1 #include "qemu/osdep.h" 2 #include "trace.h" 3 #include "cpu.h" 4 #include "internals.h" 5 #include "exec/gdbstub.h" 6 #include "exec/helper-proto.h" 7 #include "qemu/host-utils.h" 8 #include "sysemu/arch_init.h" 9 #include "sysemu/sysemu.h" 10 #include "qemu/bitops.h" 11 #include "qemu/crc32c.h" 12 #include "exec/exec-all.h" 13 #include "exec/cpu_ldst.h" 14 #include "arm_ldst.h" 15 #include <zlib.h> /* For crc32 */ 16 #include "exec/semihost.h" 17 #include "sysemu/kvm.h" 18 19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 20 21 #ifndef CONFIG_USER_ONLY 22 /* Cacheability and shareability attributes for a memory access */ 23 typedef struct ARMCacheAttrs { 24 unsigned int attrs:8; /* as in the MAIR register encoding */ 25 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 26 } ARMCacheAttrs; 27 28 static bool get_phys_addr(CPUARMState *env, target_ulong address, 29 MMUAccessType access_type, ARMMMUIdx mmu_idx, 30 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 31 target_ulong *page_size, 32 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 33 34 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 35 MMUAccessType access_type, ARMMMUIdx mmu_idx, 36 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 37 target_ulong *page_size_ptr, 38 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 39 40 /* Security attributes for an address, as returned by v8m_security_lookup. */ 41 typedef struct V8M_SAttributes { 42 bool ns; 43 bool nsc; 44 uint8_t sregion; 45 bool srvalid; 46 uint8_t iregion; 47 bool irvalid; 48 } V8M_SAttributes; 49 50 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 51 MMUAccessType access_type, ARMMMUIdx mmu_idx, 52 V8M_SAttributes *sattrs); 53 54 /* Definitions for the PMCCNTR and PMCR registers */ 55 #define PMCRD 0x8 56 #define PMCRC 0x4 57 #define PMCRE 0x1 58 #endif 59 60 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 61 { 62 int nregs; 63 64 /* VFP data registers are always little-endian. */ 65 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 66 if (reg < nregs) { 67 stfq_le_p(buf, env->vfp.regs[reg]); 68 return 8; 69 } 70 if (arm_feature(env, ARM_FEATURE_NEON)) { 71 /* Aliases for Q regs. */ 72 nregs += 16; 73 if (reg < nregs) { 74 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); 75 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); 76 return 16; 77 } 78 } 79 switch (reg - nregs) { 80 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 81 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 82 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 83 } 84 return 0; 85 } 86 87 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 88 { 89 int nregs; 90 91 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 92 if (reg < nregs) { 93 env->vfp.regs[reg] = ldfq_le_p(buf); 94 return 8; 95 } 96 if (arm_feature(env, ARM_FEATURE_NEON)) { 97 nregs += 16; 98 if (reg < nregs) { 99 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); 100 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); 101 return 16; 102 } 103 } 104 switch (reg - nregs) { 105 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 106 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 107 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 108 } 109 return 0; 110 } 111 112 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 113 { 114 switch (reg) { 115 case 0 ... 31: 116 /* 128 bit FP register */ 117 stfq_le_p(buf, env->vfp.regs[reg * 2]); 118 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); 119 return 16; 120 case 32: 121 /* FPSR */ 122 stl_p(buf, vfp_get_fpsr(env)); 123 return 4; 124 case 33: 125 /* FPCR */ 126 stl_p(buf, vfp_get_fpcr(env)); 127 return 4; 128 default: 129 return 0; 130 } 131 } 132 133 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 134 { 135 switch (reg) { 136 case 0 ... 31: 137 /* 128 bit FP register */ 138 env->vfp.regs[reg * 2] = ldfq_le_p(buf); 139 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); 140 return 16; 141 case 32: 142 /* FPSR */ 143 vfp_set_fpsr(env, ldl_p(buf)); 144 return 4; 145 case 33: 146 /* FPCR */ 147 vfp_set_fpcr(env, ldl_p(buf)); 148 return 4; 149 default: 150 return 0; 151 } 152 } 153 154 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 155 { 156 assert(ri->fieldoffset); 157 if (cpreg_field_is_64bit(ri)) { 158 return CPREG_FIELD64(env, ri); 159 } else { 160 return CPREG_FIELD32(env, ri); 161 } 162 } 163 164 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 165 uint64_t value) 166 { 167 assert(ri->fieldoffset); 168 if (cpreg_field_is_64bit(ri)) { 169 CPREG_FIELD64(env, ri) = value; 170 } else { 171 CPREG_FIELD32(env, ri) = value; 172 } 173 } 174 175 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 176 { 177 return (char *)env + ri->fieldoffset; 178 } 179 180 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 181 { 182 /* Raw read of a coprocessor register (as needed for migration, etc). */ 183 if (ri->type & ARM_CP_CONST) { 184 return ri->resetvalue; 185 } else if (ri->raw_readfn) { 186 return ri->raw_readfn(env, ri); 187 } else if (ri->readfn) { 188 return ri->readfn(env, ri); 189 } else { 190 return raw_read(env, ri); 191 } 192 } 193 194 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 195 uint64_t v) 196 { 197 /* Raw write of a coprocessor register (as needed for migration, etc). 198 * Note that constant registers are treated as write-ignored; the 199 * caller should check for success by whether a readback gives the 200 * value written. 201 */ 202 if (ri->type & ARM_CP_CONST) { 203 return; 204 } else if (ri->raw_writefn) { 205 ri->raw_writefn(env, ri, v); 206 } else if (ri->writefn) { 207 ri->writefn(env, ri, v); 208 } else { 209 raw_write(env, ri, v); 210 } 211 } 212 213 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 214 { 215 /* Return true if the regdef would cause an assertion if you called 216 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 217 * program bug for it not to have the NO_RAW flag). 218 * NB that returning false here doesn't necessarily mean that calling 219 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 220 * read/write access functions which are safe for raw use" from "has 221 * read/write access functions which have side effects but has forgotten 222 * to provide raw access functions". 223 * The tests here line up with the conditions in read/write_raw_cp_reg() 224 * and assertions in raw_read()/raw_write(). 225 */ 226 if ((ri->type & ARM_CP_CONST) || 227 ri->fieldoffset || 228 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 229 return false; 230 } 231 return true; 232 } 233 234 bool write_cpustate_to_list(ARMCPU *cpu) 235 { 236 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 237 int i; 238 bool ok = true; 239 240 for (i = 0; i < cpu->cpreg_array_len; i++) { 241 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 242 const ARMCPRegInfo *ri; 243 244 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 245 if (!ri) { 246 ok = false; 247 continue; 248 } 249 if (ri->type & ARM_CP_NO_RAW) { 250 continue; 251 } 252 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 253 } 254 return ok; 255 } 256 257 bool write_list_to_cpustate(ARMCPU *cpu) 258 { 259 int i; 260 bool ok = true; 261 262 for (i = 0; i < cpu->cpreg_array_len; i++) { 263 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 264 uint64_t v = cpu->cpreg_values[i]; 265 const ARMCPRegInfo *ri; 266 267 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 268 if (!ri) { 269 ok = false; 270 continue; 271 } 272 if (ri->type & ARM_CP_NO_RAW) { 273 continue; 274 } 275 /* Write value and confirm it reads back as written 276 * (to catch read-only registers and partially read-only 277 * registers where the incoming migration value doesn't match) 278 */ 279 write_raw_cp_reg(&cpu->env, ri, v); 280 if (read_raw_cp_reg(&cpu->env, ri) != v) { 281 ok = false; 282 } 283 } 284 return ok; 285 } 286 287 static void add_cpreg_to_list(gpointer key, gpointer opaque) 288 { 289 ARMCPU *cpu = opaque; 290 uint64_t regidx; 291 const ARMCPRegInfo *ri; 292 293 regidx = *(uint32_t *)key; 294 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 295 296 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 297 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 298 /* The value array need not be initialized at this point */ 299 cpu->cpreg_array_len++; 300 } 301 } 302 303 static void count_cpreg(gpointer key, gpointer opaque) 304 { 305 ARMCPU *cpu = opaque; 306 uint64_t regidx; 307 const ARMCPRegInfo *ri; 308 309 regidx = *(uint32_t *)key; 310 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 311 312 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 313 cpu->cpreg_array_len++; 314 } 315 } 316 317 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 318 { 319 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 320 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 321 322 if (aidx > bidx) { 323 return 1; 324 } 325 if (aidx < bidx) { 326 return -1; 327 } 328 return 0; 329 } 330 331 void init_cpreg_list(ARMCPU *cpu) 332 { 333 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 334 * Note that we require cpreg_tuples[] to be sorted by key ID. 335 */ 336 GList *keys; 337 int arraylen; 338 339 keys = g_hash_table_get_keys(cpu->cp_regs); 340 keys = g_list_sort(keys, cpreg_key_compare); 341 342 cpu->cpreg_array_len = 0; 343 344 g_list_foreach(keys, count_cpreg, cpu); 345 346 arraylen = cpu->cpreg_array_len; 347 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 348 cpu->cpreg_values = g_new(uint64_t, arraylen); 349 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 350 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 351 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 352 cpu->cpreg_array_len = 0; 353 354 g_list_foreach(keys, add_cpreg_to_list, cpu); 355 356 assert(cpu->cpreg_array_len == arraylen); 357 358 g_list_free(keys); 359 } 360 361 /* 362 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 363 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 364 * 365 * access_el3_aa32ns: Used to check AArch32 register views. 366 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 367 */ 368 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 369 const ARMCPRegInfo *ri, 370 bool isread) 371 { 372 bool secure = arm_is_secure_below_el3(env); 373 374 assert(!arm_el_is_aa64(env, 3)); 375 if (secure) { 376 return CP_ACCESS_TRAP_UNCATEGORIZED; 377 } 378 return CP_ACCESS_OK; 379 } 380 381 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 382 const ARMCPRegInfo *ri, 383 bool isread) 384 { 385 if (!arm_el_is_aa64(env, 3)) { 386 return access_el3_aa32ns(env, ri, isread); 387 } 388 return CP_ACCESS_OK; 389 } 390 391 /* Some secure-only AArch32 registers trap to EL3 if used from 392 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 393 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 394 * We assume that the .access field is set to PL1_RW. 395 */ 396 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 397 const ARMCPRegInfo *ri, 398 bool isread) 399 { 400 if (arm_current_el(env) == 3) { 401 return CP_ACCESS_OK; 402 } 403 if (arm_is_secure_below_el3(env)) { 404 return CP_ACCESS_TRAP_EL3; 405 } 406 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 407 return CP_ACCESS_TRAP_UNCATEGORIZED; 408 } 409 410 /* Check for traps to "powerdown debug" registers, which are controlled 411 * by MDCR.TDOSA 412 */ 413 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 414 bool isread) 415 { 416 int el = arm_current_el(env); 417 418 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) 419 && !arm_is_secure_below_el3(env)) { 420 return CP_ACCESS_TRAP_EL2; 421 } 422 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 423 return CP_ACCESS_TRAP_EL3; 424 } 425 return CP_ACCESS_OK; 426 } 427 428 /* Check for traps to "debug ROM" registers, which are controlled 429 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 430 */ 431 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 432 bool isread) 433 { 434 int el = arm_current_el(env); 435 436 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) 437 && !arm_is_secure_below_el3(env)) { 438 return CP_ACCESS_TRAP_EL2; 439 } 440 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 441 return CP_ACCESS_TRAP_EL3; 442 } 443 return CP_ACCESS_OK; 444 } 445 446 /* Check for traps to general debug registers, which are controlled 447 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 448 */ 449 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 450 bool isread) 451 { 452 int el = arm_current_el(env); 453 454 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) 455 && !arm_is_secure_below_el3(env)) { 456 return CP_ACCESS_TRAP_EL2; 457 } 458 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 459 return CP_ACCESS_TRAP_EL3; 460 } 461 return CP_ACCESS_OK; 462 } 463 464 /* Check for traps to performance monitor registers, which are controlled 465 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 466 */ 467 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 468 bool isread) 469 { 470 int el = arm_current_el(env); 471 472 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 473 && !arm_is_secure_below_el3(env)) { 474 return CP_ACCESS_TRAP_EL2; 475 } 476 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 477 return CP_ACCESS_TRAP_EL3; 478 } 479 return CP_ACCESS_OK; 480 } 481 482 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 483 { 484 ARMCPU *cpu = arm_env_get_cpu(env); 485 486 raw_write(env, ri, value); 487 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 488 } 489 490 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 491 { 492 ARMCPU *cpu = arm_env_get_cpu(env); 493 494 if (raw_read(env, ri) != value) { 495 /* Unlike real hardware the qemu TLB uses virtual addresses, 496 * not modified virtual addresses, so this causes a TLB flush. 497 */ 498 tlb_flush(CPU(cpu)); 499 raw_write(env, ri, value); 500 } 501 } 502 503 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 504 uint64_t value) 505 { 506 ARMCPU *cpu = arm_env_get_cpu(env); 507 508 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 509 && !extended_addresses_enabled(env)) { 510 /* For VMSA (when not using the LPAE long descriptor page table 511 * format) this register includes the ASID, so do a TLB flush. 512 * For PMSA it is purely a process ID and no action is needed. 513 */ 514 tlb_flush(CPU(cpu)); 515 } 516 raw_write(env, ri, value); 517 } 518 519 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 520 uint64_t value) 521 { 522 /* Invalidate all (TLBIALL) */ 523 ARMCPU *cpu = arm_env_get_cpu(env); 524 525 tlb_flush(CPU(cpu)); 526 } 527 528 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 529 uint64_t value) 530 { 531 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 532 ARMCPU *cpu = arm_env_get_cpu(env); 533 534 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 535 } 536 537 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 538 uint64_t value) 539 { 540 /* Invalidate by ASID (TLBIASID) */ 541 ARMCPU *cpu = arm_env_get_cpu(env); 542 543 tlb_flush(CPU(cpu)); 544 } 545 546 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 547 uint64_t value) 548 { 549 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 550 ARMCPU *cpu = arm_env_get_cpu(env); 551 552 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 553 } 554 555 /* IS variants of TLB operations must affect all cores */ 556 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *cs = ENV_GET_CPU(env); 560 561 tlb_flush_all_cpus_synced(cs); 562 } 563 564 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 565 uint64_t value) 566 { 567 CPUState *cs = ENV_GET_CPU(env); 568 569 tlb_flush_all_cpus_synced(cs); 570 } 571 572 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 573 uint64_t value) 574 { 575 CPUState *cs = ENV_GET_CPU(env); 576 577 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 578 } 579 580 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 581 uint64_t value) 582 { 583 CPUState *cs = ENV_GET_CPU(env); 584 585 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 586 } 587 588 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 589 uint64_t value) 590 { 591 CPUState *cs = ENV_GET_CPU(env); 592 593 tlb_flush_by_mmuidx(cs, 594 ARMMMUIdxBit_S12NSE1 | 595 ARMMMUIdxBit_S12NSE0 | 596 ARMMMUIdxBit_S2NS); 597 } 598 599 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 600 uint64_t value) 601 { 602 CPUState *cs = ENV_GET_CPU(env); 603 604 tlb_flush_by_mmuidx_all_cpus_synced(cs, 605 ARMMMUIdxBit_S12NSE1 | 606 ARMMMUIdxBit_S12NSE0 | 607 ARMMMUIdxBit_S2NS); 608 } 609 610 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 611 uint64_t value) 612 { 613 /* Invalidate by IPA. This has to invalidate any structures that 614 * contain only stage 2 translation information, but does not need 615 * to apply to structures that contain combined stage 1 and stage 2 616 * translation information. 617 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 618 */ 619 CPUState *cs = ENV_GET_CPU(env); 620 uint64_t pageaddr; 621 622 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 623 return; 624 } 625 626 pageaddr = sextract64(value << 12, 0, 40); 627 628 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 629 } 630 631 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 632 uint64_t value) 633 { 634 CPUState *cs = ENV_GET_CPU(env); 635 uint64_t pageaddr; 636 637 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 638 return; 639 } 640 641 pageaddr = sextract64(value << 12, 0, 40); 642 643 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 644 ARMMMUIdxBit_S2NS); 645 } 646 647 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 648 uint64_t value) 649 { 650 CPUState *cs = ENV_GET_CPU(env); 651 652 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 653 } 654 655 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 656 uint64_t value) 657 { 658 CPUState *cs = ENV_GET_CPU(env); 659 660 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 661 } 662 663 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 664 uint64_t value) 665 { 666 CPUState *cs = ENV_GET_CPU(env); 667 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 668 669 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 670 } 671 672 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 673 uint64_t value) 674 { 675 CPUState *cs = ENV_GET_CPU(env); 676 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 677 678 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 679 ARMMMUIdxBit_S1E2); 680 } 681 682 static const ARMCPRegInfo cp_reginfo[] = { 683 /* Define the secure and non-secure FCSE identifier CP registers 684 * separately because there is no secure bank in V8 (no _EL3). This allows 685 * the secure register to be properly reset and migrated. There is also no 686 * v8 EL1 version of the register so the non-secure instance stands alone. 687 */ 688 { .name = "FCSEIDR(NS)", 689 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 690 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 691 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 692 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 693 { .name = "FCSEIDR(S)", 694 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 695 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 696 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 697 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 698 /* Define the secure and non-secure context identifier CP registers 699 * separately because there is no secure bank in V8 (no _EL3). This allows 700 * the secure register to be properly reset and migrated. In the 701 * non-secure case, the 32-bit register will have reset and migration 702 * disabled during registration as it is handled by the 64-bit instance. 703 */ 704 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 705 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 706 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 707 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 708 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 709 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, 710 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 711 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 712 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 713 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 714 REGINFO_SENTINEL 715 }; 716 717 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 718 /* NB: Some of these registers exist in v8 but with more precise 719 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 720 */ 721 /* MMU Domain access control / MPU write buffer control */ 722 { .name = "DACR", 723 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 724 .access = PL1_RW, .resetvalue = 0, 725 .writefn = dacr_write, .raw_writefn = raw_write, 726 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 727 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 728 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 729 * For v6 and v5, these mappings are overly broad. 730 */ 731 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 732 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 733 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 734 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 735 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 736 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 737 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 738 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 739 /* Cache maintenance ops; some of this space may be overridden later. */ 740 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 741 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 742 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 743 REGINFO_SENTINEL 744 }; 745 746 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 747 /* Not all pre-v6 cores implemented this WFI, so this is slightly 748 * over-broad. 749 */ 750 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 751 .access = PL1_W, .type = ARM_CP_WFI }, 752 REGINFO_SENTINEL 753 }; 754 755 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 756 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 757 * is UNPREDICTABLE; we choose to NOP as most implementations do). 758 */ 759 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 760 .access = PL1_W, .type = ARM_CP_WFI }, 761 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 762 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 763 * OMAPCP will override this space. 764 */ 765 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 766 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 767 .resetvalue = 0 }, 768 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 769 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 770 .resetvalue = 0 }, 771 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 772 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 773 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 774 .resetvalue = 0 }, 775 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 776 * implementing it as RAZ means the "debug architecture version" bits 777 * will read as a reserved value, which should cause Linux to not try 778 * to use the debug hardware. 779 */ 780 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 781 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 782 /* MMU TLB control. Note that the wildcarding means we cover not just 783 * the unified TLB ops but also the dside/iside/inner-shareable variants. 784 */ 785 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 786 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 787 .type = ARM_CP_NO_RAW }, 788 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 789 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 790 .type = ARM_CP_NO_RAW }, 791 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 792 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 793 .type = ARM_CP_NO_RAW }, 794 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 795 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 796 .type = ARM_CP_NO_RAW }, 797 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 798 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 799 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 800 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 801 REGINFO_SENTINEL 802 }; 803 804 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 805 uint64_t value) 806 { 807 uint32_t mask = 0; 808 809 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 810 if (!arm_feature(env, ARM_FEATURE_V8)) { 811 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 812 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 813 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 814 */ 815 if (arm_feature(env, ARM_FEATURE_VFP)) { 816 /* VFP coprocessor: cp10 & cp11 [23:20] */ 817 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 818 819 if (!arm_feature(env, ARM_FEATURE_NEON)) { 820 /* ASEDIS [31] bit is RAO/WI */ 821 value |= (1 << 31); 822 } 823 824 /* VFPv3 and upwards with NEON implement 32 double precision 825 * registers (D0-D31). 826 */ 827 if (!arm_feature(env, ARM_FEATURE_NEON) || 828 !arm_feature(env, ARM_FEATURE_VFP3)) { 829 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 830 value |= (1 << 30); 831 } 832 } 833 value &= mask; 834 } 835 env->cp15.cpacr_el1 = value; 836 } 837 838 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 839 bool isread) 840 { 841 if (arm_feature(env, ARM_FEATURE_V8)) { 842 /* Check if CPACR accesses are to be trapped to EL2 */ 843 if (arm_current_el(env) == 1 && 844 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 845 return CP_ACCESS_TRAP_EL2; 846 /* Check if CPACR accesses are to be trapped to EL3 */ 847 } else if (arm_current_el(env) < 3 && 848 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 849 return CP_ACCESS_TRAP_EL3; 850 } 851 } 852 853 return CP_ACCESS_OK; 854 } 855 856 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 857 bool isread) 858 { 859 /* Check if CPTR accesses are set to trap to EL3 */ 860 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 861 return CP_ACCESS_TRAP_EL3; 862 } 863 864 return CP_ACCESS_OK; 865 } 866 867 static const ARMCPRegInfo v6_cp_reginfo[] = { 868 /* prefetch by MVA in v6, NOP in v7 */ 869 { .name = "MVA_prefetch", 870 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 871 .access = PL1_W, .type = ARM_CP_NOP }, 872 /* We need to break the TB after ISB to execute self-modifying code 873 * correctly and also to take any pending interrupts immediately. 874 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 875 */ 876 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 877 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 878 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 879 .access = PL0_W, .type = ARM_CP_NOP }, 880 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 881 .access = PL0_W, .type = ARM_CP_NOP }, 882 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 883 .access = PL1_RW, 884 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 885 offsetof(CPUARMState, cp15.ifar_ns) }, 886 .resetvalue = 0, }, 887 /* Watchpoint Fault Address Register : should actually only be present 888 * for 1136, 1176, 11MPCore. 889 */ 890 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 891 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 892 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 893 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 894 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 895 .resetvalue = 0, .writefn = cpacr_write }, 896 REGINFO_SENTINEL 897 }; 898 899 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 900 bool isread) 901 { 902 /* Performance monitor registers user accessibility is controlled 903 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 904 * trapping to EL2 or EL3 for other accesses. 905 */ 906 int el = arm_current_el(env); 907 908 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 909 return CP_ACCESS_TRAP; 910 } 911 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 912 && !arm_is_secure_below_el3(env)) { 913 return CP_ACCESS_TRAP_EL2; 914 } 915 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 916 return CP_ACCESS_TRAP_EL3; 917 } 918 919 return CP_ACCESS_OK; 920 } 921 922 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 923 const ARMCPRegInfo *ri, 924 bool isread) 925 { 926 /* ER: event counter read trap control */ 927 if (arm_feature(env, ARM_FEATURE_V8) 928 && arm_current_el(env) == 0 929 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 930 && isread) { 931 return CP_ACCESS_OK; 932 } 933 934 return pmreg_access(env, ri, isread); 935 } 936 937 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 938 const ARMCPRegInfo *ri, 939 bool isread) 940 { 941 /* SW: software increment write trap control */ 942 if (arm_feature(env, ARM_FEATURE_V8) 943 && arm_current_el(env) == 0 944 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 945 && !isread) { 946 return CP_ACCESS_OK; 947 } 948 949 return pmreg_access(env, ri, isread); 950 } 951 952 #ifndef CONFIG_USER_ONLY 953 954 static CPAccessResult pmreg_access_selr(CPUARMState *env, 955 const ARMCPRegInfo *ri, 956 bool isread) 957 { 958 /* ER: event counter read trap control */ 959 if (arm_feature(env, ARM_FEATURE_V8) 960 && arm_current_el(env) == 0 961 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 962 return CP_ACCESS_OK; 963 } 964 965 return pmreg_access(env, ri, isread); 966 } 967 968 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 969 const ARMCPRegInfo *ri, 970 bool isread) 971 { 972 /* CR: cycle counter read trap control */ 973 if (arm_feature(env, ARM_FEATURE_V8) 974 && arm_current_el(env) == 0 975 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 976 && isread) { 977 return CP_ACCESS_OK; 978 } 979 980 return pmreg_access(env, ri, isread); 981 } 982 983 static inline bool arm_ccnt_enabled(CPUARMState *env) 984 { 985 /* This does not support checking PMCCFILTR_EL0 register */ 986 987 if (!(env->cp15.c9_pmcr & PMCRE)) { 988 return false; 989 } 990 991 return true; 992 } 993 994 void pmccntr_sync(CPUARMState *env) 995 { 996 uint64_t temp_ticks; 997 998 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 999 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1000 1001 if (env->cp15.c9_pmcr & PMCRD) { 1002 /* Increment once every 64 processor clock cycles */ 1003 temp_ticks /= 64; 1004 } 1005 1006 if (arm_ccnt_enabled(env)) { 1007 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 1008 } 1009 } 1010 1011 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1012 uint64_t value) 1013 { 1014 pmccntr_sync(env); 1015 1016 if (value & PMCRC) { 1017 /* The counter has been reset */ 1018 env->cp15.c15_ccnt = 0; 1019 } 1020 1021 /* only the DP, X, D and E bits are writable */ 1022 env->cp15.c9_pmcr &= ~0x39; 1023 env->cp15.c9_pmcr |= (value & 0x39); 1024 1025 pmccntr_sync(env); 1026 } 1027 1028 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1029 { 1030 uint64_t total_ticks; 1031 1032 if (!arm_ccnt_enabled(env)) { 1033 /* Counter is disabled, do not change value */ 1034 return env->cp15.c15_ccnt; 1035 } 1036 1037 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1038 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1039 1040 if (env->cp15.c9_pmcr & PMCRD) { 1041 /* Increment once every 64 processor clock cycles */ 1042 total_ticks /= 64; 1043 } 1044 return total_ticks - env->cp15.c15_ccnt; 1045 } 1046 1047 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1048 uint64_t value) 1049 { 1050 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1051 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1052 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1053 * accessed. 1054 */ 1055 env->cp15.c9_pmselr = value & 0x1f; 1056 } 1057 1058 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1059 uint64_t value) 1060 { 1061 uint64_t total_ticks; 1062 1063 if (!arm_ccnt_enabled(env)) { 1064 /* Counter is disabled, set the absolute value */ 1065 env->cp15.c15_ccnt = value; 1066 return; 1067 } 1068 1069 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1070 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1071 1072 if (env->cp15.c9_pmcr & PMCRD) { 1073 /* Increment once every 64 processor clock cycles */ 1074 total_ticks /= 64; 1075 } 1076 env->cp15.c15_ccnt = total_ticks - value; 1077 } 1078 1079 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1080 uint64_t value) 1081 { 1082 uint64_t cur_val = pmccntr_read(env, NULL); 1083 1084 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1085 } 1086 1087 #else /* CONFIG_USER_ONLY */ 1088 1089 void pmccntr_sync(CPUARMState *env) 1090 { 1091 } 1092 1093 #endif 1094 1095 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1096 uint64_t value) 1097 { 1098 pmccntr_sync(env); 1099 env->cp15.pmccfiltr_el0 = value & 0x7E000000; 1100 pmccntr_sync(env); 1101 } 1102 1103 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1104 uint64_t value) 1105 { 1106 value &= (1 << 31); 1107 env->cp15.c9_pmcnten |= value; 1108 } 1109 1110 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1111 uint64_t value) 1112 { 1113 value &= (1 << 31); 1114 env->cp15.c9_pmcnten &= ~value; 1115 } 1116 1117 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1118 uint64_t value) 1119 { 1120 env->cp15.c9_pmovsr &= ~value; 1121 } 1122 1123 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1124 uint64_t value) 1125 { 1126 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1127 * PMSELR value is equal to or greater than the number of implemented 1128 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1129 */ 1130 if (env->cp15.c9_pmselr == 0x1f) { 1131 pmccfiltr_write(env, ri, value); 1132 } 1133 } 1134 1135 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1136 { 1137 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1138 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). 1139 */ 1140 if (env->cp15.c9_pmselr == 0x1f) { 1141 return env->cp15.pmccfiltr_el0; 1142 } else { 1143 return 0; 1144 } 1145 } 1146 1147 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1148 uint64_t value) 1149 { 1150 if (arm_feature(env, ARM_FEATURE_V8)) { 1151 env->cp15.c9_pmuserenr = value & 0xf; 1152 } else { 1153 env->cp15.c9_pmuserenr = value & 1; 1154 } 1155 } 1156 1157 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1158 uint64_t value) 1159 { 1160 /* We have no event counters so only the C bit can be changed */ 1161 value &= (1 << 31); 1162 env->cp15.c9_pminten |= value; 1163 } 1164 1165 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1166 uint64_t value) 1167 { 1168 value &= (1 << 31); 1169 env->cp15.c9_pminten &= ~value; 1170 } 1171 1172 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1173 uint64_t value) 1174 { 1175 /* Note that even though the AArch64 view of this register has bits 1176 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1177 * architectural requirements for bits which are RES0 only in some 1178 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1179 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1180 */ 1181 raw_write(env, ri, value & ~0x1FULL); 1182 } 1183 1184 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1185 { 1186 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1187 * For bits that vary between AArch32/64, code needs to check the 1188 * current execution mode before directly using the feature bit. 1189 */ 1190 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1191 1192 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1193 valid_mask &= ~SCR_HCE; 1194 1195 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1196 * supported if EL2 exists. The bit is UNK/SBZP when 1197 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1198 * when EL2 is unavailable. 1199 * On ARMv8, this bit is always available. 1200 */ 1201 if (arm_feature(env, ARM_FEATURE_V7) && 1202 !arm_feature(env, ARM_FEATURE_V8)) { 1203 valid_mask &= ~SCR_SMD; 1204 } 1205 } 1206 1207 /* Clear all-context RES0 bits. */ 1208 value &= valid_mask; 1209 raw_write(env, ri, value); 1210 } 1211 1212 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1213 { 1214 ARMCPU *cpu = arm_env_get_cpu(env); 1215 1216 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1217 * bank 1218 */ 1219 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1220 ri->secure & ARM_CP_SECSTATE_S); 1221 1222 return cpu->ccsidr[index]; 1223 } 1224 1225 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1226 uint64_t value) 1227 { 1228 raw_write(env, ri, value & 0xf); 1229 } 1230 1231 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1232 { 1233 CPUState *cs = ENV_GET_CPU(env); 1234 uint64_t ret = 0; 1235 1236 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1237 ret |= CPSR_I; 1238 } 1239 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1240 ret |= CPSR_F; 1241 } 1242 /* External aborts are not possible in QEMU so A bit is always clear */ 1243 return ret; 1244 } 1245 1246 static const ARMCPRegInfo v7_cp_reginfo[] = { 1247 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1248 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1249 .access = PL1_W, .type = ARM_CP_NOP }, 1250 /* Performance monitors are implementation defined in v7, 1251 * but with an ARM recommended set of registers, which we 1252 * follow (although we don't actually implement any counters) 1253 * 1254 * Performance registers fall into three categories: 1255 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1256 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1257 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1258 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1259 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1260 */ 1261 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1262 .access = PL0_RW, .type = ARM_CP_ALIAS, 1263 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1264 .writefn = pmcntenset_write, 1265 .accessfn = pmreg_access, 1266 .raw_writefn = raw_write }, 1267 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1268 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1269 .access = PL0_RW, .accessfn = pmreg_access, 1270 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1271 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1272 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1273 .access = PL0_RW, 1274 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1275 .accessfn = pmreg_access, 1276 .writefn = pmcntenclr_write, 1277 .type = ARM_CP_ALIAS }, 1278 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1279 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1280 .access = PL0_RW, .accessfn = pmreg_access, 1281 .type = ARM_CP_ALIAS, 1282 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1283 .writefn = pmcntenclr_write }, 1284 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1285 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1286 .accessfn = pmreg_access, 1287 .writefn = pmovsr_write, 1288 .raw_writefn = raw_write }, 1289 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1290 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1291 .access = PL0_RW, .accessfn = pmreg_access, 1292 .type = ARM_CP_ALIAS, 1293 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1294 .writefn = pmovsr_write, 1295 .raw_writefn = raw_write }, 1296 /* Unimplemented so WI. */ 1297 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1298 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, 1299 #ifndef CONFIG_USER_ONLY 1300 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1301 .access = PL0_RW, .type = ARM_CP_ALIAS, 1302 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1303 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1304 .raw_writefn = raw_write}, 1305 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1306 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1307 .access = PL0_RW, .accessfn = pmreg_access_selr, 1308 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1309 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1310 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1311 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, 1312 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1313 .accessfn = pmreg_access_ccntr }, 1314 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1315 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1316 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1317 .type = ARM_CP_IO, 1318 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1319 #endif 1320 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1321 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1322 .writefn = pmccfiltr_write, 1323 .access = PL0_RW, .accessfn = pmreg_access, 1324 .type = ARM_CP_IO, 1325 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1326 .resetvalue = 0, }, 1327 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1328 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1329 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1330 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1331 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1332 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1333 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1334 /* Unimplemented, RAZ/WI. */ 1335 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1336 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1337 .accessfn = pmreg_access_xevcntr }, 1338 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1339 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1340 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1341 .resetvalue = 0, 1342 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1343 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1344 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1345 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1346 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1347 .resetvalue = 0, 1348 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1349 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1350 .access = PL1_RW, .accessfn = access_tpm, 1351 .type = ARM_CP_ALIAS, 1352 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1353 .resetvalue = 0, 1354 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1355 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1356 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1357 .access = PL1_RW, .accessfn = access_tpm, 1358 .type = ARM_CP_IO, 1359 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1360 .writefn = pmintenset_write, .raw_writefn = raw_write, 1361 .resetvalue = 0x0 }, 1362 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1363 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1364 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1365 .writefn = pmintenclr_write, }, 1366 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1367 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1368 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1369 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1370 .writefn = pmintenclr_write }, 1371 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1372 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1373 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1374 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1375 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1376 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1377 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1378 offsetof(CPUARMState, cp15.csselr_ns) } }, 1379 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1380 * just RAZ for all cores: 1381 */ 1382 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1383 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1384 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1385 /* Auxiliary fault status registers: these also are IMPDEF, and we 1386 * choose to RAZ/WI for all cores. 1387 */ 1388 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1389 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1390 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1391 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1392 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1393 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1394 /* MAIR can just read-as-written because we don't implement caches 1395 * and so don't need to care about memory attributes. 1396 */ 1397 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1398 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1399 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1400 .resetvalue = 0 }, 1401 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1402 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1403 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1404 .resetvalue = 0 }, 1405 /* For non-long-descriptor page tables these are PRRR and NMRR; 1406 * regardless they still act as reads-as-written for QEMU. 1407 */ 1408 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1409 * allows them to assign the correct fieldoffset based on the endianness 1410 * handled in the field definitions. 1411 */ 1412 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1413 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1414 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1415 offsetof(CPUARMState, cp15.mair0_ns) }, 1416 .resetfn = arm_cp_reset_ignore }, 1417 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1418 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1419 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1420 offsetof(CPUARMState, cp15.mair1_ns) }, 1421 .resetfn = arm_cp_reset_ignore }, 1422 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1423 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1424 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1425 /* 32 bit ITLB invalidates */ 1426 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1427 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1428 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1429 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1430 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1431 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1432 /* 32 bit DTLB invalidates */ 1433 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1434 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1435 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1437 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1438 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1439 /* 32 bit TLB invalidates */ 1440 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1441 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1442 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1443 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1444 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1445 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1446 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1447 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1448 REGINFO_SENTINEL 1449 }; 1450 1451 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1452 /* 32 bit TLB invalidates, Inner Shareable */ 1453 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1454 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1455 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1456 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1457 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1458 .type = ARM_CP_NO_RAW, .access = PL1_W, 1459 .writefn = tlbiasid_is_write }, 1460 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1461 .type = ARM_CP_NO_RAW, .access = PL1_W, 1462 .writefn = tlbimvaa_is_write }, 1463 REGINFO_SENTINEL 1464 }; 1465 1466 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1467 uint64_t value) 1468 { 1469 value &= 1; 1470 env->teecr = value; 1471 } 1472 1473 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1474 bool isread) 1475 { 1476 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1477 return CP_ACCESS_TRAP; 1478 } 1479 return CP_ACCESS_OK; 1480 } 1481 1482 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1483 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1484 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1485 .resetvalue = 0, 1486 .writefn = teecr_write }, 1487 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1488 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1489 .accessfn = teehbr_access, .resetvalue = 0 }, 1490 REGINFO_SENTINEL 1491 }; 1492 1493 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1494 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1495 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1496 .access = PL0_RW, 1497 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1498 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1499 .access = PL0_RW, 1500 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1501 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1502 .resetfn = arm_cp_reset_ignore }, 1503 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1504 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1505 .access = PL0_R|PL1_W, 1506 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1507 .resetvalue = 0}, 1508 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1509 .access = PL0_R|PL1_W, 1510 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1511 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1512 .resetfn = arm_cp_reset_ignore }, 1513 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1514 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1515 .access = PL1_RW, 1516 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1517 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1518 .access = PL1_RW, 1519 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1520 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1521 .resetvalue = 0 }, 1522 REGINFO_SENTINEL 1523 }; 1524 1525 #ifndef CONFIG_USER_ONLY 1526 1527 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1528 bool isread) 1529 { 1530 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1531 * Writable only at the highest implemented exception level. 