                    r->readfn);
9611         }
9612         if (r->access & PL3_W) {
9613             assert((r->fieldoffset ||
9614                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9615                    r->writefn);
9616         }
9617     }
9618 
9619     for (crm = crmmin; crm <= crmmax; crm++) {
9620         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9621             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9622                 for (state = ARM_CP_STATE_AA32;
9623                      state <= ARM_CP_STATE_AA64; state++) {
9624                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9625                         continue;
9626                     }
9627                     if (state == ARM_CP_STATE_AA32) {
9628                         /*
9629                          * Under AArch32 CP registers can be common
9630                          * (same for secure and non-secure world) or banked.
9631                          */
9632                         char *name;
9633 
9634                         switch (r->secure) {
9635                         case ARM_CP_SECSTATE_S:
9636                         case ARM_CP_SECSTATE_NS:
9637                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9638                                                    r->secure, crm, opc1, opc2,
9639                                                    r->name);
9640                             break;
9641                         case ARM_CP_SECSTATE_BOTH:
9642                             name = g_strdup_printf("%s_S", r->name);
9643                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9644                                                    ARM_CP_SECSTATE_S,
9645                                                    crm, opc1, opc2, name);
9646                             g_free(name);
9647                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9648                                                    ARM_CP_SECSTATE_NS,
9649                                                    crm, opc1, opc2, r->name);
9650                             break;
9651                         default:
9652                             g_assert_not_reached();
9653                         }
9654                     } else {
9655                         /*
9656                          * AArch64 registers get mapped to non-secure instance
9657                          * of AArch32
9658                          */
9659                         add_cpreg_to_hashtable(cpu, r, opaque, state,
9660                                                ARM_CP_SECSTATE_NS,
9661                                                crm, opc1, opc2, r->name);
9662                     }
9663                 }
9664             }
9665         }
9666     }
9667 }
9668 
9669 /* Define a whole list of registers */
9670 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9671                                         void *opaque, size_t len)
9672 {
9673     size_t i;
9674     for (i = 0; i < len; ++i) {
9675         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9676     }
9677 }
9678 
9679 /*
9680  * Modify ARMCPRegInfo for access from userspace.
9681  *
9682  * This is a data driven modification directed by
9683  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9684  * user-space cannot alter any values and dynamic values pertaining to
9685  * execution state are hidden from user space view anyway.
9686  */
9687 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9688                                  const ARMCPRegUserSpaceInfo *mods,
9689                                  size_t mods_len)
9690 {
9691     for (size_t mi = 0; mi < mods_len; ++mi) {
9692         const ARMCPRegUserSpaceInfo *m = mods + mi;
9693         GPatternSpec *pat = NULL;
9694 
9695         if (m->is_glob) {
9696             pat = g_pattern_spec_new(m->name);
9697         }
9698         for (size_t ri = 0; ri < regs_len; ++ri) {
9699             ARMCPRegInfo *r = regs + ri;
9700 
9701             if (pat && g_pattern_match_string(pat, r->name)) {
9702                 r->type = ARM_CP_CONST;
9703                 r->access = PL0U_R;
9704                 r->resetvalue = 0;
9705                 /* continue */
9706             } else if (strcmp(r->name, m->name) == 0) {
9707                 r->type = ARM_CP_CONST;
9708                 r->access = PL0U_R;
9709                 r->resetvalue &= m->exported_bits;
9710                 r->resetvalue |= m->fixed_bits;
9711                 break;
9712             }
9713         }
9714         if (pat) {
9715             g_pattern_spec_free(pat);
9716         }
9717     }
9718 }
9719 
9720 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9721 {
9722     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9723 }
9724 
9725 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9726                          uint64_t value)
9727 {
9728     /* Helper coprocessor write function for write-ignore registers */
9729 }
9730 
9731 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9732 {
9733     /* Helper coprocessor write function for read-as-zero registers */
9734     return 0;
9735 }
9736 
9737 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9738 {
9739     /* Helper coprocessor reset function for do-nothing-on-reset registers */
9740 }
9741 
9742 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9743 {
9744     /*
9745      * Return true if it is not valid for us to switch to
9746      * this CPU mode (ie all the UNPREDICTABLE cases in
9747      * the ARM ARM CPSRWriteByInstr pseudocode).
9748      */
9749 
9750     /* Changes to or from Hyp via MSR and CPS are illegal. */
9751     if (write_type == CPSRWriteByInstr &&
9752         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9753          mode == ARM_CPU_MODE_HYP)) {
9754         return 1;
9755     }
9756 
9757     switch (mode) {
9758     case ARM_CPU_MODE_USR:
9759         return 0;
9760     case ARM_CPU_MODE_SYS:
9761     case ARM_CPU_MODE_SVC:
9762     case ARM_CPU_MODE_ABT:
9763     case ARM_CPU_MODE_UND:
9764     case ARM_CPU_MODE_IRQ:
9765     case ARM_CPU_MODE_FIQ:
9766         /*
9767          * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9768          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9769          */
9770         /*
9771          * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9772          * and CPS are treated as illegal mode changes.
9773          */
9774         if (write_type == CPSRWriteByInstr &&
9775             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9776             (arm_hcr_el2_eff(env) & HCR_TGE)) {
9777             return 1;
9778         }
9779         return 0;
9780     case ARM_CPU_MODE_HYP:
9781         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9782     case ARM_CPU_MODE_MON:
9783         return arm_current_el(env) < 3;
9784     default:
9785         return 1;
9786     }
9787 }
9788 
9789 uint32_t cpsr_read(CPUARMState *env)
9790 {
9791     int ZF;
9792     ZF = (env->ZF == 0);
9793     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9794         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9795         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9796         | ((env->condexec_bits & 0xfc) << 8)
9797         | (env->GE << 16) | (env->daif & CPSR_AIF);
9798 }
9799 
9800 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9801                 CPSRWriteType write_type)
9802 {
9803     uint32_t changed_daif;
9804     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9805         (mask & (CPSR_M | CPSR_E | CPSR_IL));
9806 
9807     if (mask & CPSR_NZCV) {
9808         env->ZF = (~val) & CPSR_Z;
9809         env->NF = val;
9810         env->CF = (val >> 29) & 1;
9811         env->VF = (val << 3) & 0x80000000;
9812     }
9813     if (mask & CPSR_Q) {
9814         env->QF = ((val & CPSR_Q) != 0);
9815     }
9816     if (mask & CPSR_T) {
9817         env->thumb = ((val & CPSR_T) != 0);
9818     }
9819     if (mask & CPSR_IT_0_1) {
9820         env->condexec_bits &= ~3;
9821         env->condexec_bits |= (val >> 25) & 3;
9822     }
9823     if (mask & CPSR_IT_2_7) {
9824         env->condexec_bits &= 3;
9825         env->condexec_bits |= (val >> 8) & 0xfc;
9826     }
9827     if (mask & CPSR_GE) {
9828         env->GE = (val >> 16) & 0xf;
9829     }
9830 
9831     /*
9832      * In a V7 implementation that includes the security extensions but does
9833      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9834      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9835      * bits respectively.
9836      *
9837      * In a V8 implementation, it is permitted for privileged software to
9838      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9839      */
9840     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9841         arm_feature(env, ARM_FEATURE_EL3) &&
9842         !arm_feature(env, ARM_FEATURE_EL2) &&
9843         !arm_is_secure(env)) {
9844 
9845         changed_daif = (env->daif ^ val) & mask;
9846 
9847         if (changed_daif & CPSR_A) {
9848             /*
9849              * Check to see if we are allowed to change the masking of async
9850              * abort exceptions from a non-secure state.
9851              */
9852             if (!(env->cp15.scr_el3 & SCR_AW)) {
9853                 qemu_log_mask(LOG_GUEST_ERROR,
9854                               "Ignoring attempt to switch CPSR_A flag from "
9855                               "non-secure world with SCR.AW bit clear\n");
9856                 mask &= ~CPSR_A;
9857             }
9858         }
9859 
9860         if (changed_daif & CPSR_F) {
9861             /*
9862              * Check to see if we are allowed to change the masking of FIQ
9863              * exceptions from a non-secure state.
9864              */
9865             if (!(env->cp15.scr_el3 & SCR_FW)) {
9866                 qemu_log_mask(LOG_GUEST_ERROR,
9867                               "Ignoring attempt to switch CPSR_F flag from "
9868                               "non-secure world with SCR.FW bit clear\n");
9869                 mask &= ~CPSR_F;
9870             }
9871 
9872             /*
9873              * Check whether non-maskable FIQ (NMFI) support is enabled.
9874              * If this bit is set software is not allowed to mask
9875              * FIQs, but is allowed to set CPSR_F to 0.
9876              */
9877             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9878                 (val & CPSR_F)) {
9879                 qemu_log_mask(LOG_GUEST_ERROR,
9880                               "Ignoring attempt to enable CPSR_F flag "
9881                               "(non-maskable FIQ [NMFI] support enabled)\n");
9882                 mask &= ~CPSR_F;
9883             }
9884         }
9885     }
9886 
9887     env->daif &= ~(CPSR_AIF & mask);
9888     env->daif |= val & CPSR_AIF & mask;
9889 
9890     if (write_type != CPSRWriteRaw &&
9891         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9892         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9893             /*
9894              * Note that we can only get here in USR mode if this is a
9895              * gdb stub write; for this case we follow the architectural
9896              * behaviour for guest writes in USR mode of ignoring an attempt
9897              * to switch mode. (Those are caught by translate.c for writes
9898              * triggered by guest instructions.)
9899              */
9900             mask &= ~CPSR_M;
9901         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9902             /*
9903              * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9904              * v7, and has defined behaviour in v8:
9905              *  + leave CPSR.M untouched
9906              *  + allow changes to the other CPSR fields
9907              *  + set PSTATE.IL
9908              * For user changes via the GDB stub, we don't set PSTATE.IL,
9909              * as this would be unnecessarily harsh for a user error.
