1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/host-utils.h" 17 #include "qemu/main-loop.h" 18 #include "qemu/bitops.h" 19 #include "qemu/crc32c.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/exec-all.h" 22 #include <zlib.h> /* For crc32 */ 23 #include "hw/irq.h" 24 #include "semihosting/semihost.h" 25 #include "sysemu/cpus.h" 26 #include "sysemu/cpu-timers.h" 27 #include "sysemu/kvm.h" 28 #include "sysemu/tcg.h" 29 #include "qemu/range.h" 30 #include "qapi/qapi-commands-machine-target.h" 31 #include "qapi/error.h" 32 #include "qemu/guest-random.h" 33 #ifdef CONFIG_TCG 34 #include "arm_ldst.h" 35 #include "exec/cpu_ldst.h" 36 #include "semihosting/common-semi.h" 37 #endif 38 39 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 40 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 41 42 #ifndef CONFIG_USER_ONLY 43 44 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 45 MMUAccessType access_type, ARMMMUIdx mmu_idx, 46 bool s1_is_el0, 47 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 48 target_ulong *page_size_ptr, 49 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 50 __attribute__((nonnull)); 51 #endif 52 53 static void switch_mode(CPUARMState *env, int mode); 54 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 55 56 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 57 { 58 assert(ri->fieldoffset); 59 if (cpreg_field_is_64bit(ri)) { 60 return CPREG_FIELD64(env, ri); 61 } else { 62 return CPREG_FIELD32(env, ri); 63 } 64 } 65 66 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 67 uint64_t value) 68 { 69 assert(ri->fieldoffset); 70 if (cpreg_field_is_64bit(ri)) { 71 CPREG_FIELD64(env, ri) = value; 72 } else { 73 CPREG_FIELD32(env, ri) = value; 74 } 75 } 76 77 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 78 { 79 return (char *)env + ri->fieldoffset; 80 } 81 82 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 83 { 84 /* Raw read of a coprocessor register (as needed for migration, etc). */ 85 if (ri->type & ARM_CP_CONST) { 86 return ri->resetvalue; 87 } else if (ri->raw_readfn) { 88 return ri->raw_readfn(env, ri); 89 } else if (ri->readfn) { 90 return ri->readfn(env, ri); 91 } else { 92 return raw_read(env, ri); 93 } 94 } 95 96 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 97 uint64_t v) 98 { 99 /* Raw write of a coprocessor register (as needed for migration, etc). 100 * Note that constant registers are treated as write-ignored; the 101 * caller should check for success by whether a readback gives the 102 * value written. 103 */ 104 if (ri->type & ARM_CP_CONST) { 105 return; 106 } else if (ri->raw_writefn) { 107 ri->raw_writefn(env, ri, v); 108 } else if (ri->writefn) { 109 ri->writefn(env, ri, v); 110 } else { 111 raw_write(env, ri, v); 112 } 113 } 114 115 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 116 { 117 /* Return true if the regdef would cause an assertion if you called 118 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 119 * program bug for it not to have the NO_RAW flag). 120 * NB that returning false here doesn't necessarily mean that calling 121 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 122 * read/write access functions which are safe for raw use" from "has 123 * read/write access functions which have side effects but has forgotten 124 * to provide raw access functions". 125 * The tests here line up with the conditions in read/write_raw_cp_reg() 126 * and assertions in raw_read()/raw_write(). 127 */ 128 if ((ri->type & ARM_CP_CONST) || 129 ri->fieldoffset || 130 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 131 return false; 132 } 133 return true; 134 } 135 136 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 137 { 138 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 139 int i; 140 bool ok = true; 141 142 for (i = 0; i < cpu->cpreg_array_len; i++) { 143 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 144 const ARMCPRegInfo *ri; 145 uint64_t newval; 146 147 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 148 if (!ri) { 149 ok = false; 150 continue; 151 } 152 if (ri->type & ARM_CP_NO_RAW) { 153 continue; 154 } 155 156 newval = read_raw_cp_reg(&cpu->env, ri); 157 if (kvm_sync) { 158 /* 159 * Only sync if the previous list->cpustate sync succeeded. 160 * Rather than tracking the success/failure state for every 161 * item in the list, we just recheck "does the raw write we must 162 * have made in write_list_to_cpustate() read back OK" here. 163 */ 164 uint64_t oldval = cpu->cpreg_values[i]; 165 166 if (oldval == newval) { 167 continue; 168 } 169 170 write_raw_cp_reg(&cpu->env, ri, oldval); 171 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 172 continue; 173 } 174 175 write_raw_cp_reg(&cpu->env, ri, newval); 176 } 177 cpu->cpreg_values[i] = newval; 178 } 179 return ok; 180 } 181 182 bool write_list_to_cpustate(ARMCPU *cpu) 183 { 184 int i; 185 bool ok = true; 186 187 for (i = 0; i < cpu->cpreg_array_len; i++) { 188 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 189 uint64_t v = cpu->cpreg_values[i]; 190 const ARMCPRegInfo *ri; 191 192 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 193 if (!ri) { 194 ok = false; 195 continue; 196 } 197 if (ri->type & ARM_CP_NO_RAW) { 198 continue; 199 } 200 /* Write value and confirm it reads back as written 201 * (to catch read-only registers and partially read-only 202 * registers where the incoming migration value doesn't match) 203 */ 204 write_raw_cp_reg(&cpu->env, ri, v); 205 if (read_raw_cp_reg(&cpu->env, ri) != v) { 206 ok = false; 207 } 208 } 209 return ok; 210 } 211 212 static void add_cpreg_to_list(gpointer key, gpointer opaque) 213 { 214 ARMCPU *cpu = opaque; 215 uint64_t regidx; 216 const ARMCPRegInfo *ri; 217 218 regidx = *(uint32_t *)key; 219 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 220 221 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 222 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 223 /* The value array need not be initialized at this point */ 224 cpu->cpreg_array_len++; 225 } 226 } 227 228 static void count_cpreg(gpointer key, gpointer opaque) 229 { 230 ARMCPU *cpu = opaque; 231 uint64_t regidx; 232 const ARMCPRegInfo *ri; 233 234 regidx = *(uint32_t *)key; 235 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 236 237 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 238 cpu->cpreg_array_len++; 239 } 240 } 241 242 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 243 { 244 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 245 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 246 247 if (aidx > bidx) { 248 return 1; 249 } 250 if (aidx < bidx) { 251 return -1; 252 } 253 return 0; 254 } 255 256 void init_cpreg_list(ARMCPU *cpu) 257 { 258 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 259 * Note that we require cpreg_tuples[] to be sorted by key ID. 260 */ 261 GList *keys; 262 int arraylen; 263 264 keys = g_hash_table_get_keys(cpu->cp_regs); 265 keys = g_list_sort(keys, cpreg_key_compare); 266 267 cpu->cpreg_array_len = 0; 268 269 g_list_foreach(keys, count_cpreg, cpu); 270 271 arraylen = cpu->cpreg_array_len; 272 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 273 cpu->cpreg_values = g_new(uint64_t, arraylen); 274 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 275 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 276 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 277 cpu->cpreg_array_len = 0; 278 279 g_list_foreach(keys, add_cpreg_to_list, cpu); 280 281 assert(cpu->cpreg_array_len == arraylen); 282 283 g_list_free(keys); 284 } 285 286 /* 287 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 288 */ 289 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 290 const ARMCPRegInfo *ri, 291 bool isread) 292 { 293 if (!is_a64(env) && arm_current_el(env) == 3 && 294 arm_is_secure_below_el3(env)) { 295 return CP_ACCESS_TRAP_UNCATEGORIZED; 296 } 297 return CP_ACCESS_OK; 298 } 299 300 /* Some secure-only AArch32 registers trap to EL3 if used from 301 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 302 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 303 * We assume that the .access field is set to PL1_RW. 304 */ 305 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 306 const ARMCPRegInfo *ri, 307 bool isread) 308 { 309 if (arm_current_el(env) == 3) { 310 return CP_ACCESS_OK; 311 } 312 if (arm_is_secure_below_el3(env)) { 313 if (env->cp15.scr_el3 & SCR_EEL2) { 314 return CP_ACCESS_TRAP_EL2; 315 } 316 return CP_ACCESS_TRAP_EL3; 317 } 318 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 319 return CP_ACCESS_TRAP_UNCATEGORIZED; 320 } 321 322 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 323 { 324 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 325 } 326 327 /* Check for traps to "powerdown debug" registers, which are controlled 328 * by MDCR.TDOSA 329 */ 330 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 331 bool isread) 332 { 333 int el = arm_current_el(env); 334 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 335 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 336 (arm_hcr_el2_eff(env) & HCR_TGE); 337 338 if (el < 2 && mdcr_el2_tdosa) { 339 return CP_ACCESS_TRAP_EL2; 340 } 341 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 342 return CP_ACCESS_TRAP_EL3; 343 } 344 return CP_ACCESS_OK; 345 } 346 347 /* Check for traps to "debug ROM" registers, which are controlled 348 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 349 */ 350 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 351 bool isread) 352 { 353 int el = arm_current_el(env); 354 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 355 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 356 (arm_hcr_el2_eff(env) & HCR_TGE); 357 358 if (el < 2 && mdcr_el2_tdra) { 359 return CP_ACCESS_TRAP_EL2; 360 } 361 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 362 return CP_ACCESS_TRAP_EL3; 363 } 364 return CP_ACCESS_OK; 365 } 366 367 /* Check for traps to general debug registers, which are controlled 368 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 369 */ 370 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 371 bool isread) 372 { 373 int el = arm_current_el(env); 374 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 375 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 376 (arm_hcr_el2_eff(env) & HCR_TGE); 377 378 if (el < 2 && mdcr_el2_tda) { 379 return CP_ACCESS_TRAP_EL2; 380 } 381 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 382 return CP_ACCESS_TRAP_EL3; 383 } 384 return CP_ACCESS_OK; 385 } 386 387 /* Check for traps to performance monitor registers, which are controlled 388 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 389 */ 390 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 391 bool isread) 392 { 393 int el = arm_current_el(env); 394 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 395 396 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 397 return CP_ACCESS_TRAP_EL2; 398 } 399 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 400 return CP_ACCESS_TRAP_EL3; 401 } 402 return CP_ACCESS_OK; 403 } 404 405 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 406 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 407 bool isread) 408 { 409 if (arm_current_el(env) == 1) { 410 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 411 if (arm_hcr_el2_eff(env) & trap) { 412 return CP_ACCESS_TRAP_EL2; 413 } 414 } 415 return CP_ACCESS_OK; 416 } 417 418 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 419 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 420 bool isread) 421 { 422 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 423 return CP_ACCESS_TRAP_EL2; 424 } 425 return CP_ACCESS_OK; 426 } 427 428 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 429 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 430 bool isread) 431 { 432 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 433 return CP_ACCESS_TRAP_EL2; 434 } 435 return CP_ACCESS_OK; 436 } 437 438 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 439 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 440 bool isread) 441 { 442 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 443 return CP_ACCESS_TRAP_EL2; 444 } 445 return CP_ACCESS_OK; 446 } 447 448 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 449 { 450 ARMCPU *cpu = env_archcpu(env); 451 452 raw_write(env, ri, value); 453 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 454 } 455 456 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 457 { 458 ARMCPU *cpu = env_archcpu(env); 459 460 if (raw_read(env, ri) != value) { 461 /* Unlike real hardware the qemu TLB uses virtual addresses, 462 * not modified virtual addresses, so this causes a TLB flush. 463 */ 464 tlb_flush(CPU(cpu)); 465 raw_write(env, ri, value); 466 } 467 } 468 469 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 470 uint64_t value) 471 { 472 ARMCPU *cpu = env_archcpu(env); 473 474 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 475 && !extended_addresses_enabled(env)) { 476 /* For VMSA (when not using the LPAE long descriptor page table 477 * format) this register includes the ASID, so do a TLB flush. 478 * For PMSA it is purely a process ID and no action is needed. 479 */ 480 tlb_flush(CPU(cpu)); 481 } 482 raw_write(env, ri, value); 483 } 484 485 /* IS variants of TLB operations must affect all cores */ 486 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 487 uint64_t value) 488 { 489 CPUState *cs = env_cpu(env); 490 491 tlb_flush_all_cpus_synced(cs); 492 } 493 494 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 495 uint64_t value) 496 { 497 CPUState *cs = env_cpu(env); 498 499 tlb_flush_all_cpus_synced(cs); 500 } 501 502 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 503 uint64_t value) 504 { 505 CPUState *cs = env_cpu(env); 506 507 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 508 } 509 510 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 511 uint64_t value) 512 { 513 CPUState *cs = env_cpu(env); 514 515 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 516 } 517 518 /* 519 * Non-IS variants of TLB operations are upgraded to 520 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 521 * force broadcast of these operations. 522 */ 523 static bool tlb_force_broadcast(CPUARMState *env) 524 { 525 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 526 } 527 528 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 529 uint64_t value) 530 { 531 /* Invalidate all (TLBIALL) */ 532 CPUState *cs = env_cpu(env); 533 534 if (tlb_force_broadcast(env)) { 535 tlb_flush_all_cpus_synced(cs); 536 } else { 537 tlb_flush(cs); 538 } 539 } 540 541 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 542 uint64_t value) 543 { 544 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 545 CPUState *cs = env_cpu(env); 546 547 value &= TARGET_PAGE_MASK; 548 if (tlb_force_broadcast(env)) { 549 tlb_flush_page_all_cpus_synced(cs, value); 550 } else { 551 tlb_flush_page(cs, value); 552 } 553 } 554 555 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 556 uint64_t value) 557 { 558 /* Invalidate by ASID (TLBIASID) */ 559 CPUState *cs = env_cpu(env); 560 561 if (tlb_force_broadcast(env)) { 562 tlb_flush_all_cpus_synced(cs); 563 } else { 564 tlb_flush(cs); 565 } 566 } 567 568 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 569 uint64_t value) 570 { 571 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 572 CPUState *cs = env_cpu(env); 573 574 value &= TARGET_PAGE_MASK; 575 if (tlb_force_broadcast(env)) { 576 tlb_flush_page_all_cpus_synced(cs, value); 577 } else { 578 tlb_flush_page(cs, value); 579 } 580 } 581 582 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 583 uint64_t value) 584 { 585 CPUState *cs = env_cpu(env); 586 587 tlb_flush_by_mmuidx(cs, 588 ARMMMUIdxBit_E10_1 | 589 ARMMMUIdxBit_E10_1_PAN | 590 ARMMMUIdxBit_E10_0); 591 } 592 593 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 594 uint64_t value) 595 { 596 CPUState *cs = env_cpu(env); 597 598 tlb_flush_by_mmuidx_all_cpus_synced(cs, 599 ARMMMUIdxBit_E10_1 | 600 ARMMMUIdxBit_E10_1_PAN | 601 ARMMMUIdxBit_E10_0); 602 } 603 604 605 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 606 uint64_t value) 607 { 608 CPUState *cs = env_cpu(env); 609 610 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 611 } 612 613 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 614 uint64_t value) 615 { 616 CPUState *cs = env_cpu(env); 617 618 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 619 } 620 621 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 622 uint64_t value) 623 { 624 CPUState *cs = env_cpu(env); 625 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 626 627 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 628 } 629 630 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 631 uint64_t value) 632 { 633 CPUState *cs = env_cpu(env); 634 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 635 636 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 637 ARMMMUIdxBit_E2); 638 } 639 640 static const ARMCPRegInfo cp_reginfo[] = { 641 /* Define the secure and non-secure FCSE identifier CP registers 642 * separately because there is no secure bank in V8 (no _EL3). This allows 643 * the secure register to be properly reset and migrated. There is also no 644 * v8 EL1 version of the register so the non-secure instance stands alone. 645 */ 646 { .name = "FCSEIDR", 647 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 648 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 649 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 650 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 651 { .name = "FCSEIDR_S", 652 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 653 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 654 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 655 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 656 /* Define the secure and non-secure context identifier CP registers 657 * separately because there is no secure bank in V8 (no _EL3). This allows 658 * the secure register to be properly reset and migrated. In the 659 * non-secure case, the 32-bit register will have reset and migration 660 * disabled during registration as it is handled by the 64-bit instance. 661 */ 662 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 663 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 664 .access = PL1_RW, .accessfn = access_tvm_trvm, 665 .secure = ARM_CP_SECSTATE_NS, 666 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 667 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 668 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 669 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 670 .access = PL1_RW, .accessfn = access_tvm_trvm, 671 .secure = ARM_CP_SECSTATE_S, 672 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 673 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 674 REGINFO_SENTINEL 675 }; 676 677 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 678 /* NB: Some of these registers exist in v8 but with more precise 679 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 680 */ 681 /* MMU Domain access control / MPU write buffer control */ 682 { .name = "DACR", 683 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 684 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 685 .writefn = dacr_write, .raw_writefn = raw_write, 686 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 687 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 688 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 689 * For v6 and v5, these mappings are overly broad. 690 */ 691 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 692 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 693 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 694 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 695 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 696 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 697 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 698 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 699 /* Cache maintenance ops; some of this space may be overridden later. */ 700 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 701 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 702 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 703 REGINFO_SENTINEL 704 }; 705 706 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 707 /* Not all pre-v6 cores implemented this WFI, so this is slightly 708 * over-broad. 709 */ 710 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 711 .access = PL1_W, .type = ARM_CP_WFI }, 712 REGINFO_SENTINEL 713 }; 714 715 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 716 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 717 * is UNPREDICTABLE; we choose to NOP as most implementations do). 718 */ 719 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 720 .access = PL1_W, .type = ARM_CP_WFI }, 721 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 722 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 723 * OMAPCP will override this space. 724 */ 725 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 726 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 727 .resetvalue = 0 }, 728 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 729 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 730 .resetvalue = 0 }, 731 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 732 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 733 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 734 .resetvalue = 0 }, 735 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 736 * implementing it as RAZ means the "debug architecture version" bits 737 * will read as a reserved value, which should cause Linux to not try 738 * to use the debug hardware. 739 */ 740 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 741 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 742 /* MMU TLB control. Note that the wildcarding means we cover not just 743 * the unified TLB ops but also the dside/iside/inner-shareable variants. 744 */ 745 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 746 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 747 .type = ARM_CP_NO_RAW }, 748 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 749 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 750 .type = ARM_CP_NO_RAW }, 751 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 752 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 753 .type = ARM_CP_NO_RAW }, 754 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 755 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 756 .type = ARM_CP_NO_RAW }, 757 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 758 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 759 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 760 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 761 REGINFO_SENTINEL 762 }; 763 764 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 765 uint64_t value) 766 { 767 uint32_t mask = 0; 768 769 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 770 if (!arm_feature(env, ARM_FEATURE_V8)) { 771 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 772 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 773 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 774 */ 775 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 776 /* VFP coprocessor: cp10 & cp11 [23:20] */ 777 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 778 779 if (!arm_feature(env, ARM_FEATURE_NEON)) { 780 /* ASEDIS [31] bit is RAO/WI */ 781 value |= (1 << 31); 782 } 783 784 /* VFPv3 and upwards with NEON implement 32 double precision 785 * registers (D0-D31). 786 */ 787 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 788 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 789 value |= (1 << 30); 790 } 791 } 792 value &= mask; 793 } 794 795 /* 796 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 797 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 798 */ 799 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 800 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 801 value &= ~(0xf << 20); 802 value |= env->cp15.cpacr_el1 & (0xf << 20); 803 } 804 805 env->cp15.cpacr_el1 = value; 806 } 807 808 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 809 { 810 /* 811 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 812 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 813 */ 814 uint64_t value = env->cp15.cpacr_el1; 815 816 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 817 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 818 value &= ~(0xf << 20); 819 } 820 return value; 821 } 822 823 824 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 825 { 826 /* Call cpacr_write() so that we reset with the correct RAO bits set 827 * for our CPU features. 828 */ 829 cpacr_write(env, ri, 0); 830 } 831 832 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 833 bool isread) 834 { 835 if (arm_feature(env, ARM_FEATURE_V8)) { 836 /* Check if CPACR accesses are to be trapped to EL2 */ 837 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 838 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 839 return CP_ACCESS_TRAP_EL2; 840 /* Check if CPACR accesses are to be trapped to EL3 */ 841 } else if (arm_current_el(env) < 3 && 842 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 843 return CP_ACCESS_TRAP_EL3; 844 } 845 } 846 847 return CP_ACCESS_OK; 848 } 849 850 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 851 bool isread) 852 { 853 /* Check if CPTR accesses are set to trap to EL3 */ 854 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 855 return CP_ACCESS_TRAP_EL3; 856 } 857 858 return CP_ACCESS_OK; 859 } 860 861 static const ARMCPRegInfo v6_cp_reginfo[] = { 862 /* prefetch by MVA in v6, NOP in v7 */ 863 { .name = "MVA_prefetch", 864 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 865 .access = PL1_W, .type = ARM_CP_NOP }, 866 /* We need to break the TB after ISB to execute self-modifying code 867 * correctly and also to take any pending interrupts immediately. 868 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 869 */ 870 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 871 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 872 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 873 .access = PL0_W, .type = ARM_CP_NOP }, 874 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 875 .access = PL0_W, .type = ARM_CP_NOP }, 876 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 877 .access = PL1_RW, .accessfn = access_tvm_trvm, 878 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 879 offsetof(CPUARMState, cp15.ifar_ns) }, 880 .resetvalue = 0, }, 881 /* Watchpoint Fault Address Register : should actually only be present 882 * for 1136, 1176, 11MPCore. 883 */ 884 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 885 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 886 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 887 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 888 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 889 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 890 REGINFO_SENTINEL 891 }; 892 893 typedef struct pm_event { 894 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 895 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 896 bool (*supported)(CPUARMState *); 897 /* 898 * Retrieve the current count of the underlying event. The programmed 899 * counters hold a difference from the return value from this function 900 */ 901 uint64_t (*get_count)(CPUARMState *); 902 /* 903 * Return how many nanoseconds it will take (at a minimum) for count events 904 * to occur. A negative value indicates the counter will never overflow, or 905 * that the counter has otherwise arranged for the overflow bit to be set 906 * and the PMU interrupt to be raised on overflow. 907 */ 908 int64_t (*ns_per_count)(uint64_t); 909 } pm_event; 910 911 static bool event_always_supported(CPUARMState *env) 912 { 913 return true; 914 } 915 916 static uint64_t swinc_get_count(CPUARMState *env) 917 { 918 /* 919 * SW_INCR events are written directly to the pmevcntr's by writes to 920 * PMSWINC, so there is no underlying count maintained by the PMU itself 921 */ 922 return 0; 923 } 924 925 static int64_t swinc_ns_per(uint64_t ignored) 926 { 927 return -1; 928 } 929 930 /* 931 * Return the underlying cycle count for the PMU cycle counters. If we're in 932 * usermode, simply return 0. 933 */ 934 static uint64_t cycles_get_count(CPUARMState *env) 935 { 936 #ifndef CONFIG_USER_ONLY 937 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 938 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 939 #else 940 return cpu_get_host_ticks(); 941 #endif 942 } 943 944 #ifndef CONFIG_USER_ONLY 945 static int64_t cycles_ns_per(uint64_t cycles) 946 { 947 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 948 } 949 950 static bool instructions_supported(CPUARMState *env) 951 { 952 return icount_enabled() == 1; /* Precise instruction counting */ 953 } 954 955 static uint64_t instructions_get_count(CPUARMState *env) 956 { 957 return (uint64_t)icount_get_raw(); 958 } 959 960 static int64_t instructions_ns_per(uint64_t icount) 961 { 962 return icount_to_ns((int64_t)icount); 963 } 964 #endif 965 966 static bool pmu_8_1_events_supported(CPUARMState *env) 967 { 968 /* For events which are supported in any v8.1 PMU */ 969 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 970 } 971 972 static bool pmu_8_4_events_supported(CPUARMState *env) 973 { 974 /* For events which are supported in any v8.1 PMU */ 975 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 976 } 977 978 static uint64_t zero_event_get_count(CPUARMState *env) 979 { 980 /* For events which on QEMU never fire, so their count is always zero */ 981 return 0; 982 } 983 984 static int64_t zero_event_ns_per(uint64_t cycles) 985 { 986 /* An event which never fires can never overflow */ 987 return -1; 988 } 989 990 static const pm_event pm_events[] = { 991 { .number = 0x000, /* SW_INCR */ 992 .supported = event_always_supported, 993 .get_count = swinc_get_count, 994 .ns_per_count = swinc_ns_per, 995 }, 996 #ifndef CONFIG_USER_ONLY 997 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 998 .supported = instructions_supported, 999 .get_count = instructions_get_count, 1000 .ns_per_count = instructions_ns_per, 1001 }, 1002 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1003 .supported = event_always_supported, 1004 .get_count = cycles_get_count, 1005 .ns_per_count = cycles_ns_per, 1006 }, 1007 #endif 1008 { .number = 0x023, /* STALL_FRONTEND */ 1009 .supported = pmu_8_1_events_supported, 1010 .get_count = zero_event_get_count, 1011 .ns_per_count = zero_event_ns_per, 1012 }, 1013 { .number = 0x024, /* STALL_BACKEND */ 1014 .supported = pmu_8_1_events_supported, 1015 .get_count = zero_event_get_count, 1016 .ns_per_count = zero_event_ns_per, 1017 }, 1018 { .number = 0x03c, /* STALL */ 1019 .supported = pmu_8_4_events_supported, 1020 .get_count = zero_event_get_count, 1021 .ns_per_count = zero_event_ns_per, 1022 }, 1023 }; 1024 1025 /* 1026 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1027 * events (i.e. the statistical profiling extension), this implementation 1028 * should first be updated to something sparse instead of the current 1029 * supported_event_map[] array. 1030 */ 1031 #define MAX_EVENT_ID 0x3c 1032 #define UNSUPPORTED_EVENT UINT16_MAX 1033 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1034 1035 /* 1036 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1037 * of ARM event numbers to indices in our pm_events array. 1038 * 1039 * Note: Events in the 0x40XX range are not currently supported. 1040 */ 1041 void pmu_init(ARMCPU *cpu) 1042 { 1043 unsigned int i; 1044 1045 /* 1046 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1047 * events to them 1048 */ 1049 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1050 supported_event_map[i] = UNSUPPORTED_EVENT; 1051 } 1052 cpu->pmceid0 = 0; 1053 cpu->pmceid1 = 0; 1054 1055 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1056 const pm_event *cnt = &pm_events[i]; 1057 assert(cnt->number <= MAX_EVENT_ID); 1058 /* We do not currently support events in the 0x40xx range */ 1059 assert(cnt->number <= 0x3f); 1060 1061 if (cnt->supported(&cpu->env)) { 1062 supported_event_map[cnt->number] = i; 1063 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1064 if (cnt->number & 0x20) { 1065 cpu->pmceid1 |= event_mask; 1066 } else { 1067 cpu->pmceid0 |= event_mask; 1068 } 1069 } 1070 } 1071 } 1072 1073 /* 1074 * Check at runtime whether a PMU event is supported for the current machine 1075 */ 1076 static bool event_supported(uint16_t number) 1077 { 1078 if (number > MAX_EVENT_ID) { 1079 return false; 1080 } 1081 return supported_event_map[number] != UNSUPPORTED_EVENT; 1082 } 1083 1084 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1085 bool isread) 1086 { 1087 /* Performance monitor registers user accessibility is controlled 1088 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1089 * trapping to EL2 or EL3 for other accesses. 1090 */ 1091 int el = arm_current_el(env); 1092 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1093 1094 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1095 return CP_ACCESS_TRAP; 1096 } 1097 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1098 return CP_ACCESS_TRAP_EL2; 1099 } 1100 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1101 return CP_ACCESS_TRAP_EL3; 1102 } 1103 1104 return CP_ACCESS_OK; 1105 } 1106 1107 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1108 const ARMCPRegInfo *ri, 1109 bool isread) 1110 { 1111 /* ER: event counter read trap control */ 1112 if (arm_feature(env, ARM_FEATURE_V8) 1113 && arm_current_el(env) == 0 1114 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1115 && isread) { 1116 return CP_ACCESS_OK; 1117 } 1118 1119 return pmreg_access(env, ri, isread); 1120 } 1121 1122 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1123 const ARMCPRegInfo *ri, 1124 bool isread) 1125 { 1126 /* SW: software increment write trap control */ 1127 if (arm_feature(env, ARM_FEATURE_V8) 1128 && arm_current_el(env) == 0 1129 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1130 && !isread) { 1131 return CP_ACCESS_OK; 1132 } 1133 1134 return pmreg_access(env, ri, isread); 1135 } 1136 1137 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1138 const ARMCPRegInfo *ri, 1139 bool isread) 1140 { 1141 /* ER: event counter read trap control */ 1142 if (arm_feature(env, ARM_FEATURE_V8) 1143 && arm_current_el(env) == 0 1144 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1145 return CP_ACCESS_OK; 1146 } 1147 1148 return pmreg_access(env, ri, isread); 1149 } 1150 1151 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1152 const ARMCPRegInfo *ri, 1153 bool isread) 1154 { 1155 /* CR: cycle counter read trap control */ 1156 if (arm_feature(env, ARM_FEATURE_V8) 1157 && arm_current_el(env) == 0 1158 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1159 && isread) { 1160 return CP_ACCESS_OK; 1161 } 1162 1163 return pmreg_access(env, ri, isread); 1164 } 1165 1166 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1167 * the current EL, security state, and register configuration. 1168 */ 1169 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1170 { 1171 uint64_t filter; 1172 bool e, p, u, nsk, nsu, nsh, m; 1173 bool enabled, prohibited, filtered; 1174 bool secure = arm_is_secure(env); 1175 int el = arm_current_el(env); 1176 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1177 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1178 1179 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1180 return false; 1181 } 1182 1183 if (!arm_feature(env, ARM_FEATURE_EL2) || 1184 (counter < hpmn || counter == 31)) { 1185 e = env->cp15.c9_pmcr & PMCRE; 1186 } else { 1187 e = mdcr_el2 & MDCR_HPME; 1188 } 1189 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1190 1191 if (!secure) { 1192 if (el == 2 && (counter < hpmn || counter == 31)) { 1193 prohibited = mdcr_el2 & MDCR_HPMD; 1194 } else { 1195 prohibited = false; 1196 } 1197 } else { 1198 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1199 !(env->cp15.mdcr_el3 & MDCR_SPME); 1200 } 1201 1202 if (prohibited && counter == 31) { 1203 prohibited = env->cp15.c9_pmcr & PMCRDP; 1204 } 1205 1206 if (counter == 31) { 1207 filter = env->cp15.pmccfiltr_el0; 1208 } else { 1209 filter = env->cp15.c14_pmevtyper[counter]; 1210 } 1211 1212 p = filter & PMXEVTYPER_P; 1213 u = filter & PMXEVTYPER_U; 1214 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1215 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1216 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1217 m = arm_el_is_aa64(env, 1) && 1218 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1219 1220 if (el == 0) { 1221 filtered = secure ? u : u != nsu; 1222 } else if (el == 1) { 1223 filtered = secure ? p : p != nsk; 1224 } else if (el == 2) { 1225 filtered = !nsh; 1226 } else { /* EL3 */ 1227 filtered = m != p; 1228 } 1229 1230 if (counter != 31) { 1231 /* 1232 * If not checking PMCCNTR, ensure the counter is setup to an event we 1233 * support 1234 */ 1235 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1236 if (!event_supported(event)) { 1237 return false; 1238 } 1239 } 1240 1241 return enabled && !prohibited && !filtered; 1242 } 1243 1244 static void pmu_update_irq(CPUARMState *env) 1245 { 1246 ARMCPU *cpu = env_archcpu(env); 1247 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1248 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1249 } 1250 1251 /* 1252 * Ensure c15_ccnt is the guest-visible count so that operations such as 1253 * enabling/disabling the counter or filtering, modifying the count itself, 1254 * etc. can be done logically. This is essentially a no-op if the counter is 1255 * not enabled at the time of the call. 1256 */ 1257 static void pmccntr_op_start(CPUARMState *env) 1258 { 1259 uint64_t cycles = cycles_get_count(env); 1260 1261 if (pmu_counter_enabled(env, 31)) { 1262 uint64_t eff_cycles = cycles; 1263 if (env->cp15.c9_pmcr & PMCRD) { 1264 /* Increment once every 64 processor clock cycles */ 1265 eff_cycles /= 64; 1266 } 1267 1268 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1269 1270 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1271 1ull << 63 : 1ull << 31; 1272 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1273 env->cp15.c9_pmovsr |= (1 << 31); 1274 pmu_update_irq(env); 1275 } 1276 1277 env->cp15.c15_ccnt = new_pmccntr; 1278 } 1279 env->cp15.c15_ccnt_delta = cycles; 1280 } 1281 1282 /* 1283 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1284 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1285 * pmccntr_op_start. 1286 */ 1287 static void pmccntr_op_finish(CPUARMState *env) 1288 { 1289 if (pmu_counter_enabled(env, 31)) { 1290 #ifndef CONFIG_USER_ONLY 1291 /* Calculate when the counter will next overflow */ 1292 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1293 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1294 remaining_cycles = (uint32_t)remaining_cycles; 1295 } 1296 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1297 1298 if (overflow_in > 0) { 1299 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1300 overflow_in; 1301 ARMCPU *cpu = env_archcpu(env); 1302 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1303 } 1304 #endif 1305 1306 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1307 if (env->cp15.c9_pmcr & PMCRD) { 1308 /* Increment once every 64 processor clock cycles */ 1309 prev_cycles /= 64; 1310 } 1311 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1312 } 1313 } 1314 1315 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1316 { 1317 1318 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1319 uint64_t count = 0; 1320 if (event_supported(event)) { 1321 uint16_t event_idx = supported_event_map[event]; 1322 count = pm_events[event_idx].get_count(env); 1323 } 1324 1325 if (pmu_counter_enabled(env, counter)) { 1326 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1327 1328 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1329 env->cp15.c9_pmovsr |= (1 << counter); 1330 pmu_update_irq(env); 1331 } 1332 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1333 } 1334 env->cp15.c14_pmevcntr_delta[counter] = count; 1335 } 1336 1337 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1338 { 1339 if (pmu_counter_enabled(env, counter)) { 1340 #ifndef CONFIG_USER_ONLY 1341 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1342 uint16_t event_idx = supported_event_map[event]; 1343 uint64_t delta = UINT32_MAX - 1344 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1345 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1346 1347 if (overflow_in > 0) { 1348 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1349 overflow_in; 1350 ARMCPU *cpu = env_archcpu(env); 1351 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1352 } 1353 #endif 1354 1355 env->cp15.c14_pmevcntr_delta[counter] -= 1356 env->cp15.c14_pmevcntr[counter]; 1357 } 1358 } 1359 1360 void pmu_op_start(CPUARMState *env) 1361 { 1362 unsigned int i; 1363 pmccntr_op_start(env); 1364 for (i = 0; i < pmu_num_counters(env); i++) { 1365 pmevcntr_op_start(env, i); 1366 } 1367 } 1368 1369 void pmu_op_finish(CPUARMState *env) 1370 { 1371 unsigned int i; 1372 pmccntr_op_finish(env); 1373 for (i = 0; i < pmu_num_counters(env); i++) { 1374 pmevcntr_op_finish(env, i); 1375 } 1376 } 1377 1378 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1379 { 1380 pmu_op_start(&cpu->env); 1381 } 1382 1383 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1384 { 1385 pmu_op_finish(&cpu->env); 1386 } 1387 1388 void arm_pmu_timer_cb(void *opaque) 1389 { 1390 ARMCPU *cpu = opaque; 1391 1392 /* 1393 * Update all the counter values based on the current underlying counts, 1394 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1395 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1396 * counter may expire. 1397 */ 1398 pmu_op_start(&cpu->env); 1399 pmu_op_finish(&cpu->env); 1400 } 1401 1402 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1403 uint64_t value) 1404 { 1405 pmu_op_start(env); 1406 1407 if (value & PMCRC) { 1408 /* The counter has been reset */ 1409 env->cp15.c15_ccnt = 0; 1410 } 1411 1412 if (value & PMCRP) { 1413 unsigned int i; 1414 for (i = 0; i < pmu_num_counters(env); i++) { 1415 env->cp15.c14_pmevcntr[i] = 0; 1416 } 1417 } 1418 1419 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1420 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1421 1422 pmu_op_finish(env); 1423 } 1424 1425 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1426 uint64_t value) 1427 { 1428 unsigned int i; 1429 for (i = 0; i < pmu_num_counters(env); i++) { 1430 /* Increment a counter's count iff: */ 1431 if ((value & (1 << i)) && /* counter's bit is set */ 1432 /* counter is enabled and not filtered */ 1433 pmu_counter_enabled(env, i) && 1434 /* counter is SW_INCR */ 1435 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1436 pmevcntr_op_start(env, i); 1437 1438 /* 1439 * Detect if this write causes an overflow since we can't predict 1440 * PMSWINC overflows like we can for other events 1441 */ 1442 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1443 1444 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1445 env->cp15.c9_pmovsr |= (1 << i); 1446 pmu_update_irq(env); 1447 } 1448 1449 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1450 1451 pmevcntr_op_finish(env, i); 1452 } 1453 } 1454 } 1455 1456 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1457 { 1458 uint64_t ret; 1459 pmccntr_op_start(env); 1460 ret = env->cp15.c15_ccnt; 1461 pmccntr_op_finish(env); 1462 return ret; 1463 } 1464 1465 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1466 uint64_t value) 1467 { 1468 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1469 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1470 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1471 * accessed. 1472 */ 1473 env->cp15.c9_pmselr = value & 0x1f; 1474 } 1475 1476 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1477 uint64_t value) 1478 { 1479 pmccntr_op_start(env); 1480 env->cp15.c15_ccnt = value; 1481 pmccntr_op_finish(env); 1482 } 1483 1484 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1485 uint64_t value) 1486 { 1487 uint64_t cur_val = pmccntr_read(env, NULL); 1488 1489 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1490 } 1491 1492 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1493 uint64_t value) 1494 { 1495 pmccntr_op_start(env); 1496 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1497 pmccntr_op_finish(env); 1498 } 1499 1500 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1501 uint64_t value) 1502 { 1503 pmccntr_op_start(env); 1504 /* M is not accessible from AArch32 */ 1505 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1506 (value & PMCCFILTR); 1507 pmccntr_op_finish(env); 1508 } 1509 1510 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1511 { 1512 /* M is not visible in AArch32 */ 1513 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1514 } 1515 1516 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1517 uint64_t value) 1518 { 1519 value &= pmu_counter_mask(env); 1520 env->cp15.c9_pmcnten |= value; 1521 } 1522 1523 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1524 uint64_t value) 1525 { 1526 value &= pmu_counter_mask(env); 1527 env->cp15.c9_pmcnten &= ~value; 1528 } 1529 1530 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1531 uint64_t value) 1532 { 1533 value &= pmu_counter_mask(env); 1534 env->cp15.c9_pmovsr &= ~value; 1535 pmu_update_irq(env); 1536 } 1537 1538 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1539 uint64_t value) 1540 { 1541 value &= pmu_counter_mask(env); 1542 env->cp15.c9_pmovsr |= value; 1543 pmu_update_irq(env); 1544 } 1545 1546 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1547 uint64_t value, const uint8_t counter) 1548 { 1549 if (counter == 31) { 1550 pmccfiltr_write(env, ri, value); 1551 } else if (counter < pmu_num_counters(env)) { 1552 pmevcntr_op_start(env, counter); 1553 1554 /* 1555 * If this counter's event type is changing, store the current 1556 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1557 * pmevcntr_op_finish has the correct baseline when it converts back to 1558 * a delta. 1559 */ 1560 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1561 PMXEVTYPER_EVTCOUNT; 1562 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1563 if (old_event != new_event) { 1564 uint64_t count = 0; 1565 if (event_supported(new_event)) { 1566 uint16_t event_idx = supported_event_map[new_event]; 1567 count = pm_events[event_idx].get_count(env); 1568 } 1569 env->cp15.c14_pmevcntr_delta[counter] = count; 1570 } 1571 1572 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1573 pmevcntr_op_finish(env, counter); 1574 } 1575 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1576 * PMSELR value is equal to or greater than the number of implemented 1577 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1578 */ 1579 } 1580 1581 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1582 const uint8_t counter) 1583 { 1584 if (counter == 31) { 1585 return env->cp15.pmccfiltr_el0; 1586 } else if (counter < pmu_num_counters(env)) { 1587 return env->cp15.c14_pmevtyper[counter]; 1588 } else { 1589 /* 1590 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1591 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1592 */ 1593 return 0; 1594 } 1595 } 1596 1597 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1598 uint64_t value) 1599 { 1600 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1601 pmevtyper_write(env, ri, value, counter); 1602 } 1603 1604 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1605 uint64_t value) 1606 { 1607 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1608 env->cp15.c14_pmevtyper[counter] = value; 1609 1610 /* 1611 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1612 * pmu_op_finish calls when loading saved state for a migration. Because 1613 * we're potentially updating the type of event here, the value written to 1614 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1615 * different counter type. Therefore, we need to set this value to the 1616 * current count for the counter type we're writing so that pmu_op_finish 1617 * has the correct count for its calculation. 1618 */ 1619 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1620 if (event_supported(event)) { 1621 uint16_t event_idx = supported_event_map[event]; 1622 env->cp15.c14_pmevcntr_delta[counter] = 1623 pm_events[event_idx].get_count(env); 1624 } 1625 } 1626 1627 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1628 { 1629 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1630 return pmevtyper_read(env, ri, counter); 1631 } 1632 1633 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1634 uint64_t value) 1635 { 1636 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1637 } 1638 1639 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1640 { 1641 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1642 } 1643 1644 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1645 uint64_t value, uint8_t counter) 1646 { 1647 if (counter < pmu_num_counters(env)) { 1648 pmevcntr_op_start(env, counter); 1649 env->cp15.c14_pmevcntr[counter] = value; 1650 pmevcntr_op_finish(env, counter); 1651 } 1652 /* 1653 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1654 * are CONSTRAINED UNPREDICTABLE. 1655 */ 1656 } 1657 1658 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1659 uint8_t counter) 1660 { 1661 if (counter < pmu_num_counters(env)) { 1662 uint64_t ret; 1663 pmevcntr_op_start(env, counter); 1664 ret = env->cp15.c14_pmevcntr[counter]; 1665 pmevcntr_op_finish(env, counter); 1666 return ret; 1667 } else { 1668 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1669 * are CONSTRAINED UNPREDICTABLE. */ 1670 return 0; 1671 } 1672 } 1673 1674 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1675 uint64_t value) 1676 { 1677 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1678 pmevcntr_write(env, ri, value, counter); 1679 } 1680 1681 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1682 { 1683 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1684 return pmevcntr_read(env, ri, counter); 1685 } 1686 1687 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1688 uint64_t value) 1689 { 1690 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1691 assert(counter < pmu_num_counters(env)); 1692 env->cp15.c14_pmevcntr[counter] = value; 1693 pmevcntr_write(env, ri, value, counter); 1694 } 1695 1696 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1697 { 1698 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1699 assert(counter < pmu_num_counters(env)); 1700 return env->cp15.c14_pmevcntr[counter]; 1701 } 1702 1703 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1704 uint64_t value) 1705 { 1706 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1707 } 1708 1709 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1710 { 1711 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1712 } 1713 1714 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1715 uint64_t value) 1716 { 1717 if (arm_feature(env, ARM_FEATURE_V8)) { 1718 env->cp15.c9_pmuserenr = value & 0xf; 1719 } else { 1720 env->cp15.c9_pmuserenr = value & 1; 1721 } 1722 } 1723 1724 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1725 uint64_t value) 1726 { 1727 /* We have no event counters so only the C bit can be changed */ 1728 value &= pmu_counter_mask(env); 1729 env->cp15.c9_pminten |= value; 1730 pmu_update_irq(env); 1731 } 1732 1733 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 value &= pmu_counter_mask(env); 1737 env->cp15.c9_pminten &= ~value; 1738 pmu_update_irq(env); 1739 } 1740 1741 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1742 uint64_t value) 1743 { 1744 /* Note that even though the AArch64 view of this register has bits 1745 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1746 * architectural requirements for bits which are RES0 only in some 1747 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1748 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1749 */ 1750 raw_write(env, ri, value & ~0x1FULL); 1751 } 1752 1753 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1754 { 1755 /* Begin with base v8.0 state. */ 1756 uint32_t valid_mask = 0x3fff; 1757 ARMCPU *cpu = env_archcpu(env); 1758 1759 if (ri->state == ARM_CP_STATE_AA64) { 1760 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1761 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1762 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1763 } 1764 valid_mask &= ~SCR_NET; 1765 1766 if (cpu_isar_feature(aa64_lor, cpu)) { 1767 valid_mask |= SCR_TLOR; 1768 } 1769 if (cpu_isar_feature(aa64_pauth, cpu)) { 1770 valid_mask |= SCR_API | SCR_APK; 1771 } 1772 if (cpu_isar_feature(aa64_sel2, cpu)) { 1773 valid_mask |= SCR_EEL2; 1774 } 1775 if (cpu_isar_feature(aa64_mte, cpu)) { 1776 valid_mask |= SCR_ATA; 1777 } 1778 } else { 1779 valid_mask &= ~(SCR_RW | SCR_ST); 1780 } 1781 1782 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1783 valid_mask &= ~SCR_HCE; 1784 1785 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1786 * supported if EL2 exists. The bit is UNK/SBZP when 1787 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1788 * when EL2 is unavailable. 1789 * On ARMv8, this bit is always available. 