1532 */ 1533 int el = arm_current_el(env); 1534 1535 switch (el) { 1536 case 0: 1537 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1538 return CP_ACCESS_TRAP; 1539 } 1540 break; 1541 case 1: 1542 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1543 arm_is_secure_below_el3(env)) { 1544 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1545 return CP_ACCESS_TRAP_UNCATEGORIZED; 1546 } 1547 break; 1548 case 2: 1549 case 3: 1550 break; 1551 } 1552 1553 if (!isread && el < arm_highest_el(env)) { 1554 return CP_ACCESS_TRAP_UNCATEGORIZED; 1555 } 1556 1557 return CP_ACCESS_OK; 1558 } 1559 1560 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1561 bool isread) 1562 { 1563 unsigned int cur_el = arm_current_el(env); 1564 bool secure = arm_is_secure(env); 1565 1566 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1567 if (cur_el == 0 && 1568 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1569 return CP_ACCESS_TRAP; 1570 } 1571 1572 if (arm_feature(env, ARM_FEATURE_EL2) && 1573 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1574 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1575 return CP_ACCESS_TRAP_EL2; 1576 } 1577 return CP_ACCESS_OK; 1578 } 1579 1580 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1581 bool isread) 1582 { 1583 unsigned int cur_el = arm_current_el(env); 1584 bool secure = arm_is_secure(env); 1585 1586 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1587 * EL0[PV]TEN is zero. 1588 */ 1589 if (cur_el == 0 && 1590 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1591 return CP_ACCESS_TRAP; 1592 } 1593 1594 if (arm_feature(env, ARM_FEATURE_EL2) && 1595 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1596 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1597 return CP_ACCESS_TRAP_EL2; 1598 } 1599 return CP_ACCESS_OK; 1600 } 1601 1602 static CPAccessResult gt_pct_access(CPUARMState *env, 1603 const ARMCPRegInfo *ri, 1604 bool isread) 1605 { 1606 return gt_counter_access(env, GTIMER_PHYS, isread); 1607 } 1608 1609 static CPAccessResult gt_vct_access(CPUARMState *env, 1610 const ARMCPRegInfo *ri, 1611 bool isread) 1612 { 1613 return gt_counter_access(env, GTIMER_VIRT, isread); 1614 } 1615 1616 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1617 bool isread) 1618 { 1619 return gt_timer_access(env, GTIMER_PHYS, isread); 1620 } 1621 1622 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1623 bool isread) 1624 { 1625 return gt_timer_access(env, GTIMER_VIRT, isread); 1626 } 1627 1628 static CPAccessResult gt_stimer_access(CPUARMState *env, 1629 const ARMCPRegInfo *ri, 1630 bool isread) 1631 { 1632 /* The AArch64 register view of the secure physical timer is 1633 * always accessible from EL3, and configurably accessible from 1634 * Secure EL1. 1635 */ 1636 switch (arm_current_el(env)) { 1637 case 1: 1638 if (!arm_is_secure(env)) { 1639 return CP_ACCESS_TRAP; 1640 } 1641 if (!(env->cp15.scr_el3 & SCR_ST)) { 1642 return CP_ACCESS_TRAP_EL3; 1643 } 1644 return CP_ACCESS_OK; 1645 case 0: 1646 case 2: 1647 return CP_ACCESS_TRAP; 1648 case 3: 1649 return CP_ACCESS_OK; 1650 default: 1651 g_assert_not_reached(); 1652 } 1653 } 1654 1655 static uint64_t gt_get_countervalue(CPUARMState *env) 1656 { 1657 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1658 } 1659 1660 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1661 { 1662 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1663 1664 if (gt->ctl & 1) { 1665 /* Timer enabled: calculate and set current ISTATUS, irq, and 1666 * reset timer to when ISTATUS next has to change 1667 */ 1668 uint64_t offset = timeridx == GTIMER_VIRT ? 1669 cpu->env.cp15.cntvoff_el2 : 0; 1670 uint64_t count = gt_get_countervalue(&cpu->env); 1671 /* Note that this must be unsigned 64 bit arithmetic: */ 1672 int istatus = count - offset >= gt->cval; 1673 uint64_t nexttick; 1674 int irqstate; 1675 1676 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1677 1678 irqstate = (istatus && !(gt->ctl & 2)); 1679 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1680 1681 if (istatus) { 1682 /* Next transition is when count rolls back over to zero */ 1683 nexttick = UINT64_MAX; 1684 } else { 1685 /* Next transition is when we hit cval */ 1686 nexttick = gt->cval + offset; 1687 } 1688 /* Note that the desired next expiry time might be beyond the 1689 * signed-64-bit range of a QEMUTimer -- in this case we just 1690 * set the timer for as far in the future as possible. When the 1691 * timer expires we will reset the timer for any remaining period. 1692 */ 1693 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1694 nexttick = INT64_MAX / GTIMER_SCALE; 1695 } 1696 timer_mod(cpu->gt_timer[timeridx], nexttick); 1697 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1698 } else { 1699 /* Timer disabled: ISTATUS and timer output always clear */ 1700 gt->ctl &= ~4; 1701 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1702 timer_del(cpu->gt_timer[timeridx]); 1703 trace_arm_gt_recalc_disabled(timeridx); 1704 } 1705 } 1706 1707 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1708 int timeridx) 1709 { 1710 ARMCPU *cpu = arm_env_get_cpu(env); 1711 1712 timer_del(cpu->gt_timer[timeridx]); 1713 } 1714 1715 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1716 { 1717 return gt_get_countervalue(env); 1718 } 1719 1720 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1721 { 1722 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1723 } 1724 1725 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1726 int timeridx, 1727 uint64_t value) 1728 { 1729 trace_arm_gt_cval_write(timeridx, value); 1730 env->cp15.c14_timer[timeridx].cval = value; 1731 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1732 } 1733 1734 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1735 int timeridx) 1736 { 1737 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1738 1739 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1740 (gt_get_countervalue(env) - offset)); 1741 } 1742 1743 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1744 int timeridx, 1745 uint64_t value) 1746 { 1747 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1748 1749 trace_arm_gt_tval_write(timeridx, value); 1750 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1751 sextract64(value, 0, 32); 1752 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1753 } 1754 1755 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1756 int timeridx, 1757 uint64_t value) 1758 { 1759 ARMCPU *cpu = arm_env_get_cpu(env); 1760 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1761 1762 trace_arm_gt_ctl_write(timeridx, value); 1763 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1764 if ((oldval ^ value) & 1) { 1765 /* Enable toggled */ 1766 gt_recalc_timer(cpu, timeridx); 1767 } else if ((oldval ^ value) & 2) { 1768 /* IMASK toggled: don't need to recalculate, 1769 * just set the interrupt line based on ISTATUS 1770 */ 1771 int irqstate = (oldval & 4) && !(value & 2); 1772 1773 trace_arm_gt_imask_toggle(timeridx, irqstate); 1774 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1775 } 1776 } 1777 1778 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1779 { 1780 gt_timer_reset(env, ri, GTIMER_PHYS); 1781 } 1782 1783 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1784 uint64_t value) 1785 { 1786 gt_cval_write(env, ri, GTIMER_PHYS, value); 1787 } 1788 1789 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1790 { 1791 return gt_tval_read(env, ri, GTIMER_PHYS); 1792 } 1793 1794 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1795 uint64_t value) 1796 { 1797 gt_tval_write(env, ri, GTIMER_PHYS, value); 1798 } 1799 1800 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1801 uint64_t value) 1802 { 1803 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1804 } 1805 1806 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1807 { 1808 gt_timer_reset(env, ri, GTIMER_VIRT); 1809 } 1810 1811 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1812 uint64_t value) 1813 { 1814 gt_cval_write(env, ri, GTIMER_VIRT, value); 1815 } 1816 1817 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1818 { 1819 return gt_tval_read(env, ri, GTIMER_VIRT); 1820 } 1821 1822 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1823 uint64_t value) 1824 { 1825 gt_tval_write(env, ri, GTIMER_VIRT, value); 1826 } 1827 1828 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1829 uint64_t value) 1830 { 1831 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1832 } 1833 1834 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1835 uint64_t value) 1836 { 1837 ARMCPU *cpu = arm_env_get_cpu(env); 1838 1839 trace_arm_gt_cntvoff_write(value); 1840 raw_write(env, ri, value); 1841 gt_recalc_timer(cpu, GTIMER_VIRT); 1842 } 1843 1844 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1845 { 1846 gt_timer_reset(env, ri, GTIMER_HYP); 1847 } 1848 1849 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1850 uint64_t value) 1851 { 1852 gt_cval_write(env, ri, GTIMER_HYP, value); 1853 } 1854 1855 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1856 { 1857 return gt_tval_read(env, ri, GTIMER_HYP); 1858 } 1859 1860 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1861 uint64_t value) 1862 { 1863 gt_tval_write(env, ri, GTIMER_HYP, value); 1864 } 1865 1866 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1867 uint64_t value) 1868 { 1869 gt_ctl_write(env, ri, GTIMER_HYP, value); 1870 } 1871 1872 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1873 { 1874 gt_timer_reset(env, ri, GTIMER_SEC); 1875 } 1876 1877 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1878 uint64_t value) 1879 { 1880 gt_cval_write(env, ri, GTIMER_SEC, value); 1881 } 1882 1883 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1884 { 1885 return gt_tval_read(env, ri, GTIMER_SEC); 1886 } 1887 1888 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1889 uint64_t value) 1890 { 1891 gt_tval_write(env, ri, GTIMER_SEC, value); 1892 } 1893 1894 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1895 uint64_t value) 1896 { 1897 gt_ctl_write(env, ri, GTIMER_SEC, value); 1898 } 1899 1900 void arm_gt_ptimer_cb(void *opaque) 1901 { 1902 ARMCPU *cpu = opaque; 1903 1904 gt_recalc_timer(cpu, GTIMER_PHYS); 1905 } 1906 1907 void arm_gt_vtimer_cb(void *opaque) 1908 { 1909 ARMCPU *cpu = opaque; 1910 1911 gt_recalc_timer(cpu, GTIMER_VIRT); 1912 } 1913 1914 void arm_gt_htimer_cb(void *opaque) 1915 { 1916 ARMCPU *cpu = opaque; 1917 1918 gt_recalc_timer(cpu, GTIMER_HYP); 1919 } 1920 1921 void arm_gt_stimer_cb(void *opaque) 1922 { 1923 ARMCPU *cpu = opaque; 1924 1925 gt_recalc_timer(cpu, GTIMER_SEC); 1926 } 1927 1928 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 1929 /* Note that CNTFRQ is purely reads-as-written for the benefit 1930 * of software; writing it doesn't actually change the timer frequency. 1931 * Our reset value matches the fixed frequency we implement the timer at. 1932 */ 1933 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 1934 .type = ARM_CP_ALIAS, 1935 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1936 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 1937 }, 1938 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 1939 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 1940 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1941 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 1942 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 1943 }, 1944 /* overall control: mostly access permissions */ 1945 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 1946 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 1947 .access = PL1_RW, 1948 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 1949 .resetvalue = 0, 1950 }, 1951 /* per-timer control */ 1952 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1953 .secure = ARM_CP_SECSTATE_NS, 1954 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1955 .accessfn = gt_ptimer_access, 1956 .fieldoffset = offsetoflow32(CPUARMState, 1957 cp15.c14_timer[GTIMER_PHYS].ctl), 1958 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1959 }, 1960 { .name = "CNTP_CTL(S)", 1961 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1962 .secure = ARM_CP_SECSTATE_S, 1963 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1964 .accessfn = gt_ptimer_access, 1965 .fieldoffset = offsetoflow32(CPUARMState, 1966 cp15.c14_timer[GTIMER_SEC].ctl), 1967 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 1968 }, 1969 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 1970 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 1971 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1972 .accessfn = gt_ptimer_access, 1973 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 1974 .resetvalue = 0, 1975 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1976 }, 1977 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 1978 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1979 .accessfn = gt_vtimer_access, 1980 .fieldoffset = offsetoflow32(CPUARMState, 1981 cp15.c14_timer[GTIMER_VIRT].ctl), 1982 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1983 }, 1984 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 1985 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 1986 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1987 .accessfn = gt_vtimer_access, 1988 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 1989 .resetvalue = 0, 1990 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1991 }, 1992 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 1993 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 1994 .secure = ARM_CP_SECSTATE_NS, 1995 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1996 .accessfn = gt_ptimer_access, 1997 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 1998 }, 1999 { .name = "CNTP_TVAL(S)", 2000 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2001 .secure = ARM_CP_SECSTATE_S, 2002 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2003 .accessfn = gt_ptimer_access, 2004 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2005 }, 2006 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2007 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2008 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2009 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2010 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2011 }, 2012 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2013 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2014 .accessfn = gt_vtimer_access, 2015 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2016 }, 2017 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2018 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2019 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2020 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2021 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2022 }, 2023 /* The counter itself */ 2024 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2025 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2026 .accessfn = gt_pct_access, 2027 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2028 }, 2029 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2030 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2031 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2032 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2033 }, 2034 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2035 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2036 .accessfn = gt_vct_access, 2037 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2038 }, 2039 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2040 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2041 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2042 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2043 }, 2044 /* Comparison value, indicating when the timer goes off */ 2045 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2046 .secure = ARM_CP_SECSTATE_NS, 2047 .access = PL1_RW | PL0_R, 2048 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2049 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2050 .accessfn = gt_ptimer_access, 2051 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2052 }, 2053 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, 2054 .secure = ARM_CP_SECSTATE_S, 2055 .access = PL1_RW | PL0_R, 2056 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2057 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2058 .accessfn = gt_ptimer_access, 2059 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2060 }, 2061 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2062 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2063 .access = PL1_RW | PL0_R, 2064 .type = ARM_CP_IO, 2065 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2066 .resetvalue = 0, .accessfn = gt_ptimer_access, 2067 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2068 }, 2069 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2070 .access = PL1_RW | PL0_R, 2071 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2072 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2073 .accessfn = gt_vtimer_access, 2074 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2075 }, 2076 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2077 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2078 .access = PL1_RW | PL0_R, 2079 .type = ARM_CP_IO, 2080 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2081 .resetvalue = 0, .accessfn = gt_vtimer_access, 2082 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2083 }, 2084 /* Secure timer -- this is actually restricted to only EL3 2085 * and configurably Secure-EL1 via the accessfn. 2086 */ 2087 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2088 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2089 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2090 .accessfn = gt_stimer_access, 2091 .readfn = gt_sec_tval_read, 2092 .writefn = gt_sec_tval_write, 2093 .resetfn = gt_sec_timer_reset, 2094 }, 2095 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2096 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2097 .type = ARM_CP_IO, .access = PL1_RW, 2098 .accessfn = gt_stimer_access, 2099 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2100 .resetvalue = 0, 2101 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2102 }, 2103 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2104 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2105 .type = ARM_CP_IO, .access = PL1_RW, 2106 .accessfn = gt_stimer_access, 2107 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2108 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2109 }, 2110 REGINFO_SENTINEL 2111 }; 2112 2113 #else 2114 /* In user-mode none of the generic timer registers are accessible, 2115 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, 2116 * so instead just don't register any of them. 2117 */ 2118 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2119 REGINFO_SENTINEL 2120 }; 2121 2122 #endif 2123 2124 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2125 { 2126 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2127 raw_write(env, ri, value); 2128 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2129 raw_write(env, ri, value & 0xfffff6ff); 2130 } else { 2131 raw_write(env, ri, value & 0xfffff1ff); 2132 } 2133 } 2134 2135 #ifndef CONFIG_USER_ONLY 2136 /* get_phys_addr() isn't present for user-mode-only targets */ 2137 2138 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2139 bool isread) 2140 { 2141 if (ri->opc2 & 4) { 2142 /* The ATS12NSO* operations must trap to EL3 if executed in 2143 * Secure EL1 (which can only happen if EL3 is AArch64). 2144 * They are simply UNDEF if executed from NS EL1. 2145 * They function normally from EL2 or EL3. 2146 */ 2147 if (arm_current_el(env) == 1) { 2148 if (arm_is_secure_below_el3(env)) { 2149 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2150 } 2151 return CP_ACCESS_TRAP_UNCATEGORIZED; 2152 } 2153 } 2154 return CP_ACCESS_OK; 2155 } 2156 2157 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2158 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2159 { 2160 hwaddr phys_addr; 2161 target_ulong page_size; 2162 int prot; 2163 bool ret; 2164 uint64_t par64; 2165 bool format64 = false; 2166 MemTxAttrs attrs = {}; 2167 ARMMMUFaultInfo fi = {}; 2168 ARMCacheAttrs cacheattrs = {}; 2169 2170 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2171 &prot, &page_size, &fi, &cacheattrs); 2172 2173 if (is_a64(env)) { 2174 format64 = true; 2175 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 2176 /* 2177 * ATS1Cxx: 2178 * * TTBCR.EAE determines whether the result is returned using the 2179 * 32-bit or the 64-bit PAR format 2180 * * Instructions executed in Hyp mode always use the 64bit format 2181 * 2182 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 2183 * * The Non-secure TTBCR.EAE bit is set to 1 2184 * * The implementation includes EL2, and the value of HCR.VM is 1 2185 * 2186 * ATS1Hx always uses the 64bit format (not supported yet). 2187 */ 2188 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 2189 2190 if (arm_feature(env, ARM_FEATURE_EL2)) { 2191 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 2192 format64 |= env->cp15.hcr_el2 & HCR_VM; 2193 } else { 2194 format64 |= arm_current_el(env) == 2; 2195 } 2196 } 2197 } 2198 2199 if (format64) { 2200 /* Create a 64-bit PAR */ 2201 par64 = (1 << 11); /* LPAE bit always set */ 2202 if (!ret) { 2203 par64 |= phys_addr & ~0xfffULL; 2204 if (!attrs.secure) { 2205 par64 |= (1 << 9); /* NS */ 2206 } 2207 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2208 par64 |= cacheattrs.shareability << 7; /* SH */ 2209 } else { 2210 uint32_t fsr = arm_fi_to_lfsc(&fi); 2211 2212 par64 |= 1; /* F */ 2213 par64 |= (fsr & 0x3f) << 1; /* FS */ 2214 /* Note that S2WLK and FSTAGE are always zero, because we don't 2215 * implement virtualization and therefore there can't be a stage 2 2216 * fault. 2217 */ 2218 } 2219 } else { 2220 /* fsr is a DFSR/IFSR value for the short descriptor 2221 * translation table format (with WnR always clear). 2222 * Convert it to a 32-bit PAR. 2223 */ 2224 if (!ret) { 2225 /* We do not set any attribute bits in the PAR */ 2226 if (page_size == (1 << 24) 2227 && arm_feature(env, ARM_FEATURE_V7)) { 2228 par64 = (phys_addr & 0xff000000) | (1 << 1); 2229 } else { 2230 par64 = phys_addr & 0xfffff000; 2231 } 2232 if (!attrs.secure) { 2233 par64 |= (1 << 9); /* NS */ 2234 } 2235 } else { 2236 uint32_t fsr = arm_fi_to_sfsc(&fi); 2237 2238 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2239 ((fsr & 0xf) << 1) | 1; 2240 } 2241 } 2242 return par64; 2243 } 2244 2245 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2246 { 2247 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2248 uint64_t par64; 2249 ARMMMUIdx mmu_idx; 2250 int el = arm_current_el(env); 2251 bool secure = arm_is_secure_below_el3(env); 2252 2253 switch (ri->opc2 & 6) { 2254 case 0: 2255 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2256 switch (el) { 2257 case 3: 2258 mmu_idx = ARMMMUIdx_S1E3; 2259 break; 2260 case 2: 2261 mmu_idx = ARMMMUIdx_S1NSE1; 2262 break; 2263 case 1: 2264 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2265 break; 2266 default: 2267 g_assert_not_reached(); 2268 } 2269 break; 2270 case 2: 2271 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2272 switch (el) { 2273 case 3: 2274 mmu_idx = ARMMMUIdx_S1SE0; 2275 break; 2276 case 2: 2277 mmu_idx = ARMMMUIdx_S1NSE0; 2278 break; 2279 case 1: 2280 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2281 break; 2282 default: 2283 g_assert_not_reached(); 2284 } 2285 break; 2286 case 4: 2287 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2288 mmu_idx = ARMMMUIdx_S12NSE1; 2289 break; 2290 case 6: 2291 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2292 mmu_idx = ARMMMUIdx_S12NSE0; 2293 break; 2294 default: 2295 g_assert_not_reached(); 2296 } 2297 2298 par64 = do_ats_write(env, value, access_type, mmu_idx); 2299 2300 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2301 } 2302 2303 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2304 uint64_t value) 2305 { 2306 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2307 uint64_t par64; 2308 2309 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); 2310 2311 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2312 } 2313 2314 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2315 bool isread) 2316 { 2317 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2318 return CP_ACCESS_TRAP; 2319 } 2320 return CP_ACCESS_OK; 2321 } 2322 2323 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2324 uint64_t value) 2325 { 2326 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2327 ARMMMUIdx mmu_idx; 2328 int secure = arm_is_secure_below_el3(env); 2329 2330 switch (ri->opc2 & 6) { 2331 case 0: 2332 switch (ri->opc1) { 2333 case 0: /* AT S1E1R, AT S1E1W */ 2334 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2335 break; 2336 case 4: /* AT S1E2R, AT S1E2W */ 2337 mmu_idx = ARMMMUIdx_S1E2; 2338 break; 2339 case 6: /* AT S1E3R, AT S1E3W */ 2340 mmu_idx = ARMMMUIdx_S1E3; 2341 break; 2342 default: 2343 g_assert_not_reached(); 2344 } 2345 break; 2346 case 2: /* AT S1E0R, AT S1E0W */ 2347 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2348 break; 2349 case 4: /* AT S12E1R, AT S12E1W */ 2350 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2351 break; 2352 case 6: /* AT S12E0R, AT S12E0W */ 2353 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2354 break; 2355 default: 2356 g_assert_not_reached(); 2357 } 2358 2359 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2360 } 2361 #endif 2362 2363 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2364 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2365 .access = PL1_RW, .resetvalue = 0, 2366 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2367 offsetoflow32(CPUARMState, cp15.par_ns) }, 2368 .writefn = par_write }, 2369 #ifndef CONFIG_USER_ONLY 2370 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2371 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2372 .access = PL1_W, .accessfn = ats_access, 2373 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2374 #endif 2375 REGINFO_SENTINEL 2376 }; 2377 2378 /* Return basic MPU access permission bits. */ 2379 static uint32_t simple_mpu_ap_bits(uint32_t val) 2380 { 2381 uint32_t ret; 2382 uint32_t mask; 2383 int i; 2384 ret = 0; 2385 mask = 3; 2386 for (i = 0; i < 16; i += 2) { 2387 ret |= (val >> i) & mask; 2388 mask <<= 2; 2389 } 2390 return ret; 2391 } 2392 2393 /* Pad basic MPU access permission bits to extended format. */ 2394 static uint32_t extended_mpu_ap_bits(uint32_t val) 2395 { 2396 uint32_t ret; 2397 uint32_t mask; 2398 int i; 2399 ret = 0; 2400 mask = 3; 2401 for (i = 0; i < 16; i += 2) { 2402 ret |= (val & mask) << i; 2403 mask <<= 2; 2404 } 2405 return ret; 2406 } 2407 2408 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2409 uint64_t value) 2410 { 2411 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2412 } 2413 2414 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2415 { 2416 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2417 } 2418 2419 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2420 uint64_t value) 2421 { 2422 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2423 } 2424 2425 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2426 { 2427 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2428 } 2429 2430 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2431 { 2432 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2433 2434 if (!u32p) { 2435 return 0; 2436 } 2437 2438 u32p += env->pmsav7.rnr[M_REG_NS]; 2439 return *u32p; 2440 } 2441 2442 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2443 uint64_t value) 2444 { 2445 ARMCPU *cpu = arm_env_get_cpu(env); 2446 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2447 2448 if (!u32p) { 2449 return; 2450 } 2451 2452 u32p += env->pmsav7.rnr[M_REG_NS]; 2453 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2454 *u32p = value; 2455 } 2456 2457 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2458 uint64_t value) 2459 { 2460 ARMCPU *cpu = arm_env_get_cpu(env); 2461 uint32_t nrgs = cpu->pmsav7_dregion; 2462 2463 if (value >= nrgs) { 2464 qemu_log_mask(LOG_GUEST_ERROR, 2465 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2466 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2467 return; 2468 } 2469 2470 raw_write(env, ri, value); 2471 } 2472 2473 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2474 /* Reset for all these registers is handled in arm_cpu_reset(), 2475 * because the PMSAv7 is also used by M-profile CPUs, which do 2476 * not register cpregs but still need the state to be reset. 2477 */ 2478 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2479 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2480 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2481 .readfn = pmsav7_read, .writefn = pmsav7_write, 2482 .resetfn = arm_cp_reset_ignore }, 2483 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2484 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2485 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2486 .readfn = pmsav7_read, .writefn = pmsav7_write, 2487 .resetfn = arm_cp_reset_ignore }, 2488 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2489 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2490 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2491 .readfn = pmsav7_read, .writefn = pmsav7_write, 2492 .resetfn = arm_cp_reset_ignore }, 2493 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2494 .access = PL1_RW, 2495 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 2496 .writefn = pmsav7_rgnr_write, 2497 .resetfn = arm_cp_reset_ignore }, 2498 REGINFO_SENTINEL 2499 }; 2500 2501 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2502 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2503 .access = PL1_RW, .type = ARM_CP_ALIAS, 2504 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2505 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2506 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2507 .access = PL1_RW, .type = ARM_CP_ALIAS, 2508 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2509 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2510 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2511 .access = PL1_RW, 2512 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2513 .resetvalue = 0, }, 2514 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2515 .access = PL1_RW, 2516 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2517 .resetvalue = 0, }, 2518 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2519 .access = PL1_RW, 2520 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2521 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2522 .access = PL1_RW, 2523 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2524 /* Protection region base and size registers */ 2525 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2526 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2527 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2528 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2529 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2530 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2531 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2532 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2533 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2534 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2535 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2536 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2537 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2538 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2539 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2540 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2541 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2542 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2543 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2544 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2545 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2546 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2547 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2548 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2549 REGINFO_SENTINEL 2550 }; 2551 2552 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2553 uint64_t value) 2554 { 2555 TCR *tcr = raw_ptr(env, ri); 2556 int maskshift = extract32(value, 0, 3); 2557 2558 if (!arm_feature(env, ARM_FEATURE_V8)) { 2559 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2560 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2561 * using Long-desciptor translation table format */ 2562 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2563 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2564 /* In an implementation that includes the Security Extensions 2565 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2566 * Short-descriptor translation table format. 2567 */ 2568 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2569 } else { 2570 value &= TTBCR_N; 2571 } 2572 } 2573 2574 /* Update the masks corresponding to the TCR bank being written 2575 * Note that we always calculate mask and base_mask, but 2576 * they are only used for short-descriptor tables (ie if EAE is 0); 2577 * for long-descriptor tables the TCR fields are used differently 2578 * and the mask and base_mask values are meaningless. 2579 */ 2580 tcr->raw_tcr = value; 2581 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2582 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2583 } 2584 2585 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2586 uint64_t value) 2587 { 2588 ARMCPU *cpu = arm_env_get_cpu(env); 2589 2590 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2591 /* With LPAE the TTBCR could result in a change of ASID 2592 * via the TTBCR.A1 bit, so do a TLB flush. 2593 */ 2594 tlb_flush(CPU(cpu)); 2595 } 2596 vmsa_ttbcr_raw_write(env, ri, value); 2597 } 2598 2599 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2600 { 2601 TCR *tcr = raw_ptr(env, ri); 2602 2603 /* Reset both the TCR as well as the masks corresponding to the bank of 2604 * the TCR being reset. 2605 */ 2606 tcr->raw_tcr = 0; 2607 tcr->mask = 0; 2608 tcr->base_mask = 0xffffc000u; 2609 } 2610 2611 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2612 uint64_t value) 2613 { 2614 ARMCPU *cpu = arm_env_get_cpu(env); 2615 TCR *tcr = raw_ptr(env, ri); 2616 2617 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2618 tlb_flush(CPU(cpu)); 2619 tcr->raw_tcr = value; 2620 } 2621 2622 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2623 uint64_t value) 2624 { 2625 /* 64 bit accesses to the TTBRs can change the ASID and so we 2626 * must flush the TLB. 2627 */ 2628 if (cpreg_field_is_64bit(ri)) { 2629 ARMCPU *cpu = arm_env_get_cpu(env); 2630 2631 tlb_flush(CPU(cpu)); 2632 } 2633 raw_write(env, ri, value); 2634 } 2635 2636 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2637 uint64_t value) 2638 { 2639 ARMCPU *cpu = arm_env_get_cpu(env); 2640 CPUState *cs = CPU(cpu); 2641 2642 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2643 if (raw_read(env, ri) != value) { 2644 tlb_flush_by_mmuidx(cs, 2645 ARMMMUIdxBit_S12NSE1 | 2646 ARMMMUIdxBit_S12NSE0 | 2647 ARMMMUIdxBit_S2NS); 2648 raw_write(env, ri, value); 2649 } 2650 } 2651 2652 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2653 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2654 .access = PL1_RW, .type = ARM_CP_ALIAS, 2655 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2656 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2657 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2658 .access = PL1_RW, .resetvalue = 0, 2659 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2660 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2661 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2662 .access = PL1_RW, .resetvalue = 0, 2663 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2664 offsetof(CPUARMState, cp15.dfar_ns) } }, 2665 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2666 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2667 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2668 .resetvalue = 0, }, 2669 REGINFO_SENTINEL 2670 }; 2671 2672 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2673 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2674 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2675 .access = PL1_RW, 2676 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2677 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2678 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2679 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2680 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2681 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2682 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2683 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2684 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2685 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2686 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2687 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2688 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2689 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2690 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2691 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2692 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2693 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2694 .raw_writefn = vmsa_ttbcr_raw_write, 2695 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2696 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2697 REGINFO_SENTINEL 2698 }; 2699 2700 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2701 uint64_t value) 2702 { 2703 env->cp15.c15_ticonfig = value & 0xe7; 2704 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2705 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2706 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2707 } 2708 2709 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2710 uint64_t value) 2711 { 2712 env->cp15.c15_threadid = value & 0xffff; 2713 } 2714 2715 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2716 uint64_t value) 2717 { 2718 /* Wait-for-interrupt (deprecated) */ 2719 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2720 } 2721 2722 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2723 uint64_t value) 2724 { 2725 /* On OMAP there are registers indicating the max/min index of dcache lines 2726 * containing a dirty line; cache flush operations have to reset these. 2727 */ 2728 env->cp15.c15_i_max = 0x000; 2729 env->cp15.c15_i_min = 0xff0; 2730 } 2731 2732 static const ARMCPRegInfo omap_cp_reginfo[] = { 2733 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2734 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2735 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2736 .resetvalue = 0, }, 2737 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2738 .access = PL1_RW, .type = ARM_CP_NOP }, 2739 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2740 .access = PL1_RW, 2741 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2742 .writefn = omap_ticonfig_write }, 2743 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2744 .access = PL1_RW, 2745 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2746 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2747 .access = PL1_RW, .resetvalue = 0xff0, 2748 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2749 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2750 .access = PL1_RW, 2751 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2752 .writefn = omap_threadid_write }, 2753 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2754 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2755 .type = ARM_CP_NO_RAW, 2756 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2757 /* TODO: Peripheral port remap register: 2758 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2759 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2760 * when MMU is off. 2761 */ 2762 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2763 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2764 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2765 .writefn = omap_cachemaint_write }, 2766 { .name = "C9", .cp = 15, .crn = 9, 2767 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2768 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2769 REGINFO_SENTINEL 2770 }; 2771 2772 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2773 uint64_t value) 2774 { 2775 env->cp15.c15_cpar = value & 0x3fff; 2776 } 2777 2778 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2779 { .name = "XSCALE_CPAR", 2780 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2781 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2782 .writefn = xscale_cpar_write, }, 2783 { .name = "XSCALE_AUXCR", 2784 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2785 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2786 .resetvalue = 0, }, 2787 /* XScale specific cache-lockdown: since we have no cache we NOP these 2788 * and hope the guest does not really rely on cache behaviour. 2789 */ 2790 { .name = "XSCALE_LOCK_ICACHE_LINE", 2791 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2792 .access = PL1_W, .type = ARM_CP_NOP }, 2793 { .name = "XSCALE_UNLOCK_ICACHE", 2794 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2795 .access = PL1_W, .type = ARM_CP_NOP }, 2796 { .name = "XSCALE_DCACHE_LOCK", 2797 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2798 .access = PL1_RW, .type = ARM_CP_NOP }, 2799 { .name = "XSCALE_UNLOCK_DCACHE", 2800 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2801 .access = PL1_W, .type = ARM_CP_NOP }, 2802 REGINFO_SENTINEL 2803 }; 2804 2805 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2806 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2807 * implementation of this implementation-defined space. 2808 * Ideally this should eventually disappear in favour of actually 2809 * implementing the correct behaviour for all cores. 2810 */ 2811 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2812 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2813 .access = PL1_RW, 2814 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2815 .resetvalue = 0 }, 2816 REGINFO_SENTINEL 2817 }; 2818 2819 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2820 /* Cache status: RAZ because we have no cache so it's always clean */ 2821 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2822 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2823 .resetvalue = 0 }, 2824 REGINFO_SENTINEL 2825 }; 2826 2827 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2828 /* We never have a a block transfer operation in progress */ 2829 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2830 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2831 .resetvalue = 0 }, 2832 /* The cache ops themselves: these all NOP for QEMU */ 2833 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2834 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2835 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2836 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2837 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2838 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2839 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2840 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2841 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2842 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2843 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2844 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2845 REGINFO_SENTINEL 2846 }; 2847 2848 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2849 /* The cache test-and-clean instructions always return (1 << 30) 2850 * to indicate that there are no dirty cache lines. 2851 */ 2852 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2853 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2854 .resetvalue = (1 << 30) }, 2855 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2856 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2857 .resetvalue = (1 << 30) }, 2858 REGINFO_SENTINEL 2859 }; 2860 2861 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2862 /* Ignore ReadBuffer accesses */ 2863 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 2864 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2865 .access = PL1_RW, .resetvalue = 0, 2866 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 2867 REGINFO_SENTINEL 2868 }; 2869 2870 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2871 { 2872 ARMCPU *cpu = arm_env_get_cpu(env); 2873 unsigned int cur_el = arm_current_el(env); 2874 bool secure = arm_is_secure(env); 2875 2876 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2877 return env->cp15.vpidr_el2; 2878 } 2879 return raw_read(env, ri); 2880 } 2881 2882 static uint64_t mpidr_read_val(CPUARMState *env) 2883 { 2884 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 2885 uint64_t mpidr = cpu->mp_affinity; 2886 2887 if (arm_feature(env, ARM_FEATURE_V7MP)) { 2888 mpidr |= (1U << 31); 2889 /* Cores which are uniprocessor (non-coherent) 2890 * but still implement the MP extensions set 2891 * bit 30. (For instance, Cortex-R5). 2892 */ 2893 if (cpu->mp_is_up) { 2894 mpidr |= (1u << 30); 2895 } 2896 } 2897 return mpidr; 2898 } 2899 2900 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2901 { 2902 unsigned int cur_el = arm_current_el(env); 2903 bool secure = arm_is_secure(env); 2904 2905 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2906 return env->cp15.vmpidr_el2; 2907 } 2908 return mpidr_read_val(env); 2909 } 2910 2911 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 2912 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 2913 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 2914 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 2915 REGINFO_SENTINEL 2916 }; 2917 2918 static const ARMCPRegInfo lpae_cp_reginfo[] = { 2919 /* NOP AMAIR0/1 */ 2920 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 2921 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 2922 .access = PL1_RW, .type = ARM_CP_CONST, 2923 .resetvalue = 0 }, 2924 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 2925 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 2926 .access = PL1_RW, .type = ARM_CP_CONST, 2927 .resetvalue = 0 }, 2928 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 2929 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 2930 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 2931 offsetof(CPUARMState, cp15.par_ns)} }, 2932 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 2933 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2934 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2935 offsetof(CPUARMState, cp15.ttbr0_ns) }, 2936 .writefn = vmsa_ttbr_write, }, 2937 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 2938 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2939 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2940 offsetof(CPUARMState, cp15.ttbr1_ns) }, 2941 .writefn = vmsa_ttbr_write, }, 2942 REGINFO_SENTINEL 2943 }; 2944 2945 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2946 { 2947 return vfp_get_fpcr(env); 2948 } 2949 2950 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2951 uint64_t value) 2952 { 2953 vfp_set_fpcr(env, value); 2954 } 2955 2956 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2957 { 2958 return vfp_get_fpsr(env); 2959 } 2960 2961 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2962 uint64_t value) 2963 { 2964 vfp_set_fpsr(env, value); 2965 } 2966 2967 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 2968 bool isread) 2969 { 2970 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 2971 return CP_ACCESS_TRAP; 2972 } 2973 return CP_ACCESS_OK; 2974 } 2975 2976 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 2977 uint64_t value) 2978 { 2979 env->daif = value & PSTATE_DAIF; 2980 } 2981 2982 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 2983 const ARMCPRegInfo *ri, 2984 bool isread) 2985 { 2986 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 2987 * SCTLR_EL1.UCI is set. 2988 */ 2989 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 2990 return CP_ACCESS_TRAP; 2991 } 2992 return CP_ACCESS_OK; 2993 } 2994 2995 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 2996 * Page D4-1736 (DDI0487A.b) 2997 */ 2998 2999 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3000 uint64_t value) 3001 { 3002 CPUState *cs = ENV_GET_CPU(env); 3003 3004 if (arm_is_secure_below_el3(env)) { 3005 tlb_flush_by_mmuidx(cs, 3006 ARMMMUIdxBit_S1SE1 | 3007 ARMMMUIdxBit_S1SE0); 3008 } else { 3009 tlb_flush_by_mmuidx(cs, 3010 ARMMMUIdxBit_S12NSE1 | 3011 ARMMMUIdxBit_S12NSE0); 3012 } 3013 } 3014 3015 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3016 uint64_t value) 3017 { 3018 CPUState *cs = ENV_GET_CPU(env); 3019 bool sec = arm_is_secure_below_el3(env); 3020 3021 if (sec) { 3022 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3023 ARMMMUIdxBit_S1SE1 | 3024 ARMMMUIdxBit_S1SE0); 3025 } else { 3026 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3027 ARMMMUIdxBit_S12NSE1 | 3028 ARMMMUIdxBit_S12NSE0); 3029 } 3030 } 3031 3032 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3033 uint64_t value) 3034 { 3035 /* Note that the 'ALL' scope must invalidate both stage 1 and 3036 * stage 2 translations, whereas most other scopes only invalidate 3037 * stage 1 translations. 