9910              */
9911             mask &= ~CPSR_M;
9912             if (write_type != CPSRWriteByGDBStub &&
9913                 arm_feature(env, ARM_FEATURE_V8)) {
9914                 mask |= CPSR_IL;
9915                 val |= CPSR_IL;
9916             }
9917             qemu_log_mask(LOG_GUEST_ERROR,
9918                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9919                           aarch32_mode_name(env->uncached_cpsr),
9920                           aarch32_mode_name(val));
9921         } else {
9922             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9923                           write_type == CPSRWriteExceptionReturn ?
9924                           "Exception return from AArch32" :
9925                           "AArch32 mode switch from",
9926                           aarch32_mode_name(env->uncached_cpsr),
9927                           aarch32_mode_name(val), env->regs[15]);
9928             switch_mode(env, val & CPSR_M);
9929         }
9930     }
9931     mask &= ~CACHED_CPSR_BITS;
9932     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9933     if (tcg_enabled() && rebuild_hflags) {
9934         arm_rebuild_hflags(env);
9935     }
9936 }
9937 
9938 /* Sign/zero extend */
9939 uint32_t HELPER(sxtb16)(uint32_t x)
9940 {
9941     uint32_t res;
9942     res = (uint16_t)(int8_t)x;
9943     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9944     return res;
9945 }
9946 
9947 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9948 {
9949     /*
9950      * Take a division-by-zero exception if necessary; otherwise return
9951      * to get the usual non-trapping division behaviour (result of 0)
9952      */
9953     if (arm_feature(env, ARM_FEATURE_M)
9954         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9955         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9956     }
9957 }
9958 
9959 uint32_t HELPER(uxtb16)(uint32_t x)
9960 {
9961     uint32_t res;
9962     res = (uint16_t)(uint8_t)x;
9963     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9964     return res;
9965 }
9966 
9967 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9968 {
9969     if (den == 0) {
9970         handle_possible_div0_trap(env, GETPC());
9971         return 0;
9972     }
9973     if (num == INT_MIN && den == -1) {
9974         return INT_MIN;
9975     }
9976     return num / den;
9977 }
9978 
9979 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9980 {
9981     if (den == 0) {
9982         handle_possible_div0_trap(env, GETPC());
9983         return 0;
9984     }
9985     return num / den;
9986 }
9987 
9988 uint32_t HELPER(rbit)(uint32_t x)
9989 {
9990     return revbit32(x);
9991 }
9992 
9993 #ifdef CONFIG_USER_ONLY
9994 
9995 static void switch_mode(CPUARMState *env, int mode)
9996 {
9997     ARMCPU *cpu = env_archcpu(env);
9998 
9999     if (mode != ARM_CPU_MODE_USR) {
10000         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10001     }
10002 }
10003 
10004 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10005                                  uint32_t cur_el, bool secure)
10006 {
10007     return 1;
10008 }
10009 
10010 void aarch64_sync_64_to_32(CPUARMState *env)
10011 {
10012     g_assert_not_reached();
10013 }
10014 
10015 #else
10016 
10017 static void switch_mode(CPUARMState *env, int mode)
10018 {
10019     int old_mode;
10020     int i;
10021 
10022     old_mode = env->uncached_cpsr & CPSR_M;
10023     if (mode == old_mode) {
10024         return;
10025     }
10026 
10027     if (old_mode == ARM_CPU_MODE_FIQ) {
10028         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10029         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10030     } else if (mode == ARM_CPU_MODE_FIQ) {
10031         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10032         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10033     }
10034 
10035     i = bank_number(old_mode);
10036     env->banked_r13[i] = env->regs[13];
10037     env->banked_spsr[i] = env->spsr;
10038 
10039     i = bank_number(mode);
10040     env->regs[13] = env->banked_r13[i];
10041     env->spsr = env->banked_spsr[i];
10042 
10043     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10044     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10045 }
10046 
10047 /*
10048  * Physical Interrupt Target EL Lookup Table
10049  *
10050  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10051  *
10052  * The below multi-dimensional table is used for looking up the target
10053  * exception level given numerous condition criteria.  Specifically, the
10054  * target EL is based on SCR and HCR routing controls as well as the
10055  * currently executing EL and secure state.
10056  *
10057  *    Dimensions:
10058  *    target_el_table[2][2][2][2][2][4]
10059  *                    |  |  |  |  |  +--- Current EL
10060  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
10061  *                    |  |  |  +--------- HCR mask override
10062  *                    |  |  +------------ SCR exec state control
10063  *                    |  +--------------- SCR mask override
10064  *                    +------------------ 32-bit(0)/64-bit(1) EL3
10065  *
10066  *    The table values are as such:
10067  *    0-3 = EL0-EL3
10068  *     -1 = Cannot occur
10069  *
10070  * The ARM ARM target EL table includes entries indicating that an "exception
10071  * is not taken".  The two cases where this is applicable are:
10072  *    1) An exception is taken from EL3 but the SCR does not have the exception
10073  *    routed to EL3.
10074  *    2) An exception is taken from EL2 but the HCR does not have the exception
10075  *    routed to EL2.
10076  * In these two cases, the below table contain a target of EL1.  This value is
10077  * returned as it is expected that the consumer of the table data will check
10078  * for "target EL >= current EL" to ensure the exception is not taken.
10079  *
10080  *            SCR     HCR
10081  *         64  EA     AMO                 From
10082  *        BIT IRQ     IMO      Non-secure         Secure
10083  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
10084  */
10085 static const int8_t target_el_table[2][2][2][2][2][4] = {
10086     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10087        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
10088       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10089        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
10090      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10091        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
10092       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10093        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
10094     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
10095        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
10096       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
10097        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
10098      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
10099        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
10100       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
10101        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
10102 };
10103 
10104 /*
10105  * Determine the target EL for physical exceptions
10106  */
10107 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10108                                  uint32_t cur_el, bool secure)
10109 {
10110     CPUARMState *env = cs->env_ptr;
10111     bool rw;
10112     bool scr;
10113     bool hcr;
10114     int target_el;
10115     /* Is the highest EL AArch64? */
10116     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10117     uint64_t hcr_el2;
10118 
10119     if (arm_feature(env, ARM_FEATURE_EL3)) {
10120         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10121     } else {
10122         /*
10123          * Either EL2 is the highest EL (and so the EL2 register width
10124          * is given by is64); or there is no EL2 or EL3, in which case
10125          * the value of 'rw' does not affect the table lookup anyway.
10126          */
10127         rw = is64;
10128     }
10129 
10130     hcr_el2 = arm_hcr_el2_eff(env);
10131     switch (excp_idx) {
10132     case EXCP_IRQ:
10133         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10134         hcr = hcr_el2 & HCR_IMO;
10135         break;
10136     case EXCP_FIQ:
10137         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10138         hcr = hcr_el2 & HCR_FMO;
10139         break;
10140     default:
10141         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10142         hcr = hcr_el2 & HCR_AMO;
10143         break;
10144     };
10145 
10146     /*
10147      * For these purposes, TGE and AMO/IMO/FMO both force the
10148      * interrupt to EL2.  Fold TGE into the bit extracted above.
10149      */
10150     hcr |= (hcr_el2 & HCR_TGE) != 0;
10151 
10152     /* Perform a table-lookup for the target EL given the current state */
10153     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10154 
10155     assert(target_el > 0);
10156 
10157     return target_el;
10158 }
10159 
10160 void arm_log_exception(CPUState *cs)
10161 {
10162     int idx = cs->exception_index;
10163 
10164     if (qemu_loglevel_mask(CPU_LOG_INT)) {
10165         const char *exc = NULL;
10166         static const char * const excnames[] = {
10167             [EXCP_UDEF] = "Undefined Instruction",
10168             [EXCP_SWI] = "SVC",
10169             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10170             [EXCP_DATA_ABORT] = "Data Abort",
10171             [EXCP_IRQ] = "IRQ",
10172             [EXCP_FIQ] = "FIQ",
10173             [EXCP_BKPT] = "Breakpoint",
10174             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10175             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10176             [EXCP_HVC] = "Hypervisor Call",
10177             [EXCP_HYP_TRAP] = "Hypervisor Trap",
10178             [EXCP_SMC] = "Secure Monitor Call",
10179             [EXCP_VIRQ] = "Virtual IRQ",
10180             [EXCP_VFIQ] = "Virtual FIQ",
10181             [EXCP_SEMIHOST] = "Semihosting call",
10182             [EXCP_NOCP] = "v7M NOCP UsageFault",
10183             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10184             [EXCP_STKOF] = "v8M STKOF UsageFault",
10185             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10186             [EXCP_LSERR] = "v8M LSERR UsageFault",
10187             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10188             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10189             [EXCP_VSERR] = "Virtual SERR",
10190             [EXCP_GPC] = "Granule Protection Check",
10191         };
10192 
10193         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10194             exc = excnames[idx];
10195         }
10196         if (!exc) {
10197             exc = "unknown";
10198         }
10199         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10200                       idx, exc, cs->cpu_index);
10201     }
10202 }
10203 
10204 /*
10205  * Function used to synchronize QEMU's AArch64 register set with AArch32
10206  * register set.  This is necessary when switching between AArch32 and AArch64
10207  * execution state.
10208  */
10209 void aarch64_sync_32_to_64(CPUARMState *env)
10210 {
10211     int i;
10212     uint32_t mode = env->uncached_cpsr & CPSR_M;
10213 
10214     /* We can blanket copy R[0:7] to X[0:7] */
10215     for (i = 0; i < 8; i++) {
10216         env->xregs[i] = env->regs[i];
10217     }
10218 
10219     /*
10220      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10221      * Otherwise, they come from the banked user regs.