1790 */ 1791 if (arm_feature(env, ARM_FEATURE_V7) && 1792 !arm_feature(env, ARM_FEATURE_V8)) { 1793 valid_mask &= ~SCR_SMD; 1794 } 1795 } 1796 1797 /* Clear all-context RES0 bits. */ 1798 value &= valid_mask; 1799 raw_write(env, ri, value); 1800 } 1801 1802 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1803 { 1804 /* 1805 * scr_write will set the RES1 bits on an AArch64-only CPU. 1806 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1807 */ 1808 scr_write(env, ri, 0); 1809 } 1810 1811 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1812 const ARMCPRegInfo *ri, 1813 bool isread) 1814 { 1815 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1816 return CP_ACCESS_TRAP_EL2; 1817 } 1818 1819 return CP_ACCESS_OK; 1820 } 1821 1822 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1823 { 1824 ARMCPU *cpu = env_archcpu(env); 1825 1826 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1827 * bank 1828 */ 1829 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1830 ri->secure & ARM_CP_SECSTATE_S); 1831 1832 return cpu->ccsidr[index]; 1833 } 1834 1835 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1836 uint64_t value) 1837 { 1838 raw_write(env, ri, value & 0xf); 1839 } 1840 1841 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1842 { 1843 CPUState *cs = env_cpu(env); 1844 bool el1 = arm_current_el(env) == 1; 1845 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1846 uint64_t ret = 0; 1847 1848 if (hcr_el2 & HCR_IMO) { 1849 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1850 ret |= CPSR_I; 1851 } 1852 } else { 1853 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1854 ret |= CPSR_I; 1855 } 1856 } 1857 1858 if (hcr_el2 & HCR_FMO) { 1859 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1860 ret |= CPSR_F; 1861 } 1862 } else { 1863 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1864 ret |= CPSR_F; 1865 } 1866 } 1867 1868 /* External aborts are not possible in QEMU so A bit is always clear */ 1869 return ret; 1870 } 1871 1872 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1873 bool isread) 1874 { 1875 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1876 return CP_ACCESS_TRAP_EL2; 1877 } 1878 1879 return CP_ACCESS_OK; 1880 } 1881 1882 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1883 bool isread) 1884 { 1885 if (arm_feature(env, ARM_FEATURE_V8)) { 1886 return access_aa64_tid1(env, ri, isread); 1887 } 1888 1889 return CP_ACCESS_OK; 1890 } 1891 1892 static const ARMCPRegInfo v7_cp_reginfo[] = { 1893 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1894 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1895 .access = PL1_W, .type = ARM_CP_NOP }, 1896 /* Performance monitors are implementation defined in v7, 1897 * but with an ARM recommended set of registers, which we 1898 * follow. 1899 * 1900 * Performance registers fall into three categories: 1901 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1902 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1903 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1904 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1905 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1906 */ 1907 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1908 .access = PL0_RW, .type = ARM_CP_ALIAS, 1909 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1910 .writefn = pmcntenset_write, 1911 .accessfn = pmreg_access, 1912 .raw_writefn = raw_write }, 1913 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1914 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1915 .access = PL0_RW, .accessfn = pmreg_access, 1916 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1917 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1918 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1919 .access = PL0_RW, 1920 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1921 .accessfn = pmreg_access, 1922 .writefn = pmcntenclr_write, 1923 .type = ARM_CP_ALIAS }, 1924 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1925 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1926 .access = PL0_RW, .accessfn = pmreg_access, 1927 .type = ARM_CP_ALIAS, 1928 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1929 .writefn = pmcntenclr_write }, 1930 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1931 .access = PL0_RW, .type = ARM_CP_IO, 1932 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1933 .accessfn = pmreg_access, 1934 .writefn = pmovsr_write, 1935 .raw_writefn = raw_write }, 1936 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1937 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1938 .access = PL0_RW, .accessfn = pmreg_access, 1939 .type = ARM_CP_ALIAS | ARM_CP_IO, 1940 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1941 .writefn = pmovsr_write, 1942 .raw_writefn = raw_write }, 1943 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1944 .access = PL0_W, .accessfn = pmreg_access_swinc, 1945 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1946 .writefn = pmswinc_write }, 1947 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1948 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1949 .access = PL0_W, .accessfn = pmreg_access_swinc, 1950 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1951 .writefn = pmswinc_write }, 1952 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1953 .access = PL0_RW, .type = ARM_CP_ALIAS, 1954 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1955 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1956 .raw_writefn = raw_write}, 1957 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1958 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1959 .access = PL0_RW, .accessfn = pmreg_access_selr, 1960 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1961 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1962 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1963 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1964 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1965 .accessfn = pmreg_access_ccntr }, 1966 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1967 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1968 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1969 .type = ARM_CP_IO, 1970 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1971 .readfn = pmccntr_read, .writefn = pmccntr_write, 1972 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1973 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1974 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1975 .access = PL0_RW, .accessfn = pmreg_access, 1976 .type = ARM_CP_ALIAS | ARM_CP_IO, 1977 .resetvalue = 0, }, 1978 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1979 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1980 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1981 .access = PL0_RW, .accessfn = pmreg_access, 1982 .type = ARM_CP_IO, 1983 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1984 .resetvalue = 0, }, 1985 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1986 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1987 .accessfn = pmreg_access, 1988 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1989 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1990 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1991 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1992 .accessfn = pmreg_access, 1993 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1994 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1995 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1996 .accessfn = pmreg_access_xevcntr, 1997 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1998 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 1999 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2000 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2001 .accessfn = pmreg_access_xevcntr, 2002 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2003 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2004 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2005 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2006 .resetvalue = 0, 2007 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2008 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2009 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2010 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2011 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2012 .resetvalue = 0, 2013 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2014 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2015 .access = PL1_RW, .accessfn = access_tpm, 2016 .type = ARM_CP_ALIAS | ARM_CP_IO, 2017 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2018 .resetvalue = 0, 2019 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2020 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2021 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2022 .access = PL1_RW, .accessfn = access_tpm, 2023 .type = ARM_CP_IO, 2024 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2025 .writefn = pmintenset_write, .raw_writefn = raw_write, 2026 .resetvalue = 0x0 }, 2027 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2028 .access = PL1_RW, .accessfn = access_tpm, 2029 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2030 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2031 .writefn = pmintenclr_write, }, 2032 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2033 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2034 .access = PL1_RW, .accessfn = access_tpm, 2035 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2036 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2037 .writefn = pmintenclr_write }, 2038 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2039 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2040 .access = PL1_R, 2041 .accessfn = access_aa64_tid2, 2042 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2043 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2044 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2045 .access = PL1_RW, 2046 .accessfn = access_aa64_tid2, 2047 .writefn = csselr_write, .resetvalue = 0, 2048 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2049 offsetof(CPUARMState, cp15.csselr_ns) } }, 2050 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2051 * just RAZ for all cores: 2052 */ 2053 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2054 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2055 .access = PL1_R, .type = ARM_CP_CONST, 2056 .accessfn = access_aa64_tid1, 2057 .resetvalue = 0 }, 2058 /* Auxiliary fault status registers: these also are IMPDEF, and we 2059 * choose to RAZ/WI for all cores. 2060 */ 2061 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2062 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2063 .access = PL1_RW, .accessfn = access_tvm_trvm, 2064 .type = ARM_CP_CONST, .resetvalue = 0 }, 2065 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2066 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2067 .access = PL1_RW, .accessfn = access_tvm_trvm, 2068 .type = ARM_CP_CONST, .resetvalue = 0 }, 2069 /* MAIR can just read-as-written because we don't implement caches 2070 * and so don't need to care about memory attributes. 2071 */ 2072 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2073 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2074 .access = PL1_RW, .accessfn = access_tvm_trvm, 2075 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2076 .resetvalue = 0 }, 2077 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2078 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2079 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2080 .resetvalue = 0 }, 2081 /* For non-long-descriptor page tables these are PRRR and NMRR; 2082 * regardless they still act as reads-as-written for QEMU. 2083 */ 2084 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2085 * allows them to assign the correct fieldoffset based on the endianness 2086 * handled in the field definitions. 2087 */ 2088 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2089 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2090 .access = PL1_RW, .accessfn = access_tvm_trvm, 2091 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2092 offsetof(CPUARMState, cp15.mair0_ns) }, 2093 .resetfn = arm_cp_reset_ignore }, 2094 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2095 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2096 .access = PL1_RW, .accessfn = access_tvm_trvm, 2097 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2098 offsetof(CPUARMState, cp15.mair1_ns) }, 2099 .resetfn = arm_cp_reset_ignore }, 2100 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2101 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2102 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2103 /* 32 bit ITLB invalidates */ 2104 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2105 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2106 .writefn = tlbiall_write }, 2107 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2108 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2109 .writefn = tlbimva_write }, 2110 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2111 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2112 .writefn = tlbiasid_write }, 2113 /* 32 bit DTLB invalidates */ 2114 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2115 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2116 .writefn = tlbiall_write }, 2117 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2118 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2119 .writefn = tlbimva_write }, 2120 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2121 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2122 .writefn = tlbiasid_write }, 2123 /* 32 bit TLB invalidates */ 2124 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2125 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2126 .writefn = tlbiall_write }, 2127 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2128 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2129 .writefn = tlbimva_write }, 2130 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2131 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2132 .writefn = tlbiasid_write }, 2133 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2134 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2135 .writefn = tlbimvaa_write }, 2136 REGINFO_SENTINEL 2137 }; 2138 2139 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2140 /* 32 bit TLB invalidates, Inner Shareable */ 2141 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2142 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2143 .writefn = tlbiall_is_write }, 2144 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2145 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2146 .writefn = tlbimva_is_write }, 2147 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2148 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2149 .writefn = tlbiasid_is_write }, 2150 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2151 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2152 .writefn = tlbimvaa_is_write }, 2153 REGINFO_SENTINEL 2154 }; 2155 2156 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2157 /* PMOVSSET is not implemented in v7 before v7ve */ 2158 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2159 .access = PL0_RW, .accessfn = pmreg_access, 2160 .type = ARM_CP_ALIAS | ARM_CP_IO, 2161 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2162 .writefn = pmovsset_write, 2163 .raw_writefn = raw_write }, 2164 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2165 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2166 .access = PL0_RW, .accessfn = pmreg_access, 2167 .type = ARM_CP_ALIAS | ARM_CP_IO, 2168 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2169 .writefn = pmovsset_write, 2170 .raw_writefn = raw_write }, 2171 REGINFO_SENTINEL 2172 }; 2173 2174 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2175 uint64_t value) 2176 { 2177 value &= 1; 2178 env->teecr = value; 2179 } 2180 2181 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2182 bool isread) 2183 { 2184 /* 2185 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2186 * at all, so we don't need to check whether we're v8A. 2187 */ 2188 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2189 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2190 return CP_ACCESS_TRAP_EL2; 2191 } 2192 return CP_ACCESS_OK; 2193 } 2194 2195 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2196 bool isread) 2197 { 2198 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2199 return CP_ACCESS_TRAP; 2200 } 2201 return teecr_access(env, ri, isread); 2202 } 2203 2204 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2205 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2206 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2207 .resetvalue = 0, 2208 .writefn = teecr_write, .accessfn = teecr_access }, 2209 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2210 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2211 .accessfn = teehbr_access, .resetvalue = 0 }, 2212 REGINFO_SENTINEL 2213 }; 2214 2215 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2216 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2217 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2218 .access = PL0_RW, 2219 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2220 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2221 .access = PL0_RW, 2222 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2223 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2224 .resetfn = arm_cp_reset_ignore }, 2225 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2226 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2227 .access = PL0_R|PL1_W, 2228 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2229 .resetvalue = 0}, 2230 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2231 .access = PL0_R|PL1_W, 2232 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2233 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2234 .resetfn = arm_cp_reset_ignore }, 2235 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2236 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2237 .access = PL1_RW, 2238 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2239 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2240 .access = PL1_RW, 2241 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2242 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2243 .resetvalue = 0 }, 2244 REGINFO_SENTINEL 2245 }; 2246 2247 #ifndef CONFIG_USER_ONLY 2248 2249 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2250 bool isread) 2251 { 2252 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2253 * Writable only at the highest implemented exception level. 2254 */ 2255 int el = arm_current_el(env); 2256 uint64_t hcr; 2257 uint32_t cntkctl; 2258 2259 switch (el) { 2260 case 0: 2261 hcr = arm_hcr_el2_eff(env); 2262 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2263 cntkctl = env->cp15.cnthctl_el2; 2264 } else { 2265 cntkctl = env->cp15.c14_cntkctl; 2266 } 2267 if (!extract32(cntkctl, 0, 2)) { 2268 return CP_ACCESS_TRAP; 2269 } 2270 break; 2271 case 1: 2272 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2273 arm_is_secure_below_el3(env)) { 2274 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2275 return CP_ACCESS_TRAP_UNCATEGORIZED; 2276 } 2277 break; 2278 case 2: 2279 case 3: 2280 break; 2281 } 2282 2283 if (!isread && el < arm_highest_el(env)) { 2284 return CP_ACCESS_TRAP_UNCATEGORIZED; 2285 } 2286 2287 return CP_ACCESS_OK; 2288 } 2289 2290 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2291 bool isread) 2292 { 2293 unsigned int cur_el = arm_current_el(env); 2294 bool has_el2 = arm_is_el2_enabled(env); 2295 uint64_t hcr = arm_hcr_el2_eff(env); 2296 2297 switch (cur_el) { 2298 case 0: 2299 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2300 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2301 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2302 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2303 } 2304 2305 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2306 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2307 return CP_ACCESS_TRAP; 2308 } 2309 2310 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2311 if (hcr & HCR_E2H) { 2312 if (timeridx == GTIMER_PHYS && 2313 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2314 return CP_ACCESS_TRAP_EL2; 2315 } 2316 } else { 2317 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2318 if (has_el2 && timeridx == GTIMER_PHYS && 2319 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2320 return CP_ACCESS_TRAP_EL2; 2321 } 2322 } 2323 break; 2324 2325 case 1: 2326 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2327 if (has_el2 && timeridx == GTIMER_PHYS && 2328 (hcr & HCR_E2H 2329 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2330 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2331 return CP_ACCESS_TRAP_EL2; 2332 } 2333 break; 2334 } 2335 return CP_ACCESS_OK; 2336 } 2337 2338 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2339 bool isread) 2340 { 2341 unsigned int cur_el = arm_current_el(env); 2342 bool has_el2 = arm_is_el2_enabled(env); 2343 uint64_t hcr = arm_hcr_el2_eff(env); 2344 2345 switch (cur_el) { 2346 case 0: 2347 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2348 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2349 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2350 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2351 } 2352 2353 /* 2354 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2355 * EL0 if EL0[PV]TEN is zero. 2356 */ 2357 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2358 return CP_ACCESS_TRAP; 2359 } 2360 /* fall through */ 2361 2362 case 1: 2363 if (has_el2 && timeridx == GTIMER_PHYS) { 2364 if (hcr & HCR_E2H) { 2365 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2366 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2367 return CP_ACCESS_TRAP_EL2; 2368 } 2369 } else { 2370 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2371 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2372 return CP_ACCESS_TRAP_EL2; 2373 } 2374 } 2375 } 2376 break; 2377 } 2378 return CP_ACCESS_OK; 2379 } 2380 2381 static CPAccessResult gt_pct_access(CPUARMState *env, 2382 const ARMCPRegInfo *ri, 2383 bool isread) 2384 { 2385 return gt_counter_access(env, GTIMER_PHYS, isread); 2386 } 2387 2388 static CPAccessResult gt_vct_access(CPUARMState *env, 2389 const ARMCPRegInfo *ri, 2390 bool isread) 2391 { 2392 return gt_counter_access(env, GTIMER_VIRT, isread); 2393 } 2394 2395 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2396 bool isread) 2397 { 2398 return gt_timer_access(env, GTIMER_PHYS, isread); 2399 } 2400 2401 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2402 bool isread) 2403 { 2404 return gt_timer_access(env, GTIMER_VIRT, isread); 2405 } 2406 2407 static CPAccessResult gt_stimer_access(CPUARMState *env, 2408 const ARMCPRegInfo *ri, 2409 bool isread) 2410 { 2411 /* The AArch64 register view of the secure physical timer is 2412 * always accessible from EL3, and configurably accessible from 2413 * Secure EL1. 2414 */ 2415 switch (arm_current_el(env)) { 2416 case 1: 2417 if (!arm_is_secure(env)) { 2418 return CP_ACCESS_TRAP; 2419 } 2420 if (!(env->cp15.scr_el3 & SCR_ST)) { 2421 return CP_ACCESS_TRAP_EL3; 2422 } 2423 return CP_ACCESS_OK; 2424 case 0: 2425 case 2: 2426 return CP_ACCESS_TRAP; 2427 case 3: 2428 return CP_ACCESS_OK; 2429 default: 2430 g_assert_not_reached(); 2431 } 2432 } 2433 2434 static uint64_t gt_get_countervalue(CPUARMState *env) 2435 { 2436 ARMCPU *cpu = env_archcpu(env); 2437 2438 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2439 } 2440 2441 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2442 { 2443 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2444 2445 if (gt->ctl & 1) { 2446 /* Timer enabled: calculate and set current ISTATUS, irq, and 2447 * reset timer to when ISTATUS next has to change 2448 */ 2449 uint64_t offset = timeridx == GTIMER_VIRT ? 2450 cpu->env.cp15.cntvoff_el2 : 0; 2451 uint64_t count = gt_get_countervalue(&cpu->env); 2452 /* Note that this must be unsigned 64 bit arithmetic: */ 2453 int istatus = count - offset >= gt->cval; 2454 uint64_t nexttick; 2455 int irqstate; 2456 2457 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2458 2459 irqstate = (istatus && !(gt->ctl & 2)); 2460 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2461 2462 if (istatus) { 2463 /* Next transition is when count rolls back over to zero */ 2464 nexttick = UINT64_MAX; 2465 } else { 2466 /* Next transition is when we hit cval */ 2467 nexttick = gt->cval + offset; 2468 } 2469 /* Note that the desired next expiry time might be beyond the 2470 * signed-64-bit range of a QEMUTimer -- in this case we just 2471 * set the timer for as far in the future as possible. When the 2472 * timer expires we will reset the timer for any remaining period. 2473 */ 2474 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2475 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2476 } else { 2477 timer_mod(cpu->gt_timer[timeridx], nexttick); 2478 } 2479 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2480 } else { 2481 /* Timer disabled: ISTATUS and timer output always clear */ 2482 gt->ctl &= ~4; 2483 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2484 timer_del(cpu->gt_timer[timeridx]); 2485 trace_arm_gt_recalc_disabled(timeridx); 2486 } 2487 } 2488 2489 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2490 int timeridx) 2491 { 2492 ARMCPU *cpu = env_archcpu(env); 2493 2494 timer_del(cpu->gt_timer[timeridx]); 2495 } 2496 2497 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2498 { 2499 return gt_get_countervalue(env); 2500 } 2501 2502 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2503 { 2504 uint64_t hcr; 2505 2506 switch (arm_current_el(env)) { 2507 case 2: 2508 hcr = arm_hcr_el2_eff(env); 2509 if (hcr & HCR_E2H) { 2510 return 0; 2511 } 2512 break; 2513 case 0: 2514 hcr = arm_hcr_el2_eff(env); 2515 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2516 return 0; 2517 } 2518 break; 2519 } 2520 2521 return env->cp15.cntvoff_el2; 2522 } 2523 2524 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2525 { 2526 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2527 } 2528 2529 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2530 int timeridx, 2531 uint64_t value) 2532 { 2533 trace_arm_gt_cval_write(timeridx, value); 2534 env->cp15.c14_timer[timeridx].cval = value; 2535 gt_recalc_timer(env_archcpu(env), timeridx); 2536 } 2537 2538 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2539 int timeridx) 2540 { 2541 uint64_t offset = 0; 2542 2543 switch (timeridx) { 2544 case GTIMER_VIRT: 2545 case GTIMER_HYPVIRT: 2546 offset = gt_virt_cnt_offset(env); 2547 break; 2548 } 2549 2550 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2551 (gt_get_countervalue(env) - offset)); 2552 } 2553 2554 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2555 int timeridx, 2556 uint64_t value) 2557 { 2558 uint64_t offset = 0; 2559 2560 switch (timeridx) { 2561 case GTIMER_VIRT: 2562 case GTIMER_HYPVIRT: 2563 offset = gt_virt_cnt_offset(env); 2564 break; 2565 } 2566 2567 trace_arm_gt_tval_write(timeridx, value); 2568 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2569 sextract64(value, 0, 32); 2570 gt_recalc_timer(env_archcpu(env), timeridx); 2571 } 2572 2573 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2574 int timeridx, 2575 uint64_t value) 2576 { 2577 ARMCPU *cpu = env_archcpu(env); 2578 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2579 2580 trace_arm_gt_ctl_write(timeridx, value); 2581 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2582 if ((oldval ^ value) & 1) { 2583 /* Enable toggled */ 2584 gt_recalc_timer(cpu, timeridx); 2585 } else if ((oldval ^ value) & 2) { 2586 /* IMASK toggled: don't need to recalculate, 2587 * just set the interrupt line based on ISTATUS 2588 */ 2589 int irqstate = (oldval & 4) && !(value & 2); 2590 2591 trace_arm_gt_imask_toggle(timeridx, irqstate); 2592 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2593 } 2594 } 2595 2596 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2597 { 2598 gt_timer_reset(env, ri, GTIMER_PHYS); 2599 } 2600 2601 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2602 uint64_t value) 2603 { 2604 gt_cval_write(env, ri, GTIMER_PHYS, value); 2605 } 2606 2607 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2608 { 2609 return gt_tval_read(env, ri, GTIMER_PHYS); 2610 } 2611 2612 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2613 uint64_t value) 2614 { 2615 gt_tval_write(env, ri, GTIMER_PHYS, value); 2616 } 2617 2618 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2619 uint64_t value) 2620 { 2621 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2622 } 2623 2624 static int gt_phys_redir_timeridx(CPUARMState *env) 2625 { 2626 switch (arm_mmu_idx(env)) { 2627 case ARMMMUIdx_E20_0: 2628 case ARMMMUIdx_E20_2: 2629 case ARMMMUIdx_E20_2_PAN: 2630 case ARMMMUIdx_SE20_0: 2631 case ARMMMUIdx_SE20_2: 2632 case ARMMMUIdx_SE20_2_PAN: 2633 return GTIMER_HYP; 2634 default: 2635 return GTIMER_PHYS; 2636 } 2637 } 2638 2639 static int gt_virt_redir_timeridx(CPUARMState *env) 2640 { 2641 switch (arm_mmu_idx(env)) { 2642 case ARMMMUIdx_E20_0: 2643 case ARMMMUIdx_E20_2: 2644 case ARMMMUIdx_E20_2_PAN: 2645 case ARMMMUIdx_SE20_0: 2646 case ARMMMUIdx_SE20_2: 2647 case ARMMMUIdx_SE20_2_PAN: 2648 return GTIMER_HYPVIRT; 2649 default: 2650 return GTIMER_VIRT; 2651 } 2652 } 2653 2654 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2655 const ARMCPRegInfo *ri) 2656 { 2657 int timeridx = gt_phys_redir_timeridx(env); 2658 return env->cp15.c14_timer[timeridx].cval; 2659 } 2660 2661 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2662 uint64_t value) 2663 { 2664 int timeridx = gt_phys_redir_timeridx(env); 2665 gt_cval_write(env, ri, timeridx, value); 2666 } 2667 2668 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2669 const ARMCPRegInfo *ri) 2670 { 2671 int timeridx = gt_phys_redir_timeridx(env); 2672 return gt_tval_read(env, ri, timeridx); 2673 } 2674 2675 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2676 uint64_t value) 2677 { 2678 int timeridx = gt_phys_redir_timeridx(env); 2679 gt_tval_write(env, ri, timeridx, value); 2680 } 2681 2682 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2683 const ARMCPRegInfo *ri) 2684 { 2685 int timeridx = gt_phys_redir_timeridx(env); 2686 return env->cp15.c14_timer[timeridx].ctl; 2687 } 2688 2689 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2690 uint64_t value) 2691 { 2692 int timeridx = gt_phys_redir_timeridx(env); 2693 gt_ctl_write(env, ri, timeridx, value); 2694 } 2695 2696 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2697 { 2698 gt_timer_reset(env, ri, GTIMER_VIRT); 2699 } 2700 2701 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2702 uint64_t value) 2703 { 2704 gt_cval_write(env, ri, GTIMER_VIRT, value); 2705 } 2706 2707 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2708 { 2709 return gt_tval_read(env, ri, GTIMER_VIRT); 2710 } 2711 2712 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2713 uint64_t value) 2714 { 2715 gt_tval_write(env, ri, GTIMER_VIRT, value); 2716 } 2717 2718 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2719 uint64_t value) 2720 { 2721 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2722 } 2723 2724 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2725 uint64_t value) 2726 { 2727 ARMCPU *cpu = env_archcpu(env); 2728 2729 trace_arm_gt_cntvoff_write(value); 2730 raw_write(env, ri, value); 2731 gt_recalc_timer(cpu, GTIMER_VIRT); 2732 } 2733 2734 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2735 const ARMCPRegInfo *ri) 2736 { 2737 int timeridx = gt_virt_redir_timeridx(env); 2738 return env->cp15.c14_timer[timeridx].cval; 2739 } 2740 2741 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2742 uint64_t value) 2743 { 2744 int timeridx = gt_virt_redir_timeridx(env); 2745 gt_cval_write(env, ri, timeridx, value); 2746 } 2747 2748 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2749 const ARMCPRegInfo *ri) 2750 { 2751 int timeridx = gt_virt_redir_timeridx(env); 2752 return gt_tval_read(env, ri, timeridx); 2753 } 2754 2755 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2756 uint64_t value) 2757 { 2758 int timeridx = gt_virt_redir_timeridx(env); 2759 gt_tval_write(env, ri, timeridx, value); 2760 } 2761 2762 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2763 const ARMCPRegInfo *ri) 2764 { 2765 int timeridx = gt_virt_redir_timeridx(env); 2766 return env->cp15.c14_timer[timeridx].ctl; 2767 } 2768 2769 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2770 uint64_t value) 2771 { 2772 int timeridx = gt_virt_redir_timeridx(env); 2773 gt_ctl_write(env, ri, timeridx, value); 2774 } 2775 2776 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2777 { 2778 gt_timer_reset(env, ri, GTIMER_HYP); 2779 } 2780 2781 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2782 uint64_t value) 2783 { 2784 gt_cval_write(env, ri, GTIMER_HYP, value); 2785 } 2786 2787 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2788 { 2789 return gt_tval_read(env, ri, GTIMER_HYP); 2790 } 2791 2792 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2793 uint64_t value) 2794 { 2795 gt_tval_write(env, ri, GTIMER_HYP, value); 2796 } 2797 2798 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2799 uint64_t value) 2800 { 2801 gt_ctl_write(env, ri, GTIMER_HYP, value); 2802 } 2803 2804 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2805 { 2806 gt_timer_reset(env, ri, GTIMER_SEC); 2807 } 2808 2809 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2810 uint64_t value) 2811 { 2812 gt_cval_write(env, ri, GTIMER_SEC, value); 2813 } 2814 2815 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2816 { 2817 return gt_tval_read(env, ri, GTIMER_SEC); 2818 } 2819 2820 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2821 uint64_t value) 2822 { 2823 gt_tval_write(env, ri, GTIMER_SEC, value); 2824 } 2825 2826 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2827 uint64_t value) 2828 { 2829 gt_ctl_write(env, ri, GTIMER_SEC, value); 2830 } 2831 2832 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2833 { 2834 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2835 } 2836 2837 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2838 uint64_t value) 2839 { 2840 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2841 } 2842 2843 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2844 { 2845 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2846 } 2847 2848 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2849 uint64_t value) 2850 { 2851 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2852 } 2853 2854 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2855 uint64_t value) 2856 { 2857 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2858 } 2859 2860 void arm_gt_ptimer_cb(void *opaque) 2861 { 2862 ARMCPU *cpu = opaque; 2863 2864 gt_recalc_timer(cpu, GTIMER_PHYS); 2865 } 2866 2867 void arm_gt_vtimer_cb(void *opaque) 2868 { 2869 ARMCPU *cpu = opaque; 2870 2871 gt_recalc_timer(cpu, GTIMER_VIRT); 2872 } 2873 2874 void arm_gt_htimer_cb(void *opaque) 2875 { 2876 ARMCPU *cpu = opaque; 2877 2878 gt_recalc_timer(cpu, GTIMER_HYP); 2879 } 2880 2881 void arm_gt_stimer_cb(void *opaque) 2882 { 2883 ARMCPU *cpu = opaque; 2884 2885 gt_recalc_timer(cpu, GTIMER_SEC); 2886 } 2887 2888 void arm_gt_hvtimer_cb(void *opaque) 2889 { 2890 ARMCPU *cpu = opaque; 2891 2892 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2893 } 2894 2895 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2896 { 2897 ARMCPU *cpu = env_archcpu(env); 2898 2899 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2900 } 2901 2902 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2903 /* Note that CNTFRQ is purely reads-as-written for the benefit 2904 * of software; writing it doesn't actually change the timer frequency. 2905 * Our reset value matches the fixed frequency we implement the timer at. 2906 */ 2907 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2908 .type = ARM_CP_ALIAS, 2909 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2910 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2911 }, 2912 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2913 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2914 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2915 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2916 .resetfn = arm_gt_cntfrq_reset, 2917 }, 2918 /* overall control: mostly access permissions */ 2919 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2920 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2921 .access = PL1_RW, 2922 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2923 .resetvalue = 0, 2924 }, 2925 /* per-timer control */ 2926 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2927 .secure = ARM_CP_SECSTATE_NS, 2928 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2929 .accessfn = gt_ptimer_access, 2930 .fieldoffset = offsetoflow32(CPUARMState, 2931 cp15.c14_timer[GTIMER_PHYS].ctl), 2932 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2933 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2934 }, 2935 { .name = "CNTP_CTL_S", 2936 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2937 .secure = ARM_CP_SECSTATE_S, 2938 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2939 .accessfn = gt_ptimer_access, 2940 .fieldoffset = offsetoflow32(CPUARMState, 2941 cp15.c14_timer[GTIMER_SEC].ctl), 2942 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2943 }, 2944 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2945 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2946 .type = ARM_CP_IO, .access = PL0_RW, 2947 .accessfn = gt_ptimer_access, 2948 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2949 .resetvalue = 0, 2950 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2951 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2952 }, 2953 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2954 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2955 .accessfn = gt_vtimer_access, 2956 .fieldoffset = offsetoflow32(CPUARMState, 2957 cp15.c14_timer[GTIMER_VIRT].ctl), 2958 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2959 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2960 }, 2961 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2962 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2963 .type = ARM_CP_IO, .access = PL0_RW, 2964 .accessfn = gt_vtimer_access, 2965 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2966 .resetvalue = 0, 2967 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2968 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2969 }, 2970 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2971 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2972 .secure = ARM_CP_SECSTATE_NS, 2973 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2974 .accessfn = gt_ptimer_access, 2975 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2976 }, 2977 { .name = "CNTP_TVAL_S", 2978 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2979 .secure = ARM_CP_SECSTATE_S, 2980 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2981 .accessfn = gt_ptimer_access, 2982 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2983 }, 2984 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2985 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2986 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2987 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2988 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2989 }, 2990 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2991 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2992 .accessfn = gt_vtimer_access, 2993 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2994 }, 2995 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2996 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2997 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2998 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2999 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3000 }, 3001 /* The counter itself */ 3002 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3003 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3004 .accessfn = gt_pct_access, 3005 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3006 }, 3007 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3008 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3009 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3010 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3011 }, 3012 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3013 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3014 .accessfn = gt_vct_access, 3015 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3016 }, 3017 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3018 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3019 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3020 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3021 }, 3022 /* Comparison value, indicating when the timer goes off */ 3023 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3024 .secure = ARM_CP_SECSTATE_NS, 3025 .access = PL0_RW, 3026 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3027 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3028 .accessfn = gt_ptimer_access, 3029 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3030 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3031 }, 3032 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3033 .secure = ARM_CP_SECSTATE_S, 3034 .access = PL0_RW, 3035 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3036 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3037 .accessfn = gt_ptimer_access, 3038 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3039 }, 3040 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3041 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3042 .access = PL0_RW, 3043 .type = ARM_CP_IO, 3044 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3045 .resetvalue = 0, .accessfn = gt_ptimer_access, 3046 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3047 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3048 }, 3049 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3050 .access = PL0_RW, 3051 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3052 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3053 .accessfn = gt_vtimer_access, 3054 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3055 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3056 }, 3057 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3058 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3059 .access = PL0_RW, 3060 .type = ARM_CP_IO, 3061 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3062 .resetvalue = 0, .accessfn = gt_vtimer_access, 3063 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3064 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3065 }, 3066 /* Secure timer -- this is actually restricted to only EL3 3067 * and configurably Secure-EL1 via the accessfn. 3068 */ 3069 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3070 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3071 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3072 .accessfn = gt_stimer_access, 3073 .readfn = gt_sec_tval_read, 3074 .writefn = gt_sec_tval_write, 3075 .resetfn = gt_sec_timer_reset, 3076 }, 3077 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3078 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3079 .type = ARM_CP_IO, .access = PL1_RW, 3080 .accessfn = gt_stimer_access, 3081 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3082 .resetvalue = 0, 3083 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3084 }, 3085 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3086 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3087 .type = ARM_CP_IO, .access = PL1_RW, 3088 .accessfn = gt_stimer_access, 3089 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3090 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3091 }, 3092 REGINFO_SENTINEL 3093 }; 3094 3095 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3096 bool isread) 3097 { 3098 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3099 return CP_ACCESS_TRAP; 3100 } 3101 return CP_ACCESS_OK; 3102 } 3103 3104 #else 3105 3106 /* In user-mode most of the generic timer registers are inaccessible 3107 * however modern kernels (4.12+) allow access to cntvct_el0 3108 */ 3109 3110 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3111 { 3112 ARMCPU *cpu = env_archcpu(env); 3113 3114 /* Currently we have no support for QEMUTimer in linux-user so we 3115 * can't call gt_get_countervalue(env), instead we directly 3116 * call the lower level functions. 3117 */ 3118 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3119 } 3120 3121 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3122 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3123 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3124 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3125 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3126 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3127 }, 3128 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3129 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3130 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3131 .readfn = gt_virt_cnt_read, 3132 }, 3133 REGINFO_SENTINEL 3134 }; 3135 3136 #endif 3137 3138 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3139 { 3140 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3141 raw_write(env, ri, value); 3142 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3143 raw_write(env, ri, value & 0xfffff6ff); 3144 } else { 3145 raw_write(env, ri, value & 0xfffff1ff); 3146 } 3147 } 3148 3149 #ifndef CONFIG_USER_ONLY 3150 /* get_phys_addr() isn't present for user-mode-only targets */ 3151 3152 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3153 bool isread) 3154 { 3155 if (ri->opc2 & 4) { 3156 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3157 * Secure EL1 (which can only happen if EL3 is AArch64). 3158 * They are simply UNDEF if executed from NS EL1. 3159 * They function normally from EL2 or EL3. 3160 */ 3161 if (arm_current_el(env) == 1) { 3162 if (arm_is_secure_below_el3(env)) { 3163 if (env->cp15.scr_el3 & SCR_EEL2) { 3164 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3165 } 3166 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3167 } 3168 return CP_ACCESS_TRAP_UNCATEGORIZED; 3169 } 3170 } 3171 return CP_ACCESS_OK; 3172 } 3173 3174 #ifdef CONFIG_TCG 3175 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3176 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3177 { 3178 hwaddr phys_addr; 3179 target_ulong page_size; 3180 int prot; 3181 bool ret; 3182 uint64_t par64; 3183 bool format64 = false; 3184 MemTxAttrs attrs = {}; 3185 ARMMMUFaultInfo fi = {}; 3186 ARMCacheAttrs cacheattrs = {}; 3187 3188 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3189 &prot, &page_size, &fi, &cacheattrs); 3190 3191 if (ret) { 3192 /* 3193 * Some kinds of translation fault must cause exceptions rather 3194 * than being reported in the PAR. 3195 */ 3196 int current_el = arm_current_el(env); 3197 int target_el; 3198 uint32_t syn, fsr, fsc; 3199 bool take_exc = false; 3200 3201 if (fi.s1ptw && current_el == 1 3202 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3203 /* 3204 * Synchronous stage 2 fault on an access made as part of the 3205 * translation table walk for AT S1E0* or AT S1E1* insn 3206 * executed from NS EL1. If this is a synchronous external abort 3207 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3208 * to EL3. Otherwise the fault is taken as an exception to EL2, 3209 * and HPFAR_EL2 holds the faulting IPA. 3210 */ 3211 if (fi.type == ARMFault_SyncExternalOnWalk && 3212 (env->cp15.scr_el3 & SCR_EA)) { 3213 target_el = 3; 3214 } else { 3215 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3216 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3217 env->cp15.hpfar_el2 |= HPFAR_NS; 3218 } 3219 target_el = 2; 3220 } 3221 take_exc = true; 3222 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3223 /* 3224 * Synchronous external aborts during a translation table walk 3225 * are taken as Data Abort exceptions. 3226 */ 3227 if (fi.stage2) { 3228 if (current_el == 3) { 3229 target_el = 3; 3230 } else { 3231 target_el = 2; 3232 } 3233 } else { 3234 target_el = exception_target_el(env); 3235 } 3236 take_exc = true; 3237 } 3238 3239 if (take_exc) { 3240 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3241 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3242 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3243 fsr = arm_fi_to_lfsc(&fi); 3244 fsc = extract32(fsr, 0, 6); 3245 } else { 3246 fsr = arm_fi_to_sfsc(&fi); 3247 fsc = 0x3f; 3248 } 3249 /* 3250 * Report exception with ESR indicating a fault due to a 3251 * translation table walk for a cache maintenance instruction. 3252 */ 3253 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3254 fi.ea, 1, fi.s1ptw, 1, fsc); 3255 env->exception.vaddress = value; 3256 env->exception.fsr = fsr; 3257 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3258 } 3259 } 3260 3261 if (is_a64(env)) { 3262 format64 = true; 3263 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3264 /* 3265 * ATS1Cxx: 3266 * * TTBCR.EAE determines whether the result is returned using the 3267 * 32-bit or the 64-bit PAR format 3268 * * Instructions executed in Hyp mode always use the 64bit format 3269 * 3270 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3271 * * The Non-secure TTBCR.EAE bit is set to 1 3272 * * The implementation includes EL2, and the value of HCR.VM is 1 3273 * 3274 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3275 * 3276 * ATS1Hx always uses the 64bit format. 3277 */ 3278 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3279 3280 if (arm_feature(env, ARM_FEATURE_EL2)) { 3281 if (mmu_idx == ARMMMUIdx_E10_0 || 3282 mmu_idx == ARMMMUIdx_E10_1 || 3283 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3284 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3285 } else { 3286 format64 |= arm_current_el(env) == 2; 3287 } 3288 } 3289 } 3290 3291 if (format64) { 3292 /* Create a 64-bit PAR */ 3293 par64 = (1 << 11); /* LPAE bit always set */ 3294 if (!ret) { 3295 par64 |= phys_addr & ~0xfffULL; 3296 if (!attrs.secure) { 3297 par64 |= (1 << 9); /* NS */ 3298 } 3299 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3300 par64 |= cacheattrs.shareability << 7; /* SH */ 3301 } else { 3302 uint32_t fsr = arm_fi_to_lfsc(&fi); 3303 3304 par64 |= 1; /* F */ 3305 par64 |= (fsr & 0x3f) << 1; /* FS */ 3306 if (fi.stage2) { 3307 par64 |= (1 << 9); /* S */ 3308 } 3309 if (fi.s1ptw) { 3310 par64 |= (1 << 8); /* PTW */ 3311 } 3312 } 3313 } else { 3314 /* fsr is a DFSR/IFSR value for the short descriptor 3315 * translation table format (with WnR always clear). 