3038 */ 3039 ARMCPU *cpu = arm_env_get_cpu(env); 3040 CPUState *cs = CPU(cpu); 3041 3042 if (arm_is_secure_below_el3(env)) { 3043 tlb_flush_by_mmuidx(cs, 3044 ARMMMUIdxBit_S1SE1 | 3045 ARMMMUIdxBit_S1SE0); 3046 } else { 3047 if (arm_feature(env, ARM_FEATURE_EL2)) { 3048 tlb_flush_by_mmuidx(cs, 3049 ARMMMUIdxBit_S12NSE1 | 3050 ARMMMUIdxBit_S12NSE0 | 3051 ARMMMUIdxBit_S2NS); 3052 } else { 3053 tlb_flush_by_mmuidx(cs, 3054 ARMMMUIdxBit_S12NSE1 | 3055 ARMMMUIdxBit_S12NSE0); 3056 } 3057 } 3058 } 3059 3060 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3061 uint64_t value) 3062 { 3063 ARMCPU *cpu = arm_env_get_cpu(env); 3064 CPUState *cs = CPU(cpu); 3065 3066 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3067 } 3068 3069 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3070 uint64_t value) 3071 { 3072 ARMCPU *cpu = arm_env_get_cpu(env); 3073 CPUState *cs = CPU(cpu); 3074 3075 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3076 } 3077 3078 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3079 uint64_t value) 3080 { 3081 /* Note that the 'ALL' scope must invalidate both stage 1 and 3082 * stage 2 translations, whereas most other scopes only invalidate 3083 * stage 1 translations. 3084 */ 3085 CPUState *cs = ENV_GET_CPU(env); 3086 bool sec = arm_is_secure_below_el3(env); 3087 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3088 3089 if (sec) { 3090 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3091 ARMMMUIdxBit_S1SE1 | 3092 ARMMMUIdxBit_S1SE0); 3093 } else if (has_el2) { 3094 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3095 ARMMMUIdxBit_S12NSE1 | 3096 ARMMMUIdxBit_S12NSE0 | 3097 ARMMMUIdxBit_S2NS); 3098 } else { 3099 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3100 ARMMMUIdxBit_S12NSE1 | 3101 ARMMMUIdxBit_S12NSE0); 3102 } 3103 } 3104 3105 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3106 uint64_t value) 3107 { 3108 CPUState *cs = ENV_GET_CPU(env); 3109 3110 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3111 } 3112 3113 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3114 uint64_t value) 3115 { 3116 CPUState *cs = ENV_GET_CPU(env); 3117 3118 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3119 } 3120 3121 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3122 uint64_t value) 3123 { 3124 /* Invalidate by VA, EL1&0 (AArch64 version). 3125 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3126 * since we don't support flush-for-specific-ASID-only or 3127 * flush-last-level-only. 3128 */ 3129 ARMCPU *cpu = arm_env_get_cpu(env); 3130 CPUState *cs = CPU(cpu); 3131 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3132 3133 if (arm_is_secure_below_el3(env)) { 3134 tlb_flush_page_by_mmuidx(cs, pageaddr, 3135 ARMMMUIdxBit_S1SE1 | 3136 ARMMMUIdxBit_S1SE0); 3137 } else { 3138 tlb_flush_page_by_mmuidx(cs, pageaddr, 3139 ARMMMUIdxBit_S12NSE1 | 3140 ARMMMUIdxBit_S12NSE0); 3141 } 3142 } 3143 3144 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3145 uint64_t value) 3146 { 3147 /* Invalidate by VA, EL2 3148 * Currently handles both VAE2 and VALE2, since we don't support 3149 * flush-last-level-only. 3150 */ 3151 ARMCPU *cpu = arm_env_get_cpu(env); 3152 CPUState *cs = CPU(cpu); 3153 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3154 3155 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3156 } 3157 3158 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3159 uint64_t value) 3160 { 3161 /* Invalidate by VA, EL3 3162 * Currently handles both VAE3 and VALE3, since we don't support 3163 * flush-last-level-only. 3164 */ 3165 ARMCPU *cpu = arm_env_get_cpu(env); 3166 CPUState *cs = CPU(cpu); 3167 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3168 3169 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3170 } 3171 3172 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3173 uint64_t value) 3174 { 3175 ARMCPU *cpu = arm_env_get_cpu(env); 3176 CPUState *cs = CPU(cpu); 3177 bool sec = arm_is_secure_below_el3(env); 3178 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3179 3180 if (sec) { 3181 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3182 ARMMMUIdxBit_S1SE1 | 3183 ARMMMUIdxBit_S1SE0); 3184 } else { 3185 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3186 ARMMMUIdxBit_S12NSE1 | 3187 ARMMMUIdxBit_S12NSE0); 3188 } 3189 } 3190 3191 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3192 uint64_t value) 3193 { 3194 CPUState *cs = ENV_GET_CPU(env); 3195 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3196 3197 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3198 ARMMMUIdxBit_S1E2); 3199 } 3200 3201 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3202 uint64_t value) 3203 { 3204 CPUState *cs = ENV_GET_CPU(env); 3205 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3206 3207 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3208 ARMMMUIdxBit_S1E3); 3209 } 3210 3211 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3212 uint64_t value) 3213 { 3214 /* Invalidate by IPA. This has to invalidate any structures that 3215 * contain only stage 2 translation information, but does not need 3216 * to apply to structures that contain combined stage 1 and stage 2 3217 * translation information. 3218 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3219 */ 3220 ARMCPU *cpu = arm_env_get_cpu(env); 3221 CPUState *cs = CPU(cpu); 3222 uint64_t pageaddr; 3223 3224 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3225 return; 3226 } 3227 3228 pageaddr = sextract64(value << 12, 0, 48); 3229 3230 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 3231 } 3232 3233 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3234 uint64_t value) 3235 { 3236 CPUState *cs = ENV_GET_CPU(env); 3237 uint64_t pageaddr; 3238 3239 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3240 return; 3241 } 3242 3243 pageaddr = sextract64(value << 12, 0, 48); 3244 3245 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3246 ARMMMUIdxBit_S2NS); 3247 } 3248 3249 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3250 bool isread) 3251 { 3252 /* We don't implement EL2, so the only control on DC ZVA is the 3253 * bit in the SCTLR which can prohibit access for EL0. 3254 */ 3255 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3256 return CP_ACCESS_TRAP; 3257 } 3258 return CP_ACCESS_OK; 3259 } 3260 3261 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3262 { 3263 ARMCPU *cpu = arm_env_get_cpu(env); 3264 int dzp_bit = 1 << 4; 3265 3266 /* DZP indicates whether DC ZVA access is allowed */ 3267 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3268 dzp_bit = 0; 3269 } 3270 return cpu->dcz_blocksize | dzp_bit; 3271 } 3272 3273 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3274 bool isread) 3275 { 3276 if (!(env->pstate & PSTATE_SP)) { 3277 /* Access to SP_EL0 is undefined if it's being used as 3278 * the stack pointer. 3279 */ 3280 return CP_ACCESS_TRAP_UNCATEGORIZED; 3281 } 3282 return CP_ACCESS_OK; 3283 } 3284 3285 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3286 { 3287 return env->pstate & PSTATE_SP; 3288 } 3289 3290 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3291 { 3292 update_spsel(env, val); 3293 } 3294 3295 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3296 uint64_t value) 3297 { 3298 ARMCPU *cpu = arm_env_get_cpu(env); 3299 3300 if (raw_read(env, ri) == value) { 3301 /* Skip the TLB flush if nothing actually changed; Linux likes 3302 * to do a lot of pointless SCTLR writes. 3303 */ 3304 return; 3305 } 3306 3307 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 3308 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 3309 value &= ~SCTLR_M; 3310 } 3311 3312 raw_write(env, ri, value); 3313 /* ??? Lots of these bits are not implemented. */ 3314 /* This may enable/disable the MMU, so do a TLB flush. */ 3315 tlb_flush(CPU(cpu)); 3316 } 3317 3318 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3319 bool isread) 3320 { 3321 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3322 return CP_ACCESS_TRAP_FP_EL2; 3323 } 3324 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3325 return CP_ACCESS_TRAP_FP_EL3; 3326 } 3327 return CP_ACCESS_OK; 3328 } 3329 3330 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3331 uint64_t value) 3332 { 3333 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3334 } 3335 3336 static const ARMCPRegInfo v8_cp_reginfo[] = { 3337 /* Minimal set of EL0-visible registers. This will need to be expanded 3338 * significantly for system emulation of AArch64 CPUs. 3339 */ 3340 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3341 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3342 .access = PL0_RW, .type = ARM_CP_NZCV }, 3343 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3344 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3345 .type = ARM_CP_NO_RAW, 3346 .access = PL0_RW, .accessfn = aa64_daif_access, 3347 .fieldoffset = offsetof(CPUARMState, daif), 3348 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3349 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3350 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3351 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3352 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3353 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3354 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3355 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3356 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3357 .access = PL0_R, .type = ARM_CP_NO_RAW, 3358 .readfn = aa64_dczid_read }, 3359 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3360 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3361 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3362 #ifndef CONFIG_USER_ONLY 3363 /* Avoid overhead of an access check that always passes in user-mode */ 3364 .accessfn = aa64_zva_access, 3365 #endif 3366 }, 3367 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3368 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3369 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3370 /* Cache ops: all NOPs since we don't emulate caches */ 3371 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3372 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3373 .access = PL1_W, .type = ARM_CP_NOP }, 3374 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3375 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3376 .access = PL1_W, .type = ARM_CP_NOP }, 3377 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3378 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3379 .access = PL0_W, .type = ARM_CP_NOP, 3380 .accessfn = aa64_cacheop_access }, 3381 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3382 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3383 .access = PL1_W, .type = ARM_CP_NOP }, 3384 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3385 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3386 .access = PL1_W, .type = ARM_CP_NOP }, 3387 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3388 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3389 .access = PL0_W, .type = ARM_CP_NOP, 3390 .accessfn = aa64_cacheop_access }, 3391 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3392 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3393 .access = PL1_W, .type = ARM_CP_NOP }, 3394 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3395 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3396 .access = PL0_W, .type = ARM_CP_NOP, 3397 .accessfn = aa64_cacheop_access }, 3398 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3399 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3400 .access = PL0_W, .type = ARM_CP_NOP, 3401 .accessfn = aa64_cacheop_access }, 3402 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3403 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3404 .access = PL1_W, .type = ARM_CP_NOP }, 3405 /* TLBI operations */ 3406 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3407 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3408 .access = PL1_W, .type = ARM_CP_NO_RAW, 3409 .writefn = tlbi_aa64_vmalle1is_write }, 3410 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3411 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3412 .access = PL1_W, .type = ARM_CP_NO_RAW, 3413 .writefn = tlbi_aa64_vae1is_write }, 3414 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3415 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3416 .access = PL1_W, .type = ARM_CP_NO_RAW, 3417 .writefn = tlbi_aa64_vmalle1is_write }, 3418 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3419 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3420 .access = PL1_W, .type = ARM_CP_NO_RAW, 3421 .writefn = tlbi_aa64_vae1is_write }, 3422 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3423 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3424 .access = PL1_W, .type = ARM_CP_NO_RAW, 3425 .writefn = tlbi_aa64_vae1is_write }, 3426 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3427 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3428 .access = PL1_W, .type = ARM_CP_NO_RAW, 3429 .writefn = tlbi_aa64_vae1is_write }, 3430 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3431 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3432 .access = PL1_W, .type = ARM_CP_NO_RAW, 3433 .writefn = tlbi_aa64_vmalle1_write }, 3434 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3435 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3436 .access = PL1_W, .type = ARM_CP_NO_RAW, 3437 .writefn = tlbi_aa64_vae1_write }, 3438 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3439 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3440 .access = PL1_W, .type = ARM_CP_NO_RAW, 3441 .writefn = tlbi_aa64_vmalle1_write }, 3442 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3443 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3444 .access = PL1_W, .type = ARM_CP_NO_RAW, 3445 .writefn = tlbi_aa64_vae1_write }, 3446 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3447 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3448 .access = PL1_W, .type = ARM_CP_NO_RAW, 3449 .writefn = tlbi_aa64_vae1_write }, 3450 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3451 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3452 .access = PL1_W, .type = ARM_CP_NO_RAW, 3453 .writefn = tlbi_aa64_vae1_write }, 3454 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3455 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3456 .access = PL2_W, .type = ARM_CP_NO_RAW, 3457 .writefn = tlbi_aa64_ipas2e1is_write }, 3458 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3459 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3460 .access = PL2_W, .type = ARM_CP_NO_RAW, 3461 .writefn = tlbi_aa64_ipas2e1is_write }, 3462 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3463 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3464 .access = PL2_W, .type = ARM_CP_NO_RAW, 3465 .writefn = tlbi_aa64_alle1is_write }, 3466 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3467 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3468 .access = PL2_W, .type = ARM_CP_NO_RAW, 3469 .writefn = tlbi_aa64_alle1is_write }, 3470 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3471 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3472 .access = PL2_W, .type = ARM_CP_NO_RAW, 3473 .writefn = tlbi_aa64_ipas2e1_write }, 3474 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3475 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3476 .access = PL2_W, .type = ARM_CP_NO_RAW, 3477 .writefn = tlbi_aa64_ipas2e1_write }, 3478 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3479 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3480 .access = PL2_W, .type = ARM_CP_NO_RAW, 3481 .writefn = tlbi_aa64_alle1_write }, 3482 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3483 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3484 .access = PL2_W, .type = ARM_CP_NO_RAW, 3485 .writefn = tlbi_aa64_alle1is_write }, 3486 #ifndef CONFIG_USER_ONLY 3487 /* 64 bit address translation operations */ 3488 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3489 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3490 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3491 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3492 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3493 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3494 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3495 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3496 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3497 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3498 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3499 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3500 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3501 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3502 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3503 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3504 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3505 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3506 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3507 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3508 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3509 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3510 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3511 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3512 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3513 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3514 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3515 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3516 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3517 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3518 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3519 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3520 .type = ARM_CP_ALIAS, 3521 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3522 .access = PL1_RW, .resetvalue = 0, 3523 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3524 .writefn = par_write }, 3525 #endif 3526 /* TLB invalidate last level of translation table walk */ 3527 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3528 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3529 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3530 .type = ARM_CP_NO_RAW, .access = PL1_W, 3531 .writefn = tlbimvaa_is_write }, 3532 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3533 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3534 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3535 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3536 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3537 .type = ARM_CP_NO_RAW, .access = PL2_W, 3538 .writefn = tlbimva_hyp_write }, 3539 { .name = "TLBIMVALHIS", 3540 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3541 .type = ARM_CP_NO_RAW, .access = PL2_W, 3542 .writefn = tlbimva_hyp_is_write }, 3543 { .name = "TLBIIPAS2", 3544 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3545 .type = ARM_CP_NO_RAW, .access = PL2_W, 3546 .writefn = tlbiipas2_write }, 3547 { .name = "TLBIIPAS2IS", 3548 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3549 .type = ARM_CP_NO_RAW, .access = PL2_W, 3550 .writefn = tlbiipas2_is_write }, 3551 { .name = "TLBIIPAS2L", 3552 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3553 .type = ARM_CP_NO_RAW, .access = PL2_W, 3554 .writefn = tlbiipas2_write }, 3555 { .name = "TLBIIPAS2LIS", 3556 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3557 .type = ARM_CP_NO_RAW, .access = PL2_W, 3558 .writefn = tlbiipas2_is_write }, 3559 /* 32 bit cache operations */ 3560 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3561 .type = ARM_CP_NOP, .access = PL1_W }, 3562 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3563 .type = ARM_CP_NOP, .access = PL1_W }, 3564 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3565 .type = ARM_CP_NOP, .access = PL1_W }, 3566 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3567 .type = ARM_CP_NOP, .access = PL1_W }, 3568 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3569 .type = ARM_CP_NOP, .access = PL1_W }, 3570 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3571 .type = ARM_CP_NOP, .access = PL1_W }, 3572 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3573 .type = ARM_CP_NOP, .access = PL1_W }, 3574 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3575 .type = ARM_CP_NOP, .access = PL1_W }, 3576 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3577 .type = ARM_CP_NOP, .access = PL1_W }, 3578 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3579 .type = ARM_CP_NOP, .access = PL1_W }, 3580 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3581 .type = ARM_CP_NOP, .access = PL1_W }, 3582 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3583 .type = ARM_CP_NOP, .access = PL1_W }, 3584 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3585 .type = ARM_CP_NOP, .access = PL1_W }, 3586 /* MMU Domain access control / MPU write buffer control */ 3587 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3588 .access = PL1_RW, .resetvalue = 0, 3589 .writefn = dacr_write, .raw_writefn = raw_write, 3590 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3591 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3592 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3593 .type = ARM_CP_ALIAS, 3594 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3595 .access = PL1_RW, 3596 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3597 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3598 .type = ARM_CP_ALIAS, 3599 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3600 .access = PL1_RW, 3601 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3602 /* We rely on the access checks not allowing the guest to write to the 3603 * state field when SPSel indicates that it's being used as the stack 3604 * pointer. 3605 */ 3606 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3607 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3608 .access = PL1_RW, .accessfn = sp_el0_access, 3609 .type = ARM_CP_ALIAS, 3610 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3611 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3612 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3613 .access = PL2_RW, .type = ARM_CP_ALIAS, 3614 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3615 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3616 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3617 .type = ARM_CP_NO_RAW, 3618 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3619 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3620 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3621 .type = ARM_CP_ALIAS, 3622 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3623 .access = PL2_RW, .accessfn = fpexc32_access }, 3624 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3625 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3626 .access = PL2_RW, .resetvalue = 0, 3627 .writefn = dacr_write, .raw_writefn = raw_write, 3628 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3629 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3630 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3631 .access = PL2_RW, .resetvalue = 0, 3632 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3633 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3634 .type = ARM_CP_ALIAS, 3635 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3636 .access = PL2_RW, 3637 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3638 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3639 .type = ARM_CP_ALIAS, 3640 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3641 .access = PL2_RW, 3642 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3643 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3644 .type = ARM_CP_ALIAS, 3645 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3646 .access = PL2_RW, 3647 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3648 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3649 .type = ARM_CP_ALIAS, 3650 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3651 .access = PL2_RW, 3652 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3653 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3654 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3655 .resetvalue = 0, 3656 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3657 { .name = "SDCR", .type = ARM_CP_ALIAS, 3658 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3659 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3660 .writefn = sdcr_write, 3661 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3662 REGINFO_SENTINEL 3663 }; 3664 3665 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3666 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3667 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3668 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3669 .access = PL2_RW, 3670 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3671 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3672 .type = ARM_CP_NO_RAW, 3673 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3674 .access = PL2_RW, 3675 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3676 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3677 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3678 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3679 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3680 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3681 .access = PL2_RW, .type = ARM_CP_CONST, 3682 .resetvalue = 0 }, 3683 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3684 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3685 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3686 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3687 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3688 .access = PL2_RW, .type = ARM_CP_CONST, 3689 .resetvalue = 0 }, 3690 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3691 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3692 .access = PL2_RW, .type = ARM_CP_CONST, 3693 .resetvalue = 0 }, 3694 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3695 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3696 .access = PL2_RW, .type = ARM_CP_CONST, 3697 .resetvalue = 0 }, 3698 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3699 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3700 .access = PL2_RW, .type = ARM_CP_CONST, 3701 .resetvalue = 0 }, 3702 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3703 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3704 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3705 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3706 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3707 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3708 .type = ARM_CP_CONST, .resetvalue = 0 }, 3709 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3710 .cp = 15, .opc1 = 6, .crm = 2, 3711 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3712 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3713 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3714 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3715 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3716 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3717 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3718 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3719 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3720 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3721 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3722 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3723 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3724 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3725 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3726 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3727 .resetvalue = 0 }, 3728 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3729 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3730 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3731 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3732 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3733 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3734 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3735 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3736 .resetvalue = 0 }, 3737 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3738 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3739 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3740 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3741 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3742 .resetvalue = 0 }, 3743 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3744 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3745 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3746 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3747 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3748 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3749 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3750 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3751 .access = PL2_RW, .accessfn = access_tda, 3752 .type = ARM_CP_CONST, .resetvalue = 0 }, 3753 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3754 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3755 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3756 .type = ARM_CP_CONST, .resetvalue = 0 }, 3757 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3758 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3759 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3760 REGINFO_SENTINEL 3761 }; 3762 3763 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3764 { 3765 ARMCPU *cpu = arm_env_get_cpu(env); 3766 uint64_t valid_mask = HCR_MASK; 3767 3768 if (arm_feature(env, ARM_FEATURE_EL3)) { 3769 valid_mask &= ~HCR_HCD; 3770 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 3771 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 3772 * However, if we're using the SMC PSCI conduit then QEMU is 3773 * effectively acting like EL3 firmware and so the guest at 3774 * EL2 should retain the ability to prevent EL1 from being 3775 * able to make SMC calls into the ersatz firmware, so in 3776 * that case HCR.TSC should be read/write. 3777 */ 3778 valid_mask &= ~HCR_TSC; 3779 } 3780 3781 /* Clear RES0 bits. */ 3782 value &= valid_mask; 3783 3784 /* These bits change the MMU setup: 3785 * HCR_VM enables stage 2 translation 3786 * HCR_PTW forbids certain page-table setups 3787 * HCR_DC Disables stage1 and enables stage2 translation 3788 */ 3789 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3790 tlb_flush(CPU(cpu)); 3791 } 3792 raw_write(env, ri, value); 3793 } 3794 3795 static const ARMCPRegInfo el2_cp_reginfo[] = { 3796 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3797 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3798 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3799 .writefn = hcr_write }, 3800 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 3801 .type = ARM_CP_ALIAS, 3802 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 3803 .access = PL2_RW, 3804 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 3805 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, 3806 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3807 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 3808 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, 3809 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3810 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 3811 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 3812 .type = ARM_CP_ALIAS, 3813 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 3814 .access = PL2_RW, 3815 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 3816 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3817 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3818 .access = PL2_RW, .writefn = vbar_write, 3819 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 3820 .resetvalue = 0 }, 3821 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 3822 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 3823 .access = PL3_RW, .type = ARM_CP_ALIAS, 3824 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 3825 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3826 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3827 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 3828 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 3829 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3830 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3831 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 3832 .resetvalue = 0 }, 3833 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3834 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3835 .access = PL2_RW, .type = ARM_CP_ALIAS, 3836 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 3837 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3838 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3839 .access = PL2_RW, .type = ARM_CP_CONST, 3840 .resetvalue = 0 }, 3841 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 3842 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3843 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3844 .access = PL2_RW, .type = ARM_CP_CONST, 3845 .resetvalue = 0 }, 3846 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3847 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3848 .access = PL2_RW, .type = ARM_CP_CONST, 3849 .resetvalue = 0 }, 3850 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3851 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3852 .access = PL2_RW, .type = ARM_CP_CONST, 3853 .resetvalue = 0 }, 3854 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3855 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3856 .access = PL2_RW, 3857 /* no .writefn needed as this can't cause an ASID change; 3858 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3859 */ 3860 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 3861 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 3862 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3863 .type = ARM_CP_ALIAS, 3864 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3865 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3866 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 3867 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3868 .access = PL2_RW, 3869 /* no .writefn needed as this can't cause an ASID change; 3870 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3871 */ 3872 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3873 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3874 .cp = 15, .opc1 = 6, .crm = 2, 3875 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3876 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3877 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 3878 .writefn = vttbr_write }, 3879 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3880 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3881 .access = PL2_RW, .writefn = vttbr_write, 3882 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 3883 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3884 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3885 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 3886 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 3887 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3888 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3889 .access = PL2_RW, .resetvalue = 0, 3890 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 3891 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3892 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3893 .access = PL2_RW, .resetvalue = 0, 3894 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3895 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3896 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3897 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3898 { .name = "TLBIALLNSNH", 3899 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3900 .type = ARM_CP_NO_RAW, .access = PL2_W, 3901 .writefn = tlbiall_nsnh_write }, 3902 { .name = "TLBIALLNSNHIS", 3903 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3904 .type = ARM_CP_NO_RAW, .access = PL2_W, 3905 .writefn = tlbiall_nsnh_is_write }, 3906 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3907 .type = ARM_CP_NO_RAW, .access = PL2_W, 3908 .writefn = tlbiall_hyp_write }, 3909 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3910 .type = ARM_CP_NO_RAW, .access = PL2_W, 3911 .writefn = tlbiall_hyp_is_write }, 3912 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3913 .type = ARM_CP_NO_RAW, .access = PL2_W, 3914 .writefn = tlbimva_hyp_write }, 3915 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3916 .type = ARM_CP_NO_RAW, .access = PL2_W, 3917 .writefn = tlbimva_hyp_is_write }, 3918 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 3919 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3920 .type = ARM_CP_NO_RAW, .access = PL2_W, 3921 .writefn = tlbi_aa64_alle2_write }, 3922 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 3923 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3924 .type = ARM_CP_NO_RAW, .access = PL2_W, 3925 .writefn = tlbi_aa64_vae2_write }, 3926 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 3927 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3928 .access = PL2_W, .type = ARM_CP_NO_RAW, 3929 .writefn = tlbi_aa64_vae2_write }, 3930 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 3931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3932 .access = PL2_W, .type = ARM_CP_NO_RAW, 3933 .writefn = tlbi_aa64_alle2is_write }, 3934 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 3935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3936 .type = ARM_CP_NO_RAW, .access = PL2_W, 3937 .writefn = tlbi_aa64_vae2is_write }, 3938 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 3939 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3940 .access = PL2_W, .type = ARM_CP_NO_RAW, 3941 .writefn = tlbi_aa64_vae2is_write }, 3942 #ifndef CONFIG_USER_ONLY 3943 /* Unlike the other EL2-related AT operations, these must 3944 * UNDEF from EL3 if EL2 is not implemented, which is why we 3945 * define them here rather than with the rest of the AT ops. 3946 */ 3947 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 3948 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3949 .access = PL2_W, .accessfn = at_s1e2_access, 3950 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3951 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 3952 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3953 .access = PL2_W, .accessfn = at_s1e2_access, 3954 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3955 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 3956 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 3957 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 3958 * to behave as if SCR.NS was 1. 3959 */ 3960 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3961 .access = PL2_W, 3962 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3963 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3964 .access = PL2_W, 3965 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3966 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3967 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3968 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 3969 * reset values as IMPDEF. We choose to reset to 3 to comply with 3970 * both ARMv7 and ARMv8. 3971 */ 3972 .access = PL2_RW, .resetvalue = 3, 3973 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 3974 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3975 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3976 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3977 .writefn = gt_cntvoff_write, 3978 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3979 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3980 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 3981 .writefn = gt_cntvoff_write, 3982 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3983 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3984 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3985 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3986 .type = ARM_CP_IO, .access = PL2_RW, 3987 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3988 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3989 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3990 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 3991 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3992 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3993 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3994 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 3995 .resetfn = gt_hyp_timer_reset, 3996 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 3997 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3998 .type = ARM_CP_IO, 3999 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4000 .access = PL2_RW, 4001 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 4002 .resetvalue = 0, 4003 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 4004 #endif 4005 /* The only field of MDCR_EL2 that has a defined architectural reset value 4006 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 4007 * don't impelment any PMU event counters, so using zero as a reset 4008 * value for MDCR_EL2 is okay 4009 */ 4010 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4011 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4012 .access = PL2_RW, .resetvalue = 0, 4013 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 4014 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 4015 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4016 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4017 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4018 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 4019 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4020 .access = PL2_RW, 4021 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4022 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4023 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4024 .access = PL2_RW, 4025 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 4026 REGINFO_SENTINEL 4027 }; 4028 4029 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4030 bool isread) 4031 { 4032 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4033 * At Secure EL1 it traps to EL3. 4034 */ 4035 if (arm_current_el(env) == 3) { 4036 return CP_ACCESS_OK; 4037 } 4038 if (arm_is_secure_below_el3(env)) { 4039 return CP_ACCESS_TRAP_EL3; 4040 } 4041 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4042 if (isread) { 4043 return CP_ACCESS_OK; 4044 } 4045 return CP_ACCESS_TRAP_UNCATEGORIZED; 4046 } 4047 4048 static const ARMCPRegInfo el3_cp_reginfo[] = { 4049 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4050 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4051 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4052 .resetvalue = 0, .writefn = scr_write }, 4053 { .name = "SCR", .type = ARM_CP_ALIAS, 4054 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4055 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4056 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4057 .writefn = scr_write }, 4058 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4059 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4060 .access = PL3_RW, .resetvalue = 0, 4061 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4062 { .name = "SDER", 4063 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4064 .access = PL3_RW, .resetvalue = 0, 4065 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4066 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4067 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4068 .writefn = vbar_write, .resetvalue = 0, 4069 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4070 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4071 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4072 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 4073 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4074 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4075 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4076 .access = PL3_RW, 4077 /* no .writefn needed as this can't cause an ASID change; 4078 * we must provide a .raw_writefn and .resetfn because we handle 4079 * reset and migration for the AArch32 TTBCR(S), which might be 4080 * using mask and base_mask. 4081 */ 4082 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4083 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4084 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4085 .type = ARM_CP_ALIAS, 4086 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4087 .access = PL3_RW, 4088 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4089 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4090 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4091 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4092 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4093 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4094 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4095 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4096 .type = ARM_CP_ALIAS, 4097 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4098 .access = PL3_RW, 4099 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4100 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4101 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4102 .access = PL3_RW, .writefn = vbar_write, 4103 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4104 .resetvalue = 0 }, 4105 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4106 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4107 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4108 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4109 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4110 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4111 .access = PL3_RW, .resetvalue = 0, 4112 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 4113 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 4114 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 4115 .access = PL3_RW, .type = ARM_CP_CONST, 4116 .resetvalue = 0 }, 4117 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 4118 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 4119 .access = PL3_RW, .type = ARM_CP_CONST, 4120 .resetvalue = 0 }, 4121 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4122 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4123 .access = PL3_RW, .type = ARM_CP_CONST, 4124 .resetvalue = 0 }, 4125 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4126 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4127 .access = PL3_W, .type = ARM_CP_NO_RAW, 4128 .writefn = tlbi_aa64_alle3is_write }, 4129 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4130 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4131 .access = PL3_W, .type = ARM_CP_NO_RAW, 4132 .writefn = tlbi_aa64_vae3is_write }, 4133 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4134 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4135 .access = PL3_W, .type = ARM_CP_NO_RAW, 4136 .writefn = tlbi_aa64_vae3is_write }, 4137 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4138 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4139 .access = PL3_W, .type = ARM_CP_NO_RAW, 4140 .writefn = tlbi_aa64_alle3_write }, 4141 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4142 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4143 .access = PL3_W, .type = ARM_CP_NO_RAW, 4144 .writefn = tlbi_aa64_vae3_write }, 4145 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4146 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4147 .access = PL3_W, .type = ARM_CP_NO_RAW, 4148 .writefn = tlbi_aa64_vae3_write }, 4149 REGINFO_SENTINEL 4150 }; 4151 4152 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4153 bool isread) 4154 { 4155 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4156 * but the AArch32 CTR has its own reginfo struct) 4157 */ 4158 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4159 return CP_ACCESS_TRAP; 4160 } 4161 return CP_ACCESS_OK; 4162 } 4163 4164 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4165 uint64_t value) 4166 { 4167 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4168 * read via a bit in OSLSR_EL1. 