10222      */
10223     if (mode == ARM_CPU_MODE_FIQ) {
10224         for (i = 8; i < 13; i++) {
10225             env->xregs[i] = env->usr_regs[i - 8];
10226         }
10227     } else {
10228         for (i = 8; i < 13; i++) {
10229             env->xregs[i] = env->regs[i];
10230         }
10231     }
10232 
10233     /*
10234      * Registers x13-x23 are the various mode SP and FP registers. Registers
10235      * r13 and r14 are only copied if we are in that mode, otherwise we copy
10236      * from the mode banked register.
10237      */
10238     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10239         env->xregs[13] = env->regs[13];
10240         env->xregs[14] = env->regs[14];
10241     } else {
10242         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10243         /* HYP is an exception in that it is copied from r14 */
10244         if (mode == ARM_CPU_MODE_HYP) {
10245             env->xregs[14] = env->regs[14];
10246         } else {
10247             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10248         }
10249     }
10250 
10251     if (mode == ARM_CPU_MODE_HYP) {
10252         env->xregs[15] = env->regs[13];
10253     } else {
10254         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10255     }
10256 
10257     if (mode == ARM_CPU_MODE_IRQ) {
10258         env->xregs[16] = env->regs[14];
10259         env->xregs[17] = env->regs[13];
10260     } else {
10261         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10262         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10263     }
10264 
10265     if (mode == ARM_CPU_MODE_SVC) {
10266         env->xregs[18] = env->regs[14];
10267         env->xregs[19] = env->regs[13];
10268     } else {
10269         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10270         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10271     }
10272 
10273     if (mode == ARM_CPU_MODE_ABT) {
10274         env->xregs[20] = env->regs[14];
10275         env->xregs[21] = env->regs[13];
10276     } else {
10277         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10278         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10279     }
10280 
10281     if (mode == ARM_CPU_MODE_UND) {
10282         env->xregs[22] = env->regs[14];
10283         env->xregs[23] = env->regs[13];
10284     } else {
10285         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10286         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10287     }
10288 
10289     /*
10290      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10291      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
10292      * FIQ bank for r8-r14.
10293      */
10294     if (mode == ARM_CPU_MODE_FIQ) {
10295         for (i = 24; i < 31; i++) {
10296             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
10297         }
10298     } else {
10299         for (i = 24; i < 29; i++) {
10300             env->xregs[i] = env->fiq_regs[i - 24];
10301         }
10302         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10303         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10304     }
10305 
10306     env->pc = env->regs[15];
10307 }
10308 
10309 /*
10310  * Function used to synchronize QEMU's AArch32 register set with AArch64
10311  * register set.  This is necessary when switching between AArch32 and AArch64
10312  * execution state.
10313  */
10314 void aarch64_sync_64_to_32(CPUARMState *env)
10315 {
10316     int i;
10317     uint32_t mode = env->uncached_cpsr & CPSR_M;
10318 
10319     /* We can blanket copy X[0:7] to R[0:7] */
10320     for (i = 0; i < 8; i++) {
10321         env->regs[i] = env->xregs[i];
10322     }
10323 
10324     /*
10325      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10326      * Otherwise, we copy x8-x12 into the banked user regs.
10327      */
10328     if (mode == ARM_CPU_MODE_FIQ) {
10329         for (i = 8; i < 13; i++) {
10330             env->usr_regs[i - 8] = env->xregs[i];
10331         }
10332     } else {
10333         for (i = 8; i < 13; i++) {
10334             env->regs[i] = env->xregs[i];
10335         }
10336     }
10337 
10338     /*
10339      * Registers r13 & r14 depend on the current mode.
10340      * If we are in a given mode, we copy the corresponding x registers to r13
10341      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
10342      * for the mode.
10343      */
10344     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10345         env->regs[13] = env->xregs[13];
10346         env->regs[14] = env->xregs[14];
10347     } else {
10348         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10349 
10350         /*
10351          * HYP is an exception in that it does not have its own banked r14 but
10352          * shares the USR r14
10353          */
10354         if (mode == ARM_CPU_MODE_HYP) {
10355             env->regs[14] = env->xregs[14];
10356         } else {
10357             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10358         }
10359     }
10360 
10361     if (mode == ARM_CPU_MODE_HYP) {
10362         env->regs[13] = env->xregs[15];
10363     } else {
10364         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10365     }
10366 
10367     if (mode == ARM_CPU_MODE_IRQ) {
10368         env->regs[14] = env->xregs[16];
10369         env->regs[13] = env->xregs[17];
10370     } else {
10371         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10372         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10373     }
10374 
10375     if (mode == ARM_CPU_MODE_SVC) {
10376         env->regs[14] = env->xregs[18];
10377         env->regs[13] = env->xregs[19];
10378     } else {
10379         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10380         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10381     }
10382 
10383     if (mode == ARM_CPU_MODE_ABT) {
10384         env->regs[14] = env->xregs[20];
10385         env->regs[13] = env->xregs[21];
10386     } else {
10387         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10388         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10389     }
10390 
10391     if (mode == ARM_CPU_MODE_UND) {
10392         env->regs[14] = env->xregs[22];
10393         env->regs[13] = env->xregs[23];
10394     } else {
10395         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10396         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10397     }
10398 
10399     /*
10400      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10401      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
10402      * FIQ bank for r8-r14.
10403      */
10404     if (mode == ARM_CPU_MODE_FIQ) {
10405         for (i = 24; i < 31; i++) {
10406             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
10407         }
10408     } else {
10409         for (i = 24; i < 29; i++) {
10410             env->fiq_regs[i - 24] = env->xregs[i];
10411         }
10412         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10413         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10414     }
10415 
10416     env->regs[15] = env->pc;
10417 }
10418 
10419 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10420                                    uint32_t mask, uint32_t offset,
10421                                    uint32_t newpc)
10422 {
10423     int new_el;
10424 
10425     /* Change the CPU state so as to actually take the exception. */
10426     switch_mode(env, new_mode);
10427 
10428     /*
10429      * For exceptions taken to AArch32 we must clear the SS bit in both
10430      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10431      */
10432     env->pstate &= ~PSTATE_SS;
10433     env->spsr = cpsr_read(env);
10434     /* Clear IT bits.  */
10435     env->condexec_bits = 0;
10436     /* Switch to the new mode, and to the correct instruction set.  */
10437     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10438 
10439     /* This must be after mode switching. */
10440     new_el = arm_current_el(env);
10441 
10442     /* Set new mode endianness */
10443     env->uncached_cpsr &= ~CPSR_E;
10444     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10445         env->uncached_cpsr |= CPSR_E;
10446     }
10447     /* J and IL must always be cleared for exception entry */
10448     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10449     env->daif |= mask;
10450 
10451     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10452         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10453             env->uncached_cpsr |= CPSR_SSBS;
10454         } else {
10455             env->uncached_cpsr &= ~CPSR_SSBS;
10456         }
10457     }
10458 
10459     if (new_mode == ARM_CPU_MODE_HYP) {
10460         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10461         env->elr_el[2] = env->regs[15];
10462     } else {
10463         /* CPSR.PAN is normally preserved preserved unless...  */
10464         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10465             switch (new_el) {
10466             case 3:
10467                 if (!arm_is_secure_below_el3(env)) {
10468                     /* ... the target is EL3, from non-secure state.  */
10469                     env->uncached_cpsr &= ~CPSR_PAN;
10470                     break;
10471                 }
10472                 /* ... the target is EL3, from secure state ... */
10473                 /* fall through */
10474             case 1:
10475                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
10476                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10477                     env->uncached_cpsr |= CPSR_PAN;
10478                 }
10479                 break;
10480             }
10481         }
10482         /*
10483          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10484          * and we should just guard the thumb mode on V4
10485          */
10486         if (arm_feature(env, ARM_FEATURE_V4T)) {
10487             env->thumb =
10488                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10489         }
10490         env->regs[14] = env->regs[15] + offset;
10491     }
10492     env->regs[15] = newpc;
10493 
10494     if (tcg_enabled()) {
10495         arm_rebuild_hflags(env);
10496     }
10497 }
10498 
10499 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10500 {
10501     /*
10502      * Handle exception entry to Hyp mode; this is sufficiently
10503      * different to entry to other AArch32 modes that we handle it
10504      * separately here.
10505      *
10506      * The vector table entry used is always the 0x14 Hyp mode entry point,
10507      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10508      * The offset applied to the preferred return address is always zero
10509      * (see DDI0487C.a section G1.12.3).
10510      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10511      */
10512     uint32_t addr, mask;
10513     ARMCPU *cpu = ARM_CPU(cs);
10514     CPUARMState *env = &cpu->env;
10515 
10516     switch (cs->exception_index) {
10517     case EXCP_UDEF:
10518         addr = 0x04;
10519         break;
10520     case EXCP_SWI:
10521         addr = 0x08;
10522         break;
10523     case EXCP_BKPT:
10524         /* Fall through to prefetch abort.  */
10525     case EXCP_PREFETCH_ABORT:
10526         env->cp15.ifar_s = env->exception.vaddress;
10527         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10528                       (uint32_t)env->exception.vaddress);
10529         addr = 0x0c;
10530         break;
10531     case EXCP_DATA_ABORT:
10532         env->cp15.dfar_s = env->exception.vaddress;
10533         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10534                       (uint32_t)env->exception.vaddress);
10535         addr = 0x10;
10536         break;
10537     case EXCP_IRQ:
10538         addr = 0x18;
10539         break;
10540     case EXCP_FIQ:
10541         addr = 0x1c;
10542         break;
10543     case EXCP_HVC:
10544         addr = 0x08;
10545         break;
10546     case EXCP_HYP_TRAP:
10547         addr = 0x14;
10548         break;
10549     default:
10550         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10551     }
10552 
10553     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10554         if (!arm_feature(env, ARM_FEATURE_V8)) {
10555             /*
10556              * QEMU syndrome values are v8-style. v7 has the IL bit
10557              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10558              * If this is a v7 CPU, squash the IL bit in those cases.