3316 * Convert it to a 32-bit PAR. 3317 */ 3318 if (!ret) { 3319 /* We do not set any attribute bits in the PAR */ 3320 if (page_size == (1 << 24) 3321 && arm_feature(env, ARM_FEATURE_V7)) { 3322 par64 = (phys_addr & 0xff000000) | (1 << 1); 3323 } else { 3324 par64 = phys_addr & 0xfffff000; 3325 } 3326 if (!attrs.secure) { 3327 par64 |= (1 << 9); /* NS */ 3328 } 3329 } else { 3330 uint32_t fsr = arm_fi_to_sfsc(&fi); 3331 3332 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3333 ((fsr & 0xf) << 1) | 1; 3334 } 3335 } 3336 return par64; 3337 } 3338 #endif /* CONFIG_TCG */ 3339 3340 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3341 { 3342 #ifdef CONFIG_TCG 3343 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3344 uint64_t par64; 3345 ARMMMUIdx mmu_idx; 3346 int el = arm_current_el(env); 3347 bool secure = arm_is_secure_below_el3(env); 3348 3349 switch (ri->opc2 & 6) { 3350 case 0: 3351 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3352 switch (el) { 3353 case 3: 3354 mmu_idx = ARMMMUIdx_SE3; 3355 break; 3356 case 2: 3357 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3358 /* fall through */ 3359 case 1: 3360 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3361 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3362 : ARMMMUIdx_Stage1_E1_PAN); 3363 } else { 3364 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3365 } 3366 break; 3367 default: 3368 g_assert_not_reached(); 3369 } 3370 break; 3371 case 2: 3372 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3373 switch (el) { 3374 case 3: 3375 mmu_idx = ARMMMUIdx_SE10_0; 3376 break; 3377 case 2: 3378 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3379 mmu_idx = ARMMMUIdx_Stage1_E0; 3380 break; 3381 case 1: 3382 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3383 break; 3384 default: 3385 g_assert_not_reached(); 3386 } 3387 break; 3388 case 4: 3389 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3390 mmu_idx = ARMMMUIdx_E10_1; 3391 break; 3392 case 6: 3393 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3394 mmu_idx = ARMMMUIdx_E10_0; 3395 break; 3396 default: 3397 g_assert_not_reached(); 3398 } 3399 3400 par64 = do_ats_write(env, value, access_type, mmu_idx); 3401 3402 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3403 #else 3404 /* Handled by hardware accelerator. */ 3405 g_assert_not_reached(); 3406 #endif /* CONFIG_TCG */ 3407 } 3408 3409 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3410 uint64_t value) 3411 { 3412 #ifdef CONFIG_TCG 3413 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3414 uint64_t par64; 3415 3416 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3417 3418 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3419 #else 3420 /* Handled by hardware accelerator. */ 3421 g_assert_not_reached(); 3422 #endif /* CONFIG_TCG */ 3423 } 3424 3425 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3426 bool isread) 3427 { 3428 if (arm_current_el(env) == 3 && 3429 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3430 return CP_ACCESS_TRAP; 3431 } 3432 return CP_ACCESS_OK; 3433 } 3434 3435 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3436 uint64_t value) 3437 { 3438 #ifdef CONFIG_TCG 3439 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3440 ARMMMUIdx mmu_idx; 3441 int secure = arm_is_secure_below_el3(env); 3442 3443 switch (ri->opc2 & 6) { 3444 case 0: 3445 switch (ri->opc1) { 3446 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3447 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3448 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3449 : ARMMMUIdx_Stage1_E1_PAN); 3450 } else { 3451 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3452 } 3453 break; 3454 case 4: /* AT S1E2R, AT S1E2W */ 3455 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3456 break; 3457 case 6: /* AT S1E3R, AT S1E3W */ 3458 mmu_idx = ARMMMUIdx_SE3; 3459 break; 3460 default: 3461 g_assert_not_reached(); 3462 } 3463 break; 3464 case 2: /* AT S1E0R, AT S1E0W */ 3465 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3466 break; 3467 case 4: /* AT S12E1R, AT S12E1W */ 3468 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3469 break; 3470 case 6: /* AT S12E0R, AT S12E0W */ 3471 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3472 break; 3473 default: 3474 g_assert_not_reached(); 3475 } 3476 3477 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3478 #else 3479 /* Handled by hardware accelerator. */ 3480 g_assert_not_reached(); 3481 #endif /* CONFIG_TCG */ 3482 } 3483 #endif 3484 3485 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3486 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3487 .access = PL1_RW, .resetvalue = 0, 3488 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3489 offsetoflow32(CPUARMState, cp15.par_ns) }, 3490 .writefn = par_write }, 3491 #ifndef CONFIG_USER_ONLY 3492 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3493 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3494 .access = PL1_W, .accessfn = ats_access, 3495 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3496 #endif 3497 REGINFO_SENTINEL 3498 }; 3499 3500 /* Return basic MPU access permission bits. */ 3501 static uint32_t simple_mpu_ap_bits(uint32_t val) 3502 { 3503 uint32_t ret; 3504 uint32_t mask; 3505 int i; 3506 ret = 0; 3507 mask = 3; 3508 for (i = 0; i < 16; i += 2) { 3509 ret |= (val >> i) & mask; 3510 mask <<= 2; 3511 } 3512 return ret; 3513 } 3514 3515 /* Pad basic MPU access permission bits to extended format. */ 3516 static uint32_t extended_mpu_ap_bits(uint32_t val) 3517 { 3518 uint32_t ret; 3519 uint32_t mask; 3520 int i; 3521 ret = 0; 3522 mask = 3; 3523 for (i = 0; i < 16; i += 2) { 3524 ret |= (val & mask) << i; 3525 mask <<= 2; 3526 } 3527 return ret; 3528 } 3529 3530 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3531 uint64_t value) 3532 { 3533 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3534 } 3535 3536 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3537 { 3538 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3539 } 3540 3541 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3542 uint64_t value) 3543 { 3544 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3545 } 3546 3547 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3548 { 3549 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3550 } 3551 3552 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3553 { 3554 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3555 3556 if (!u32p) { 3557 return 0; 3558 } 3559 3560 u32p += env->pmsav7.rnr[M_REG_NS]; 3561 return *u32p; 3562 } 3563 3564 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3565 uint64_t value) 3566 { 3567 ARMCPU *cpu = env_archcpu(env); 3568 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3569 3570 if (!u32p) { 3571 return; 3572 } 3573 3574 u32p += env->pmsav7.rnr[M_REG_NS]; 3575 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3576 *u32p = value; 3577 } 3578 3579 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3580 uint64_t value) 3581 { 3582 ARMCPU *cpu = env_archcpu(env); 3583 uint32_t nrgs = cpu->pmsav7_dregion; 3584 3585 if (value >= nrgs) { 3586 qemu_log_mask(LOG_GUEST_ERROR, 3587 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3588 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3589 return; 3590 } 3591 3592 raw_write(env, ri, value); 3593 } 3594 3595 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3596 /* Reset for all these registers is handled in arm_cpu_reset(), 3597 * because the PMSAv7 is also used by M-profile CPUs, which do 3598 * not register cpregs but still need the state to be reset. 3599 */ 3600 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3601 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3602 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3603 .readfn = pmsav7_read, .writefn = pmsav7_write, 3604 .resetfn = arm_cp_reset_ignore }, 3605 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3606 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3607 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3608 .readfn = pmsav7_read, .writefn = pmsav7_write, 3609 .resetfn = arm_cp_reset_ignore }, 3610 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3611 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3612 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3613 .readfn = pmsav7_read, .writefn = pmsav7_write, 3614 .resetfn = arm_cp_reset_ignore }, 3615 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3616 .access = PL1_RW, 3617 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3618 .writefn = pmsav7_rgnr_write, 3619 .resetfn = arm_cp_reset_ignore }, 3620 REGINFO_SENTINEL 3621 }; 3622 3623 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3624 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3625 .access = PL1_RW, .type = ARM_CP_ALIAS, 3626 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3627 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3628 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3629 .access = PL1_RW, .type = ARM_CP_ALIAS, 3630 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3631 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3632 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3633 .access = PL1_RW, 3634 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3635 .resetvalue = 0, }, 3636 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3637 .access = PL1_RW, 3638 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3639 .resetvalue = 0, }, 3640 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3641 .access = PL1_RW, 3642 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3643 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3644 .access = PL1_RW, 3645 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3646 /* Protection region base and size registers */ 3647 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3648 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3649 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3650 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3651 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3652 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3653 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3654 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3655 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3656 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3657 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3658 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3659 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3660 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3661 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3662 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3663 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3664 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3665 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3666 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3667 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3668 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3669 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3670 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3671 REGINFO_SENTINEL 3672 }; 3673 3674 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3675 uint64_t value) 3676 { 3677 TCR *tcr = raw_ptr(env, ri); 3678 int maskshift = extract32(value, 0, 3); 3679 3680 if (!arm_feature(env, ARM_FEATURE_V8)) { 3681 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3682 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3683 * using Long-desciptor translation table format */ 3684 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3685 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3686 /* In an implementation that includes the Security Extensions 3687 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3688 * Short-descriptor translation table format. 3689 */ 3690 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3691 } else { 3692 value &= TTBCR_N; 3693 } 3694 } 3695 3696 /* Update the masks corresponding to the TCR bank being written 3697 * Note that we always calculate mask and base_mask, but 3698 * they are only used for short-descriptor tables (ie if EAE is 0); 3699 * for long-descriptor tables the TCR fields are used differently 3700 * and the mask and base_mask values are meaningless. 3701 */ 3702 tcr->raw_tcr = value; 3703 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3704 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3705 } 3706 3707 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3708 uint64_t value) 3709 { 3710 ARMCPU *cpu = env_archcpu(env); 3711 TCR *tcr = raw_ptr(env, ri); 3712 3713 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3714 /* With LPAE the TTBCR could result in a change of ASID 3715 * via the TTBCR.A1 bit, so do a TLB flush. 3716 */ 3717 tlb_flush(CPU(cpu)); 3718 } 3719 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3720 value = deposit64(tcr->raw_tcr, 0, 32, value); 3721 vmsa_ttbcr_raw_write(env, ri, value); 3722 } 3723 3724 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3725 { 3726 TCR *tcr = raw_ptr(env, ri); 3727 3728 /* Reset both the TCR as well as the masks corresponding to the bank of 3729 * the TCR being reset. 3730 */ 3731 tcr->raw_tcr = 0; 3732 tcr->mask = 0; 3733 tcr->base_mask = 0xffffc000u; 3734 } 3735 3736 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3737 uint64_t value) 3738 { 3739 ARMCPU *cpu = env_archcpu(env); 3740 TCR *tcr = raw_ptr(env, ri); 3741 3742 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3743 tlb_flush(CPU(cpu)); 3744 tcr->raw_tcr = value; 3745 } 3746 3747 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3748 uint64_t value) 3749 { 3750 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3751 if (cpreg_field_is_64bit(ri) && 3752 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3753 ARMCPU *cpu = env_archcpu(env); 3754 tlb_flush(CPU(cpu)); 3755 } 3756 raw_write(env, ri, value); 3757 } 3758 3759 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3760 uint64_t value) 3761 { 3762 /* 3763 * If we are running with E2&0 regime, then an ASID is active. 3764 * Flush if that might be changing. Note we're not checking 3765 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3766 * holds the active ASID, only checking the field that might. 3767 */ 3768 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3769 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3770 uint16_t mask = ARMMMUIdxBit_E20_2 | 3771 ARMMMUIdxBit_E20_2_PAN | 3772 ARMMMUIdxBit_E20_0; 3773 3774 if (arm_is_secure_below_el3(env)) { 3775 mask >>= ARM_MMU_IDX_A_NS; 3776 } 3777 3778 tlb_flush_by_mmuidx(env_cpu(env), mask); 3779 } 3780 raw_write(env, ri, value); 3781 } 3782 3783 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3784 uint64_t value) 3785 { 3786 ARMCPU *cpu = env_archcpu(env); 3787 CPUState *cs = CPU(cpu); 3788 3789 /* 3790 * A change in VMID to the stage2 page table (Stage2) invalidates 3791 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3792 */ 3793 if (raw_read(env, ri) != value) { 3794 uint16_t mask = ARMMMUIdxBit_E10_1 | 3795 ARMMMUIdxBit_E10_1_PAN | 3796 ARMMMUIdxBit_E10_0; 3797 3798 if (arm_is_secure_below_el3(env)) { 3799 mask >>= ARM_MMU_IDX_A_NS; 3800 } 3801 3802 tlb_flush_by_mmuidx(cs, mask); 3803 raw_write(env, ri, value); 3804 } 3805 } 3806 3807 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3808 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3809 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3810 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3811 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3812 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3813 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3814 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3815 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3816 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3817 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3818 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3819 offsetof(CPUARMState, cp15.dfar_ns) } }, 3820 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3821 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3822 .access = PL1_RW, .accessfn = access_tvm_trvm, 3823 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3824 .resetvalue = 0, }, 3825 REGINFO_SENTINEL 3826 }; 3827 3828 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3829 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3830 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3831 .access = PL1_RW, .accessfn = access_tvm_trvm, 3832 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3833 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3834 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3835 .access = PL1_RW, .accessfn = access_tvm_trvm, 3836 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3837 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3838 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3839 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3840 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3841 .access = PL1_RW, .accessfn = access_tvm_trvm, 3842 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3843 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3844 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3845 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3846 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3847 .access = PL1_RW, .accessfn = access_tvm_trvm, 3848 .writefn = vmsa_tcr_el12_write, 3849 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3850 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3851 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3852 .access = PL1_RW, .accessfn = access_tvm_trvm, 3853 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3854 .raw_writefn = vmsa_ttbcr_raw_write, 3855 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3856 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3857 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3858 REGINFO_SENTINEL 3859 }; 3860 3861 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3862 * qemu tlbs nor adjusting cached masks. 3863 */ 3864 static const ARMCPRegInfo ttbcr2_reginfo = { 3865 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3866 .access = PL1_RW, .accessfn = access_tvm_trvm, 3867 .type = ARM_CP_ALIAS, 3868 .bank_fieldoffsets = { 3869 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3870 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3871 }, 3872 }; 3873 3874 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3875 uint64_t value) 3876 { 3877 env->cp15.c15_ticonfig = value & 0xe7; 3878 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3879 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3880 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3881 } 3882 3883 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3884 uint64_t value) 3885 { 3886 env->cp15.c15_threadid = value & 0xffff; 3887 } 3888 3889 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3890 uint64_t value) 3891 { 3892 /* Wait-for-interrupt (deprecated) */ 3893 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3894 } 3895 3896 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3897 uint64_t value) 3898 { 3899 /* On OMAP there are registers indicating the max/min index of dcache lines 3900 * containing a dirty line; cache flush operations have to reset these. 3901 */ 3902 env->cp15.c15_i_max = 0x000; 3903 env->cp15.c15_i_min = 0xff0; 3904 } 3905 3906 static const ARMCPRegInfo omap_cp_reginfo[] = { 3907 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3908 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3909 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3910 .resetvalue = 0, }, 3911 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3912 .access = PL1_RW, .type = ARM_CP_NOP }, 3913 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3914 .access = PL1_RW, 3915 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3916 .writefn = omap_ticonfig_write }, 3917 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3918 .access = PL1_RW, 3919 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3920 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3921 .access = PL1_RW, .resetvalue = 0xff0, 3922 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3923 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3924 .access = PL1_RW, 3925 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3926 .writefn = omap_threadid_write }, 3927 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3928 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3929 .type = ARM_CP_NO_RAW, 3930 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3931 /* TODO: Peripheral port remap register: 3932 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3933 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3934 * when MMU is off. 3935 */ 3936 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3937 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3938 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3939 .writefn = omap_cachemaint_write }, 3940 { .name = "C9", .cp = 15, .crn = 9, 3941 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3942 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3943 REGINFO_SENTINEL 3944 }; 3945 3946 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3947 uint64_t value) 3948 { 3949 env->cp15.c15_cpar = value & 0x3fff; 3950 } 3951 3952 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3953 { .name = "XSCALE_CPAR", 3954 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3955 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3956 .writefn = xscale_cpar_write, }, 3957 { .name = "XSCALE_AUXCR", 3958 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3959 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3960 .resetvalue = 0, }, 3961 /* XScale specific cache-lockdown: since we have no cache we NOP these 3962 * and hope the guest does not really rely on cache behaviour. 3963 */ 3964 { .name = "XSCALE_LOCK_ICACHE_LINE", 3965 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3966 .access = PL1_W, .type = ARM_CP_NOP }, 3967 { .name = "XSCALE_UNLOCK_ICACHE", 3968 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3969 .access = PL1_W, .type = ARM_CP_NOP }, 3970 { .name = "XSCALE_DCACHE_LOCK", 3971 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3972 .access = PL1_RW, .type = ARM_CP_NOP }, 3973 { .name = "XSCALE_UNLOCK_DCACHE", 3974 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3975 .access = PL1_W, .type = ARM_CP_NOP }, 3976 REGINFO_SENTINEL 3977 }; 3978 3979 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3980 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3981 * implementation of this implementation-defined space. 3982 * Ideally this should eventually disappear in favour of actually 3983 * implementing the correct behaviour for all cores. 3984 */ 3985 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3986 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3987 .access = PL1_RW, 3988 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3989 .resetvalue = 0 }, 3990 REGINFO_SENTINEL 3991 }; 3992 3993 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3994 /* Cache status: RAZ because we have no cache so it's always clean */ 3995 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3996 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3997 .resetvalue = 0 }, 3998 REGINFO_SENTINEL 3999 }; 4000 4001 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4002 /* We never have a a block transfer operation in progress */ 4003 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4004 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4005 .resetvalue = 0 }, 4006 /* The cache ops themselves: these all NOP for QEMU */ 4007 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4008 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4009 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4010 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4011 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4012 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4013 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4014 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4015 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4016 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4017 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4018 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4019 REGINFO_SENTINEL 4020 }; 4021 4022 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4023 /* The cache test-and-clean instructions always return (1 << 30) 4024 * to indicate that there are no dirty cache lines. 4025 */ 4026 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4027 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4028 .resetvalue = (1 << 30) }, 4029 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4030 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4031 .resetvalue = (1 << 30) }, 4032 REGINFO_SENTINEL 4033 }; 4034 4035 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4036 /* Ignore ReadBuffer accesses */ 4037 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4038 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4039 .access = PL1_RW, .resetvalue = 0, 4040 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4041 REGINFO_SENTINEL 4042 }; 4043 4044 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4045 { 4046 unsigned int cur_el = arm_current_el(env); 4047 4048 if (arm_is_el2_enabled(env) && cur_el == 1) { 4049 return env->cp15.vpidr_el2; 4050 } 4051 return raw_read(env, ri); 4052 } 4053 4054 static uint64_t mpidr_read_val(CPUARMState *env) 4055 { 4056 ARMCPU *cpu = env_archcpu(env); 4057 uint64_t mpidr = cpu->mp_affinity; 4058 4059 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4060 mpidr |= (1U << 31); 4061 /* Cores which are uniprocessor (non-coherent) 4062 * but still implement the MP extensions set 4063 * bit 30. (For instance, Cortex-R5). 4064 */ 4065 if (cpu->mp_is_up) { 4066 mpidr |= (1u << 30); 4067 } 4068 } 4069 return mpidr; 4070 } 4071 4072 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4073 { 4074 unsigned int cur_el = arm_current_el(env); 4075 4076 if (arm_is_el2_enabled(env) && cur_el == 1) { 4077 return env->cp15.vmpidr_el2; 4078 } 4079 return mpidr_read_val(env); 4080 } 4081 4082 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4083 /* NOP AMAIR0/1 */ 4084 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4085 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4086 .access = PL1_RW, .accessfn = access_tvm_trvm, 4087 .type = ARM_CP_CONST, .resetvalue = 0 }, 4088 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4089 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4090 .access = PL1_RW, .accessfn = access_tvm_trvm, 4091 .type = ARM_CP_CONST, .resetvalue = 0 }, 4092 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4093 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4094 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4095 offsetof(CPUARMState, cp15.par_ns)} }, 4096 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4097 .access = PL1_RW, .accessfn = access_tvm_trvm, 4098 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4099 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4100 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4101 .writefn = vmsa_ttbr_write, }, 4102 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4103 .access = PL1_RW, .accessfn = access_tvm_trvm, 4104 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4105 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4106 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4107 .writefn = vmsa_ttbr_write, }, 4108 REGINFO_SENTINEL 4109 }; 4110 4111 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4112 { 4113 return vfp_get_fpcr(env); 4114 } 4115 4116 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4117 uint64_t value) 4118 { 4119 vfp_set_fpcr(env, value); 4120 } 4121 4122 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4123 { 4124 return vfp_get_fpsr(env); 4125 } 4126 4127 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4128 uint64_t value) 4129 { 4130 vfp_set_fpsr(env, value); 4131 } 4132 4133 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4134 bool isread) 4135 { 4136 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4137 return CP_ACCESS_TRAP; 4138 } 4139 return CP_ACCESS_OK; 4140 } 4141 4142 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4143 uint64_t value) 4144 { 4145 env->daif = value & PSTATE_DAIF; 4146 } 4147 4148 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4149 { 4150 return env->pstate & PSTATE_PAN; 4151 } 4152 4153 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4154 uint64_t value) 4155 { 4156 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4157 } 4158 4159 static const ARMCPRegInfo pan_reginfo = { 4160 .name = "PAN", .state = ARM_CP_STATE_AA64, 4161 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4162 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4163 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4164 }; 4165 4166 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4167 { 4168 return env->pstate & PSTATE_UAO; 4169 } 4170 4171 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4172 uint64_t value) 4173 { 4174 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4175 } 4176 4177 static const ARMCPRegInfo uao_reginfo = { 4178 .name = "UAO", .state = ARM_CP_STATE_AA64, 4179 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4180 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4181 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4182 }; 4183 4184 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4185 { 4186 return env->pstate & PSTATE_DIT; 4187 } 4188 4189 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4190 uint64_t value) 4191 { 4192 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4193 } 4194 4195 static const ARMCPRegInfo dit_reginfo = { 4196 .name = "DIT", .state = ARM_CP_STATE_AA64, 4197 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4198 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4199 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4200 }; 4201 4202 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4203 { 4204 return env->pstate & PSTATE_SSBS; 4205 } 4206 4207 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4208 uint64_t value) 4209 { 4210 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4211 } 4212 4213 static const ARMCPRegInfo ssbs_reginfo = { 4214 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4215 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4216 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4217 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4218 }; 4219 4220 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4221 const ARMCPRegInfo *ri, 4222 bool isread) 4223 { 4224 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4225 switch (arm_current_el(env)) { 4226 case 0: 4227 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4228 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4229 return CP_ACCESS_TRAP; 4230 } 4231 /* fall through */ 4232 case 1: 4233 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4234 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4235 return CP_ACCESS_TRAP_EL2; 4236 } 4237 break; 4238 } 4239 return CP_ACCESS_OK; 4240 } 4241 4242 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4243 const ARMCPRegInfo *ri, 4244 bool isread) 4245 { 4246 /* Cache invalidate/clean to Point of Unification... */ 4247 switch (arm_current_el(env)) { 4248 case 0: 4249 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4250 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4251 return CP_ACCESS_TRAP; 4252 } 4253 /* fall through */ 4254 case 1: 4255 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4256 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4257 return CP_ACCESS_TRAP_EL2; 4258 } 4259 break; 4260 } 4261 return CP_ACCESS_OK; 4262 } 4263 4264 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4265 * Page D4-1736 (DDI0487A.b) 4266 */ 4267 4268 static int vae1_tlbmask(CPUARMState *env) 4269 { 4270 uint64_t hcr = arm_hcr_el2_eff(env); 4271 uint16_t mask; 4272 4273 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4274 mask = ARMMMUIdxBit_E20_2 | 4275 ARMMMUIdxBit_E20_2_PAN | 4276 ARMMMUIdxBit_E20_0; 4277 } else { 4278 mask = ARMMMUIdxBit_E10_1 | 4279 ARMMMUIdxBit_E10_1_PAN | 4280 ARMMMUIdxBit_E10_0; 4281 } 4282 4283 if (arm_is_secure_below_el3(env)) { 4284 mask >>= ARM_MMU_IDX_A_NS; 4285 } 4286 4287 return mask; 4288 } 4289 4290 /* Return 56 if TBI is enabled, 64 otherwise. */ 4291 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4292 uint64_t addr) 4293 { 4294 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4295 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4296 int select = extract64(addr, 55, 1); 4297 4298 return (tbi >> select) & 1 ? 56 : 64; 4299 } 4300 4301 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4302 { 4303 uint64_t hcr = arm_hcr_el2_eff(env); 4304 ARMMMUIdx mmu_idx; 4305 4306 /* Only the regime of the mmu_idx below is significant. */ 4307 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4308 mmu_idx = ARMMMUIdx_E20_0; 4309 } else { 4310 mmu_idx = ARMMMUIdx_E10_0; 4311 } 4312 4313 if (arm_is_secure_below_el3(env)) { 4314 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4315 } 4316 4317 return tlbbits_for_regime(env, mmu_idx, addr); 4318 } 4319 4320 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4321 uint64_t value) 4322 { 4323 CPUState *cs = env_cpu(env); 4324 int mask = vae1_tlbmask(env); 4325 4326 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4327 } 4328 4329 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4330 uint64_t value) 4331 { 4332 CPUState *cs = env_cpu(env); 4333 int mask = vae1_tlbmask(env); 4334 4335 if (tlb_force_broadcast(env)) { 4336 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4337 } else { 4338 tlb_flush_by_mmuidx(cs, mask); 4339 } 4340 } 4341 4342 static int alle1_tlbmask(CPUARMState *env) 4343 { 4344 /* 4345 * Note that the 'ALL' scope must invalidate both stage 1 and 4346 * stage 2 translations, whereas most other scopes only invalidate 4347 * stage 1 translations. 4348 */ 4349 if (arm_is_secure_below_el3(env)) { 4350 return ARMMMUIdxBit_SE10_1 | 4351 ARMMMUIdxBit_SE10_1_PAN | 4352 ARMMMUIdxBit_SE10_0; 4353 } else { 4354 return ARMMMUIdxBit_E10_1 | 4355 ARMMMUIdxBit_E10_1_PAN | 4356 ARMMMUIdxBit_E10_0; 4357 } 4358 } 4359 4360 static int e2_tlbmask(CPUARMState *env) 4361 { 4362 if (arm_is_secure_below_el3(env)) { 4363 return ARMMMUIdxBit_SE20_0 | 4364 ARMMMUIdxBit_SE20_2 | 4365 ARMMMUIdxBit_SE20_2_PAN | 4366 ARMMMUIdxBit_SE2; 4367 } else { 4368 return ARMMMUIdxBit_E20_0 | 4369 ARMMMUIdxBit_E20_2 | 4370 ARMMMUIdxBit_E20_2_PAN | 4371 ARMMMUIdxBit_E2; 4372 } 4373 } 4374 4375 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4376 uint64_t value) 4377 { 4378 CPUState *cs = env_cpu(env); 4379 int mask = alle1_tlbmask(env); 4380 4381 tlb_flush_by_mmuidx(cs, mask); 4382 } 4383 4384 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4385 uint64_t value) 4386 { 4387 CPUState *cs = env_cpu(env); 4388 int mask = e2_tlbmask(env); 4389 4390 tlb_flush_by_mmuidx(cs, mask); 4391 } 4392 4393 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4394 uint64_t value) 4395 { 4396 ARMCPU *cpu = env_archcpu(env); 4397 CPUState *cs = CPU(cpu); 4398 4399 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4400 } 4401 4402 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4403 uint64_t value) 4404 { 4405 CPUState *cs = env_cpu(env); 4406 int mask = alle1_tlbmask(env); 4407 4408 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4409 } 4410 4411 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4412 uint64_t value) 4413 { 4414 CPUState *cs = env_cpu(env); 4415 int mask = e2_tlbmask(env); 4416 4417 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4418 } 4419 4420 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4421 uint64_t value) 4422 { 4423 CPUState *cs = env_cpu(env); 4424 4425 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4426 } 4427 4428 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4429 uint64_t value) 4430 { 4431 /* Invalidate by VA, EL2 4432 * Currently handles both VAE2 and VALE2, since we don't support 4433 * flush-last-level-only. 4434 */ 4435 CPUState *cs = env_cpu(env); 4436 int mask = e2_tlbmask(env); 4437 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4438 4439 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4440 } 4441 4442 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4443 uint64_t value) 4444 { 4445 /* Invalidate by VA, EL3 4446 * Currently handles both VAE3 and VALE3, since we don't support 4447 * flush-last-level-only. 4448 */ 4449 ARMCPU *cpu = env_archcpu(env); 4450 CPUState *cs = CPU(cpu); 4451 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4452 4453 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4454 } 4455 4456 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4457 uint64_t value) 4458 { 4459 CPUState *cs = env_cpu(env); 4460 int mask = vae1_tlbmask(env); 4461 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4462 int bits = vae1_tlbbits(env, pageaddr); 4463 4464 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4465 } 4466 4467 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4468 uint64_t value) 4469 { 4470 /* Invalidate by VA, EL1&0 (AArch64 version). 4471 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4472 * since we don't support flush-for-specific-ASID-only or 4473 * flush-last-level-only. 4474 */ 4475 CPUState *cs = env_cpu(env); 4476 int mask = vae1_tlbmask(env); 4477 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4478 int bits = vae1_tlbbits(env, pageaddr); 4479 4480 if (tlb_force_broadcast(env)) { 4481 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4482 } else { 4483 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4484 } 4485 } 4486 4487 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4488 uint64_t value) 4489 { 4490 CPUState *cs = env_cpu(env); 4491 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4492 bool secure = arm_is_secure_below_el3(env); 4493 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4494 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4495 pageaddr); 4496 4497 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4498 } 4499 4500 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4501 uint64_t value) 4502 { 4503 CPUState *cs = env_cpu(env); 4504 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4505 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4506 4507 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4508 ARMMMUIdxBit_SE3, bits); 4509 } 4510 4511 #ifdef TARGET_AARCH64 4512 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env, 4513 uint64_t value) 4514 { 4515 unsigned int page_shift; 4516 unsigned int page_size_granule; 4517 uint64_t num; 4518 uint64_t scale; 4519 uint64_t exponent; 4520 uint64_t length; 4521 4522 num = extract64(value, 39, 5); 4523 scale = extract64(value, 44, 2); 4524 page_size_granule = extract64(value, 46, 2); 4525 4526 if (page_size_granule == 0) { 4527 qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n", 4528 page_size_granule); 4529 return 0; 4530 } 4531 4532 page_shift = (page_size_granule - 1) * 2 + 12; 4533 4534 exponent = (5 * scale) + 1; 4535 length = (num + 1) << (exponent + page_shift); 4536 4537 return length; 4538 } 4539 4540 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value, 4541 bool two_ranges) 4542 { 4543 /* TODO: ARMv8.7 FEAT_LPA2 */ 4544 uint64_t pageaddr; 4545 4546 if (two_ranges) { 4547 pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS; 4548 } else { 4549 pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS; 4550 } 4551 4552 return pageaddr; 4553 } 4554 4555 static void do_rvae_write(CPUARMState *env, uint64_t value, 4556 int idxmap, bool synced) 4557 { 4558 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4559 bool two_ranges = regime_has_2_ranges(one_idx); 4560 uint64_t baseaddr, length; 4561 int bits; 4562 4563 baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges); 4564 length = tlbi_aa64_range_get_length(env, value); 4565 bits = tlbbits_for_regime(env, one_idx, baseaddr); 4566 4567 if (synced) { 4568 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4569 baseaddr, 4570 length, 4571 idxmap, 4572 bits); 4573 } else { 4574 tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr, 4575 length, idxmap, bits); 4576 } 4577 } 4578 4579 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4580 const ARMCPRegInfo *ri, 4581 uint64_t value) 4582 { 4583 /* 4584 * Invalidate by VA range, EL1&0. 4585 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4586 * since we don't support flush-for-specific-ASID-only or 4587 * flush-last-level-only. 4588 */ 4589 4590 do_rvae_write(env, value, vae1_tlbmask(env), 4591 tlb_force_broadcast(env)); 4592 } 4593 4594 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4595 const ARMCPRegInfo *ri, 4596 uint64_t value) 4597 { 4598 /* 4599 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4600 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4601 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4602 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4603 * shareable specific flushes. 4604 */ 4605 4606 do_rvae_write(env, value, vae1_tlbmask(env), true); 4607 } 4608 4609 static int vae2_tlbmask(CPUARMState *env) 4610 { 4611 return (arm_is_secure_below_el3(env) 4612 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4613 } 4614 4615 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4616 const ARMCPRegInfo *ri, 4617 uint64_t value) 4618 { 4619 /* 4620 * Invalidate by VA range, EL2. 4621 * Currently handles all of RVAE2 and RVALE2, 4622 * since we don't support flush-for-specific-ASID-only or 4623 * flush-last-level-only. 4624 */ 4625 4626 do_rvae_write(env, value, vae2_tlbmask(env), 4627 tlb_force_broadcast(env)); 4628 4629 4630 } 4631 4632 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4633 const ARMCPRegInfo *ri, 4634 uint64_t value) 4635 { 4636 /* 4637 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4638 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4639 * since we don't support flush-for-specific-ASID-only, 4640 * flush-last-level-only or inner/outer shareable specific flushes. 4641 */ 4642 4643 do_rvae_write(env, value, vae2_tlbmask(env), true); 4644 4645 } 4646 4647 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4648 const ARMCPRegInfo *ri, 4649 uint64_t value) 4650 { 4651 /* 4652 * Invalidate by VA range, EL3. 4653 * Currently handles all of RVAE3 and RVALE3, 4654 * since we don't support flush-for-specific-ASID-only or 4655 * flush-last-level-only. 4656 */ 4657 4658 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4659 tlb_force_broadcast(env)); 4660 } 4661 4662 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4663 const ARMCPRegInfo *ri, 4664 uint64_t value) 4665 { 4666 /* 4667 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4668 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4669 * since we don't support flush-for-specific-ASID-only, 4670 * flush-last-level-only or inner/outer specific flushes. 4671 */ 4672 4673 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4674 } 4675 #endif 4676 4677 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4678 bool isread) 4679 { 4680 int cur_el = arm_current_el(env); 4681 4682 if (cur_el < 2) { 4683 uint64_t hcr = arm_hcr_el2_eff(env); 4684 4685 if (cur_el == 0) { 4686 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4687 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4688 return CP_ACCESS_TRAP_EL2; 4689 } 4690 } else { 4691 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4692 return CP_ACCESS_TRAP; 4693 } 4694 if (hcr & HCR_TDZ) { 4695 return CP_ACCESS_TRAP_EL2; 4696 } 4697 } 4698 } else if (hcr & HCR_TDZ) { 4699 return CP_ACCESS_TRAP_EL2; 4700 } 4701 } 4702 return CP_ACCESS_OK; 4703 } 4704 4705 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4706 { 4707 ARMCPU *cpu = env_archcpu(env); 4708 int dzp_bit = 1 << 4; 4709 4710 /* DZP indicates whether DC ZVA access is allowed */ 4711 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4712 dzp_bit = 0; 4713 } 4714 return cpu->dcz_blocksize | dzp_bit; 4715 } 4716 4717 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4718 bool isread) 4719 { 4720 if (!(env->pstate & PSTATE_SP)) { 4721 /* Access to SP_EL0 is undefined if it's being used as 4722 * the stack pointer. 4723 */ 4724 return CP_ACCESS_TRAP_UNCATEGORIZED; 4725 } 4726 return CP_ACCESS_OK; 4727 } 4728 4729 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4730 { 4731 return env->pstate & PSTATE_SP; 4732 } 4733 4734 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4735 { 4736 update_spsel(env, val); 4737 } 4738 4739 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4740 uint64_t value) 4741 { 4742 ARMCPU *cpu = env_archcpu(env); 4743 4744 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4745 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4746 value &= ~SCTLR_M; 4747 } 4748 4749 /* ??? Lots of these bits are not implemented. */ 4750 4751 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4752 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4753 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4754 } else { 4755 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4756 SCTLR_ATA0 | SCTLR_ATA); 4757 } 4758 } 4759 4760 if (raw_read(env, ri) == value) { 4761 /* Skip the TLB flush if nothing actually changed; Linux likes 4762 * to do a lot of pointless SCTLR writes. 4763 */ 4764 return; 4765 } 4766 4767 raw_write(env, ri, value); 4768 4769 /* This may enable/disable the MMU, so do a TLB flush. */ 4770 tlb_flush(CPU(cpu)); 4771 4772 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4773 /* 4774 * Normally we would always end the TB on an SCTLR write; see the 4775 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4776 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4777 * of hflags from the translator, so do it here. 4778 */ 4779 arm_rebuild_hflags(env); 4780 } 4781 } 4782 4783 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4784 bool isread) 4785 { 4786 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4787 return CP_ACCESS_TRAP_FP_EL2; 4788 } 4789 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4790 return CP_ACCESS_TRAP_FP_EL3; 4791 } 4792 return CP_ACCESS_OK; 4793 } 4794 4795 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4796 uint64_t value) 4797 { 4798 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4799 } 4800 4801 static const ARMCPRegInfo v8_cp_reginfo[] = { 4802 /* Minimal set of EL0-visible registers. This will need to be expanded 4803 * significantly for system emulation of AArch64 CPUs. 4804 */ 4805 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4806 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4807 .access = PL0_RW, .type = ARM_CP_NZCV }, 4808 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4809 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4810 .type = ARM_CP_NO_RAW, 4811 .access = PL0_RW, .accessfn = aa64_daif_access, 4812 .fieldoffset = offsetof(CPUARMState, daif), 4813 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4814 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4815 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4816 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4817 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4818 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4819 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4820 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4821 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4822 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4823 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4824 .access = PL0_R, .type = ARM_CP_NO_RAW, 4825 .readfn = aa64_dczid_read }, 4826 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4827 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4828 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4829 #ifndef CONFIG_USER_ONLY 4830 /* Avoid overhead of an access check that always passes in user-mode */ 4831 .accessfn = aa64_zva_access, 4832 #endif 4833 }, 4834 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4835 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4836 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4837 /* Cache ops: all NOPs since we don't emulate caches */ 4838 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4839 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4840 .access = PL1_W, .type = ARM_CP_NOP, 4841 .accessfn = aa64_cacheop_pou_access }, 4842 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4843 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4844 .access = PL1_W, .type = ARM_CP_NOP, 4845 .accessfn = aa64_cacheop_pou_access }, 4846 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4847 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4848 .access = PL0_W, .type = ARM_CP_NOP, 4849 .accessfn = aa64_cacheop_pou_access }, 4850 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4851 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4852 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4853 .type = ARM_CP_NOP }, 4854 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4855 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4856 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4857 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4858 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4859 .access = PL0_W, .type = ARM_CP_NOP, 4860 .accessfn = aa64_cacheop_poc_access }, 4861 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4862 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4863 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4864 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4865 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4866 .access = PL0_W, .type = ARM_CP_NOP, 4867 .accessfn = aa64_cacheop_pou_access }, 4868 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4869 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4870 .access = PL0_W, .type = ARM_CP_NOP, 4871 .accessfn = aa64_cacheop_poc_access }, 4872 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4873 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4874 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4875 /* TLBI operations */ 4876 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4877 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4878 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4879 .writefn = tlbi_aa64_vmalle1is_write }, 4880 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4881 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4882 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4883 .writefn = tlbi_aa64_vae1is_write }, 4884 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4885 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4886 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4887 .writefn = tlbi_aa64_vmalle1is_write }, 4888 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4889 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4890 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4891 .writefn = tlbi_aa64_vae1is_write }, 4892 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4893 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4894 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4895 .writefn = tlbi_aa64_vae1is_write }, 4896 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4897 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4898 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4899 .writefn = tlbi_aa64_vae1is_write }, 4900 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4901 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4902 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4903 .writefn = tlbi_aa64_vmalle1_write }, 4904 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4905 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4906 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4907 .writefn = tlbi_aa64_vae1_write }, 4908 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4909 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4910 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4911 .writefn = tlbi_aa64_vmalle1_write }, 4912 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4913 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4914 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4915 .writefn = tlbi_aa64_vae1_write }, 4916 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4917 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4918 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4919 .writefn = tlbi_aa64_vae1_write }, 4920 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4921 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4922 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4923 .writefn = tlbi_aa64_vae1_write }, 4924 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4926 .access = PL2_W, .type = ARM_CP_NOP }, 4927 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4929 .access = PL2_W, .type = ARM_CP_NOP }, 4930 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4932 .access = PL2_W, .type = ARM_CP_NO_RAW, 4933 .writefn = tlbi_aa64_alle1is_write }, 4934 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4936 .access = PL2_W, .type = ARM_CP_NO_RAW, 4937 .writefn = tlbi_aa64_alle1is_write }, 4938 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4939 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4940 .access = PL2_W, .type = ARM_CP_NOP }, 4941 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4942 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4943 .access = PL2_W, .type = ARM_CP_NOP }, 4944 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4945 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4946 .access = PL2_W, .type = ARM_CP_NO_RAW, 4947 .writefn = tlbi_aa64_alle1_write }, 4948 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4949 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4950 .access = PL2_W, .type = ARM_CP_NO_RAW, 4951 .writefn = tlbi_aa64_alle1is_write }, 4952 #ifndef CONFIG_USER_ONLY 4953 /* 64 bit address translation operations */ 4954 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4955 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4956 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4957 .writefn = ats_write64 }, 4958 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4959 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4960 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4961 .writefn = ats_write64 }, 4962 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4963 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4964 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4965 .writefn = ats_write64 }, 4966 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4967 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4968 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4969 .writefn = ats_write64 }, 4970 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4971 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4972 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4973 .writefn = ats_write64 }, 4974 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4975 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4976 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4977 .writefn = ats_write64 }, 4978 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4979 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4980 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4981 .writefn = ats_write64 }, 4982 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4983 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4984 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4985 .writefn = ats_write64 }, 4986 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4987 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4988 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4989 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4990 .writefn = ats_write64 }, 4991 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4992 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4993 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4994 .writefn = ats_write64 }, 4995 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4996 .type = ARM_CP_ALIAS, 4997 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4998 .access = PL1_RW, .resetvalue = 0, 4999 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5000 .writefn = par_write }, 5001 #endif 5002 /* TLB invalidate last level of translation table walk */ 5003 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5004 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5005 .writefn = tlbimva_is_write }, 5006 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5007 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5008 .writefn = tlbimvaa_is_write }, 5009 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5010 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5011 .writefn = tlbimva_write }, 5012 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5013 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5014 .writefn = tlbimvaa_write }, 5015 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5016 .type = ARM_CP_NO_RAW, .access = PL2_W, 5017 .writefn = tlbimva_hyp_write }, 5018 { .name = "TLBIMVALHIS", 5019 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5020 .type = ARM_CP_NO_RAW, .access = PL2_W, 5021 .writefn = tlbimva_hyp_is_write }, 5022 { .name = "TLBIIPAS2", 5023 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5024 .type = ARM_CP_NOP, .access = PL2_W }, 5025 { .name = "TLBIIPAS2IS", 5026 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5027 .type = ARM_CP_NOP, .access = PL2_W }, 5028 { .name = "TLBIIPAS2L", 5029 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5030 .type = ARM_CP_NOP, .access = PL2_W }, 5031 { .name = "TLBIIPAS2LIS", 5032 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5033 .type = ARM_CP_NOP, .access = PL2_W }, 5034 /* 32 bit cache operations */ 5035 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5036 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5037 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5038 .type = ARM_CP_NOP, .access = PL1_W }, 5039 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5040 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5041 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5042 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5043 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5044 .type = ARM_CP_NOP, .access = PL1_W }, 5045 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5046 .type = ARM_CP_NOP, .access = PL1_W }, 5047 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5048 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5049 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5050 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5051 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5052 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5053 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5054 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5055 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5056 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5057 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5058 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5059 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5060 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5061 /* MMU Domain access control / MPU write buffer control */ 5062 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5063 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5064 .writefn = dacr_write, .raw_writefn = raw_write, 5065 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5066 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5067 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5068 .type = ARM_CP_ALIAS, 5069 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5070 .access = PL1_RW, 5071 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5072 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5073 .type = ARM_CP_ALIAS, 5074 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5075 .access = PL1_RW, 5076 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5077 /* We rely on the access checks not allowing the guest to write to the 5078 * state field when SPSel indicates that it's being used as the stack 5079 * pointer. 