4169 */ 4170 int oslock; 4171 4172 if (ri->state == ARM_CP_STATE_AA32) { 4173 oslock = (value == 0xC5ACCE55); 4174 } else { 4175 oslock = value & 1; 4176 } 4177 4178 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4179 } 4180 4181 static const ARMCPRegInfo debug_cp_reginfo[] = { 4182 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4183 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4184 * unlike DBGDRAR it is never accessible from EL0. 4185 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4186 * accessor. 4187 */ 4188 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4189 .access = PL0_R, .accessfn = access_tdra, 4190 .type = ARM_CP_CONST, .resetvalue = 0 }, 4191 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4192 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4193 .access = PL1_R, .accessfn = access_tdra, 4194 .type = ARM_CP_CONST, .resetvalue = 0 }, 4195 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4196 .access = PL0_R, .accessfn = access_tdra, 4197 .type = ARM_CP_CONST, .resetvalue = 0 }, 4198 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4199 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4200 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4201 .access = PL1_RW, .accessfn = access_tda, 4202 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4203 .resetvalue = 0 }, 4204 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4205 * We don't implement the configurable EL0 access. 4206 */ 4207 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4208 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4209 .type = ARM_CP_ALIAS, 4210 .access = PL1_R, .accessfn = access_tda, 4211 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4212 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4213 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4214 .access = PL1_W, .type = ARM_CP_NO_RAW, 4215 .accessfn = access_tdosa, 4216 .writefn = oslar_write }, 4217 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4218 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4219 .access = PL1_R, .resetvalue = 10, 4220 .accessfn = access_tdosa, 4221 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4222 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4223 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4224 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4225 .access = PL1_RW, .accessfn = access_tdosa, 4226 .type = ARM_CP_NOP }, 4227 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4228 * implement vector catch debug events yet. 4229 */ 4230 { .name = "DBGVCR", 4231 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4232 .access = PL1_RW, .accessfn = access_tda, 4233 .type = ARM_CP_NOP }, 4234 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4235 * to save and restore a 32-bit guest's DBGVCR) 4236 */ 4237 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4238 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4239 .access = PL2_RW, .accessfn = access_tda, 4240 .type = ARM_CP_NOP }, 4241 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4242 * Channel but Linux may try to access this register. The 32-bit 4243 * alias is DBGDCCINT. 4244 */ 4245 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4246 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4247 .access = PL1_RW, .accessfn = access_tda, 4248 .type = ARM_CP_NOP }, 4249 REGINFO_SENTINEL 4250 }; 4251 4252 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4253 /* 64 bit access versions of the (dummy) debug registers */ 4254 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4255 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4256 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4257 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4258 REGINFO_SENTINEL 4259 }; 4260 4261 void hw_watchpoint_update(ARMCPU *cpu, int n) 4262 { 4263 CPUARMState *env = &cpu->env; 4264 vaddr len = 0; 4265 vaddr wvr = env->cp15.dbgwvr[n]; 4266 uint64_t wcr = env->cp15.dbgwcr[n]; 4267 int mask; 4268 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4269 4270 if (env->cpu_watchpoint[n]) { 4271 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4272 env->cpu_watchpoint[n] = NULL; 4273 } 4274 4275 if (!extract64(wcr, 0, 1)) { 4276 /* E bit clear : watchpoint disabled */ 4277 return; 4278 } 4279 4280 switch (extract64(wcr, 3, 2)) { 4281 case 0: 4282 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4283 return; 4284 case 1: 4285 flags |= BP_MEM_READ; 4286 break; 4287 case 2: 4288 flags |= BP_MEM_WRITE; 4289 break; 4290 case 3: 4291 flags |= BP_MEM_ACCESS; 4292 break; 4293 } 4294 4295 /* Attempts to use both MASK and BAS fields simultaneously are 4296 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4297 * thus generating a watchpoint for every byte in the masked region. 4298 */ 4299 mask = extract64(wcr, 24, 4); 4300 if (mask == 1 || mask == 2) { 4301 /* Reserved values of MASK; we must act as if the mask value was 4302 * some non-reserved value, or as if the watchpoint were disabled. 4303 * We choose the latter. 4304 */ 4305 return; 4306 } else if (mask) { 4307 /* Watchpoint covers an aligned area up to 2GB in size */ 4308 len = 1ULL << mask; 4309 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4310 * whether the watchpoint fires when the unmasked bits match; we opt 4311 * to generate the exceptions. 4312 */ 4313 wvr &= ~(len - 1); 4314 } else { 4315 /* Watchpoint covers bytes defined by the byte address select bits */ 4316 int bas = extract64(wcr, 5, 8); 4317 int basstart; 4318 4319 if (bas == 0) { 4320 /* This must act as if the watchpoint is disabled */ 4321 return; 4322 } 4323 4324 if (extract64(wvr, 2, 1)) { 4325 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4326 * ignored, and BAS[3:0] define which bytes to watch. 4327 */ 4328 bas &= 0xf; 4329 } 4330 /* The BAS bits are supposed to be programmed to indicate a contiguous 4331 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4332 * we fire for each byte in the word/doubleword addressed by the WVR. 4333 * We choose to ignore any non-zero bits after the first range of 1s. 4334 */ 4335 basstart = ctz32(bas); 4336 len = cto32(bas >> basstart); 4337 wvr += basstart; 4338 } 4339 4340 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4341 &env->cpu_watchpoint[n]); 4342 } 4343 4344 void hw_watchpoint_update_all(ARMCPU *cpu) 4345 { 4346 int i; 4347 CPUARMState *env = &cpu->env; 4348 4349 /* Completely clear out existing QEMU watchpoints and our array, to 4350 * avoid possible stale entries following migration load. 4351 */ 4352 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4353 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4354 4355 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4356 hw_watchpoint_update(cpu, i); 4357 } 4358 } 4359 4360 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4361 uint64_t value) 4362 { 4363 ARMCPU *cpu = arm_env_get_cpu(env); 4364 int i = ri->crm; 4365 4366 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4367 * register reads and behaves as if values written are sign extended. 4368 * Bits [1:0] are RES0. 4369 */ 4370 value = sextract64(value, 0, 49) & ~3ULL; 4371 4372 raw_write(env, ri, value); 4373 hw_watchpoint_update(cpu, i); 4374 } 4375 4376 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4377 uint64_t value) 4378 { 4379 ARMCPU *cpu = arm_env_get_cpu(env); 4380 int i = ri->crm; 4381 4382 raw_write(env, ri, value); 4383 hw_watchpoint_update(cpu, i); 4384 } 4385 4386 void hw_breakpoint_update(ARMCPU *cpu, int n) 4387 { 4388 CPUARMState *env = &cpu->env; 4389 uint64_t bvr = env->cp15.dbgbvr[n]; 4390 uint64_t bcr = env->cp15.dbgbcr[n]; 4391 vaddr addr; 4392 int bt; 4393 int flags = BP_CPU; 4394 4395 if (env->cpu_breakpoint[n]) { 4396 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4397 env->cpu_breakpoint[n] = NULL; 4398 } 4399 4400 if (!extract64(bcr, 0, 1)) { 4401 /* E bit clear : watchpoint disabled */ 4402 return; 4403 } 4404 4405 bt = extract64(bcr, 20, 4); 4406 4407 switch (bt) { 4408 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4409 case 5: /* linked address mismatch (reserved if AArch64) */ 4410 qemu_log_mask(LOG_UNIMP, 4411 "arm: address mismatch breakpoint types not implemented"); 4412 return; 4413 case 0: /* unlinked address match */ 4414 case 1: /* linked address match */ 4415 { 4416 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4417 * we behave as if the register was sign extended. Bits [1:0] are 4418 * RES0. The BAS field is used to allow setting breakpoints on 16 4419 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4420 * a bp will fire if the addresses covered by the bp and the addresses 4421 * covered by the insn overlap but the insn doesn't start at the 4422 * start of the bp address range. We choose to require the insn and 4423 * the bp to have the same address. The constraints on writing to 4424 * BAS enforced in dbgbcr_write mean we have only four cases: 4425 * 0b0000 => no breakpoint 4426 * 0b0011 => breakpoint on addr 4427 * 0b1100 => breakpoint on addr + 2 4428 * 0b1111 => breakpoint on addr 4429 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4430 */ 4431 int bas = extract64(bcr, 5, 4); 4432 addr = sextract64(bvr, 0, 49) & ~3ULL; 4433 if (bas == 0) { 4434 return; 4435 } 4436 if (bas == 0xc) { 4437 addr += 2; 4438 } 4439 break; 4440 } 4441 case 2: /* unlinked context ID match */ 4442 case 8: /* unlinked VMID match (reserved if no EL2) */ 4443 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4444 qemu_log_mask(LOG_UNIMP, 4445 "arm: unlinked context breakpoint types not implemented"); 4446 return; 4447 case 9: /* linked VMID match (reserved if no EL2) */ 4448 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4449 case 3: /* linked context ID match */ 4450 default: 4451 /* We must generate no events for Linked context matches (unless 4452 * they are linked to by some other bp/wp, which is handled in 4453 * updates for the linking bp/wp). We choose to also generate no events 4454 * for reserved values. 4455 */ 4456 return; 4457 } 4458 4459 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4460 } 4461 4462 void hw_breakpoint_update_all(ARMCPU *cpu) 4463 { 4464 int i; 4465 CPUARMState *env = &cpu->env; 4466 4467 /* Completely clear out existing QEMU breakpoints and our array, to 4468 * avoid possible stale entries following migration load. 4469 */ 4470 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4471 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4472 4473 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4474 hw_breakpoint_update(cpu, i); 4475 } 4476 } 4477 4478 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4479 uint64_t value) 4480 { 4481 ARMCPU *cpu = arm_env_get_cpu(env); 4482 int i = ri->crm; 4483 4484 raw_write(env, ri, value); 4485 hw_breakpoint_update(cpu, i); 4486 } 4487 4488 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4489 uint64_t value) 4490 { 4491 ARMCPU *cpu = arm_env_get_cpu(env); 4492 int i = ri->crm; 4493 4494 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4495 * copy of BAS[0]. 4496 */ 4497 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4498 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4499 4500 raw_write(env, ri, value); 4501 hw_breakpoint_update(cpu, i); 4502 } 4503 4504 static void define_debug_regs(ARMCPU *cpu) 4505 { 4506 /* Define v7 and v8 architectural debug registers. 4507 * These are just dummy implementations for now. 4508 */ 4509 int i; 4510 int wrps, brps, ctx_cmps; 4511 ARMCPRegInfo dbgdidr = { 4512 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4513 .access = PL0_R, .accessfn = access_tda, 4514 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4515 }; 4516 4517 /* Note that all these register fields hold "number of Xs minus 1". */ 4518 brps = extract32(cpu->dbgdidr, 24, 4); 4519 wrps = extract32(cpu->dbgdidr, 28, 4); 4520 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4521 4522 assert(ctx_cmps <= brps); 4523 4524 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4525 * of the debug registers such as number of breakpoints; 4526 * check that if they both exist then they agree. 4527 */ 4528 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4529 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4530 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4531 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4532 } 4533 4534 define_one_arm_cp_reg(cpu, &dbgdidr); 4535 define_arm_cp_regs(cpu, debug_cp_reginfo); 4536 4537 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4538 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4539 } 4540 4541 for (i = 0; i < brps + 1; i++) { 4542 ARMCPRegInfo dbgregs[] = { 4543 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4544 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4545 .access = PL1_RW, .accessfn = access_tda, 4546 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4547 .writefn = dbgbvr_write, .raw_writefn = raw_write 4548 }, 4549 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4550 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4551 .access = PL1_RW, .accessfn = access_tda, 4552 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4553 .writefn = dbgbcr_write, .raw_writefn = raw_write 4554 }, 4555 REGINFO_SENTINEL 4556 }; 4557 define_arm_cp_regs(cpu, dbgregs); 4558 } 4559 4560 for (i = 0; i < wrps + 1; i++) { 4561 ARMCPRegInfo dbgregs[] = { 4562 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4563 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4564 .access = PL1_RW, .accessfn = access_tda, 4565 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4566 .writefn = dbgwvr_write, .raw_writefn = raw_write 4567 }, 4568 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4569 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4570 .access = PL1_RW, .accessfn = access_tda, 4571 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4572 .writefn = dbgwcr_write, .raw_writefn = raw_write 4573 }, 4574 REGINFO_SENTINEL 4575 }; 4576 define_arm_cp_regs(cpu, dbgregs); 4577 } 4578 } 4579 4580 /* We don't know until after realize whether there's a GICv3 4581 * attached, and that is what registers the gicv3 sysregs. 4582 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 4583 * at runtime. 4584 */ 4585 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 4586 { 4587 ARMCPU *cpu = arm_env_get_cpu(env); 4588 uint64_t pfr1 = cpu->id_pfr1; 4589 4590 if (env->gicv3state) { 4591 pfr1 |= 1 << 28; 4592 } 4593 return pfr1; 4594 } 4595 4596 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 4597 { 4598 ARMCPU *cpu = arm_env_get_cpu(env); 4599 uint64_t pfr0 = cpu->id_aa64pfr0; 4600 4601 if (env->gicv3state) { 4602 pfr0 |= 1 << 24; 4603 } 4604 return pfr0; 4605 } 4606 4607 void register_cp_regs_for_features(ARMCPU *cpu) 4608 { 4609 /* Register all the coprocessor registers based on feature bits */ 4610 CPUARMState *env = &cpu->env; 4611 if (arm_feature(env, ARM_FEATURE_M)) { 4612 /* M profile has no coprocessor registers */ 4613 return; 4614 } 4615 4616 define_arm_cp_regs(cpu, cp_reginfo); 4617 if (!arm_feature(env, ARM_FEATURE_V8)) { 4618 /* Must go early as it is full of wildcards that may be 4619 * overridden by later definitions. 4620 */ 4621 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4622 } 4623 4624 if (arm_feature(env, ARM_FEATURE_V6)) { 4625 /* The ID registers all have impdef reset values */ 4626 ARMCPRegInfo v6_idregs[] = { 4627 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 4628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4629 .access = PL1_R, .type = ARM_CP_CONST, 4630 .resetvalue = cpu->id_pfr0 }, 4631 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 4632 * the value of the GIC field until after we define these regs. 4633 */ 4634 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 4635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 4636 .access = PL1_R, .type = ARM_CP_NO_RAW, 4637 .readfn = id_pfr1_read, 4638 .writefn = arm_cp_write_ignore }, 4639 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 4640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 4641 .access = PL1_R, .type = ARM_CP_CONST, 4642 .resetvalue = cpu->id_dfr0 }, 4643 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 4644 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 4645 .access = PL1_R, .type = ARM_CP_CONST, 4646 .resetvalue = cpu->id_afr0 }, 4647 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 4648 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 4649 .access = PL1_R, .type = ARM_CP_CONST, 4650 .resetvalue = cpu->id_mmfr0 }, 4651 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 4652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 4653 .access = PL1_R, .type = ARM_CP_CONST, 4654 .resetvalue = cpu->id_mmfr1 }, 4655 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 4656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 4657 .access = PL1_R, .type = ARM_CP_CONST, 4658 .resetvalue = cpu->id_mmfr2 }, 4659 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 4660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 4661 .access = PL1_R, .type = ARM_CP_CONST, 4662 .resetvalue = cpu->id_mmfr3 }, 4663 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 4664 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4665 .access = PL1_R, .type = ARM_CP_CONST, 4666 .resetvalue = cpu->id_isar0 }, 4667 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 4668 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 4669 .access = PL1_R, .type = ARM_CP_CONST, 4670 .resetvalue = cpu->id_isar1 }, 4671 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 4672 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4673 .access = PL1_R, .type = ARM_CP_CONST, 4674 .resetvalue = cpu->id_isar2 }, 4675 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 4676 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 4677 .access = PL1_R, .type = ARM_CP_CONST, 4678 .resetvalue = cpu->id_isar3 }, 4679 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 4680 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 4681 .access = PL1_R, .type = ARM_CP_CONST, 4682 .resetvalue = cpu->id_isar4 }, 4683 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 4684 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 4685 .access = PL1_R, .type = ARM_CP_CONST, 4686 .resetvalue = cpu->id_isar5 }, 4687 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 4688 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 4689 .access = PL1_R, .type = ARM_CP_CONST, 4690 .resetvalue = cpu->id_mmfr4 }, 4691 /* 7 is as yet unallocated and must RAZ */ 4692 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, 4693 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 4694 .access = PL1_R, .type = ARM_CP_CONST, 4695 .resetvalue = 0 }, 4696 REGINFO_SENTINEL 4697 }; 4698 define_arm_cp_regs(cpu, v6_idregs); 4699 define_arm_cp_regs(cpu, v6_cp_reginfo); 4700 } else { 4701 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 4702 } 4703 if (arm_feature(env, ARM_FEATURE_V6K)) { 4704 define_arm_cp_regs(cpu, v6k_cp_reginfo); 4705 } 4706 if (arm_feature(env, ARM_FEATURE_V7MP) && 4707 !arm_feature(env, ARM_FEATURE_PMSA)) { 4708 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 4709 } 4710 if (arm_feature(env, ARM_FEATURE_V7)) { 4711 /* v7 performance monitor control register: same implementor 4712 * field as main ID register, and we implement only the cycle 4713 * count register. 4714 */ 4715 #ifndef CONFIG_USER_ONLY 4716 ARMCPRegInfo pmcr = { 4717 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 4718 .access = PL0_RW, 4719 .type = ARM_CP_IO | ARM_CP_ALIAS, 4720 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 4721 .accessfn = pmreg_access, .writefn = pmcr_write, 4722 .raw_writefn = raw_write, 4723 }; 4724 ARMCPRegInfo pmcr64 = { 4725 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 4726 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 4727 .access = PL0_RW, .accessfn = pmreg_access, 4728 .type = ARM_CP_IO, 4729 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 4730 .resetvalue = cpu->midr & 0xff000000, 4731 .writefn = pmcr_write, .raw_writefn = raw_write, 4732 }; 4733 define_one_arm_cp_reg(cpu, &pmcr); 4734 define_one_arm_cp_reg(cpu, &pmcr64); 4735 #endif 4736 ARMCPRegInfo clidr = { 4737 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 4738 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 4739 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 4740 }; 4741 define_one_arm_cp_reg(cpu, &clidr); 4742 define_arm_cp_regs(cpu, v7_cp_reginfo); 4743 define_debug_regs(cpu); 4744 } else { 4745 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 4746 } 4747 if (arm_feature(env, ARM_FEATURE_V8)) { 4748 /* AArch64 ID registers, which all have impdef reset values. 4749 * Note that within the ID register ranges the unused slots 4750 * must all RAZ, not UNDEF; future architecture versions may 4751 * define new registers here. 4752 */ 4753 ARMCPRegInfo v8_idregs[] = { 4754 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 4755 * know the right value for the GIC field until after we 4756 * define these regs. 4757 */ 4758 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 4759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 4760 .access = PL1_R, .type = ARM_CP_NO_RAW, 4761 .readfn = id_aa64pfr0_read, 4762 .writefn = arm_cp_write_ignore }, 4763 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 4764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 4765 .access = PL1_R, .type = ARM_CP_CONST, 4766 .resetvalue = cpu->id_aa64pfr1}, 4767 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4768 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 4769 .access = PL1_R, .type = ARM_CP_CONST, 4770 .resetvalue = 0 }, 4771 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 4773 .access = PL1_R, .type = ARM_CP_CONST, 4774 .resetvalue = 0 }, 4775 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 4777 .access = PL1_R, .type = ARM_CP_CONST, 4778 .resetvalue = 0 }, 4779 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 4781 .access = PL1_R, .type = ARM_CP_CONST, 4782 .resetvalue = 0 }, 4783 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 4785 .access = PL1_R, .type = ARM_CP_CONST, 4786 .resetvalue = 0 }, 4787 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4788 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 4789 .access = PL1_R, .type = ARM_CP_CONST, 4790 .resetvalue = 0 }, 4791 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 4792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 4793 .access = PL1_R, .type = ARM_CP_CONST, 4794 .resetvalue = cpu->id_aa64dfr0 }, 4795 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 4796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 4797 .access = PL1_R, .type = ARM_CP_CONST, 4798 .resetvalue = cpu->id_aa64dfr1 }, 4799 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 4801 .access = PL1_R, .type = ARM_CP_CONST, 4802 .resetvalue = 0 }, 4803 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 4805 .access = PL1_R, .type = ARM_CP_CONST, 4806 .resetvalue = 0 }, 4807 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 4808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 4809 .access = PL1_R, .type = ARM_CP_CONST, 4810 .resetvalue = cpu->id_aa64afr0 }, 4811 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 4812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 4813 .access = PL1_R, .type = ARM_CP_CONST, 4814 .resetvalue = cpu->id_aa64afr1 }, 4815 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 4817 .access = PL1_R, .type = ARM_CP_CONST, 4818 .resetvalue = 0 }, 4819 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4820 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 4821 .access = PL1_R, .type = ARM_CP_CONST, 4822 .resetvalue = 0 }, 4823 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 4824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 4825 .access = PL1_R, .type = ARM_CP_CONST, 4826 .resetvalue = cpu->id_aa64isar0 }, 4827 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 4828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 4829 .access = PL1_R, .type = ARM_CP_CONST, 4830 .resetvalue = cpu->id_aa64isar1 }, 4831 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 4833 .access = PL1_R, .type = ARM_CP_CONST, 4834 .resetvalue = 0 }, 4835 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 4837 .access = PL1_R, .type = ARM_CP_CONST, 4838 .resetvalue = 0 }, 4839 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4840 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 4841 .access = PL1_R, .type = ARM_CP_CONST, 4842 .resetvalue = 0 }, 4843 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 4845 .access = PL1_R, .type = ARM_CP_CONST, 4846 .resetvalue = 0 }, 4847 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 4849 .access = PL1_R, .type = ARM_CP_CONST, 4850 .resetvalue = 0 }, 4851 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 4853 .access = PL1_R, .type = ARM_CP_CONST, 4854 .resetvalue = 0 }, 4855 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 4856 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4857 .access = PL1_R, .type = ARM_CP_CONST, 4858 .resetvalue = cpu->id_aa64mmfr0 }, 4859 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 4860 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 4861 .access = PL1_R, .type = ARM_CP_CONST, 4862 .resetvalue = cpu->id_aa64mmfr1 }, 4863 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 4865 .access = PL1_R, .type = ARM_CP_CONST, 4866 .resetvalue = 0 }, 4867 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4868 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 4869 .access = PL1_R, .type = ARM_CP_CONST, 4870 .resetvalue = 0 }, 4871 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4872 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 4873 .access = PL1_R, .type = ARM_CP_CONST, 4874 .resetvalue = 0 }, 4875 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 4877 .access = PL1_R, .type = ARM_CP_CONST, 4878 .resetvalue = 0 }, 4879 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4880 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 4881 .access = PL1_R, .type = ARM_CP_CONST, 4882 .resetvalue = 0 }, 4883 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4884 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 4885 .access = PL1_R, .type = ARM_CP_CONST, 4886 .resetvalue = 0 }, 4887 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 4888 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 4889 .access = PL1_R, .type = ARM_CP_CONST, 4890 .resetvalue = cpu->mvfr0 }, 4891 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 4892 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 4893 .access = PL1_R, .type = ARM_CP_CONST, 4894 .resetvalue = cpu->mvfr1 }, 4895 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 4896 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 4897 .access = PL1_R, .type = ARM_CP_CONST, 4898 .resetvalue = cpu->mvfr2 }, 4899 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4900 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 4901 .access = PL1_R, .type = ARM_CP_CONST, 4902 .resetvalue = 0 }, 4903 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4904 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 4905 .access = PL1_R, .type = ARM_CP_CONST, 4906 .resetvalue = 0 }, 4907 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4908 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 4909 .access = PL1_R, .type = ARM_CP_CONST, 4910 .resetvalue = 0 }, 4911 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4912 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 4913 .access = PL1_R, .type = ARM_CP_CONST, 4914 .resetvalue = 0 }, 4915 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4916 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 4917 .access = PL1_R, .type = ARM_CP_CONST, 4918 .resetvalue = 0 }, 4919 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 4920 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 4921 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4922 .resetvalue = cpu->pmceid0 }, 4923 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 4924 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 4925 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4926 .resetvalue = cpu->pmceid0 }, 4927 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 4928 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 4929 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4930 .resetvalue = cpu->pmceid1 }, 4931 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 4932 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 4933 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4934 .resetvalue = cpu->pmceid1 }, 4935 REGINFO_SENTINEL 4936 }; 4937 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 4938 if (!arm_feature(env, ARM_FEATURE_EL3) && 4939 !arm_feature(env, ARM_FEATURE_EL2)) { 4940 ARMCPRegInfo rvbar = { 4941 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 4942 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4943 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 4944 }; 4945 define_one_arm_cp_reg(cpu, &rvbar); 4946 } 4947 define_arm_cp_regs(cpu, v8_idregs); 4948 define_arm_cp_regs(cpu, v8_cp_reginfo); 4949 } 4950 if (arm_feature(env, ARM_FEATURE_EL2)) { 4951 uint64_t vmpidr_def = mpidr_read_val(env); 4952 ARMCPRegInfo vpidr_regs[] = { 4953 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 4954 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4955 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4956 .resetvalue = cpu->midr, 4957 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4958 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 4959 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4960 .access = PL2_RW, .resetvalue = cpu->midr, 4961 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4962 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 4963 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4964 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4965 .resetvalue = vmpidr_def, 4966 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4967 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 4968 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4969 .access = PL2_RW, 4970 .resetvalue = vmpidr_def, 4971 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4972 REGINFO_SENTINEL 4973 }; 4974 define_arm_cp_regs(cpu, vpidr_regs); 4975 define_arm_cp_regs(cpu, el2_cp_reginfo); 4976 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 4977 if (!arm_feature(env, ARM_FEATURE_EL3)) { 4978 ARMCPRegInfo rvbar = { 4979 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 4980 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 4981 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 4982 }; 4983 define_one_arm_cp_reg(cpu, &rvbar); 4984 } 4985 } else { 4986 /* If EL2 is missing but higher ELs are enabled, we need to 4987 * register the no_el2 reginfos. 4988 */ 4989 if (arm_feature(env, ARM_FEATURE_EL3)) { 4990 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 4991 * of MIDR_EL1 and MPIDR_EL1. 4992 */ 4993 ARMCPRegInfo vpidr_regs[] = { 4994 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4995 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4996 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4997 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 4998 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4999 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5000 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5001 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5002 .type = ARM_CP_NO_RAW, 5003 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 5004 REGINFO_SENTINEL 5005 }; 5006 define_arm_cp_regs(cpu, vpidr_regs); 5007 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 5008 } 5009 } 5010 if (arm_feature(env, ARM_FEATURE_EL3)) { 5011 define_arm_cp_regs(cpu, el3_cp_reginfo); 5012 ARMCPRegInfo el3_regs[] = { 5013 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 5014 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 5015 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 5016 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 5017 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 5018 .access = PL3_RW, 5019 .raw_writefn = raw_write, .writefn = sctlr_write, 5020 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 5021 .resetvalue = cpu->reset_sctlr }, 5022 REGINFO_SENTINEL 5023 }; 5024 5025 define_arm_cp_regs(cpu, el3_regs); 5026 } 5027 /* The behaviour of NSACR is sufficiently various that we don't 5028 * try to describe it in a single reginfo: 5029 * if EL3 is 64 bit, then trap to EL3 from S EL1, 5030 * reads as constant 0xc00 from NS EL1 and NS EL2 5031 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 5032 * if v7 without EL3, register doesn't exist 5033 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 5034 */ 5035 if (arm_feature(env, ARM_FEATURE_EL3)) { 5036 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5037 ARMCPRegInfo nsacr = { 5038 .name = "NSACR", .type = ARM_CP_CONST, 5039 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5040 .access = PL1_RW, .accessfn = nsacr_access, 5041 .resetvalue = 0xc00 5042 }; 5043 define_one_arm_cp_reg(cpu, &nsacr); 5044 } else { 5045 ARMCPRegInfo nsacr = { 5046 .name = "NSACR", 5047 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5048 .access = PL3_RW | PL1_R, 5049 .resetvalue = 0, 5050 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 5051 }; 5052 define_one_arm_cp_reg(cpu, &nsacr); 5053 } 5054 } else { 5055 if (arm_feature(env, ARM_FEATURE_V8)) { 5056 ARMCPRegInfo nsacr = { 5057 .name = "NSACR", .type = ARM_CP_CONST, 5058 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5059 .access = PL1_R, 5060 .resetvalue = 0xc00 5061 }; 5062 define_one_arm_cp_reg(cpu, &nsacr); 5063 } 5064 } 5065 5066 if (arm_feature(env, ARM_FEATURE_PMSA)) { 5067 if (arm_feature(env, ARM_FEATURE_V6)) { 5068 /* PMSAv6 not implemented */ 5069 assert(arm_feature(env, ARM_FEATURE_V7)); 5070 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5071 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 5072 } else { 5073 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 5074 } 5075 } else { 5076 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5077 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 5078 } 5079 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 5080 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 5081 } 5082 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 5083 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 5084 } 5085 if (arm_feature(env, ARM_FEATURE_VAPA)) { 5086 define_arm_cp_regs(cpu, vapa_cp_reginfo); 5087 } 5088 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 5089 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 5090 } 5091 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 5092 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 5093 } 5094 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 5095 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 5096 } 5097 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 5098 define_arm_cp_regs(cpu, omap_cp_reginfo); 5099 } 5100 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 5101 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 5102 } 5103 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5104 define_arm_cp_regs(cpu, xscale_cp_reginfo); 5105 } 5106 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 5107 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 5108 } 5109 if (arm_feature(env, ARM_FEATURE_LPAE)) { 5110 define_arm_cp_regs(cpu, lpae_cp_reginfo); 5111 } 5112 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 5113 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 5114 * be read-only (ie write causes UNDEF exception). 5115 */ 5116 { 5117 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 5118 /* Pre-v8 MIDR space. 5119 * Note that the MIDR isn't a simple constant register because 5120 * of the TI925 behaviour where writes to another register can 5121 * cause the MIDR value to change. 5122 * 5123 * Unimplemented registers in the c15 0 0 0 space default to 5124 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 5125 * and friends override accordingly. 5126 */ 5127 { .name = "MIDR", 5128 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 5129 .access = PL1_R, .resetvalue = cpu->midr, 5130 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 5131 .readfn = midr_read, 5132 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5133 .type = ARM_CP_OVERRIDE }, 5134 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 5135 { .name = "DUMMY", 5136 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 5137 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5138 { .name = "DUMMY", 5139 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 5140 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5141 { .name = "DUMMY", 5142 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 5143 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5144 { .name = "DUMMY", 5145 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 5146 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5147 { .name = "DUMMY", 5148 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 5149 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5150 REGINFO_SENTINEL 5151 }; 5152 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 5153 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 5154 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 5155 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 5156 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5157 .readfn = midr_read }, 5158 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 5159 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5160 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5161 .access = PL1_R, .resetvalue = cpu->midr }, 5162 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5163 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 5164 .access = PL1_R, .resetvalue = cpu->midr }, 5165 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 5166 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 5167 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 5168 REGINFO_SENTINEL 5169 }; 5170 ARMCPRegInfo id_cp_reginfo[] = { 5171 /* These are common to v8 and pre-v8 */ 5172 { .name = "CTR", 5173 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 5174 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5175 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 5176 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 5177 .access = PL0_R, .accessfn = ctr_el0_access, 5178 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5179 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 5180 { .name = "TCMTR", 5181 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 5182 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5183 REGINFO_SENTINEL 5184 }; 5185 /* TLBTR is specific to VMSA */ 5186 ARMCPRegInfo id_tlbtr_reginfo = { 5187 .name = "TLBTR", 5188 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 5189 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 5190 }; 5191 /* MPUIR is specific to PMSA V6+ */ 5192 ARMCPRegInfo id_mpuir_reginfo = { 5193 .name = "MPUIR", 5194 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5195 .access = PL1_R, .type = ARM_CP_CONST, 5196 .resetvalue = cpu->pmsav7_dregion << 8 5197 }; 5198 ARMCPRegInfo crn0_wi_reginfo = { 5199 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5200 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5201 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5202 }; 5203 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5204 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5205 ARMCPRegInfo *r; 5206 /* Register the blanket "writes ignored" value first to cover the 5207 * whole space. Then update the specific ID registers to allow write 5208 * access, so that they ignore writes rather than causing them to 5209 * UNDEF. 5210 */ 5211 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5212 for (r = id_pre_v8_midr_cp_reginfo; 5213 r->type != ARM_CP_SENTINEL; r++) { 5214 r->access = PL1_RW; 5215 } 5216 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5217 r->access = PL1_RW; 5218 } 5219 id_tlbtr_reginfo.access = PL1_RW; 5220 id_tlbtr_reginfo.access = PL1_RW; 5221 } 5222 if (arm_feature(env, ARM_FEATURE_V8)) { 5223 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5224 } else { 5225 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5226 } 5227 define_arm_cp_regs(cpu, id_cp_reginfo); 5228 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 5229 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5230 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5231 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5232 } 5233 } 5234 5235 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5236 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5237 } 5238 5239 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5240 ARMCPRegInfo auxcr_reginfo[] = { 5241 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5242 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5243 .access = PL1_RW, .type = ARM_CP_CONST, 5244 .resetvalue = cpu->reset_auxcr }, 5245 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5246 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5247 .access = PL2_RW, .type = ARM_CP_CONST, 5248 .resetvalue = 0 }, 5249 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5250 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5251 .access = PL3_RW, .type = ARM_CP_CONST, 5252 .resetvalue = 0 }, 5253 REGINFO_SENTINEL 5254 }; 5255 define_arm_cp_regs(cpu, auxcr_reginfo); 5256 } 5257 5258 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5259 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5260 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5261 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5262 | extract64(cpu->reset_cbar, 32, 12); 5263 ARMCPRegInfo cbar_reginfo[] = { 5264 { .name = "CBAR", 5265 .type = ARM_CP_CONST, 5266 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5267 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5268 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5269 .type = ARM_CP_CONST, 5270 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5271 .access = PL1_R, .resetvalue = cbar32 }, 5272 REGINFO_SENTINEL 5273 }; 5274 /* We don't implement a r/w 64 bit CBAR currently */ 5275 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5276 define_arm_cp_regs(cpu, cbar_reginfo); 5277 } else { 5278 ARMCPRegInfo cbar = { 5279 .name = "CBAR", 5280 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5281 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5282 .fieldoffset = offsetof(CPUARMState, 5283 cp15.c15_config_base_address) 5284 }; 5285 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5286 cbar.access = PL1_R; 5287 cbar.fieldoffset = 0; 5288 cbar.type = ARM_CP_CONST; 5289 } 5290 define_one_arm_cp_reg(cpu, &cbar); 5291 } 5292 } 5293 5294 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5295 ARMCPRegInfo vbar_cp_reginfo[] = { 5296 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5297 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5298 .access = PL1_RW, .writefn = vbar_write, 5299 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5300 offsetof(CPUARMState, cp15.vbar_ns) }, 5301 .resetvalue = 0 }, 5302 REGINFO_SENTINEL 5303 }; 5304 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5305 } 5306 5307 /* Generic registers whose values depend on the implementation */ 5308 { 5309 ARMCPRegInfo sctlr = { 5310 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5311 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5312 .access = PL1_RW, 5313 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5314 offsetof(CPUARMState, cp15.sctlr_ns) }, 5315 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5316 .raw_writefn = raw_write, 5317 }; 5318 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5319 /* Normally we would always end the TB on an SCTLR write, but Linux 5320 * arch/arm/mach-pxa/sleep.S expects two instructions following 5321 * an MMU enable to execute from cache. Imitate this behaviour. 5322 */ 5323 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5324 } 5325 define_one_arm_cp_reg(cpu, &sctlr); 5326 } 5327 } 5328 5329 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5330 { 5331 CPUState *cs = CPU(cpu); 5332 CPUARMState *env = &cpu->env; 5333 5334 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5335 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5336 aarch64_fpu_gdb_set_reg, 5337 34, "aarch64-fpu.xml", 0); 5338 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5339 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5340 51, "arm-neon.xml", 0); 5341 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5342 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5343 35, "arm-vfp3.xml", 0); 5344 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5345 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5346 19, "arm-vfp.xml", 0); 5347 } 5348 } 5349 5350 /* Sort alphabetically by type name, except for "any". */ 5351 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5352 { 5353 ObjectClass *class_a = (ObjectClass *)a; 5354 ObjectClass *class_b = (ObjectClass *)b; 5355 const char *name_a, *name_b; 5356 5357 name_a = object_class_get_name(class_a); 5358 name_b = object_class_get_name(class_b); 5359 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5360 return 1; 5361 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5362 return -1; 5363 } else { 5364 return strcmp(name_a, name_b); 5365 } 5366 } 5367 5368 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5369 { 5370 ObjectClass *oc = data; 5371 CPUListState *s = user_data; 5372 const char *typename; 5373 char *name; 5374 5375 typename = object_class_get_name(oc); 5376 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5377 (*s->cpu_fprintf)(s->file, " %s\n", 5378 name); 5379 g_free(name); 5380 } 5381 5382 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5383 { 5384 CPUListState s = { 5385 .file = f, 5386 .cpu_fprintf = cpu_fprintf, 5387 }; 5388 GSList *list; 5389 5390 list = object_class_get_list(TYPE_ARM_CPU, false); 5391 list = g_slist_sort(list, arm_cpu_list_compare); 5392 (*cpu_fprintf)(f, "Available CPUs:\n"); 5393 g_slist_foreach(list, arm_cpu_list_entry, &s); 5394 g_slist_free(list); 5395 #ifdef CONFIG_KVM 5396 /* The 'host' CPU type is dynamically registered only if KVM is 5397 * enabled, so we have to special-case it here: 5398 */ 5399 (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); 5400 #endif 5401 } 5402 5403 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5404 { 5405 ObjectClass *oc = data; 5406 CpuDefinitionInfoList **cpu_list = user_data; 5407 CpuDefinitionInfoList *entry; 5408 CpuDefinitionInfo *info; 5409 const char *typename; 5410 5411 typename = object_class_get_name(oc); 5412 info = g_malloc0(sizeof(*info)); 5413 info->name = g_strndup(typename, 5414 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5415 info->q_typename = g_strdup(typename); 5416 5417 entry = g_malloc0(sizeof(*entry)); 5418 entry->value = info; 5419 entry->next = *cpu_list; 5420 *cpu_list = entry; 5421 } 5422 5423 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5424 { 5425 CpuDefinitionInfoList *cpu_list = NULL; 5426 GSList *list; 5427 5428 list = object_class_get_list(TYPE_ARM_CPU, false); 5429 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5430 g_slist_free(list); 5431 5432 return cpu_list; 5433 } 5434 5435 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5436 void *opaque, int state, int secstate, 5437 int crm, int opc1, int opc2) 5438 { 5439 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5440 * add a single reginfo struct to the hash table. 