10559              */
10560             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10561                 (cs->exception_index == EXCP_DATA_ABORT &&
10562                  !(env->exception.syndrome & ARM_EL_ISV)) ||
10563                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10564                 env->exception.syndrome &= ~ARM_EL_IL;
10565             }
10566         }
10567         env->cp15.esr_el[2] = env->exception.syndrome;
10568     }
10569 
10570     if (arm_current_el(env) != 2 && addr < 0x14) {
10571         addr = 0x14;
10572     }
10573 
10574     mask = 0;
10575     if (!(env->cp15.scr_el3 & SCR_EA)) {
10576         mask |= CPSR_A;
10577     }
10578     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10579         mask |= CPSR_I;
10580     }
10581     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10582         mask |= CPSR_F;
10583     }
10584 
10585     addr += env->cp15.hvbar;
10586 
10587     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10588 }
10589 
10590 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10591 {
10592     ARMCPU *cpu = ARM_CPU(cs);
10593     CPUARMState *env = &cpu->env;
10594     uint32_t addr;
10595     uint32_t mask;
10596     int new_mode;
10597     uint32_t offset;
10598     uint32_t moe;
10599 
10600     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10601     switch (syn_get_ec(env->exception.syndrome)) {
10602     case EC_BREAKPOINT:
10603     case EC_BREAKPOINT_SAME_EL:
10604         moe = 1;
10605         break;
10606     case EC_WATCHPOINT:
10607     case EC_WATCHPOINT_SAME_EL:
10608         moe = 10;
10609         break;
10610     case EC_AA32_BKPT:
10611         moe = 3;
10612         break;
10613     case EC_VECTORCATCH:
10614         moe = 5;
10615         break;
10616     default:
10617         moe = 0;
10618         break;
10619     }
10620 
10621     if (moe) {
10622         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10623     }
10624 
10625     if (env->exception.target_el == 2) {
10626         arm_cpu_do_interrupt_aarch32_hyp(cs);
10627         return;
10628     }
10629 
10630     switch (cs->exception_index) {
10631     case EXCP_UDEF:
10632         new_mode = ARM_CPU_MODE_UND;
10633         addr = 0x04;
10634         mask = CPSR_I;
10635         if (env->thumb) {
10636             offset = 2;
10637         } else {
10638             offset = 4;
10639         }
10640         break;
10641     case EXCP_SWI:
10642         new_mode = ARM_CPU_MODE_SVC;
10643         addr = 0x08;
10644         mask = CPSR_I;
10645         /* The PC already points to the next instruction.  */
10646         offset = 0;
10647         break;
10648     case EXCP_BKPT:
10649         /* Fall through to prefetch abort.  */
10650     case EXCP_PREFETCH_ABORT:
10651         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10652         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10653         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10654                       env->exception.fsr, (uint32_t)env->exception.vaddress);
10655         new_mode = ARM_CPU_MODE_ABT;
10656         addr = 0x0c;
10657         mask = CPSR_A | CPSR_I;
10658         offset = 4;
10659         break;
10660     case EXCP_DATA_ABORT:
10661         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10662         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10663         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10664                       env->exception.fsr,
10665                       (uint32_t)env->exception.vaddress);
10666         new_mode = ARM_CPU_MODE_ABT;
10667         addr = 0x10;
10668         mask = CPSR_A | CPSR_I;
10669         offset = 8;
10670         break;
10671     case EXCP_IRQ:
10672         new_mode = ARM_CPU_MODE_IRQ;
10673         addr = 0x18;
10674         /* Disable IRQ and imprecise data aborts.  */
10675         mask = CPSR_A | CPSR_I;
10676         offset = 4;
10677         if (env->cp15.scr_el3 & SCR_IRQ) {
10678             /* IRQ routed to monitor mode */
10679             new_mode = ARM_CPU_MODE_MON;
10680             mask |= CPSR_F;
10681         }
10682         break;
10683     case EXCP_FIQ:
10684         new_mode = ARM_CPU_MODE_FIQ;
10685         addr = 0x1c;
10686         /* Disable FIQ, IRQ and imprecise data aborts.  */
10687         mask = CPSR_A | CPSR_I | CPSR_F;
10688         if (env->cp15.scr_el3 & SCR_FIQ) {
10689             /* FIQ routed to monitor mode */
10690             new_mode = ARM_CPU_MODE_MON;
10691         }
10692         offset = 4;
10693         break;
10694     case EXCP_VIRQ:
10695         new_mode = ARM_CPU_MODE_IRQ;
10696         addr = 0x18;
10697         /* Disable IRQ and imprecise data aborts.  */
10698         mask = CPSR_A | CPSR_I;
10699         offset = 4;
10700         break;
10701     case EXCP_VFIQ:
10702         new_mode = ARM_CPU_MODE_FIQ;
10703         addr = 0x1c;
10704         /* Disable FIQ, IRQ and imprecise data aborts.  */
10705         mask = CPSR_A | CPSR_I | CPSR_F;
10706         offset = 4;
10707         break;
10708     case EXCP_VSERR:
10709         {
10710             /*
10711              * Note that this is reported as a data abort, but the DFAR
10712              * has an UNKNOWN value.  Construct the SError syndrome from
10713              * AET and ExT fields.
10714              */
10715             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10716 
10717             if (extended_addresses_enabled(env)) {
10718                 env->exception.fsr = arm_fi_to_lfsc(&fi);
10719             } else {
10720                 env->exception.fsr = arm_fi_to_sfsc(&fi);
10721             }
10722             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10723             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10724             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10725                           env->exception.fsr);
10726 
10727             new_mode = ARM_CPU_MODE_ABT;
10728             addr = 0x10;
10729             mask = CPSR_A | CPSR_I;
10730             offset = 8;
10731         }
10732         break;
10733     case EXCP_SMC:
10734         new_mode = ARM_CPU_MODE_MON;
10735         addr = 0x08;
10736         mask = CPSR_A | CPSR_I | CPSR_F;
10737         offset = 0;
10738         break;
10739     default:
10740         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10741         return; /* Never happens.  Keep compiler happy.  */
10742     }
10743 
10744     if (new_mode == ARM_CPU_MODE_MON) {
10745         addr += env->cp15.mvbar;
10746     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10747         /* High vectors. When enabled, base address cannot be remapped. */
10748         addr += 0xffff0000;
10749     } else {
10750         /*
10751          * ARM v7 architectures provide a vector base address register to remap
10752          * the interrupt vector table.
10753          * This register is only followed in non-monitor mode, and is banked.
10754          * Note: only bits 31:5 are valid.
10755          */
10756         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10757     }
10758 
10759     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10760         env->cp15.scr_el3 &= ~SCR_NS;
10761     }
10762 
10763     take_aarch32_exception(env, new_mode, mask, offset, addr);
10764 }
10765 
10766 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10767 {
10768     /*
10769      * Return the register number of the AArch64 view of the AArch32
10770      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10771      * be that of the AArch32 mode the exception came from.
10772      */
10773     int mode = env->uncached_cpsr & CPSR_M;
10774 
10775     switch (aarch32_reg) {
10776     case 0 ... 7:
10777         return aarch32_reg;
10778     case 8 ... 12:
10779         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10780     case 13:
10781         switch (mode) {
10782         case ARM_CPU_MODE_USR:
10783         case ARM_CPU_MODE_SYS:
10784             return 13;
10785         case ARM_CPU_MODE_HYP:
10786             return 15;
10787         case ARM_CPU_MODE_IRQ:
10788             return 17;
10789         case ARM_CPU_MODE_SVC:
10790             return 19;
10791         case ARM_CPU_MODE_ABT:
10792             return 21;
10793         case ARM_CPU_MODE_UND:
10794             return 23;
10795         case ARM_CPU_MODE_FIQ:
10796             return 29;
10797         default:
10798             g_assert_not_reached();
10799         }
10800     case 14:
10801         switch (mode) {
10802         case ARM_CPU_MODE_USR:
10803         case ARM_CPU_MODE_SYS:
10804         case ARM_CPU_MODE_HYP:
10805             return 14;
10806         case ARM_CPU_MODE_IRQ:
10807             return 16;
10808         case ARM_CPU_MODE_SVC:
10809             return 18;
10810         case ARM_CPU_MODE_ABT:
10811             return 20;
10812         case ARM_CPU_MODE_UND:
10813             return 22;
10814         case ARM_CPU_MODE_FIQ:
10815             return 30;
10816         default:
10817             g_assert_not_reached();
10818         }
10819     case 15:
10820         return 31;
10821     default:
10822         g_assert_not_reached();
10823     }
10824 }
10825 
10826 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10827 {
10828     uint32_t ret = cpsr_read(env);
10829 
10830     /* Move DIT to the correct location for SPSR_ELx */
10831     if (ret & CPSR_DIT) {
10832         ret &= ~CPSR_DIT;
10833         ret |= PSTATE_DIT;
10834     }
10835     /* Merge PSTATE.SS into SPSR_ELx */
10836     ret |= env->pstate & PSTATE_SS;
10837 
10838     return ret;
10839 }
10840 
10841 static bool syndrome_is_sync_extabt(uint32_t syndrome)
10842 {
10843     /* Return true if this syndrome value is a synchronous external abort */
10844     switch (syn_get_ec(syndrome)) {
10845     case EC_INSNABORT:
10846     case EC_INSNABORT_SAME_EL:
10847     case EC_DATAABORT:
10848     case EC_DATAABORT_SAME_EL:
10849         /* Look at fault status code for all the synchronous ext abort cases */
10850         switch (syndrome & 0x3f) {
10851         case 0x10:
10852         case 0x13:
10853         case 0x14:
10854         case 0x15:
10855         case 0x16:
10856         case 0x17:
10857             return true;
10858         default:
10859             return false;
10860         }
10861     default:
10862         return false;
10863     }
10864 }
10865 
10866 /* Handle exception entry to a target EL which is using AArch64 */
10867 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10868 {
10869     ARMCPU *cpu = ARM_CPU(cs);
10870     CPUARMState *env = &cpu->env;
10871     unsigned int new_el = env->exception.target_el;
10872     target_ulong addr = env->cp15.vbar_el[new_el];
10873     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10874     unsigned int old_mode;
10875     unsigned int cur_el = arm_current_el(env);
10876     int rt;
10877 
10878     if (tcg_enabled()) {
10879         /*
10880          * Note that new_el can never be 0.  If cur_el is 0, then
10881          * el0_a64 is is_a64(), else el0_a64 is ignored.