5080 */ 5081 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5082 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5083 .access = PL1_RW, .accessfn = sp_el0_access, 5084 .type = ARM_CP_ALIAS, 5085 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5086 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5087 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5088 .access = PL2_RW, .type = ARM_CP_ALIAS, 5089 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5090 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5091 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5092 .type = ARM_CP_NO_RAW, 5093 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5094 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5095 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5096 .type = ARM_CP_ALIAS, 5097 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5098 .access = PL2_RW, .accessfn = fpexc32_access }, 5099 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5100 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5101 .access = PL2_RW, .resetvalue = 0, 5102 .writefn = dacr_write, .raw_writefn = raw_write, 5103 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5104 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5105 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5106 .access = PL2_RW, .resetvalue = 0, 5107 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5108 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5109 .type = ARM_CP_ALIAS, 5110 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5111 .access = PL2_RW, 5112 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5113 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5114 .type = ARM_CP_ALIAS, 5115 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5116 .access = PL2_RW, 5117 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5118 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5119 .type = ARM_CP_ALIAS, 5120 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5121 .access = PL2_RW, 5122 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5123 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5124 .type = ARM_CP_ALIAS, 5125 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5126 .access = PL2_RW, 5127 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5128 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5129 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5130 .resetvalue = 0, 5131 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5132 { .name = "SDCR", .type = ARM_CP_ALIAS, 5133 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5134 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5135 .writefn = sdcr_write, 5136 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5137 REGINFO_SENTINEL 5138 }; 5139 5140 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5141 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5142 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5143 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5144 .access = PL2_RW, 5145 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5146 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5147 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5148 .access = PL2_RW, 5149 .type = ARM_CP_CONST, .resetvalue = 0 }, 5150 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5151 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5152 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5153 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5154 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5155 .access = PL2_RW, 5156 .type = ARM_CP_CONST, .resetvalue = 0 }, 5157 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5158 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5159 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5160 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5161 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5162 .access = PL2_RW, .type = ARM_CP_CONST, 5163 .resetvalue = 0 }, 5164 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5165 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5166 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5167 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5168 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5169 .access = PL2_RW, .type = ARM_CP_CONST, 5170 .resetvalue = 0 }, 5171 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5172 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5173 .access = PL2_RW, .type = ARM_CP_CONST, 5174 .resetvalue = 0 }, 5175 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5176 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5177 .access = PL2_RW, .type = ARM_CP_CONST, 5178 .resetvalue = 0 }, 5179 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5180 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5181 .access = PL2_RW, .type = ARM_CP_CONST, 5182 .resetvalue = 0 }, 5183 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5184 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5185 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5186 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5187 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5188 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5189 .type = ARM_CP_CONST, .resetvalue = 0 }, 5190 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5191 .cp = 15, .opc1 = 6, .crm = 2, 5192 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5193 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5194 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5195 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5196 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5197 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5198 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5199 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5200 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5201 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5202 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5203 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5204 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5205 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5206 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5207 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5208 .resetvalue = 0 }, 5209 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5210 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5211 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5212 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5213 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5214 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5215 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5216 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5217 .resetvalue = 0 }, 5218 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5219 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5220 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5221 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5222 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5223 .resetvalue = 0 }, 5224 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5225 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5226 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5227 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5228 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5229 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5230 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5231 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5232 .access = PL2_RW, .accessfn = access_tda, 5233 .type = ARM_CP_CONST, .resetvalue = 0 }, 5234 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5235 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5236 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5237 .type = ARM_CP_CONST, .resetvalue = 0 }, 5238 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5239 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5240 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5241 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5242 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5243 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5244 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5245 .type = ARM_CP_CONST, 5246 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5247 .access = PL2_RW, .resetvalue = 0 }, 5248 REGINFO_SENTINEL 5249 }; 5250 5251 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5252 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5253 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5254 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5255 .access = PL2_RW, 5256 .type = ARM_CP_CONST, .resetvalue = 0 }, 5257 REGINFO_SENTINEL 5258 }; 5259 5260 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5261 { 5262 ARMCPU *cpu = env_archcpu(env); 5263 5264 if (arm_feature(env, ARM_FEATURE_V8)) { 5265 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5266 } else { 5267 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5268 } 5269 5270 if (arm_feature(env, ARM_FEATURE_EL3)) { 5271 valid_mask &= ~HCR_HCD; 5272 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5273 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5274 * However, if we're using the SMC PSCI conduit then QEMU is 5275 * effectively acting like EL3 firmware and so the guest at 5276 * EL2 should retain the ability to prevent EL1 from being 5277 * able to make SMC calls into the ersatz firmware, so in 5278 * that case HCR.TSC should be read/write. 5279 */ 5280 valid_mask &= ~HCR_TSC; 5281 } 5282 5283 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5284 if (cpu_isar_feature(aa64_vh, cpu)) { 5285 valid_mask |= HCR_E2H; 5286 } 5287 if (cpu_isar_feature(aa64_lor, cpu)) { 5288 valid_mask |= HCR_TLOR; 5289 } 5290 if (cpu_isar_feature(aa64_pauth, cpu)) { 5291 valid_mask |= HCR_API | HCR_APK; 5292 } 5293 if (cpu_isar_feature(aa64_mte, cpu)) { 5294 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5295 } 5296 } 5297 5298 /* Clear RES0 bits. */ 5299 value &= valid_mask; 5300 5301 /* 5302 * These bits change the MMU setup: 5303 * HCR_VM enables stage 2 translation 5304 * HCR_PTW forbids certain page-table setups 5305 * HCR_DC disables stage1 and enables stage2 translation 5306 * HCR_DCT enables tagging on (disabled) stage1 translation 5307 */ 5308 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5309 tlb_flush(CPU(cpu)); 5310 } 5311 env->cp15.hcr_el2 = value; 5312 5313 /* 5314 * Updates to VI and VF require us to update the status of 5315 * virtual interrupts, which are the logical OR of these bits 5316 * and the state of the input lines from the GIC. (This requires 5317 * that we have the iothread lock, which is done by marking the 5318 * reginfo structs as ARM_CP_IO.) 5319 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5320 * possible for it to be taken immediately, because VIRQ and 5321 * VFIQ are masked unless running at EL0 or EL1, and HCR 5322 * can only be written at EL2. 5323 */ 5324 g_assert(qemu_mutex_iothread_locked()); 5325 arm_cpu_update_virq(cpu); 5326 arm_cpu_update_vfiq(cpu); 5327 } 5328 5329 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5330 { 5331 do_hcr_write(env, value, 0); 5332 } 5333 5334 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5335 uint64_t value) 5336 { 5337 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5338 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5339 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5340 } 5341 5342 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5343 uint64_t value) 5344 { 5345 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5346 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5347 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5348 } 5349 5350 /* 5351 * Return the effective value of HCR_EL2. 5352 * Bits that are not included here: 5353 * RW (read from SCR_EL3.RW as needed) 5354 */ 5355 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5356 { 5357 uint64_t ret = env->cp15.hcr_el2; 5358 5359 if (!arm_is_el2_enabled(env)) { 5360 /* 5361 * "This register has no effect if EL2 is not enabled in the 5362 * current Security state". This is ARMv8.4-SecEL2 speak for 5363 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5364 * 5365 * Prior to that, the language was "In an implementation that 5366 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5367 * as if this field is 0 for all purposes other than a direct 5368 * read or write access of HCR_EL2". With lots of enumeration 5369 * on a per-field basis. In current QEMU, this is condition 5370 * is arm_is_secure_below_el3. 5371 * 5372 * Since the v8.4 language applies to the entire register, and 5373 * appears to be backward compatible, use that. 5374 */ 5375 return 0; 5376 } 5377 5378 /* 5379 * For a cpu that supports both aarch64 and aarch32, we can set bits 5380 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5381 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5382 */ 5383 if (!arm_el_is_aa64(env, 2)) { 5384 uint64_t aa32_valid; 5385 5386 /* 5387 * These bits are up-to-date as of ARMv8.6. 5388 * For HCR, it's easiest to list just the 2 bits that are invalid. 5389 * For HCR2, list those that are valid. 5390 */ 5391 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5392 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5393 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5394 ret &= aa32_valid; 5395 } 5396 5397 if (ret & HCR_TGE) { 5398 /* These bits are up-to-date as of ARMv8.6. */ 5399 if (ret & HCR_E2H) { 5400 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5401 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5402 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5403 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5404 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5405 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5406 } else { 5407 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5408 } 5409 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5410 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5411 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5412 HCR_TLOR); 5413 } 5414 5415 return ret; 5416 } 5417 5418 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5419 uint64_t value) 5420 { 5421 /* 5422 * For A-profile AArch32 EL3, if NSACR.CP10 5423 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5424 */ 5425 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5426 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5427 value &= ~(0x3 << 10); 5428 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5429 } 5430 env->cp15.cptr_el[2] = value; 5431 } 5432 5433 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5434 { 5435 /* 5436 * For A-profile AArch32 EL3, if NSACR.CP10 5437 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5438 */ 5439 uint64_t value = env->cp15.cptr_el[2]; 5440 5441 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5442 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5443 value |= 0x3 << 10; 5444 } 5445 return value; 5446 } 5447 5448 static const ARMCPRegInfo el2_cp_reginfo[] = { 5449 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5450 .type = ARM_CP_IO, 5451 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5452 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5453 .writefn = hcr_write }, 5454 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5455 .type = ARM_CP_ALIAS | ARM_CP_IO, 5456 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5457 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5458 .writefn = hcr_writelow }, 5459 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5460 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5461 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5462 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5463 .type = ARM_CP_ALIAS, 5464 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5465 .access = PL2_RW, 5466 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5467 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5468 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5469 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5470 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5471 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5472 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5473 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5474 .type = ARM_CP_ALIAS, 5475 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5476 .access = PL2_RW, 5477 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5478 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5479 .type = ARM_CP_ALIAS, 5480 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5481 .access = PL2_RW, 5482 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5483 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5484 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5485 .access = PL2_RW, .writefn = vbar_write, 5486 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5487 .resetvalue = 0 }, 5488 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5489 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5490 .access = PL3_RW, .type = ARM_CP_ALIAS, 5491 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5492 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5493 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5494 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5495 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5496 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5497 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5498 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5499 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5500 .resetvalue = 0 }, 5501 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5502 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5503 .access = PL2_RW, .type = ARM_CP_ALIAS, 5504 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5505 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5506 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5507 .access = PL2_RW, .type = ARM_CP_CONST, 5508 .resetvalue = 0 }, 5509 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5510 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5511 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5512 .access = PL2_RW, .type = ARM_CP_CONST, 5513 .resetvalue = 0 }, 5514 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5515 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5516 .access = PL2_RW, .type = ARM_CP_CONST, 5517 .resetvalue = 0 }, 5518 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5519 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5520 .access = PL2_RW, .type = ARM_CP_CONST, 5521 .resetvalue = 0 }, 5522 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5523 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5524 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5525 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5526 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5527 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5528 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5529 .type = ARM_CP_ALIAS, 5530 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5531 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5532 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5533 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5534 .access = PL2_RW, 5535 /* no .writefn needed as this can't cause an ASID change; 5536 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5537 */ 5538 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5539 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5540 .cp = 15, .opc1 = 6, .crm = 2, 5541 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5542 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5543 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5544 .writefn = vttbr_write }, 5545 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5546 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5547 .access = PL2_RW, .writefn = vttbr_write, 5548 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5549 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5550 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5551 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5552 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5553 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5554 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5555 .access = PL2_RW, .resetvalue = 0, 5556 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5557 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5558 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5559 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5560 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5561 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5562 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5563 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5564 { .name = "TLBIALLNSNH", 5565 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5566 .type = ARM_CP_NO_RAW, .access = PL2_W, 5567 .writefn = tlbiall_nsnh_write }, 5568 { .name = "TLBIALLNSNHIS", 5569 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5570 .type = ARM_CP_NO_RAW, .access = PL2_W, 5571 .writefn = tlbiall_nsnh_is_write }, 5572 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5573 .type = ARM_CP_NO_RAW, .access = PL2_W, 5574 .writefn = tlbiall_hyp_write }, 5575 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5576 .type = ARM_CP_NO_RAW, .access = PL2_W, 5577 .writefn = tlbiall_hyp_is_write }, 5578 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5579 .type = ARM_CP_NO_RAW, .access = PL2_W, 5580 .writefn = tlbimva_hyp_write }, 5581 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5582 .type = ARM_CP_NO_RAW, .access = PL2_W, 5583 .writefn = tlbimva_hyp_is_write }, 5584 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5585 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5586 .type = ARM_CP_NO_RAW, .access = PL2_W, 5587 .writefn = tlbi_aa64_alle2_write }, 5588 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5589 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5590 .type = ARM_CP_NO_RAW, .access = PL2_W, 5591 .writefn = tlbi_aa64_vae2_write }, 5592 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5593 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5594 .access = PL2_W, .type = ARM_CP_NO_RAW, 5595 .writefn = tlbi_aa64_vae2_write }, 5596 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5597 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5598 .access = PL2_W, .type = ARM_CP_NO_RAW, 5599 .writefn = tlbi_aa64_alle2is_write }, 5600 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5601 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5602 .type = ARM_CP_NO_RAW, .access = PL2_W, 5603 .writefn = tlbi_aa64_vae2is_write }, 5604 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5605 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5606 .access = PL2_W, .type = ARM_CP_NO_RAW, 5607 .writefn = tlbi_aa64_vae2is_write }, 5608 #ifndef CONFIG_USER_ONLY 5609 /* Unlike the other EL2-related AT operations, these must 5610 * UNDEF from EL3 if EL2 is not implemented, which is why we 5611 * define them here rather than with the rest of the AT ops. 5612 */ 5613 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5614 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5615 .access = PL2_W, .accessfn = at_s1e2_access, 5616 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5617 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5618 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5619 .access = PL2_W, .accessfn = at_s1e2_access, 5620 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5621 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5622 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5623 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5624 * to behave as if SCR.NS was 1. 5625 */ 5626 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5627 .access = PL2_W, 5628 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5629 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5630 .access = PL2_W, 5631 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5632 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5633 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5634 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5635 * reset values as IMPDEF. We choose to reset to 3 to comply with 5636 * both ARMv7 and ARMv8. 5637 */ 5638 .access = PL2_RW, .resetvalue = 3, 5639 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5640 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5641 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5642 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5643 .writefn = gt_cntvoff_write, 5644 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5645 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5646 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5647 .writefn = gt_cntvoff_write, 5648 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5649 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5650 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5651 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5652 .type = ARM_CP_IO, .access = PL2_RW, 5653 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5654 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5655 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5656 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5657 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5658 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5659 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5660 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5661 .resetfn = gt_hyp_timer_reset, 5662 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5663 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5664 .type = ARM_CP_IO, 5665 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5666 .access = PL2_RW, 5667 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5668 .resetvalue = 0, 5669 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5670 #endif 5671 /* The only field of MDCR_EL2 that has a defined architectural reset value 5672 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5673 */ 5674 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5675 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5676 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5677 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5678 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5679 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5680 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5681 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5682 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5683 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5684 .access = PL2_RW, 5685 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5686 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5687 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5688 .access = PL2_RW, 5689 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5690 REGINFO_SENTINEL 5691 }; 5692 5693 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5694 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5695 .type = ARM_CP_ALIAS | ARM_CP_IO, 5696 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5697 .access = PL2_RW, 5698 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5699 .writefn = hcr_writehigh }, 5700 REGINFO_SENTINEL 5701 }; 5702 5703 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5704 bool isread) 5705 { 5706 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5707 return CP_ACCESS_OK; 5708 } 5709 return CP_ACCESS_TRAP_UNCATEGORIZED; 5710 } 5711 5712 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5713 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5714 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5715 .access = PL2_RW, .accessfn = sel2_access, 5716 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5717 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5718 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5719 .access = PL2_RW, .accessfn = sel2_access, 5720 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5721 REGINFO_SENTINEL 5722 }; 5723 5724 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5725 bool isread) 5726 { 5727 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5728 * At Secure EL1 it traps to EL3 or EL2. 5729 */ 5730 if (arm_current_el(env) == 3) { 5731 return CP_ACCESS_OK; 5732 } 5733 if (arm_is_secure_below_el3(env)) { 5734 if (env->cp15.scr_el3 & SCR_EEL2) { 5735 return CP_ACCESS_TRAP_EL2; 5736 } 5737 return CP_ACCESS_TRAP_EL3; 5738 } 5739 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5740 if (isread) { 5741 return CP_ACCESS_OK; 5742 } 5743 return CP_ACCESS_TRAP_UNCATEGORIZED; 5744 } 5745 5746 static const ARMCPRegInfo el3_cp_reginfo[] = { 5747 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5748 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5749 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5750 .resetfn = scr_reset, .writefn = scr_write }, 5751 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5752 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5753 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5754 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5755 .writefn = scr_write }, 5756 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5757 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5758 .access = PL3_RW, .resetvalue = 0, 5759 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5760 { .name = "SDER", 5761 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5762 .access = PL3_RW, .resetvalue = 0, 5763 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5764 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5765 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5766 .writefn = vbar_write, .resetvalue = 0, 5767 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5768 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5769 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5770 .access = PL3_RW, .resetvalue = 0, 5771 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5772 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5773 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5774 .access = PL3_RW, 5775 /* no .writefn needed as this can't cause an ASID change; 5776 * we must provide a .raw_writefn and .resetfn because we handle 5777 * reset and migration for the AArch32 TTBCR(S), which might be 5778 * using mask and base_mask. 5779 */ 5780 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5781 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5782 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5783 .type = ARM_CP_ALIAS, 5784 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5785 .access = PL3_RW, 5786 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5787 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5788 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5789 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5790 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5791 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5792 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5793 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5794 .type = ARM_CP_ALIAS, 5795 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5796 .access = PL3_RW, 5797 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5798 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5799 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5800 .access = PL3_RW, .writefn = vbar_write, 5801 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5802 .resetvalue = 0 }, 5803 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5804 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5805 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5806 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5807 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5808 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5809 .access = PL3_RW, .resetvalue = 0, 5810 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5811 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5812 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5813 .access = PL3_RW, .type = ARM_CP_CONST, 5814 .resetvalue = 0 }, 5815 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5816 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5817 .access = PL3_RW, .type = ARM_CP_CONST, 5818 .resetvalue = 0 }, 5819 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5820 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5821 .access = PL3_RW, .type = ARM_CP_CONST, 5822 .resetvalue = 0 }, 5823 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5824 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5825 .access = PL3_W, .type = ARM_CP_NO_RAW, 5826 .writefn = tlbi_aa64_alle3is_write }, 5827 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5828 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5829 .access = PL3_W, .type = ARM_CP_NO_RAW, 5830 .writefn = tlbi_aa64_vae3is_write }, 5831 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5832 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5833 .access = PL3_W, .type = ARM_CP_NO_RAW, 5834 .writefn = tlbi_aa64_vae3is_write }, 5835 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5836 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5837 .access = PL3_W, .type = ARM_CP_NO_RAW, 5838 .writefn = tlbi_aa64_alle3_write }, 5839 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5840 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5841 .access = PL3_W, .type = ARM_CP_NO_RAW, 5842 .writefn = tlbi_aa64_vae3_write }, 5843 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5844 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5845 .access = PL3_W, .type = ARM_CP_NO_RAW, 5846 .writefn = tlbi_aa64_vae3_write }, 5847 REGINFO_SENTINEL 5848 }; 5849 5850 #ifndef CONFIG_USER_ONLY 5851 /* Test if system register redirection is to occur in the current state. */ 5852 static bool redirect_for_e2h(CPUARMState *env) 5853 { 5854 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5855 } 5856 5857 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5858 { 5859 CPReadFn *readfn; 5860 5861 if (redirect_for_e2h(env)) { 5862 /* Switch to the saved EL2 version of the register. */ 5863 ri = ri->opaque; 5864 readfn = ri->readfn; 5865 } else { 5866 readfn = ri->orig_readfn; 5867 } 5868 if (readfn == NULL) { 5869 readfn = raw_read; 5870 } 5871 return readfn(env, ri); 5872 } 5873 5874 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5875 uint64_t value) 5876 { 5877 CPWriteFn *writefn; 5878 5879 if (redirect_for_e2h(env)) { 5880 /* Switch to the saved EL2 version of the register. */ 5881 ri = ri->opaque; 5882 writefn = ri->writefn; 5883 } else { 5884 writefn = ri->orig_writefn; 5885 } 5886 if (writefn == NULL) { 5887 writefn = raw_write; 5888 } 5889 writefn(env, ri, value); 5890 } 5891 5892 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5893 { 5894 struct E2HAlias { 5895 uint32_t src_key, dst_key, new_key; 5896 const char *src_name, *dst_name, *new_name; 5897 bool (*feature)(const ARMISARegisters *id); 5898 }; 5899 5900 #define K(op0, op1, crn, crm, op2) \ 5901 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5902 5903 static const struct E2HAlias aliases[] = { 5904 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5905 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5906 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5907 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5908 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5909 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5910 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5911 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5912 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5913 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5914 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5915 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5916 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5917 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5918 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5919 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5920 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5921 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5922 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5923 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5924 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5925 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5926 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5927 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5928 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5929 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5930 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5931 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5932 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5933 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5934 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5935 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5936 5937 /* 5938 * Note that redirection of ZCR is mentioned in the description 5939 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5940 * not in the summary table. 5941 */ 5942 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5943 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5944 5945 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5946 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5947 5948 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5949 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5950 }; 5951 #undef K 5952 5953 size_t i; 5954 5955 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5956 const struct E2HAlias *a = &aliases[i]; 5957 ARMCPRegInfo *src_reg, *dst_reg; 5958 5959 if (a->feature && !a->feature(&cpu->isar)) { 5960 continue; 5961 } 5962 5963 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5964 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5965 g_assert(src_reg != NULL); 5966 g_assert(dst_reg != NULL); 5967 5968 /* Cross-compare names to detect typos in the keys. */ 5969 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5970 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5971 5972 /* None of the core system registers use opaque; we will. */ 5973 g_assert(src_reg->opaque == NULL); 5974 5975 /* Create alias before redirection so we dup the right data. */ 5976 if (a->new_key) { 5977 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5978 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5979 bool ok; 5980 5981 new_reg->name = a->new_name; 5982 new_reg->type |= ARM_CP_ALIAS; 5983 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5984 new_reg->access &= PL2_RW | PL3_RW; 5985 5986 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5987 g_assert(ok); 5988 } 5989 5990 src_reg->opaque = dst_reg; 5991 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5992 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5993 if (!src_reg->raw_readfn) { 5994 src_reg->raw_readfn = raw_read; 5995 } 5996 if (!src_reg->raw_writefn) { 5997 src_reg->raw_writefn = raw_write; 5998 } 5999 src_reg->readfn = el2_e2h_read; 6000 src_reg->writefn = el2_e2h_write; 6001 } 6002 } 6003 #endif 6004 6005 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6006 bool isread) 6007 { 6008 int cur_el = arm_current_el(env); 6009 6010 if (cur_el < 2) { 6011 uint64_t hcr = arm_hcr_el2_eff(env); 6012 6013 if (cur_el == 0) { 6014 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6015 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6016 return CP_ACCESS_TRAP_EL2; 6017 } 6018 } else { 6019 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6020 return CP_ACCESS_TRAP; 6021 } 6022 if (hcr & HCR_TID2) { 6023 return CP_ACCESS_TRAP_EL2; 6024 } 6025 } 6026 } else if (hcr & HCR_TID2) { 6027 return CP_ACCESS_TRAP_EL2; 6028 } 6029 } 6030 6031 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6032 return CP_ACCESS_TRAP_EL2; 6033 } 6034 6035 return CP_ACCESS_OK; 6036 } 6037 6038 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6039 uint64_t value) 6040 { 6041 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6042 * read via a bit in OSLSR_EL1. 6043 */ 6044 int oslock; 6045 6046 if (ri->state == ARM_CP_STATE_AA32) { 6047 oslock = (value == 0xC5ACCE55); 6048 } else { 6049 oslock = value & 1; 6050 } 6051 6052 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6053 } 6054 6055 static const ARMCPRegInfo debug_cp_reginfo[] = { 6056 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6057 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6058 * unlike DBGDRAR it is never accessible from EL0. 6059 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6060 * accessor. 6061 */ 6062 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6063 .access = PL0_R, .accessfn = access_tdra, 6064 .type = ARM_CP_CONST, .resetvalue = 0 }, 6065 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6066 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6067 .access = PL1_R, .accessfn = access_tdra, 6068 .type = ARM_CP_CONST, .resetvalue = 0 }, 6069 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6070 .access = PL0_R, .accessfn = access_tdra, 6071 .type = ARM_CP_CONST, .resetvalue = 0 }, 6072 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6073 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6074 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6075 .access = PL1_RW, .accessfn = access_tda, 6076 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6077 .resetvalue = 0 }, 6078 /* 6079 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 6080 * Debug Communication Channel is not implemented. 6081 */ 6082 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 6083 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 6084 .access = PL0_R, .accessfn = access_tda, 6085 .type = ARM_CP_CONST, .resetvalue = 0 }, 6086 /* 6087 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 6088 * it is unlikely a guest will care. 6089 * We don't implement the configurable EL0 access. 6090 */ 6091 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 6092 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6093 .type = ARM_CP_ALIAS, 6094 .access = PL1_R, .accessfn = access_tda, 6095 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6096 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6097 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6098 .access = PL1_W, .type = ARM_CP_NO_RAW, 6099 .accessfn = access_tdosa, 6100 .writefn = oslar_write }, 6101 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6102 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6103 .access = PL1_R, .resetvalue = 10, 6104 .accessfn = access_tdosa, 6105 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6106 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6107 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6108 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6109 .access = PL1_RW, .accessfn = access_tdosa, 6110 .type = ARM_CP_NOP }, 6111 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6112 * implement vector catch debug events yet. 6113 */ 6114 { .name = "DBGVCR", 6115 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6116 .access = PL1_RW, .accessfn = access_tda, 6117 .type = ARM_CP_NOP }, 6118 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6119 * to save and restore a 32-bit guest's DBGVCR) 6120 */ 6121 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6122 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6123 .access = PL2_RW, .accessfn = access_tda, 6124 .type = ARM_CP_NOP }, 6125 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6126 * Channel but Linux may try to access this register. The 32-bit 6127 * alias is DBGDCCINT. 6128 */ 6129 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6130 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6131 .access = PL1_RW, .accessfn = access_tda, 6132 .type = ARM_CP_NOP }, 6133 REGINFO_SENTINEL 6134 }; 6135 6136 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6137 /* 64 bit access versions of the (dummy) debug registers */ 6138 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6139 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6140 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6141 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6142 REGINFO_SENTINEL 6143 }; 6144 6145 /* Return the exception level to which exceptions should be taken 6146 * via SVEAccessTrap. If an exception should be routed through 6147 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6148 * take care of raising that exception. 6149 * C.f. the ARM pseudocode function CheckSVEEnabled. 6150 */ 6151 int sve_exception_el(CPUARMState *env, int el) 6152 { 6153 #ifndef CONFIG_USER_ONLY 6154 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6155 6156 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6157 bool disabled = false; 6158 6159 /* The CPACR.ZEN controls traps to EL1: 6160 * 0, 2 : trap EL0 and EL1 accesses 6161 * 1 : trap only EL0 accesses 6162 * 3 : trap no accesses 6163 */ 6164 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6165 disabled = true; 6166 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6167 disabled = el == 0; 6168 } 6169 if (disabled) { 6170 /* route_to_el2 */ 6171 return hcr_el2 & HCR_TGE ? 2 : 1; 6172 } 6173 6174 /* Check CPACR.FPEN. */ 6175 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6176 disabled = true; 6177 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6178 disabled = el == 0; 6179 } 6180 if (disabled) { 6181 return 0; 6182 } 6183 } 6184 6185 /* CPTR_EL2. Since TZ and TFP are positive, 6186 * they will be zero when EL2 is not present. 6187 */ 6188 if (el <= 2 && arm_is_el2_enabled(env)) { 6189 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6190 return 2; 6191 } 6192 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6193 return 0; 6194 } 6195 } 6196 6197 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6198 if (arm_feature(env, ARM_FEATURE_EL3) 6199 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6200 return 3; 6201 } 6202 #endif 6203 return 0; 6204 } 6205 6206 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6207 { 6208 uint32_t end_len; 6209 6210 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6211 end_len = start_len; 6212 6213 if (!test_bit(start_len, cpu->sve_vq_map)) { 6214 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6215 assert(end_len < start_len); 6216 } 6217 return end_len; 6218 } 6219 6220 /* 6221 * Given that SVE is enabled, return the vector length for EL. 6222 */ 6223 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6224 { 6225 ARMCPU *cpu = env_archcpu(env); 6226 uint32_t zcr_len = cpu->sve_max_vq - 1; 6227 6228 if (el <= 1) { 6229 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6230 } 6231 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6232 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6233 } 6234 if (arm_feature(env, ARM_FEATURE_EL3)) { 6235 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6236 } 6237 6238 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6239 } 6240 6241 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6242 uint64_t value) 6243 { 6244 int cur_el = arm_current_el(env); 6245 int old_len = sve_zcr_len_for_el(env, cur_el); 6246 int new_len; 6247 6248 /* Bits other than [3:0] are RAZ/WI. */ 6249 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6250 raw_write(env, ri, value & 0xf); 6251 6252 /* 6253 * Because we arrived here, we know both FP and SVE are enabled; 6254 * otherwise we would have trapped access to the ZCR_ELn register. 