5441 */ 5442 uint32_t *key = g_new(uint32_t, 1); 5443 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5444 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5445 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5446 5447 /* Reset the secure state to the specific incoming state. This is 5448 * necessary as the register may have been defined with both states. 5449 */ 5450 r2->secure = secstate; 5451 5452 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5453 /* Register is banked (using both entries in array). 5454 * Overwriting fieldoffset as the array is only used to define 5455 * banked registers but later only fieldoffset is used. 5456 */ 5457 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5458 } 5459 5460 if (state == ARM_CP_STATE_AA32) { 5461 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5462 /* If the register is banked then we don't need to migrate or 5463 * reset the 32-bit instance in certain cases: 5464 * 5465 * 1) If the register has both 32-bit and 64-bit instances then we 5466 * can count on the 64-bit instance taking care of the 5467 * non-secure bank. 5468 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5469 * taking care of the secure bank. This requires that separate 5470 * 32 and 64-bit definitions are provided. 5471 */ 5472 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5473 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5474 r2->type |= ARM_CP_ALIAS; 5475 } 5476 } else if ((secstate != r->secure) && !ns) { 5477 /* The register is not banked so we only want to allow migration of 5478 * the non-secure instance. 5479 */ 5480 r2->type |= ARM_CP_ALIAS; 5481 } 5482 5483 if (r->state == ARM_CP_STATE_BOTH) { 5484 /* We assume it is a cp15 register if the .cp field is left unset. 5485 */ 5486 if (r2->cp == 0) { 5487 r2->cp = 15; 5488 } 5489 5490 #ifdef HOST_WORDS_BIGENDIAN 5491 if (r2->fieldoffset) { 5492 r2->fieldoffset += sizeof(uint32_t); 5493 } 5494 #endif 5495 } 5496 } 5497 if (state == ARM_CP_STATE_AA64) { 5498 /* To allow abbreviation of ARMCPRegInfo 5499 * definitions, we treat cp == 0 as equivalent to 5500 * the value for "standard guest-visible sysreg". 5501 * STATE_BOTH definitions are also always "standard 5502 * sysreg" in their AArch64 view (the .cp value may 5503 * be non-zero for the benefit of the AArch32 view). 5504 */ 5505 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5506 r2->cp = CP_REG_ARM64_SYSREG_CP; 5507 } 5508 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5509 r2->opc0, opc1, opc2); 5510 } else { 5511 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5512 } 5513 if (opaque) { 5514 r2->opaque = opaque; 5515 } 5516 /* reginfo passed to helpers is correct for the actual access, 5517 * and is never ARM_CP_STATE_BOTH: 5518 */ 5519 r2->state = state; 5520 /* Make sure reginfo passed to helpers for wildcarded regs 5521 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5522 */ 5523 r2->crm = crm; 5524 r2->opc1 = opc1; 5525 r2->opc2 = opc2; 5526 /* By convention, for wildcarded registers only the first 5527 * entry is used for migration; the others are marked as 5528 * ALIAS so we don't try to transfer the register 5529 * multiple times. Special registers (ie NOP/WFI) are 5530 * never migratable and not even raw-accessible. 5531 */ 5532 if ((r->type & ARM_CP_SPECIAL)) { 5533 r2->type |= ARM_CP_NO_RAW; 5534 } 5535 if (((r->crm == CP_ANY) && crm != 0) || 5536 ((r->opc1 == CP_ANY) && opc1 != 0) || 5537 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5538 r2->type |= ARM_CP_ALIAS; 5539 } 5540 5541 /* Check that raw accesses are either forbidden or handled. Note that 5542 * we can't assert this earlier because the setup of fieldoffset for 5543 * banked registers has to be done first. 5544 */ 5545 if (!(r2->type & ARM_CP_NO_RAW)) { 5546 assert(!raw_accessors_invalid(r2)); 5547 } 5548 5549 /* Overriding of an existing definition must be explicitly 5550 * requested. 5551 */ 5552 if (!(r->type & ARM_CP_OVERRIDE)) { 5553 ARMCPRegInfo *oldreg; 5554 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5555 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5556 fprintf(stderr, "Register redefined: cp=%d %d bit " 5557 "crn=%d crm=%d opc1=%d opc2=%d, " 5558 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5559 r2->crn, r2->crm, r2->opc1, r2->opc2, 5560 oldreg->name, r2->name); 5561 g_assert_not_reached(); 5562 } 5563 } 5564 g_hash_table_insert(cpu->cp_regs, key, r2); 5565 } 5566 5567 5568 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5569 const ARMCPRegInfo *r, void *opaque) 5570 { 5571 /* Define implementations of coprocessor registers. 5572 * We store these in a hashtable because typically 5573 * there are less than 150 registers in a space which 5574 * is 16*16*16*8*8 = 262144 in size. 5575 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5576 * If a register is defined twice then the second definition is 5577 * used, so this can be used to define some generic registers and 5578 * then override them with implementation specific variations. 5579 * At least one of the original and the second definition should 5580 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5581 * against accidental use. 5582 * 5583 * The state field defines whether the register is to be 5584 * visible in the AArch32 or AArch64 execution state. If the 5585 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5586 * reginfo structure for the AArch32 view, which sees the lower 5587 * 32 bits of the 64 bit register. 5588 * 5589 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5590 * be wildcarded. AArch64 registers are always considered to be 64 5591 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5592 * the register, if any. 5593 */ 5594 int crm, opc1, opc2, state; 5595 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5596 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5597 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 5598 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 5599 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 5600 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 5601 /* 64 bit registers have only CRm and Opc1 fields */ 5602 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 5603 /* op0 only exists in the AArch64 encodings */ 5604 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 5605 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 5606 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 5607 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 5608 * encodes a minimum access level for the register. We roll this 5609 * runtime check into our general permission check code, so check 5610 * here that the reginfo's specified permissions are strict enough 5611 * to encompass the generic architectural permission check. 5612 */ 5613 if (r->state != ARM_CP_STATE_AA32) { 5614 int mask = 0; 5615 switch (r->opc1) { 5616 case 0: case 1: case 2: 5617 /* min_EL EL1 */ 5618 mask = PL1_RW; 5619 break; 5620 case 3: 5621 /* min_EL EL0 */ 5622 mask = PL0_RW; 5623 break; 5624 case 4: 5625 /* min_EL EL2 */ 5626 mask = PL2_RW; 5627 break; 5628 case 5: 5629 /* unallocated encoding, so not possible */ 5630 assert(false); 5631 break; 5632 case 6: 5633 /* min_EL EL3 */ 5634 mask = PL3_RW; 5635 break; 5636 case 7: 5637 /* min_EL EL1, secure mode only (we don't check the latter) */ 5638 mask = PL1_RW; 5639 break; 5640 default: 5641 /* broken reginfo with out-of-range opc1 */ 5642 assert(false); 5643 break; 5644 } 5645 /* assert our permissions are not too lax (stricter is fine) */ 5646 assert((r->access & ~mask) == 0); 5647 } 5648 5649 /* Check that the register definition has enough info to handle 5650 * reads and writes if they are permitted. 5651 */ 5652 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 5653 if (r->access & PL3_R) { 5654 assert((r->fieldoffset || 5655 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5656 r->readfn); 5657 } 5658 if (r->access & PL3_W) { 5659 assert((r->fieldoffset || 5660 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5661 r->writefn); 5662 } 5663 } 5664 /* Bad type field probably means missing sentinel at end of reg list */ 5665 assert(cptype_valid(r->type)); 5666 for (crm = crmmin; crm <= crmmax; crm++) { 5667 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 5668 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 5669 for (state = ARM_CP_STATE_AA32; 5670 state <= ARM_CP_STATE_AA64; state++) { 5671 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 5672 continue; 5673 } 5674 if (state == ARM_CP_STATE_AA32) { 5675 /* Under AArch32 CP registers can be common 5676 * (same for secure and non-secure world) or banked. 5677 */ 5678 switch (r->secure) { 5679 case ARM_CP_SECSTATE_S: 5680 case ARM_CP_SECSTATE_NS: 5681 add_cpreg_to_hashtable(cpu, r, opaque, state, 5682 r->secure, crm, opc1, opc2); 5683 break; 5684 default: 5685 add_cpreg_to_hashtable(cpu, r, opaque, state, 5686 ARM_CP_SECSTATE_S, 5687 crm, opc1, opc2); 5688 add_cpreg_to_hashtable(cpu, r, opaque, state, 5689 ARM_CP_SECSTATE_NS, 5690 crm, opc1, opc2); 5691 break; 5692 } 5693 } else { 5694 /* AArch64 registers get mapped to non-secure instance 5695 * of AArch32 */ 5696 add_cpreg_to_hashtable(cpu, r, opaque, state, 5697 ARM_CP_SECSTATE_NS, 5698 crm, opc1, opc2); 5699 } 5700 } 5701 } 5702 } 5703 } 5704 } 5705 5706 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 5707 const ARMCPRegInfo *regs, void *opaque) 5708 { 5709 /* Define a whole list of registers */ 5710 const ARMCPRegInfo *r; 5711 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 5712 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 5713 } 5714 } 5715 5716 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 5717 { 5718 return g_hash_table_lookup(cpregs, &encoded_cp); 5719 } 5720 5721 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 5722 uint64_t value) 5723 { 5724 /* Helper coprocessor write function for write-ignore registers */ 5725 } 5726 5727 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 5728 { 5729 /* Helper coprocessor write function for read-as-zero registers */ 5730 return 0; 5731 } 5732 5733 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 5734 { 5735 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 5736 } 5737 5738 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 5739 { 5740 /* Return true if it is not valid for us to switch to 5741 * this CPU mode (ie all the UNPREDICTABLE cases in 5742 * the ARM ARM CPSRWriteByInstr pseudocode). 5743 */ 5744 5745 /* Changes to or from Hyp via MSR and CPS are illegal. */ 5746 if (write_type == CPSRWriteByInstr && 5747 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 5748 mode == ARM_CPU_MODE_HYP)) { 5749 return 1; 5750 } 5751 5752 switch (mode) { 5753 case ARM_CPU_MODE_USR: 5754 return 0; 5755 case ARM_CPU_MODE_SYS: 5756 case ARM_CPU_MODE_SVC: 5757 case ARM_CPU_MODE_ABT: 5758 case ARM_CPU_MODE_UND: 5759 case ARM_CPU_MODE_IRQ: 5760 case ARM_CPU_MODE_FIQ: 5761 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 5762 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 5763 */ 5764 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 5765 * and CPS are treated as illegal mode changes. 5766 */ 5767 if (write_type == CPSRWriteByInstr && 5768 (env->cp15.hcr_el2 & HCR_TGE) && 5769 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 5770 !arm_is_secure_below_el3(env)) { 5771 return 1; 5772 } 5773 return 0; 5774 case ARM_CPU_MODE_HYP: 5775 return !arm_feature(env, ARM_FEATURE_EL2) 5776 || arm_current_el(env) < 2 || arm_is_secure(env); 5777 case ARM_CPU_MODE_MON: 5778 return arm_current_el(env) < 3; 5779 default: 5780 return 1; 5781 } 5782 } 5783 5784 uint32_t cpsr_read(CPUARMState *env) 5785 { 5786 int ZF; 5787 ZF = (env->ZF == 0); 5788 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 5789 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 5790 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 5791 | ((env->condexec_bits & 0xfc) << 8) 5792 | (env->GE << 16) | (env->daif & CPSR_AIF); 5793 } 5794 5795 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 5796 CPSRWriteType write_type) 5797 { 5798 uint32_t changed_daif; 5799 5800 if (mask & CPSR_NZCV) { 5801 env->ZF = (~val) & CPSR_Z; 5802 env->NF = val; 5803 env->CF = (val >> 29) & 1; 5804 env->VF = (val << 3) & 0x80000000; 5805 } 5806 if (mask & CPSR_Q) 5807 env->QF = ((val & CPSR_Q) != 0); 5808 if (mask & CPSR_T) 5809 env->thumb = ((val & CPSR_T) != 0); 5810 if (mask & CPSR_IT_0_1) { 5811 env->condexec_bits &= ~3; 5812 env->condexec_bits |= (val >> 25) & 3; 5813 } 5814 if (mask & CPSR_IT_2_7) { 5815 env->condexec_bits &= 3; 5816 env->condexec_bits |= (val >> 8) & 0xfc; 5817 } 5818 if (mask & CPSR_GE) { 5819 env->GE = (val >> 16) & 0xf; 5820 } 5821 5822 /* In a V7 implementation that includes the security extensions but does 5823 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 5824 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 5825 * bits respectively. 5826 * 5827 * In a V8 implementation, it is permitted for privileged software to 5828 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 5829 */ 5830 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 5831 arm_feature(env, ARM_FEATURE_EL3) && 5832 !arm_feature(env, ARM_FEATURE_EL2) && 5833 !arm_is_secure(env)) { 5834 5835 changed_daif = (env->daif ^ val) & mask; 5836 5837 if (changed_daif & CPSR_A) { 5838 /* Check to see if we are allowed to change the masking of async 5839 * abort exceptions from a non-secure state. 5840 */ 5841 if (!(env->cp15.scr_el3 & SCR_AW)) { 5842 qemu_log_mask(LOG_GUEST_ERROR, 5843 "Ignoring attempt to switch CPSR_A flag from " 5844 "non-secure world with SCR.AW bit clear\n"); 5845 mask &= ~CPSR_A; 5846 } 5847 } 5848 5849 if (changed_daif & CPSR_F) { 5850 /* Check to see if we are allowed to change the masking of FIQ 5851 * exceptions from a non-secure state. 5852 */ 5853 if (!(env->cp15.scr_el3 & SCR_FW)) { 5854 qemu_log_mask(LOG_GUEST_ERROR, 5855 "Ignoring attempt to switch CPSR_F flag from " 5856 "non-secure world with SCR.FW bit clear\n"); 5857 mask &= ~CPSR_F; 5858 } 5859 5860 /* Check whether non-maskable FIQ (NMFI) support is enabled. 5861 * If this bit is set software is not allowed to mask 5862 * FIQs, but is allowed to set CPSR_F to 0. 5863 */ 5864 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 5865 (val & CPSR_F)) { 5866 qemu_log_mask(LOG_GUEST_ERROR, 5867 "Ignoring attempt to enable CPSR_F flag " 5868 "(non-maskable FIQ [NMFI] support enabled)\n"); 5869 mask &= ~CPSR_F; 5870 } 5871 } 5872 } 5873 5874 env->daif &= ~(CPSR_AIF & mask); 5875 env->daif |= val & CPSR_AIF & mask; 5876 5877 if (write_type != CPSRWriteRaw && 5878 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 5879 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 5880 /* Note that we can only get here in USR mode if this is a 5881 * gdb stub write; for this case we follow the architectural 5882 * behaviour for guest writes in USR mode of ignoring an attempt 5883 * to switch mode. (Those are caught by translate.c for writes 5884 * triggered by guest instructions.) 5885 */ 5886 mask &= ~CPSR_M; 5887 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 5888 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 5889 * v7, and has defined behaviour in v8: 5890 * + leave CPSR.M untouched 5891 * + allow changes to the other CPSR fields 5892 * + set PSTATE.IL 5893 * For user changes via the GDB stub, we don't set PSTATE.IL, 5894 * as this would be unnecessarily harsh for a user error. 5895 */ 5896 mask &= ~CPSR_M; 5897 if (write_type != CPSRWriteByGDBStub && 5898 arm_feature(env, ARM_FEATURE_V8)) { 5899 mask |= CPSR_IL; 5900 val |= CPSR_IL; 5901 } 5902 } else { 5903 switch_mode(env, val & CPSR_M); 5904 } 5905 } 5906 mask &= ~CACHED_CPSR_BITS; 5907 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 5908 } 5909 5910 /* Sign/zero extend */ 5911 uint32_t HELPER(sxtb16)(uint32_t x) 5912 { 5913 uint32_t res; 5914 res = (uint16_t)(int8_t)x; 5915 res |= (uint32_t)(int8_t)(x >> 16) << 16; 5916 return res; 5917 } 5918 5919 uint32_t HELPER(uxtb16)(uint32_t x) 5920 { 5921 uint32_t res; 5922 res = (uint16_t)(uint8_t)x; 5923 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 5924 return res; 5925 } 5926 5927 int32_t HELPER(sdiv)(int32_t num, int32_t den) 5928 { 5929 if (den == 0) 5930 return 0; 5931 if (num == INT_MIN && den == -1) 5932 return INT_MIN; 5933 return num / den; 5934 } 5935 5936 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 5937 { 5938 if (den == 0) 5939 return 0; 5940 return num / den; 5941 } 5942 5943 uint32_t HELPER(rbit)(uint32_t x) 5944 { 5945 return revbit32(x); 5946 } 5947 5948 #if defined(CONFIG_USER_ONLY) 5949 5950 /* These should probably raise undefined insn exceptions. */ 5951 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 5952 { 5953 ARMCPU *cpu = arm_env_get_cpu(env); 5954 5955 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 5956 } 5957 5958 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 5959 { 5960 ARMCPU *cpu = arm_env_get_cpu(env); 5961 5962 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 5963 return 0; 5964 } 5965 5966 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 5967 { 5968 /* translate.c should never generate calls here in user-only mode */ 5969 g_assert_not_reached(); 5970 } 5971 5972 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 5973 { 5974 /* translate.c should never generate calls here in user-only mode */ 5975 g_assert_not_reached(); 5976 } 5977 5978 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 5979 { 5980 /* The TT instructions can be used by unprivileged code, but in 5981 * user-only emulation we don't have the MPU. 5982 * Luckily since we know we are NonSecure unprivileged (and that in 5983 * turn means that the A flag wasn't specified), all the bits in the 5984 * register must be zero: 5985 * IREGION: 0 because IRVALID is 0 5986 * IRVALID: 0 because NS 5987 * S: 0 because NS 5988 * NSRW: 0 because NS 5989 * NSR: 0 because NS 5990 * RW: 0 because unpriv and A flag not set 5991 * R: 0 because unpriv and A flag not set 5992 * SRVALID: 0 because NS 5993 * MRVALID: 0 because unpriv and A flag not set 5994 * SREGION: 0 becaus SRVALID is 0 5995 * MREGION: 0 because MRVALID is 0 5996 */ 5997 return 0; 5998 } 5999 6000 void switch_mode(CPUARMState *env, int mode) 6001 { 6002 ARMCPU *cpu = arm_env_get_cpu(env); 6003 6004 if (mode != ARM_CPU_MODE_USR) { 6005 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 6006 } 6007 } 6008 6009 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6010 uint32_t cur_el, bool secure) 6011 { 6012 return 1; 6013 } 6014 6015 void aarch64_sync_64_to_32(CPUARMState *env) 6016 { 6017 g_assert_not_reached(); 6018 } 6019 6020 #else 6021 6022 void switch_mode(CPUARMState *env, int mode) 6023 { 6024 int old_mode; 6025 int i; 6026 6027 old_mode = env->uncached_cpsr & CPSR_M; 6028 if (mode == old_mode) 6029 return; 6030 6031 if (old_mode == ARM_CPU_MODE_FIQ) { 6032 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6033 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 6034 } else if (mode == ARM_CPU_MODE_FIQ) { 6035 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6036 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 6037 } 6038 6039 i = bank_number(old_mode); 6040 env->banked_r13[i] = env->regs[13]; 6041 env->banked_r14[i] = env->regs[14]; 6042 env->banked_spsr[i] = env->spsr; 6043 6044 i = bank_number(mode); 6045 env->regs[13] = env->banked_r13[i]; 6046 env->regs[14] = env->banked_r14[i]; 6047 env->spsr = env->banked_spsr[i]; 6048 } 6049 6050 /* Physical Interrupt Target EL Lookup Table 6051 * 6052 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 6053 * 6054 * The below multi-dimensional table is used for looking up the target 6055 * exception level given numerous condition criteria. Specifically, the 6056 * target EL is based on SCR and HCR routing controls as well as the 6057 * currently executing EL and secure state. 6058 * 6059 * Dimensions: 6060 * target_el_table[2][2][2][2][2][4] 6061 * | | | | | +--- Current EL 6062 * | | | | +------ Non-secure(0)/Secure(1) 6063 * | | | +--------- HCR mask override 6064 * | | +------------ SCR exec state control 6065 * | +--------------- SCR mask override 6066 * +------------------ 32-bit(0)/64-bit(1) EL3 6067 * 6068 * The table values are as such: 6069 * 0-3 = EL0-EL3 6070 * -1 = Cannot occur 6071 * 6072 * The ARM ARM target EL table includes entries indicating that an "exception 6073 * is not taken". The two cases where this is applicable are: 6074 * 1) An exception is taken from EL3 but the SCR does not have the exception 6075 * routed to EL3. 6076 * 2) An exception is taken from EL2 but the HCR does not have the exception 6077 * routed to EL2. 6078 * In these two cases, the below table contain a target of EL1. This value is 6079 * returned as it is expected that the consumer of the table data will check 6080 * for "target EL >= current EL" to ensure the exception is not taken. 6081 * 6082 * SCR HCR 6083 * 64 EA AMO From 6084 * BIT IRQ IMO Non-secure Secure 6085 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 6086 */ 6087 static const int8_t target_el_table[2][2][2][2][2][4] = { 6088 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6089 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 6090 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6091 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 6092 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6093 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 6094 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6095 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 6096 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 6097 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 6098 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 6099 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 6100 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6101 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 6102 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6103 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 6104 }; 6105 6106 /* 6107 * Determine the target EL for physical exceptions 6108 */ 6109 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6110 uint32_t cur_el, bool secure) 6111 { 6112 CPUARMState *env = cs->env_ptr; 6113 int rw; 6114 int scr; 6115 int hcr; 6116 int target_el; 6117 /* Is the highest EL AArch64? */ 6118 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 6119 6120 if (arm_feature(env, ARM_FEATURE_EL3)) { 6121 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 6122 } else { 6123 /* Either EL2 is the highest EL (and so the EL2 register width 6124 * is given by is64); or there is no EL2 or EL3, in which case 6125 * the value of 'rw' does not affect the table lookup anyway. 6126 */ 6127 rw = is64; 6128 } 6129 6130 switch (excp_idx) { 6131 case EXCP_IRQ: 6132 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 6133 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); 6134 break; 6135 case EXCP_FIQ: 6136 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 6137 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); 6138 break; 6139 default: 6140 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 6141 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); 6142 break; 6143 }; 6144 6145 /* If HCR.TGE is set then HCR is treated as being 1 */ 6146 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 6147 6148 /* Perform a table-lookup for the target EL given the current state */ 6149 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 6150 6151 assert(target_el > 0); 6152 6153 return target_el; 6154 } 6155 6156 static void v7m_push(CPUARMState *env, uint32_t val) 6157 { 6158 CPUState *cs = CPU(arm_env_get_cpu(env)); 6159 6160 env->regs[13] -= 4; 6161 stl_phys(cs->as, env->regs[13], val); 6162 } 6163 6164 /* Return true if we're using the process stack pointer (not the MSP) */ 6165 static bool v7m_using_psp(CPUARMState *env) 6166 { 6167 /* Handler mode always uses the main stack; for thread mode 6168 * the CONTROL.SPSEL bit determines the answer. 6169 * Note that in v7M it is not possible to be in Handler mode with 6170 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 6171 */ 6172 return !arm_v7m_is_handler_mode(env) && 6173 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 6174 } 6175 6176 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 6177 * This may change the current stack pointer between Main and Process 6178 * stack pointers if it is done for the CONTROL register for the current 6179 * security state. 6180 */ 6181 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 6182 bool new_spsel, 6183 bool secstate) 6184 { 6185 bool old_is_psp = v7m_using_psp(env); 6186 6187 env->v7m.control[secstate] = 6188 deposit32(env->v7m.control[secstate], 6189 R_V7M_CONTROL_SPSEL_SHIFT, 6190 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 6191 6192 if (secstate == env->v7m.secure) { 6193 bool new_is_psp = v7m_using_psp(env); 6194 uint32_t tmp; 6195 6196 if (old_is_psp != new_is_psp) { 6197 tmp = env->v7m.other_sp; 6198 env->v7m.other_sp = env->regs[13]; 6199 env->regs[13] = tmp; 6200 } 6201 } 6202 } 6203 6204 /* Write to v7M CONTROL.SPSEL bit. This may change the current 6205 * stack pointer between Main and Process stack pointers. 6206 */ 6207 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 6208 { 6209 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 6210 } 6211 6212 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 6213 { 6214 /* Write a new value to v7m.exception, thus transitioning into or out 6215 * of Handler mode; this may result in a change of active stack pointer. 6216 */ 6217 bool new_is_psp, old_is_psp = v7m_using_psp(env); 6218 uint32_t tmp; 6219 6220 env->v7m.exception = new_exc; 6221 6222 new_is_psp = v7m_using_psp(env); 6223 6224 if (old_is_psp != new_is_psp) { 6225 tmp = env->v7m.other_sp; 6226 env->v7m.other_sp = env->regs[13]; 6227 env->regs[13] = tmp; 6228 } 6229 } 6230 6231 /* Switch M profile security state between NS and S */ 6232 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 6233 { 6234 uint32_t new_ss_msp, new_ss_psp; 6235 6236 if (env->v7m.secure == new_secstate) { 6237 return; 6238 } 6239 6240 /* All the banked state is accessed by looking at env->v7m.secure 6241 * except for the stack pointer; rearrange the SP appropriately. 6242 */ 6243 new_ss_msp = env->v7m.other_ss_msp; 6244 new_ss_psp = env->v7m.other_ss_psp; 6245 6246 if (v7m_using_psp(env)) { 6247 env->v7m.other_ss_psp = env->regs[13]; 6248 env->v7m.other_ss_msp = env->v7m.other_sp; 6249 } else { 6250 env->v7m.other_ss_msp = env->regs[13]; 6251 env->v7m.other_ss_psp = env->v7m.other_sp; 6252 } 6253 6254 env->v7m.secure = new_secstate; 6255 6256 if (v7m_using_psp(env)) { 6257 env->regs[13] = new_ss_psp; 6258 env->v7m.other_sp = new_ss_msp; 6259 } else { 6260 env->regs[13] = new_ss_msp; 6261 env->v7m.other_sp = new_ss_psp; 6262 } 6263 } 6264 6265 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6266 { 6267 /* Handle v7M BXNS: 6268 * - if the return value is a magic value, do exception return (like BX) 6269 * - otherwise bit 0 of the return value is the target security state 6270 */ 6271 uint32_t min_magic; 6272 6273 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6274 /* Covers FNC_RETURN and EXC_RETURN magic */ 6275 min_magic = FNC_RETURN_MIN_MAGIC; 6276 } else { 6277 /* EXC_RETURN magic only */ 6278 min_magic = EXC_RETURN_MIN_MAGIC; 6279 } 6280 6281 if (dest >= min_magic) { 6282 /* This is an exception return magic value; put it where 6283 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 6284 * Note that if we ever add gen_ss_advance() singlestep support to 6285 * M profile this should count as an "instruction execution complete" 6286 * event (compare gen_bx_excret_final_code()). 6287 */ 6288 env->regs[15] = dest & ~1; 6289 env->thumb = dest & 1; 6290 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 6291 /* notreached */ 6292 } 6293 6294 /* translate.c should have made BXNS UNDEF unless we're secure */ 6295 assert(env->v7m.secure); 6296 6297 switch_v7m_security_state(env, dest & 1); 6298 env->thumb = 1; 6299 env->regs[15] = dest & ~1; 6300 } 6301 6302 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6303 { 6304 /* Handle v7M BLXNS: 6305 * - bit 0 of the destination address is the target security state 6306 */ 6307 6308 /* At this point regs[15] is the address just after the BLXNS */ 6309 uint32_t nextinst = env->regs[15] | 1; 6310 uint32_t sp = env->regs[13] - 8; 6311 uint32_t saved_psr; 6312 6313 /* translate.c will have made BLXNS UNDEF unless we're secure */ 6314 assert(env->v7m.secure); 6315 6316 if (dest & 1) { 6317 /* target is Secure, so this is just a normal BLX, 6318 * except that the low bit doesn't indicate Thumb/not. 6319 */ 6320 env->regs[14] = nextinst; 6321 env->thumb = 1; 6322 env->regs[15] = dest & ~1; 6323 return; 6324 } 6325 6326 /* Target is non-secure: first push a stack frame */ 6327 if (!QEMU_IS_ALIGNED(sp, 8)) { 6328 qemu_log_mask(LOG_GUEST_ERROR, 6329 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 6330 } 6331 6332 saved_psr = env->v7m.exception; 6333 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 6334 saved_psr |= XPSR_SFPA; 6335 } 6336 6337 /* Note that these stores can throw exceptions on MPU faults */ 6338 cpu_stl_data(env, sp, nextinst); 6339 cpu_stl_data(env, sp + 4, saved_psr); 6340 6341 env->regs[13] = sp; 6342 env->regs[14] = 0xfeffffff; 6343 if (arm_v7m_is_handler_mode(env)) { 6344 /* Write a dummy value to IPSR, to avoid leaking the current secure 6345 * exception number to non-secure code. This is guaranteed not 6346 * to cause write_v7m_exception() to actually change stacks. 6347 */ 6348 write_v7m_exception(env, 1); 6349 } 6350 switch_v7m_security_state(env, 0); 6351 env->thumb = 1; 6352 env->regs[15] = dest; 6353 } 6354 6355 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 6356 bool spsel) 6357 { 6358 /* Return a pointer to the location where we currently store the 6359 * stack pointer for the requested security state and thread mode. 6360 * This pointer will become invalid if the CPU state is updated 6361 * such that the stack pointers are switched around (eg changing 6362 * the SPSEL control bit). 6363 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 6364 * Unlike that pseudocode, we require the caller to pass us in the 6365 * SPSEL control bit value; this is because we also use this 6366 * function in handling of pushing of the callee-saves registers 6367 * part of the v8M stack frame (pseudocode PushCalleeStack()), 6368 * and in the tailchain codepath the SPSEL bit comes from the exception 6369 * return magic LR value from the previous exception. The pseudocode 6370 * opencodes the stack-selection in PushCalleeStack(), but we prefer 6371 * to make this utility function generic enough to do the job. 6372 */ 6373 bool want_psp = threadmode && spsel; 6374 6375 if (secure == env->v7m.secure) { 6376 if (want_psp == v7m_using_psp(env)) { 6377 return &env->regs[13]; 6378 } else { 6379 return &env->v7m.other_sp; 6380 } 6381 } else { 6382 if (want_psp) { 6383 return &env->v7m.other_ss_psp; 6384 } else { 6385 return &env->v7m.other_ss_msp; 6386 } 6387 } 6388 } 6389 6390 static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure) 6391 { 6392 CPUState *cs = CPU(cpu); 6393 CPUARMState *env = &cpu->env; 6394 MemTxResult result; 6395 hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4; 6396 uint32_t addr; 6397 6398 addr = address_space_ldl(cs->as, vec, 6399 MEMTXATTRS_UNSPECIFIED, &result); 6400 if (result != MEMTX_OK) { 6401 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL, 6402 * which would then be immediately followed by our failing to load 6403 * the entry vector for that HardFault, which is a Lockup case. 6404 * Since we don't model Lockup, we just report this guest error 6405 * via cpu_abort(). 6406 */ 6407 cpu_abort(cs, "Failed to read from %s exception vector table " 6408 "entry %08x\n", targets_secure ? "secure" : "nonsecure", 6409 (unsigned)vec); 6410 } 6411 return addr; 6412 } 6413 6414 static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain) 6415 { 6416 /* For v8M, push the callee-saves register part of the stack frame. 6417 * Compare the v8M pseudocode PushCalleeStack(). 6418 * In the tailchaining case this may not be the current stack. 6419 */ 6420 CPUARMState *env = &cpu->env; 6421 CPUState *cs = CPU(cpu); 6422 uint32_t *frame_sp_p; 6423 uint32_t frameptr; 6424 6425 if (dotailchain) { 6426 frame_sp_p = get_v7m_sp_ptr(env, true, 6427 lr & R_V7M_EXCRET_MODE_MASK, 6428 lr & R_V7M_EXCRET_SPSEL_MASK); 6429 } else { 6430 frame_sp_p = &env->regs[13]; 6431 } 6432 6433 frameptr = *frame_sp_p - 0x28; 6434 6435 stl_phys(cs->as, frameptr, 0xfefa125b); 6436 stl_phys(cs->as, frameptr + 0x8, env->regs[4]); 6437 stl_phys(cs->as, frameptr + 0xc, env->regs[5]); 6438 stl_phys(cs->as, frameptr + 0x10, env->regs[6]); 6439 stl_phys(cs->as, frameptr + 0x14, env->regs[7]); 6440 stl_phys(cs->as, frameptr + 0x18, env->regs[8]); 6441 stl_phys(cs->as, frameptr + 0x1c, env->regs[9]); 6442 stl_phys(cs->as, frameptr + 0x20, env->regs[10]); 6443 stl_phys(cs->as, frameptr + 0x24, env->regs[11]); 6444 6445 *frame_sp_p = frameptr; 6446 } 6447 6448 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain) 6449 { 6450 /* Do the "take the exception" parts of exception entry, 6451 * but not the pushing of state to the stack. This is 6452 * similar to the pseudocode ExceptionTaken() function. 6453 */ 6454 CPUARMState *env = &cpu->env; 6455 uint32_t addr; 6456 bool targets_secure; 6457 6458 targets_secure = armv7m_nvic_acknowledge_irq(env->nvic); 6459 6460 if (arm_feature(env, ARM_FEATURE_V8)) { 6461 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 6462 (lr & R_V7M_EXCRET_S_MASK)) { 6463 /* The background code (the owner of the registers in the 6464 * exception frame) is Secure. This means it may either already 6465 * have or now needs to push callee-saves registers. 6466 */ 6467 if (targets_secure) { 6468 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 6469 /* We took an exception from Secure to NonSecure 6470 * (which means the callee-saved registers got stacked) 6471 * and are now tailchaining to a Secure exception. 6472 * Clear DCRS so eventual return from this Secure 6473 * exception unstacks the callee-saved registers. 6474 */ 6475 lr &= ~R_V7M_EXCRET_DCRS_MASK; 6476 } 6477 } else { 6478 /* We're going to a non-secure exception; push the 6479 * callee-saves registers to the stack now, if they're 6480 * not already saved. 6481 */ 6482 if (lr & R_V7M_EXCRET_DCRS_MASK && 6483 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) { 6484 v7m_push_callee_stack(cpu, lr, dotailchain); 6485 } 6486 lr |= R_V7M_EXCRET_DCRS_MASK; 6487 } 6488 } 6489 6490 lr &= ~R_V7M_EXCRET_ES_MASK; 6491 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6492 lr |= R_V7M_EXCRET_ES_MASK; 6493 } 6494 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 6495 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 6496 lr |= R_V7M_EXCRET_SPSEL_MASK; 6497 } 6498 6499 /* Clear registers if necessary to prevent non-secure exception 6500 * code being able to see register values from secure code. 6501 * Where register values become architecturally UNKNOWN we leave 6502 * them with their previous values. 6503 */ 6504 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6505 if (!targets_secure) { 6506 /* Always clear the caller-saved registers (they have been 6507 * pushed to the stack earlier in v7m_push_stack()). 6508 * Clear callee-saved registers if the background code is 6509 * Secure (in which case these regs were saved in 6510 * v7m_push_callee_stack()). 6511 */ 6512 int i; 6513 6514 for (i = 0; i < 13; i++) { 6515 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 6516 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 6517 env->regs[i] = 0; 6518 } 6519 } 6520 /* Clear EAPSR */ 6521 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 6522 } 6523 } 6524 } 6525 6526 /* Switch to target security state -- must do this before writing SPSEL */ 6527 switch_v7m_security_state(env, targets_secure); 6528 write_v7m_control_spsel(env, 0); 6529 arm_clear_exclusive(env); 6530 /* Clear IT bits */ 6531 env->condexec_bits = 0; 6532 env->regs[14] = lr; 6533 addr = arm_v7m_load_vector(cpu, targets_secure); 6534 env->regs[15] = addr & 0xfffffffe; 6535 env->thumb = addr & 1; 6536 } 6537 6538 static void v7m_push_stack(ARMCPU *cpu) 6539 { 6540 /* Do the "set up stack frame" part of exception entry, 6541 * similar to pseudocode PushStack(). 6542 */ 6543 CPUARMState *env = &cpu->env; 6544 uint32_t xpsr = xpsr_read(env); 6545 6546 /* Align stack pointer if the guest wants that */ 6547 if ((env->regs[13] & 4) && 6548 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 6549 env->regs[13] -= 4; 6550 xpsr |= XPSR_SPREALIGN; 6551 } 6552 /* Switch to the handler mode. */ 6553 v7m_push(env, xpsr); 6554 v7m_push(env, env->regs[15]); 6555 v7m_push(env, env->regs[14]); 6556 v7m_push(env, env->regs[12]); 6557 v7m_push(env, env->regs[3]); 6558 v7m_push(env, env->regs[2]); 6559 v7m_push(env, env->regs[1]); 6560 v7m_push(env, env->regs[0]); 6561 } 6562 6563 static void do_v7m_exception_exit(ARMCPU *cpu) 6564 { 6565 CPUARMState *env = &cpu->env; 6566 CPUState *cs = CPU(cpu); 6567 uint32_t excret; 6568 uint32_t xpsr; 6569 bool ufault = false; 6570 bool sfault = false; 6571 bool return_to_sp_process; 6572 bool return_to_handler; 6573 bool rettobase = false; 6574 bool exc_secure = false; 6575 bool return_to_secure; 6576 6577 /* If we're not in Handler mode then jumps to magic exception-exit 6578 * addresses don't have magic behaviour. However for the v8M 6579 * security extensions the magic secure-function-return has to 6580 * work in thread mode too, so to avoid doing an extra check in 6581 * the generated code we allow exception-exit magic to also cause the 6582 * internal exception and bring us here in thread mode. Correct code 6583 * will never try to do this (the following insn fetch will always 6584 * fault) so we the overhead of having taken an unnecessary exception 6585 * doesn't matter. 6586 */ 6587 if (!arm_v7m_is_handler_mode(env)) { 6588 return; 6589 } 6590 6591 /* In the spec pseudocode ExceptionReturn() is called directly 6592 * from BXWritePC() and gets the full target PC value including 6593 * bit zero. In QEMU's implementation we treat it as a normal 6594 * jump-to-register (which is then caught later on), and so split 6595 * the target value up between env->regs[15] and env->thumb in 6596 * gen_bx(). Reconstitute it. 6597 */ 6598 excret = env->regs[15]; 6599 if (env->thumb) { 6600 excret |= 1; 6601 } 6602 6603 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 6604 " previous exception %d\n", 6605 excret, env->v7m.exception); 6606 6607 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 6608 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 6609 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 6610 excret); 6611 } 6612 6613 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6614 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 6615 * we pick which FAULTMASK to clear. 6616 */ 6617 if (!env->v7m.secure && 6618 ((excret & R_V7M_EXCRET_ES_MASK) || 6619 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 6620 sfault = 1; 6621 /* For all other purposes, treat ES as 0 (R_HXSR) */ 6622 excret &= ~R_V7M_EXCRET_ES_MASK; 6623 } 6624 } 6625 6626 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 6627 /* Auto-clear FAULTMASK on return from other than NMI. 6628 * If the security extension is implemented then this only 6629 * happens if the raw execution priority is >= 0; the 6630 * value of the ES bit in the exception return value indicates 6631 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 6632 */ 6633 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6634 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 6635 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 6636 env->v7m.faultmask[exc_secure] = 0; 6637 } 6638 } else { 6639 env->v7m.faultmask[M_REG_NS] = 0; 6640 } 6641 } 6642 6643 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 6644 exc_secure)) { 6645 case -1: 6646 /* attempt to exit an exception that isn't active */ 6647 ufault = true; 6648 break; 6649 case 0: 6650 /* still an irq active now */ 6651 break; 6652 case 1: 6653 /* we returned to base exception level, no nesting. 6654 * (In the pseudocode this is written using "NestedActivation != 1" 6655 * where we have 'rettobase == false'.) 6656 */ 6657 rettobase = true; 6658 break; 6659 default: 6660 g_assert_not_reached(); 6661 } 6662 6663 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 6664 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 6665 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 6666 (excret & R_V7M_EXCRET_S_MASK); 6667 6668 if (arm_feature(env, ARM_FEATURE_V8)) { 6669 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6670 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 6671 * we choose to take the UsageFault. 6672 */ 6673 if ((excret & R_V7M_EXCRET_S_MASK) || 6674 (excret & R_V7M_EXCRET_ES_MASK) || 6675 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 6676 ufault = true; 6677 } 6678 } 6679 if (excret & R_V7M_EXCRET_RES0_MASK) { 6680 ufault = true; 6681 } 6682 } else { 6683 /* For v7M we only recognize certain combinations of the low bits */ 6684 switch (excret & 0xf) { 6685 case 1: /* Return to Handler */ 6686 break; 6687 case 13: /* Return to Thread using Process stack */ 6688 case 9: /* Return to Thread using Main stack */ 6689 /* We only need to check NONBASETHRDENA for v7M, because in 6690 * v8M this bit does not exist (it is RES1). 6691 */ 6692 if (!rettobase && 6693 !(env->v7m.ccr[env->v7m.secure] & 6694 R_V7M_CCR_NONBASETHRDENA_MASK)) { 6695 ufault = true; 6696 } 6697 break; 6698 default: 6699 ufault = true; 6700 } 6701 } 6702 6703 if (sfault) { 6704 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 6705 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 6706 v7m_exception_taken(cpu, excret, true); 6707 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 6708 "stackframe: failed EXC_RETURN.ES validity check\n"); 6709 return; 6710 } 6711 6712 if (ufault) { 6713 /* Bad exception return: instead of popping the exception 6714 * stack, directly take a usage fault on the current stack. 6715 */ 6716 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6717 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 6718 v7m_exception_taken(cpu, excret, true); 6719 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 6720 "stackframe: failed exception return integrity check\n"); 6721 return; 6722 } 6723 6724 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 6725 * Handler mode (and will be until we write the new XPSR.Interrupt 6726 * field) this does not switch around the current stack pointer. 6727 */ 6728 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 6729 6730 switch_v7m_security_state(env, return_to_secure); 6731 6732 { 6733 /* The stack pointer we should be reading the exception frame from 6734 * depends on bits in the magic exception return type value (and 6735 * for v8M isn't necessarily the stack pointer we will eventually 6736 * end up resuming execution with). Get a pointer to the location 6737 * in the CPU state struct where the SP we need is currently being 6738 * stored; we will use and modify it in place. 6739 * We use this limited C variable scope so we don't accidentally 6740 * use 'frame_sp_p' after we do something that makes it invalid. 6741 */ 6742 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 6743 return_to_secure, 6744 !return_to_handler, 6745 return_to_sp_process); 6746 uint32_t frameptr = *frame_sp_p; 6747 6748 if (!QEMU_IS_ALIGNED(frameptr, 8) && 6749 arm_feature(env, ARM_FEATURE_V8)) { 6750 qemu_log_mask(LOG_GUEST_ERROR, 6751 "M profile exception return with non-8-aligned SP " 6752 "for destination state is UNPREDICTABLE\n"); 6753 } 6754 6755 /* Do we need to pop callee-saved registers? */ 6756 if (return_to_secure && 6757 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 6758 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 6759 uint32_t expected_sig = 0xfefa125b; 6760 uint32_t actual_sig = ldl_phys(cs->as, frameptr); 6761 6762 if (expected_sig != actual_sig) { 6763 /* Take a SecureFault on the current stack */ 6764 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 6765 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 6766 v7m_exception_taken(cpu, excret, true); 6767 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 6768 "stackframe: failed exception return integrity " 6769 "signature check\n"); 6770 return; 6771 } 6772 6773 env->regs[4] = ldl_phys(cs->as, frameptr + 0x8); 6774 env->regs[5] = ldl_phys(cs->as, frameptr + 0xc); 6775 env->regs[6] = ldl_phys(cs->as, frameptr + 0x10); 6776 env->regs[7] = ldl_phys(cs->as, frameptr + 0x14); 6777 env->regs[8] = ldl_phys(cs->as, frameptr + 0x18); 6778 env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c); 6779 env->regs[10] = ldl_phys(cs->as, frameptr + 0x20); 6780 env->regs[11] = ldl_phys(cs->as, frameptr + 0x24); 6781 6782 frameptr += 0x28; 6783 } 6784 6785 /* Pop registers. TODO: make these accesses use the correct 6786 * attributes and address space (S/NS, priv/unpriv) and handle 6787 * memory transaction failures. 6788 */ 6789 env->regs[0] = ldl_phys(cs->as, frameptr); 6790 env->regs[1] = ldl_phys(cs->as, frameptr + 0x4); 6791 env->regs[2] = ldl_phys(cs->as, frameptr + 0x8); 6792 env->regs[3] = ldl_phys(cs->as, frameptr + 0xc); 6793 env->regs[12] = ldl_phys(cs->as, frameptr + 0x10); 6794 env->regs[14] = ldl_phys(cs->as, frameptr + 0x14); 6795 env->regs[15] = ldl_phys(cs->as, frameptr + 0x18); 6796 6797 /* Returning from an exception with a PC with bit 0 set is defined 6798 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 6799 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 6800 * the lsbit, and there are several RTOSes out there which incorrectly 6801 * assume the r15 in the stack frame should be a Thumb-style "lsbit 6802 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 6803 * complain about the badly behaved guest. 6804 */ 6805 if (env->regs[15] & 1) { 6806 env->regs[15] &= ~1U; 6807 if (!arm_feature(env, ARM_FEATURE_V8)) { 6808 qemu_log_mask(LOG_GUEST_ERROR, 6809 "M profile return from interrupt with misaligned " 6810 "PC is UNPREDICTABLE on v7M\n"); 6811 } 6812 } 6813 6814 xpsr = ldl_phys(cs->as, frameptr + 0x1c); 6815 6816 if (arm_feature(env, ARM_FEATURE_V8)) { 6817 /* For v8M we have to check whether the xPSR exception field 6818 * matches the EXCRET value for return to handler/thread 6819 * before we commit to changing the SP and xPSR. 6820 */ 6821 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 6822 if (return_to_handler != will_be_handler) { 6823 /* Take an INVPC UsageFault on the current stack. 6824 * By this point we will have switched to the security state 6825 * for the background state, so this UsageFault will target 6826 * that state. 6827 */ 6828 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 6829 env->v7m.secure); 6830 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6831 v7m_exception_taken(cpu, excret, true); 6832 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 6833 "stackframe: failed exception return integrity " 6834 "check\n"); 6835 return; 6836 } 6837 } 6838 6839 /* Commit to consuming the stack frame */ 6840 frameptr += 0x20; 6841 /* Undo stack alignment (the SPREALIGN bit indicates that the original 6842 * pre-exception SP was not 8-aligned and we added a padding word to 6843 * align it, so we undo this by ORing in the bit that increases it 6844 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 6845 * would work too but a logical OR is how the pseudocode specifies it.) 6846 */ 6847 if (xpsr & XPSR_SPREALIGN) { 6848 frameptr |= 4; 6849 } 6850 *frame_sp_p = frameptr; 6851 } 6852 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 6853 xpsr_write(env, xpsr, ~XPSR_SPREALIGN); 6854 6855 /* The restored xPSR exception field will be zero if we're 6856 * resuming in Thread mode. If that doesn't match what the 6857 * exception return excret specified then this is a UsageFault. 