10882          */
10883         aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10884     }
10885 
10886     if (cur_el < new_el) {
10887         /*
10888          * Entry vector offset depends on whether the implemented EL
10889          * immediately lower than the target level is using AArch32 or AArch64
10890          */
10891         bool is_aa64;
10892         uint64_t hcr;
10893 
10894         switch (new_el) {
10895         case 3:
10896             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10897             break;
10898         case 2:
10899             hcr = arm_hcr_el2_eff(env);
10900             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10901                 is_aa64 = (hcr & HCR_RW) != 0;
10902                 break;
10903             }
10904             /* fall through */
10905         case 1:
10906             is_aa64 = is_a64(env);
10907             break;
10908         default:
10909             g_assert_not_reached();
10910         }
10911 
10912         if (is_aa64) {
10913             addr += 0x400;
10914         } else {
10915             addr += 0x600;
10916         }
10917     } else if (pstate_read(env) & PSTATE_SP) {
10918         addr += 0x200;
10919     }
10920 
10921     switch (cs->exception_index) {
10922     case EXCP_GPC:
10923         qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
10924                       env->cp15.mfar_el3);
10925         /* fall through */
10926     case EXCP_PREFETCH_ABORT:
10927     case EXCP_DATA_ABORT:
10928         /*
10929          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10930          * to be taken to the SError vector entrypoint.
10931          */
10932         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10933             syndrome_is_sync_extabt(env->exception.syndrome)) {
10934             addr += 0x180;
10935         }
10936         env->cp15.far_el[new_el] = env->exception.vaddress;
10937         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10938                       env->cp15.far_el[new_el]);
10939         /* fall through */
10940     case EXCP_BKPT:
10941     case EXCP_UDEF:
10942     case EXCP_SWI:
10943     case EXCP_HVC:
10944     case EXCP_HYP_TRAP:
10945     case EXCP_SMC:
10946         switch (syn_get_ec(env->exception.syndrome)) {
10947         case EC_ADVSIMDFPACCESSTRAP:
10948             /*
10949              * QEMU internal FP/SIMD syndromes from AArch32 include the
10950              * TA and coproc fields which are only exposed if the exception
10951              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10952              * AArch64 format syndrome.
10953              */
10954             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10955             break;
10956         case EC_CP14RTTRAP:
10957         case EC_CP15RTTRAP:
10958         case EC_CP14DTTRAP:
10959             /*
10960              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10961              * the raw register field from the insn; when taking this to
10962              * AArch64 we must convert it to the AArch64 view of the register
10963              * number. Notice that we read a 4-bit AArch32 register number and
10964              * write back a 5-bit AArch64 one.
10965              */
10966             rt = extract32(env->exception.syndrome, 5, 4);
10967             rt = aarch64_regnum(env, rt);
10968             env->exception.syndrome = deposit32(env->exception.syndrome,
10969                                                 5, 5, rt);
10970             break;
10971         case EC_CP15RRTTRAP:
10972         case EC_CP14RRTTRAP:
10973             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10974             rt = extract32(env->exception.syndrome, 5, 4);
10975             rt = aarch64_regnum(env, rt);
10976             env->exception.syndrome = deposit32(env->exception.syndrome,
10977                                                 5, 5, rt);
10978             rt = extract32(env->exception.syndrome, 10, 4);
10979             rt = aarch64_regnum(env, rt);
10980             env->exception.syndrome = deposit32(env->exception.syndrome,
10981                                                 10, 5, rt);
10982             break;
10983         }
10984         env->cp15.esr_el[new_el] = env->exception.syndrome;
10985         break;
10986     case EXCP_IRQ:
10987     case EXCP_VIRQ:
10988         addr += 0x80;
10989         break;
10990     case EXCP_FIQ:
10991     case EXCP_VFIQ:
10992         addr += 0x100;
10993         break;
10994     case EXCP_VSERR:
10995         addr += 0x180;
10996         /* Construct the SError syndrome from IDS and ISS fields. */
10997         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10998         env->cp15.esr_el[new_el] = env->exception.syndrome;
10999         break;
11000     default:
11001         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11002     }
11003 
11004     if (is_a64(env)) {
11005         old_mode = pstate_read(env);
11006         aarch64_save_sp(env, arm_current_el(env));
11007         env->elr_el[new_el] = env->pc;
11008     } else {
11009         old_mode = cpsr_read_for_spsr_elx(env);
11010         env->elr_el[new_el] = env->regs[15];
11011 
11012         aarch64_sync_32_to_64(env);
11013 
11014         env->condexec_bits = 0;
11015     }
11016     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11017 
11018     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11019                   env->elr_el[new_el]);
11020 
11021     if (cpu_isar_feature(aa64_pan, cpu)) {
11022         /* The value of PSTATE.PAN is normally preserved, except when ... */
11023         new_mode |= old_mode & PSTATE_PAN;
11024         switch (new_el) {
11025         case 2:
11026             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
11027             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11028                 != (HCR_E2H | HCR_TGE)) {
11029                 break;
11030             }
11031             /* fall through */
11032         case 1:
11033             /* ... the target is EL1 ... */
11034             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
11035             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11036                 new_mode |= PSTATE_PAN;
11037             }
11038             break;
11039         }
11040     }
11041     if (cpu_isar_feature(aa64_mte, cpu)) {
11042         new_mode |= PSTATE_TCO;
11043     }
11044 
11045     if (cpu_isar_feature(aa64_ssbs, cpu)) {
11046         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11047             new_mode |= PSTATE_SSBS;
11048         } else {
11049             new_mode &= ~PSTATE_SSBS;
11050         }
11051     }
11052 
11053     pstate_write(env, PSTATE_DAIF | new_mode);
11054     env->aarch64 = true;
11055     aarch64_restore_sp(env, new_el);
11056 
11057     if (tcg_enabled()) {
11058         helper_rebuild_hflags_a64(env, new_el);
11059     }
11060 
11061     env->pc = addr;
11062 
11063     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11064                   new_el, env->pc, pstate_read(env));
11065 }
11066 
11067 /*
11068  * Do semihosting call and set the appropriate return value. All the
11069  * permission and validity checks have been done at translate time.
11070  *
11071  * We only see semihosting exceptions in TCG only as they are not
11072  * trapped to the hypervisor in KVM.
11073  */
11074 #ifdef CONFIG_TCG
11075 static void tcg_handle_semihosting(CPUState *cs)
11076 {
11077     ARMCPU *cpu = ARM_CPU(cs);
11078     CPUARMState *env = &cpu->env;
11079 
11080     if (is_a64(env)) {
11081         qemu_log_mask(CPU_LOG_INT,
11082                       "...handling as semihosting call 0x%" PRIx64 "\n",
11083                       env->xregs[0]);
11084         do_common_semihosting(cs);
11085         env->pc += 4;
11086     } else {
11087         qemu_log_mask(CPU_LOG_INT,
11088                       "...handling as semihosting call 0x%x\n",
11089                       env->regs[0]);
11090         do_common_semihosting(cs);
11091         env->regs[15] += env->thumb ? 2 : 4;
11092     }
11093 }
11094 #endif
11095 
11096 /*
11097  * Handle a CPU exception for A and R profile CPUs.
11098  * Do any appropriate logging, handle PSCI calls, and then hand off
11099  * to the AArch64-entry or AArch32-entry function depending on the
11100  * target exception level's register width.
11101  *
11102  * Note: this is used for both TCG (as the do_interrupt tcg op),
11103  *       and KVM to re-inject guest debug exceptions, and to
11104  *       inject a Synchronous-External-Abort.
11105  */
11106 void arm_cpu_do_interrupt(CPUState *cs)
11107 {
11108     ARMCPU *cpu = ARM_CPU(cs);
11109     CPUARMState *env = &cpu->env;
11110     unsigned int new_el = env->exception.target_el;
11111 
11112     assert(!arm_feature(env, ARM_FEATURE_M));
11113 
11114     arm_log_exception(cs);
11115     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11116                   new_el);
11117     if (qemu_loglevel_mask(CPU_LOG_INT)
11118         && !excp_is_internal(cs->exception_index)) {
11119         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11120                       syn_get_ec(env->exception.syndrome),
11121                       env->exception.syndrome);
11122     }
11123 
11124     if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11125         arm_handle_psci_call(cpu);
11126         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11127         return;
11128     }
11129 
11130     /*
11131      * Semihosting semantics depend on the register width of the code
11132      * that caused the exception, not the target exception level, so
11133      * must be handled here.
11134      */
11135 #ifdef CONFIG_TCG
11136     if (cs->exception_index == EXCP_SEMIHOST) {
11137         tcg_handle_semihosting(cs);
11138         return;
11139     }
11140 #endif
11141 
11142     /*
11143      * Hooks may change global state so BQL should be held, also the
11144      * BQL needs to be held for any modification of
11145      * cs->interrupt_request.