6255 */ 6256 new_len = sve_zcr_len_for_el(env, cur_el); 6257 if (new_len < old_len) { 6258 aarch64_sve_narrow_vq(env, new_len + 1); 6259 } 6260 } 6261 6262 static const ARMCPRegInfo zcr_el1_reginfo = { 6263 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6264 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6265 .access = PL1_RW, .type = ARM_CP_SVE, 6266 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6267 .writefn = zcr_write, .raw_writefn = raw_write 6268 }; 6269 6270 static const ARMCPRegInfo zcr_el2_reginfo = { 6271 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6272 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6273 .access = PL2_RW, .type = ARM_CP_SVE, 6274 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6275 .writefn = zcr_write, .raw_writefn = raw_write 6276 }; 6277 6278 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6279 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6280 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6281 .access = PL2_RW, .type = ARM_CP_SVE, 6282 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6283 }; 6284 6285 static const ARMCPRegInfo zcr_el3_reginfo = { 6286 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6287 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6288 .access = PL3_RW, .type = ARM_CP_SVE, 6289 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6290 .writefn = zcr_write, .raw_writefn = raw_write 6291 }; 6292 6293 void hw_watchpoint_update(ARMCPU *cpu, int n) 6294 { 6295 CPUARMState *env = &cpu->env; 6296 vaddr len = 0; 6297 vaddr wvr = env->cp15.dbgwvr[n]; 6298 uint64_t wcr = env->cp15.dbgwcr[n]; 6299 int mask; 6300 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6301 6302 if (env->cpu_watchpoint[n]) { 6303 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6304 env->cpu_watchpoint[n] = NULL; 6305 } 6306 6307 if (!extract64(wcr, 0, 1)) { 6308 /* E bit clear : watchpoint disabled */ 6309 return; 6310 } 6311 6312 switch (extract64(wcr, 3, 2)) { 6313 case 0: 6314 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6315 return; 6316 case 1: 6317 flags |= BP_MEM_READ; 6318 break; 6319 case 2: 6320 flags |= BP_MEM_WRITE; 6321 break; 6322 case 3: 6323 flags |= BP_MEM_ACCESS; 6324 break; 6325 } 6326 6327 /* Attempts to use both MASK and BAS fields simultaneously are 6328 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6329 * thus generating a watchpoint for every byte in the masked region. 6330 */ 6331 mask = extract64(wcr, 24, 4); 6332 if (mask == 1 || mask == 2) { 6333 /* Reserved values of MASK; we must act as if the mask value was 6334 * some non-reserved value, or as if the watchpoint were disabled. 6335 * We choose the latter. 6336 */ 6337 return; 6338 } else if (mask) { 6339 /* Watchpoint covers an aligned area up to 2GB in size */ 6340 len = 1ULL << mask; 6341 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6342 * whether the watchpoint fires when the unmasked bits match; we opt 6343 * to generate the exceptions. 6344 */ 6345 wvr &= ~(len - 1); 6346 } else { 6347 /* Watchpoint covers bytes defined by the byte address select bits */ 6348 int bas = extract64(wcr, 5, 8); 6349 int basstart; 6350 6351 if (extract64(wvr, 2, 1)) { 6352 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6353 * ignored, and BAS[3:0] define which bytes to watch. 6354 */ 6355 bas &= 0xf; 6356 } 6357 6358 if (bas == 0) { 6359 /* This must act as if the watchpoint is disabled */ 6360 return; 6361 } 6362 6363 /* The BAS bits are supposed to be programmed to indicate a contiguous 6364 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6365 * we fire for each byte in the word/doubleword addressed by the WVR. 6366 * We choose to ignore any non-zero bits after the first range of 1s. 6367 */ 6368 basstart = ctz32(bas); 6369 len = cto32(bas >> basstart); 6370 wvr += basstart; 6371 } 6372 6373 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6374 &env->cpu_watchpoint[n]); 6375 } 6376 6377 void hw_watchpoint_update_all(ARMCPU *cpu) 6378 { 6379 int i; 6380 CPUARMState *env = &cpu->env; 6381 6382 /* Completely clear out existing QEMU watchpoints and our array, to 6383 * avoid possible stale entries following migration load. 6384 */ 6385 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6386 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6387 6388 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6389 hw_watchpoint_update(cpu, i); 6390 } 6391 } 6392 6393 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6394 uint64_t value) 6395 { 6396 ARMCPU *cpu = env_archcpu(env); 6397 int i = ri->crm; 6398 6399 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6400 * register reads and behaves as if values written are sign extended. 6401 * Bits [1:0] are RES0. 6402 */ 6403 value = sextract64(value, 0, 49) & ~3ULL; 6404 6405 raw_write(env, ri, value); 6406 hw_watchpoint_update(cpu, i); 6407 } 6408 6409 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6410 uint64_t value) 6411 { 6412 ARMCPU *cpu = env_archcpu(env); 6413 int i = ri->crm; 6414 6415 raw_write(env, ri, value); 6416 hw_watchpoint_update(cpu, i); 6417 } 6418 6419 void hw_breakpoint_update(ARMCPU *cpu, int n) 6420 { 6421 CPUARMState *env = &cpu->env; 6422 uint64_t bvr = env->cp15.dbgbvr[n]; 6423 uint64_t bcr = env->cp15.dbgbcr[n]; 6424 vaddr addr; 6425 int bt; 6426 int flags = BP_CPU; 6427 6428 if (env->cpu_breakpoint[n]) { 6429 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6430 env->cpu_breakpoint[n] = NULL; 6431 } 6432 6433 if (!extract64(bcr, 0, 1)) { 6434 /* E bit clear : watchpoint disabled */ 6435 return; 6436 } 6437 6438 bt = extract64(bcr, 20, 4); 6439 6440 switch (bt) { 6441 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6442 case 5: /* linked address mismatch (reserved if AArch64) */ 6443 qemu_log_mask(LOG_UNIMP, 6444 "arm: address mismatch breakpoint types not implemented\n"); 6445 return; 6446 case 0: /* unlinked address match */ 6447 case 1: /* linked address match */ 6448 { 6449 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6450 * we behave as if the register was sign extended. Bits [1:0] are 6451 * RES0. The BAS field is used to allow setting breakpoints on 16 6452 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6453 * a bp will fire if the addresses covered by the bp and the addresses 6454 * covered by the insn overlap but the insn doesn't start at the 6455 * start of the bp address range. We choose to require the insn and 6456 * the bp to have the same address. The constraints on writing to 6457 * BAS enforced in dbgbcr_write mean we have only four cases: 6458 * 0b0000 => no breakpoint 6459 * 0b0011 => breakpoint on addr 6460 * 0b1100 => breakpoint on addr + 2 6461 * 0b1111 => breakpoint on addr 6462 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6463 */ 6464 int bas = extract64(bcr, 5, 4); 6465 addr = sextract64(bvr, 0, 49) & ~3ULL; 6466 if (bas == 0) { 6467 return; 6468 } 6469 if (bas == 0xc) { 6470 addr += 2; 6471 } 6472 break; 6473 } 6474 case 2: /* unlinked context ID match */ 6475 case 8: /* unlinked VMID match (reserved if no EL2) */ 6476 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6477 qemu_log_mask(LOG_UNIMP, 6478 "arm: unlinked context breakpoint types not implemented\n"); 6479 return; 6480 case 9: /* linked VMID match (reserved if no EL2) */ 6481 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6482 case 3: /* linked context ID match */ 6483 default: 6484 /* We must generate no events for Linked context matches (unless 6485 * they are linked to by some other bp/wp, which is handled in 6486 * updates for the linking bp/wp). We choose to also generate no events 6487 * for reserved values. 6488 */ 6489 return; 6490 } 6491 6492 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6493 } 6494 6495 void hw_breakpoint_update_all(ARMCPU *cpu) 6496 { 6497 int i; 6498 CPUARMState *env = &cpu->env; 6499 6500 /* Completely clear out existing QEMU breakpoints and our array, to 6501 * avoid possible stale entries following migration load. 6502 */ 6503 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6504 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6505 6506 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6507 hw_breakpoint_update(cpu, i); 6508 } 6509 } 6510 6511 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6512 uint64_t value) 6513 { 6514 ARMCPU *cpu = env_archcpu(env); 6515 int i = ri->crm; 6516 6517 raw_write(env, ri, value); 6518 hw_breakpoint_update(cpu, i); 6519 } 6520 6521 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6522 uint64_t value) 6523 { 6524 ARMCPU *cpu = env_archcpu(env); 6525 int i = ri->crm; 6526 6527 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6528 * copy of BAS[0]. 6529 */ 6530 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6531 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6532 6533 raw_write(env, ri, value); 6534 hw_breakpoint_update(cpu, i); 6535 } 6536 6537 static void define_debug_regs(ARMCPU *cpu) 6538 { 6539 /* Define v7 and v8 architectural debug registers. 6540 * These are just dummy implementations for now. 6541 */ 6542 int i; 6543 int wrps, brps, ctx_cmps; 6544 6545 /* 6546 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6547 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6548 * the register must not exist for this cpu. 6549 */ 6550 if (cpu->isar.dbgdidr != 0) { 6551 ARMCPRegInfo dbgdidr = { 6552 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6553 .opc1 = 0, .opc2 = 0, 6554 .access = PL0_R, .accessfn = access_tda, 6555 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6556 }; 6557 define_one_arm_cp_reg(cpu, &dbgdidr); 6558 } 6559 6560 /* Note that all these register fields hold "number of Xs minus 1". */ 6561 brps = arm_num_brps(cpu); 6562 wrps = arm_num_wrps(cpu); 6563 ctx_cmps = arm_num_ctx_cmps(cpu); 6564 6565 assert(ctx_cmps <= brps); 6566 6567 define_arm_cp_regs(cpu, debug_cp_reginfo); 6568 6569 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6570 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6571 } 6572 6573 for (i = 0; i < brps; i++) { 6574 ARMCPRegInfo dbgregs[] = { 6575 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6576 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6577 .access = PL1_RW, .accessfn = access_tda, 6578 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6579 .writefn = dbgbvr_write, .raw_writefn = raw_write 6580 }, 6581 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6582 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6583 .access = PL1_RW, .accessfn = access_tda, 6584 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6585 .writefn = dbgbcr_write, .raw_writefn = raw_write 6586 }, 6587 REGINFO_SENTINEL 6588 }; 6589 define_arm_cp_regs(cpu, dbgregs); 6590 } 6591 6592 for (i = 0; i < wrps; i++) { 6593 ARMCPRegInfo dbgregs[] = { 6594 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6595 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6596 .access = PL1_RW, .accessfn = access_tda, 6597 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6598 .writefn = dbgwvr_write, .raw_writefn = raw_write 6599 }, 6600 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6601 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6602 .access = PL1_RW, .accessfn = access_tda, 6603 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6604 .writefn = dbgwcr_write, .raw_writefn = raw_write 6605 }, 6606 REGINFO_SENTINEL 6607 }; 6608 define_arm_cp_regs(cpu, dbgregs); 6609 } 6610 } 6611 6612 static void define_pmu_regs(ARMCPU *cpu) 6613 { 6614 /* 6615 * v7 performance monitor control register: same implementor 6616 * field as main ID register, and we implement four counters in 6617 * addition to the cycle count register. 6618 */ 6619 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6620 ARMCPRegInfo pmcr = { 6621 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6622 .access = PL0_RW, 6623 .type = ARM_CP_IO | ARM_CP_ALIAS, 6624 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6625 .accessfn = pmreg_access, .writefn = pmcr_write, 6626 .raw_writefn = raw_write, 6627 }; 6628 ARMCPRegInfo pmcr64 = { 6629 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6630 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6631 .access = PL0_RW, .accessfn = pmreg_access, 6632 .type = ARM_CP_IO, 6633 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6634 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6635 PMCRLC, 6636 .writefn = pmcr_write, .raw_writefn = raw_write, 6637 }; 6638 define_one_arm_cp_reg(cpu, &pmcr); 6639 define_one_arm_cp_reg(cpu, &pmcr64); 6640 for (i = 0; i < pmcrn; i++) { 6641 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6642 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6643 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6644 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6645 ARMCPRegInfo pmev_regs[] = { 6646 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6647 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6648 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6649 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6650 .accessfn = pmreg_access }, 6651 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6652 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6653 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6654 .type = ARM_CP_IO, 6655 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6656 .raw_readfn = pmevcntr_rawread, 6657 .raw_writefn = pmevcntr_rawwrite }, 6658 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6659 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6660 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6661 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6662 .accessfn = pmreg_access }, 6663 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6664 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6665 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6666 .type = ARM_CP_IO, 6667 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6668 .raw_writefn = pmevtyper_rawwrite }, 6669 REGINFO_SENTINEL 6670 }; 6671 define_arm_cp_regs(cpu, pmev_regs); 6672 g_free(pmevcntr_name); 6673 g_free(pmevcntr_el0_name); 6674 g_free(pmevtyper_name); 6675 g_free(pmevtyper_el0_name); 6676 } 6677 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6678 ARMCPRegInfo v81_pmu_regs[] = { 6679 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6680 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6681 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6682 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6683 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6684 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6685 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6686 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6687 REGINFO_SENTINEL 6688 }; 6689 define_arm_cp_regs(cpu, v81_pmu_regs); 6690 } 6691 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6692 static const ARMCPRegInfo v84_pmmir = { 6693 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6694 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6695 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6696 .resetvalue = 0 6697 }; 6698 define_one_arm_cp_reg(cpu, &v84_pmmir); 6699 } 6700 } 6701 6702 /* We don't know until after realize whether there's a GICv3 6703 * attached, and that is what registers the gicv3 sysregs. 6704 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6705 * at runtime. 6706 */ 6707 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6708 { 6709 ARMCPU *cpu = env_archcpu(env); 6710 uint64_t pfr1 = cpu->isar.id_pfr1; 6711 6712 if (env->gicv3state) { 6713 pfr1 |= 1 << 28; 6714 } 6715 return pfr1; 6716 } 6717 6718 #ifndef CONFIG_USER_ONLY 6719 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6720 { 6721 ARMCPU *cpu = env_archcpu(env); 6722 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6723 6724 if (env->gicv3state) { 6725 pfr0 |= 1 << 24; 6726 } 6727 return pfr0; 6728 } 6729 #endif 6730 6731 /* Shared logic between LORID and the rest of the LOR* registers. 6732 * Secure state exclusion has already been dealt with. 6733 */ 6734 static CPAccessResult access_lor_ns(CPUARMState *env, 6735 const ARMCPRegInfo *ri, bool isread) 6736 { 6737 int el = arm_current_el(env); 6738 6739 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6740 return CP_ACCESS_TRAP_EL2; 6741 } 6742 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6743 return CP_ACCESS_TRAP_EL3; 6744 } 6745 return CP_ACCESS_OK; 6746 } 6747 6748 static CPAccessResult access_lor_other(CPUARMState *env, 6749 const ARMCPRegInfo *ri, bool isread) 6750 { 6751 if (arm_is_secure_below_el3(env)) { 6752 /* Access denied in secure mode. */ 6753 return CP_ACCESS_TRAP; 6754 } 6755 return access_lor_ns(env, ri, isread); 6756 } 6757 6758 /* 6759 * A trivial implementation of ARMv8.1-LOR leaves all of these 6760 * registers fixed at 0, which indicates that there are zero 6761 * supported Limited Ordering regions. 6762 */ 6763 static const ARMCPRegInfo lor_reginfo[] = { 6764 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6765 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6766 .access = PL1_RW, .accessfn = access_lor_other, 6767 .type = ARM_CP_CONST, .resetvalue = 0 }, 6768 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6769 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6770 .access = PL1_RW, .accessfn = access_lor_other, 6771 .type = ARM_CP_CONST, .resetvalue = 0 }, 6772 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6773 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6774 .access = PL1_RW, .accessfn = access_lor_other, 6775 .type = ARM_CP_CONST, .resetvalue = 0 }, 6776 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6777 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6778 .access = PL1_RW, .accessfn = access_lor_other, 6779 .type = ARM_CP_CONST, .resetvalue = 0 }, 6780 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6781 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6782 .access = PL1_R, .accessfn = access_lor_ns, 6783 .type = ARM_CP_CONST, .resetvalue = 0 }, 6784 REGINFO_SENTINEL 6785 }; 6786 6787 #ifdef TARGET_AARCH64 6788 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6789 bool isread) 6790 { 6791 int el = arm_current_el(env); 6792 6793 if (el < 2 && 6794 arm_feature(env, ARM_FEATURE_EL2) && 6795 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6796 return CP_ACCESS_TRAP_EL2; 6797 } 6798 if (el < 3 && 6799 arm_feature(env, ARM_FEATURE_EL3) && 6800 !(env->cp15.scr_el3 & SCR_APK)) { 6801 return CP_ACCESS_TRAP_EL3; 6802 } 6803 return CP_ACCESS_OK; 6804 } 6805 6806 static const ARMCPRegInfo pauth_reginfo[] = { 6807 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6808 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6809 .access = PL1_RW, .accessfn = access_pauth, 6810 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6811 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6812 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6813 .access = PL1_RW, .accessfn = access_pauth, 6814 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6815 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6816 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6817 .access = PL1_RW, .accessfn = access_pauth, 6818 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6819 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6820 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6821 .access = PL1_RW, .accessfn = access_pauth, 6822 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6823 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6824 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6825 .access = PL1_RW, .accessfn = access_pauth, 6826 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6827 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6828 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6829 .access = PL1_RW, .accessfn = access_pauth, 6830 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6831 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6832 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6833 .access = PL1_RW, .accessfn = access_pauth, 6834 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6835 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6836 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6837 .access = PL1_RW, .accessfn = access_pauth, 6838 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6839 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6840 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6841 .access = PL1_RW, .accessfn = access_pauth, 6842 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6843 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6844 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6845 .access = PL1_RW, .accessfn = access_pauth, 6846 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6847 REGINFO_SENTINEL 6848 }; 6849 6850 static const ARMCPRegInfo tlbirange_reginfo[] = { 6851 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6852 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6853 .access = PL1_W, .type = ARM_CP_NO_RAW, 6854 .writefn = tlbi_aa64_rvae1is_write }, 6855 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6856 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6857 .access = PL1_W, .type = ARM_CP_NO_RAW, 6858 .writefn = tlbi_aa64_rvae1is_write }, 6859 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6860 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6861 .access = PL1_W, .type = ARM_CP_NO_RAW, 6862 .writefn = tlbi_aa64_rvae1is_write }, 6863 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6864 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6865 .access = PL1_W, .type = ARM_CP_NO_RAW, 6866 .writefn = tlbi_aa64_rvae1is_write }, 6867 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6868 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6869 .access = PL1_W, .type = ARM_CP_NO_RAW, 6870 .writefn = tlbi_aa64_rvae1is_write }, 6871 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6872 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6873 .access = PL1_W, .type = ARM_CP_NO_RAW, 6874 .writefn = tlbi_aa64_rvae1is_write }, 6875 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6876 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6877 .access = PL1_W, .type = ARM_CP_NO_RAW, 6878 .writefn = tlbi_aa64_rvae1is_write }, 6879 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6880 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6881 .access = PL1_W, .type = ARM_CP_NO_RAW, 6882 .writefn = tlbi_aa64_rvae1is_write }, 6883 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6884 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6885 .access = PL1_W, .type = ARM_CP_NO_RAW, 6886 .writefn = tlbi_aa64_rvae1_write }, 6887 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6888 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6889 .access = PL1_W, .type = ARM_CP_NO_RAW, 6890 .writefn = tlbi_aa64_rvae1_write }, 6891 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6892 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6893 .access = PL1_W, .type = ARM_CP_NO_RAW, 6894 .writefn = tlbi_aa64_rvae1_write }, 6895 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6896 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6897 .access = PL1_W, .type = ARM_CP_NO_RAW, 6898 .writefn = tlbi_aa64_rvae1_write }, 6899 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6900 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6901 .access = PL2_W, .type = ARM_CP_NOP }, 6902 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6903 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6904 .access = PL2_W, .type = ARM_CP_NOP }, 6905 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6906 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6907 .access = PL2_W, .type = ARM_CP_NO_RAW, 6908 .writefn = tlbi_aa64_rvae2is_write }, 6909 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6910 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6911 .access = PL2_W, .type = ARM_CP_NO_RAW, 6912 .writefn = tlbi_aa64_rvae2is_write }, 6913 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6914 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6915 .access = PL2_W, .type = ARM_CP_NOP }, 6916 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6917 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6918 .access = PL2_W, .type = ARM_CP_NOP }, 6919 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6920 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6921 .access = PL2_W, .type = ARM_CP_NO_RAW, 6922 .writefn = tlbi_aa64_rvae2is_write }, 6923 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6924 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6925 .access = PL2_W, .type = ARM_CP_NO_RAW, 6926 .writefn = tlbi_aa64_rvae2is_write }, 6927 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6928 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6929 .access = PL2_W, .type = ARM_CP_NO_RAW, 6930 .writefn = tlbi_aa64_rvae2_write }, 6931 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6933 .access = PL2_W, .type = ARM_CP_NO_RAW, 6934 .writefn = tlbi_aa64_rvae2_write }, 6935 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6936 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6937 .access = PL3_W, .type = ARM_CP_NO_RAW, 6938 .writefn = tlbi_aa64_rvae3is_write }, 6939 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6940 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6941 .access = PL3_W, .type = ARM_CP_NO_RAW, 6942 .writefn = tlbi_aa64_rvae3is_write }, 6943 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6944 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6945 .access = PL3_W, .type = ARM_CP_NO_RAW, 6946 .writefn = tlbi_aa64_rvae3is_write }, 6947 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6948 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6949 .access = PL3_W, .type = ARM_CP_NO_RAW, 6950 .writefn = tlbi_aa64_rvae3is_write }, 6951 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6952 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6953 .access = PL3_W, .type = ARM_CP_NO_RAW, 6954 .writefn = tlbi_aa64_rvae3_write }, 6955 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6956 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6957 .access = PL3_W, .type = ARM_CP_NO_RAW, 6958 .writefn = tlbi_aa64_rvae3_write }, 6959 REGINFO_SENTINEL 6960 }; 6961 6962 static const ARMCPRegInfo tlbios_reginfo[] = { 6963 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6964 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6965 .access = PL1_W, .type = ARM_CP_NO_RAW, 6966 .writefn = tlbi_aa64_vmalle1is_write }, 6967 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6968 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6969 .access = PL1_W, .type = ARM_CP_NO_RAW, 6970 .writefn = tlbi_aa64_vmalle1is_write }, 6971 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 6972 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 6973 .access = PL2_W, .type = ARM_CP_NO_RAW, 6974 .writefn = tlbi_aa64_alle2is_write }, 6975 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 6976 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 6977 .access = PL2_W, .type = ARM_CP_NO_RAW, 6978 .writefn = tlbi_aa64_alle1is_write }, 6979 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 6980 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 6981 .access = PL2_W, .type = ARM_CP_NO_RAW, 6982 .writefn = tlbi_aa64_alle1is_write }, 6983 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 6984 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 6985 .access = PL2_W, .type = ARM_CP_NOP }, 6986 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 6987 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 6988 .access = PL2_W, .type = ARM_CP_NOP }, 6989 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6990 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 6991 .access = PL2_W, .type = ARM_CP_NOP }, 6992 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6993 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 6994 .access = PL2_W, .type = ARM_CP_NOP }, 6995 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 6996 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 6997 .access = PL3_W, .type = ARM_CP_NO_RAW, 6998 .writefn = tlbi_aa64_alle3is_write }, 6999 REGINFO_SENTINEL 7000 }; 7001 7002 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7003 { 7004 Error *err = NULL; 7005 uint64_t ret; 7006 7007 /* Success sets NZCV = 0000. */ 7008 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7009 7010 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7011 /* 7012 * ??? Failed, for unknown reasons in the crypto subsystem. 7013 * The best we can do is log the reason and return the 7014 * timed-out indication to the guest. There is no reason 7015 * we know to expect this failure to be transitory, so the 7016 * guest may well hang retrying the operation. 7017 */ 7018 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7019 ri->name, error_get_pretty(err)); 7020 error_free(err); 7021 7022 env->ZF = 0; /* NZCF = 0100 */ 7023 return 0; 7024 } 7025 return ret; 7026 } 7027 7028 /* We do not support re-seeding, so the two registers operate the same. */ 7029 static const ARMCPRegInfo rndr_reginfo[] = { 7030 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7031 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7032 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7033 .access = PL0_R, .readfn = rndr_readfn }, 7034 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7035 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7036 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7037 .access = PL0_R, .readfn = rndr_readfn }, 7038 REGINFO_SENTINEL 7039 }; 7040 7041 #ifndef CONFIG_USER_ONLY 7042 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7043 uint64_t value) 7044 { 7045 ARMCPU *cpu = env_archcpu(env); 7046 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7047 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7048 uint64_t vaddr_in = (uint64_t) value; 7049 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7050 void *haddr; 7051 int mem_idx = cpu_mmu_index(env, false); 7052 7053 /* This won't be crossing page boundaries */ 7054 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7055 if (haddr) { 7056 7057 ram_addr_t offset; 7058 MemoryRegion *mr; 7059 7060 /* RCU lock is already being held */ 7061 mr = memory_region_from_host(haddr, &offset); 7062 7063 if (mr) { 7064 memory_region_writeback(mr, offset, dline_size); 7065 } 7066 } 7067 } 7068 7069 static const ARMCPRegInfo dcpop_reg[] = { 7070 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7071 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7072 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7073 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7074 REGINFO_SENTINEL 7075 }; 7076 7077 static const ARMCPRegInfo dcpodp_reg[] = { 7078 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7079 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7080 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7081 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7082 REGINFO_SENTINEL 7083 }; 7084 #endif /*CONFIG_USER_ONLY*/ 7085 7086 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7087 bool isread) 7088 { 7089 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7090 return CP_ACCESS_TRAP_EL2; 7091 } 7092 7093 return CP_ACCESS_OK; 7094 } 7095 7096 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7097 bool isread) 7098 { 7099 int el = arm_current_el(env); 7100 7101 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7102 uint64_t hcr = arm_hcr_el2_eff(env); 7103 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7104 return CP_ACCESS_TRAP_EL2; 7105 } 7106 } 7107 if (el < 3 && 7108 arm_feature(env, ARM_FEATURE_EL3) && 7109 !(env->cp15.scr_el3 & SCR_ATA)) { 7110 return CP_ACCESS_TRAP_EL3; 7111 } 7112 return CP_ACCESS_OK; 7113 } 7114 7115 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7116 { 7117 return env->pstate & PSTATE_TCO; 7118 } 7119 7120 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7121 { 7122 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7123 } 7124 7125 static const ARMCPRegInfo mte_reginfo[] = { 7126 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7127 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7128 .access = PL1_RW, .accessfn = access_mte, 7129 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7130 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7131 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7132 .access = PL1_RW, .accessfn = access_mte, 7133 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7134 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7135 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7136 .access = PL2_RW, .accessfn = access_mte, 7137 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7138 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7139 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7140 .access = PL3_RW, 7141 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7142 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7143 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7144 .access = PL1_RW, .accessfn = access_mte, 7145 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7146 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7147 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7148 .access = PL1_RW, .accessfn = access_mte, 7149 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7150 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7151 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7152 .access = PL1_R, .accessfn = access_aa64_tid5, 7153 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7154 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7155 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7156 .type = ARM_CP_NO_RAW, 7157 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7158 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7159 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7160 .type = ARM_CP_NOP, .access = PL1_W, 7161 .accessfn = aa64_cacheop_poc_access }, 7162 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7163 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7164 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7165 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7166 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7167 .type = ARM_CP_NOP, .access = PL1_W, 7168 .accessfn = aa64_cacheop_poc_access }, 7169 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7170 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7171 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7172 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7173 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7174 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7175 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7176 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7177 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7178 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7179 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7180 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7181 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7182 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7183 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7184 REGINFO_SENTINEL 7185 }; 7186 7187 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7188 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7189 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7190 .type = ARM_CP_CONST, .access = PL0_RW, }, 7191 REGINFO_SENTINEL 7192 }; 7193 7194 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7195 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7196 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7197 .type = ARM_CP_NOP, .access = PL0_W, 7198 .accessfn = aa64_cacheop_poc_access }, 7199 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7200 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7201 .type = ARM_CP_NOP, .access = PL0_W, 7202 .accessfn = aa64_cacheop_poc_access }, 7203 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7204 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7205 .type = ARM_CP_NOP, .access = PL0_W, 7206 .accessfn = aa64_cacheop_poc_access }, 7207 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7208 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7209 .type = ARM_CP_NOP, .access = PL0_W, 7210 .accessfn = aa64_cacheop_poc_access }, 7211 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7212 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7213 .type = ARM_CP_NOP, .access = PL0_W, 7214 .accessfn = aa64_cacheop_poc_access }, 7215 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7216 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7217 .type = ARM_CP_NOP, .access = PL0_W, 7218 .accessfn = aa64_cacheop_poc_access }, 7219 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7220 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7221 .type = ARM_CP_NOP, .access = PL0_W, 7222 .accessfn = aa64_cacheop_poc_access }, 7223 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7224 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7225 .type = ARM_CP_NOP, .access = PL0_W, 7226 .accessfn = aa64_cacheop_poc_access }, 7227 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7228 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7229 .access = PL0_W, .type = ARM_CP_DC_GVA, 7230 #ifndef CONFIG_USER_ONLY 7231 /* Avoid overhead of an access check that always passes in user-mode */ 7232 .accessfn = aa64_zva_access, 7233 #endif 7234 }, 7235 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7236 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7237 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7238 #ifndef CONFIG_USER_ONLY 7239 /* Avoid overhead of an access check that always passes in user-mode */ 7240 .accessfn = aa64_zva_access, 7241 #endif 7242 }, 7243 REGINFO_SENTINEL 7244 }; 7245 7246 #endif 7247 7248 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7249 bool isread) 7250 { 7251 int el = arm_current_el(env); 7252 7253 if (el == 0) { 7254 uint64_t sctlr = arm_sctlr(env, el); 7255 if (!(sctlr & SCTLR_EnRCTX)) { 7256 return CP_ACCESS_TRAP; 7257 } 7258 } else if (el == 1) { 7259 uint64_t hcr = arm_hcr_el2_eff(env); 7260 if (hcr & HCR_NV) { 7261 return CP_ACCESS_TRAP_EL2; 7262 } 7263 } 7264 return CP_ACCESS_OK; 7265 } 7266 7267 static const ARMCPRegInfo predinv_reginfo[] = { 7268 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7269 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7270 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7271 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7272 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7273 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7274 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7275 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7276 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7277 /* 7278 * Note the AArch32 opcodes have a different OPC1. 7279 */ 7280 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7281 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7282 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7283 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7284 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7285 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7286 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7287 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7288 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7289 REGINFO_SENTINEL 7290 }; 7291 7292 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7293 { 7294 /* Read the high 32 bits of the current CCSIDR */ 7295 return extract64(ccsidr_read(env, ri), 32, 32); 7296 } 7297 7298 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7299 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7300 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7301 .access = PL1_R, 7302 .accessfn = access_aa64_tid2, 7303 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7304 REGINFO_SENTINEL 7305 }; 7306 7307 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7308 bool isread) 7309 { 7310 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7311 return CP_ACCESS_TRAP_EL2; 7312 } 7313 7314 return CP_ACCESS_OK; 7315 } 7316 7317 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7318 bool isread) 7319 { 7320 if (arm_feature(env, ARM_FEATURE_V8)) { 7321 return access_aa64_tid3(env, ri, isread); 7322 } 7323 7324 return CP_ACCESS_OK; 7325 } 7326 7327 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7328 bool isread) 7329 { 7330 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7331 return CP_ACCESS_TRAP_EL2; 7332 } 7333 7334 return CP_ACCESS_OK; 7335 } 7336 7337 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7338 const ARMCPRegInfo *ri, bool isread) 7339 { 7340 /* 7341 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7342 * in v7A, not in v8A. 7343 */ 7344 if (!arm_feature(env, ARM_FEATURE_V8) && 7345 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7346 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7347 return CP_ACCESS_TRAP_EL2; 7348 } 7349 return CP_ACCESS_OK; 7350 } 7351 7352 static const ARMCPRegInfo jazelle_regs[] = { 7353 { .name = "JIDR", 7354 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7355 .access = PL1_R, .accessfn = access_jazelle, 7356 .type = ARM_CP_CONST, .resetvalue = 0 }, 7357 { .name = "JOSCR", 7358 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7359 .accessfn = access_joscr_jmcr, 7360 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7361 { .name = "JMCR", 7362 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7363 .accessfn = access_joscr_jmcr, 7364 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7365 REGINFO_SENTINEL 7366 }; 7367 7368 static const ARMCPRegInfo vhe_reginfo[] = { 7369 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7370 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7371 .access = PL2_RW, 7372 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7373 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7374 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7375 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7376 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7377 #ifndef CONFIG_USER_ONLY 7378 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7379 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7380 .fieldoffset = 7381 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7382 .type = ARM_CP_IO, .access = PL2_RW, 7383 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7384 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7385 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7386 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7387 .resetfn = gt_hv_timer_reset, 7388 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7389 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7390 .type = ARM_CP_IO, 7391 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7392 .access = PL2_RW, 7393 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7394 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7395 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7396 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7397 .type = ARM_CP_IO | ARM_CP_ALIAS, 7398 .access = PL2_RW, .accessfn = e2h_access, 7399 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7400 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7401 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7402 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7403 .type = ARM_CP_IO | ARM_CP_ALIAS, 7404 .access = PL2_RW, .accessfn = e2h_access, 7405 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7406 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7407 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7408 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7409 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7410 .access = PL2_RW, .accessfn = e2h_access, 7411 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7412 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7413 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7414 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7415 .access = PL2_RW, .accessfn = e2h_access, 7416 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7417 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7418 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7419 .type = ARM_CP_IO | ARM_CP_ALIAS, 7420 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7421 .access = PL2_RW, .accessfn = e2h_access, 7422 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7423 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7424 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7425 .type = ARM_CP_IO | ARM_CP_ALIAS, 7426 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7427 .access = PL2_RW, .accessfn = e2h_access, 7428 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7429 #endif 7430 REGINFO_SENTINEL 7431 }; 7432 7433 #ifndef CONFIG_USER_ONLY 7434 static const ARMCPRegInfo ats1e1_reginfo[] = { 7435 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7436 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7437 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7438 .writefn = ats_write64 }, 7439 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7440 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7441 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7442 .writefn = ats_write64 }, 7443 REGINFO_SENTINEL 7444 }; 7445 7446 static const ARMCPRegInfo ats1cp_reginfo[] = { 7447 { .name = "ATS1CPRP", 7448 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7449 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7450 .writefn = ats_write }, 7451 { .name = "ATS1CPWP", 7452 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7453 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7454 .writefn = ats_write }, 7455 REGINFO_SENTINEL 7456 }; 7457 #endif 7458 7459 /* 7460 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7461 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7462 * is non-zero, which is never for ARMv7, optionally in ARMv8 7463 * and mandatorily for ARMv8.2 and up. 7464 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7465 * implementation is RAZ/WI we can ignore this detail, as we 7466 * do for ACTLR. 7467 */ 7468 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7469 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7470 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7471 .access = PL1_RW, .accessfn = access_tacr, 7472 .type = ARM_CP_CONST, .resetvalue = 0 }, 7473 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7474 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7475 .access = PL2_RW, .type = ARM_CP_CONST, 7476 .resetvalue = 0 }, 7477 REGINFO_SENTINEL 7478 }; 7479 7480 void register_cp_regs_for_features(ARMCPU *cpu) 7481 { 7482 /* Register all the coprocessor registers based on feature bits */ 7483 CPUARMState *env = &cpu->env; 7484 if (arm_feature(env, ARM_FEATURE_M)) { 7485 /* M profile has no coprocessor registers */ 7486 return; 7487 } 7488 7489 define_arm_cp_regs(cpu, cp_reginfo); 7490 if (!arm_feature(env, ARM_FEATURE_V8)) { 7491 /* Must go early as it is full of wildcards that may be 7492 * overridden by later definitions. 7493 */ 7494 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7495 } 7496 7497 if (arm_feature(env, ARM_FEATURE_V6)) { 7498 /* The ID registers all have impdef reset values */ 7499 ARMCPRegInfo v6_idregs[] = { 7500 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7501 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7502 .access = PL1_R, .type = ARM_CP_CONST, 7503 .accessfn = access_aa32_tid3, 7504 .resetvalue = cpu->isar.id_pfr0 }, 7505 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7506 * the value of the GIC field until after we define these regs. 7507 */ 7508 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7509 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7510 .access = PL1_R, .type = ARM_CP_NO_RAW, 7511 .accessfn = access_aa32_tid3, 7512 .readfn = id_pfr1_read, 7513 .writefn = arm_cp_write_ignore }, 7514 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7515 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7516 .access = PL1_R, .type = ARM_CP_CONST, 7517 .accessfn = access_aa32_tid3, 7518 .resetvalue = cpu->isar.id_dfr0 }, 7519 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7520 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7521 .access = PL1_R, .type = ARM_CP_CONST, 7522 .accessfn = access_aa32_tid3, 7523 .resetvalue = cpu->id_afr0 }, 7524 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7525 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7526 .access = PL1_R, .type = ARM_CP_CONST, 7527 .accessfn = access_aa32_tid3, 7528 .resetvalue = cpu->isar.id_mmfr0 }, 7529 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7530 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7531 .access = PL1_R, .type = ARM_CP_CONST, 7532 .accessfn = access_aa32_tid3, 7533 .resetvalue = cpu->isar.id_mmfr1 }, 7534 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7535 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7536 .access = PL1_R, .type = ARM_CP_CONST, 7537 .accessfn = access_aa32_tid3, 7538 .resetvalue = cpu->isar.id_mmfr2 }, 7539 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7540 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7541 .access = PL1_R, .type = ARM_CP_CONST, 7542 .accessfn = access_aa32_tid3, 7543 .resetvalue = cpu->isar.id_mmfr3 }, 7544 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7545 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7546 .access = PL1_R, .type = ARM_CP_CONST, 7547 .accessfn = access_aa32_tid3, 7548 .resetvalue = cpu->isar.id_isar0 }, 7549 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7550 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7551 .access = PL1_R, .type = ARM_CP_CONST, 7552 .accessfn = access_aa32_tid3, 7553 .resetvalue = cpu->isar.id_isar1 }, 7554 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7556 .access = PL1_R, .type = ARM_CP_CONST, 7557 .accessfn = access_aa32_tid3, 7558 .resetvalue = cpu->isar.id_isar2 }, 7559 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7561 .access = PL1_R, .type = ARM_CP_CONST, 7562 .accessfn = access_aa32_tid3, 7563 .resetvalue = cpu->isar.id_isar3 }, 7564 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7565 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7566 .access = PL1_R, .type = ARM_CP_CONST, 7567 .accessfn = access_aa32_tid3, 7568 .resetvalue = cpu->isar.id_isar4 }, 7569 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7570 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7571 .access = PL1_R, .type = ARM_CP_CONST, 7572 .accessfn = access_aa32_tid3, 7573 .resetvalue = cpu->isar.id_isar5 }, 7574 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7575 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7576 .access = PL1_R, .type = ARM_CP_CONST, 7577 .accessfn = access_aa32_tid3, 7578 .resetvalue = cpu->isar.id_mmfr4 }, 7579 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7580 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7581 .access = PL1_R, .type = ARM_CP_CONST, 7582 .accessfn = access_aa32_tid3, 7583 .resetvalue = cpu->isar.id_isar6 }, 7584 REGINFO_SENTINEL 7585 }; 7586 define_arm_cp_regs(cpu, v6_idregs); 7587 define_arm_cp_regs(cpu, v6_cp_reginfo); 7588 } else { 7589 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7590 } 7591 if (arm_feature(env, ARM_FEATURE_V6K)) { 7592 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7593 } 7594 if (arm_feature(env, ARM_FEATURE_V7MP) && 7595 !arm_feature(env, ARM_FEATURE_PMSA)) { 7596 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7597 } 7598 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7599 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7600 } 7601 if (arm_feature(env, ARM_FEATURE_V7)) { 7602 ARMCPRegInfo clidr = { 7603 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7604 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7605 .access = PL1_R, .type = ARM_CP_CONST, 7606 .accessfn = access_aa64_tid2, 7607 .resetvalue = cpu->clidr 7608 }; 7609 define_one_arm_cp_reg(cpu, &clidr); 7610 define_arm_cp_regs(cpu, v7_cp_reginfo); 7611 define_debug_regs(cpu); 7612 define_pmu_regs(cpu); 7613 } else { 7614 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7615 } 7616 if (arm_feature(env, ARM_FEATURE_V8)) { 7617 /* AArch64 ID registers, which all have impdef reset values. 