6858 * v7M requires we make this check here; v8M did it earlier. 6859 */ 6860 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 6861 /* Take an INVPC UsageFault by pushing the stack again; 6862 * we know we're v7M so this is never a Secure UsageFault. 6863 */ 6864 assert(!arm_feature(env, ARM_FEATURE_V8)); 6865 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 6866 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6867 v7m_push_stack(cpu); 6868 v7m_exception_taken(cpu, excret, false); 6869 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 6870 "failed exception return integrity check\n"); 6871 return; 6872 } 6873 6874 /* Otherwise, we have a successful exception exit. */ 6875 arm_clear_exclusive(env); 6876 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 6877 } 6878 6879 static bool do_v7m_function_return(ARMCPU *cpu) 6880 { 6881 /* v8M security extensions magic function return. 6882 * We may either: 6883 * (1) throw an exception (longjump) 6884 * (2) return true if we successfully handled the function return 6885 * (3) return false if we failed a consistency check and have 6886 * pended a UsageFault that needs to be taken now 6887 * 6888 * At this point the magic return value is split between env->regs[15] 6889 * and env->thumb. We don't bother to reconstitute it because we don't 6890 * need it (all values are handled the same way). 6891 */ 6892 CPUARMState *env = &cpu->env; 6893 uint32_t newpc, newpsr, newpsr_exc; 6894 6895 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 6896 6897 { 6898 bool threadmode, spsel; 6899 TCGMemOpIdx oi; 6900 ARMMMUIdx mmu_idx; 6901 uint32_t *frame_sp_p; 6902 uint32_t frameptr; 6903 6904 /* Pull the return address and IPSR from the Secure stack */ 6905 threadmode = !arm_v7m_is_handler_mode(env); 6906 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 6907 6908 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 6909 frameptr = *frame_sp_p; 6910 6911 /* These loads may throw an exception (for MPU faults). We want to 6912 * do them as secure, so work out what MMU index that is. 6913 */ 6914 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 6915 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 6916 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 6917 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 6918 6919 /* Consistency checks on new IPSR */ 6920 newpsr_exc = newpsr & XPSR_EXCP; 6921 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 6922 (env->v7m.exception == 1 && newpsr_exc != 0))) { 6923 /* Pend the fault and tell our caller to take it */ 6924 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6925 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 6926 env->v7m.secure); 6927 qemu_log_mask(CPU_LOG_INT, 6928 "...taking INVPC UsageFault: " 6929 "IPSR consistency check failed\n"); 6930 return false; 6931 } 6932 6933 *frame_sp_p = frameptr + 8; 6934 } 6935 6936 /* This invalidates frame_sp_p */ 6937 switch_v7m_security_state(env, true); 6938 env->v7m.exception = newpsr_exc; 6939 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 6940 if (newpsr & XPSR_SFPA) { 6941 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 6942 } 6943 xpsr_write(env, 0, XPSR_IT); 6944 env->thumb = newpc & 1; 6945 env->regs[15] = newpc & ~1; 6946 6947 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 6948 return true; 6949 } 6950 6951 static void arm_log_exception(int idx) 6952 { 6953 if (qemu_loglevel_mask(CPU_LOG_INT)) { 6954 const char *exc = NULL; 6955 static const char * const excnames[] = { 6956 [EXCP_UDEF] = "Undefined Instruction", 6957 [EXCP_SWI] = "SVC", 6958 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 6959 [EXCP_DATA_ABORT] = "Data Abort", 6960 [EXCP_IRQ] = "IRQ", 6961 [EXCP_FIQ] = "FIQ", 6962 [EXCP_BKPT] = "Breakpoint", 6963 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 6964 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 6965 [EXCP_HVC] = "Hypervisor Call", 6966 [EXCP_HYP_TRAP] = "Hypervisor Trap", 6967 [EXCP_SMC] = "Secure Monitor Call", 6968 [EXCP_VIRQ] = "Virtual IRQ", 6969 [EXCP_VFIQ] = "Virtual FIQ", 6970 [EXCP_SEMIHOST] = "Semihosting call", 6971 [EXCP_NOCP] = "v7M NOCP UsageFault", 6972 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 6973 }; 6974 6975 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 6976 exc = excnames[idx]; 6977 } 6978 if (!exc) { 6979 exc = "unknown"; 6980 } 6981 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 6982 } 6983 } 6984 6985 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 6986 uint32_t addr, uint16_t *insn) 6987 { 6988 /* Load a 16-bit portion of a v7M instruction, returning true on success, 6989 * or false on failure (in which case we will have pended the appropriate 6990 * exception). 6991 * We need to do the instruction fetch's MPU and SAU checks 6992 * like this because there is no MMU index that would allow 6993 * doing the load with a single function call. Instead we must 6994 * first check that the security attributes permit the load 6995 * and that they don't mismatch on the two halves of the instruction, 6996 * and then we do the load as a secure load (ie using the security 6997 * attributes of the address, not the CPU, as architecturally required). 6998 */ 6999 CPUState *cs = CPU(cpu); 7000 CPUARMState *env = &cpu->env; 7001 V8M_SAttributes sattrs = {}; 7002 MemTxAttrs attrs = {}; 7003 ARMMMUFaultInfo fi = {}; 7004 MemTxResult txres; 7005 target_ulong page_size; 7006 hwaddr physaddr; 7007 int prot; 7008 7009 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 7010 if (!sattrs.nsc || sattrs.ns) { 7011 /* This must be the second half of the insn, and it straddles a 7012 * region boundary with the second half not being S&NSC. 7013 */ 7014 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7015 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7016 qemu_log_mask(CPU_LOG_INT, 7017 "...really SecureFault with SFSR.INVEP\n"); 7018 return false; 7019 } 7020 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 7021 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { 7022 /* the MPU lookup failed */ 7023 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7024 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 7025 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 7026 return false; 7027 } 7028 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 7029 attrs, &txres); 7030 if (txres != MEMTX_OK) { 7031 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7032 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7033 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 7034 return false; 7035 } 7036 return true; 7037 } 7038 7039 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 7040 { 7041 /* Check whether this attempt to execute code in a Secure & NS-Callable 7042 * memory region is for an SG instruction; if so, then emulate the 7043 * effect of the SG instruction and return true. Otherwise pend 7044 * the correct kind of exception and return false. 7045 */ 7046 CPUARMState *env = &cpu->env; 7047 ARMMMUIdx mmu_idx; 7048 uint16_t insn; 7049 7050 /* We should never get here unless get_phys_addr_pmsav8() caused 7051 * an exception for NS executing in S&NSC memory. 7052 */ 7053 assert(!env->v7m.secure); 7054 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7055 7056 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 7057 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7058 7059 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 7060 return false; 7061 } 7062 7063 if (!env->thumb) { 7064 goto gen_invep; 7065 } 7066 7067 if (insn != 0xe97f) { 7068 /* Not an SG instruction first half (we choose the IMPDEF 7069 * early-SG-check option). 7070 */ 7071 goto gen_invep; 7072 } 7073 7074 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 7075 return false; 7076 } 7077 7078 if (insn != 0xe97f) { 7079 /* Not an SG instruction second half (yes, both halves of the SG 7080 * insn have the same hex value) 7081 */ 7082 goto gen_invep; 7083 } 7084 7085 /* OK, we have confirmed that we really have an SG instruction. 7086 * We know we're NS in S memory so don't need to repeat those checks. 7087 */ 7088 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 7089 ", executing it\n", env->regs[15]); 7090 env->regs[14] &= ~1; 7091 switch_v7m_security_state(env, true); 7092 xpsr_write(env, 0, XPSR_IT); 7093 env->regs[15] += 4; 7094 return true; 7095 7096 gen_invep: 7097 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7098 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7099 qemu_log_mask(CPU_LOG_INT, 7100 "...really SecureFault with SFSR.INVEP\n"); 7101 return false; 7102 } 7103 7104 void arm_v7m_cpu_do_interrupt(CPUState *cs) 7105 { 7106 ARMCPU *cpu = ARM_CPU(cs); 7107 CPUARMState *env = &cpu->env; 7108 uint32_t lr; 7109 7110 arm_log_exception(cs->exception_index); 7111 7112 /* For exceptions we just mark as pending on the NVIC, and let that 7113 handle it. */ 7114 switch (cs->exception_index) { 7115 case EXCP_UDEF: 7116 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7117 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 7118 break; 7119 case EXCP_NOCP: 7120 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7121 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 7122 break; 7123 case EXCP_INVSTATE: 7124 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7125 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 7126 break; 7127 case EXCP_SWI: 7128 /* The PC already points to the next instruction. */ 7129 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 7130 break; 7131 case EXCP_PREFETCH_ABORT: 7132 case EXCP_DATA_ABORT: 7133 /* Note that for M profile we don't have a guest facing FSR, but 7134 * the env->exception.fsr will be populated by the code that 7135 * raises the fault, in the A profile short-descriptor format. 7136 */ 7137 switch (env->exception.fsr & 0xf) { 7138 case M_FAKE_FSR_NSC_EXEC: 7139 /* Exception generated when we try to execute code at an address 7140 * which is marked as Secure & Non-Secure Callable and the CPU 7141 * is in the Non-Secure state. The only instruction which can 7142 * be executed like this is SG (and that only if both halves of 7143 * the SG instruction have the same security attributes.) 7144 * Everything else must generate an INVEP SecureFault, so we 7145 * emulate the SG instruction here. 7146 */ 7147 if (v7m_handle_execute_nsc(cpu)) { 7148 return; 7149 } 7150 break; 7151 case M_FAKE_FSR_SFAULT: 7152 /* Various flavours of SecureFault for attempts to execute or 7153 * access data in the wrong security state. 7154 */ 7155 switch (cs->exception_index) { 7156 case EXCP_PREFETCH_ABORT: 7157 if (env->v7m.secure) { 7158 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 7159 qemu_log_mask(CPU_LOG_INT, 7160 "...really SecureFault with SFSR.INVTRAN\n"); 7161 } else { 7162 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7163 qemu_log_mask(CPU_LOG_INT, 7164 "...really SecureFault with SFSR.INVEP\n"); 7165 } 7166 break; 7167 case EXCP_DATA_ABORT: 7168 /* This must be an NS access to S memory */ 7169 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 7170 qemu_log_mask(CPU_LOG_INT, 7171 "...really SecureFault with SFSR.AUVIOL\n"); 7172 break; 7173 } 7174 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7175 break; 7176 case 0x8: /* External Abort */ 7177 switch (cs->exception_index) { 7178 case EXCP_PREFETCH_ABORT: 7179 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7180 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 7181 break; 7182 case EXCP_DATA_ABORT: 7183 env->v7m.cfsr[M_REG_NS] |= 7184 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 7185 env->v7m.bfar = env->exception.vaddress; 7186 qemu_log_mask(CPU_LOG_INT, 7187 "...with CFSR.PRECISERR and BFAR 0x%x\n", 7188 env->v7m.bfar); 7189 break; 7190 } 7191 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7192 break; 7193 default: 7194 /* All other FSR values are either MPU faults or "can't happen 7195 * for M profile" cases. 7196 */ 7197 switch (cs->exception_index) { 7198 case EXCP_PREFETCH_ABORT: 7199 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7200 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 7201 break; 7202 case EXCP_DATA_ABORT: 7203 env->v7m.cfsr[env->v7m.secure] |= 7204 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 7205 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 7206 qemu_log_mask(CPU_LOG_INT, 7207 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 7208 env->v7m.mmfar[env->v7m.secure]); 7209 break; 7210 } 7211 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 7212 env->v7m.secure); 7213 break; 7214 } 7215 break; 7216 case EXCP_BKPT: 7217 if (semihosting_enabled()) { 7218 int nr; 7219 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 7220 if (nr == 0xab) { 7221 env->regs[15] += 2; 7222 qemu_log_mask(CPU_LOG_INT, 7223 "...handling as semihosting call 0x%x\n", 7224 env->regs[0]); 7225 env->regs[0] = do_arm_semihosting(env); 7226 return; 7227 } 7228 } 7229 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 7230 break; 7231 case EXCP_IRQ: 7232 break; 7233 case EXCP_EXCEPTION_EXIT: 7234 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 7235 /* Must be v8M security extension function return */ 7236 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 7237 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7238 if (do_v7m_function_return(cpu)) { 7239 return; 7240 } 7241 } else { 7242 do_v7m_exception_exit(cpu); 7243 return; 7244 } 7245 break; 7246 default: 7247 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7248 return; /* Never happens. Keep compiler happy. */ 7249 } 7250 7251 if (arm_feature(env, ARM_FEATURE_V8)) { 7252 lr = R_V7M_EXCRET_RES1_MASK | 7253 R_V7M_EXCRET_DCRS_MASK | 7254 R_V7M_EXCRET_FTYPE_MASK; 7255 /* The S bit indicates whether we should return to Secure 7256 * or NonSecure (ie our current state). 7257 * The ES bit indicates whether we're taking this exception 7258 * to Secure or NonSecure (ie our target state). We set it 7259 * later, in v7m_exception_taken(). 7260 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 7261 * This corresponds to the ARM ARM pseudocode for v8M setting 7262 * some LR bits in PushStack() and some in ExceptionTaken(); 7263 * the distinction matters for the tailchain cases where we 7264 * can take an exception without pushing the stack. 7265 */ 7266 if (env->v7m.secure) { 7267 lr |= R_V7M_EXCRET_S_MASK; 7268 } 7269 } else { 7270 lr = R_V7M_EXCRET_RES1_MASK | 7271 R_V7M_EXCRET_S_MASK | 7272 R_V7M_EXCRET_DCRS_MASK | 7273 R_V7M_EXCRET_FTYPE_MASK | 7274 R_V7M_EXCRET_ES_MASK; 7275 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 7276 lr |= R_V7M_EXCRET_SPSEL_MASK; 7277 } 7278 } 7279 if (!arm_v7m_is_handler_mode(env)) { 7280 lr |= R_V7M_EXCRET_MODE_MASK; 7281 } 7282 7283 v7m_push_stack(cpu); 7284 v7m_exception_taken(cpu, lr, false); 7285 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception); 7286 } 7287 7288 /* Function used to synchronize QEMU's AArch64 register set with AArch32 7289 * register set. This is necessary when switching between AArch32 and AArch64 7290 * execution state. 7291 */ 7292 void aarch64_sync_32_to_64(CPUARMState *env) 7293 { 7294 int i; 7295 uint32_t mode = env->uncached_cpsr & CPSR_M; 7296 7297 /* We can blanket copy R[0:7] to X[0:7] */ 7298 for (i = 0; i < 8; i++) { 7299 env->xregs[i] = env->regs[i]; 7300 } 7301 7302 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7303 * Otherwise, they come from the banked user regs. 7304 */ 7305 if (mode == ARM_CPU_MODE_FIQ) { 7306 for (i = 8; i < 13; i++) { 7307 env->xregs[i] = env->usr_regs[i - 8]; 7308 } 7309 } else { 7310 for (i = 8; i < 13; i++) { 7311 env->xregs[i] = env->regs[i]; 7312 } 7313 } 7314 7315 /* Registers x13-x23 are the various mode SP and FP registers. Registers 7316 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7317 * from the mode banked register. 7318 */ 7319 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7320 env->xregs[13] = env->regs[13]; 7321 env->xregs[14] = env->regs[14]; 7322 } else { 7323 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7324 /* HYP is an exception in that it is copied from r14 */ 7325 if (mode == ARM_CPU_MODE_HYP) { 7326 env->xregs[14] = env->regs[14]; 7327 } else { 7328 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 7329 } 7330 } 7331 7332 if (mode == ARM_CPU_MODE_HYP) { 7333 env->xregs[15] = env->regs[13]; 7334 } else { 7335 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7336 } 7337 7338 if (mode == ARM_CPU_MODE_IRQ) { 7339 env->xregs[16] = env->regs[14]; 7340 env->xregs[17] = env->regs[13]; 7341 } else { 7342 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 7343 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7344 } 7345 7346 if (mode == ARM_CPU_MODE_SVC) { 7347 env->xregs[18] = env->regs[14]; 7348 env->xregs[19] = env->regs[13]; 7349 } else { 7350 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 7351 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7352 } 7353 7354 if (mode == ARM_CPU_MODE_ABT) { 7355 env->xregs[20] = env->regs[14]; 7356 env->xregs[21] = env->regs[13]; 7357 } else { 7358 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 7359 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7360 } 7361 7362 if (mode == ARM_CPU_MODE_UND) { 7363 env->xregs[22] = env->regs[14]; 7364 env->xregs[23] = env->regs[13]; 7365 } else { 7366 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 7367 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7368 } 7369 7370 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7371 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7372 * FIQ bank for r8-r14. 7373 */ 7374 if (mode == ARM_CPU_MODE_FIQ) { 7375 for (i = 24; i < 31; i++) { 7376 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7377 } 7378 } else { 7379 for (i = 24; i < 29; i++) { 7380 env->xregs[i] = env->fiq_regs[i - 24]; 7381 } 7382 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7383 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 7384 } 7385 7386 env->pc = env->regs[15]; 7387 } 7388 7389 /* Function used to synchronize QEMU's AArch32 register set with AArch64 7390 * register set. This is necessary when switching between AArch32 and AArch64 7391 * execution state. 7392 */ 7393 void aarch64_sync_64_to_32(CPUARMState *env) 7394 { 7395 int i; 7396 uint32_t mode = env->uncached_cpsr & CPSR_M; 7397 7398 /* We can blanket copy X[0:7] to R[0:7] */ 7399 for (i = 0; i < 8; i++) { 7400 env->regs[i] = env->xregs[i]; 7401 } 7402 7403 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 7404 * Otherwise, we copy x8-x12 into the banked user regs. 7405 */ 7406 if (mode == ARM_CPU_MODE_FIQ) { 7407 for (i = 8; i < 13; i++) { 7408 env->usr_regs[i - 8] = env->xregs[i]; 7409 } 7410 } else { 7411 for (i = 8; i < 13; i++) { 7412 env->regs[i] = env->xregs[i]; 7413 } 7414 } 7415 7416 /* Registers r13 & r14 depend on the current mode. 7417 * If we are in a given mode, we copy the corresponding x registers to r13 7418 * and r14. Otherwise, we copy the x register to the banked r13 and r14 7419 * for the mode. 7420 */ 7421 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7422 env->regs[13] = env->xregs[13]; 7423 env->regs[14] = env->xregs[14]; 7424 } else { 7425 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 7426 7427 /* HYP is an exception in that it does not have its own banked r14 but 7428 * shares the USR r14 7429 */ 7430 if (mode == ARM_CPU_MODE_HYP) { 7431 env->regs[14] = env->xregs[14]; 7432 } else { 7433 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 7434 } 7435 } 7436 7437 if (mode == ARM_CPU_MODE_HYP) { 7438 env->regs[13] = env->xregs[15]; 7439 } else { 7440 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 7441 } 7442 7443 if (mode == ARM_CPU_MODE_IRQ) { 7444 env->regs[14] = env->xregs[16]; 7445 env->regs[13] = env->xregs[17]; 7446 } else { 7447 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 7448 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 7449 } 7450 7451 if (mode == ARM_CPU_MODE_SVC) { 7452 env->regs[14] = env->xregs[18]; 7453 env->regs[13] = env->xregs[19]; 7454 } else { 7455 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 7456 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 7457 } 7458 7459 if (mode == ARM_CPU_MODE_ABT) { 7460 env->regs[14] = env->xregs[20]; 7461 env->regs[13] = env->xregs[21]; 7462 } else { 7463 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 7464 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 7465 } 7466 7467 if (mode == ARM_CPU_MODE_UND) { 7468 env->regs[14] = env->xregs[22]; 7469 env->regs[13] = env->xregs[23]; 7470 } else { 7471 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 7472 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 7473 } 7474 7475 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7476 * mode, then we can copy to r8-r14. Otherwise, we copy to the 7477 * FIQ bank for r8-r14. 7478 */ 7479 if (mode == ARM_CPU_MODE_FIQ) { 7480 for (i = 24; i < 31; i++) { 7481 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 7482 } 7483 } else { 7484 for (i = 24; i < 29; i++) { 7485 env->fiq_regs[i - 24] = env->xregs[i]; 7486 } 7487 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 7488 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 7489 } 7490 7491 env->regs[15] = env->pc; 7492 } 7493 7494 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 7495 { 7496 ARMCPU *cpu = ARM_CPU(cs); 7497 CPUARMState *env = &cpu->env; 7498 uint32_t addr; 7499 uint32_t mask; 7500 int new_mode; 7501 uint32_t offset; 7502 uint32_t moe; 7503 7504 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 7505 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { 7506 case EC_BREAKPOINT: 7507 case EC_BREAKPOINT_SAME_EL: 7508 moe = 1; 7509 break; 7510 case EC_WATCHPOINT: 7511 case EC_WATCHPOINT_SAME_EL: 7512 moe = 10; 7513 break; 7514 case EC_AA32_BKPT: 7515 moe = 3; 7516 break; 7517 case EC_VECTORCATCH: 7518 moe = 5; 7519 break; 7520 default: 7521 moe = 0; 7522 break; 7523 } 7524 7525 if (moe) { 7526 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 7527 } 7528 7529 /* TODO: Vectored interrupt controller. */ 7530 switch (cs->exception_index) { 7531 case EXCP_UDEF: 7532 new_mode = ARM_CPU_MODE_UND; 7533 addr = 0x04; 7534 mask = CPSR_I; 7535 if (env->thumb) 7536 offset = 2; 7537 else 7538 offset = 4; 7539 break; 7540 case EXCP_SWI: 7541 new_mode = ARM_CPU_MODE_SVC; 7542 addr = 0x08; 7543 mask = CPSR_I; 7544 /* The PC already points to the next instruction. */ 7545 offset = 0; 7546 break; 7547 case EXCP_BKPT: 7548 env->exception.fsr = 2; 7549 /* Fall through to prefetch abort. */ 7550 case EXCP_PREFETCH_ABORT: 7551 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 7552 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 7553 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 7554 env->exception.fsr, (uint32_t)env->exception.vaddress); 7555 new_mode = ARM_CPU_MODE_ABT; 7556 addr = 0x0c; 7557 mask = CPSR_A | CPSR_I; 7558 offset = 4; 7559 break; 7560 case EXCP_DATA_ABORT: 7561 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 7562 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 7563 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 7564 env->exception.fsr, 7565 (uint32_t)env->exception.vaddress); 7566 new_mode = ARM_CPU_MODE_ABT; 7567 addr = 0x10; 7568 mask = CPSR_A | CPSR_I; 7569 offset = 8; 7570 break; 7571 case EXCP_IRQ: 7572 new_mode = ARM_CPU_MODE_IRQ; 7573 addr = 0x18; 7574 /* Disable IRQ and imprecise data aborts. */ 7575 mask = CPSR_A | CPSR_I; 7576 offset = 4; 7577 if (env->cp15.scr_el3 & SCR_IRQ) { 7578 /* IRQ routed to monitor mode */ 7579 new_mode = ARM_CPU_MODE_MON; 7580 mask |= CPSR_F; 7581 } 7582 break; 7583 case EXCP_FIQ: 7584 new_mode = ARM_CPU_MODE_FIQ; 7585 addr = 0x1c; 7586 /* Disable FIQ, IRQ and imprecise data aborts. */ 7587 mask = CPSR_A | CPSR_I | CPSR_F; 7588 if (env->cp15.scr_el3 & SCR_FIQ) { 7589 /* FIQ routed to monitor mode */ 7590 new_mode = ARM_CPU_MODE_MON; 7591 } 7592 offset = 4; 7593 break; 7594 case EXCP_VIRQ: 7595 new_mode = ARM_CPU_MODE_IRQ; 7596 addr = 0x18; 7597 /* Disable IRQ and imprecise data aborts. */ 7598 mask = CPSR_A | CPSR_I; 7599 offset = 4; 7600 break; 7601 case EXCP_VFIQ: 7602 new_mode = ARM_CPU_MODE_FIQ; 7603 addr = 0x1c; 7604 /* Disable FIQ, IRQ and imprecise data aborts. */ 7605 mask = CPSR_A | CPSR_I | CPSR_F; 7606 offset = 4; 7607 break; 7608 case EXCP_SMC: 7609 new_mode = ARM_CPU_MODE_MON; 7610 addr = 0x08; 7611 mask = CPSR_A | CPSR_I | CPSR_F; 7612 offset = 0; 7613 break; 7614 default: 7615 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7616 return; /* Never happens. Keep compiler happy. */ 7617 } 7618 7619 if (new_mode == ARM_CPU_MODE_MON) { 7620 addr += env->cp15.mvbar; 7621 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 7622 /* High vectors. When enabled, base address cannot be remapped. */ 7623 addr += 0xffff0000; 7624 } else { 7625 /* ARM v7 architectures provide a vector base address register to remap 7626 * the interrupt vector table. 7627 * This register is only followed in non-monitor mode, and is banked. 7628 * Note: only bits 31:5 are valid. 7629 */ 7630 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 7631 } 7632 7633 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 7634 env->cp15.scr_el3 &= ~SCR_NS; 7635 } 7636 7637 switch_mode (env, new_mode); 7638 /* For exceptions taken to AArch32 we must clear the SS bit in both 7639 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 7640 */ 7641 env->uncached_cpsr &= ~PSTATE_SS; 7642 env->spsr = cpsr_read(env); 7643 /* Clear IT bits. */ 7644 env->condexec_bits = 0; 7645 /* Switch to the new mode, and to the correct instruction set. */ 7646 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 7647 /* Set new mode endianness */ 7648 env->uncached_cpsr &= ~CPSR_E; 7649 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 7650 env->uncached_cpsr |= CPSR_E; 7651 } 7652 env->daif |= mask; 7653 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares 7654 * and we should just guard the thumb mode on V4 */ 7655 if (arm_feature(env, ARM_FEATURE_V4T)) { 7656 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 7657 } 7658 env->regs[14] = env->regs[15] + offset; 7659 env->regs[15] = addr; 7660 } 7661 7662 /* Handle exception entry to a target EL which is using AArch64 */ 7663 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 7664 { 7665 ARMCPU *cpu = ARM_CPU(cs); 7666 CPUARMState *env = &cpu->env; 7667 unsigned int new_el = env->exception.target_el; 7668 target_ulong addr = env->cp15.vbar_el[new_el]; 7669 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 7670 7671 if (arm_current_el(env) < new_el) { 7672 /* Entry vector offset depends on whether the implemented EL 7673 * immediately lower than the target level is using AArch32 or AArch64 7674 */ 7675 bool is_aa64; 7676 7677 switch (new_el) { 7678 case 3: 7679 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 7680 break; 7681 case 2: 7682 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 7683 break; 7684 case 1: 7685 is_aa64 = is_a64(env); 7686 break; 7687 default: 7688 g_assert_not_reached(); 7689 } 7690 7691 if (is_aa64) { 7692 addr += 0x400; 7693 } else { 7694 addr += 0x600; 7695 } 7696 } else if (pstate_read(env) & PSTATE_SP) { 7697 addr += 0x200; 7698 } 7699 7700 switch (cs->exception_index) { 7701 case EXCP_PREFETCH_ABORT: 7702 case EXCP_DATA_ABORT: 7703 env->cp15.far_el[new_el] = env->exception.vaddress; 7704 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 7705 env->cp15.far_el[new_el]); 7706 /* fall through */ 7707 case EXCP_BKPT: 7708 case EXCP_UDEF: 7709 case EXCP_SWI: 7710 case EXCP_HVC: 7711 case EXCP_HYP_TRAP: 7712 case EXCP_SMC: 7713 env->cp15.esr_el[new_el] = env->exception.syndrome; 7714 break; 7715 case EXCP_IRQ: 7716 case EXCP_VIRQ: 7717 addr += 0x80; 7718 break; 7719 case EXCP_FIQ: 7720 case EXCP_VFIQ: 7721 addr += 0x100; 7722 break; 7723 case EXCP_SEMIHOST: 7724 qemu_log_mask(CPU_LOG_INT, 7725 "...handling as semihosting call 0x%" PRIx64 "\n", 7726 env->xregs[0]); 7727 env->xregs[0] = do_arm_semihosting(env); 7728 return; 7729 default: 7730 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7731 } 7732 7733 if (is_a64(env)) { 7734 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 7735 aarch64_save_sp(env, arm_current_el(env)); 7736 env->elr_el[new_el] = env->pc; 7737 } else { 7738 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 7739 env->elr_el[new_el] = env->regs[15]; 7740 7741 aarch64_sync_32_to_64(env); 7742 7743 env->condexec_bits = 0; 7744 } 7745 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 7746 env->elr_el[new_el]); 7747 7748 pstate_write(env, PSTATE_DAIF | new_mode); 7749 env->aarch64 = 1; 7750 aarch64_restore_sp(env, new_el); 7751 7752 env->pc = addr; 7753 7754 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 7755 new_el, env->pc, pstate_read(env)); 7756 } 7757 7758 static inline bool check_for_semihosting(CPUState *cs) 7759 { 7760 /* Check whether this exception is a semihosting call; if so 7761 * then handle it and return true; otherwise return false. 7762 */ 7763 ARMCPU *cpu = ARM_CPU(cs); 7764 CPUARMState *env = &cpu->env; 7765 7766 if (is_a64(env)) { 7767 if (cs->exception_index == EXCP_SEMIHOST) { 7768 /* This is always the 64-bit semihosting exception. 7769 * The "is this usermode" and "is semihosting enabled" 7770 * checks have been done at translate time. 7771 */ 7772 qemu_log_mask(CPU_LOG_INT, 7773 "...handling as semihosting call 0x%" PRIx64 "\n", 7774 env->xregs[0]); 7775 env->xregs[0] = do_arm_semihosting(env); 7776 return true; 7777 } 7778 return false; 7779 } else { 7780 uint32_t imm; 7781 7782 /* Only intercept calls from privileged modes, to provide some 7783 * semblance of security. 7784 */ 7785 if (cs->exception_index != EXCP_SEMIHOST && 7786 (!semihosting_enabled() || 7787 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 7788 return false; 7789 } 7790 7791 switch (cs->exception_index) { 7792 case EXCP_SEMIHOST: 7793 /* This is always a semihosting call; the "is this usermode" 7794 * and "is semihosting enabled" checks have been done at 7795 * translate time. 7796 */ 7797 break; 7798 case EXCP_SWI: 7799 /* Check for semihosting interrupt. */ 7800 if (env->thumb) { 7801 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 7802 & 0xff; 7803 if (imm == 0xab) { 7804 break; 7805 } 7806 } else { 7807 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 7808 & 0xffffff; 7809 if (imm == 0x123456) { 7810 break; 7811 } 7812 } 7813 return false; 7814 case EXCP_BKPT: 7815 /* See if this is a semihosting syscall. */ 7816 if (env->thumb) { 7817 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 7818 & 0xff; 7819 if (imm == 0xab) { 7820 env->regs[15] += 2; 7821 break; 7822 } 7823 } 7824 return false; 7825 default: 7826 return false; 7827 } 7828 7829 qemu_log_mask(CPU_LOG_INT, 7830 "...handling as semihosting call 0x%x\n", 7831 env->regs[0]); 7832 env->regs[0] = do_arm_semihosting(env); 7833 return true; 7834 } 7835 } 7836 7837 /* Handle a CPU exception for A and R profile CPUs. 7838 * Do any appropriate logging, handle PSCI calls, and then hand off 7839 * to the AArch64-entry or AArch32-entry function depending on the 7840 * target exception level's register width. 7841 */ 7842 void arm_cpu_do_interrupt(CPUState *cs) 7843 { 7844 ARMCPU *cpu = ARM_CPU(cs); 7845 CPUARMState *env = &cpu->env; 7846 unsigned int new_el = env->exception.target_el; 7847 7848 assert(!arm_feature(env, ARM_FEATURE_M)); 7849 7850 arm_log_exception(cs->exception_index); 7851 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 7852 new_el); 7853 if (qemu_loglevel_mask(CPU_LOG_INT) 7854 && !excp_is_internal(cs->exception_index)) { 7855 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 7856 env->exception.syndrome >> ARM_EL_EC_SHIFT, 7857 env->exception.syndrome); 7858 } 7859 7860 if (arm_is_psci_call(cpu, cs->exception_index)) { 7861 arm_handle_psci_call(cpu); 7862 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 7863 return; 7864 } 7865 7866 /* Semihosting semantics depend on the register width of the 7867 * code that caused the exception, not the target exception level, 7868 * so must be handled here. 7869 */ 7870 if (check_for_semihosting(cs)) { 7871 return; 7872 } 7873 7874 assert(!excp_is_internal(cs->exception_index)); 7875 if (arm_el_is_aa64(env, new_el)) { 7876 arm_cpu_do_interrupt_aarch64(cs); 7877 } else { 7878 arm_cpu_do_interrupt_aarch32(cs); 7879 } 7880 7881 /* Hooks may change global state so BQL should be held, also the 7882 * BQL needs to be held for any modification of 7883 * cs->interrupt_request. 7884 */ 7885 g_assert(qemu_mutex_iothread_locked()); 7886 7887 arm_call_el_change_hook(cpu); 7888 7889 if (!kvm_enabled()) { 7890 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 7891 } 7892 } 7893 7894 /* Return the exception level which controls this address translation regime */ 7895 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 7896 { 7897 switch (mmu_idx) { 7898 case ARMMMUIdx_S2NS: 7899 case ARMMMUIdx_S1E2: 7900 return 2; 7901 case ARMMMUIdx_S1E3: 7902 return 3; 7903 case ARMMMUIdx_S1SE0: 7904 return arm_el_is_aa64(env, 3) ? 1 : 3; 7905 case ARMMMUIdx_S1SE1: 7906 case ARMMMUIdx_S1NSE0: 7907 case ARMMMUIdx_S1NSE1: 7908 case ARMMMUIdx_MPrivNegPri: 7909 case ARMMMUIdx_MUserNegPri: 7910 case ARMMMUIdx_MPriv: 7911 case ARMMMUIdx_MUser: 7912 case ARMMMUIdx_MSPrivNegPri: 7913 case ARMMMUIdx_MSUserNegPri: 7914 case ARMMMUIdx_MSPriv: 7915 case ARMMMUIdx_MSUser: 7916 return 1; 7917 default: 7918 g_assert_not_reached(); 7919 } 7920 } 7921 7922 /* Return the SCTLR value which controls this address translation regime */ 7923 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 7924 { 7925 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 7926 } 7927 7928 /* Return true if the specified stage of address translation is disabled */ 7929 static inline bool regime_translation_disabled(CPUARMState *env, 7930 ARMMMUIdx mmu_idx) 7931 { 7932 if (arm_feature(env, ARM_FEATURE_M)) { 7933 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 7934 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 7935 case R_V7M_MPU_CTRL_ENABLE_MASK: 7936 /* Enabled, but not for HardFault and NMI */ 7937 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 7938 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 7939 /* Enabled for all cases */ 7940 return false; 7941 case 0: 7942 default: 7943 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 7944 * we warned about that in armv7m_nvic.c when the guest set it. 7945 */ 7946 return true; 7947 } 7948 } 7949 7950 if (mmu_idx == ARMMMUIdx_S2NS) { 7951 return (env->cp15.hcr_el2 & HCR_VM) == 0; 7952 } 7953 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 7954 } 7955 7956 static inline bool regime_translation_big_endian(CPUARMState *env, 7957 ARMMMUIdx mmu_idx) 7958 { 7959 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 7960 } 7961 7962 /* Return the TCR controlling this translation regime */ 7963 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 7964 { 7965 if (mmu_idx == ARMMMUIdx_S2NS) { 7966 return &env->cp15.vtcr_el2; 7967 } 7968 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 7969 } 7970 7971 /* Convert a possible stage1+2 MMU index into the appropriate 7972 * stage 1 MMU index 7973 */ 7974 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 7975 { 7976 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 7977 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 7978 } 7979 return mmu_idx; 7980 } 7981 7982 /* Returns TBI0 value for current regime el */ 7983 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 7984 { 7985 TCR *tcr; 7986 uint32_t el; 7987 7988 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 7989 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 7990 */ 7991 mmu_idx = stage_1_mmu_idx(mmu_idx); 7992 7993 tcr = regime_tcr(env, mmu_idx); 7994 el = regime_el(env, mmu_idx); 7995 7996 if (el > 1) { 7997 return extract64(tcr->raw_tcr, 20, 1); 7998 } else { 7999 return extract64(tcr->raw_tcr, 37, 1); 8000 } 8001 } 8002 8003 /* Returns TBI1 value for current regime el */ 8004 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 8005 { 8006 TCR *tcr; 8007 uint32_t el; 8008 8009 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8010 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8011 */ 8012 mmu_idx = stage_1_mmu_idx(mmu_idx); 8013 8014 tcr = regime_tcr(env, mmu_idx); 8015 el = regime_el(env, mmu_idx); 8016 8017 if (el > 1) { 8018 return 0; 8019 } else { 8020 return extract64(tcr->raw_tcr, 38, 1); 8021 } 8022 } 8023 8024 /* Return the TTBR associated with this translation regime */ 8025 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8026 int ttbrn) 8027 { 8028 if (mmu_idx == ARMMMUIdx_S2NS) { 8029 return env->cp15.vttbr_el2; 8030 } 8031 if (ttbrn == 0) { 8032 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8033 } else { 8034 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8035 } 8036 } 8037 8038 /* Return true if the translation regime is using LPAE format page tables */ 8039 static inline bool regime_using_lpae_format(CPUARMState *env, 8040 ARMMMUIdx mmu_idx) 8041 { 8042 int el = regime_el(env, mmu_idx); 8043 if (el == 2 || arm_el_is_aa64(env, el)) { 8044 return true; 8045 } 8046 if (arm_feature(env, ARM_FEATURE_LPAE) 8047 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8048 return true; 8049 } 8050 return false; 8051 } 8052 8053 /* Returns true if the stage 1 translation regime is using LPAE format page 8054 * tables. Used when raising alignment exceptions, whose FSR changes depending 8055 * on whether the long or short descriptor format is in use. */ 8056 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8057 { 8058 mmu_idx = stage_1_mmu_idx(mmu_idx); 8059 8060 return regime_using_lpae_format(env, mmu_idx); 8061 } 8062 8063 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8064 { 8065 switch (mmu_idx) { 8066 case ARMMMUIdx_S1SE0: 8067 case ARMMMUIdx_S1NSE0: 8068 case ARMMMUIdx_MUser: 8069 case ARMMMUIdx_MSUser: 8070 case ARMMMUIdx_MUserNegPri: 8071 case ARMMMUIdx_MSUserNegPri: 8072 return true; 8073 default: 8074 return false; 8075 case ARMMMUIdx_S12NSE0: 8076 case ARMMMUIdx_S12NSE1: 8077 g_assert_not_reached(); 8078 } 8079 } 8080 8081 /* Translate section/page access permissions to page 8082 * R/W protection flags 8083 * 8084 * @env: CPUARMState 8085 * @mmu_idx: MMU index indicating required translation regime 8086 * @ap: The 3-bit access permissions (AP[2:0]) 8087 * @domain_prot: The 2-bit domain access permissions 8088 */ 8089 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8090 int ap, int domain_prot) 8091 { 8092 bool is_user = regime_is_user(env, mmu_idx); 8093 8094 if (domain_prot == 3) { 8095 return PAGE_READ | PAGE_WRITE; 8096 } 8097 8098 switch (ap) { 8099 case 0: 8100 if (arm_feature(env, ARM_FEATURE_V7)) { 8101 return 0; 8102 } 8103 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8104 case SCTLR_S: 8105 return is_user ? 0 : PAGE_READ; 8106 case SCTLR_R: 8107 return PAGE_READ; 8108 default: 8109 return 0; 8110 } 8111 case 1: 8112 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8113 case 2: 8114 if (is_user) { 8115 return PAGE_READ; 8116 } else { 8117 return PAGE_READ | PAGE_WRITE; 8118 } 8119 case 3: 8120 return PAGE_READ | PAGE_WRITE; 8121 case 4: /* Reserved. */ 8122 return 0; 8123 case 5: 8124 return is_user ? 0 : PAGE_READ; 8125 case 6: 8126 return PAGE_READ; 8127 case 7: 8128 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8129 return 0; 8130 } 8131 return PAGE_READ; 8132 default: 8133 g_assert_not_reached(); 8134 } 8135 } 8136 8137 /* Translate section/page access permissions to page 8138 * R/W protection flags. 8139 * 8140 * @ap: The 2-bit simple AP (AP[2:1]) 8141 * @is_user: TRUE if accessing from PL0 8142 */ 8143 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8144 { 8145 switch (ap) { 8146 case 0: 8147 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8148 case 1: 8149 return PAGE_READ | PAGE_WRITE; 8150 case 2: 8151 return is_user ? 0 : PAGE_READ; 8152 case 3: 8153 return PAGE_READ; 8154 default: 8155 g_assert_not_reached(); 8156 } 8157 } 8158 8159 static inline int 8160 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8161 { 8162 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8163 } 8164 8165 /* Translate S2 section/page access permissions to protection flags 8166 * 8167 * @env: CPUARMState 8168 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8169 * @xn: XN (execute-never) bit 8170 */ 8171 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8172 { 8173 int prot = 0; 8174 8175 if (s2ap & 1) { 8176 prot |= PAGE_READ; 8177 } 8178 if (s2ap & 2) { 8179 prot |= PAGE_WRITE; 8180 } 8181 if (!xn) { 8182 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8183 prot |= PAGE_EXEC; 8184 } 8185 } 8186 return prot; 8187 } 8188 8189 /* Translate section/page access permissions to protection flags 8190 * 8191 * @env: CPUARMState 8192 * @mmu_idx: MMU index indicating required translation regime 8193 * @is_aa64: TRUE if AArch64 8194 * @ap: The 2-bit simple AP (AP[2:1]) 8195 * @ns: NS (non-secure) bit 8196 * @xn: XN (execute-never) bit 8197 * @pxn: PXN (privileged execute-never) bit 8198 */ 8199 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8200 int ap, int ns, int xn, int pxn) 8201 { 8202 bool is_user = regime_is_user(env, mmu_idx); 8203 int prot_rw, user_rw; 8204 bool have_wxn; 8205 int wxn = 0; 8206 8207 assert(mmu_idx != ARMMMUIdx_S2NS); 8208 8209 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8210 if (is_user) { 8211 prot_rw = user_rw; 8212 } else { 8213 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8214 } 8215 8216 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8217 return prot_rw; 8218 } 8219 8220 /* TODO have_wxn should be replaced with 8221 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8222 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8223 * compatible processors have EL2, which is required for [U]WXN. 8224 */ 8225 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8226 8227 if (have_wxn) { 8228 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8229 } 8230 8231 if (is_aa64) { 8232 switch (regime_el(env, mmu_idx)) { 8233 case 1: 8234 if (!is_user) { 8235 xn = pxn || (user_rw & PAGE_WRITE); 8236 } 8237 break; 8238 case 2: 8239 case 3: 8240 break; 8241 } 8242 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8243 switch (regime_el(env, mmu_idx)) { 8244 case 1: 8245 case 3: 8246 if (is_user) { 8247 xn = xn || !(user_rw & PAGE_READ); 8248 } else { 8249 int uwxn = 0; 8250 if (have_wxn) { 8251 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8252 } 8253 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8254 (uwxn && (user_rw & PAGE_WRITE)); 8255 } 8256 break; 8257 case 2: 8258 break; 8259 } 8260 } else { 8261 xn = wxn = 0; 8262 } 8263 8264 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8265 return prot_rw; 8266 } 8267 return prot_rw | PAGE_EXEC; 8268 } 8269 8270 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8271 uint32_t *table, uint32_t address) 8272 { 8273 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8274 TCR *tcr = regime_tcr(env, mmu_idx); 8275 8276 if (address & tcr->mask) { 8277 if (tcr->raw_tcr & TTBCR_PD1) { 8278 /* Translation table walk disabled for TTBR1 */ 8279 return false; 8280 } 8281 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 8282 } else { 8283 if (tcr->raw_tcr & TTBCR_PD0) { 8284 /* Translation table walk disabled for TTBR0 */ 8285 return false; 8286 } 8287 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 8288 } 8289 *table |= (address >> 18) & 0x3ffc; 8290 return true; 8291 } 8292 8293 /* Translate a S1 pagetable walk through S2 if needed. */ 8294 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 8295 hwaddr addr, MemTxAttrs txattrs, 8296 ARMMMUFaultInfo *fi) 8297 { 8298 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 8299 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8300 target_ulong s2size; 8301 hwaddr s2pa; 8302 int s2prot; 8303 int ret; 8304 8305 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 8306 &txattrs, &s2prot, &s2size, fi, NULL); 8307 if (ret) { 8308 assert(fi->type != ARMFault_None); 8309 fi->s2addr = addr; 8310 fi->stage2 = true; 8311 fi->s1ptw = true; 8312 return ~0; 8313 } 8314 addr = s2pa; 8315 } 8316 return addr; 8317 } 8318 8319 /* All loads done in the course of a page table walk go through here. 8320 * TODO: rather than ignoring errors from physical memory reads (which 8321 * are external aborts in ARM terminology) we should propagate this 8322 * error out so that we can turn it into a Data Abort if this walk 8323 * was being done for a CPU load/store or an address translation instruction 8324 * (but not if it was for a debug access). 8325 */ 8326 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8327 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8328 { 8329 ARMCPU *cpu = ARM_CPU(cs); 8330 CPUARMState *env = &cpu->env; 8331 MemTxAttrs attrs = {}; 8332 MemTxResult result = MEMTX_OK; 8333 AddressSpace *as; 8334 uint32_t data; 8335 8336 attrs.secure = is_secure; 8337 as = arm_addressspace(cs, attrs); 8338 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8339 if (fi->s1ptw) { 8340 return 0; 8341 } 8342 if (regime_translation_big_endian(env, mmu_idx)) { 8343 data = address_space_ldl_be(as, addr, attrs, &result); 8344 } else { 8345 data = address_space_ldl_le(as, addr, attrs, &result); 8346 } 8347 if (result == MEMTX_OK) { 8348 return data; 8349 } 8350 fi->type = ARMFault_SyncExternalOnWalk; 8351 fi->ea = arm_extabort_type(result); 8352 return 0; 8353 } 8354 8355 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8356 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8357 { 8358 ARMCPU *cpu = ARM_CPU(cs); 8359 CPUARMState *env = &cpu->env; 8360 MemTxAttrs attrs = {}; 8361 MemTxResult result = MEMTX_OK; 8362 AddressSpace *as; 8363 uint32_t data; 8364 8365 attrs.secure = is_secure; 8366 as = arm_addressspace(cs, attrs); 8367 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8368 if (fi->s1ptw) { 8369 return 0; 8370 } 8371 if (regime_translation_big_endian(env, mmu_idx)) { 8372 data = address_space_ldq_be(as, addr, attrs, &result); 8373 } else { 8374 data = address_space_ldq_le(as, addr, attrs, &result); 8375 } 8376 if (result == MEMTX_OK) { 8377 return data; 8378 } 8379 fi->type = ARMFault_SyncExternalOnWalk; 8380 fi->ea = arm_extabort_type(result); 8381 return 0; 8382 } 8383 8384 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 8385 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8386 hwaddr *phys_ptr, int *prot, 8387 target_ulong *page_size, 8388 ARMMMUFaultInfo *fi) 8389 { 8390 CPUState *cs = CPU(arm_env_get_cpu(env)); 8391 int level = 1; 8392 uint32_t table; 8393 uint32_t desc; 8394 int type; 8395 int ap; 8396 int domain = 0; 8397 int domain_prot; 8398 hwaddr phys_addr; 8399 uint32_t dacr; 8400 8401 /* Pagetable walk. */ 8402 /* Lookup l1 descriptor. */ 8403 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8404 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8405 fi->type = ARMFault_Translation; 8406 goto do_fault; 8407 } 8408 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8409 mmu_idx, fi); 8410 if (fi->type != ARMFault_None) { 8411 goto do_fault; 8412 } 8413 type = (desc & 3); 8414 domain = (desc >> 5) & 0x0f; 8415 if (regime_el(env, mmu_idx) == 1) { 8416 dacr = env->cp15.dacr_ns; 8417 } else { 8418 dacr = env->cp15.dacr_s; 8419 } 8420 domain_prot = (dacr >> (domain * 2)) & 3; 8421 if (type == 0) { 8422 /* Section translation fault. */ 8423 fi->type = ARMFault_Translation; 8424 goto do_fault; 8425 } 8426 if (type != 2) { 8427 level = 2; 8428 } 8429 if (domain_prot == 0 || domain_prot == 2) { 8430 fi->type = ARMFault_Domain; 8431 goto do_fault; 8432 } 8433 if (type == 2) { 8434 /* 1Mb section. */ 8435 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8436 ap = (desc >> 10) & 3; 8437 *page_size = 1024 * 1024; 8438 } else { 8439 /* Lookup l2 entry. */ 8440 if (type == 1) { 8441 /* Coarse pagetable. */ 8442 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8443 } else { 8444 /* Fine pagetable. */ 8445 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 8446 } 8447 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8448 mmu_idx, fi); 8449 if (fi->type != ARMFault_None) { 8450 goto do_fault; 8451 } 8452 switch (desc & 3) { 8453 case 0: /* Page translation fault. */ 8454 fi->type = ARMFault_Translation; 8455 goto do_fault; 8456 case 1: /* 64k page. */ 8457 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8458 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 8459 *page_size = 0x10000; 8460 break; 8461 case 2: /* 4k page. */ 8462 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8463 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 8464 *page_size = 0x1000; 8465 break; 8466 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 8467 if (type == 1) { 8468 /* ARMv6/XScale extended small page format */ 8469 if (arm_feature(env, ARM_FEATURE_XSCALE) 8470 || arm_feature(env, ARM_FEATURE_V6)) { 8471 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8472 *page_size = 0x1000; 8473 } else { 8474 /* UNPREDICTABLE in ARMv5; we choose to take a 8475 * page translation fault. 