11146      */
11147     g_assert(qemu_mutex_iothread_locked());
11148 
11149     arm_call_pre_el_change_hook(cpu);
11150 
11151     assert(!excp_is_internal(cs->exception_index));
11152     if (arm_el_is_aa64(env, new_el)) {
11153         arm_cpu_do_interrupt_aarch64(cs);
11154     } else {
11155         arm_cpu_do_interrupt_aarch32(cs);
11156     }
11157 
11158     arm_call_el_change_hook(cpu);
11159 
11160     if (!kvm_enabled()) {
11161         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11162     }
11163 }
11164 #endif /* !CONFIG_USER_ONLY */
11165 
11166 uint64_t arm_sctlr(CPUARMState *env, int el)
11167 {
11168     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11169     if (el == 0) {
11170         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11171         el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11172     }
11173     return env->cp15.sctlr_el[el];
11174 }
11175 
11176 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11177 {
11178     if (regime_has_2_ranges(mmu_idx)) {
11179         return extract64(tcr, 37, 2);
11180     } else if (regime_is_stage2(mmu_idx)) {
11181         return 0; /* VTCR_EL2 */
11182     } else {
11183         /* Replicate the single TBI bit so we always have 2 bits.  */
11184         return extract32(tcr, 20, 1) * 3;
11185     }
11186 }
11187 
11188 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11189 {
11190     if (regime_has_2_ranges(mmu_idx)) {
11191         return extract64(tcr, 51, 2);
11192     } else if (regime_is_stage2(mmu_idx)) {
11193         return 0; /* VTCR_EL2 */
11194     } else {
11195         /* Replicate the single TBID bit so we always have 2 bits.  */
11196         return extract32(tcr, 29, 1) * 3;
11197     }
11198 }
11199 
11200 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11201 {
11202     if (regime_has_2_ranges(mmu_idx)) {
11203         return extract64(tcr, 57, 2);
11204     } else {
11205         /* Replicate the single TCMA bit so we always have 2 bits.  */
11206         return extract32(tcr, 30, 1) * 3;
11207     }
11208 }
11209 
11210 static ARMGranuleSize tg0_to_gran_size(int tg)
11211 {
11212     switch (tg) {
11213     case 0:
11214         return Gran4K;
11215     case 1:
11216         return Gran64K;
11217     case 2:
11218         return Gran16K;
11219     default:
11220         return GranInvalid;
11221     }
11222 }
11223 
11224 static ARMGranuleSize tg1_to_gran_size(int tg)
11225 {
11226     switch (tg) {
11227     case 1:
11228         return Gran16K;
11229     case 2:
11230         return Gran4K;
11231     case 3:
11232         return Gran64K;
11233     default:
11234         return GranInvalid;
11235     }
11236 }
11237 
11238 static inline bool have4k(ARMCPU *cpu, bool stage2)
11239 {
11240     return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11241         : cpu_isar_feature(aa64_tgran4, cpu);
11242 }
11243 
11244 static inline bool have16k(ARMCPU *cpu, bool stage2)
11245 {
11246     return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11247         : cpu_isar_feature(aa64_tgran16, cpu);
11248 }
11249 
11250 static inline bool have64k(ARMCPU *cpu, bool stage2)
11251 {
11252     return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11253         : cpu_isar_feature(aa64_tgran64, cpu);
11254 }
11255 
11256 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11257                                          bool stage2)
11258 {
11259     switch (gran) {
11260     case Gran4K:
11261         if (have4k(cpu, stage2)) {
11262             return gran;
11263         }
11264         break;
11265     case Gran16K:
11266         if (have16k(cpu, stage2)) {
11267             return gran;
11268         }
11269         break;
11270     case Gran64K:
11271         if (have64k(cpu, stage2)) {
11272             return gran;
11273         }
11274         break;
11275     case GranInvalid:
11276         break;
11277     }
11278     /*
11279      * If the guest selects a granule size that isn't implemented,
11280      * the architecture requires that we behave as if it selected one
11281      * that is (with an IMPDEF choice of which one to pick). We choose
11282      * to implement the smallest supported granule size.
11283      */
11284     if (have4k(cpu, stage2)) {
11285         return Gran4K;
11286     }
11287     if (have16k(cpu, stage2)) {
11288         return Gran16K;
11289     }
11290     assert(have64k(cpu, stage2));
11291     return Gran64K;
11292 }
11293 
11294 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11295                                    ARMMMUIdx mmu_idx, bool data,
11296                                    bool el1_is_aa32)
11297 {
11298     uint64_t tcr = regime_tcr(env, mmu_idx);
11299     bool epd, hpd, tsz_oob, ds, ha, hd;
11300     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11301     ARMGranuleSize gran;
11302     ARMCPU *cpu = env_archcpu(env);
11303     bool stage2 = regime_is_stage2(mmu_idx);
11304 
11305     if (!regime_has_2_ranges(mmu_idx)) {
11306         select = 0;
11307         tsz = extract32(tcr, 0, 6);
11308         gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11309         if (stage2) {
11310             /* VTCR_EL2 */
11311             hpd = false;
11312         } else {
11313             hpd = extract32(tcr, 24, 1);
11314         }
11315         epd = false;
11316         sh = extract32(tcr, 12, 2);
11317         ps = extract32(tcr, 16, 3);
11318         ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11319         hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11320         ds = extract64(tcr, 32, 1);
11321     } else {
11322         bool e0pd;
11323 
11324         /*
11325          * Bit 55 is always between the two regions, and is canonical for
11326          * determining if address tagging is enabled.
11327          */
11328         select = extract64(va, 55, 1);
11329         if (!select) {
11330             tsz = extract32(tcr, 0, 6);
11331             gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11332             epd = extract32(tcr, 7, 1);
11333             sh = extract32(tcr, 12, 2);
11334             hpd = extract64(tcr, 41, 1);
11335             e0pd = extract64(tcr, 55, 1);
11336         } else {
11337             tsz = extract32(tcr, 16, 6);
11338             gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11339             epd = extract32(tcr, 23, 1);
11340             sh = extract32(tcr, 28, 2);
11341             hpd = extract64(tcr, 42, 1);
11342             e0pd = extract64(tcr, 56, 1);
11343         }
11344         ps = extract64(tcr, 32, 3);
11345         ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11346         hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11347         ds = extract64(tcr, 59, 1);
11348 
11349         if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11350             regime_is_user(env, mmu_idx)) {
11351             epd = true;
11352         }
11353     }
11354 
11355     gran = sanitize_gran_size(cpu, gran, stage2);
11356 
11357     if (cpu_isar_feature(aa64_st, cpu)) {
11358         max_tsz = 48 - (gran == Gran64K);
11359     } else {
11360         max_tsz = 39;
11361     }
11362 
11363     /*
11364      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11365      * adjust the effective value of DS, as documented.
11366      */
11367     min_tsz = 16;
11368     if (gran == Gran64K) {
11369         if (cpu_isar_feature(aa64_lva, cpu)) {
11370             min_tsz = 12;
11371         }
11372         ds = false;
11373     } else if (ds) {
11374         if (regime_is_stage2(mmu_idx)) {
11375             if (gran == Gran16K) {
11376                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11377             } else {
11378                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11379             }
11380         } else {
11381             if (gran == Gran16K) {
11382                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11383             } else {
11384                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11385             }
11386         }
11387         if (ds) {
11388             min_tsz = 12;
11389         }
11390     }
11391 
11392     if (stage2 && el1_is_aa32) {
11393         /*
11394          * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11395          * are loosened: a configured IPA of 40 bits is permitted even if
11396          * the implemented PA is less than that (and so a 40 bit IPA would
11397          * fault for an AArch64 EL1). See R_DTLMN.
11398          */
11399         min_tsz = MIN(min_tsz, 24);
11400     }
11401 
11402     if (tsz > max_tsz) {
11403         tsz = max_tsz;
11404         tsz_oob = true;
11405     } else if (tsz < min_tsz) {
11406         tsz = min_tsz;
11407         tsz_oob = true;
11408     } else {
11409         tsz_oob = false;
11410     }
11411 
11412     /* Present TBI as a composite with TBID.  */
11413     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11414     if (!data) {
11415         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11416     }
11417     tbi = (tbi >> select) & 1;
11418 
11419     return (ARMVAParameters) {
11420         .tsz = tsz,
11421         .ps = ps,
11422         .sh = sh,
11423         .select = select,
11424         .tbi = tbi,
11425         .epd = epd,
11426         .hpd = hpd,
11427         .tsz_oob = tsz_oob,
11428         .ds = ds,
11429         .ha = ha,
11430         .hd = ha && hd,
11431         .gran = gran,
11432     };
11433 }
11434 
11435 /*
11436  * Note that signed overflow is undefined in C.  The following routines are
11437  * careful to use unsigned types where modulo arithmetic is required.
11438  * Failure to do so _will_ break on newer gcc.