7618 * Note that within the ID register ranges the unused slots 7619 * must all RAZ, not UNDEF; future architecture versions may 7620 * define new registers here. 7621 */ 7622 ARMCPRegInfo v8_idregs[] = { 7623 /* 7624 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7625 * emulation because we don't know the right value for the 7626 * GIC field until after we define these regs. 7627 */ 7628 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7629 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7630 .access = PL1_R, 7631 #ifdef CONFIG_USER_ONLY 7632 .type = ARM_CP_CONST, 7633 .resetvalue = cpu->isar.id_aa64pfr0 7634 #else 7635 .type = ARM_CP_NO_RAW, 7636 .accessfn = access_aa64_tid3, 7637 .readfn = id_aa64pfr0_read, 7638 .writefn = arm_cp_write_ignore 7639 #endif 7640 }, 7641 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7642 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7643 .access = PL1_R, .type = ARM_CP_CONST, 7644 .accessfn = access_aa64_tid3, 7645 .resetvalue = cpu->isar.id_aa64pfr1}, 7646 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7648 .access = PL1_R, .type = ARM_CP_CONST, 7649 .accessfn = access_aa64_tid3, 7650 .resetvalue = 0 }, 7651 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7653 .access = PL1_R, .type = ARM_CP_CONST, 7654 .accessfn = access_aa64_tid3, 7655 .resetvalue = 0 }, 7656 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7657 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7658 .access = PL1_R, .type = ARM_CP_CONST, 7659 .accessfn = access_aa64_tid3, 7660 .resetvalue = cpu->isar.id_aa64zfr0 }, 7661 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7662 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7663 .access = PL1_R, .type = ARM_CP_CONST, 7664 .accessfn = access_aa64_tid3, 7665 .resetvalue = 0 }, 7666 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7667 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7668 .access = PL1_R, .type = ARM_CP_CONST, 7669 .accessfn = access_aa64_tid3, 7670 .resetvalue = 0 }, 7671 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7672 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7673 .access = PL1_R, .type = ARM_CP_CONST, 7674 .accessfn = access_aa64_tid3, 7675 .resetvalue = 0 }, 7676 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7677 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7678 .access = PL1_R, .type = ARM_CP_CONST, 7679 .accessfn = access_aa64_tid3, 7680 .resetvalue = cpu->isar.id_aa64dfr0 }, 7681 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7682 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7683 .access = PL1_R, .type = ARM_CP_CONST, 7684 .accessfn = access_aa64_tid3, 7685 .resetvalue = cpu->isar.id_aa64dfr1 }, 7686 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7688 .access = PL1_R, .type = ARM_CP_CONST, 7689 .accessfn = access_aa64_tid3, 7690 .resetvalue = 0 }, 7691 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7692 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7693 .access = PL1_R, .type = ARM_CP_CONST, 7694 .accessfn = access_aa64_tid3, 7695 .resetvalue = 0 }, 7696 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7697 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7698 .access = PL1_R, .type = ARM_CP_CONST, 7699 .accessfn = access_aa64_tid3, 7700 .resetvalue = cpu->id_aa64afr0 }, 7701 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7702 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7703 .access = PL1_R, .type = ARM_CP_CONST, 7704 .accessfn = access_aa64_tid3, 7705 .resetvalue = cpu->id_aa64afr1 }, 7706 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7708 .access = PL1_R, .type = ARM_CP_CONST, 7709 .accessfn = access_aa64_tid3, 7710 .resetvalue = 0 }, 7711 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7712 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7713 .access = PL1_R, .type = ARM_CP_CONST, 7714 .accessfn = access_aa64_tid3, 7715 .resetvalue = 0 }, 7716 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7717 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7718 .access = PL1_R, .type = ARM_CP_CONST, 7719 .accessfn = access_aa64_tid3, 7720 .resetvalue = cpu->isar.id_aa64isar0 }, 7721 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7723 .access = PL1_R, .type = ARM_CP_CONST, 7724 .accessfn = access_aa64_tid3, 7725 .resetvalue = cpu->isar.id_aa64isar1 }, 7726 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7727 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7728 .access = PL1_R, .type = ARM_CP_CONST, 7729 .accessfn = access_aa64_tid3, 7730 .resetvalue = 0 }, 7731 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7732 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7733 .access = PL1_R, .type = ARM_CP_CONST, 7734 .accessfn = access_aa64_tid3, 7735 .resetvalue = 0 }, 7736 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7737 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7738 .access = PL1_R, .type = ARM_CP_CONST, 7739 .accessfn = access_aa64_tid3, 7740 .resetvalue = 0 }, 7741 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7743 .access = PL1_R, .type = ARM_CP_CONST, 7744 .accessfn = access_aa64_tid3, 7745 .resetvalue = 0 }, 7746 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7748 .access = PL1_R, .type = ARM_CP_CONST, 7749 .accessfn = access_aa64_tid3, 7750 .resetvalue = 0 }, 7751 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7753 .access = PL1_R, .type = ARM_CP_CONST, 7754 .accessfn = access_aa64_tid3, 7755 .resetvalue = 0 }, 7756 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7757 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7758 .access = PL1_R, .type = ARM_CP_CONST, 7759 .accessfn = access_aa64_tid3, 7760 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7761 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7763 .access = PL1_R, .type = ARM_CP_CONST, 7764 .accessfn = access_aa64_tid3, 7765 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7766 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7768 .access = PL1_R, .type = ARM_CP_CONST, 7769 .accessfn = access_aa64_tid3, 7770 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7771 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7773 .access = PL1_R, .type = ARM_CP_CONST, 7774 .accessfn = access_aa64_tid3, 7775 .resetvalue = 0 }, 7776 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7778 .access = PL1_R, .type = ARM_CP_CONST, 7779 .accessfn = access_aa64_tid3, 7780 .resetvalue = 0 }, 7781 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7783 .access = PL1_R, .type = ARM_CP_CONST, 7784 .accessfn = access_aa64_tid3, 7785 .resetvalue = 0 }, 7786 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7788 .access = PL1_R, .type = ARM_CP_CONST, 7789 .accessfn = access_aa64_tid3, 7790 .resetvalue = 0 }, 7791 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7793 .access = PL1_R, .type = ARM_CP_CONST, 7794 .accessfn = access_aa64_tid3, 7795 .resetvalue = 0 }, 7796 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7798 .access = PL1_R, .type = ARM_CP_CONST, 7799 .accessfn = access_aa64_tid3, 7800 .resetvalue = cpu->isar.mvfr0 }, 7801 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7803 .access = PL1_R, .type = ARM_CP_CONST, 7804 .accessfn = access_aa64_tid3, 7805 .resetvalue = cpu->isar.mvfr1 }, 7806 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7808 .access = PL1_R, .type = ARM_CP_CONST, 7809 .accessfn = access_aa64_tid3, 7810 .resetvalue = cpu->isar.mvfr2 }, 7811 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7813 .access = PL1_R, .type = ARM_CP_CONST, 7814 .accessfn = access_aa64_tid3, 7815 .resetvalue = 0 }, 7816 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7817 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7818 .access = PL1_R, .type = ARM_CP_CONST, 7819 .accessfn = access_aa64_tid3, 7820 .resetvalue = cpu->isar.id_pfr2 }, 7821 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7823 .access = PL1_R, .type = ARM_CP_CONST, 7824 .accessfn = access_aa64_tid3, 7825 .resetvalue = 0 }, 7826 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7827 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7828 .access = PL1_R, .type = ARM_CP_CONST, 7829 .accessfn = access_aa64_tid3, 7830 .resetvalue = 0 }, 7831 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7833 .access = PL1_R, .type = ARM_CP_CONST, 7834 .accessfn = access_aa64_tid3, 7835 .resetvalue = 0 }, 7836 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7837 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7838 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7839 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7840 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7841 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7842 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7843 .resetvalue = cpu->pmceid0 }, 7844 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7845 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7846 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7847 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7848 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7849 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7850 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7851 .resetvalue = cpu->pmceid1 }, 7852 REGINFO_SENTINEL 7853 }; 7854 #ifdef CONFIG_USER_ONLY 7855 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7856 { .name = "ID_AA64PFR0_EL1", 7857 .exported_bits = 0x000f000f00ff0000, 7858 .fixed_bits = 0x0000000000000011 }, 7859 { .name = "ID_AA64PFR1_EL1", 7860 .exported_bits = 0x00000000000000f0 }, 7861 { .name = "ID_AA64PFR*_EL1_RESERVED", 7862 .is_glob = true }, 7863 { .name = "ID_AA64ZFR0_EL1" }, 7864 { .name = "ID_AA64MMFR0_EL1", 7865 .fixed_bits = 0x00000000ff000000 }, 7866 { .name = "ID_AA64MMFR1_EL1" }, 7867 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7868 .is_glob = true }, 7869 { .name = "ID_AA64DFR0_EL1", 7870 .fixed_bits = 0x0000000000000006 }, 7871 { .name = "ID_AA64DFR1_EL1" }, 7872 { .name = "ID_AA64DFR*_EL1_RESERVED", 7873 .is_glob = true }, 7874 { .name = "ID_AA64AFR*", 7875 .is_glob = true }, 7876 { .name = "ID_AA64ISAR0_EL1", 7877 .exported_bits = 0x00fffffff0fffff0 }, 7878 { .name = "ID_AA64ISAR1_EL1", 7879 .exported_bits = 0x000000f0ffffffff }, 7880 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7881 .is_glob = true }, 7882 REGUSERINFO_SENTINEL 7883 }; 7884 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7885 #endif 7886 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7887 if (!arm_feature(env, ARM_FEATURE_EL3) && 7888 !arm_feature(env, ARM_FEATURE_EL2)) { 7889 ARMCPRegInfo rvbar = { 7890 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7891 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7892 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7893 }; 7894 define_one_arm_cp_reg(cpu, &rvbar); 7895 } 7896 define_arm_cp_regs(cpu, v8_idregs); 7897 define_arm_cp_regs(cpu, v8_cp_reginfo); 7898 } 7899 if (arm_feature(env, ARM_FEATURE_EL2)) { 7900 uint64_t vmpidr_def = mpidr_read_val(env); 7901 ARMCPRegInfo vpidr_regs[] = { 7902 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7903 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7904 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7905 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7906 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7907 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7908 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7909 .access = PL2_RW, .resetvalue = cpu->midr, 7910 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7911 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7912 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7913 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7914 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7915 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7916 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7917 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7918 .access = PL2_RW, 7919 .resetvalue = vmpidr_def, 7920 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7921 REGINFO_SENTINEL 7922 }; 7923 define_arm_cp_regs(cpu, vpidr_regs); 7924 define_arm_cp_regs(cpu, el2_cp_reginfo); 7925 if (arm_feature(env, ARM_FEATURE_V8)) { 7926 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7927 } 7928 if (cpu_isar_feature(aa64_sel2, cpu)) { 7929 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7930 } 7931 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7932 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7933 ARMCPRegInfo rvbar = { 7934 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7935 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7936 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7937 }; 7938 define_one_arm_cp_reg(cpu, &rvbar); 7939 } 7940 } else { 7941 /* If EL2 is missing but higher ELs are enabled, we need to 7942 * register the no_el2 reginfos. 7943 */ 7944 if (arm_feature(env, ARM_FEATURE_EL3)) { 7945 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 7946 * of MIDR_EL1 and MPIDR_EL1. 7947 */ 7948 ARMCPRegInfo vpidr_regs[] = { 7949 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7950 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7951 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7952 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 7953 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7954 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7955 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7956 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7957 .type = ARM_CP_NO_RAW, 7958 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 7959 REGINFO_SENTINEL 7960 }; 7961 define_arm_cp_regs(cpu, vpidr_regs); 7962 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 7963 if (arm_feature(env, ARM_FEATURE_V8)) { 7964 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 7965 } 7966 } 7967 } 7968 if (arm_feature(env, ARM_FEATURE_EL3)) { 7969 define_arm_cp_regs(cpu, el3_cp_reginfo); 7970 ARMCPRegInfo el3_regs[] = { 7971 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7972 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7973 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 7974 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7975 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7976 .access = PL3_RW, 7977 .raw_writefn = raw_write, .writefn = sctlr_write, 7978 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7979 .resetvalue = cpu->reset_sctlr }, 7980 REGINFO_SENTINEL 7981 }; 7982 7983 define_arm_cp_regs(cpu, el3_regs); 7984 } 7985 /* The behaviour of NSACR is sufficiently various that we don't 7986 * try to describe it in a single reginfo: 7987 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7988 * reads as constant 0xc00 from NS EL1 and NS EL2 7989 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7990 * if v7 without EL3, register doesn't exist 7991 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7992 */ 7993 if (arm_feature(env, ARM_FEATURE_EL3)) { 7994 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7995 ARMCPRegInfo nsacr = { 7996 .name = "NSACR", .type = ARM_CP_CONST, 7997 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7998 .access = PL1_RW, .accessfn = nsacr_access, 7999 .resetvalue = 0xc00 8000 }; 8001 define_one_arm_cp_reg(cpu, &nsacr); 8002 } else { 8003 ARMCPRegInfo nsacr = { 8004 .name = "NSACR", 8005 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8006 .access = PL3_RW | PL1_R, 8007 .resetvalue = 0, 8008 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8009 }; 8010 define_one_arm_cp_reg(cpu, &nsacr); 8011 } 8012 } else { 8013 if (arm_feature(env, ARM_FEATURE_V8)) { 8014 ARMCPRegInfo nsacr = { 8015 .name = "NSACR", .type = ARM_CP_CONST, 8016 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8017 .access = PL1_R, 8018 .resetvalue = 0xc00 8019 }; 8020 define_one_arm_cp_reg(cpu, &nsacr); 8021 } 8022 } 8023 8024 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8025 if (arm_feature(env, ARM_FEATURE_V6)) { 8026 /* PMSAv6 not implemented */ 8027 assert(arm_feature(env, ARM_FEATURE_V7)); 8028 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8029 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8030 } else { 8031 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8032 } 8033 } else { 8034 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8035 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8036 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8037 if (cpu_isar_feature(aa32_hpd, cpu)) { 8038 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8039 } 8040 } 8041 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8042 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8043 } 8044 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8045 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8046 } 8047 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8048 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8049 } 8050 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8051 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8052 } 8053 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8054 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8055 } 8056 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8057 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8058 } 8059 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8060 define_arm_cp_regs(cpu, omap_cp_reginfo); 8061 } 8062 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8063 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8064 } 8065 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8066 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8067 } 8068 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8069 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8070 } 8071 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8072 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8073 } 8074 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8075 define_arm_cp_regs(cpu, jazelle_regs); 8076 } 8077 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8078 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8079 * be read-only (ie write causes UNDEF exception). 8080 */ 8081 { 8082 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8083 /* Pre-v8 MIDR space. 8084 * Note that the MIDR isn't a simple constant register because 8085 * of the TI925 behaviour where writes to another register can 8086 * cause the MIDR value to change. 8087 * 8088 * Unimplemented registers in the c15 0 0 0 space default to 8089 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8090 * and friends override accordingly. 8091 */ 8092 { .name = "MIDR", 8093 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8094 .access = PL1_R, .resetvalue = cpu->midr, 8095 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8096 .readfn = midr_read, 8097 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8098 .type = ARM_CP_OVERRIDE }, 8099 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8100 { .name = "DUMMY", 8101 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8102 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8103 { .name = "DUMMY", 8104 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8105 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8106 { .name = "DUMMY", 8107 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8108 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8109 { .name = "DUMMY", 8110 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8111 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8112 { .name = "DUMMY", 8113 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8114 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8115 REGINFO_SENTINEL 8116 }; 8117 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8118 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8119 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8120 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8121 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8122 .readfn = midr_read }, 8123 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8124 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8125 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8126 .access = PL1_R, .resetvalue = cpu->midr }, 8127 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8128 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8129 .access = PL1_R, .resetvalue = cpu->midr }, 8130 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8131 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8132 .access = PL1_R, 8133 .accessfn = access_aa64_tid1, 8134 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8135 REGINFO_SENTINEL 8136 }; 8137 ARMCPRegInfo id_cp_reginfo[] = { 8138 /* These are common to v8 and pre-v8 */ 8139 { .name = "CTR", 8140 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8141 .access = PL1_R, .accessfn = ctr_el0_access, 8142 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8143 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8144 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8145 .access = PL0_R, .accessfn = ctr_el0_access, 8146 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8147 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8148 { .name = "TCMTR", 8149 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8150 .access = PL1_R, 8151 .accessfn = access_aa32_tid1, 8152 .type = ARM_CP_CONST, .resetvalue = 0 }, 8153 REGINFO_SENTINEL 8154 }; 8155 /* TLBTR is specific to VMSA */ 8156 ARMCPRegInfo id_tlbtr_reginfo = { 8157 .name = "TLBTR", 8158 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8159 .access = PL1_R, 8160 .accessfn = access_aa32_tid1, 8161 .type = ARM_CP_CONST, .resetvalue = 0, 8162 }; 8163 /* MPUIR is specific to PMSA V6+ */ 8164 ARMCPRegInfo id_mpuir_reginfo = { 8165 .name = "MPUIR", 8166 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8167 .access = PL1_R, .type = ARM_CP_CONST, 8168 .resetvalue = cpu->pmsav7_dregion << 8 8169 }; 8170 ARMCPRegInfo crn0_wi_reginfo = { 8171 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8172 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8173 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8174 }; 8175 #ifdef CONFIG_USER_ONLY 8176 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8177 { .name = "MIDR_EL1", 8178 .exported_bits = 0x00000000ffffffff }, 8179 { .name = "REVIDR_EL1" }, 8180 REGUSERINFO_SENTINEL 8181 }; 8182 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8183 #endif 8184 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8185 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8186 ARMCPRegInfo *r; 8187 /* Register the blanket "writes ignored" value first to cover the 8188 * whole space. Then update the specific ID registers to allow write 8189 * access, so that they ignore writes rather than causing them to 8190 * UNDEF. 8191 */ 8192 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8193 for (r = id_pre_v8_midr_cp_reginfo; 8194 r->type != ARM_CP_SENTINEL; r++) { 8195 r->access = PL1_RW; 8196 } 8197 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8198 r->access = PL1_RW; 8199 } 8200 id_mpuir_reginfo.access = PL1_RW; 8201 id_tlbtr_reginfo.access = PL1_RW; 8202 } 8203 if (arm_feature(env, ARM_FEATURE_V8)) { 8204 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8205 } else { 8206 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8207 } 8208 define_arm_cp_regs(cpu, id_cp_reginfo); 8209 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8210 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8211 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8212 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8213 } 8214 } 8215 8216 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8217 ARMCPRegInfo mpidr_cp_reginfo[] = { 8218 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8219 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8220 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8221 REGINFO_SENTINEL 8222 }; 8223 #ifdef CONFIG_USER_ONLY 8224 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8225 { .name = "MPIDR_EL1", 8226 .fixed_bits = 0x0000000080000000 }, 8227 REGUSERINFO_SENTINEL 8228 }; 8229 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8230 #endif 8231 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8232 } 8233 8234 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8235 ARMCPRegInfo auxcr_reginfo[] = { 8236 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8237 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8238 .access = PL1_RW, .accessfn = access_tacr, 8239 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8240 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8241 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8242 .access = PL2_RW, .type = ARM_CP_CONST, 8243 .resetvalue = 0 }, 8244 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8245 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8246 .access = PL3_RW, .type = ARM_CP_CONST, 8247 .resetvalue = 0 }, 8248 REGINFO_SENTINEL 8249 }; 8250 define_arm_cp_regs(cpu, auxcr_reginfo); 8251 if (cpu_isar_feature(aa32_ac2, cpu)) { 8252 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8253 } 8254 } 8255 8256 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8257 /* 8258 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8259 * There are two flavours: 8260 * (1) older 32-bit only cores have a simple 32-bit CBAR 8261 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8262 * 32-bit register visible to AArch32 at a different encoding 8263 * to the "flavour 1" register and with the bits rearranged to 8264 * be able to squash a 64-bit address into the 32-bit view. 8265 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8266 * in future if we support AArch32-only configs of some of the 8267 * AArch64 cores we might need to add a specific feature flag 8268 * to indicate cores with "flavour 2" CBAR. 8269 */ 8270 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8271 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8272 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8273 | extract64(cpu->reset_cbar, 32, 12); 8274 ARMCPRegInfo cbar_reginfo[] = { 8275 { .name = "CBAR", 8276 .type = ARM_CP_CONST, 8277 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8278 .access = PL1_R, .resetvalue = cbar32 }, 8279 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8280 .type = ARM_CP_CONST, 8281 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8282 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8283 REGINFO_SENTINEL 8284 }; 8285 /* We don't implement a r/w 64 bit CBAR currently */ 8286 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8287 define_arm_cp_regs(cpu, cbar_reginfo); 8288 } else { 8289 ARMCPRegInfo cbar = { 8290 .name = "CBAR", 8291 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8292 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8293 .fieldoffset = offsetof(CPUARMState, 8294 cp15.c15_config_base_address) 8295 }; 8296 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8297 cbar.access = PL1_R; 8298 cbar.fieldoffset = 0; 8299 cbar.type = ARM_CP_CONST; 8300 } 8301 define_one_arm_cp_reg(cpu, &cbar); 8302 } 8303 } 8304 8305 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8306 ARMCPRegInfo vbar_cp_reginfo[] = { 8307 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8308 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8309 .access = PL1_RW, .writefn = vbar_write, 8310 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8311 offsetof(CPUARMState, cp15.vbar_ns) }, 8312 .resetvalue = 0 }, 8313 REGINFO_SENTINEL 8314 }; 8315 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8316 } 8317 8318 /* Generic registers whose values depend on the implementation */ 8319 { 8320 ARMCPRegInfo sctlr = { 8321 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8322 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8323 .access = PL1_RW, .accessfn = access_tvm_trvm, 8324 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8325 offsetof(CPUARMState, cp15.sctlr_ns) }, 8326 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8327 .raw_writefn = raw_write, 8328 }; 8329 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8330 /* Normally we would always end the TB on an SCTLR write, but Linux 8331 * arch/arm/mach-pxa/sleep.S expects two instructions following 8332 * an MMU enable to execute from cache. Imitate this behaviour. 8333 */ 8334 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8335 } 8336 define_one_arm_cp_reg(cpu, &sctlr); 8337 } 8338 8339 if (cpu_isar_feature(aa64_lor, cpu)) { 8340 define_arm_cp_regs(cpu, lor_reginfo); 8341 } 8342 if (cpu_isar_feature(aa64_pan, cpu)) { 8343 define_one_arm_cp_reg(cpu, &pan_reginfo); 8344 } 8345 #ifndef CONFIG_USER_ONLY 8346 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8347 define_arm_cp_regs(cpu, ats1e1_reginfo); 8348 } 8349 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8350 define_arm_cp_regs(cpu, ats1cp_reginfo); 8351 } 8352 #endif 8353 if (cpu_isar_feature(aa64_uao, cpu)) { 8354 define_one_arm_cp_reg(cpu, &uao_reginfo); 8355 } 8356 8357 if (cpu_isar_feature(aa64_dit, cpu)) { 8358 define_one_arm_cp_reg(cpu, &dit_reginfo); 8359 } 8360 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8361 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8362 } 8363 8364 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8365 define_arm_cp_regs(cpu, vhe_reginfo); 8366 } 8367 8368 if (cpu_isar_feature(aa64_sve, cpu)) { 8369 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8370 if (arm_feature(env, ARM_FEATURE_EL2)) { 8371 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8372 } else { 8373 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8374 } 8375 if (arm_feature(env, ARM_FEATURE_EL3)) { 8376 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8377 } 8378 } 8379 8380 #ifdef TARGET_AARCH64 8381 if (cpu_isar_feature(aa64_pauth, cpu)) { 8382 define_arm_cp_regs(cpu, pauth_reginfo); 8383 } 8384 if (cpu_isar_feature(aa64_rndr, cpu)) { 8385 define_arm_cp_regs(cpu, rndr_reginfo); 8386 } 8387 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8388 define_arm_cp_regs(cpu, tlbirange_reginfo); 8389 } 8390 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8391 define_arm_cp_regs(cpu, tlbios_reginfo); 8392 } 8393 #ifndef CONFIG_USER_ONLY 8394 /* Data Cache clean instructions up to PoP */ 8395 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8396 define_one_arm_cp_reg(cpu, dcpop_reg); 8397 8398 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8399 define_one_arm_cp_reg(cpu, dcpodp_reg); 8400 } 8401 } 8402 #endif /*CONFIG_USER_ONLY*/ 8403 8404 /* 8405 * If full MTE is enabled, add all of the system registers. 8406 * If only "instructions available at EL0" are enabled, 8407 * then define only a RAZ/WI version of PSTATE.TCO. 8408 */ 8409 if (cpu_isar_feature(aa64_mte, cpu)) { 8410 define_arm_cp_regs(cpu, mte_reginfo); 8411 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8412 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8413 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8414 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8415 } 8416 #endif 8417 8418 if (cpu_isar_feature(any_predinv, cpu)) { 8419 define_arm_cp_regs(cpu, predinv_reginfo); 8420 } 8421 8422 if (cpu_isar_feature(any_ccidx, cpu)) { 8423 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8424 } 8425 8426 #ifndef CONFIG_USER_ONLY 8427 /* 8428 * Register redirections and aliases must be done last, 8429 * after the registers from the other extensions have been defined. 8430 */ 8431 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8432 define_arm_vh_e2h_redirects_aliases(cpu); 8433 } 8434 #endif 8435 } 8436 8437 /* Sort alphabetically by type name, except for "any". */ 8438 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8439 { 8440 ObjectClass *class_a = (ObjectClass *)a; 8441 ObjectClass *class_b = (ObjectClass *)b; 8442 const char *name_a, *name_b; 8443 8444 name_a = object_class_get_name(class_a); 8445 name_b = object_class_get_name(class_b); 8446 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8447 return 1; 8448 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8449 return -1; 8450 } else { 8451 return strcmp(name_a, name_b); 8452 } 8453 } 8454 8455 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8456 { 8457 ObjectClass *oc = data; 8458 const char *typename; 8459 char *name; 8460 8461 typename = object_class_get_name(oc); 8462 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8463 qemu_printf(" %s\n", name); 8464 g_free(name); 8465 } 8466 8467 void arm_cpu_list(void) 8468 { 8469 GSList *list; 8470 8471 list = object_class_get_list(TYPE_ARM_CPU, false); 8472 list = g_slist_sort(list, arm_cpu_list_compare); 8473 qemu_printf("Available CPUs:\n"); 8474 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8475 g_slist_free(list); 8476 } 8477 8478 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8479 { 8480 ObjectClass *oc = data; 8481 CpuDefinitionInfoList **cpu_list = user_data; 8482 CpuDefinitionInfo *info; 8483 const char *typename; 8484 8485 typename = object_class_get_name(oc); 8486 info = g_malloc0(sizeof(*info)); 8487 info->name = g_strndup(typename, 8488 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8489 info->q_typename = g_strdup(typename); 8490 8491 QAPI_LIST_PREPEND(*cpu_list, info); 8492 } 8493 8494 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8495 { 8496 CpuDefinitionInfoList *cpu_list = NULL; 8497 GSList *list; 8498 8499 list = object_class_get_list(TYPE_ARM_CPU, false); 8500 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8501 g_slist_free(list); 8502 8503 return cpu_list; 8504 } 8505 8506 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8507 void *opaque, int state, int secstate, 8508 int crm, int opc1, int opc2, 8509 const char *name) 8510 { 8511 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8512 * add a single reginfo struct to the hash table. 8513 */ 8514 uint32_t *key = g_new(uint32_t, 1); 8515 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8516 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8517 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8518 8519 r2->name = g_strdup(name); 8520 /* Reset the secure state to the specific incoming state. This is 8521 * necessary as the register may have been defined with both states. 8522 */ 8523 r2->secure = secstate; 8524 8525 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8526 /* Register is banked (using both entries in array). 8527 * Overwriting fieldoffset as the array is only used to define 8528 * banked registers but later only fieldoffset is used. 8529 */ 8530 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8531 } 8532 8533 if (state == ARM_CP_STATE_AA32) { 8534 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8535 /* If the register is banked then we don't need to migrate or 8536 * reset the 32-bit instance in certain cases: 8537 * 8538 * 1) If the register has both 32-bit and 64-bit instances then we 8539 * can count on the 64-bit instance taking care of the 8540 * non-secure bank. 8541 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8542 * taking care of the secure bank. This requires that separate 8543 * 32 and 64-bit definitions are provided. 8544 */ 8545 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8546 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8547 r2->type |= ARM_CP_ALIAS; 8548 } 8549 } else if ((secstate != r->secure) && !ns) { 8550 /* The register is not banked so we only want to allow migration of 8551 * the non-secure instance. 8552 */ 8553 r2->type |= ARM_CP_ALIAS; 8554 } 8555 8556 if (r->state == ARM_CP_STATE_BOTH) { 8557 /* We assume it is a cp15 register if the .cp field is left unset. 8558 */ 8559 if (r2->cp == 0) { 8560 r2->cp = 15; 8561 } 8562 8563 #ifdef HOST_WORDS_BIGENDIAN 8564 if (r2->fieldoffset) { 8565 r2->fieldoffset += sizeof(uint32_t); 8566 } 8567 #endif 8568 } 8569 } 8570 if (state == ARM_CP_STATE_AA64) { 8571 /* To allow abbreviation of ARMCPRegInfo 8572 * definitions, we treat cp == 0 as equivalent to 8573 * the value for "standard guest-visible sysreg". 8574 * STATE_BOTH definitions are also always "standard 8575 * sysreg" in their AArch64 view (the .cp value may 8576 * be non-zero for the benefit of the AArch32 view). 8577 */ 8578 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8579 r2->cp = CP_REG_ARM64_SYSREG_CP; 8580 } 8581 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8582 r2->opc0, opc1, opc2); 8583 } else { 8584 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8585 } 8586 if (opaque) { 8587 r2->opaque = opaque; 8588 } 8589 /* reginfo passed to helpers is correct for the actual access, 8590 * and is never ARM_CP_STATE_BOTH: 8591 */ 8592 r2->state = state; 8593 /* Make sure reginfo passed to helpers for wildcarded regs 8594 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8595 */ 8596 r2->crm = crm; 8597 r2->opc1 = opc1; 8598 r2->opc2 = opc2; 8599 /* By convention, for wildcarded registers only the first 8600 * entry is used for migration; the others are marked as 8601 * ALIAS so we don't try to transfer the register 8602 * multiple times. Special registers (ie NOP/WFI) are 8603 * never migratable and not even raw-accessible. 8604 */ 8605 if ((r->type & ARM_CP_SPECIAL)) { 8606 r2->type |= ARM_CP_NO_RAW; 8607 } 8608 if (((r->crm == CP_ANY) && crm != 0) || 8609 ((r->opc1 == CP_ANY) && opc1 != 0) || 8610 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8611 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8612 } 8613 8614 /* Check that raw accesses are either forbidden or handled. Note that 8615 * we can't assert this earlier because the setup of fieldoffset for 8616 * banked registers has to be done first. 8617 */ 8618 if (!(r2->type & ARM_CP_NO_RAW)) { 8619 assert(!raw_accessors_invalid(r2)); 8620 } 8621 8622 /* Overriding of an existing definition must be explicitly 8623 * requested. 8624 */ 8625 if (!(r->type & ARM_CP_OVERRIDE)) { 8626 ARMCPRegInfo *oldreg; 8627 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8628 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8629 fprintf(stderr, "Register redefined: cp=%d %d bit " 8630 "crn=%d crm=%d opc1=%d opc2=%d, " 8631 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8632 r2->crn, r2->crm, r2->opc1, r2->opc2, 8633 oldreg->name, r2->name); 8634 g_assert_not_reached(); 8635 } 8636 } 8637 g_hash_table_insert(cpu->cp_regs, key, r2); 8638 } 8639 8640 8641 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8642 const ARMCPRegInfo *r, void *opaque) 8643 { 8644 /* Define implementations of coprocessor registers. 8645 * We store these in a hashtable because typically 8646 * there are less than 150 registers in a space which 8647 * is 16*16*16*8*8 = 262144 in size. 8648 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8649 * If a register is defined twice then the second definition is 8650 * used, so this can be used to define some generic registers and 8651 * then override them with implementation specific variations. 8652 * At least one of the original and the second definition should 8653 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8654 * against accidental use. 8655 * 8656 * The state field defines whether the register is to be 8657 * visible in the AArch32 or AArch64 execution state. If the 8658 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8659 * reginfo structure for the AArch32 view, which sees the lower 8660 * 32 bits of the 64 bit register. 8661 * 8662 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8663 * be wildcarded. AArch64 registers are always considered to be 64 8664 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8665 * the register, if any. 8666 */ 8667 int crm, opc1, opc2, state; 8668 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8669 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8670 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8671 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8672 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8673 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8674 /* 64 bit registers have only CRm and Opc1 fields */ 8675 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8676 /* op0 only exists in the AArch64 encodings */ 8677 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8678 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8679 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8680 /* 8681 * This API is only for Arm's system coprocessors (14 and 15) or 8682 * (M-profile or v7A-and-earlier only) for implementation defined 8683 * coprocessors in the range 0..7. Our decode assumes this, since 8684 * 8..13 can be used for other insns including VFP and Neon. See 8685 * valid_cp() in translate.c. Assert here that we haven't tried 8686 * to use an invalid coprocessor number. 8687 */ 8688 switch (r->state) { 8689 case ARM_CP_STATE_BOTH: 8690 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8691 if (r->cp == 0) { 8692 break; 8693 } 8694 /* fall through */ 8695 case ARM_CP_STATE_AA32: 8696 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8697 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8698 assert(r->cp >= 14 && r->cp <= 15); 8699 } else { 8700 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8701 } 8702 break; 8703 case ARM_CP_STATE_AA64: 8704 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8705 break; 8706 default: 8707 g_assert_not_reached(); 8708 } 8709 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8710 * encodes a minimum access level for the register. We roll this 8711 * runtime check into our general permission check code, so check 8712 * here that the reginfo's specified permissions are strict enough 8713 * to encompass the generic architectural permission check. 8714 */ 8715 if (r->state != ARM_CP_STATE_AA32) { 8716 int mask = 0; 8717 switch (r->opc1) { 8718 case 0: 8719 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8720 mask = PL0U_R | PL1_RW; 8721 break; 8722 case 1: case 2: 8723 /* min_EL EL1 */ 8724 mask = PL1_RW; 8725 break; 8726 case 3: 8727 /* min_EL EL0 */ 8728 mask = PL0_RW; 8729 break; 8730 case 4: 8731 case 5: 8732 /* min_EL EL2 */ 8733 mask = PL2_RW; 8734 break; 8735 case 6: 8736 /* min_EL EL3 */ 8737 mask = PL3_RW; 8738 break; 8739 case 7: 8740 /* min_EL EL1, secure mode only (we don't check the latter) */ 8741 mask = PL1_RW; 8742 break; 8743 default: 8744 /* broken reginfo with out-of-range opc1 */ 8745 assert(false); 8746 break; 8747 } 8748 /* assert our permissions are not too lax (stricter is fine) */ 8749 assert((r->access & ~mask) == 0); 8750 } 8751 8752 /* Check that the register definition has enough info to handle 8753 * reads and writes if they are permitted. 8754 */ 8755 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8756 if (r->access & PL3_R) { 8757 assert((r->fieldoffset || 8758 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8759 r->readfn); 8760 } 8761 if (r->access & PL3_W) { 8762 assert((r->fieldoffset || 8763 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8764 r->writefn); 8765 } 8766 } 8767 /* Bad type field probably means missing sentinel at end of reg list */ 8768 assert(cptype_valid(r->type)); 8769 for (crm = crmmin; crm <= crmmax; crm++) { 8770 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8771 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8772 for (state = ARM_CP_STATE_AA32; 8773 state <= ARM_CP_STATE_AA64; state++) { 8774 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8775 continue; 8776 } 8777 if (state == ARM_CP_STATE_AA32) { 8778 /* Under AArch32 CP registers can be common 8779 * (same for secure and non-secure world) or banked. 8780 */ 8781 char *name; 8782 8783 switch (r->secure) { 8784 case ARM_CP_SECSTATE_S: 8785 case ARM_CP_SECSTATE_NS: 8786 add_cpreg_to_hashtable(cpu, r, opaque, state, 8787 r->secure, crm, opc1, opc2, 8788 r->name); 8789 break; 8790 default: 8791 name = g_strdup_printf("%s_S", r->name); 8792 add_cpreg_to_hashtable(cpu, r, opaque, state, 8793 ARM_CP_SECSTATE_S, 8794 crm, opc1, opc2, name); 8795 g_free(name); 8796 add_cpreg_to_hashtable(cpu, r, opaque, state, 8797 ARM_CP_SECSTATE_NS, 8798 crm, opc1, opc2, r->name); 8799 break; 8800 } 8801 } else { 8802 /* AArch64 registers get mapped to non-secure instance 8803 * of AArch32 */ 8804 add_cpreg_to_hashtable(cpu, r, opaque, state, 8805 ARM_CP_SECSTATE_NS, 8806 crm, opc1, opc2, r->name); 8807 } 8808 } 8809 } 8810 } 8811 } 8812 } 8813 8814 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8815 const ARMCPRegInfo *regs, void *opaque) 8816 { 8817 /* Define a whole list of registers */ 8818 const ARMCPRegInfo *r; 8819 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8820 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8821 } 8822 } 8823 8824 /* 8825 * Modify ARMCPRegInfo for access from userspace. 8826 * 8827 * This is a data driven modification directed by 8828 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8829 * user-space cannot alter any values and dynamic values pertaining to 8830 * execution state are hidden from user space view anyway. 8831 */ 8832 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8833 { 8834 const ARMCPRegUserSpaceInfo *m; 8835 ARMCPRegInfo *r; 8836 8837 for (m = mods; m->name; m++) { 8838 GPatternSpec *pat = NULL; 8839 if (m->is_glob) { 8840 pat = g_pattern_spec_new(m->name); 8841 } 8842 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8843 if (pat && g_pattern_match_string(pat, r->name)) { 8844 r->type = ARM_CP_CONST; 8845 r->access = PL0U_R; 8846 r->resetvalue = 0; 8847 /* continue */ 8848 } else if (strcmp(r->name, m->name) == 0) { 8849 r->type = ARM_CP_CONST; 8850 r->access = PL0U_R; 8851 r->resetvalue &= m->exported_bits; 8852 r->resetvalue |= m->fixed_bits; 8853 break; 8854 } 8855 } 8856 if (pat) { 8857 g_pattern_spec_free(pat); 8858 } 8859 } 8860 } 8861 8862 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8863 { 8864 return g_hash_table_lookup(cpregs, &encoded_cp); 8865 } 8866 8867 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8868 uint64_t value) 8869 { 8870 /* Helper coprocessor write function for write-ignore registers */ 8871 } 8872 8873 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8874 { 8875 /* Helper coprocessor write function for read-as-zero registers */ 8876 return 0; 8877 } 8878 8879 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8880 { 8881 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8882 } 8883 8884 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8885 { 8886 /* Return true if it is not valid for us to switch to 8887 * this CPU mode (ie all the UNPREDICTABLE cases in 8888 * the ARM ARM CPSRWriteByInstr pseudocode). 8889 */ 8890 8891 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8892 if (write_type == CPSRWriteByInstr && 8893 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8894 mode == ARM_CPU_MODE_HYP)) { 8895 return 1; 8896 } 8897 8898 switch (mode) { 8899 case ARM_CPU_MODE_USR: 8900 return 0; 8901 case ARM_CPU_MODE_SYS: 8902 case ARM_CPU_MODE_SVC: 8903 case ARM_CPU_MODE_ABT: 8904 case ARM_CPU_MODE_UND: 8905 case ARM_CPU_MODE_IRQ: 8906 case ARM_CPU_MODE_FIQ: 8907 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8908 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8909 */ 8910 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8911 * and CPS are treated as illegal mode changes. 8912 */ 8913 if (write_type == CPSRWriteByInstr && 8914 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8915 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8916 return 1; 8917 } 8918 return 0; 8919 case ARM_CPU_MODE_HYP: 8920 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8921 case ARM_CPU_MODE_MON: 8922 return arm_current_el(env) < 3; 8923 default: 8924 return 1; 8925 } 8926 } 8927 8928 uint32_t cpsr_read(CPUARMState *env) 8929 { 8930 int ZF; 8931 ZF = (env->ZF == 0); 8932 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8933 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8934 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8935 | ((env->condexec_bits & 0xfc) << 8) 8936 | (env->GE << 16) | (env->daif & CPSR_AIF); 8937 } 8938 8939 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8940 CPSRWriteType write_type) 8941 { 8942 uint32_t changed_daif; 8943 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 8944 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 8945 8946 if (mask & CPSR_NZCV) { 8947 env->ZF = (~val) & CPSR_Z; 8948 env->NF = val; 8949 env->CF = (val >> 29) & 1; 8950 env->VF = (val << 3) & 0x80000000; 8951 } 8952 if (mask & CPSR_Q) 8953 env->QF = ((val & CPSR_Q) != 0); 8954 if (mask & CPSR_T) 8955 env->thumb = ((val & CPSR_T) != 0); 8956 if (mask & CPSR_IT_0_1) { 8957 env->condexec_bits &= ~3; 8958 env->condexec_bits |= (val >> 25) & 3; 8959 } 8960 if (mask & CPSR_IT_2_7) { 8961 env->condexec_bits &= 3; 8962 env->condexec_bits |= (val >> 8) & 0xfc; 8963 } 8964 if (mask & CPSR_GE) { 8965 env->GE = (val >> 16) & 0xf; 8966 } 8967 8968 /* In a V7 implementation that includes the security extensions but does 8969 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8970 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8971 * bits respectively. 8972 * 8973 * In a V8 implementation, it is permitted for privileged software to 8974 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8975 */ 8976 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8977 arm_feature(env, ARM_FEATURE_EL3) && 8978 !arm_feature(env, ARM_FEATURE_EL2) && 8979 !arm_is_secure(env)) { 8980 8981 changed_daif = (env->daif ^ val) & mask; 8982 8983 if (changed_daif & CPSR_A) { 8984 /* Check to see if we are allowed to change the masking of async 8985 * abort exceptions from a non-secure state. 8986 */ 8987 if (!(env->cp15.scr_el3 & SCR_AW)) { 8988 qemu_log_mask(LOG_GUEST_ERROR, 8989 "Ignoring attempt to switch CPSR_A flag from " 8990 "non-secure world with SCR.AW bit clear\n"); 8991 mask &= ~CPSR_A; 8992 } 8993 } 8994 8995 if (changed_daif & CPSR_F) { 8996 /* Check to see if we are allowed to change the masking of FIQ 8997 * exceptions from a non-secure state. 8998 */ 8999 if (!(env->cp15.scr_el3 & SCR_FW)) { 9000 qemu_log_mask(LOG_GUEST_ERROR, 9001 "Ignoring attempt to switch CPSR_F flag from " 9002 "non-secure world with SCR.FW bit clear\n"); 9003 mask &= ~CPSR_F; 9004 } 9005 9006 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9007 * If this bit is set software is not allowed to mask 9008 * FIQs, but is allowed to set CPSR_F to 0. 9009 */ 9010 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9011 (val & CPSR_F)) { 9012 qemu_log_mask(LOG_GUEST_ERROR, 9013 "Ignoring attempt to enable CPSR_F flag " 9014 "(non-maskable FIQ [NMFI] support enabled)\n"); 9015 mask &= ~CPSR_F; 9016 } 9017 } 9018 } 9019 9020 env->daif &= ~(CPSR_AIF & mask); 9021 env->daif |= val & CPSR_AIF & mask; 9022 9023 if (write_type != CPSRWriteRaw && 9024 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9025 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9026 /* Note that we can only get here in USR mode if this is a 9027 * gdb stub write; for this case we follow the architectural 9028 * behaviour for guest writes in USR mode of ignoring an attempt 9029 * to switch mode. (Those are caught by translate.c for writes 9030 * triggered by guest instructions.) 9031 */ 9032 mask &= ~CPSR_M; 9033 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9034 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9035 * v7, and has defined behaviour in v8: 9036 * + leave CPSR.M untouched 9037 * + allow changes to the other CPSR fields 9038 * + set PSTATE.IL 9039 * For user changes via the GDB stub, we don't set PSTATE.IL, 9040 * as this would be unnecessarily harsh for a user error. 9041 */ 9042 mask &= ~CPSR_M; 9043 if (write_type != CPSRWriteByGDBStub && 9044 arm_feature(env, ARM_FEATURE_V8)) { 9045 mask |= CPSR_IL; 9046 val |= CPSR_IL; 9047 } 9048 qemu_log_mask(LOG_GUEST_ERROR, 9049 "Illegal AArch32 mode switch attempt from %s to %s\n", 9050 aarch32_mode_name(env->uncached_cpsr), 9051 aarch32_mode_name(val)); 9052 } else { 9053 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9054 write_type == CPSRWriteExceptionReturn ? 9055 "Exception return from AArch32" : 9056 "AArch32 mode switch from", 9057 aarch32_mode_name(env->uncached_cpsr), 9058 aarch32_mode_name(val), env->regs[15]); 9059 switch_mode(env, val & CPSR_M); 9060 } 9061 } 9062 mask &= ~CACHED_CPSR_BITS; 9063 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9064 if (rebuild_hflags) { 9065 arm_rebuild_hflags(env); 9066 } 9067 } 9068 9069 /* Sign/zero extend */ 9070 uint32_t HELPER(sxtb16)(uint32_t x) 9071 { 9072 uint32_t res; 9073 res = (uint16_t)(int8_t)x; 9074 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9075 return res; 9076 } 9077 9078 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9079 { 9080 /* 9081 * Take a division-by-zero exception if necessary; otherwise return 9082 * to get the usual non-trapping division behaviour (result of 0) 9083 */ 9084 if (arm_feature(env, ARM_FEATURE_M) 9085 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9086 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9087 } 9088 } 9089 9090 uint32_t HELPER(uxtb16)(uint32_t x) 9091 { 9092 uint32_t res; 9093 res = (uint16_t)(uint8_t)x; 9094 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9095 return res; 9096 } 9097 9098 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9099 { 9100 if (den == 0) { 9101 handle_possible_div0_trap(env, GETPC()); 9102 return 0; 9103 } 9104 if (num == INT_MIN && den == -1) { 9105 return INT_MIN; 9106 } 9107 return num / den; 9108 } 9109 9110 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9111 { 9112 if (den == 0) { 9113 handle_possible_div0_trap(env, GETPC()); 9114 return 0; 9115 } 9116 return num / den; 9117 } 9118 9119 uint32_t HELPER(rbit)(uint32_t x) 9120 { 9121 return revbit32(x); 9122 } 9123 9124 #ifdef CONFIG_USER_ONLY 9125 9126 static void switch_mode(CPUARMState *env, int mode) 9127 { 9128 ARMCPU *cpu = env_archcpu(env); 9129 9130 if (mode != ARM_CPU_MODE_USR) { 9131 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9132 } 9133 } 9134 9135 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9136 uint32_t cur_el, bool secure) 9137 { 9138 return 1; 9139 } 9140 9141 void aarch64_sync_64_to_32(CPUARMState *env) 9142 { 9143 g_assert_not_reached(); 9144 } 9145 9146 #else 9147 9148 static void switch_mode(CPUARMState *env, int mode) 9149 { 9150 int old_mode; 9151 int i; 9152 9153 old_mode = env->uncached_cpsr & CPSR_M; 9154 if (mode == old_mode) 9155 return; 9156 9157 if (old_mode == ARM_CPU_MODE_FIQ) { 9158 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9159 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9160 } else if (mode == ARM_CPU_MODE_FIQ) { 9161 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9162 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9163 } 9164 9165 i = bank_number(old_mode); 9166 env->banked_r13[i] = env->regs[13]; 9167 env->banked_spsr[i] = env->spsr; 9168 9169 i = bank_number(mode); 9170 env->regs[13] = env->banked_r13[i]; 9171 env->spsr = env->banked_spsr[i]; 9172 9173 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9174 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9175 } 9176 9177 /* Physical Interrupt Target EL Lookup Table 9178 * 9179 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9180 * 9181 * The below multi-dimensional table is used for looking up the target 9182 * exception level given numerous condition criteria. Specifically, the 9183 * target EL is based on SCR and HCR routing controls as well as the 9184 * currently executing EL and secure state. 