8476 */ 8477 fi->type = ARMFault_Translation; 8478 goto do_fault; 8479 } 8480 } else { 8481 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 8482 *page_size = 0x400; 8483 } 8484 ap = (desc >> 4) & 3; 8485 break; 8486 default: 8487 /* Never happens, but compiler isn't smart enough to tell. */ 8488 abort(); 8489 } 8490 } 8491 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8492 *prot |= *prot ? PAGE_EXEC : 0; 8493 if (!(*prot & (1 << access_type))) { 8494 /* Access permission fault. */ 8495 fi->type = ARMFault_Permission; 8496 goto do_fault; 8497 } 8498 *phys_ptr = phys_addr; 8499 return false; 8500 do_fault: 8501 fi->domain = domain; 8502 fi->level = level; 8503 return true; 8504 } 8505 8506 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 8507 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8508 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 8509 target_ulong *page_size, ARMMMUFaultInfo *fi) 8510 { 8511 CPUState *cs = CPU(arm_env_get_cpu(env)); 8512 int level = 1; 8513 uint32_t table; 8514 uint32_t desc; 8515 uint32_t xn; 8516 uint32_t pxn = 0; 8517 int type; 8518 int ap; 8519 int domain = 0; 8520 int domain_prot; 8521 hwaddr phys_addr; 8522 uint32_t dacr; 8523 bool ns; 8524 8525 /* Pagetable walk. */ 8526 /* Lookup l1 descriptor. */ 8527 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8528 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8529 fi->type = ARMFault_Translation; 8530 goto do_fault; 8531 } 8532 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8533 mmu_idx, fi); 8534 if (fi->type != ARMFault_None) { 8535 goto do_fault; 8536 } 8537 type = (desc & 3); 8538 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 8539 /* Section translation fault, or attempt to use the encoding 8540 * which is Reserved on implementations without PXN. 8541 */ 8542 fi->type = ARMFault_Translation; 8543 goto do_fault; 8544 } 8545 if ((type == 1) || !(desc & (1 << 18))) { 8546 /* Page or Section. */ 8547 domain = (desc >> 5) & 0x0f; 8548 } 8549 if (regime_el(env, mmu_idx) == 1) { 8550 dacr = env->cp15.dacr_ns; 8551 } else { 8552 dacr = env->cp15.dacr_s; 8553 } 8554 if (type == 1) { 8555 level = 2; 8556 } 8557 domain_prot = (dacr >> (domain * 2)) & 3; 8558 if (domain_prot == 0 || domain_prot == 2) { 8559 /* Section or Page domain fault */ 8560 fi->type = ARMFault_Domain; 8561 goto do_fault; 8562 } 8563 if (type != 1) { 8564 if (desc & (1 << 18)) { 8565 /* Supersection. */ 8566 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 8567 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 8568 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 8569 *page_size = 0x1000000; 8570 } else { 8571 /* Section. */ 8572 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8573 *page_size = 0x100000; 8574 } 8575 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 8576 xn = desc & (1 << 4); 8577 pxn = desc & 1; 8578 ns = extract32(desc, 19, 1); 8579 } else { 8580 if (arm_feature(env, ARM_FEATURE_PXN)) { 8581 pxn = (desc >> 2) & 1; 8582 } 8583 ns = extract32(desc, 3, 1); 8584 /* Lookup l2 entry. */ 8585 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8586 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8587 mmu_idx, fi); 8588 if (fi->type != ARMFault_None) { 8589 goto do_fault; 8590 } 8591 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 8592 switch (desc & 3) { 8593 case 0: /* Page translation fault. */ 8594 fi->type = ARMFault_Translation; 8595 goto do_fault; 8596 case 1: /* 64k page. */ 8597 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8598 xn = desc & (1 << 15); 8599 *page_size = 0x10000; 8600 break; 8601 case 2: case 3: /* 4k page. */ 8602 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8603 xn = desc & 1; 8604 *page_size = 0x1000; 8605 break; 8606 default: 8607 /* Never happens, but compiler isn't smart enough to tell. */ 8608 abort(); 8609 } 8610 } 8611 if (domain_prot == 3) { 8612 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 8613 } else { 8614 if (pxn && !regime_is_user(env, mmu_idx)) { 8615 xn = 1; 8616 } 8617 if (xn && access_type == MMU_INST_FETCH) { 8618 fi->type = ARMFault_Permission; 8619 goto do_fault; 8620 } 8621 8622 if (arm_feature(env, ARM_FEATURE_V6K) && 8623 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 8624 /* The simplified model uses AP[0] as an access control bit. */ 8625 if ((ap & 1) == 0) { 8626 /* Access flag fault. */ 8627 fi->type = ARMFault_AccessFlag; 8628 goto do_fault; 8629 } 8630 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 8631 } else { 8632 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8633 } 8634 if (*prot && !xn) { 8635 *prot |= PAGE_EXEC; 8636 } 8637 if (!(*prot & (1 << access_type))) { 8638 /* Access permission fault. */ 8639 fi->type = ARMFault_Permission; 8640 goto do_fault; 8641 } 8642 } 8643 if (ns) { 8644 /* The NS bit will (as required by the architecture) have no effect if 8645 * the CPU doesn't support TZ or this is a non-secure translation 8646 * regime, because the attribute will already be non-secure. 8647 */ 8648 attrs->secure = false; 8649 } 8650 *phys_ptr = phys_addr; 8651 return false; 8652 do_fault: 8653 fi->domain = domain; 8654 fi->level = level; 8655 return true; 8656 } 8657 8658 /* 8659 * check_s2_mmu_setup 8660 * @cpu: ARMCPU 8661 * @is_aa64: True if the translation regime is in AArch64 state 8662 * @startlevel: Suggested starting level 8663 * @inputsize: Bitsize of IPAs 8664 * @stride: Page-table stride (See the ARM ARM) 8665 * 8666 * Returns true if the suggested S2 translation parameters are OK and 8667 * false otherwise. 8668 */ 8669 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 8670 int inputsize, int stride) 8671 { 8672 const int grainsize = stride + 3; 8673 int startsizecheck; 8674 8675 /* Negative levels are never allowed. */ 8676 if (level < 0) { 8677 return false; 8678 } 8679 8680 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 8681 if (startsizecheck < 1 || startsizecheck > stride + 4) { 8682 return false; 8683 } 8684 8685 if (is_aa64) { 8686 CPUARMState *env = &cpu->env; 8687 unsigned int pamax = arm_pamax(cpu); 8688 8689 switch (stride) { 8690 case 13: /* 64KB Pages. */ 8691 if (level == 0 || (level == 1 && pamax <= 42)) { 8692 return false; 8693 } 8694 break; 8695 case 11: /* 16KB Pages. */ 8696 if (level == 0 || (level == 1 && pamax <= 40)) { 8697 return false; 8698 } 8699 break; 8700 case 9: /* 4KB Pages. */ 8701 if (level == 0 && pamax <= 42) { 8702 return false; 8703 } 8704 break; 8705 default: 8706 g_assert_not_reached(); 8707 } 8708 8709 /* Inputsize checks. */ 8710 if (inputsize > pamax && 8711 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 8712 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 8713 return false; 8714 } 8715 } else { 8716 /* AArch32 only supports 4KB pages. Assert on that. */ 8717 assert(stride == 9); 8718 8719 if (level == 0) { 8720 return false; 8721 } 8722 } 8723 return true; 8724 } 8725 8726 /* Translate from the 4-bit stage 2 representation of 8727 * memory attributes (without cache-allocation hints) to 8728 * the 8-bit representation of the stage 1 MAIR registers 8729 * (which includes allocation hints). 8730 * 8731 * ref: shared/translation/attrs/S2AttrDecode() 8732 * .../S2ConvertAttrsHints() 8733 */ 8734 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 8735 { 8736 uint8_t hiattr = extract32(s2attrs, 2, 2); 8737 uint8_t loattr = extract32(s2attrs, 0, 2); 8738 uint8_t hihint = 0, lohint = 0; 8739 8740 if (hiattr != 0) { /* normal memory */ 8741 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 8742 hiattr = loattr = 1; /* non-cacheable */ 8743 } else { 8744 if (hiattr != 1) { /* Write-through or write-back */ 8745 hihint = 3; /* RW allocate */ 8746 } 8747 if (loattr != 1) { /* Write-through or write-back */ 8748 lohint = 3; /* RW allocate */ 8749 } 8750 } 8751 } 8752 8753 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 8754 } 8755 8756 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 8757 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8758 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 8759 target_ulong *page_size_ptr, 8760 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 8761 { 8762 ARMCPU *cpu = arm_env_get_cpu(env); 8763 CPUState *cs = CPU(cpu); 8764 /* Read an LPAE long-descriptor translation table. */ 8765 ARMFaultType fault_type = ARMFault_Translation; 8766 uint32_t level; 8767 uint32_t epd = 0; 8768 int32_t t0sz, t1sz; 8769 uint32_t tg; 8770 uint64_t ttbr; 8771 int ttbr_select; 8772 hwaddr descaddr, indexmask, indexmask_grainsize; 8773 uint32_t tableattrs; 8774 target_ulong page_size; 8775 uint32_t attrs; 8776 int32_t stride = 9; 8777 int32_t addrsize; 8778 int inputsize; 8779 int32_t tbi = 0; 8780 TCR *tcr = regime_tcr(env, mmu_idx); 8781 int ap, ns, xn, pxn; 8782 uint32_t el = regime_el(env, mmu_idx); 8783 bool ttbr1_valid = true; 8784 uint64_t descaddrmask; 8785 bool aarch64 = arm_el_is_aa64(env, el); 8786 8787 /* TODO: 8788 * This code does not handle the different format TCR for VTCR_EL2. 8789 * This code also does not support shareability levels. 8790 * Attribute and permission bit handling should also be checked when adding 8791 * support for those page table walks. 8792 */ 8793 if (aarch64) { 8794 level = 0; 8795 addrsize = 64; 8796 if (el > 1) { 8797 if (mmu_idx != ARMMMUIdx_S2NS) { 8798 tbi = extract64(tcr->raw_tcr, 20, 1); 8799 } 8800 } else { 8801 if (extract64(address, 55, 1)) { 8802 tbi = extract64(tcr->raw_tcr, 38, 1); 8803 } else { 8804 tbi = extract64(tcr->raw_tcr, 37, 1); 8805 } 8806 } 8807 tbi *= 8; 8808 8809 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 8810 * invalid. 8811 */ 8812 if (el > 1) { 8813 ttbr1_valid = false; 8814 } 8815 } else { 8816 level = 1; 8817 addrsize = 32; 8818 /* There is no TTBR1 for EL2 */ 8819 if (el == 2) { 8820 ttbr1_valid = false; 8821 } 8822 } 8823 8824 /* Determine whether this address is in the region controlled by 8825 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 8826 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 8827 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 8828 */ 8829 if (aarch64) { 8830 /* AArch64 translation. */ 8831 t0sz = extract32(tcr->raw_tcr, 0, 6); 8832 t0sz = MIN(t0sz, 39); 8833 t0sz = MAX(t0sz, 16); 8834 } else if (mmu_idx != ARMMMUIdx_S2NS) { 8835 /* AArch32 stage 1 translation. */ 8836 t0sz = extract32(tcr->raw_tcr, 0, 3); 8837 } else { 8838 /* AArch32 stage 2 translation. */ 8839 bool sext = extract32(tcr->raw_tcr, 4, 1); 8840 bool sign = extract32(tcr->raw_tcr, 3, 1); 8841 /* Address size is 40-bit for a stage 2 translation, 8842 * and t0sz can be negative (from -8 to 7), 8843 * so we need to adjust it to use the TTBR selecting logic below. 8844 */ 8845 addrsize = 40; 8846 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 8847 8848 /* If the sign-extend bit is not the same as t0sz[3], the result 8849 * is unpredictable. Flag this as a guest error. */ 8850 if (sign != sext) { 8851 qemu_log_mask(LOG_GUEST_ERROR, 8852 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 8853 } 8854 } 8855 t1sz = extract32(tcr->raw_tcr, 16, 6); 8856 if (aarch64) { 8857 t1sz = MIN(t1sz, 39); 8858 t1sz = MAX(t1sz, 16); 8859 } 8860 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 8861 /* there is a ttbr0 region and we are in it (high bits all zero) */ 8862 ttbr_select = 0; 8863 } else if (ttbr1_valid && t1sz && 8864 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 8865 /* there is a ttbr1 region and we are in it (high bits all one) */ 8866 ttbr_select = 1; 8867 } else if (!t0sz) { 8868 /* ttbr0 region is "everything not in the ttbr1 region" */ 8869 ttbr_select = 0; 8870 } else if (!t1sz && ttbr1_valid) { 8871 /* ttbr1 region is "everything not in the ttbr0 region" */ 8872 ttbr_select = 1; 8873 } else { 8874 /* in the gap between the two regions, this is a Translation fault */ 8875 fault_type = ARMFault_Translation; 8876 goto do_fault; 8877 } 8878 8879 /* Note that QEMU ignores shareability and cacheability attributes, 8880 * so we don't need to do anything with the SH, ORGN, IRGN fields 8881 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 8882 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 8883 * implement any ASID-like capability so we can ignore it (instead 8884 * we will always flush the TLB any time the ASID is changed). 8885 */ 8886 if (ttbr_select == 0) { 8887 ttbr = regime_ttbr(env, mmu_idx, 0); 8888 if (el < 2) { 8889 epd = extract32(tcr->raw_tcr, 7, 1); 8890 } 8891 inputsize = addrsize - t0sz; 8892 8893 tg = extract32(tcr->raw_tcr, 14, 2); 8894 if (tg == 1) { /* 64KB pages */ 8895 stride = 13; 8896 } 8897 if (tg == 2) { /* 16KB pages */ 8898 stride = 11; 8899 } 8900 } else { 8901 /* We should only be here if TTBR1 is valid */ 8902 assert(ttbr1_valid); 8903 8904 ttbr = regime_ttbr(env, mmu_idx, 1); 8905 epd = extract32(tcr->raw_tcr, 23, 1); 8906 inputsize = addrsize - t1sz; 8907 8908 tg = extract32(tcr->raw_tcr, 30, 2); 8909 if (tg == 3) { /* 64KB pages */ 8910 stride = 13; 8911 } 8912 if (tg == 1) { /* 16KB pages */ 8913 stride = 11; 8914 } 8915 } 8916 8917 /* Here we should have set up all the parameters for the translation: 8918 * inputsize, ttbr, epd, stride, tbi 8919 */ 8920 8921 if (epd) { 8922 /* Translation table walk disabled => Translation fault on TLB miss 8923 * Note: This is always 0 on 64-bit EL2 and EL3. 8924 */ 8925 goto do_fault; 8926 } 8927 8928 if (mmu_idx != ARMMMUIdx_S2NS) { 8929 /* The starting level depends on the virtual address size (which can 8930 * be up to 48 bits) and the translation granule size. It indicates 8931 * the number of strides (stride bits at a time) needed to 8932 * consume the bits of the input address. In the pseudocode this is: 8933 * level = 4 - RoundUp((inputsize - grainsize) / stride) 8934 * where their 'inputsize' is our 'inputsize', 'grainsize' is 8935 * our 'stride + 3' and 'stride' is our 'stride'. 8936 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 8937 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 8938 * = 4 - (inputsize - 4) / stride; 8939 */ 8940 level = 4 - (inputsize - 4) / stride; 8941 } else { 8942 /* For stage 2 translations the starting level is specified by the 8943 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 8944 */ 8945 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 8946 uint32_t startlevel; 8947 bool ok; 8948 8949 if (!aarch64 || stride == 9) { 8950 /* AArch32 or 4KB pages */ 8951 startlevel = 2 - sl0; 8952 } else { 8953 /* 16KB or 64KB pages */ 8954 startlevel = 3 - sl0; 8955 } 8956 8957 /* Check that the starting level is valid. */ 8958 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 8959 inputsize, stride); 8960 if (!ok) { 8961 fault_type = ARMFault_Translation; 8962 goto do_fault; 8963 } 8964 level = startlevel; 8965 } 8966 8967 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 8968 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 8969 8970 /* Now we can extract the actual base address from the TTBR */ 8971 descaddr = extract64(ttbr, 0, 48); 8972 descaddr &= ~indexmask; 8973 8974 /* The address field in the descriptor goes up to bit 39 for ARMv7 8975 * but up to bit 47 for ARMv8, but we use the descaddrmask 8976 * up to bit 39 for AArch32, because we don't need other bits in that case 8977 * to construct next descriptor address (anyway they should be all zeroes). 8978 */ 8979 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 8980 ~indexmask_grainsize; 8981 8982 /* Secure accesses start with the page table in secure memory and 8983 * can be downgraded to non-secure at any step. Non-secure accesses 8984 * remain non-secure. We implement this by just ORing in the NSTable/NS 8985 * bits at each step. 8986 */ 8987 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 8988 for (;;) { 8989 uint64_t descriptor; 8990 bool nstable; 8991 8992 descaddr |= (address >> (stride * (4 - level))) & indexmask; 8993 descaddr &= ~7ULL; 8994 nstable = extract32(tableattrs, 4, 1); 8995 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 8996 if (fi->type != ARMFault_None) { 8997 goto do_fault; 8998 } 8999 9000 if (!(descriptor & 1) || 9001 (!(descriptor & 2) && (level == 3))) { 9002 /* Invalid, or the Reserved level 3 encoding */ 9003 goto do_fault; 9004 } 9005 descaddr = descriptor & descaddrmask; 9006 9007 if ((descriptor & 2) && (level < 3)) { 9008 /* Table entry. The top five bits are attributes which may 9009 * propagate down through lower levels of the table (and 9010 * which are all arranged so that 0 means "no effect", so 9011 * we can gather them up by ORing in the bits at each level). 9012 */ 9013 tableattrs |= extract64(descriptor, 59, 5); 9014 level++; 9015 indexmask = indexmask_grainsize; 9016 continue; 9017 } 9018 /* Block entry at level 1 or 2, or page entry at level 3. 9019 * These are basically the same thing, although the number 9020 * of bits we pull in from the vaddr varies. 9021 */ 9022 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9023 descaddr |= (address & (page_size - 1)); 9024 /* Extract attributes from the descriptor */ 9025 attrs = extract64(descriptor, 2, 10) 9026 | (extract64(descriptor, 52, 12) << 10); 9027 9028 if (mmu_idx == ARMMMUIdx_S2NS) { 9029 /* Stage 2 table descriptors do not include any attribute fields */ 9030 break; 9031 } 9032 /* Merge in attributes from table descriptors */ 9033 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9034 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 9035 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9036 * means "force PL1 access only", which means forcing AP[1] to 0. 9037 */ 9038 if (extract32(tableattrs, 2, 1)) { 9039 attrs &= ~(1 << 4); 9040 } 9041 attrs |= nstable << 3; /* NS */ 9042 break; 9043 } 9044 /* Here descaddr is the final physical address, and attributes 9045 * are all in attrs. 9046 */ 9047 fault_type = ARMFault_AccessFlag; 9048 if ((attrs & (1 << 8)) == 0) { 9049 /* Access flag */ 9050 goto do_fault; 9051 } 9052 9053 ap = extract32(attrs, 4, 2); 9054 xn = extract32(attrs, 12, 1); 9055 9056 if (mmu_idx == ARMMMUIdx_S2NS) { 9057 ns = true; 9058 *prot = get_S2prot(env, ap, xn); 9059 } else { 9060 ns = extract32(attrs, 3, 1); 9061 pxn = extract32(attrs, 11, 1); 9062 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9063 } 9064 9065 fault_type = ARMFault_Permission; 9066 if (!(*prot & (1 << access_type))) { 9067 goto do_fault; 9068 } 9069 9070 if (ns) { 9071 /* The NS bit will (as required by the architecture) have no effect if 9072 * the CPU doesn't support TZ or this is a non-secure translation 9073 * regime, because the attribute will already be non-secure. 9074 */ 9075 txattrs->secure = false; 9076 } 9077 9078 if (cacheattrs != NULL) { 9079 if (mmu_idx == ARMMMUIdx_S2NS) { 9080 cacheattrs->attrs = convert_stage2_attrs(env, 9081 extract32(attrs, 0, 4)); 9082 } else { 9083 /* Index into MAIR registers for cache attributes */ 9084 uint8_t attrindx = extract32(attrs, 0, 3); 9085 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9086 assert(attrindx <= 7); 9087 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9088 } 9089 cacheattrs->shareability = extract32(attrs, 6, 2); 9090 } 9091 9092 *phys_ptr = descaddr; 9093 *page_size_ptr = page_size; 9094 return false; 9095 9096 do_fault: 9097 fi->type = fault_type; 9098 fi->level = level; 9099 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9100 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9101 return true; 9102 } 9103 9104 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9105 ARMMMUIdx mmu_idx, 9106 int32_t address, int *prot) 9107 { 9108 if (!arm_feature(env, ARM_FEATURE_M)) { 9109 *prot = PAGE_READ | PAGE_WRITE; 9110 switch (address) { 9111 case 0xF0000000 ... 0xFFFFFFFF: 9112 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9113 /* hivecs execing is ok */ 9114 *prot |= PAGE_EXEC; 9115 } 9116 break; 9117 case 0x00000000 ... 0x7FFFFFFF: 9118 *prot |= PAGE_EXEC; 9119 break; 9120 } 9121 } else { 9122 /* Default system address map for M profile cores. 9123 * The architecture specifies which regions are execute-never; 9124 * at the MPU level no other checks are defined. 9125 */ 9126 switch (address) { 9127 case 0x00000000 ... 0x1fffffff: /* ROM */ 9128 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9129 case 0x60000000 ... 0x7fffffff: /* RAM */ 9130 case 0x80000000 ... 0x9fffffff: /* RAM */ 9131 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9132 break; 9133 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9134 case 0xa0000000 ... 0xbfffffff: /* Device */ 9135 case 0xc0000000 ... 0xdfffffff: /* Device */ 9136 case 0xe0000000 ... 0xffffffff: /* System */ 9137 *prot = PAGE_READ | PAGE_WRITE; 9138 break; 9139 default: 9140 g_assert_not_reached(); 9141 } 9142 } 9143 } 9144 9145 static bool pmsav7_use_background_region(ARMCPU *cpu, 9146 ARMMMUIdx mmu_idx, bool is_user) 9147 { 9148 /* Return true if we should use the default memory map as a 9149 * "background" region if there are no hits against any MPU regions. 9150 */ 9151 CPUARMState *env = &cpu->env; 9152 9153 if (is_user) { 9154 return false; 9155 } 9156 9157 if (arm_feature(env, ARM_FEATURE_M)) { 9158 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 9159 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9160 } else { 9161 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9162 } 9163 } 9164 9165 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9166 { 9167 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9168 return arm_feature(env, ARM_FEATURE_M) && 9169 extract32(address, 20, 12) == 0xe00; 9170 } 9171 9172 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9173 { 9174 /* True if address is in the M profile system region 9175 * 0xe0000000 - 0xffffffff 9176 */ 9177 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9178 } 9179 9180 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9181 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9182 hwaddr *phys_ptr, int *prot, 9183 ARMMMUFaultInfo *fi) 9184 { 9185 ARMCPU *cpu = arm_env_get_cpu(env); 9186 int n; 9187 bool is_user = regime_is_user(env, mmu_idx); 9188 9189 *phys_ptr = address; 9190 *prot = 0; 9191 9192 if (regime_translation_disabled(env, mmu_idx) || 9193 m_is_ppb_region(env, address)) { 9194 /* MPU disabled or M profile PPB access: use default memory map. 9195 * The other case which uses the default memory map in the 9196 * v7M ARM ARM pseudocode is exception vector reads from the vector 9197 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9198 * which always does a direct read using address_space_ldl(), rather 9199 * than going via this function, so we don't need to check that here. 9200 */ 9201 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9202 } else { /* MPU enabled */ 9203 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9204 /* region search */ 9205 uint32_t base = env->pmsav7.drbar[n]; 9206 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9207 uint32_t rmask; 9208 bool srdis = false; 9209 9210 if (!(env->pmsav7.drsr[n] & 0x1)) { 9211 continue; 9212 } 9213 9214 if (!rsize) { 9215 qemu_log_mask(LOG_GUEST_ERROR, 9216 "DRSR[%d]: Rsize field cannot be 0\n", n); 9217 continue; 9218 } 9219 rsize++; 9220 rmask = (1ull << rsize) - 1; 9221 9222 if (base & rmask) { 9223 qemu_log_mask(LOG_GUEST_ERROR, 9224 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9225 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9226 n, base, rmask); 9227 continue; 9228 } 9229 9230 if (address < base || address > base + rmask) { 9231 continue; 9232 } 9233 9234 /* Region matched */ 9235 9236 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9237 int i, snd; 9238 uint32_t srdis_mask; 9239 9240 rsize -= 3; /* sub region size (power of 2) */ 9241 snd = ((address - base) >> rsize) & 0x7; 9242 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9243 9244 srdis_mask = srdis ? 0x3 : 0x0; 9245 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9246 /* This will check in groups of 2, 4 and then 8, whether 9247 * the subregion bits are consistent. rsize is incremented 9248 * back up to give the region size, considering consistent 9249 * adjacent subregions as one region. Stop testing if rsize 9250 * is already big enough for an entire QEMU page. 9251 */ 9252 int snd_rounded = snd & ~(i - 1); 9253 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9254 snd_rounded + 8, i); 9255 if (srdis_mask ^ srdis_multi) { 9256 break; 9257 } 9258 srdis_mask = (srdis_mask << i) | srdis_mask; 9259 rsize++; 9260 } 9261 } 9262 if (rsize < TARGET_PAGE_BITS) { 9263 qemu_log_mask(LOG_UNIMP, 9264 "DRSR[%d]: No support for MPU (sub)region " 9265 "alignment of %" PRIu32 " bits. Minimum is %d\n", 9266 n, rsize, TARGET_PAGE_BITS); 9267 continue; 9268 } 9269 if (srdis) { 9270 continue; 9271 } 9272 break; 9273 } 9274 9275 if (n == -1) { /* no hits */ 9276 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9277 /* background fault */ 9278 fi->type = ARMFault_Background; 9279 return true; 9280 } 9281 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9282 } else { /* a MPU hit! */ 9283 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 9284 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 9285 9286 if (m_is_system_region(env, address)) { 9287 /* System space is always execute never */ 9288 xn = 1; 9289 } 9290 9291 if (is_user) { /* User mode AP bit decoding */ 9292 switch (ap) { 9293 case 0: 9294 case 1: 9295 case 5: 9296 break; /* no access */ 9297 case 3: 9298 *prot |= PAGE_WRITE; 9299 /* fall through */ 9300 case 2: 9301 case 6: 9302 *prot |= PAGE_READ | PAGE_EXEC; 9303 break; 9304 case 7: 9305 /* for v7M, same as 6; for R profile a reserved value */ 9306 if (arm_feature(env, ARM_FEATURE_M)) { 9307 *prot |= PAGE_READ | PAGE_EXEC; 9308 break; 9309 } 9310 /* fall through */ 9311 default: 9312 qemu_log_mask(LOG_GUEST_ERROR, 9313 "DRACR[%d]: Bad value for AP bits: 0x%" 9314 PRIx32 "\n", n, ap); 9315 } 9316 } else { /* Priv. mode AP bits decoding */ 9317 switch (ap) { 9318 case 0: 9319 break; /* no access */ 9320 case 1: 9321 case 2: 9322 case 3: 9323 *prot |= PAGE_WRITE; 9324 /* fall through */ 9325 case 5: 9326 case 6: 9327 *prot |= PAGE_READ | PAGE_EXEC; 9328 break; 9329 case 7: 9330 /* for v7M, same as 6; for R profile a reserved value */ 9331 if (arm_feature(env, ARM_FEATURE_M)) { 9332 *prot |= PAGE_READ | PAGE_EXEC; 9333 break; 9334 } 9335 /* fall through */ 9336 default: 9337 qemu_log_mask(LOG_GUEST_ERROR, 9338 "DRACR[%d]: Bad value for AP bits: 0x%" 9339 PRIx32 "\n", n, ap); 9340 } 9341 } 9342 9343 /* execute never */ 9344 if (xn) { 9345 *prot &= ~PAGE_EXEC; 9346 } 9347 } 9348 } 9349 9350 fi->type = ARMFault_Permission; 9351 fi->level = 1; 9352 return !(*prot & (1 << access_type)); 9353 } 9354 9355 static bool v8m_is_sau_exempt(CPUARMState *env, 9356 uint32_t address, MMUAccessType access_type) 9357 { 9358 /* The architecture specifies that certain address ranges are 9359 * exempt from v8M SAU/IDAU checks. 9360 */ 9361 return 9362 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 9363 (address >= 0xe0000000 && address <= 0xe0002fff) || 9364 (address >= 0xe000e000 && address <= 0xe000efff) || 9365 (address >= 0xe002e000 && address <= 0xe002efff) || 9366 (address >= 0xe0040000 && address <= 0xe0041fff) || 9367 (address >= 0xe00ff000 && address <= 0xe00fffff); 9368 } 9369 9370 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 9371 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9372 V8M_SAttributes *sattrs) 9373 { 9374 /* Look up the security attributes for this address. Compare the 9375 * pseudocode SecurityCheck() function. 9376 * We assume the caller has zero-initialized *sattrs. 9377 */ 9378 ARMCPU *cpu = arm_env_get_cpu(env); 9379 int r; 9380 9381 /* TODO: implement IDAU */ 9382 9383 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 9384 /* 0xf0000000..0xffffffff is always S for insn fetches */ 9385 return; 9386 } 9387 9388 if (v8m_is_sau_exempt(env, address, access_type)) { 9389 sattrs->ns = !regime_is_secure(env, mmu_idx); 9390 return; 9391 } 9392 9393 switch (env->sau.ctrl & 3) { 9394 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 9395 break; 9396 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 9397 sattrs->ns = true; 9398 break; 9399 default: /* SAU.ENABLE == 1 */ 9400 for (r = 0; r < cpu->sau_sregion; r++) { 9401 if (env->sau.rlar[r] & 1) { 9402 uint32_t base = env->sau.rbar[r] & ~0x1f; 9403 uint32_t limit = env->sau.rlar[r] | 0x1f; 9404 9405 if (base <= address && limit >= address) { 9406 if (sattrs->srvalid) { 9407 /* If we hit in more than one region then we must report 9408 * as Secure, not NS-Callable, with no valid region 9409 * number info. 9410 */ 9411 sattrs->ns = false; 9412 sattrs->nsc = false; 9413 sattrs->sregion = 0; 9414 sattrs->srvalid = false; 9415 break; 9416 } else { 9417 if (env->sau.rlar[r] & 2) { 9418 sattrs->nsc = true; 9419 } else { 9420 sattrs->ns = true; 9421 } 9422 sattrs->srvalid = true; 9423 sattrs->sregion = r; 9424 } 9425 } 9426 } 9427 } 9428 9429 /* TODO when we support the IDAU then it may override the result here */ 9430 break; 9431 } 9432 } 9433 9434 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 9435 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9436 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9437 int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion) 9438 { 9439 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 9440 * that a full phys-to-virt translation does). 9441 * mregion is (if not NULL) set to the region number which matched, 9442 * or -1 if no region number is returned (MPU off, address did not 9443 * hit a region, address hit in multiple regions). 9444 */ 9445 ARMCPU *cpu = arm_env_get_cpu(env); 9446 bool is_user = regime_is_user(env, mmu_idx); 9447 uint32_t secure = regime_is_secure(env, mmu_idx); 9448 int n; 9449 int matchregion = -1; 9450 bool hit = false; 9451 9452 *phys_ptr = address; 9453 *prot = 0; 9454 if (mregion) { 9455 *mregion = -1; 9456 } 9457 9458 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 9459 * was an exception vector read from the vector table (which is always 9460 * done using the default system address map), because those accesses 9461 * are done in arm_v7m_load_vector(), which always does a direct 9462 * read using address_space_ldl(), rather than going via this function. 9463 */ 9464 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 9465 hit = true; 9466 } else if (m_is_ppb_region(env, address)) { 9467 hit = true; 9468 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9469 hit = true; 9470 } else { 9471 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9472 /* region search */ 9473 /* Note that the base address is bits [31:5] from the register 9474 * with bits [4:0] all zeroes, but the limit address is bits 9475 * [31:5] from the register with bits [4:0] all ones. 9476 */ 9477 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 9478 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 9479 9480 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 9481 /* Region disabled */ 9482 continue; 9483 } 9484 9485 if (address < base || address > limit) { 9486 continue; 9487 } 9488 9489 if (hit) { 9490 /* Multiple regions match -- always a failure (unlike 9491 * PMSAv7 where highest-numbered-region wins) 9492 */ 9493 fi->type = ARMFault_Permission; 9494 fi->level = 1; 9495 return true; 9496 } 9497 9498 matchregion = n; 9499 hit = true; 9500 9501 if (base & ~TARGET_PAGE_MASK) { 9502 qemu_log_mask(LOG_UNIMP, 9503 "MPU_RBAR[%d]: No support for MPU region base" 9504 "address of 0x%" PRIx32 ". Minimum alignment is " 9505 "%d\n", 9506 n, base, TARGET_PAGE_BITS); 9507 continue; 9508 } 9509 if ((limit + 1) & ~TARGET_PAGE_MASK) { 9510 qemu_log_mask(LOG_UNIMP, 9511 "MPU_RBAR[%d]: No support for MPU region limit" 9512 "address of 0x%" PRIx32 ". Minimum alignment is " 9513 "%d\n", 9514 n, limit, TARGET_PAGE_BITS); 9515 continue; 9516 } 9517 } 9518 } 9519 9520 if (!hit) { 9521 /* background fault */ 9522 fi->type = ARMFault_Background; 9523 return true; 9524 } 9525 9526 if (matchregion == -1) { 9527 /* hit using the background region */ 9528 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9529 } else { 9530 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 9531 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 9532 9533 if (m_is_system_region(env, address)) { 9534 /* System space is always execute never */ 9535 xn = 1; 9536 } 9537 9538 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 9539 if (*prot && !xn) { 9540 *prot |= PAGE_EXEC; 9541 } 9542 /* We don't need to look the attribute up in the MAIR0/MAIR1 9543 * registers because that only tells us about cacheability. 9544 */ 9545 if (mregion) { 9546 *mregion = matchregion; 9547 } 9548 } 9549 9550 fi->type = ARMFault_Permission; 9551 fi->level = 1; 9552 return !(*prot & (1 << access_type)); 9553 } 9554 9555 9556 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 9557 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9558 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9559 int *prot, ARMMMUFaultInfo *fi) 9560 { 9561 uint32_t secure = regime_is_secure(env, mmu_idx); 9562 V8M_SAttributes sattrs = {}; 9563 9564 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 9565 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 9566 if (access_type == MMU_INST_FETCH) { 9567 /* Instruction fetches always use the MMU bank and the 9568 * transaction attribute determined by the fetch address, 9569 * regardless of CPU state. This is painful for QEMU 9570 * to handle, because it would mean we need to encode 9571 * into the mmu_idx not just the (user, negpri) information 9572 * for the current security state but also that for the 9573 * other security state, which would balloon the number 9574 * of mmu_idx values needed alarmingly. 9575 * Fortunately we can avoid this because it's not actually 9576 * possible to arbitrarily execute code from memory with 9577 * the wrong security attribute: it will always generate 9578 * an exception of some kind or another, apart from the 9579 * special case of an NS CPU executing an SG instruction 9580 * in S&NSC memory. So we always just fail the translation 9581 * here and sort things out in the exception handler 9582 * (including possibly emulating an SG instruction). 9583 */ 9584 if (sattrs.ns != !secure) { 9585 if (sattrs.nsc) { 9586 fi->type = ARMFault_QEMU_NSCExec; 9587 } else { 9588 fi->type = ARMFault_QEMU_SFault; 9589 } 9590 *phys_ptr = address; 9591 *prot = 0; 9592 return true; 9593 } 9594 } else { 9595 /* For data accesses we always use the MMU bank indicated 9596 * by the current CPU state, but the security attributes 9597 * might downgrade a secure access to nonsecure. 9598 */ 9599 if (sattrs.ns) { 9600 txattrs->secure = false; 9601 } else if (!secure) { 9602 /* NS access to S memory must fault. 9603 * Architecturally we should first check whether the 9604 * MPU information for this address indicates that we 9605 * are doing an unaligned access to Device memory, which 9606 * should generate a UsageFault instead. QEMU does not 9607 * currently check for that kind of unaligned access though. 9608 * If we added it we would need to do so as a special case 9609 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 9610 */ 9611 fi->type = ARMFault_QEMU_SFault; 9612 *phys_ptr = address; 9613 *prot = 0; 9614 return true; 9615 } 9616 } 9617 } 9618 9619 return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 9620 txattrs, prot, fi, NULL); 9621 } 9622 9623 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 9624 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9625 hwaddr *phys_ptr, int *prot, 9626 ARMMMUFaultInfo *fi) 9627 { 9628 int n; 9629 uint32_t mask; 9630 uint32_t base; 9631 bool is_user = regime_is_user(env, mmu_idx); 9632 9633 if (regime_translation_disabled(env, mmu_idx)) { 9634 /* MPU disabled. */ 9635 *phys_ptr = address; 9636 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9637 return false; 9638 } 9639 9640 *phys_ptr = address; 9641 for (n = 7; n >= 0; n--) { 9642 base = env->cp15.c6_region[n]; 9643 if ((base & 1) == 0) { 9644 continue; 9645 } 9646 mask = 1 << ((base >> 1) & 0x1f); 9647 /* Keep this shift separate from the above to avoid an 9648 (undefined) << 32. */ 9649 mask = (mask << 1) - 1; 9650 if (((base ^ address) & ~mask) == 0) { 9651 break; 9652 } 9653 } 9654 if (n < 0) { 9655 fi->type = ARMFault_Background; 9656 return true; 9657 } 9658 9659 if (access_type == MMU_INST_FETCH) { 9660 mask = env->cp15.pmsav5_insn_ap; 9661 } else { 9662 mask = env->cp15.pmsav5_data_ap; 9663 } 9664 mask = (mask >> (n * 4)) & 0xf; 9665 switch (mask) { 9666 case 0: 9667 fi->type = ARMFault_Permission; 9668 fi->level = 1; 9669 return true; 9670 case 1: 9671 if (is_user) { 9672 fi->type = ARMFault_Permission; 9673 fi->level = 1; 9674 return true; 9675 } 9676 *prot = PAGE_READ | PAGE_WRITE; 9677 break; 9678 case 2: 9679 *prot = PAGE_READ; 9680 if (!is_user) { 9681 *prot |= PAGE_WRITE; 9682 } 9683 break; 9684 case 3: 9685 *prot = PAGE_READ | PAGE_WRITE; 9686 break; 9687 case 5: 9688 if (is_user) { 9689 fi->type = ARMFault_Permission; 9690 fi->level = 1; 9691 return true; 9692 } 9693 *prot = PAGE_READ; 9694 break; 9695 case 6: 9696 *prot = PAGE_READ; 9697 break; 9698 default: 9699 /* Bad permission. */ 9700 fi->type = ARMFault_Permission; 9701 fi->level = 1; 9702 return true; 9703 } 9704 *prot |= PAGE_EXEC; 9705 return false; 9706 } 9707 9708 /* Combine either inner or outer cacheability attributes for normal 9709 * memory, according to table D4-42 and pseudocode procedure 9710 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 9711 * 9712 * NB: only stage 1 includes allocation hints (RW bits), leading to 9713 * some asymmetry. 9714 */ 9715 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 9716 { 9717 if (s1 == 4 || s2 == 4) { 9718 /* non-cacheable has precedence */ 9719 return 4; 9720 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 9721 /* stage 1 write-through takes precedence */ 9722 return s1; 9723 } else if (extract32(s2, 2, 2) == 2) { 9724 /* stage 2 write-through takes precedence, but the allocation hint 9725 * is still taken from stage 1 9726 */ 9727 return (2 << 2) | extract32(s1, 0, 2); 9728 } else { /* write-back */ 9729 return s1; 9730 } 9731 } 9732 9733 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 9734 * and CombineS1S2Desc() 9735 * 9736 * @s1: Attributes from stage 1 walk 9737 * @s2: Attributes from stage 2 walk 9738 */ 9739 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 9740 { 9741 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 9742 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 9743 ARMCacheAttrs ret; 9744 9745 /* Combine shareability attributes (table D4-43) */ 9746 if (s1.shareability == 2 || s2.shareability == 2) { 9747 /* if either are outer-shareable, the result is outer-shareable */ 9748 ret.shareability = 2; 9749 } else if (s1.shareability == 3 || s2.shareability == 3) { 9750 /* if either are inner-shareable, the result is inner-shareable */ 9751 ret.shareability = 3; 9752 } else { 9753 /* both non-shareable */ 9754 ret.shareability = 0; 9755 } 9756 9757 /* Combine memory type and cacheability attributes */ 9758 if (s1hi == 0 || s2hi == 0) { 9759 /* Device has precedence over normal */ 9760 if (s1lo == 0 || s2lo == 0) { 9761 /* nGnRnE has precedence over anything */ 9762 ret.attrs = 0; 9763 } else if (s1lo == 4 || s2lo == 4) { 9764 /* non-Reordering has precedence over Reordering */ 9765 ret.attrs = 4; /* nGnRE */ 9766 } else if (s1lo == 8 || s2lo == 8) { 9767 /* non-Gathering has precedence over Gathering */ 9768 ret.attrs = 8; /* nGRE */ 9769 } else { 9770 ret.attrs = 0xc; /* GRE */ 9771 } 9772 9773 /* Any location for which the resultant memory type is any 9774 * type of Device memory is always treated as Outer Shareable. 9775 */ 9776 ret.shareability = 2; 9777 } else { /* Normal memory */ 9778 /* Outer/inner cacheability combine independently */ 9779 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 9780 | combine_cacheattr_nibble(s1lo, s2lo); 9781 9782 if (ret.attrs == 0x44) { 9783 /* Any location for which the resultant memory type is Normal 9784 * Inner Non-cacheable, Outer Non-cacheable is always treated 9785 * as Outer Shareable. 9786 */ 9787 ret.shareability = 2; 9788 } 9789 } 9790 9791 return ret; 9792 } 9793 9794 9795 /* get_phys_addr - get the physical address for this virtual address 9796 * 9797 * Find the physical address corresponding to the given virtual address, 9798 * by doing a translation table walk on MMU based systems or using the 9799 * MPU state on MPU based systems. 9800 * 9801 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 9802 * prot and page_size may not be filled in, and the populated fsr value provides 9803 * information on why the translation aborted, in the format of a 9804 * DFSR/IFSR fault register, with the following caveats: 9805 * * we honour the short vs long DFSR format differences. 9806 * * the WnR bit is never set (the caller must do this). 9807 * * for PSMAv5 based systems we don't bother to return a full FSR format 9808 * value. 9809 * 9810 * @env: CPUARMState 9811 * @address: virtual address to get physical address for 9812 * @access_type: 0 for read, 1 for write, 2 for execute 9813 * @mmu_idx: MMU index indicating required translation regime 9814 * @phys_ptr: set to the physical address corresponding to the virtual address 9815 * @attrs: set to the memory transaction attributes to use 9816 * @prot: set to the permissions for the page containing phys_ptr 9817 * @page_size: set to the size of the page containing phys_ptr 9818 * @fi: set to fault info if the translation fails 9819 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 9820 */ 9821 static bool get_phys_addr(CPUARMState *env, target_ulong address, 9822 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9823 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 9824 target_ulong *page_size, 9825 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9826 { 9827 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 9828 /* Call ourselves recursively to do the stage 1 and then stage 2 9829 * translations. 9830 */ 9831 if (arm_feature(env, ARM_FEATURE_EL2)) { 9832 hwaddr ipa; 9833 int s2_prot; 9834 int ret; 9835 ARMCacheAttrs cacheattrs2 = {}; 9836 9837 ret = get_phys_addr(env, address, access_type, 9838 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 9839 prot, page_size, fi, cacheattrs); 9840 9841 /* If S1 fails or S2 is disabled, return early. */ 9842 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 9843 *phys_ptr = ipa; 9844 return ret; 9845 } 9846 9847 /* S1 is done. Now do S2 translation. */ 9848 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 9849 phys_ptr, attrs, &s2_prot, 9850 page_size, fi, 9851 cacheattrs != NULL ? &cacheattrs2 : NULL); 9852 fi->s2addr = ipa; 9853 /* Combine the S1 and S2 perms. */ 9854 *prot &= s2_prot; 9855 9856 /* Combine the S1 and S2 cache attributes, if needed */ 9857 if (!ret && cacheattrs != NULL) { 9858 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 9859 } 9860 9861 return ret; 9862 } else { 9863 /* 9864 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 9865 */ 9866 mmu_idx = stage_1_mmu_idx(mmu_idx); 9867 } 9868 } 9869 9870 /* The page table entries may downgrade secure to non-secure, but 9871 * cannot upgrade an non-secure translation regime's attributes 9872 * to secure. 9873 */ 9874 attrs->secure = regime_is_secure(env, mmu_idx); 9875 attrs->user = regime_is_user(env, mmu_idx); 9876 9877 /* Fast Context Switch Extension. This doesn't exist at all in v8. 9878 * In v7 and earlier it affects all stage 1 translations. 9879 */ 9880 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 9881 && !arm_feature(env, ARM_FEATURE_V8)) { 9882 if (regime_el(env, mmu_idx) == 3) { 9883 address += env->cp15.fcseidr_s; 9884 } else { 9885 address += env->cp15.fcseidr_ns; 9886 } 9887 } 9888 9889 if (arm_feature(env, ARM_FEATURE_PMSA)) { 9890 bool ret; 9891 *page_size = TARGET_PAGE_SIZE; 9892 9893 if (arm_feature(env, ARM_FEATURE_V8)) { 9894 /* PMSAv8 */ 9895 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 9896 phys_ptr, attrs, prot, fi); 9897 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9898 /* PMSAv7 */ 9899 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 9900 phys_ptr, prot, fi); 9901 } else { 9902 /* Pre-v7 MPU */ 9903 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 9904 phys_ptr, prot, fi); 9905 } 9906 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 9907 " mmu_idx %u -> %s (prot %c%c%c)\n", 9908 access_type == MMU_DATA_LOAD ? "reading" : 9909 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 9910 (uint32_t)address, mmu_idx, 9911 ret ? "Miss" : "Hit", 9912 *prot & PAGE_READ ? 'r' : '-', 9913 *prot & PAGE_WRITE ? 'w' : '-', 9914 *prot & PAGE_EXEC ? 'x' : '-'); 9915 9916 return ret; 9917 } 9918 9919 /* Definitely a real MMU, not an MPU */ 9920 9921 if (regime_translation_disabled(env, mmu_idx)) { 9922 /* MMU disabled. */ 9923 *phys_ptr = address; 9924 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9925 *page_size = TARGET_PAGE_SIZE; 9926 return 0; 9927 } 9928 9929 if (regime_using_lpae_format(env, mmu_idx)) { 9930 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 9931 phys_ptr, attrs, prot, page_size, 9932 fi, cacheattrs); 9933 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 9934 return get_phys_addr_v6(env, address, access_type, mmu_idx, 9935 phys_ptr, attrs, prot, page_size, fi); 9936 } else { 9937 return get_phys_addr_v5(env, address, access_type, mmu_idx, 9938 phys_ptr, prot, page_size, fi); 9939 } 9940 } 9941 9942 /* Walk the page table and (if the mapping exists) add the page 9943 * to the TLB. Return false on success, or true on failure. Populate 9944 * fsr with ARM DFSR/IFSR fault register format value on failure. 9945 */ 9946 bool arm_tlb_fill(CPUState *cs, vaddr address, 9947 MMUAccessType access_type, int mmu_idx, 9948 ARMMMUFaultInfo *fi) 9949 { 9950 ARMCPU *cpu = ARM_CPU(cs); 9951 CPUARMState *env = &cpu->env; 9952 hwaddr phys_addr; 9953 target_ulong page_size; 9954 int prot; 9955 int ret; 9956 MemTxAttrs attrs = {}; 9957 9958 ret = get_phys_addr(env, address, access_type, 9959 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, 9960 &attrs, &prot, &page_size, fi, NULL); 9961 if (!ret) { 9962 /* Map a single [sub]page. */ 9963 phys_addr &= TARGET_PAGE_MASK; 9964 address &= TARGET_PAGE_MASK; 9965 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 9966 prot, mmu_idx, page_size); 9967 return 0; 9968 } 9969 9970 return ret; 9971 } 9972 9973 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 9974 MemTxAttrs *attrs) 9975 { 9976 ARMCPU *cpu = ARM_CPU(cs); 9977 CPUARMState *env = &cpu->env; 9978 hwaddr phys_addr; 9979 target_ulong page_size; 9980 int prot; 9981 bool ret; 9982 ARMMMUFaultInfo fi = {}; 9983 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 9984 9985 *attrs = (MemTxAttrs) {}; 9986 9987 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 9988 attrs, &prot, &page_size, &fi, NULL); 9989 9990 if (ret) { 9991 return -1; 9992 } 9993 return phys_addr; 9994 } 9995 9996 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 9997 { 9998 uint32_t mask; 9999 unsigned el = arm_current_el(env); 10000 10001 /* First handle registers which unprivileged can read */ 10002 10003 switch (reg) { 10004 case 0 ... 7: /* xPSR sub-fields */ 10005 mask = 0; 10006 if ((reg & 1) && el) { 10007 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 10008 } 10009 if (!(reg & 4)) { 10010 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 10011 } 10012 /* EPSR reads as zero */ 10013 return xpsr_read(env) & mask; 10014 break; 10015 case 20: /* CONTROL */ 10016 return env->v7m.control[env->v7m.secure]; 10017 case 0x94: /* CONTROL_NS */ 10018 /* We have to handle this here because unprivileged Secure code 10019 * can read the NS CONTROL register. 