11439  */
11440 
11441 /* Signed saturating arithmetic.  */
11442 
11443 /* Perform 16-bit signed saturating addition.  */
11444 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11445 {
11446     uint16_t res;
11447 
11448     res = a + b;
11449     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11450         if (a & 0x8000) {
11451             res = 0x8000;
11452         } else {
11453             res = 0x7fff;
11454         }
11455     }
11456     return res;
11457 }
11458 
11459 /* Perform 8-bit signed saturating addition.  */
11460 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11461 {
11462     uint8_t res;
11463 
11464     res = a + b;
11465     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11466         if (a & 0x80) {
11467             res = 0x80;
11468         } else {
11469             res = 0x7f;
11470         }
11471     }
11472     return res;
11473 }
11474 
11475 /* Perform 16-bit signed saturating subtraction.  */
11476 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11477 {
11478     uint16_t res;
11479 
11480     res = a - b;
11481     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11482         if (a & 0x8000) {
11483             res = 0x8000;
11484         } else {
11485             res = 0x7fff;
11486         }
11487     }
11488     return res;
11489 }
11490 
11491 /* Perform 8-bit signed saturating subtraction.  */
11492 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11493 {
11494     uint8_t res;
11495 
11496     res = a - b;
11497     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11498         if (a & 0x80) {
11499             res = 0x80;
11500         } else {
11501             res = 0x7f;
11502         }
11503     }
11504     return res;
11505 }
11506 
11507 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11508 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11509 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11510 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11511 #define PFX q
11512 
11513 #include "op_addsub.h"
11514 
11515 /* Unsigned saturating arithmetic.  */
11516 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11517 {
11518     uint16_t res;
11519     res = a + b;
11520     if (res < a) {
11521         res = 0xffff;
11522     }
11523     return res;
11524 }
11525 
11526 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11527 {
11528     if (a > b) {
11529         return a - b;
11530     } else {
11531         return 0;
11532     }
11533 }
11534 
11535 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11536 {
11537     uint8_t res;
11538     res = a + b;
11539     if (res < a) {
11540         res = 0xff;
11541     }
11542     return res;
11543 }
11544 
11545 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11546 {
11547     if (a > b) {
11548         return a - b;
11549     } else {
11550         return 0;
11551     }
11552 }
11553 
11554 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11555 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11556 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11557 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11558 #define PFX uq
11559 
11560 #include "op_addsub.h"
11561 
11562 /* Signed modulo arithmetic.  */
11563 #define SARITH16(a, b, n, op) do { \
11564     int32_t sum; \
11565     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11566     RESULT(sum, n, 16); \
11567     if (sum >= 0) \
11568         ge |= 3 << (n * 2); \
11569     } while (0)
11570 
11571 #define SARITH8(a, b, n, op) do { \
11572     int32_t sum; \
11573     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11574     RESULT(sum, n, 8); \
11575     if (sum >= 0) \
11576         ge |= 1 << n; \
11577     } while (0)
11578 
11579 
11580 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11581 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11582 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11583 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11584 #define PFX s
11585 #define ARITH_GE
11586 
11587 #include "op_addsub.h"
11588 
11589 /* Unsigned modulo arithmetic.  */
11590 #define ADD16(a, b, n) do { \
11591     uint32_t sum; \
11592     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11593     RESULT(sum, n, 16); \
11594     if ((sum >> 16) == 1) \
11595         ge |= 3 << (n * 2); \
11596     } while (0)
11597 
11598 #define ADD8(a, b, n) do { \
11599     uint32_t sum; \
11600     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11601     RESULT(sum, n, 8); \
11602     if ((sum >> 8) == 1) \
11603         ge |= 1 << n; \
11604     } while (0)
11605 
11606 #define SUB16(a, b, n) do { \
11607     uint32_t sum; \
11608     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11609     RESULT(sum, n, 16); \
11610     if ((sum >> 16) == 0) \
11611         ge |= 3 << (n * 2); \
11612     } while (0)
11613 
11614 #define SUB8(a, b, n) do { \
11615     uint32_t sum; \
11616     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11617     RESULT(sum, n, 8); \
11618     if ((sum >> 8) == 0) \
11619         ge |= 1 << n; \
11620     } while (0)
11621 
11622 #define PFX u
11623 #define ARITH_GE
11624 
11625 #include "op_addsub.h"
11626 
11627 /* Halved signed arithmetic.  */
11628 #define ADD16(a, b, n) \
11629   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11630 #define SUB16(a, b, n) \
11631   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11632 #define ADD8(a, b, n) \
11633   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11634 #define SUB8(a, b, n) \
11635   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11636 #define PFX sh
11637 
11638 #include "op_addsub.h"
11639 
11640 /* Halved unsigned arithmetic.  */
11641 #define ADD16(a, b, n) \
11642   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11643 #define SUB16(a, b, n) \
11644   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11645 #define ADD8(a, b, n) \
11646   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11647 #define SUB8(a, b, n) \
11648   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11649 #define PFX uh
11650 
11651 #include "op_addsub.h"
11652 
11653 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11654 {
11655     if (a > b) {
11656         return a - b;
11657     } else {
11658         return b - a;
11659     }
11660 }
11661 
11662 /* Unsigned sum of absolute byte differences.  */
11663 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11664 {
11665     uint32_t sum;
11666     sum = do_usad(a, b);
11667     sum += do_usad(a >> 8, b >> 8);
11668     sum += do_usad(a >> 16, b >> 16);
11669     sum += do_usad(a >> 24, b >> 24);
11670     return sum;
11671 }
11672 
11673 /* For ARMv6 SEL instruction.  */
11674 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11675 {
11676     uint32_t mask;
11677 
11678     mask = 0;
11679     if (flags & 1) {
11680         mask |= 0xff;
11681     }
11682     if (flags & 2) {
11683         mask |= 0xff00;
11684     }
11685     if (flags & 4) {
11686         mask |= 0xff0000;
11687     }
11688     if (flags & 8) {
11689         mask |= 0xff000000;
11690     }
11691     return (a & mask) | (b & ~mask);
11692 }
11693 
11694 /*
11695  * CRC helpers.
11696  * The upper bytes of val (above the number specified by 'bytes') must have
11697  * been zeroed out by the caller.
11698  */
11699 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11700 {
11701     uint8_t buf[4];
11702 
11703     stl_le_p(buf, val);
11704 
11705     /* zlib crc32 converts the accumulator and output to one's complement.  */
11706     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11707 }
11708 
11709 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11710 {
11711     uint8_t buf[4];
11712 
11713     stl_le_p(buf, val);
11714 
11715     /* Linux crc32c converts the output to one's complement.  */
11716     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11717 }
11718 
11719 /*
11720  * Return the exception level to which FP-disabled exceptions should
11721  * be taken, or 0 if FP is enabled.
11722  */
11723 int fp_exception_el(CPUARMState *env, int cur_el)
11724 {
11725 #ifndef CONFIG_USER_ONLY
11726     uint64_t hcr_el2;
11727 
11728     /*
11729      * CPACR and the CPTR registers don't exist before v6, so FP is
11730      * always accessible
11731      */
11732     if (!arm_feature(env, ARM_FEATURE_V6)) {
11733         return 0;
11734     }
11735 
11736     if (arm_feature(env, ARM_FEATURE_M)) {
11737         /* CPACR can cause a NOCP UsageFault taken to current security state */
11738         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11739             return 1;
11740         }
11741 
11742         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11743             if (!extract32(env->v7m.nsacr, 10, 1)) {
11744                 /* FP insns cause a NOCP UsageFault taken to Secure */
11745                 return 3;
11746             }
11747         }
11748 
11749         return 0;
11750     }
11751 
11752     hcr_el2 = arm_hcr_el2_eff(env);
11753 
11754     /*
11755      * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11756      * 0, 2 : trap EL0 and EL1/PL1 accesses
11757      * 1    : trap only EL0 accesses
11758      * 3    : trap no accesses
11759      * This register is ignored if E2H+TGE are both set.
11760      */
11761     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11762         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11763 
11764         switch (fpen) {
11765         case 1:
11766             if (cur_el != 0) {
11767                 break;
11768             }
11769             /* fall through */
11770         case 0:
11771         case 2:
11772             /* Trap from Secure PL0 or PL1 to Secure PL1. */
11773             if (!arm_el_is_aa64(env, 3)
11774                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11775                 return 3;
11776             }
11777             if (cur_el <= 1) {
11778                 return 1;
11779             }
11780             break;
11781         }
11782     }
11783 
11784     /*
11785      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11786      * to control non-secure access to the FPU. It doesn't have any
11787      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11788      */
11789     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11790          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11791         if (!extract32(env->cp15.nsacr, 10, 1)) {
11792             /* FP insns act as UNDEF */
11793             return cur_el == 2 ? 2 : 1;
11794         }
11795     }
11796 
11797     /*
11798      * CPTR_EL2 is present in v7VE or v8, and changes format
11799      * with HCR_EL2.E2H (regardless of TGE).