9185 * 9186 * Dimensions: 9187 * target_el_table[2][2][2][2][2][4] 9188 * | | | | | +--- Current EL 9189 * | | | | +------ Non-secure(0)/Secure(1) 9190 * | | | +--------- HCR mask override 9191 * | | +------------ SCR exec state control 9192 * | +--------------- SCR mask override 9193 * +------------------ 32-bit(0)/64-bit(1) EL3 9194 * 9195 * The table values are as such: 9196 * 0-3 = EL0-EL3 9197 * -1 = Cannot occur 9198 * 9199 * The ARM ARM target EL table includes entries indicating that an "exception 9200 * is not taken". The two cases where this is applicable are: 9201 * 1) An exception is taken from EL3 but the SCR does not have the exception 9202 * routed to EL3. 9203 * 2) An exception is taken from EL2 but the HCR does not have the exception 9204 * routed to EL2. 9205 * In these two cases, the below table contain a target of EL1. This value is 9206 * returned as it is expected that the consumer of the table data will check 9207 * for "target EL >= current EL" to ensure the exception is not taken. 9208 * 9209 * SCR HCR 9210 * 64 EA AMO From 9211 * BIT IRQ IMO Non-secure Secure 9212 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9213 */ 9214 static const int8_t target_el_table[2][2][2][2][2][4] = { 9215 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9216 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9217 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9218 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9219 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9220 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9221 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9222 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9223 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9224 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9225 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9226 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9227 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9228 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9229 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9230 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9231 }; 9232 9233 /* 9234 * Determine the target EL for physical exceptions 9235 */ 9236 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9237 uint32_t cur_el, bool secure) 9238 { 9239 CPUARMState *env = cs->env_ptr; 9240 bool rw; 9241 bool scr; 9242 bool hcr; 9243 int target_el; 9244 /* Is the highest EL AArch64? */ 9245 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9246 uint64_t hcr_el2; 9247 9248 if (arm_feature(env, ARM_FEATURE_EL3)) { 9249 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9250 } else { 9251 /* Either EL2 is the highest EL (and so the EL2 register width 9252 * is given by is64); or there is no EL2 or EL3, in which case 9253 * the value of 'rw' does not affect the table lookup anyway. 9254 */ 9255 rw = is64; 9256 } 9257 9258 hcr_el2 = arm_hcr_el2_eff(env); 9259 switch (excp_idx) { 9260 case EXCP_IRQ: 9261 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9262 hcr = hcr_el2 & HCR_IMO; 9263 break; 9264 case EXCP_FIQ: 9265 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9266 hcr = hcr_el2 & HCR_FMO; 9267 break; 9268 default: 9269 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9270 hcr = hcr_el2 & HCR_AMO; 9271 break; 9272 }; 9273 9274 /* 9275 * For these purposes, TGE and AMO/IMO/FMO both force the 9276 * interrupt to EL2. Fold TGE into the bit extracted above. 9277 */ 9278 hcr |= (hcr_el2 & HCR_TGE) != 0; 9279 9280 /* Perform a table-lookup for the target EL given the current state */ 9281 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9282 9283 assert(target_el > 0); 9284 9285 return target_el; 9286 } 9287 9288 void arm_log_exception(int idx) 9289 { 9290 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9291 const char *exc = NULL; 9292 static const char * const excnames[] = { 9293 [EXCP_UDEF] = "Undefined Instruction", 9294 [EXCP_SWI] = "SVC", 9295 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9296 [EXCP_DATA_ABORT] = "Data Abort", 9297 [EXCP_IRQ] = "IRQ", 9298 [EXCP_FIQ] = "FIQ", 9299 [EXCP_BKPT] = "Breakpoint", 9300 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9301 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9302 [EXCP_HVC] = "Hypervisor Call", 9303 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9304 [EXCP_SMC] = "Secure Monitor Call", 9305 [EXCP_VIRQ] = "Virtual IRQ", 9306 [EXCP_VFIQ] = "Virtual FIQ", 9307 [EXCP_SEMIHOST] = "Semihosting call", 9308 [EXCP_NOCP] = "v7M NOCP UsageFault", 9309 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9310 [EXCP_STKOF] = "v8M STKOF UsageFault", 9311 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9312 [EXCP_LSERR] = "v8M LSERR UsageFault", 9313 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9314 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9315 }; 9316 9317 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9318 exc = excnames[idx]; 9319 } 9320 if (!exc) { 9321 exc = "unknown"; 9322 } 9323 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 9324 } 9325 } 9326 9327 /* 9328 * Function used to synchronize QEMU's AArch64 register set with AArch32 9329 * register set. This is necessary when switching between AArch32 and AArch64 9330 * execution state. 9331 */ 9332 void aarch64_sync_32_to_64(CPUARMState *env) 9333 { 9334 int i; 9335 uint32_t mode = env->uncached_cpsr & CPSR_M; 9336 9337 /* We can blanket copy R[0:7] to X[0:7] */ 9338 for (i = 0; i < 8; i++) { 9339 env->xregs[i] = env->regs[i]; 9340 } 9341 9342 /* 9343 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9344 * Otherwise, they come from the banked user regs. 9345 */ 9346 if (mode == ARM_CPU_MODE_FIQ) { 9347 for (i = 8; i < 13; i++) { 9348 env->xregs[i] = env->usr_regs[i - 8]; 9349 } 9350 } else { 9351 for (i = 8; i < 13; i++) { 9352 env->xregs[i] = env->regs[i]; 9353 } 9354 } 9355 9356 /* 9357 * Registers x13-x23 are the various mode SP and FP registers. Registers 9358 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9359 * from the mode banked register. 9360 */ 9361 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9362 env->xregs[13] = env->regs[13]; 9363 env->xregs[14] = env->regs[14]; 9364 } else { 9365 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9366 /* HYP is an exception in that it is copied from r14 */ 9367 if (mode == ARM_CPU_MODE_HYP) { 9368 env->xregs[14] = env->regs[14]; 9369 } else { 9370 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9371 } 9372 } 9373 9374 if (mode == ARM_CPU_MODE_HYP) { 9375 env->xregs[15] = env->regs[13]; 9376 } else { 9377 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9378 } 9379 9380 if (mode == ARM_CPU_MODE_IRQ) { 9381 env->xregs[16] = env->regs[14]; 9382 env->xregs[17] = env->regs[13]; 9383 } else { 9384 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9385 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9386 } 9387 9388 if (mode == ARM_CPU_MODE_SVC) { 9389 env->xregs[18] = env->regs[14]; 9390 env->xregs[19] = env->regs[13]; 9391 } else { 9392 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9393 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9394 } 9395 9396 if (mode == ARM_CPU_MODE_ABT) { 9397 env->xregs[20] = env->regs[14]; 9398 env->xregs[21] = env->regs[13]; 9399 } else { 9400 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9401 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9402 } 9403 9404 if (mode == ARM_CPU_MODE_UND) { 9405 env->xregs[22] = env->regs[14]; 9406 env->xregs[23] = env->regs[13]; 9407 } else { 9408 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9409 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9410 } 9411 9412 /* 9413 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9414 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9415 * FIQ bank for r8-r14. 9416 */ 9417 if (mode == ARM_CPU_MODE_FIQ) { 9418 for (i = 24; i < 31; i++) { 9419 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9420 } 9421 } else { 9422 for (i = 24; i < 29; i++) { 9423 env->xregs[i] = env->fiq_regs[i - 24]; 9424 } 9425 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9426 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9427 } 9428 9429 env->pc = env->regs[15]; 9430 } 9431 9432 /* 9433 * Function used to synchronize QEMU's AArch32 register set with AArch64 9434 * register set. This is necessary when switching between AArch32 and AArch64 9435 * execution state. 9436 */ 9437 void aarch64_sync_64_to_32(CPUARMState *env) 9438 { 9439 int i; 9440 uint32_t mode = env->uncached_cpsr & CPSR_M; 9441 9442 /* We can blanket copy X[0:7] to R[0:7] */ 9443 for (i = 0; i < 8; i++) { 9444 env->regs[i] = env->xregs[i]; 9445 } 9446 9447 /* 9448 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9449 * Otherwise, we copy x8-x12 into the banked user regs. 9450 */ 9451 if (mode == ARM_CPU_MODE_FIQ) { 9452 for (i = 8; i < 13; i++) { 9453 env->usr_regs[i - 8] = env->xregs[i]; 9454 } 9455 } else { 9456 for (i = 8; i < 13; i++) { 9457 env->regs[i] = env->xregs[i]; 9458 } 9459 } 9460 9461 /* 9462 * Registers r13 & r14 depend on the current mode. 9463 * If we are in a given mode, we copy the corresponding x registers to r13 9464 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9465 * for the mode. 9466 */ 9467 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9468 env->regs[13] = env->xregs[13]; 9469 env->regs[14] = env->xregs[14]; 9470 } else { 9471 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9472 9473 /* 9474 * HYP is an exception in that it does not have its own banked r14 but 9475 * shares the USR r14 9476 */ 9477 if (mode == ARM_CPU_MODE_HYP) { 9478 env->regs[14] = env->xregs[14]; 9479 } else { 9480 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9481 } 9482 } 9483 9484 if (mode == ARM_CPU_MODE_HYP) { 9485 env->regs[13] = env->xregs[15]; 9486 } else { 9487 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9488 } 9489 9490 if (mode == ARM_CPU_MODE_IRQ) { 9491 env->regs[14] = env->xregs[16]; 9492 env->regs[13] = env->xregs[17]; 9493 } else { 9494 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9495 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9496 } 9497 9498 if (mode == ARM_CPU_MODE_SVC) { 9499 env->regs[14] = env->xregs[18]; 9500 env->regs[13] = env->xregs[19]; 9501 } else { 9502 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9503 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9504 } 9505 9506 if (mode == ARM_CPU_MODE_ABT) { 9507 env->regs[14] = env->xregs[20]; 9508 env->regs[13] = env->xregs[21]; 9509 } else { 9510 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9511 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9512 } 9513 9514 if (mode == ARM_CPU_MODE_UND) { 9515 env->regs[14] = env->xregs[22]; 9516 env->regs[13] = env->xregs[23]; 9517 } else { 9518 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9519 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9520 } 9521 9522 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9523 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9524 * FIQ bank for r8-r14. 9525 */ 9526 if (mode == ARM_CPU_MODE_FIQ) { 9527 for (i = 24; i < 31; i++) { 9528 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9529 } 9530 } else { 9531 for (i = 24; i < 29; i++) { 9532 env->fiq_regs[i - 24] = env->xregs[i]; 9533 } 9534 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9535 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9536 } 9537 9538 env->regs[15] = env->pc; 9539 } 9540 9541 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9542 uint32_t mask, uint32_t offset, 9543 uint32_t newpc) 9544 { 9545 int new_el; 9546 9547 /* Change the CPU state so as to actually take the exception. */ 9548 switch_mode(env, new_mode); 9549 9550 /* 9551 * For exceptions taken to AArch32 we must clear the SS bit in both 9552 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9553 */ 9554 env->pstate &= ~PSTATE_SS; 9555 env->spsr = cpsr_read(env); 9556 /* Clear IT bits. */ 9557 env->condexec_bits = 0; 9558 /* Switch to the new mode, and to the correct instruction set. */ 9559 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9560 9561 /* This must be after mode switching. */ 9562 new_el = arm_current_el(env); 9563 9564 /* Set new mode endianness */ 9565 env->uncached_cpsr &= ~CPSR_E; 9566 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9567 env->uncached_cpsr |= CPSR_E; 9568 } 9569 /* J and IL must always be cleared for exception entry */ 9570 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9571 env->daif |= mask; 9572 9573 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9574 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9575 env->uncached_cpsr |= CPSR_SSBS; 9576 } else { 9577 env->uncached_cpsr &= ~CPSR_SSBS; 9578 } 9579 } 9580 9581 if (new_mode == ARM_CPU_MODE_HYP) { 9582 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9583 env->elr_el[2] = env->regs[15]; 9584 } else { 9585 /* CPSR.PAN is normally preserved preserved unless... */ 9586 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9587 switch (new_el) { 9588 case 3: 9589 if (!arm_is_secure_below_el3(env)) { 9590 /* ... the target is EL3, from non-secure state. */ 9591 env->uncached_cpsr &= ~CPSR_PAN; 9592 break; 9593 } 9594 /* ... the target is EL3, from secure state ... */ 9595 /* fall through */ 9596 case 1: 9597 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9598 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9599 env->uncached_cpsr |= CPSR_PAN; 9600 } 9601 break; 9602 } 9603 } 9604 /* 9605 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9606 * and we should just guard the thumb mode on V4 9607 */ 9608 if (arm_feature(env, ARM_FEATURE_V4T)) { 9609 env->thumb = 9610 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9611 } 9612 env->regs[14] = env->regs[15] + offset; 9613 } 9614 env->regs[15] = newpc; 9615 arm_rebuild_hflags(env); 9616 } 9617 9618 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9619 { 9620 /* 9621 * Handle exception entry to Hyp mode; this is sufficiently 9622 * different to entry to other AArch32 modes that we handle it 9623 * separately here. 9624 * 9625 * The vector table entry used is always the 0x14 Hyp mode entry point, 9626 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9627 * The offset applied to the preferred return address is always zero 9628 * (see DDI0487C.a section G1.12.3). 9629 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9630 */ 9631 uint32_t addr, mask; 9632 ARMCPU *cpu = ARM_CPU(cs); 9633 CPUARMState *env = &cpu->env; 9634 9635 switch (cs->exception_index) { 9636 case EXCP_UDEF: 9637 addr = 0x04; 9638 break; 9639 case EXCP_SWI: 9640 addr = 0x14; 9641 break; 9642 case EXCP_BKPT: 9643 /* Fall through to prefetch abort. */ 9644 case EXCP_PREFETCH_ABORT: 9645 env->cp15.ifar_s = env->exception.vaddress; 9646 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9647 (uint32_t)env->exception.vaddress); 9648 addr = 0x0c; 9649 break; 9650 case EXCP_DATA_ABORT: 9651 env->cp15.dfar_s = env->exception.vaddress; 9652 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9653 (uint32_t)env->exception.vaddress); 9654 addr = 0x10; 9655 break; 9656 case EXCP_IRQ: 9657 addr = 0x18; 9658 break; 9659 case EXCP_FIQ: 9660 addr = 0x1c; 9661 break; 9662 case EXCP_HVC: 9663 addr = 0x08; 9664 break; 9665 case EXCP_HYP_TRAP: 9666 addr = 0x14; 9667 break; 9668 default: 9669 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9670 } 9671 9672 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9673 if (!arm_feature(env, ARM_FEATURE_V8)) { 9674 /* 9675 * QEMU syndrome values are v8-style. v7 has the IL bit 9676 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9677 * If this is a v7 CPU, squash the IL bit in those cases. 9678 */ 9679 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9680 (cs->exception_index == EXCP_DATA_ABORT && 9681 !(env->exception.syndrome & ARM_EL_ISV)) || 9682 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9683 env->exception.syndrome &= ~ARM_EL_IL; 9684 } 9685 } 9686 env->cp15.esr_el[2] = env->exception.syndrome; 9687 } 9688 9689 if (arm_current_el(env) != 2 && addr < 0x14) { 9690 addr = 0x14; 9691 } 9692 9693 mask = 0; 9694 if (!(env->cp15.scr_el3 & SCR_EA)) { 9695 mask |= CPSR_A; 9696 } 9697 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9698 mask |= CPSR_I; 9699 } 9700 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9701 mask |= CPSR_F; 9702 } 9703 9704 addr += env->cp15.hvbar; 9705 9706 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9707 } 9708 9709 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9710 { 9711 ARMCPU *cpu = ARM_CPU(cs); 9712 CPUARMState *env = &cpu->env; 9713 uint32_t addr; 9714 uint32_t mask; 9715 int new_mode; 9716 uint32_t offset; 9717 uint32_t moe; 9718 9719 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9720 switch (syn_get_ec(env->exception.syndrome)) { 9721 case EC_BREAKPOINT: 9722 case EC_BREAKPOINT_SAME_EL: 9723 moe = 1; 9724 break; 9725 case EC_WATCHPOINT: 9726 case EC_WATCHPOINT_SAME_EL: 9727 moe = 10; 9728 break; 9729 case EC_AA32_BKPT: 9730 moe = 3; 9731 break; 9732 case EC_VECTORCATCH: 9733 moe = 5; 9734 break; 9735 default: 9736 moe = 0; 9737 break; 9738 } 9739 9740 if (moe) { 9741 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9742 } 9743 9744 if (env->exception.target_el == 2) { 9745 arm_cpu_do_interrupt_aarch32_hyp(cs); 9746 return; 9747 } 9748 9749 switch (cs->exception_index) { 9750 case EXCP_UDEF: 9751 new_mode = ARM_CPU_MODE_UND; 9752 addr = 0x04; 9753 mask = CPSR_I; 9754 if (env->thumb) 9755 offset = 2; 9756 else 9757 offset = 4; 9758 break; 9759 case EXCP_SWI: 9760 new_mode = ARM_CPU_MODE_SVC; 9761 addr = 0x08; 9762 mask = CPSR_I; 9763 /* The PC already points to the next instruction. */ 9764 offset = 0; 9765 break; 9766 case EXCP_BKPT: 9767 /* Fall through to prefetch abort. */ 9768 case EXCP_PREFETCH_ABORT: 9769 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9770 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9771 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9772 env->exception.fsr, (uint32_t)env->exception.vaddress); 9773 new_mode = ARM_CPU_MODE_ABT; 9774 addr = 0x0c; 9775 mask = CPSR_A | CPSR_I; 9776 offset = 4; 9777 break; 9778 case EXCP_DATA_ABORT: 9779 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9780 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9781 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9782 env->exception.fsr, 9783 (uint32_t)env->exception.vaddress); 9784 new_mode = ARM_CPU_MODE_ABT; 9785 addr = 0x10; 9786 mask = CPSR_A | CPSR_I; 9787 offset = 8; 9788 break; 9789 case EXCP_IRQ: 9790 new_mode = ARM_CPU_MODE_IRQ; 9791 addr = 0x18; 9792 /* Disable IRQ and imprecise data aborts. */ 9793 mask = CPSR_A | CPSR_I; 9794 offset = 4; 9795 if (env->cp15.scr_el3 & SCR_IRQ) { 9796 /* IRQ routed to monitor mode */ 9797 new_mode = ARM_CPU_MODE_MON; 9798 mask |= CPSR_F; 9799 } 9800 break; 9801 case EXCP_FIQ: 9802 new_mode = ARM_CPU_MODE_FIQ; 9803 addr = 0x1c; 9804 /* Disable FIQ, IRQ and imprecise data aborts. */ 9805 mask = CPSR_A | CPSR_I | CPSR_F; 9806 if (env->cp15.scr_el3 & SCR_FIQ) { 9807 /* FIQ routed to monitor mode */ 9808 new_mode = ARM_CPU_MODE_MON; 9809 } 9810 offset = 4; 9811 break; 9812 case EXCP_VIRQ: 9813 new_mode = ARM_CPU_MODE_IRQ; 9814 addr = 0x18; 9815 /* Disable IRQ and imprecise data aborts. */ 9816 mask = CPSR_A | CPSR_I; 9817 offset = 4; 9818 break; 9819 case EXCP_VFIQ: 9820 new_mode = ARM_CPU_MODE_FIQ; 9821 addr = 0x1c; 9822 /* Disable FIQ, IRQ and imprecise data aborts. */ 9823 mask = CPSR_A | CPSR_I | CPSR_F; 9824 offset = 4; 9825 break; 9826 case EXCP_SMC: 9827 new_mode = ARM_CPU_MODE_MON; 9828 addr = 0x08; 9829 mask = CPSR_A | CPSR_I | CPSR_F; 9830 offset = 0; 9831 break; 9832 default: 9833 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9834 return; /* Never happens. Keep compiler happy. */ 9835 } 9836 9837 if (new_mode == ARM_CPU_MODE_MON) { 9838 addr += env->cp15.mvbar; 9839 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9840 /* High vectors. When enabled, base address cannot be remapped. */ 9841 addr += 0xffff0000; 9842 } else { 9843 /* ARM v7 architectures provide a vector base address register to remap 9844 * the interrupt vector table. 9845 * This register is only followed in non-monitor mode, and is banked. 9846 * Note: only bits 31:5 are valid. 9847 */ 9848 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9849 } 9850 9851 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9852 env->cp15.scr_el3 &= ~SCR_NS; 9853 } 9854 9855 take_aarch32_exception(env, new_mode, mask, offset, addr); 9856 } 9857 9858 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9859 { 9860 /* 9861 * Return the register number of the AArch64 view of the AArch32 9862 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9863 * be that of the AArch32 mode the exception came from. 9864 */ 9865 int mode = env->uncached_cpsr & CPSR_M; 9866 9867 switch (aarch32_reg) { 9868 case 0 ... 7: 9869 return aarch32_reg; 9870 case 8 ... 12: 9871 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9872 case 13: 9873 switch (mode) { 9874 case ARM_CPU_MODE_USR: 9875 case ARM_CPU_MODE_SYS: 9876 return 13; 9877 case ARM_CPU_MODE_HYP: 9878 return 15; 9879 case ARM_CPU_MODE_IRQ: 9880 return 17; 9881 case ARM_CPU_MODE_SVC: 9882 return 19; 9883 case ARM_CPU_MODE_ABT: 9884 return 21; 9885 case ARM_CPU_MODE_UND: 9886 return 23; 9887 case ARM_CPU_MODE_FIQ: 9888 return 29; 9889 default: 9890 g_assert_not_reached(); 9891 } 9892 case 14: 9893 switch (mode) { 9894 case ARM_CPU_MODE_USR: 9895 case ARM_CPU_MODE_SYS: 9896 case ARM_CPU_MODE_HYP: 9897 return 14; 9898 case ARM_CPU_MODE_IRQ: 9899 return 16; 9900 case ARM_CPU_MODE_SVC: 9901 return 18; 9902 case ARM_CPU_MODE_ABT: 9903 return 20; 9904 case ARM_CPU_MODE_UND: 9905 return 22; 9906 case ARM_CPU_MODE_FIQ: 9907 return 30; 9908 default: 9909 g_assert_not_reached(); 9910 } 9911 case 15: 9912 return 31; 9913 default: 9914 g_assert_not_reached(); 9915 } 9916 } 9917 9918 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 9919 { 9920 uint32_t ret = cpsr_read(env); 9921 9922 /* Move DIT to the correct location for SPSR_ELx */ 9923 if (ret & CPSR_DIT) { 9924 ret &= ~CPSR_DIT; 9925 ret |= PSTATE_DIT; 9926 } 9927 /* Merge PSTATE.SS into SPSR_ELx */ 9928 ret |= env->pstate & PSTATE_SS; 9929 9930 return ret; 9931 } 9932 9933 /* Handle exception entry to a target EL which is using AArch64 */ 9934 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9935 { 9936 ARMCPU *cpu = ARM_CPU(cs); 9937 CPUARMState *env = &cpu->env; 9938 unsigned int new_el = env->exception.target_el; 9939 target_ulong addr = env->cp15.vbar_el[new_el]; 9940 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9941 unsigned int old_mode; 9942 unsigned int cur_el = arm_current_el(env); 9943 int rt; 9944 9945 /* 9946 * Note that new_el can never be 0. If cur_el is 0, then 9947 * el0_a64 is is_a64(), else el0_a64 is ignored. 9948 */ 9949 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9950 9951 if (cur_el < new_el) { 9952 /* Entry vector offset depends on whether the implemented EL 9953 * immediately lower than the target level is using AArch32 or AArch64 9954 */ 9955 bool is_aa64; 9956 uint64_t hcr; 9957 9958 switch (new_el) { 9959 case 3: 9960 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9961 break; 9962 case 2: 9963 hcr = arm_hcr_el2_eff(env); 9964 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9965 is_aa64 = (hcr & HCR_RW) != 0; 9966 break; 9967 } 9968 /* fall through */ 9969 case 1: 9970 is_aa64 = is_a64(env); 9971 break; 9972 default: 9973 g_assert_not_reached(); 9974 } 9975 9976 if (is_aa64) { 9977 addr += 0x400; 9978 } else { 9979 addr += 0x600; 9980 } 9981 } else if (pstate_read(env) & PSTATE_SP) { 9982 addr += 0x200; 9983 } 9984 9985 switch (cs->exception_index) { 9986 case EXCP_PREFETCH_ABORT: 9987 case EXCP_DATA_ABORT: 9988 env->cp15.far_el[new_el] = env->exception.vaddress; 9989 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9990 env->cp15.far_el[new_el]); 9991 /* fall through */ 9992 case EXCP_BKPT: 9993 case EXCP_UDEF: 9994 case EXCP_SWI: 9995 case EXCP_HVC: 9996 case EXCP_HYP_TRAP: 9997 case EXCP_SMC: 9998 switch (syn_get_ec(env->exception.syndrome)) { 9999 case EC_ADVSIMDFPACCESSTRAP: 10000 /* 10001 * QEMU internal FP/SIMD syndromes from AArch32 include the 10002 * TA and coproc fields which are only exposed if the exception 10003 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10004 * AArch64 format syndrome. 10005 */ 10006 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10007 break; 10008 case EC_CP14RTTRAP: 10009 case EC_CP15RTTRAP: 10010 case EC_CP14DTTRAP: 10011 /* 10012 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10013 * the raw register field from the insn; when taking this to 10014 * AArch64 we must convert it to the AArch64 view of the register 10015 * number. Notice that we read a 4-bit AArch32 register number and 10016 * write back a 5-bit AArch64 one. 10017 */ 10018 rt = extract32(env->exception.syndrome, 5, 4); 10019 rt = aarch64_regnum(env, rt); 10020 env->exception.syndrome = deposit32(env->exception.syndrome, 10021 5, 5, rt); 10022 break; 10023 case EC_CP15RRTTRAP: 10024 case EC_CP14RRTTRAP: 10025 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10026 rt = extract32(env->exception.syndrome, 5, 4); 10027 rt = aarch64_regnum(env, rt); 10028 env->exception.syndrome = deposit32(env->exception.syndrome, 10029 5, 5, rt); 10030 rt = extract32(env->exception.syndrome, 10, 4); 10031 rt = aarch64_regnum(env, rt); 10032 env->exception.syndrome = deposit32(env->exception.syndrome, 10033 10, 5, rt); 10034 break; 10035 } 10036 env->cp15.esr_el[new_el] = env->exception.syndrome; 10037 break; 10038 case EXCP_IRQ: 10039 case EXCP_VIRQ: 10040 addr += 0x80; 10041 break; 10042 case EXCP_FIQ: 10043 case EXCP_VFIQ: 10044 addr += 0x100; 10045 break; 10046 default: 10047 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10048 } 10049 10050 if (is_a64(env)) { 10051 old_mode = pstate_read(env); 10052 aarch64_save_sp(env, arm_current_el(env)); 10053 env->elr_el[new_el] = env->pc; 10054 } else { 10055 old_mode = cpsr_read_for_spsr_elx(env); 10056 env->elr_el[new_el] = env->regs[15]; 10057 10058 aarch64_sync_32_to_64(env); 10059 10060 env->condexec_bits = 0; 10061 } 10062 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10063 10064 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10065 env->elr_el[new_el]); 10066 10067 if (cpu_isar_feature(aa64_pan, cpu)) { 10068 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10069 new_mode |= old_mode & PSTATE_PAN; 10070 switch (new_el) { 10071 case 2: 10072 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10073 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10074 != (HCR_E2H | HCR_TGE)) { 10075 break; 10076 } 10077 /* fall through */ 10078 case 1: 10079 /* ... the target is EL1 ... */ 10080 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10081 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10082 new_mode |= PSTATE_PAN; 10083 } 10084 break; 10085 } 10086 } 10087 if (cpu_isar_feature(aa64_mte, cpu)) { 10088 new_mode |= PSTATE_TCO; 10089 } 10090 10091 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10092 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10093 new_mode |= PSTATE_SSBS; 10094 } else { 10095 new_mode &= ~PSTATE_SSBS; 10096 } 10097 } 10098 10099 pstate_write(env, PSTATE_DAIF | new_mode); 10100 env->aarch64 = 1; 10101 aarch64_restore_sp(env, new_el); 10102 helper_rebuild_hflags_a64(env, new_el); 10103 10104 env->pc = addr; 10105 10106 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10107 new_el, env->pc, pstate_read(env)); 10108 } 10109 10110 /* 10111 * Do semihosting call and set the appropriate return value. All the 10112 * permission and validity checks have been done at translate time. 10113 * 10114 * We only see semihosting exceptions in TCG only as they are not 10115 * trapped to the hypervisor in KVM. 10116 */ 10117 #ifdef CONFIG_TCG 10118 static void handle_semihosting(CPUState *cs) 10119 { 10120 ARMCPU *cpu = ARM_CPU(cs); 10121 CPUARMState *env = &cpu->env; 10122 10123 if (is_a64(env)) { 10124 qemu_log_mask(CPU_LOG_INT, 10125 "...handling as semihosting call 0x%" PRIx64 "\n", 10126 env->xregs[0]); 10127 env->xregs[0] = do_common_semihosting(cs); 10128 env->pc += 4; 10129 } else { 10130 qemu_log_mask(CPU_LOG_INT, 10131 "...handling as semihosting call 0x%x\n", 10132 env->regs[0]); 10133 env->regs[0] = do_common_semihosting(cs); 10134 env->regs[15] += env->thumb ? 2 : 4; 10135 } 10136 } 10137 #endif 10138 10139 /* Handle a CPU exception for A and R profile CPUs. 10140 * Do any appropriate logging, handle PSCI calls, and then hand off 10141 * to the AArch64-entry or AArch32-entry function depending on the 10142 * target exception level's register width. 10143 * 10144 * Note: this is used for both TCG (as the do_interrupt tcg op), 10145 * and KVM to re-inject guest debug exceptions, and to 10146 * inject a Synchronous-External-Abort. 10147 */ 10148 void arm_cpu_do_interrupt(CPUState *cs) 10149 { 10150 ARMCPU *cpu = ARM_CPU(cs); 10151 CPUARMState *env = &cpu->env; 10152 unsigned int new_el = env->exception.target_el; 10153 10154 assert(!arm_feature(env, ARM_FEATURE_M)); 10155 10156 arm_log_exception(cs->exception_index); 10157 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10158 new_el); 10159 if (qemu_loglevel_mask(CPU_LOG_INT) 10160 && !excp_is_internal(cs->exception_index)) { 10161 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10162 syn_get_ec(env->exception.syndrome), 10163 env->exception.syndrome); 10164 } 10165 10166 if (arm_is_psci_call(cpu, cs->exception_index)) { 10167 arm_handle_psci_call(cpu); 10168 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10169 return; 10170 } 10171 10172 /* 10173 * Semihosting semantics depend on the register width of the code 10174 * that caused the exception, not the target exception level, so 10175 * must be handled here. 10176 */ 10177 #ifdef CONFIG_TCG 10178 if (cs->exception_index == EXCP_SEMIHOST) { 10179 handle_semihosting(cs); 10180 return; 10181 } 10182 #endif 10183 10184 /* Hooks may change global state so BQL should be held, also the 10185 * BQL needs to be held for any modification of 10186 * cs->interrupt_request. 10187 */ 10188 g_assert(qemu_mutex_iothread_locked()); 10189 10190 arm_call_pre_el_change_hook(cpu); 10191 10192 assert(!excp_is_internal(cs->exception_index)); 10193 if (arm_el_is_aa64(env, new_el)) { 10194 arm_cpu_do_interrupt_aarch64(cs); 10195 } else { 10196 arm_cpu_do_interrupt_aarch32(cs); 10197 } 10198 10199 arm_call_el_change_hook(cpu); 10200 10201 if (!kvm_enabled()) { 10202 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10203 } 10204 } 10205 #endif /* !CONFIG_USER_ONLY */ 10206 10207 uint64_t arm_sctlr(CPUARMState *env, int el) 10208 { 10209 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10210 if (el == 0) { 10211 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10212 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10213 ? 2 : 1; 10214 } 10215 return env->cp15.sctlr_el[el]; 10216 } 10217 10218 /* Return the SCTLR value which controls this address translation regime */ 10219 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10220 { 10221 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10222 } 10223 10224 #ifndef CONFIG_USER_ONLY 10225 10226 /* Return true if the specified stage of address translation is disabled */ 10227 static inline bool regime_translation_disabled(CPUARMState *env, 10228 ARMMMUIdx mmu_idx) 10229 { 10230 uint64_t hcr_el2; 10231 10232 if (arm_feature(env, ARM_FEATURE_M)) { 10233 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10234 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10235 case R_V7M_MPU_CTRL_ENABLE_MASK: 10236 /* Enabled, but not for HardFault and NMI */ 10237 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10238 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10239 /* Enabled for all cases */ 10240 return false; 10241 case 0: 10242 default: 10243 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10244 * we warned about that in armv7m_nvic.c when the guest set it. 10245 */ 10246 return true; 10247 } 10248 } 10249 10250 hcr_el2 = arm_hcr_el2_eff(env); 10251 10252 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10253 /* HCR.DC means HCR.VM behaves as 1 */ 10254 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10255 } 10256 10257 if (hcr_el2 & HCR_TGE) { 10258 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10259 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10260 return true; 10261 } 10262 } 10263 10264 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10265 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10266 return true; 10267 } 10268 10269 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10270 } 10271 10272 static inline bool regime_translation_big_endian(CPUARMState *env, 10273 ARMMMUIdx mmu_idx) 10274 { 10275 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10276 } 10277 10278 /* Return the TTBR associated with this translation regime */ 10279 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10280 int ttbrn) 10281 { 10282 if (mmu_idx == ARMMMUIdx_Stage2) { 10283 return env->cp15.vttbr_el2; 10284 } 10285 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10286 return env->cp15.vsttbr_el2; 10287 } 10288 if (ttbrn == 0) { 10289 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10290 } else { 10291 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10292 } 10293 } 10294 10295 #endif /* !CONFIG_USER_ONLY */ 10296 10297 /* Convert a possible stage1+2 MMU index into the appropriate 10298 * stage 1 MMU index 10299 */ 10300 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10301 { 10302 switch (mmu_idx) { 10303 case ARMMMUIdx_SE10_0: 10304 return ARMMMUIdx_Stage1_SE0; 10305 case ARMMMUIdx_SE10_1: 10306 return ARMMMUIdx_Stage1_SE1; 10307 case ARMMMUIdx_SE10_1_PAN: 10308 return ARMMMUIdx_Stage1_SE1_PAN; 10309 case ARMMMUIdx_E10_0: 10310 return ARMMMUIdx_Stage1_E0; 10311 case ARMMMUIdx_E10_1: 10312 return ARMMMUIdx_Stage1_E1; 10313 case ARMMMUIdx_E10_1_PAN: 10314 return ARMMMUIdx_Stage1_E1_PAN; 10315 default: 10316 return mmu_idx; 10317 } 10318 } 10319 10320 /* Return true if the translation regime is using LPAE format page tables */ 10321 static inline bool regime_using_lpae_format(CPUARMState *env, 10322 ARMMMUIdx mmu_idx) 10323 { 10324 int el = regime_el(env, mmu_idx); 10325 if (el == 2 || arm_el_is_aa64(env, el)) { 10326 return true; 10327 } 10328 if (arm_feature(env, ARM_FEATURE_LPAE) 10329 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10330 return true; 10331 } 10332 return false; 10333 } 10334 10335 /* Returns true if the stage 1 translation regime is using LPAE format page 10336 * tables. Used when raising alignment exceptions, whose FSR changes depending 10337 * on whether the long or short descriptor format is in use. */ 10338 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10339 { 10340 mmu_idx = stage_1_mmu_idx(mmu_idx); 10341 10342 return regime_using_lpae_format(env, mmu_idx); 10343 } 10344 10345 #ifndef CONFIG_USER_ONLY 10346 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10347 { 10348 switch (mmu_idx) { 10349 case ARMMMUIdx_SE10_0: 10350 case ARMMMUIdx_E20_0: 10351 case ARMMMUIdx_SE20_0: 10352 case ARMMMUIdx_Stage1_E0: 10353 case ARMMMUIdx_Stage1_SE0: 10354 case ARMMMUIdx_MUser: 10355 case ARMMMUIdx_MSUser: 10356 case ARMMMUIdx_MUserNegPri: 10357 case ARMMMUIdx_MSUserNegPri: 10358 return true; 10359 default: 10360 return false; 10361 case ARMMMUIdx_E10_0: 10362 case ARMMMUIdx_E10_1: 10363 case ARMMMUIdx_E10_1_PAN: 10364 g_assert_not_reached(); 10365 } 10366 } 10367 10368 /* Translate section/page access permissions to page 10369 * R/W protection flags 10370 * 10371 * @env: CPUARMState 10372 * @mmu_idx: MMU index indicating required translation regime 10373 * @ap: The 3-bit access permissions (AP[2:0]) 10374 * @domain_prot: The 2-bit domain access permissions 10375 */ 10376 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10377 int ap, int domain_prot) 10378 { 10379 bool is_user = regime_is_user(env, mmu_idx); 10380 10381 if (domain_prot == 3) { 10382 return PAGE_READ | PAGE_WRITE; 10383 } 10384 10385 switch (ap) { 10386 case 0: 10387 if (arm_feature(env, ARM_FEATURE_V7)) { 10388 return 0; 10389 } 10390 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10391 case SCTLR_S: 10392 return is_user ? 0 : PAGE_READ; 10393 case SCTLR_R: 10394 return PAGE_READ; 10395 default: 10396 return 0; 10397 } 10398 case 1: 10399 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10400 case 2: 10401 if (is_user) { 10402 return PAGE_READ; 10403 } else { 10404 return PAGE_READ | PAGE_WRITE; 10405 } 10406 case 3: 10407 return PAGE_READ | PAGE_WRITE; 10408 case 4: /* Reserved. */ 10409 return 0; 10410 case 5: 10411 return is_user ? 0 : PAGE_READ; 10412 case 6: 10413 return PAGE_READ; 10414 case 7: 10415 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10416 return 0; 10417 } 10418 return PAGE_READ; 10419 default: 10420 g_assert_not_reached(); 10421 } 10422 } 10423 10424 /* Translate section/page access permissions to page 10425 * R/W protection flags. 10426 * 10427 * @ap: The 2-bit simple AP (AP[2:1]) 10428 * @is_user: TRUE if accessing from PL0 10429 */ 10430 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10431 { 10432 switch (ap) { 10433 case 0: 10434 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10435 case 1: 10436 return PAGE_READ | PAGE_WRITE; 10437 case 2: 10438 return is_user ? 0 : PAGE_READ; 10439 case 3: 10440 return PAGE_READ; 10441 default: 10442 g_assert_not_reached(); 10443 } 10444 } 10445 10446 static inline int 10447 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10448 { 10449 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10450 } 10451 10452 /* Translate S2 section/page access permissions to protection flags 10453 * 10454 * @env: CPUARMState 10455 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10456 * @xn: XN (execute-never) bits 10457 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10458 */ 10459 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10460 { 10461 int prot = 0; 10462 10463 if (s2ap & 1) { 10464 prot |= PAGE_READ; 10465 } 10466 if (s2ap & 2) { 10467 prot |= PAGE_WRITE; 10468 } 10469 10470 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10471 switch (xn) { 10472 case 0: 10473 prot |= PAGE_EXEC; 10474 break; 10475 case 1: 10476 if (s1_is_el0) { 10477 prot |= PAGE_EXEC; 10478 } 10479 break; 10480 case 2: 10481 break; 10482 case 3: 10483 if (!s1_is_el0) { 10484 prot |= PAGE_EXEC; 10485 } 10486 break; 10487 default: 10488 g_assert_not_reached(); 10489 } 10490 } else { 10491 if (!extract32(xn, 1, 1)) { 10492 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10493 prot |= PAGE_EXEC; 10494 } 10495 } 10496 } 10497 return prot; 10498 } 10499 10500 /* Translate section/page access permissions to protection flags 10501 * 10502 * @env: CPUARMState 10503 * @mmu_idx: MMU index indicating required translation regime 10504 * @is_aa64: TRUE if AArch64 10505 * @ap: The 2-bit simple AP (AP[2:1]) 10506 * @ns: NS (non-secure) bit 10507 * @xn: XN (execute-never) bit 10508 * @pxn: PXN (privileged execute-never) bit 10509 */ 10510 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10511 int ap, int ns, int xn, int pxn) 10512 { 10513 bool is_user = regime_is_user(env, mmu_idx); 10514 int prot_rw, user_rw; 10515 bool have_wxn; 10516 int wxn = 0; 10517 10518 assert(mmu_idx != ARMMMUIdx_Stage2); 10519 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10520 10521 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10522 if (is_user) { 10523 prot_rw = user_rw; 10524 } else { 10525 if (user_rw && regime_is_pan(env, mmu_idx)) { 10526 /* PAN forbids data accesses but doesn't affect insn fetch */ 10527 prot_rw = 0; 10528 } else { 10529 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10530 } 10531 } 10532 10533 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10534 return prot_rw; 10535 } 10536 10537 /* TODO have_wxn should be replaced with 10538 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10539 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10540 * compatible processors have EL2, which is required for [U]WXN. 10541 */ 10542 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10543 10544 if (have_wxn) { 10545 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10546 } 10547 10548 if (is_aa64) { 10549 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10550 xn = pxn || (user_rw & PAGE_WRITE); 10551 } 10552 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10553 switch (regime_el(env, mmu_idx)) { 10554 case 1: 10555 case 3: 10556 if (is_user) { 10557 xn = xn || !(user_rw & PAGE_READ); 10558 } else { 10559 int uwxn = 0; 10560 if (have_wxn) { 10561 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10562 } 10563 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10564 (uwxn && (user_rw & PAGE_WRITE)); 10565 } 10566 break; 10567 case 2: 10568 break; 10569 } 10570 } else { 10571 xn = wxn = 0; 10572 } 10573 10574 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10575 return prot_rw; 10576 } 10577 return prot_rw | PAGE_EXEC; 10578 } 10579 10580 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10581 uint32_t *table, uint32_t address) 10582 { 10583 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10584 TCR *tcr = regime_tcr(env, mmu_idx); 10585 10586 if (address & tcr->mask) { 10587 if (tcr->raw_tcr & TTBCR_PD1) { 10588 /* Translation table walk disabled for TTBR1 */ 10589 return false; 10590 } 10591 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10592 } else { 10593 if (tcr->raw_tcr & TTBCR_PD0) { 10594 /* Translation table walk disabled for TTBR0 */ 10595 return false; 10596 } 10597 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10598 } 10599 *table |= (address >> 18) & 0x3ffc; 10600 return true; 10601 } 10602 10603 /* Translate a S1 pagetable walk through S2 if needed. */ 10604 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10605 hwaddr addr, bool *is_secure, 10606 ARMMMUFaultInfo *fi) 10607 { 10608 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10609 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10610 target_ulong s2size; 10611 hwaddr s2pa; 10612 int s2prot; 10613 int ret; 10614 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10615 : ARMMMUIdx_Stage2; 10616 ARMCacheAttrs cacheattrs = {}; 10617 MemTxAttrs txattrs = {}; 10618 10619 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10620 &s2pa, &txattrs, &s2prot, &s2size, fi, 10621 &cacheattrs); 10622 if (ret) { 10623 assert(fi->type != ARMFault_None); 10624 fi->s2addr = addr; 10625 fi->stage2 = true; 10626 fi->s1ptw = true; 10627 fi->s1ns = !*is_secure; 10628 return ~0; 10629 } 10630 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10631 (cacheattrs.attrs & 0xf0) == 0) { 10632 /* 10633 * PTW set and S1 walk touched S2 Device memory: 10634 * generate Permission fault. 10635 */ 10636 fi->type = ARMFault_Permission; 10637 fi->s2addr = addr; 10638 fi->stage2 = true; 10639 fi->s1ptw = true; 10640 fi->s1ns = !*is_secure; 10641 return ~0; 10642 } 10643 10644 if (arm_is_secure_below_el3(env)) { 10645 /* Check if page table walk is to secure or non-secure PA space. */ 10646 if (*is_secure) { 10647 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10648 } else { 10649 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10650 } 10651 } else { 10652 assert(!*is_secure); 10653 } 10654 10655 addr = s2pa; 10656 } 10657 return addr; 10658 } 10659 10660 /* All loads done in the course of a page table walk go through here. */ 10661 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10662 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10663 { 10664 ARMCPU *cpu = ARM_CPU(cs); 10665 CPUARMState *env = &cpu->env; 10666 MemTxAttrs attrs = {}; 10667 MemTxResult result = MEMTX_OK; 10668 AddressSpace *as; 10669 uint32_t data; 10670 10671 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10672 attrs.secure = is_secure; 10673 as = arm_addressspace(cs, attrs); 10674 if (fi->s1ptw) { 10675 return 0; 10676 } 10677 if (regime_translation_big_endian(env, mmu_idx)) { 10678 data = address_space_ldl_be(as, addr, attrs, &result); 10679 } else { 10680 data = address_space_ldl_le(as, addr, attrs, &result); 10681 } 10682 if (result == MEMTX_OK) { 10683 return data; 10684 } 10685 fi->type = ARMFault_SyncExternalOnWalk; 10686 fi->ea = arm_extabort_type(result); 10687 return 0; 10688 } 10689 10690 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10691 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10692 { 10693 ARMCPU *cpu = ARM_CPU(cs); 10694 CPUARMState *env = &cpu->env; 10695 MemTxAttrs attrs = {}; 10696 MemTxResult result = MEMTX_OK; 10697 AddressSpace *as; 10698 uint64_t data; 10699 10700 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10701 attrs.secure = is_secure; 10702 as = arm_addressspace(cs, attrs); 10703 if (fi->s1ptw) { 10704 return 0; 10705 } 10706 if (regime_translation_big_endian(env, mmu_idx)) { 10707 data = address_space_ldq_be(as, addr, attrs, &result); 10708 } else { 10709 data = address_space_ldq_le(as, addr, attrs, &result); 10710 } 10711 if (result == MEMTX_OK) { 10712 return data; 10713 } 10714 fi->type = ARMFault_SyncExternalOnWalk; 10715 fi->ea = arm_extabort_type(result); 10716 return 0; 10717 } 10718 10719 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10720 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10721 hwaddr *phys_ptr, int *prot, 10722 target_ulong *page_size, 10723 ARMMMUFaultInfo *fi) 10724 { 10725 CPUState *cs = env_cpu(env); 10726 int level = 1; 10727 uint32_t table; 10728 uint32_t desc; 10729 int type; 10730 int ap; 10731 int domain = 0; 10732 int domain_prot; 10733 hwaddr phys_addr; 10734 uint32_t dacr; 10735 10736 /* Pagetable walk. */ 10737 /* Lookup l1 descriptor. */ 10738 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10739 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10740 fi->type = ARMFault_Translation; 10741 goto do_fault; 10742 } 10743 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10744 mmu_idx, fi); 10745 if (fi->type != ARMFault_None) { 10746 goto do_fault; 10747 } 10748 type = (desc & 3); 10749 domain = (desc >> 5) & 0x0f; 10750 if (regime_el(env, mmu_idx) == 1) { 10751 dacr = env->cp15.dacr_ns; 10752 } else { 10753 dacr = env->cp15.dacr_s; 10754 } 10755 domain_prot = (dacr >> (domain * 2)) & 3; 10756 if (type == 0) { 10757 /* Section translation fault. */ 10758 fi->type = ARMFault_Translation; 10759 goto do_fault; 10760 } 10761 if (type != 2) { 10762 level = 2; 10763 } 10764 if (domain_prot == 0 || domain_prot == 2) { 10765 fi->type = ARMFault_Domain; 10766 goto do_fault; 10767 } 10768 if (type == 2) { 10769 /* 1Mb section. */ 10770 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10771 ap = (desc >> 10) & 3; 10772 *page_size = 1024 * 1024; 10773 } else { 10774 /* Lookup l2 entry. */ 10775 if (type == 1) { 10776 /* Coarse pagetable. */ 10777 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10778 } else { 10779 /* Fine pagetable. */ 10780 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10781 } 10782 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10783 mmu_idx, fi); 10784 if (fi->type != ARMFault_None) { 10785 goto do_fault; 10786 } 10787 switch (desc & 3) { 10788 case 0: /* Page translation fault. */ 10789 fi->type = ARMFault_Translation; 10790 goto do_fault; 10791 case 1: /* 64k page. */ 10792 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10793 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10794 *page_size = 0x10000; 10795 break; 10796 case 2: /* 4k page. */ 10797 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10798 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10799 *page_size = 0x1000; 10800 break; 10801 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10802 if (type == 1) { 10803 /* ARMv6/XScale extended small page format */ 10804 if (arm_feature(env, ARM_FEATURE_XSCALE) 10805 || arm_feature(env, ARM_FEATURE_V6)) { 10806 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10807 *page_size = 0x1000; 10808 } else { 10809 /* UNPREDICTABLE in ARMv5; we choose to take a 10810 * page translation fault. 10811 */ 10812 fi->type = ARMFault_Translation; 10813 goto do_fault; 10814 } 10815 } else { 10816 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10817 *page_size = 0x400; 10818 } 10819 ap = (desc >> 4) & 3; 10820 break; 10821 default: 10822 /* Never happens, but compiler isn't smart enough to tell. */ 10823 abort(); 10824 } 10825 } 10826 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10827 *prot |= *prot ? PAGE_EXEC : 0; 10828 if (!(*prot & (1 << access_type))) { 10829 /* Access permission fault. */ 10830 fi->type = ARMFault_Permission; 10831 goto do_fault; 10832 } 10833 *phys_ptr = phys_addr; 10834 return false; 10835 do_fault: 10836 fi->domain = domain; 10837 fi->level = level; 10838 return true; 10839 } 10840 10841 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10842 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10843 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10844 target_ulong *page_size, ARMMMUFaultInfo *fi) 10845 { 10846 CPUState *cs = env_cpu(env); 10847 ARMCPU *cpu = env_archcpu(env); 10848 int level = 1; 10849 uint32_t table; 10850 uint32_t desc; 10851 uint32_t xn; 10852 uint32_t pxn = 0; 10853 int type; 10854 int ap; 10855 int domain = 0; 10856 int domain_prot; 10857 hwaddr phys_addr; 10858 uint32_t dacr; 10859 bool ns; 10860 10861 /* Pagetable walk. */ 10862 /* Lookup l1 descriptor. */ 10863 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10864 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10865 fi->type = ARMFault_Translation; 10866 goto do_fault; 10867 } 10868 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10869 mmu_idx, fi); 10870 if (fi->type != ARMFault_None) { 10871 goto do_fault; 10872 } 10873 type = (desc & 3); 10874 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10875 /* Section translation fault, or attempt to use the encoding 10876 * which is Reserved on implementations without PXN. 10877 */ 10878 fi->type = ARMFault_Translation; 10879 goto do_fault; 10880 } 10881 if ((type == 1) || !(desc & (1 << 18))) { 10882 /* Page or Section. */ 10883 domain = (desc >> 5) & 0x0f; 10884 } 10885 if (regime_el(env, mmu_idx) == 1) { 10886 dacr = env->cp15.dacr_ns; 10887 } else { 10888 dacr = env->cp15.dacr_s; 10889 } 10890 if (type == 1) { 10891 level = 2; 10892 } 10893 domain_prot = (dacr >> (domain * 2)) & 3; 10894 if (domain_prot == 0 || domain_prot == 2) { 10895 /* Section or Page domain fault */ 10896 fi->type = ARMFault_Domain; 10897 goto do_fault; 10898 } 10899 if (type != 1) { 10900 if (desc & (1 << 18)) { 10901 /* Supersection. */ 10902 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10903 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10904 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10905 *page_size = 0x1000000; 10906 } else { 10907 /* Section. */ 10908 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10909 *page_size = 0x100000; 10910 } 10911 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10912 xn = desc & (1 << 4); 10913 pxn = desc & 1; 10914 ns = extract32(desc, 19, 1); 10915 } else { 10916 if (cpu_isar_feature(aa32_pxn, cpu)) { 10917 pxn = (desc >> 2) & 1; 10918 } 10919 ns = extract32(desc, 3, 1); 10920 /* Lookup l2 entry. */ 10921 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10922 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10923 mmu_idx, fi); 10924 if (fi->type != ARMFault_None) { 10925 goto do_fault; 10926 } 10927 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10928 switch (desc & 3) { 10929 case 0: /* Page translation fault. */ 10930 fi->type = ARMFault_Translation; 10931 goto do_fault; 10932 case 1: /* 64k page. */ 10933 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10934 xn = desc & (1 << 15); 10935 *page_size = 0x10000; 10936 break; 10937 case 2: case 3: /* 4k page. */ 10938 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10939 xn = desc & 1; 10940 *page_size = 0x1000; 10941 break; 10942 default: 10943 /* Never happens, but compiler isn't smart enough to tell. */ 10944 abort(); 10945 } 10946 } 10947 if (domain_prot == 3) { 10948 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10949 } else { 10950 if (pxn && !regime_is_user(env, mmu_idx)) { 10951 xn = 1; 10952 } 10953 if (xn && access_type == MMU_INST_FETCH) { 10954 fi->type = ARMFault_Permission; 10955 goto do_fault; 10956 } 10957 10958 if (arm_feature(env, ARM_FEATURE_V6K) && 10959 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10960 /* The simplified model uses AP[0] as an access control bit. */ 10961 if ((ap & 1) == 0) { 10962 /* Access flag fault. */ 10963 fi->type = ARMFault_AccessFlag; 10964 goto do_fault; 10965 } 10966 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10967 } else { 10968 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10969 } 10970 if (*prot && !xn) { 10971 *prot |= PAGE_EXEC; 10972 } 10973 if (!