10020 */ 10021 if (!env->v7m.secure) { 10022 return 0; 10023 } 10024 return env->v7m.control[M_REG_NS]; 10025 } 10026 10027 if (el == 0) { 10028 return 0; /* unprivileged reads others as zero */ 10029 } 10030 10031 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10032 switch (reg) { 10033 case 0x88: /* MSP_NS */ 10034 if (!env->v7m.secure) { 10035 return 0; 10036 } 10037 return env->v7m.other_ss_msp; 10038 case 0x89: /* PSP_NS */ 10039 if (!env->v7m.secure) { 10040 return 0; 10041 } 10042 return env->v7m.other_ss_psp; 10043 case 0x90: /* PRIMASK_NS */ 10044 if (!env->v7m.secure) { 10045 return 0; 10046 } 10047 return env->v7m.primask[M_REG_NS]; 10048 case 0x91: /* BASEPRI_NS */ 10049 if (!env->v7m.secure) { 10050 return 0; 10051 } 10052 return env->v7m.basepri[M_REG_NS]; 10053 case 0x93: /* FAULTMASK_NS */ 10054 if (!env->v7m.secure) { 10055 return 0; 10056 } 10057 return env->v7m.faultmask[M_REG_NS]; 10058 case 0x98: /* SP_NS */ 10059 { 10060 /* This gives the non-secure SP selected based on whether we're 10061 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10062 */ 10063 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10064 10065 if (!env->v7m.secure) { 10066 return 0; 10067 } 10068 if (!arm_v7m_is_handler_mode(env) && spsel) { 10069 return env->v7m.other_ss_psp; 10070 } else { 10071 return env->v7m.other_ss_msp; 10072 } 10073 } 10074 default: 10075 break; 10076 } 10077 } 10078 10079 switch (reg) { 10080 case 8: /* MSP */ 10081 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; 10082 case 9: /* PSP */ 10083 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; 10084 case 16: /* PRIMASK */ 10085 return env->v7m.primask[env->v7m.secure]; 10086 case 17: /* BASEPRI */ 10087 case 18: /* BASEPRI_MAX */ 10088 return env->v7m.basepri[env->v7m.secure]; 10089 case 19: /* FAULTMASK */ 10090 return env->v7m.faultmask[env->v7m.secure]; 10091 default: 10092 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 10093 " register %d\n", reg); 10094 return 0; 10095 } 10096 } 10097 10098 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 10099 { 10100 /* We're passed bits [11..0] of the instruction; extract 10101 * SYSm and the mask bits. 10102 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 10103 * we choose to treat them as if the mask bits were valid. 10104 * NB that the pseudocode 'mask' variable is bits [11..10], 10105 * whereas ours is [11..8]. 10106 */ 10107 uint32_t mask = extract32(maskreg, 8, 4); 10108 uint32_t reg = extract32(maskreg, 0, 8); 10109 10110 if (arm_current_el(env) == 0 && reg > 7) { 10111 /* only xPSR sub-fields may be written by unprivileged */ 10112 return; 10113 } 10114 10115 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10116 switch (reg) { 10117 case 0x88: /* MSP_NS */ 10118 if (!env->v7m.secure) { 10119 return; 10120 } 10121 env->v7m.other_ss_msp = val; 10122 return; 10123 case 0x89: /* PSP_NS */ 10124 if (!env->v7m.secure) { 10125 return; 10126 } 10127 env->v7m.other_ss_psp = val; 10128 return; 10129 case 0x90: /* PRIMASK_NS */ 10130 if (!env->v7m.secure) { 10131 return; 10132 } 10133 env->v7m.primask[M_REG_NS] = val & 1; 10134 return; 10135 case 0x91: /* BASEPRI_NS */ 10136 if (!env->v7m.secure) { 10137 return; 10138 } 10139 env->v7m.basepri[M_REG_NS] = val & 0xff; 10140 return; 10141 case 0x93: /* FAULTMASK_NS */ 10142 if (!env->v7m.secure) { 10143 return; 10144 } 10145 env->v7m.faultmask[M_REG_NS] = val & 1; 10146 return; 10147 case 0x98: /* SP_NS */ 10148 { 10149 /* This gives the non-secure SP selected based on whether we're 10150 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10151 */ 10152 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10153 10154 if (!env->v7m.secure) { 10155 return; 10156 } 10157 if (!arm_v7m_is_handler_mode(env) && spsel) { 10158 env->v7m.other_ss_psp = val; 10159 } else { 10160 env->v7m.other_ss_msp = val; 10161 } 10162 return; 10163 } 10164 default: 10165 break; 10166 } 10167 } 10168 10169 switch (reg) { 10170 case 0 ... 7: /* xPSR sub-fields */ 10171 /* only APSR is actually writable */ 10172 if (!(reg & 4)) { 10173 uint32_t apsrmask = 0; 10174 10175 if (mask & 8) { 10176 apsrmask |= XPSR_NZCV | XPSR_Q; 10177 } 10178 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 10179 apsrmask |= XPSR_GE; 10180 } 10181 xpsr_write(env, val, apsrmask); 10182 } 10183 break; 10184 case 8: /* MSP */ 10185 if (v7m_using_psp(env)) { 10186 env->v7m.other_sp = val; 10187 } else { 10188 env->regs[13] = val; 10189 } 10190 break; 10191 case 9: /* PSP */ 10192 if (v7m_using_psp(env)) { 10193 env->regs[13] = val; 10194 } else { 10195 env->v7m.other_sp = val; 10196 } 10197 break; 10198 case 16: /* PRIMASK */ 10199 env->v7m.primask[env->v7m.secure] = val & 1; 10200 break; 10201 case 17: /* BASEPRI */ 10202 env->v7m.basepri[env->v7m.secure] = val & 0xff; 10203 break; 10204 case 18: /* BASEPRI_MAX */ 10205 val &= 0xff; 10206 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 10207 || env->v7m.basepri[env->v7m.secure] == 0)) { 10208 env->v7m.basepri[env->v7m.secure] = val; 10209 } 10210 break; 10211 case 19: /* FAULTMASK */ 10212 env->v7m.faultmask[env->v7m.secure] = val & 1; 10213 break; 10214 case 20: /* CONTROL */ 10215 /* Writing to the SPSEL bit only has an effect if we are in 10216 * thread mode; other bits can be updated by any privileged code. 10217 * write_v7m_control_spsel() deals with updating the SPSEL bit in 10218 * env->v7m.control, so we only need update the others. 10219 * For v7M, we must just ignore explicit writes to SPSEL in handler 10220 * mode; for v8M the write is permitted but will have no effect. 10221 */ 10222 if (arm_feature(env, ARM_FEATURE_V8) || 10223 !arm_v7m_is_handler_mode(env)) { 10224 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 10225 } 10226 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 10227 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 10228 break; 10229 default: 10230 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 10231 " register %d\n", reg); 10232 return; 10233 } 10234 } 10235 10236 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 10237 { 10238 /* Implement the TT instruction. op is bits [7:6] of the insn. */ 10239 bool forceunpriv = op & 1; 10240 bool alt = op & 2; 10241 V8M_SAttributes sattrs = {}; 10242 uint32_t tt_resp; 10243 bool r, rw, nsr, nsrw, mrvalid; 10244 int prot; 10245 ARMMMUFaultInfo fi = {}; 10246 MemTxAttrs attrs = {}; 10247 hwaddr phys_addr; 10248 ARMMMUIdx mmu_idx; 10249 uint32_t mregion; 10250 bool targetpriv; 10251 bool targetsec = env->v7m.secure; 10252 10253 /* Work out what the security state and privilege level we're 10254 * interested in is... 10255 */ 10256 if (alt) { 10257 targetsec = !targetsec; 10258 } 10259 10260 if (forceunpriv) { 10261 targetpriv = false; 10262 } else { 10263 targetpriv = arm_v7m_is_handler_mode(env) || 10264 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); 10265 } 10266 10267 /* ...and then figure out which MMU index this is */ 10268 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); 10269 10270 /* We know that the MPU and SAU don't care about the access type 10271 * for our purposes beyond that we don't want to claim to be 10272 * an insn fetch, so we arbitrarily call this a read. 10273 */ 10274 10275 /* MPU region info only available for privileged or if 10276 * inspecting the other MPU state. 10277 */ 10278 if (arm_current_el(env) != 0 || alt) { 10279 /* We can ignore the return value as prot is always set */ 10280 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, 10281 &phys_addr, &attrs, &prot, &fi, &mregion); 10282 if (mregion == -1) { 10283 mrvalid = false; 10284 mregion = 0; 10285 } else { 10286 mrvalid = true; 10287 } 10288 r = prot & PAGE_READ; 10289 rw = prot & PAGE_WRITE; 10290 } else { 10291 r = false; 10292 rw = false; 10293 mrvalid = false; 10294 mregion = 0; 10295 } 10296 10297 if (env->v7m.secure) { 10298 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 10299 nsr = sattrs.ns && r; 10300 nsrw = sattrs.ns && rw; 10301 } else { 10302 sattrs.ns = true; 10303 nsr = false; 10304 nsrw = false; 10305 } 10306 10307 tt_resp = (sattrs.iregion << 24) | 10308 (sattrs.irvalid << 23) | 10309 ((!sattrs.ns) << 22) | 10310 (nsrw << 21) | 10311 (nsr << 20) | 10312 (rw << 19) | 10313 (r << 18) | 10314 (sattrs.srvalid << 17) | 10315 (mrvalid << 16) | 10316 (sattrs.sregion << 8) | 10317 mregion; 10318 10319 return tt_resp; 10320 } 10321 10322 #endif 10323 10324 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 10325 { 10326 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 10327 * Note that we do not implement the (architecturally mandated) 10328 * alignment fault for attempts to use this on Device memory 10329 * (which matches the usual QEMU behaviour of not implementing either 10330 * alignment faults or any memory attribute handling). 10331 */ 10332 10333 ARMCPU *cpu = arm_env_get_cpu(env); 10334 uint64_t blocklen = 4 << cpu->dcz_blocksize; 10335 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 10336 10337 #ifndef CONFIG_USER_ONLY 10338 { 10339 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 10340 * the block size so we might have to do more than one TLB lookup. 10341 * We know that in fact for any v8 CPU the page size is at least 4K 10342 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 10343 * 1K as an artefact of legacy v5 subpage support being present in the 10344 * same QEMU executable. 10345 */ 10346 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 10347 void *hostaddr[maxidx]; 10348 int try, i; 10349 unsigned mmu_idx = cpu_mmu_index(env, false); 10350 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 10351 10352 for (try = 0; try < 2; try++) { 10353 10354 for (i = 0; i < maxidx; i++) { 10355 hostaddr[i] = tlb_vaddr_to_host(env, 10356 vaddr + TARGET_PAGE_SIZE * i, 10357 1, mmu_idx); 10358 if (!hostaddr[i]) { 10359 break; 10360 } 10361 } 10362 if (i == maxidx) { 10363 /* If it's all in the TLB it's fair game for just writing to; 10364 * we know we don't need to update dirty status, etc. 10365 */ 10366 for (i = 0; i < maxidx - 1; i++) { 10367 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 10368 } 10369 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 10370 return; 10371 } 10372 /* OK, try a store and see if we can populate the tlb. This 10373 * might cause an exception if the memory isn't writable, 10374 * in which case we will longjmp out of here. We must for 10375 * this purpose use the actual register value passed to us 10376 * so that we get the fault address right. 10377 */ 10378 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 10379 /* Now we can populate the other TLB entries, if any */ 10380 for (i = 0; i < maxidx; i++) { 10381 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 10382 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 10383 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 10384 } 10385 } 10386 } 10387 10388 /* Slow path (probably attempt to do this to an I/O device or 10389 * similar, or clearing of a block of code we have translations 10390 * cached for). Just do a series of byte writes as the architecture 10391 * demands. It's not worth trying to use a cpu_physical_memory_map(), 10392 * memset(), unmap() sequence here because: 10393 * + we'd need to account for the blocksize being larger than a page 10394 * + the direct-RAM access case is almost always going to be dealt 10395 * with in the fastpath code above, so there's no speed benefit 10396 * + we would have to deal with the map returning NULL because the 10397 * bounce buffer was in use 10398 */ 10399 for (i = 0; i < blocklen; i++) { 10400 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 10401 } 10402 } 10403 #else 10404 memset(g2h(vaddr), 0, blocklen); 10405 #endif 10406 } 10407 10408 /* Note that signed overflow is undefined in C. The following routines are 10409 careful to use unsigned types where modulo arithmetic is required. 10410 Failure to do so _will_ break on newer gcc. */ 10411 10412 /* Signed saturating arithmetic. */ 10413 10414 /* Perform 16-bit signed saturating addition. */ 10415 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10416 { 10417 uint16_t res; 10418 10419 res = a + b; 10420 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10421 if (a & 0x8000) 10422 res = 0x8000; 10423 else 10424 res = 0x7fff; 10425 } 10426 return res; 10427 } 10428 10429 /* Perform 8-bit signed saturating addition. */ 10430 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10431 { 10432 uint8_t res; 10433 10434 res = a + b; 10435 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10436 if (a & 0x80) 10437 res = 0x80; 10438 else 10439 res = 0x7f; 10440 } 10441 return res; 10442 } 10443 10444 /* Perform 16-bit signed saturating subtraction. */ 10445 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10446 { 10447 uint16_t res; 10448 10449 res = a - b; 10450 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10451 if (a & 0x8000) 10452 res = 0x8000; 10453 else 10454 res = 0x7fff; 10455 } 10456 return res; 10457 } 10458 10459 /* Perform 8-bit signed saturating subtraction. */ 10460 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10461 { 10462 uint8_t res; 10463 10464 res = a - b; 10465 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10466 if (a & 0x80) 10467 res = 0x80; 10468 else 10469 res = 0x7f; 10470 } 10471 return res; 10472 } 10473 10474 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10475 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10476 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10477 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10478 #define PFX q 10479 10480 #include "op_addsub.h" 10481 10482 /* Unsigned saturating arithmetic. */ 10483 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10484 { 10485 uint16_t res; 10486 res = a + b; 10487 if (res < a) 10488 res = 0xffff; 10489 return res; 10490 } 10491 10492 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10493 { 10494 if (a > b) 10495 return a - b; 10496 else 10497 return 0; 10498 } 10499 10500 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10501 { 10502 uint8_t res; 10503 res = a + b; 10504 if (res < a) 10505 res = 0xff; 10506 return res; 10507 } 10508 10509 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10510 { 10511 if (a > b) 10512 return a - b; 10513 else 10514 return 0; 10515 } 10516 10517 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10518 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10519 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10520 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10521 #define PFX uq 10522 10523 #include "op_addsub.h" 10524 10525 /* Signed modulo arithmetic. */ 10526 #define SARITH16(a, b, n, op) do { \ 10527 int32_t sum; \ 10528 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10529 RESULT(sum, n, 16); \ 10530 if (sum >= 0) \ 10531 ge |= 3 << (n * 2); \ 10532 } while(0) 10533 10534 #define SARITH8(a, b, n, op) do { \ 10535 int32_t sum; \ 10536 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10537 RESULT(sum, n, 8); \ 10538 if (sum >= 0) \ 10539 ge |= 1 << n; \ 10540 } while(0) 10541 10542 10543 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10544 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10545 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10546 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10547 #define PFX s 10548 #define ARITH_GE 10549 10550 #include "op_addsub.h" 10551 10552 /* Unsigned modulo arithmetic. */ 10553 #define ADD16(a, b, n) do { \ 10554 uint32_t sum; \ 10555 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10556 RESULT(sum, n, 16); \ 10557 if ((sum >> 16) == 1) \ 10558 ge |= 3 << (n * 2); \ 10559 } while(0) 10560 10561 #define ADD8(a, b, n) do { \ 10562 uint32_t sum; \ 10563 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10564 RESULT(sum, n, 8); \ 10565 if ((sum >> 8) == 1) \ 10566 ge |= 1 << n; \ 10567 } while(0) 10568 10569 #define SUB16(a, b, n) do { \ 10570 uint32_t sum; \ 10571 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10572 RESULT(sum, n, 16); \ 10573 if ((sum >> 16) == 0) \ 10574 ge |= 3 << (n * 2); \ 10575 } while(0) 10576 10577 #define SUB8(a, b, n) do { \ 10578 uint32_t sum; \ 10579 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10580 RESULT(sum, n, 8); \ 10581 if ((sum >> 8) == 0) \ 10582 ge |= 1 << n; \ 10583 } while(0) 10584 10585 #define PFX u 10586 #define ARITH_GE 10587 10588 #include "op_addsub.h" 10589 10590 /* Halved signed arithmetic. */ 10591 #define ADD16(a, b, n) \ 10592 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10593 #define SUB16(a, b, n) \ 10594 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10595 #define ADD8(a, b, n) \ 10596 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10597 #define SUB8(a, b, n) \ 10598 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10599 #define PFX sh 10600 10601 #include "op_addsub.h" 10602 10603 /* Halved unsigned arithmetic. */ 10604 #define ADD16(a, b, n) \ 10605 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10606 #define SUB16(a, b, n) \ 10607 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10608 #define ADD8(a, b, n) \ 10609 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10610 #define SUB8(a, b, n) \ 10611 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10612 #define PFX uh 10613 10614 #include "op_addsub.h" 10615 10616 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10617 { 10618 if (a > b) 10619 return a - b; 10620 else 10621 return b - a; 10622 } 10623 10624 /* Unsigned sum of absolute byte differences. */ 10625 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10626 { 10627 uint32_t sum; 10628 sum = do_usad(a, b); 10629 sum += do_usad(a >> 8, b >> 8); 10630 sum += do_usad(a >> 16, b >>16); 10631 sum += do_usad(a >> 24, b >> 24); 10632 return sum; 10633 } 10634 10635 /* For ARMv6 SEL instruction. */ 10636 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10637 { 10638 uint32_t mask; 10639 10640 mask = 0; 10641 if (flags & 1) 10642 mask |= 0xff; 10643 if (flags & 2) 10644 mask |= 0xff00; 10645 if (flags & 4) 10646 mask |= 0xff0000; 10647 if (flags & 8) 10648 mask |= 0xff000000; 10649 return (a & mask) | (b & ~mask); 10650 } 10651 10652 /* VFP support. We follow the convention used for VFP instructions: 10653 Single precision routines have a "s" suffix, double precision a 10654 "d" suffix. */ 10655 10656 /* Convert host exception flags to vfp form. */ 10657 static inline int vfp_exceptbits_from_host(int host_bits) 10658 { 10659 int target_bits = 0; 10660 10661 if (host_bits & float_flag_invalid) 10662 target_bits |= 1; 10663 if (host_bits & float_flag_divbyzero) 10664 target_bits |= 2; 10665 if (host_bits & float_flag_overflow) 10666 target_bits |= 4; 10667 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 10668 target_bits |= 8; 10669 if (host_bits & float_flag_inexact) 10670 target_bits |= 0x10; 10671 if (host_bits & float_flag_input_denormal) 10672 target_bits |= 0x80; 10673 return target_bits; 10674 } 10675 10676 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 10677 { 10678 int i; 10679 uint32_t fpscr; 10680 10681 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 10682 | (env->vfp.vec_len << 16) 10683 | (env->vfp.vec_stride << 20); 10684 i = get_float_exception_flags(&env->vfp.fp_status); 10685 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 10686 fpscr |= vfp_exceptbits_from_host(i); 10687 return fpscr; 10688 } 10689 10690 uint32_t vfp_get_fpscr(CPUARMState *env) 10691 { 10692 return HELPER(vfp_get_fpscr)(env); 10693 } 10694 10695 /* Convert vfp exception flags to target form. */ 10696 static inline int vfp_exceptbits_to_host(int target_bits) 10697 { 10698 int host_bits = 0; 10699 10700 if (target_bits & 1) 10701 host_bits |= float_flag_invalid; 10702 if (target_bits & 2) 10703 host_bits |= float_flag_divbyzero; 10704 if (target_bits & 4) 10705 host_bits |= float_flag_overflow; 10706 if (target_bits & 8) 10707 host_bits |= float_flag_underflow; 10708 if (target_bits & 0x10) 10709 host_bits |= float_flag_inexact; 10710 if (target_bits & 0x80) 10711 host_bits |= float_flag_input_denormal; 10712 return host_bits; 10713 } 10714 10715 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 10716 { 10717 int i; 10718 uint32_t changed; 10719 10720 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 10721 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 10722 env->vfp.vec_len = (val >> 16) & 7; 10723 env->vfp.vec_stride = (val >> 20) & 3; 10724 10725 changed ^= val; 10726 if (changed & (3 << 22)) { 10727 i = (val >> 22) & 3; 10728 switch (i) { 10729 case FPROUNDING_TIEEVEN: 10730 i = float_round_nearest_even; 10731 break; 10732 case FPROUNDING_POSINF: 10733 i = float_round_up; 10734 break; 10735 case FPROUNDING_NEGINF: 10736 i = float_round_down; 10737 break; 10738 case FPROUNDING_ZERO: 10739 i = float_round_to_zero; 10740 break; 10741 } 10742 set_float_rounding_mode(i, &env->vfp.fp_status); 10743 } 10744 if (changed & (1 << 24)) { 10745 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 10746 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 10747 } 10748 if (changed & (1 << 25)) 10749 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); 10750 10751 i = vfp_exceptbits_to_host(val); 10752 set_float_exception_flags(i, &env->vfp.fp_status); 10753 set_float_exception_flags(0, &env->vfp.standard_fp_status); 10754 } 10755 10756 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 10757 { 10758 HELPER(vfp_set_fpscr)(env, val); 10759 } 10760 10761 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 10762 10763 #define VFP_BINOP(name) \ 10764 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 10765 { \ 10766 float_status *fpst = fpstp; \ 10767 return float32_ ## name(a, b, fpst); \ 10768 } \ 10769 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 10770 { \ 10771 float_status *fpst = fpstp; \ 10772 return float64_ ## name(a, b, fpst); \ 10773 } 10774 VFP_BINOP(add) 10775 VFP_BINOP(sub) 10776 VFP_BINOP(mul) 10777 VFP_BINOP(div) 10778 VFP_BINOP(min) 10779 VFP_BINOP(max) 10780 VFP_BINOP(minnum) 10781 VFP_BINOP(maxnum) 10782 #undef VFP_BINOP 10783 10784 float32 VFP_HELPER(neg, s)(float32 a) 10785 { 10786 return float32_chs(a); 10787 } 10788 10789 float64 VFP_HELPER(neg, d)(float64 a) 10790 { 10791 return float64_chs(a); 10792 } 10793 10794 float32 VFP_HELPER(abs, s)(float32 a) 10795 { 10796 return float32_abs(a); 10797 } 10798 10799 float64 VFP_HELPER(abs, d)(float64 a) 10800 { 10801 return float64_abs(a); 10802 } 10803 10804 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 10805 { 10806 return float32_sqrt(a, &env->vfp.fp_status); 10807 } 10808 10809 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 10810 { 10811 return float64_sqrt(a, &env->vfp.fp_status); 10812 } 10813 10814 /* XXX: check quiet/signaling case */ 10815 #define DO_VFP_cmp(p, type) \ 10816 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 10817 { \ 10818 uint32_t flags; \ 10819 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 10820 case 0: flags = 0x6; break; \ 10821 case -1: flags = 0x8; break; \ 10822 case 1: flags = 0x2; break; \ 10823 default: case 2: flags = 0x3; break; \ 10824 } \ 10825 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 10826 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 10827 } \ 10828 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 10829 { \ 10830 uint32_t flags; \ 10831 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 10832 case 0: flags = 0x6; break; \ 10833 case -1: flags = 0x8; break; \ 10834 case 1: flags = 0x2; break; \ 10835 default: case 2: flags = 0x3; break; \ 10836 } \ 10837 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 10838 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 10839 } 10840 DO_VFP_cmp(s, float32) 10841 DO_VFP_cmp(d, float64) 10842 #undef DO_VFP_cmp 10843 10844 /* Integer to float and float to integer conversions */ 10845 10846 #define CONV_ITOF(name, fsz, sign) \ 10847 float##fsz HELPER(name)(uint32_t x, void *fpstp) \ 10848 { \ 10849 float_status *fpst = fpstp; \ 10850 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 10851 } 10852 10853 #define CONV_FTOI(name, fsz, sign, round) \ 10854 uint32_t HELPER(name)(float##fsz x, void *fpstp) \ 10855 { \ 10856 float_status *fpst = fpstp; \ 10857 if (float##fsz##_is_any_nan(x)) { \ 10858 float_raise(float_flag_invalid, fpst); \ 10859 return 0; \ 10860 } \ 10861 return float##fsz##_to_##sign##int32##round(x, fpst); \ 10862 } 10863 10864 #define FLOAT_CONVS(name, p, fsz, sign) \ 10865 CONV_ITOF(vfp_##name##to##p, fsz, sign) \ 10866 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ 10867 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) 10868 10869 FLOAT_CONVS(si, s, 32, ) 10870 FLOAT_CONVS(si, d, 64, ) 10871 FLOAT_CONVS(ui, s, 32, u) 10872 FLOAT_CONVS(ui, d, 64, u) 10873 10874 #undef CONV_ITOF 10875 #undef CONV_FTOI 10876 #undef FLOAT_CONVS 10877 10878 /* floating point conversion */ 10879 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 10880 { 10881 float64 r = float32_to_float64(x, &env->vfp.fp_status); 10882 /* ARM requires that S<->D conversion of any kind of NaN generates 10883 * a quiet NaN by forcing the most significant frac bit to 1. 10884 */ 10885 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 10886 } 10887 10888 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 10889 { 10890 float32 r = float64_to_float32(x, &env->vfp.fp_status); 10891 /* ARM requires that S<->D conversion of any kind of NaN generates 10892 * a quiet NaN by forcing the most significant frac bit to 1. 10893 */ 10894 return float32_maybe_silence_nan(r, &env->vfp.fp_status); 10895 } 10896 10897 /* VFP3 fixed point conversion. */ 10898 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 10899 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 10900 void *fpstp) \ 10901 { \ 10902 float_status *fpst = fpstp; \ 10903 float##fsz tmp; \ 10904 tmp = itype##_to_##float##fsz(x, fpst); \ 10905 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ 10906 } 10907 10908 /* Notice that we want only input-denormal exception flags from the 10909 * scalbn operation: the other possible flags (overflow+inexact if 10910 * we overflow to infinity, output-denormal) aren't correct for the 10911 * complete scale-and-convert operation. 10912 */ 10913 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ 10914 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ 10915 uint32_t shift, \ 10916 void *fpstp) \ 10917 { \ 10918 float_status *fpst = fpstp; \ 10919 int old_exc_flags = get_float_exception_flags(fpst); \ 10920 float##fsz tmp; \ 10921 if (float##fsz##_is_any_nan(x)) { \ 10922 float_raise(float_flag_invalid, fpst); \ 10923 return 0; \ 10924 } \ 10925 tmp = float##fsz##_scalbn(x, shift, fpst); \ 10926 old_exc_flags |= get_float_exception_flags(fpst) \ 10927 & float_flag_input_denormal; \ 10928 set_float_exception_flags(old_exc_flags, fpst); \ 10929 return float##fsz##_to_##itype##round(tmp, fpst); \ 10930 } 10931 10932 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 10933 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 10934 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ 10935 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 10936 10937 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 10938 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 10939 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 10940 10941 VFP_CONV_FIX(sh, d, 64, 64, int16) 10942 VFP_CONV_FIX(sl, d, 64, 64, int32) 10943 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 10944 VFP_CONV_FIX(uh, d, 64, 64, uint16) 10945 VFP_CONV_FIX(ul, d, 64, 64, uint32) 10946 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 10947 VFP_CONV_FIX(sh, s, 32, 32, int16) 10948 VFP_CONV_FIX(sl, s, 32, 32, int32) 10949 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 10950 VFP_CONV_FIX(uh, s, 32, 32, uint16) 10951 VFP_CONV_FIX(ul, s, 32, 32, uint32) 10952 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 10953 #undef VFP_CONV_FIX 10954 #undef VFP_CONV_FIX_FLOAT 10955 #undef VFP_CONV_FLOAT_FIX_ROUND 10956 10957 /* Set the current fp rounding mode and return the old one. 10958 * The argument is a softfloat float_round_ value. 10959 */ 10960 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) 10961 { 10962 float_status *fp_status = &env->vfp.fp_status; 10963 10964 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 10965 set_float_rounding_mode(rmode, fp_status); 10966 10967 return prev_rmode; 10968 } 10969 10970 /* Set the current fp rounding mode in the standard fp status and return 10971 * the old one. This is for NEON instructions that need to change the 10972 * rounding mode but wish to use the standard FPSCR values for everything 10973 * else. Always set the rounding mode back to the correct value after 10974 * modifying it. 10975 * The argument is a softfloat float_round_ value. 10976 */ 10977 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 10978 { 10979 float_status *fp_status = &env->vfp.standard_fp_status; 10980 10981 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 10982 set_float_rounding_mode(rmode, fp_status); 10983 10984 return prev_rmode; 10985 } 10986 10987 /* Half precision conversions. */ 10988 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) 10989 { 10990 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 10991 float32 r = float16_to_float32(make_float16(a), ieee, s); 10992 if (ieee) { 10993 return float32_maybe_silence_nan(r, s); 10994 } 10995 return r; 10996 } 10997 10998 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) 10999 { 11000 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11001 float16 r = float32_to_float16(a, ieee, s); 11002 if (ieee) { 11003 r = float16_maybe_silence_nan(r, s); 11004 } 11005 return float16_val(r); 11006 } 11007 11008 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 11009 { 11010 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); 11011 } 11012 11013 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 11014 { 11015 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); 11016 } 11017 11018 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 11019 { 11020 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); 11021 } 11022 11023 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 11024 { 11025 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); 11026 } 11027 11028 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) 11029 { 11030 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11031 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); 11032 if (ieee) { 11033 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 11034 } 11035 return r; 11036 } 11037 11038 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) 11039 { 11040 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11041 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); 11042 if (ieee) { 11043 r = float16_maybe_silence_nan(r, &env->vfp.fp_status); 11044 } 11045 return float16_val(r); 11046 } 11047 11048 #define float32_two make_float32(0x40000000) 11049 #define float32_three make_float32(0x40400000) 11050 #define float32_one_point_five make_float32(0x3fc00000) 11051 11052 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 11053 { 11054 float_status *s = &env->vfp.standard_fp_status; 11055 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11056 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11057 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11058 float_raise(float_flag_input_denormal, s); 11059 } 11060 return float32_two; 11061 } 11062 return float32_sub(float32_two, float32_mul(a, b, s), s); 11063 } 11064 11065 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 11066 { 11067 float_status *s = &env->vfp.standard_fp_status; 11068 float32 product; 11069 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11070 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11071 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11072 float_raise(float_flag_input_denormal, s); 11073 } 11074 return float32_one_point_five; 11075 } 11076 product = float32_mul(a, b, s); 11077 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 11078 } 11079 11080 /* NEON helpers. */ 11081 11082 /* Constants 256 and 512 are used in some helpers; we avoid relying on 11083 * int->float conversions at run-time. */ 11084 #define float64_256 make_float64(0x4070000000000000LL) 11085 #define float64_512 make_float64(0x4080000000000000LL) 11086 #define float32_maxnorm make_float32(0x7f7fffff) 11087 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 11088 11089 /* Reciprocal functions 11090 * 11091 * The algorithm that must be used to calculate the estimate 11092 * is specified by the ARM ARM, see FPRecipEstimate() 11093 */ 11094 11095 static float64 recip_estimate(float64 a, float_status *real_fp_status) 11096 { 11097 /* These calculations mustn't set any fp exception flags, 11098 * so we use a local copy of the fp_status. 11099 */ 11100 float_status dummy_status = *real_fp_status; 11101 float_status *s = &dummy_status; 11102 /* q = (int)(a * 512.0) */ 11103 float64 q = float64_mul(float64_512, a, s); 11104 int64_t q_int = float64_to_int64_round_to_zero(q, s); 11105 11106 /* r = 1.0 / (((double)q + 0.5) / 512.0) */ 11107 q = int64_to_float64(q_int, s); 11108 q = float64_add(q, float64_half, s); 11109 q = float64_div(q, float64_512, s); 11110 q = float64_div(float64_one, q, s); 11111 11112 /* s = (int)(256.0 * r + 0.5) */ 11113 q = float64_mul(q, float64_256, s); 11114 q = float64_add(q, float64_half, s); 11115 q_int = float64_to_int64_round_to_zero(q, s); 11116 11117 /* return (double)s / 256.0 */ 11118 return float64_div(int64_to_float64(q_int, s), float64_256, s); 11119 } 11120 11121 /* Common wrapper to call recip_estimate */ 11122 static float64 call_recip_estimate(float64 num, int off, float_status *fpst) 11123 { 11124 uint64_t val64 = float64_val(num); 11125 uint64_t frac = extract64(val64, 0, 52); 11126 int64_t exp = extract64(val64, 52, 11); 11127 uint64_t sbit; 11128 float64 scaled, estimate; 11129 11130 /* Generate the scaled number for the estimate function */ 11131 if (exp == 0) { 11132 if (extract64(frac, 51, 1) == 0) { 11133 exp = -1; 11134 frac = extract64(frac, 0, 50) << 2; 11135 } else { 11136 frac = extract64(frac, 0, 51) << 1; 11137 } 11138 } 11139 11140 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ 11141 scaled = make_float64((0x3feULL << 52) 11142 | extract64(frac, 44, 8) << 44); 11143 11144 estimate = recip_estimate(scaled, fpst); 11145 11146 /* Build new result */ 11147 val64 = float64_val(estimate); 11148 sbit = 0x8000000000000000ULL & val64; 11149 exp = off - exp; 11150 frac = extract64(val64, 0, 52); 11151 11152 if (exp == 0) { 11153 frac = 1ULL << 51 | extract64(frac, 1, 51); 11154 } else if (exp == -1) { 11155 frac = 1ULL << 50 | extract64(frac, 2, 50); 11156 exp = 0; 11157 } 11158 11159 return make_float64(sbit | (exp << 52) | frac); 11160 } 11161 11162 static bool round_to_inf(float_status *fpst, bool sign_bit) 11163 { 11164 switch (fpst->float_rounding_mode) { 11165 case float_round_nearest_even: /* Round to Nearest */ 11166 return true; 11167 case float_round_up: /* Round to +Inf */ 11168 return !sign_bit; 11169 case float_round_down: /* Round to -Inf */ 11170 return sign_bit; 11171 case float_round_to_zero: /* Round to Zero */ 11172 return false; 11173 } 11174 11175 g_assert_not_reached(); 11176 } 11177 11178 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 11179 { 11180 float_status *fpst = fpstp; 11181 float32 f32 = float32_squash_input_denormal(input, fpst); 11182 uint32_t f32_val = float32_val(f32); 11183 uint32_t f32_sbit = 0x80000000ULL & f32_val; 11184 int32_t f32_exp = extract32(f32_val, 23, 8); 11185 uint32_t f32_frac = extract32(f32_val, 0, 23); 11186 float64 f64, r64; 11187 uint64_t r64_val; 11188 int64_t r64_exp; 11189 uint64_t r64_frac; 11190 11191 if (float32_is_any_nan(f32)) { 11192 float32 nan = f32; 11193 if (float32_is_signaling_nan(f32, fpst)) { 11194 float_raise(float_flag_invalid, fpst); 11195 nan = float32_maybe_silence_nan(f32, fpst); 11196 } 11197 if (fpst->default_nan_mode) { 11198 nan = float32_default_nan(fpst); 11199 } 11200 return nan; 11201 } else if (float32_is_infinity(f32)) { 11202 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11203 } else if (float32_is_zero(f32)) { 11204 float_raise(float_flag_divbyzero, fpst); 11205 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11206 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { 11207 /* Abs(value) < 2.0^-128 */ 11208 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11209 if (round_to_inf(fpst, f32_sbit)) { 11210 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11211 } else { 11212 return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); 11213 } 11214 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 11215 float_raise(float_flag_underflow, fpst); 11216 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11217 } 11218 11219 11220 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); 11221 r64 = call_recip_estimate(f64, 253, fpst); 11222 r64_val = float64_val(r64); 11223 r64_exp = extract64(r64_val, 52, 11); 11224 r64_frac = extract64(r64_val, 0, 52); 11225 11226 /* result = sign : result_exp<7:0> : fraction<51:29>; */ 11227 return make_float32(f32_sbit | 11228 (r64_exp & 0xff) << 23 | 11229 extract64(r64_frac, 29, 24)); 11230 } 11231 11232 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 11233 { 11234 float_status *fpst = fpstp; 11235 float64 f64 = float64_squash_input_denormal(input, fpst); 11236 uint64_t f64_val = float64_val(f64); 11237 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; 11238 int64_t f64_exp = extract64(f64_val, 52, 11); 11239 float64 r64; 11240 uint64_t r64_val; 11241 int64_t r64_exp; 11242 uint64_t r64_frac; 11243 11244 /* Deal with any special cases */ 11245 if (float64_is_any_nan(f64)) { 11246 float64 nan = f64; 11247 if (float64_is_signaling_nan(f64, fpst)) { 11248 float_raise(float_flag_invalid, fpst); 11249 nan = float64_maybe_silence_nan(f64, fpst); 11250 } 11251 if (fpst->default_nan_mode) { 11252 nan = float64_default_nan(fpst); 11253 } 11254 return nan; 11255 } else if (float64_is_infinity(f64)) { 11256 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11257 } else if (float64_is_zero(f64)) { 11258 float_raise(float_flag_divbyzero, fpst); 11259 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11260 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 11261 /* Abs(value) < 2.0^-1024 */ 11262 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11263 if (round_to_inf(fpst, f64_sbit)) { 11264 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11265 } else { 11266 return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); 11267 } 11268 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 11269 float_raise(float_flag_underflow, fpst); 11270 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11271 } 11272 11273 r64 = call_recip_estimate(f64, 2045, fpst); 11274 r64_val = float64_val(r64); 11275 r64_exp = extract64(r64_val, 52, 11); 11276 r64_frac = extract64(r64_val, 0, 52); 11277 11278 /* result = sign : result_exp<10:0> : fraction<51:0> */ 11279 return make_float64(f64_sbit | 11280 ((r64_exp & 0x7ff) << 52) | 11281 r64_frac); 11282 } 11283 11284 /* The algorithm that must be used to calculate the estimate 11285 * is specified by the ARM ARM. 11286 */ 11287 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) 11288 { 11289 /* These calculations mustn't set any fp exception flags, 11290 * so we use a local copy of the fp_status. 11291 */ 11292 float_status dummy_status = *real_fp_status; 11293 float_status *s = &dummy_status; 11294 float64 q; 11295 int64_t q_int; 11296 11297 if (float64_lt(a, float64_half, s)) { 11298 /* range 0.25 <= a < 0.5 */ 11299 11300 /* a in units of 1/512 rounded down */ 11301 /* q0 = (int)(a * 512.0); */ 11302 q = float64_mul(float64_512, a, s); 11303 q_int = float64_to_int64_round_to_zero(q, s); 11304 11305 /* reciprocal root r */ 11306 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ 11307 q = int64_to_float64(q_int, s); 11308 q = float64_add(q, float64_half, s); 11309 q = float64_div(q, float64_512, s); 11310 q = float64_sqrt(q, s); 11311 q = float64_div(float64_one, q, s); 11312 } else { 11313 /* range 0.5 <= a < 1.0 */ 11314 11315 /* a in units of 1/256 rounded down */ 11316 /* q1 = (int)(a * 256.0); */ 11317 q = float64_mul(float64_256, a, s); 11318 int64_t q_int = float64_to_int64_round_to_zero(q, s); 11319 11320 /* reciprocal root r */ 11321 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ 11322 q = int64_to_float64(q_int, s); 11323 q = float64_add(q, float64_half, s); 11324 q = float64_div(q, float64_256, s); 11325 q = float64_sqrt(q, s); 11326 q = float64_div(float64_one, q, s); 11327 } 11328 /* r in units of 1/256 rounded to nearest */ 11329 /* s = (int)(256.0 * r + 0.5); */ 11330 11331 q = float64_mul(q, float64_256,s ); 11332 q = float64_add(q, float64_half, s); 11333 q_int = float64_to_int64_round_to_zero(q, s); 11334 11335 /* return (double)s / 256.0;*/ 11336 return float64_div(int64_to_float64(q_int, s), float64_256, s); 11337 } 11338 11339 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 11340 { 11341 float_status *s = fpstp; 11342 float32 f32 = float32_squash_input_denormal(input, s); 11343 uint32_t val = float32_val(f32); 11344 uint32_t f32_sbit = 0x80000000 & val; 11345 int32_t f32_exp = extract32(val, 23, 8); 11346 uint32_t f32_frac = extract32(val, 0, 23); 11347 uint64_t f64_frac; 11348 uint64_t val64; 11349 int result_exp; 11350 float64 f64; 11351 11352 if (float32_is_any_nan(f32)) { 11353 float32 nan = f32; 11354 if (float32_is_signaling_nan(f32, s)) { 11355 float_raise(float_flag_invalid, s); 11356 nan = float32_maybe_silence_nan(f32, s); 11357 } 11358 if (s->default_nan_mode) { 11359 nan = float32_default_nan(s); 11360 } 11361 return nan; 11362 } else if (float32_is_zero(f32)) { 11363 float_raise(float_flag_divbyzero, s); 11364 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11365 } else if (float32_is_neg(f32)) { 11366 float_raise(float_flag_invalid, s); 11367 return float32_default_nan(s); 11368 } else if (float32_is_infinity(f32)) { 11369 return float32_zero; 11370 } 11371 11372 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11373 * preserving the parity of the exponent. */ 11374 11375 f64_frac = ((uint64_t) f32_frac) << 29; 11376 if (f32_exp == 0) { 11377 while (extract64(f64_frac, 51, 1) == 0) { 11378 f64_frac = f64_frac << 1; 11379 f32_exp = f32_exp-1; 11380 } 11381 f64_frac = extract64(f64_frac, 0, 51) << 1; 11382 } 11383 11384 if (extract64(f32_exp, 0, 1) == 0) { 11385 f64 = make_float64(((uint64_t) f32_sbit) << 32 11386 | (0x3feULL << 52) 11387 | f64_frac); 11388 } else { 11389 f64 = make_float64(((uint64_t) f32_sbit) << 32 11390 | (0x3fdULL << 52) 11391 | f64_frac); 11392 } 11393 11394 result_exp = (380 - f32_exp) / 2; 11395 11396 f64 = recip_sqrt_estimate(f64, s); 11397 11398 val64 = float64_val(f64); 11399 11400 val = ((result_exp & 0xff) << 23) 11401 | ((val64 >> 29) & 0x7fffff); 11402 return make_float32(val); 11403 } 11404 11405 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 11406 { 11407 float_status *s = fpstp; 11408 float64 f64 = float64_squash_input_denormal(input, s); 11409 uint64_t val = float64_val(f64); 11410 uint64_t f64_sbit = 0x8000000000000000ULL & val; 11411 int64_t f64_exp = extract64(val, 52, 11); 11412 uint64_t f64_frac = extract64(val, 0, 52); 11413 int64_t result_exp; 11414 uint64_t result_frac; 11415 11416 if (float64_is_any_nan(f64)) { 11417 float64 nan = f64; 11418 if (float64_is_signaling_nan(f64, s)) { 11419 float_raise(float_flag_invalid, s); 11420 nan = float64_maybe_silence_nan(f64, s); 11421 } 11422 if (s->default_nan_mode) { 11423 nan = float64_default_nan(s); 11424 } 11425 return nan; 11426 } else if (float64_is_zero(f64)) { 11427 float_raise(float_flag_divbyzero, s); 11428 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11429 } else if (float64_is_neg(f64)) { 11430 float_raise(float_flag_invalid, s); 11431 return float64_default_nan(s); 11432 } else if (float64_is_infinity(f64)) { 11433 return float64_zero; 11434 } 11435 11436 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11437 * preserving the parity of the exponent. */ 11438 11439 if (f64_exp == 0) { 11440 while (extract64(f64_frac, 51, 1) == 0) { 11441 f64_frac = f64_frac << 1; 11442 f64_exp = f64_exp - 1; 11443 } 11444 f64_frac = extract64(f64_frac, 0, 51) << 1; 11445 } 11446 11447 if (extract64(f64_exp, 0, 1) == 0) { 11448 f64 = make_float64(f64_sbit 11449 | (0x3feULL << 52) 11450 | f64_frac); 11451 } else { 11452 f64 = make_float64(f64_sbit 11453 | (0x3fdULL << 52) 11454 | f64_frac); 11455 } 11456 11457 result_exp = (3068 - f64_exp) / 2; 11458 11459 f64 = recip_sqrt_estimate(f64, s); 11460 11461 result_frac = extract64(float64_val(f64), 0, 52); 11462 11463 return make_float64(f64_sbit | 11464 ((result_exp & 0x7ff) << 52) | 11465 result_frac); 11466 } 11467 11468 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 11469 { 11470 float_status *s = fpstp; 11471 float64 f64; 11472 11473 if ((a & 0x80000000) == 0) { 11474 return 0xffffffff; 11475 } 11476 11477 f64 = make_float64((0x3feULL << 52) 11478 | ((int64_t)(a & 0x7fffffff) << 21)); 11479 11480 f64 = recip_estimate(f64, s); 11481 11482 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 11483 } 11484 11485 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 11486 { 11487 float_status *fpst = fpstp; 11488 float64 f64; 11489 11490 if ((a & 0xc0000000) == 0) { 11491 return 0xffffffff; 11492 } 11493 11494 if (a & 0x80000000) { 11495 f64 = make_float64((0x3feULL << 52) 11496 | ((uint64_t)(a & 0x7fffffff) << 21)); 11497 } else { /* bits 31-30 == '01' */ 11498 f64 = make_float64((0x3fdULL << 52) 11499 | ((uint64_t)(a & 0x3fffffff) << 22)); 11500 } 11501 11502 f64 = recip_sqrt_estimate(f64, fpst); 11503 11504 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 11505 } 11506 11507 /* VFPv4 fused multiply-accumulate */ 11508 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 11509 { 11510 float_status *fpst = fpstp; 11511 return float32_muladd(a, b, c, 0, fpst); 11512 } 11513 11514 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 11515 { 11516 float_status *fpst = fpstp; 11517 return float64_muladd(a, b, c, 0, fpst); 11518 } 11519 11520 /* ARMv8 round to integral */ 11521 float32 HELPER(rints_exact)(float32 x, void *fp_status) 11522 { 11523 return float32_round_to_int(x, fp_status); 11524 } 11525 11526 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 11527 { 11528 return float64_round_to_int(x, fp_status); 11529 } 11530 11531 float32 HELPER(rints)(float32 x, void *fp_status) 11532 { 11533 int old_flags = get_float_exception_flags(fp_status), new_flags; 11534 float32 ret; 11535 11536 ret = float32_round_to_int(x, fp_status); 11537 11538 /* Suppress any inexact exceptions the conversion produced */ 11539 if (!(old_flags & float_flag_inexact)) { 11540 new_flags = get_float_exception_flags(fp_status); 11541 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 11542 } 11543 11544 return ret; 11545 } 11546 11547 float64 HELPER(rintd)(float64 x, void *fp_status) 11548 { 11549 int old_flags = get_float_exception_flags(fp_status), new_flags; 11550 float64 ret; 11551 11552 ret = float64_round_to_int(x, fp_status); 11553 11554 new_flags = get_float_exception_flags(fp_status); 11555 11556 /* Suppress any inexact exceptions the conversion produced */ 11557 if (!(old_flags & float_flag_inexact)) { 11558 new_flags = get_float_exception_flags(fp_status); 11559 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 11560 } 11561 11562 return ret; 11563 } 11564 11565 /* Convert ARM rounding mode to softfloat */ 11566 int arm_rmode_to_sf(int rmode) 11567 { 11568 switch (rmode) { 11569 case FPROUNDING_TIEAWAY: 11570 rmode = float_round_ties_away; 11571 break; 11572 case FPROUNDING_ODD: 11573 /* FIXME: add support for TIEAWAY and ODD */ 11574 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 11575 rmode); 11576 case FPROUNDING_TIEEVEN: 11577 default: 11578 rmode = float_round_nearest_even; 11579 break; 11580 case FPROUNDING_POSINF: 11581 rmode = float_round_up; 11582 break; 11583 case FPROUNDING_NEGINF: 11584 rmode = float_round_down; 11585 break; 11586 case FPROUNDING_ZERO: 11587 rmode = float_round_to_zero; 11588 break; 11589 } 11590 return rmode; 11591 } 11592 11593 /* CRC helpers. 11594 * The upper bytes of val (above the number specified by 'bytes') must have 11595 * been zeroed out by the caller. 11596 */ 11597 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11598 { 11599 uint8_t buf[4]; 11600 11601 stl_le_p(buf, val); 11602 11603 /* zlib crc32 converts the accumulator and output to one's complement. */ 11604 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11605 } 11606 11607 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11608 { 11609 uint8_t buf[4]; 11610 11611 stl_le_p(buf, val); 11612 11613 /* Linux crc32c converts the output to one's complement. */ 11614 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11615 } 11616