11800      */
11801     if (cur_el <= 2) {
11802         if (hcr_el2 & HCR_E2H) {
11803             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11804             case 1:
11805                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11806                     break;
11807                 }
11808                 /* fall through */
11809             case 0:
11810             case 2:
11811                 return 2;
11812             }
11813         } else if (arm_is_el2_enabled(env)) {
11814             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11815                 return 2;
11816             }
11817         }
11818     }
11819 
11820     /* CPTR_EL3 : present in v8 */
11821     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
11822         /* Trap all FP ops to EL3 */
11823         return 3;
11824     }
11825 #endif
11826     return 0;
11827 }
11828 
11829 /* Return the exception level we're running at if this is our mmu_idx */
11830 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11831 {
11832     if (mmu_idx & ARM_MMU_IDX_M) {
11833         return mmu_idx & ARM_MMU_IDX_M_PRIV;
11834     }
11835 
11836     switch (mmu_idx) {
11837     case ARMMMUIdx_E10_0:
11838     case ARMMMUIdx_E20_0:
11839         return 0;
11840     case ARMMMUIdx_E10_1:
11841     case ARMMMUIdx_E10_1_PAN:
11842         return 1;
11843     case ARMMMUIdx_E2:
11844     case ARMMMUIdx_E20_2:
11845     case ARMMMUIdx_E20_2_PAN:
11846         return 2;
11847     case ARMMMUIdx_E3:
11848         return 3;
11849     default:
11850         g_assert_not_reached();
11851     }
11852 }
11853 
11854 #ifndef CONFIG_TCG
11855 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11856 {
11857     g_assert_not_reached();
11858 }
11859 #endif
11860 
11861 static bool arm_pan_enabled(CPUARMState *env)
11862 {
11863     if (is_a64(env)) {
11864         return env->pstate & PSTATE_PAN;
11865     } else {
11866         return env->uncached_cpsr & CPSR_PAN;
11867     }
11868 }
11869 
11870 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11871 {
11872     ARMMMUIdx idx;
11873     uint64_t hcr;
11874 
11875     if (arm_feature(env, ARM_FEATURE_M)) {
11876         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11877     }
11878 
11879     /* See ARM pseudo-function ELIsInHost.  */
11880     switch (el) {
11881     case 0:
11882         hcr = arm_hcr_el2_eff(env);
11883         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
11884             idx = ARMMMUIdx_E20_0;
11885         } else {
11886             idx = ARMMMUIdx_E10_0;
11887         }
11888         break;
11889     case 1:
11890         if (arm_pan_enabled(env)) {
11891             idx = ARMMMUIdx_E10_1_PAN;
11892         } else {
11893             idx = ARMMMUIdx_E10_1;
11894         }
11895         break;
11896     case 2:
11897         /* Note that TGE does not apply at EL2.  */
11898         if (arm_hcr_el2_eff(env) & HCR_E2H) {
11899             if (arm_pan_enabled(env)) {
11900                 idx = ARMMMUIdx_E20_2_PAN;
11901             } else {
11902                 idx = ARMMMUIdx_E20_2;
11903             }
11904         } else {
11905             idx = ARMMMUIdx_E2;
11906         }
11907         break;
11908     case 3:
11909         return ARMMMUIdx_E3;
11910     default:
11911         g_assert_not_reached();
11912     }
11913 
11914     return idx;
11915 }
11916 
11917 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11918 {
11919     return arm_mmu_idx_el(env, arm_current_el(env));
11920 }
11921 
11922 static bool mve_no_pred(CPUARMState *env)
11923 {
11924     /*
11925      * Return true if there is definitely no predication of MVE
11926      * instructions by VPR or LTPSIZE. (Returning false even if there
11927      * isn't any predication is OK; generated code will just be
11928      * a little worse.)
11929      * If the CPU does not implement MVE then this TB flag is always 0.
11930      *
11931      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
11932      * logic in gen_update_fp_context() needs to be updated to match.
11933      *
11934      * We do not include the effect of the ECI bits here -- they are
11935      * tracked in other TB flags. This simplifies the logic for
11936      * "when did we emit code that changes the MVE_NO_PRED TB flag
11937      * and thus need to end the TB?".
11938      */
11939     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
11940         return false;
11941     }
11942     if (env->v7m.vpr) {
11943         return false;
11944     }
11945     if (env->v7m.ltpsize < 4) {
11946         return false;
11947     }
11948     return true;
11949 }
11950 
11951 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
11952                           uint64_t *cs_base, uint32_t *pflags)
11953 {
11954     CPUARMTBFlags flags;
11955 
11956     assert_hflags_rebuild_correctly(env);
11957     flags = env->hflags;
11958 
11959     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
11960         *pc = env->pc;
11961         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11962             DP_TBFLAG_A64(flags, BTYPE, env->btype);
11963         }
11964     } else {
11965         *pc = env->regs[15];
11966 
11967         if (arm_feature(env, ARM_FEATURE_M)) {
11968             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11969                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11970                 != env->v7m.secure) {
11971                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
11972             }
11973 
11974             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11975                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11976                  (env->v7m.secure &&
11977                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11978                 /*
11979                  * ASPEN is set, but FPCA/SFPA indicate that there is no
11980                  * active FP context; we must create a new FP context before
11981                  * executing any FP insn.
11982                  */
11983                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
11984             }
11985 
11986             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11987             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11988                 DP_TBFLAG_M32(flags, LSPACT, 1);
11989             }
11990 
11991             if (mve_no_pred(env)) {
11992                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
11993             }
11994         } else {
11995             /*
11996              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11997              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11998              */
11999             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12000                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12001             } else {
12002                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12003                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12004             }
12005             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12006                 DP_TBFLAG_A32(flags, VFPEN, 1);
12007             }
12008         }
12009 
12010         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12011         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12012     }
12013 
12014     /*
12015      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12016      * states defined in the ARM ARM for software singlestep:
12017      *  SS_ACTIVE   PSTATE.SS   State
12018      *     0            x       Inactive (the TB flag for SS is always 0)
12019      *     1            0       Active-pending
12020      *     1            1       Active-not-pending
12021      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12022      */
12023     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12024         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12025     }
12026 
12027     *pflags = flags.flags;
12028     *cs_base = flags.flags2;
12029 }
12030 
12031 #ifdef TARGET_AARCH64
12032 /*
12033  * The manual says that when SVE is enabled and VQ is widened the
12034  * implementation is allowed to zero the previously inaccessible
12035  * portion of the registers.  The corollary to that is that when
12036  * SVE is enabled and VQ is narrowed we are also allowed to zero
12037  * the now inaccessible portion of the registers.
12038  *
12039  * The intent of this is that no predicate bit beyond VQ is ever set.
12040  * Which means that some operations on predicate registers themselves
12041  * may operate on full uint64_t or even unrolled across the maximum
12042  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12043  * may well be cheaper than conditionals to restrict the operation
12044  * to the relevant portion of a uint16_t[16].
12045  */
12046 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12047 {
12048     int i, j;
12049     uint64_t pmask;
12050 
12051     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12052     assert(vq <= env_archcpu(env)->sve_max_vq);
12053 
12054     /* Zap the high bits of the zregs.  */
12055     for (i = 0; i < 32; i++) {
12056         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12057     }
12058 
12059     /* Zap the high bits of the pregs and ffr.  */
12060     pmask = 0;
12061     if (vq & 3) {
12062         pmask = ~(-1ULL << (16 * (vq & 3)));
12063     }
12064     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12065         for (i = 0; i < 17; ++i) {
12066             env->vfp.pregs[i].p[j] &= pmask;
12067         }
12068         pmask = 0;
12069     }
12070 }
12071 
12072 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12073 {
12074     int exc_el;
12075 
12076     if (sm) {
12077         exc_el = sme_exception_el(env, el);
12078     } else {
12079         exc_el = sve_exception_el(env, el);
12080     }
12081     if (exc_el) {
12082         return 0; /* disabled */
12083     }
12084     return sve_vqm1_for_el_sm(env, el, sm);
12085 }
12086 
12087 /*
12088  * Notice a change in SVE vector size when changing EL.
12089  */
12090 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12091                            int new_el, bool el0_a64)
12092 {
12093     ARMCPU *cpu = env_archcpu(env);
12094     int old_len, new_len;
12095     bool old_a64, new_a64, sm;
12096 
12097     /* Nothing to do if no SVE.  */
12098     if (!cpu_isar_feature(aa64_sve, cpu)) {
12099         return;
12100     }
12101 
12102     /* Nothing to do if FP is disabled in either EL.  */
12103     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12104         return;
12105     }
12106 
12107     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12108     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12109 
12110     /*
12111      * Both AArch64.TakeException and AArch64.ExceptionReturn
12112      * invoke ResetSVEState when taking an exception from, or
12113      * returning to, AArch32 state when PSTATE.SM is enabled.
12114      */
12115     sm = FIELD_EX64(env->svcr, SVCR, SM);
12116     if (old_a64 != new_a64 && sm) {
12117         arm_reset_sve_state(env);
12118         return;
12119     }
12120 
12121     /*
12122      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12123      * at ELx, or not available because the EL is in AArch32 state, then
12124      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12125      * has an effective value of 0".
12126      *
12127      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12128      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12129      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12130      * we already have the correct register contents when encountering the
12131      * vq0->vq0 transition between EL0->EL1.
12132      */
12133     old_len = new_len = 0;
12134     if (old_a64) {
12135         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12136     }
12137     if (new_a64) {
12138         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12139     }
12140 
12141     /* When changing vector length, clear inaccessible state.  */
12142     if (new_len < old_len) {
12143         aarch64_sve_narrow_vq(env, new_len + 1);
12144     }
12145 }
12146 #endif
12147 
12148 #ifndef CONFIG_USER_ONLY
12149 ARMSecuritySpace arm_security_space(CPUARMState *env)
12150 {
12151     if (arm_feature(env, ARM_FEATURE_M)) {
12152         return arm_secure_to_space(env->v7m.secure);
12153     }
12154 
12155     /*
12156      * If EL3 is not supported then the secure state is implementation
12157      * defined, in which case QEMU defaults to non-secure.
12158      */
12159     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12160         return ARMSS_NonSecure;
12161     }
12162 
12163     /* Check for AArch64 EL3 or AArch32 Mon. */
12164     if (is_a64(env)) {
12165         if (extract32(env->pstate, 2, 2) == 3) {
12166             if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12167                 return ARMSS_Root;
12168             } else {
12169                 return ARMSS_Secure;
12170             }
12171         }
12172     } else {
12173         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12174             return ARMSS_Secure;
12175         }
12176     }
12177 
12178     return arm_security_space_below_el3(env);
12179 }
12180 
12181 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12182 {
12183     assert(!arm_feature(env, ARM_FEATURE_M));
12184 
12185     /*
12186      * If EL3 is not supported then the secure state is implementation
12187      * defined, in which case QEMU defaults to non-secure.
12188      */
12189     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12190         return ARMSS_NonSecure;
12191     }
12192 
12193     /*
12194      * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12195      * Ignoring NSE when !NS retains consistency without having to
12196      * modify other predicates.
12197      */
12198     if (!(env->cp15.scr_el3 & SCR_NS)) {
12199         return ARMSS_Secure;
12200     } else if (env->cp15.scr_el3 & SCR_NSE) {
12201         return ARMSS_Realm;
12202     } else {
12203         return ARMSS_NonSecure;
12204     }
12205 }
12206 #endif /* !CONFIG_USER_ONLY */
12207