(*prot & (1 << access_type))) { 10974 /* Access permission fault. */ 10975 fi->type = ARMFault_Permission; 10976 goto do_fault; 10977 } 10978 } 10979 if (ns) { 10980 /* The NS bit will (as required by the architecture) have no effect if 10981 * the CPU doesn't support TZ or this is a non-secure translation 10982 * regime, because the attribute will already be non-secure. 10983 */ 10984 attrs->secure = false; 10985 } 10986 *phys_ptr = phys_addr; 10987 return false; 10988 do_fault: 10989 fi->domain = domain; 10990 fi->level = level; 10991 return true; 10992 } 10993 10994 /* 10995 * check_s2_mmu_setup 10996 * @cpu: ARMCPU 10997 * @is_aa64: True if the translation regime is in AArch64 state 10998 * @startlevel: Suggested starting level 10999 * @inputsize: Bitsize of IPAs 11000 * @stride: Page-table stride (See the ARM ARM) 11001 * 11002 * Returns true if the suggested S2 translation parameters are OK and 11003 * false otherwise. 11004 */ 11005 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11006 int inputsize, int stride) 11007 { 11008 const int grainsize = stride + 3; 11009 int startsizecheck; 11010 11011 /* Negative levels are never allowed. */ 11012 if (level < 0) { 11013 return false; 11014 } 11015 11016 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11017 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11018 return false; 11019 } 11020 11021 if (is_aa64) { 11022 CPUARMState *env = &cpu->env; 11023 unsigned int pamax = arm_pamax(cpu); 11024 11025 switch (stride) { 11026 case 13: /* 64KB Pages. */ 11027 if (level == 0 || (level == 1 && pamax <= 42)) { 11028 return false; 11029 } 11030 break; 11031 case 11: /* 16KB Pages. */ 11032 if (level == 0 || (level == 1 && pamax <= 40)) { 11033 return false; 11034 } 11035 break; 11036 case 9: /* 4KB Pages. */ 11037 if (level == 0 && pamax <= 42) { 11038 return false; 11039 } 11040 break; 11041 default: 11042 g_assert_not_reached(); 11043 } 11044 11045 /* Inputsize checks. */ 11046 if (inputsize > pamax && 11047 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 11048 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11049 return false; 11050 } 11051 } else { 11052 /* AArch32 only supports 4KB pages. Assert on that. */ 11053 assert(stride == 9); 11054 11055 if (level == 0) { 11056 return false; 11057 } 11058 } 11059 return true; 11060 } 11061 11062 /* Translate from the 4-bit stage 2 representation of 11063 * memory attributes (without cache-allocation hints) to 11064 * the 8-bit representation of the stage 1 MAIR registers 11065 * (which includes allocation hints). 11066 * 11067 * ref: shared/translation/attrs/S2AttrDecode() 11068 * .../S2ConvertAttrsHints() 11069 */ 11070 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11071 { 11072 uint8_t hiattr = extract32(s2attrs, 2, 2); 11073 uint8_t loattr = extract32(s2attrs, 0, 2); 11074 uint8_t hihint = 0, lohint = 0; 11075 11076 if (hiattr != 0) { /* normal memory */ 11077 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11078 hiattr = loattr = 1; /* non-cacheable */ 11079 } else { 11080 if (hiattr != 1) { /* Write-through or write-back */ 11081 hihint = 3; /* RW allocate */ 11082 } 11083 if (loattr != 1) { /* Write-through or write-back */ 11084 lohint = 3; /* RW allocate */ 11085 } 11086 } 11087 } 11088 11089 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11090 } 11091 #endif /* !CONFIG_USER_ONLY */ 11092 11093 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11094 { 11095 if (regime_has_2_ranges(mmu_idx)) { 11096 return extract64(tcr, 37, 2); 11097 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11098 return 0; /* VTCR_EL2 */ 11099 } else { 11100 /* Replicate the single TBI bit so we always have 2 bits. */ 11101 return extract32(tcr, 20, 1) * 3; 11102 } 11103 } 11104 11105 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11106 { 11107 if (regime_has_2_ranges(mmu_idx)) { 11108 return extract64(tcr, 51, 2); 11109 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11110 return 0; /* VTCR_EL2 */ 11111 } else { 11112 /* Replicate the single TBID bit so we always have 2 bits. */ 11113 return extract32(tcr, 29, 1) * 3; 11114 } 11115 } 11116 11117 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11118 { 11119 if (regime_has_2_ranges(mmu_idx)) { 11120 return extract64(tcr, 57, 2); 11121 } else { 11122 /* Replicate the single TCMA bit so we always have 2 bits. */ 11123 return extract32(tcr, 30, 1) * 3; 11124 } 11125 } 11126 11127 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11128 ARMMMUIdx mmu_idx, bool data) 11129 { 11130 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11131 bool epd, hpd, using16k, using64k; 11132 int select, tsz, tbi, max_tsz; 11133 11134 if (!regime_has_2_ranges(mmu_idx)) { 11135 select = 0; 11136 tsz = extract32(tcr, 0, 6); 11137 using64k = extract32(tcr, 14, 1); 11138 using16k = extract32(tcr, 15, 1); 11139 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11140 /* VTCR_EL2 */ 11141 hpd = false; 11142 } else { 11143 hpd = extract32(tcr, 24, 1); 11144 } 11145 epd = false; 11146 } else { 11147 /* 11148 * Bit 55 is always between the two regions, and is canonical for 11149 * determining if address tagging is enabled. 11150 */ 11151 select = extract64(va, 55, 1); 11152 if (!select) { 11153 tsz = extract32(tcr, 0, 6); 11154 epd = extract32(tcr, 7, 1); 11155 using64k = extract32(tcr, 14, 1); 11156 using16k = extract32(tcr, 15, 1); 11157 hpd = extract64(tcr, 41, 1); 11158 } else { 11159 int tg = extract32(tcr, 30, 2); 11160 using16k = tg == 1; 11161 using64k = tg == 3; 11162 tsz = extract32(tcr, 16, 6); 11163 epd = extract32(tcr, 23, 1); 11164 hpd = extract64(tcr, 42, 1); 11165 } 11166 } 11167 11168 if (cpu_isar_feature(aa64_st, env_archcpu(env))) { 11169 max_tsz = 48 - using64k; 11170 } else { 11171 max_tsz = 39; 11172 } 11173 11174 tsz = MIN(tsz, max_tsz); 11175 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 11176 11177 /* Present TBI as a composite with TBID. */ 11178 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11179 if (!data) { 11180 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11181 } 11182 tbi = (tbi >> select) & 1; 11183 11184 return (ARMVAParameters) { 11185 .tsz = tsz, 11186 .select = select, 11187 .tbi = tbi, 11188 .epd = epd, 11189 .hpd = hpd, 11190 .using16k = using16k, 11191 .using64k = using64k, 11192 }; 11193 } 11194 11195 #ifndef CONFIG_USER_ONLY 11196 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11197 ARMMMUIdx mmu_idx) 11198 { 11199 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11200 uint32_t el = regime_el(env, mmu_idx); 11201 int select, tsz; 11202 bool epd, hpd; 11203 11204 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11205 11206 if (mmu_idx == ARMMMUIdx_Stage2) { 11207 /* VTCR */ 11208 bool sext = extract32(tcr, 4, 1); 11209 bool sign = extract32(tcr, 3, 1); 11210 11211 /* 11212 * If the sign-extend bit is not the same as t0sz[3], the result 11213 * is unpredictable. Flag this as a guest error. 11214 */ 11215 if (sign != sext) { 11216 qemu_log_mask(LOG_GUEST_ERROR, 11217 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11218 } 11219 tsz = sextract32(tcr, 0, 4) + 8; 11220 select = 0; 11221 hpd = false; 11222 epd = false; 11223 } else if (el == 2) { 11224 /* HTCR */ 11225 tsz = extract32(tcr, 0, 3); 11226 select = 0; 11227 hpd = extract64(tcr, 24, 1); 11228 epd = false; 11229 } else { 11230 int t0sz = extract32(tcr, 0, 3); 11231 int t1sz = extract32(tcr, 16, 3); 11232 11233 if (t1sz == 0) { 11234 select = va > (0xffffffffu >> t0sz); 11235 } else { 11236 /* Note that we will detect errors later. */ 11237 select = va >= ~(0xffffffffu >> t1sz); 11238 } 11239 if (!select) { 11240 tsz = t0sz; 11241 epd = extract32(tcr, 7, 1); 11242 hpd = extract64(tcr, 41, 1); 11243 } else { 11244 tsz = t1sz; 11245 epd = extract32(tcr, 23, 1); 11246 hpd = extract64(tcr, 42, 1); 11247 } 11248 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11249 hpd &= extract32(tcr, 6, 1); 11250 } 11251 11252 return (ARMVAParameters) { 11253 .tsz = tsz, 11254 .select = select, 11255 .epd = epd, 11256 .hpd = hpd, 11257 }; 11258 } 11259 11260 /** 11261 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11262 * 11263 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11264 * prot and page_size may not be filled in, and the populated fsr value provides 11265 * information on why the translation aborted, in the format of a long-format 11266 * DFSR/IFSR fault register, with the following caveats: 11267 * * the WnR bit is never set (the caller must do this). 11268 * 11269 * @env: CPUARMState 11270 * @address: virtual address to get physical address for 11271 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11272 * @mmu_idx: MMU index indicating required translation regime 11273 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11274 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11275 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11276 * @phys_ptr: set to the physical address corresponding to the virtual address 11277 * @attrs: set to the memory transaction attributes to use 11278 * @prot: set to the permissions for the page containing phys_ptr 11279 * @page_size_ptr: set to the size of the page containing phys_ptr 11280 * @fi: set to fault info if the translation fails 11281 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11282 */ 11283 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11284 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11285 bool s1_is_el0, 11286 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11287 target_ulong *page_size_ptr, 11288 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11289 { 11290 ARMCPU *cpu = env_archcpu(env); 11291 CPUState *cs = CPU(cpu); 11292 /* Read an LPAE long-descriptor translation table. */ 11293 ARMFaultType fault_type = ARMFault_Translation; 11294 uint32_t level; 11295 ARMVAParameters param; 11296 uint64_t ttbr; 11297 hwaddr descaddr, indexmask, indexmask_grainsize; 11298 uint32_t tableattrs; 11299 target_ulong page_size; 11300 uint32_t attrs; 11301 int32_t stride; 11302 int addrsize, inputsize; 11303 TCR *tcr = regime_tcr(env, mmu_idx); 11304 int ap, ns, xn, pxn; 11305 uint32_t el = regime_el(env, mmu_idx); 11306 uint64_t descaddrmask; 11307 bool aarch64 = arm_el_is_aa64(env, el); 11308 bool guarded = false; 11309 11310 /* TODO: This code does not support shareability levels. */ 11311 if (aarch64) { 11312 param = aa64_va_parameters(env, address, mmu_idx, 11313 access_type != MMU_INST_FETCH); 11314 level = 0; 11315 addrsize = 64 - 8 * param.tbi; 11316 inputsize = 64 - param.tsz; 11317 } else { 11318 param = aa32_va_parameters(env, address, mmu_idx); 11319 level = 1; 11320 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11321 inputsize = addrsize - param.tsz; 11322 } 11323 11324 /* 11325 * We determined the region when collecting the parameters, but we 11326 * have not yet validated that the address is valid for the region. 11327 * Extract the top bits and verify that they all match select. 11328 * 11329 * For aa32, if inputsize == addrsize, then we have selected the 11330 * region by exclusion in aa32_va_parameters and there is no more 11331 * validation to do here. 11332 */ 11333 if (inputsize < addrsize) { 11334 target_ulong top_bits = sextract64(address, inputsize, 11335 addrsize - inputsize); 11336 if (-top_bits != param.select) { 11337 /* The gap between the two regions is a Translation fault */ 11338 fault_type = ARMFault_Translation; 11339 goto do_fault; 11340 } 11341 } 11342 11343 if (param.using64k) { 11344 stride = 13; 11345 } else if (param.using16k) { 11346 stride = 11; 11347 } else { 11348 stride = 9; 11349 } 11350 11351 /* Note that QEMU ignores shareability and cacheability attributes, 11352 * so we don't need to do anything with the SH, ORGN, IRGN fields 11353 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11354 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11355 * implement any ASID-like capability so we can ignore it (instead 11356 * we will always flush the TLB any time the ASID is changed). 11357 */ 11358 ttbr = regime_ttbr(env, mmu_idx, param.select); 11359 11360 /* Here we should have set up all the parameters for the translation: 11361 * inputsize, ttbr, epd, stride, tbi 11362 */ 11363 11364 if (param.epd) { 11365 /* Translation table walk disabled => Translation fault on TLB miss 11366 * Note: This is always 0 on 64-bit EL2 and EL3. 11367 */ 11368 goto do_fault; 11369 } 11370 11371 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11372 /* The starting level depends on the virtual address size (which can 11373 * be up to 48 bits) and the translation granule size. It indicates 11374 * the number of strides (stride bits at a time) needed to 11375 * consume the bits of the input address. In the pseudocode this is: 11376 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11377 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11378 * our 'stride + 3' and 'stride' is our 'stride'. 11379 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11380 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11381 * = 4 - (inputsize - 4) / stride; 11382 */ 11383 level = 4 - (inputsize - 4) / stride; 11384 } else { 11385 /* For stage 2 translations the starting level is specified by the 11386 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11387 */ 11388 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11389 uint32_t startlevel; 11390 bool ok; 11391 11392 if (!aarch64 || stride == 9) { 11393 /* AArch32 or 4KB pages */ 11394 startlevel = 2 - sl0; 11395 11396 if (cpu_isar_feature(aa64_st, cpu)) { 11397 startlevel &= 3; 11398 } 11399 } else { 11400 /* 16KB or 64KB pages */ 11401 startlevel = 3 - sl0; 11402 } 11403 11404 /* Check that the starting level is valid. */ 11405 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11406 inputsize, stride); 11407 if (!ok) { 11408 fault_type = ARMFault_Translation; 11409 goto do_fault; 11410 } 11411 level = startlevel; 11412 } 11413 11414 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11415 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11416 11417 /* Now we can extract the actual base address from the TTBR */ 11418 descaddr = extract64(ttbr, 0, 48); 11419 /* 11420 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11421 * and also to mask out CnP (bit 0) which could validly be non-zero. 11422 */ 11423 descaddr &= ~indexmask; 11424 11425 /* The address field in the descriptor goes up to bit 39 for ARMv7 11426 * but up to bit 47 for ARMv8, but we use the descaddrmask 11427 * up to bit 39 for AArch32, because we don't need other bits in that case 11428 * to construct next descriptor address (anyway they should be all zeroes). 11429 */ 11430 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11431 ~indexmask_grainsize; 11432 11433 /* Secure accesses start with the page table in secure memory and 11434 * can be downgraded to non-secure at any step. Non-secure accesses 11435 * remain non-secure. We implement this by just ORing in the NSTable/NS 11436 * bits at each step. 11437 */ 11438 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11439 for (;;) { 11440 uint64_t descriptor; 11441 bool nstable; 11442 11443 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11444 descaddr &= ~7ULL; 11445 nstable = extract32(tableattrs, 4, 1); 11446 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11447 if (fi->type != ARMFault_None) { 11448 goto do_fault; 11449 } 11450 11451 if (!(descriptor & 1) || 11452 (!(descriptor & 2) && (level == 3))) { 11453 /* Invalid, or the Reserved level 3 encoding */ 11454 goto do_fault; 11455 } 11456 descaddr = descriptor & descaddrmask; 11457 11458 if ((descriptor & 2) && (level < 3)) { 11459 /* Table entry. The top five bits are attributes which may 11460 * propagate down through lower levels of the table (and 11461 * which are all arranged so that 0 means "no effect", so 11462 * we can gather them up by ORing in the bits at each level). 11463 */ 11464 tableattrs |= extract64(descriptor, 59, 5); 11465 level++; 11466 indexmask = indexmask_grainsize; 11467 continue; 11468 } 11469 /* Block entry at level 1 or 2, or page entry at level 3. 11470 * These are basically the same thing, although the number 11471 * of bits we pull in from the vaddr varies. 11472 */ 11473 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11474 descaddr |= (address & (page_size - 1)); 11475 /* Extract attributes from the descriptor */ 11476 attrs = extract64(descriptor, 2, 10) 11477 | (extract64(descriptor, 52, 12) << 10); 11478 11479 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11480 /* Stage 2 table descriptors do not include any attribute fields */ 11481 break; 11482 } 11483 /* Merge in attributes from table descriptors */ 11484 attrs |= nstable << 3; /* NS */ 11485 guarded = extract64(descriptor, 50, 1); /* GP */ 11486 if (param.hpd) { 11487 /* HPD disables all the table attributes except NSTable. */ 11488 break; 11489 } 11490 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11491 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11492 * means "force PL1 access only", which means forcing AP[1] to 0. 11493 */ 11494 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11495 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11496 break; 11497 } 11498 /* Here descaddr is the final physical address, and attributes 11499 * are all in attrs. 11500 */ 11501 fault_type = ARMFault_AccessFlag; 11502 if ((attrs & (1 << 8)) == 0) { 11503 /* Access flag */ 11504 goto do_fault; 11505 } 11506 11507 ap = extract32(attrs, 4, 2); 11508 11509 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11510 ns = mmu_idx == ARMMMUIdx_Stage2; 11511 xn = extract32(attrs, 11, 2); 11512 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11513 } else { 11514 ns = extract32(attrs, 3, 1); 11515 xn = extract32(attrs, 12, 1); 11516 pxn = extract32(attrs, 11, 1); 11517 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11518 } 11519 11520 fault_type = ARMFault_Permission; 11521 if (!(*prot & (1 << access_type))) { 11522 goto do_fault; 11523 } 11524 11525 if (ns) { 11526 /* The NS bit will (as required by the architecture) have no effect if 11527 * the CPU doesn't support TZ or this is a non-secure translation 11528 * regime, because the attribute will already be non-secure. 11529 */ 11530 txattrs->secure = false; 11531 } 11532 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11533 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11534 arm_tlb_bti_gp(txattrs) = true; 11535 } 11536 11537 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11538 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11539 } else { 11540 /* Index into MAIR registers for cache attributes */ 11541 uint8_t attrindx = extract32(attrs, 0, 3); 11542 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11543 assert(attrindx <= 7); 11544 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11545 } 11546 cacheattrs->shareability = extract32(attrs, 6, 2); 11547 11548 *phys_ptr = descaddr; 11549 *page_size_ptr = page_size; 11550 return false; 11551 11552 do_fault: 11553 fi->type = fault_type; 11554 fi->level = level; 11555 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11556 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11557 mmu_idx == ARMMMUIdx_Stage2_S); 11558 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11559 return true; 11560 } 11561 11562 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11563 ARMMMUIdx mmu_idx, 11564 int32_t address, int *prot) 11565 { 11566 if (!arm_feature(env, ARM_FEATURE_M)) { 11567 *prot = PAGE_READ | PAGE_WRITE; 11568 switch (address) { 11569 case 0xF0000000 ... 0xFFFFFFFF: 11570 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11571 /* hivecs execing is ok */ 11572 *prot |= PAGE_EXEC; 11573 } 11574 break; 11575 case 0x00000000 ... 0x7FFFFFFF: 11576 *prot |= PAGE_EXEC; 11577 break; 11578 } 11579 } else { 11580 /* Default system address map for M profile cores. 11581 * The architecture specifies which regions are execute-never; 11582 * at the MPU level no other checks are defined. 11583 */ 11584 switch (address) { 11585 case 0x00000000 ... 0x1fffffff: /* ROM */ 11586 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11587 case 0x60000000 ... 0x7fffffff: /* RAM */ 11588 case 0x80000000 ... 0x9fffffff: /* RAM */ 11589 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11590 break; 11591 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11592 case 0xa0000000 ... 0xbfffffff: /* Device */ 11593 case 0xc0000000 ... 0xdfffffff: /* Device */ 11594 case 0xe0000000 ... 0xffffffff: /* System */ 11595 *prot = PAGE_READ | PAGE_WRITE; 11596 break; 11597 default: 11598 g_assert_not_reached(); 11599 } 11600 } 11601 } 11602 11603 static bool pmsav7_use_background_region(ARMCPU *cpu, 11604 ARMMMUIdx mmu_idx, bool is_user) 11605 { 11606 /* Return true if we should use the default memory map as a 11607 * "background" region if there are no hits against any MPU regions. 11608 */ 11609 CPUARMState *env = &cpu->env; 11610 11611 if (is_user) { 11612 return false; 11613 } 11614 11615 if (arm_feature(env, ARM_FEATURE_M)) { 11616 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11617 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11618 } else { 11619 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11620 } 11621 } 11622 11623 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11624 { 11625 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11626 return arm_feature(env, ARM_FEATURE_M) && 11627 extract32(address, 20, 12) == 0xe00; 11628 } 11629 11630 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11631 { 11632 /* True if address is in the M profile system region 11633 * 0xe0000000 - 0xffffffff 11634 */ 11635 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11636 } 11637 11638 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11639 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11640 hwaddr *phys_ptr, int *prot, 11641 target_ulong *page_size, 11642 ARMMMUFaultInfo *fi) 11643 { 11644 ARMCPU *cpu = env_archcpu(env); 11645 int n; 11646 bool is_user = regime_is_user(env, mmu_idx); 11647 11648 *phys_ptr = address; 11649 *page_size = TARGET_PAGE_SIZE; 11650 *prot = 0; 11651 11652 if (regime_translation_disabled(env, mmu_idx) || 11653 m_is_ppb_region(env, address)) { 11654 /* MPU disabled or M profile PPB access: use default memory map. 11655 * The other case which uses the default memory map in the 11656 * v7M ARM ARM pseudocode is exception vector reads from the vector 11657 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11658 * which always does a direct read using address_space_ldl(), rather 11659 * than going via this function, so we don't need to check that here. 11660 */ 11661 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11662 } else { /* MPU enabled */ 11663 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11664 /* region search */ 11665 uint32_t base = env->pmsav7.drbar[n]; 11666 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11667 uint32_t rmask; 11668 bool srdis = false; 11669 11670 if (!(env->pmsav7.drsr[n] & 0x1)) { 11671 continue; 11672 } 11673 11674 if (!rsize) { 11675 qemu_log_mask(LOG_GUEST_ERROR, 11676 "DRSR[%d]: Rsize field cannot be 0\n", n); 11677 continue; 11678 } 11679 rsize++; 11680 rmask = (1ull << rsize) - 1; 11681 11682 if (base & rmask) { 11683 qemu_log_mask(LOG_GUEST_ERROR, 11684 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11685 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11686 n, base, rmask); 11687 continue; 11688 } 11689 11690 if (address < base || address > base + rmask) { 11691 /* 11692 * Address not in this region. We must check whether the 11693 * region covers addresses in the same page as our address. 11694 * In that case we must not report a size that covers the 11695 * whole page for a subsequent hit against a different MPU 11696 * region or the background region, because it would result in 11697 * incorrect TLB hits for subsequent accesses to addresses that 11698 * are in this MPU region. 11699 */ 11700 if (ranges_overlap(base, rmask, 11701 address & TARGET_PAGE_MASK, 11702 TARGET_PAGE_SIZE)) { 11703 *page_size = 1; 11704 } 11705 continue; 11706 } 11707 11708 /* Region matched */ 11709 11710 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11711 int i, snd; 11712 uint32_t srdis_mask; 11713 11714 rsize -= 3; /* sub region size (power of 2) */ 11715 snd = ((address - base) >> rsize) & 0x7; 11716 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11717 11718 srdis_mask = srdis ? 0x3 : 0x0; 11719 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11720 /* This will check in groups of 2, 4 and then 8, whether 11721 * the subregion bits are consistent. rsize is incremented 11722 * back up to give the region size, considering consistent 11723 * adjacent subregions as one region. Stop testing if rsize 11724 * is already big enough for an entire QEMU page. 11725 */ 11726 int snd_rounded = snd & ~(i - 1); 11727 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11728 snd_rounded + 8, i); 11729 if (srdis_mask ^ srdis_multi) { 11730 break; 11731 } 11732 srdis_mask = (srdis_mask << i) | srdis_mask; 11733 rsize++; 11734 } 11735 } 11736 if (srdis) { 11737 continue; 11738 } 11739 if (rsize < TARGET_PAGE_BITS) { 11740 *page_size = 1 << rsize; 11741 } 11742 break; 11743 } 11744 11745 if (n == -1) { /* no hits */ 11746 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11747 /* background fault */ 11748 fi->type = ARMFault_Background; 11749 return true; 11750 } 11751 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11752 } else { /* a MPU hit! */ 11753 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11754 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11755 11756 if (m_is_system_region(env, address)) { 11757 /* System space is always execute never */ 11758 xn = 1; 11759 } 11760 11761 if (is_user) { /* User mode AP bit decoding */ 11762 switch (ap) { 11763 case 0: 11764 case 1: 11765 case 5: 11766 break; /* no access */ 11767 case 3: 11768 *prot |= PAGE_WRITE; 11769 /* fall through */ 11770 case 2: 11771 case 6: 11772 *prot |= PAGE_READ | PAGE_EXEC; 11773 break; 11774 case 7: 11775 /* for v7M, same as 6; for R profile a reserved value */ 11776 if (arm_feature(env, ARM_FEATURE_M)) { 11777 *prot |= PAGE_READ | PAGE_EXEC; 11778 break; 11779 } 11780 /* fall through */ 11781 default: 11782 qemu_log_mask(LOG_GUEST_ERROR, 11783 "DRACR[%d]: Bad value for AP bits: 0x%" 11784 PRIx32 "\n", n, ap); 11785 } 11786 } else { /* Priv. mode AP bits decoding */ 11787 switch (ap) { 11788 case 0: 11789 break; /* no access */ 11790 case 1: 11791 case 2: 11792 case 3: 11793 *prot |= PAGE_WRITE; 11794 /* fall through */ 11795 case 5: 11796 case 6: 11797 *prot |= PAGE_READ | PAGE_EXEC; 11798 break; 11799 case 7: 11800 /* for v7M, same as 6; for R profile a reserved value */ 11801 if (arm_feature(env, ARM_FEATURE_M)) { 11802 *prot |= PAGE_READ | PAGE_EXEC; 11803 break; 11804 } 11805 /* fall through */ 11806 default: 11807 qemu_log_mask(LOG_GUEST_ERROR, 11808 "DRACR[%d]: Bad value for AP bits: 0x%" 11809 PRIx32 "\n", n, ap); 11810 } 11811 } 11812 11813 /* execute never */ 11814 if (xn) { 11815 *prot &= ~PAGE_EXEC; 11816 } 11817 } 11818 } 11819 11820 fi->type = ARMFault_Permission; 11821 fi->level = 1; 11822 return !(*prot & (1 << access_type)); 11823 } 11824 11825 static bool v8m_is_sau_exempt(CPUARMState *env, 11826 uint32_t address, MMUAccessType access_type) 11827 { 11828 /* The architecture specifies that certain address ranges are 11829 * exempt from v8M SAU/IDAU checks. 11830 */ 11831 return 11832 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11833 (address >= 0xe0000000 && address <= 0xe0002fff) || 11834 (address >= 0xe000e000 && address <= 0xe000efff) || 11835 (address >= 0xe002e000 && address <= 0xe002efff) || 11836 (address >= 0xe0040000 && address <= 0xe0041fff) || 11837 (address >= 0xe00ff000 && address <= 0xe00fffff); 11838 } 11839 11840 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11841 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11842 V8M_SAttributes *sattrs) 11843 { 11844 /* Look up the security attributes for this address. Compare the 11845 * pseudocode SecurityCheck() function. 11846 * We assume the caller has zero-initialized *sattrs. 11847 */ 11848 ARMCPU *cpu = env_archcpu(env); 11849 int r; 11850 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11851 int idau_region = IREGION_NOTVALID; 11852 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11853 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11854 11855 if (cpu->idau) { 11856 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11857 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11858 11859 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11860 &idau_nsc); 11861 } 11862 11863 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11864 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11865 return; 11866 } 11867 11868 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11869 sattrs->ns = !regime_is_secure(env, mmu_idx); 11870 return; 11871 } 11872 11873 if (idau_region != IREGION_NOTVALID) { 11874 sattrs->irvalid = true; 11875 sattrs->iregion = idau_region; 11876 } 11877 11878 switch (env->sau.ctrl & 3) { 11879 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11880 break; 11881 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11882 sattrs->ns = true; 11883 break; 11884 default: /* SAU.ENABLE == 1 */ 11885 for (r = 0; r < cpu->sau_sregion; r++) { 11886 if (env->sau.rlar[r] & 1) { 11887 uint32_t base = env->sau.rbar[r] & ~0x1f; 11888 uint32_t limit = env->sau.rlar[r] | 0x1f; 11889 11890 if (base <= address && limit >= address) { 11891 if (base > addr_page_base || limit < addr_page_limit) { 11892 sattrs->subpage = true; 11893 } 11894 if (sattrs->srvalid) { 11895 /* If we hit in more than one region then we must report 11896 * as Secure, not NS-Callable, with no valid region 11897 * number info. 11898 */ 11899 sattrs->ns = false; 11900 sattrs->nsc = false; 11901 sattrs->sregion = 0; 11902 sattrs->srvalid = false; 11903 break; 11904 } else { 11905 if (env->sau.rlar[r] & 2) { 11906 sattrs->nsc = true; 11907 } else { 11908 sattrs->ns = true; 11909 } 11910 sattrs->srvalid = true; 11911 sattrs->sregion = r; 11912 } 11913 } else { 11914 /* 11915 * Address not in this region. We must check whether the 11916 * region covers addresses in the same page as our address. 11917 * In that case we must not report a size that covers the 11918 * whole page for a subsequent hit against a different MPU 11919 * region or the background region, because it would result 11920 * in incorrect TLB hits for subsequent accesses to 11921 * addresses that are in this MPU region. 11922 */ 11923 if (limit >= base && 11924 ranges_overlap(base, limit - base + 1, 11925 addr_page_base, 11926 TARGET_PAGE_SIZE)) { 11927 sattrs->subpage = true; 11928 } 11929 } 11930 } 11931 } 11932 break; 11933 } 11934 11935 /* 11936 * The IDAU will override the SAU lookup results if it specifies 11937 * higher security than the SAU does. 11938 */ 11939 if (!idau_ns) { 11940 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11941 sattrs->ns = false; 11942 sattrs->nsc = idau_nsc; 11943 } 11944 } 11945 } 11946 11947 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11948 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11949 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11950 int *prot, bool *is_subpage, 11951 ARMMMUFaultInfo *fi, uint32_t *mregion) 11952 { 11953 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11954 * that a full phys-to-virt translation does). 11955 * mregion is (if not NULL) set to the region number which matched, 11956 * or -1 if no region number is returned (MPU off, address did not 11957 * hit a region, address hit in multiple regions). 11958 * We set is_subpage to true if the region hit doesn't cover the 11959 * entire TARGET_PAGE the address is within. 11960 */ 11961 ARMCPU *cpu = env_archcpu(env); 11962 bool is_user = regime_is_user(env, mmu_idx); 11963 uint32_t secure = regime_is_secure(env, mmu_idx); 11964 int n; 11965 int matchregion = -1; 11966 bool hit = false; 11967 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11968 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11969 11970 *is_subpage = false; 11971 *phys_ptr = address; 11972 *prot = 0; 11973 if (mregion) { 11974 *mregion = -1; 11975 } 11976 11977 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11978 * was an exception vector read from the vector table (which is always 11979 * done using the default system address map), because those accesses 11980 * are done in arm_v7m_load_vector(), which always does a direct 11981 * read using address_space_ldl(), rather than going via this function. 11982 */ 11983 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11984 hit = true; 11985 } else if (m_is_ppb_region(env, address)) { 11986 hit = true; 11987 } else { 11988 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11989 hit = true; 11990 } 11991 11992 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11993 /* region search */ 11994 /* Note that the base address is bits [31:5] from the register 11995 * with bits [4:0] all zeroes, but the limit address is bits 11996 * [31:5] from the register with bits [4:0] all ones. 11997 */ 11998 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11999 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12000 12001 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12002 /* Region disabled */ 12003 continue; 12004 } 12005 12006 if (address < base || address > limit) { 12007 /* 12008 * Address not in this region. We must check whether the 12009 * region covers addresses in the same page as our address. 12010 * In that case we must not report a size that covers the 12011 * whole page for a subsequent hit against a different MPU 12012 * region or the background region, because it would result in 12013 * incorrect TLB hits for subsequent accesses to addresses that 12014 * are in this MPU region. 12015 */ 12016 if (limit >= base && 12017 ranges_overlap(base, limit - base + 1, 12018 addr_page_base, 12019 TARGET_PAGE_SIZE)) { 12020 *is_subpage = true; 12021 } 12022 continue; 12023 } 12024 12025 if (base > addr_page_base || limit < addr_page_limit) { 12026 *is_subpage = true; 12027 } 12028 12029 if (matchregion != -1) { 12030 /* Multiple regions match -- always a failure (unlike 12031 * PMSAv7 where highest-numbered-region wins) 12032 */ 12033 fi->type = ARMFault_Permission; 12034 fi->level = 1; 12035 return true; 12036 } 12037 12038 matchregion = n; 12039 hit = true; 12040 } 12041 } 12042 12043 if (!hit) { 12044 /* background fault */ 12045 fi->type = ARMFault_Background; 12046 return true; 12047 } 12048 12049 if (matchregion == -1) { 12050 /* hit using the background region */ 12051 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12052 } else { 12053 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12054 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12055 bool pxn = false; 12056 12057 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12058 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12059 } 12060 12061 if (m_is_system_region(env, address)) { 12062 /* System space is always execute never */ 12063 xn = 1; 12064 } 12065 12066 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12067 if (*prot && !xn && !(pxn && !is_user)) { 12068 *prot |= PAGE_EXEC; 12069 } 12070 /* We don't need to look the attribute up in the MAIR0/MAIR1 12071 * registers because that only tells us about cacheability. 12072 */ 12073 if (mregion) { 12074 *mregion = matchregion; 12075 } 12076 } 12077 12078 fi->type = ARMFault_Permission; 12079 fi->level = 1; 12080 return !(*prot & (1 << access_type)); 12081 } 12082 12083 12084 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12085 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12086 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12087 int *prot, target_ulong *page_size, 12088 ARMMMUFaultInfo *fi) 12089 { 12090 uint32_t secure = regime_is_secure(env, mmu_idx); 12091 V8M_SAttributes sattrs = {}; 12092 bool ret; 12093 bool mpu_is_subpage; 12094 12095 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12096 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12097 if (access_type == MMU_INST_FETCH) { 12098 /* Instruction fetches always use the MMU bank and the 12099 * transaction attribute determined by the fetch address, 12100 * regardless of CPU state. This is painful for QEMU 12101 * to handle, because it would mean we need to encode 12102 * into the mmu_idx not just the (user, negpri) information 12103 * for the current security state but also that for the 12104 * other security state, which would balloon the number 12105 * of mmu_idx values needed alarmingly. 12106 * Fortunately we can avoid this because it's not actually 12107 * possible to arbitrarily execute code from memory with 12108 * the wrong security attribute: it will always generate 12109 * an exception of some kind or another, apart from the 12110 * special case of an NS CPU executing an SG instruction 12111 * in S&NSC memory. So we always just fail the translation 12112 * here and sort things out in the exception handler 12113 * (including possibly emulating an SG instruction). 12114 */ 12115 if (sattrs.ns != !secure) { 12116 if (sattrs.nsc) { 12117 fi->type = ARMFault_QEMU_NSCExec; 12118 } else { 12119 fi->type = ARMFault_QEMU_SFault; 12120 } 12121 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12122 *phys_ptr = address; 12123 *prot = 0; 12124 return true; 12125 } 12126 } else { 12127 /* For data accesses we always use the MMU bank indicated 12128 * by the current CPU state, but the security attributes 12129 * might downgrade a secure access to nonsecure. 12130 */ 12131 if (sattrs.ns) { 12132 txattrs->secure = false; 12133 } else if (!secure) { 12134 /* NS access to S memory must fault. 12135 * Architecturally we should first check whether the 12136 * MPU information for this address indicates that we 12137 * are doing an unaligned access to Device memory, which 12138 * should generate a UsageFault instead. QEMU does not 12139 * currently check for that kind of unaligned access though. 12140 * If we added it we would need to do so as a special case 12141 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12142 */ 12143 fi->type = ARMFault_QEMU_SFault; 12144 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12145 *phys_ptr = address; 12146 *prot = 0; 12147 return true; 12148 } 12149 } 12150 } 12151 12152 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12153 txattrs, prot, &mpu_is_subpage, fi, NULL); 12154 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12155 return ret; 12156 } 12157 12158 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12159 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12160 hwaddr *phys_ptr, int *prot, 12161 ARMMMUFaultInfo *fi) 12162 { 12163 int n; 12164 uint32_t mask; 12165 uint32_t base; 12166 bool is_user = regime_is_user(env, mmu_idx); 12167 12168 if (regime_translation_disabled(env, mmu_idx)) { 12169 /* MPU disabled. */ 12170 *phys_ptr = address; 12171 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12172 return false; 12173 } 12174 12175 *phys_ptr = address; 12176 for (n = 7; n >= 0; n--) { 12177 base = env->cp15.c6_region[n]; 12178 if ((base & 1) == 0) { 12179 continue; 12180 } 12181 mask = 1 << ((base >> 1) & 0x1f); 12182 /* Keep this shift separate from the above to avoid an 12183 (undefined) << 32. */ 12184 mask = (mask << 1) - 1; 12185 if (((base ^ address) & ~mask) == 0) { 12186 break; 12187 } 12188 } 12189 if (n < 0) { 12190 fi->type = ARMFault_Background; 12191 return true; 12192 } 12193 12194 if (access_type == MMU_INST_FETCH) { 12195 mask = env->cp15.pmsav5_insn_ap; 12196 } else { 12197 mask = env->cp15.pmsav5_data_ap; 12198 } 12199 mask = (mask >> (n * 4)) & 0xf; 12200 switch (mask) { 12201 case 0: 12202 fi->type = ARMFault_Permission; 12203 fi->level = 1; 12204 return true; 12205 case 1: 12206 if (is_user) { 12207 fi->type = ARMFault_Permission; 12208 fi->level = 1; 12209 return true; 12210 } 12211 *prot = PAGE_READ | PAGE_WRITE; 12212 break; 12213 case 2: 12214 *prot = PAGE_READ; 12215 if (!is_user) { 12216 *prot |= PAGE_WRITE; 12217 } 12218 break; 12219 case 3: 12220 *prot = PAGE_READ | PAGE_WRITE; 12221 break; 12222 case 5: 12223 if (is_user) { 12224 fi->type = ARMFault_Permission; 12225 fi->level = 1; 12226 return true; 12227 } 12228 *prot = PAGE_READ; 12229 break; 12230 case 6: 12231 *prot = PAGE_READ; 12232 break; 12233 default: 12234 /* Bad permission. */ 12235 fi->type = ARMFault_Permission; 12236 fi->level = 1; 12237 return true; 12238 } 12239 *prot |= PAGE_EXEC; 12240 return false; 12241 } 12242 12243 /* Combine either inner or outer cacheability attributes for normal 12244 * memory, according to table D4-42 and pseudocode procedure 12245 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12246 * 12247 * NB: only stage 1 includes allocation hints (RW bits), leading to 12248 * some asymmetry. 12249 */ 12250 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12251 { 12252 if (s1 == 4 || s2 == 4) { 12253 /* non-cacheable has precedence */ 12254 return 4; 12255 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12256 /* stage 1 write-through takes precedence */ 12257 return s1; 12258 } else if (extract32(s2, 2, 2) == 2) { 12259 /* stage 2 write-through takes precedence, but the allocation hint 12260 * is still taken from stage 1 12261 */ 12262 return (2 << 2) | extract32(s1, 0, 2); 12263 } else { /* write-back */ 12264 return s1; 12265 } 12266 } 12267 12268 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12269 * and CombineS1S2Desc() 12270 * 12271 * @s1: Attributes from stage 1 walk 12272 * @s2: Attributes from stage 2 walk 12273 */ 12274 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12275 { 12276 uint8_t s1lo, s2lo, s1hi, s2hi; 12277 ARMCacheAttrs ret; 12278 bool tagged = false; 12279 12280 if (s1.attrs == 0xf0) { 12281 tagged = true; 12282 s1.attrs = 0xff; 12283 } 12284 12285 s1lo = extract32(s1.attrs, 0, 4); 12286 s2lo = extract32(s2.attrs, 0, 4); 12287 s1hi = extract32(s1.attrs, 4, 4); 12288 s2hi = extract32(s2.attrs, 4, 4); 12289 12290 /* Combine shareability attributes (table D4-43) */ 12291 if (s1.shareability == 2 || s2.shareability == 2) { 12292 /* if either are outer-shareable, the result is outer-shareable */ 12293 ret.shareability = 2; 12294 } else if (s1.shareability == 3 || s2.shareability == 3) { 12295 /* if either are inner-shareable, the result is inner-shareable */ 12296 ret.shareability = 3; 12297 } else { 12298 /* both non-shareable */ 12299 ret.shareability = 0; 12300 } 12301 12302 /* Combine memory type and cacheability attributes */ 12303 if (s1hi == 0 || s2hi == 0) { 12304 /* Device has precedence over normal */ 12305 if (s1lo == 0 || s2lo == 0) { 12306 /* nGnRnE has precedence over anything */ 12307 ret.attrs = 0; 12308 } else if (s1lo == 4 || s2lo == 4) { 12309 /* non-Reordering has precedence over Reordering */ 12310 ret.attrs = 4; /* nGnRE */ 12311 } else if (s1lo == 8 || s2lo == 8) { 12312 /* non-Gathering has precedence over Gathering */ 12313 ret.attrs = 8; /* nGRE */ 12314 } else { 12315 ret.attrs = 0xc; /* GRE */ 12316 } 12317 12318 /* Any location for which the resultant memory type is any 12319 * type of Device memory is always treated as Outer Shareable. 12320 */ 12321 ret.shareability = 2; 12322 } else { /* Normal memory */ 12323 /* Outer/inner cacheability combine independently */ 12324 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12325 | combine_cacheattr_nibble(s1lo, s2lo); 12326 12327 if (ret.attrs == 0x44) { 12328 /* Any location for which the resultant memory type is Normal 12329 * Inner Non-cacheable, Outer Non-cacheable is always treated 12330 * as Outer Shareable. 12331 */ 12332 ret.shareability = 2; 12333 } 12334 } 12335 12336 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12337 if (tagged && ret.attrs == 0xff) { 12338 ret.attrs = 0xf0; 12339 } 12340 12341 return ret; 12342 } 12343 12344 12345 /* get_phys_addr - get the physical address for this virtual address 12346 * 12347 * Find the physical address corresponding to the given virtual address, 12348 * by doing a translation table walk on MMU based systems or using the 12349 * MPU state on MPU based systems. 12350 * 12351 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12352 * prot and page_size may not be filled in, and the populated fsr value provides 12353 * information on why the translation aborted, in the format of a 12354 * DFSR/IFSR fault register, with the following caveats: 12355 * * we honour the short vs long DFSR format differences. 12356 * * the WnR bit is never set (the caller must do this). 12357 * * for PSMAv5 based systems we don't bother to return a full FSR format 12358 * value. 12359 * 12360 * @env: CPUARMState 12361 * @address: virtual address to get physical address for 12362 * @access_type: 0 for read, 1 for write, 2 for execute 12363 * @mmu_idx: MMU index indicating required translation regime 12364 * @phys_ptr: set to the physical address corresponding to the virtual address 12365 * @attrs: set to the memory transaction attributes to use 12366 * @prot: set to the permissions for the page containing phys_ptr 12367 * @page_size: set to the size of the page containing phys_ptr 12368 * @fi: set to fault info if the translation fails 12369 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12370 */ 12371 bool get_phys_addr(CPUARMState *env, target_ulong address, 12372 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12373 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12374 target_ulong *page_size, 12375 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12376 { 12377 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12378 12379 if (mmu_idx != s1_mmu_idx) { 12380 /* Call ourselves recursively to do the stage 1 and then stage 2 12381 * translations if mmu_idx is a two-stage regime. 12382 */ 12383 if (arm_feature(env, ARM_FEATURE_EL2)) { 12384 hwaddr ipa; 12385 int s2_prot; 12386 int ret; 12387 ARMCacheAttrs cacheattrs2 = {}; 12388 ARMMMUIdx s2_mmu_idx; 12389 bool is_el0; 12390 12391 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12392 attrs, prot, page_size, fi, cacheattrs); 12393 12394 /* If S1 fails or S2 is disabled, return early. */ 12395 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12396 *phys_ptr = ipa; 12397 return ret; 12398 } 12399 12400 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12401 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12402 12403 /* S1 is done. Now do S2 translation. */ 12404 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12405 phys_ptr, attrs, &s2_prot, 12406 page_size, fi, &cacheattrs2); 12407 fi->s2addr = ipa; 12408 /* Combine the S1 and S2 perms. */ 12409 *prot &= s2_prot; 12410 12411 /* If S2 fails, return early. */ 12412 if (ret) { 12413 return ret; 12414 } 12415 12416 /* Combine the S1 and S2 cache attributes. */ 12417 if (arm_hcr_el2_eff(env) & HCR_DC) { 12418 /* 12419 * HCR.DC forces the first stage attributes to 12420 * Normal Non-Shareable, 12421 * Inner Write-Back Read-Allocate Write-Allocate, 12422 * Outer Write-Back Read-Allocate Write-Allocate. 12423 * Do not overwrite Tagged within attrs. 12424 */ 12425 if (cacheattrs->attrs != 0xf0) { 12426 cacheattrs->attrs = 0xff; 12427 } 12428 cacheattrs->shareability = 0; 12429 } 12430 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12431 12432 /* Check if IPA translates to secure or non-secure PA space. */ 12433 if (arm_is_secure_below_el3(env)) { 12434 if (attrs->secure) { 12435 attrs->secure = 12436 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12437 } else { 12438 attrs->secure = 12439 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12440 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA)); 12441 } 12442 } 12443 return 0; 12444 } else { 12445 /* 12446 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12447 */ 12448 mmu_idx = stage_1_mmu_idx(mmu_idx); 12449 } 12450 } 12451 12452 /* The page table entries may downgrade secure to non-secure, but 12453 * cannot upgrade an non-secure translation regime's attributes 12454 * to secure. 12455 */ 12456 attrs->secure = regime_is_secure(env, mmu_idx); 12457 attrs->user = regime_is_user(env, mmu_idx); 12458 12459 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12460 * In v7 and earlier it affects all stage 1 translations. 12461 */ 12462 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12463 && !arm_feature(env, ARM_FEATURE_V8)) { 12464 if (regime_el(env, mmu_idx) == 3) { 12465 address += env->cp15.fcseidr_s; 12466 } else { 12467 address += env->cp15.fcseidr_ns; 12468 } 12469 } 12470 12471 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12472 bool ret; 12473 *page_size = TARGET_PAGE_SIZE; 12474 12475 if (arm_feature(env, ARM_FEATURE_V8)) { 12476 /* PMSAv8 */ 12477 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12478 phys_ptr, attrs, prot, page_size, fi); 12479 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12480 /* PMSAv7 */ 12481 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12482 phys_ptr, prot, page_size, fi); 12483 } else { 12484 /* Pre-v7 MPU */ 12485 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12486 phys_ptr, prot, fi); 12487 } 12488 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12489 " mmu_idx %u -> %s (prot %c%c%c)\n", 12490 access_type == MMU_DATA_LOAD ? "reading" : 12491 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12492 (uint32_t)address, mmu_idx, 12493 ret ? "Miss" : "Hit", 12494 *prot & PAGE_READ ? 'r' : '-', 12495 *prot & PAGE_WRITE ? 'w' : '-', 12496 *prot & PAGE_EXEC ? 'x' : '-'); 12497 12498 return ret; 12499 } 12500 12501 /* Definitely a real MMU, not an MPU */ 12502 12503 if (regime_translation_disabled(env, mmu_idx)) { 12504 uint64_t hcr; 12505 uint8_t memattr; 12506 12507 /* 12508 * MMU disabled. S1 addresses within aa64 translation regimes are 12509 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12510 */ 12511 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12512 int r_el = regime_el(env, mmu_idx); 12513 if (arm_el_is_aa64(env, r_el)) { 12514 int pamax = arm_pamax(env_archcpu(env)); 12515 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12516 int addrtop, tbi; 12517 12518 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12519 if (access_type == MMU_INST_FETCH) { 12520 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12521 } 12522 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12523 addrtop = (tbi ? 55 : 63); 12524 12525 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12526 fi->type = ARMFault_AddressSize; 12527 fi->level = 0; 12528 fi->stage2 = false; 12529 return 1; 12530 } 12531 12532 /* 12533 * When TBI is disabled, we've just validated that all of the 12534 * bits above PAMax are zero, so logically we only need to 12535 * clear the top byte for TBI. But it's clearer to follow 12536 * the pseudocode set of addrdesc.paddress. 12537 */ 12538 address = extract64(address, 0, 52); 12539 } 12540 } 12541 *phys_ptr = address; 12542 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12543 *page_size = TARGET_PAGE_SIZE; 12544 12545 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12546 hcr = arm_hcr_el2_eff(env); 12547 cacheattrs->shareability = 0; 12548 if (hcr & HCR_DC) { 12549 if (hcr & HCR_DCT) { 12550 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12551 } else { 12552 memattr = 0xff; /* Normal, WB, RWA */ 12553 } 12554 } else if (access_type == MMU_INST_FETCH) { 12555 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12556 memattr = 0xee; /* Normal, WT, RA, NT */ 12557 } else { 12558 memattr = 0x44; /* Normal, NC, No */ 12559 } 12560 cacheattrs->shareability = 2; /* outer sharable */ 12561 } else { 12562 memattr = 0x00; /* Device, nGnRnE */ 12563 } 12564 cacheattrs->attrs = memattr; 12565 return 0; 12566 } 12567 12568 if (regime_using_lpae_format(env, mmu_idx)) { 12569 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12570 phys_ptr, attrs, prot, page_size, 12571 fi, cacheattrs); 12572 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12573 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12574 phys_ptr, attrs, prot, page_size, fi); 12575 } else { 12576 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12577 phys_ptr, prot, page_size, fi); 12578 } 12579 } 12580 12581 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12582 MemTxAttrs *attrs) 12583 { 12584 ARMCPU *cpu = ARM_CPU(cs); 12585 CPUARMState *env = &cpu->env; 12586 hwaddr phys_addr; 12587 target_ulong page_size; 12588 int prot; 12589 bool ret; 12590 ARMMMUFaultInfo fi = {}; 12591 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12592 ARMCacheAttrs cacheattrs = {}; 12593 12594 *attrs = (MemTxAttrs) {}; 12595 12596 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12597 attrs, &prot, &page_size, &fi, &cacheattrs); 12598 12599 if (ret) { 12600 return -1; 12601 } 12602 return phys_addr; 12603 } 12604 12605 #endif 12606 12607 /* Note that signed overflow is undefined in C. The following routines are 12608 careful to use unsigned types where modulo arithmetic is required. 12609 Failure to do so _will_ break on newer gcc. */ 12610 12611 /* Signed saturating arithmetic. */ 12612 12613 /* Perform 16-bit signed saturating addition. */ 12614 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12615 { 12616 uint16_t res; 12617 12618 res = a + b; 12619 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12620 if (a & 0x8000) 12621 res = 0x8000; 12622 else 12623 res = 0x7fff; 12624 } 12625 return res; 12626 } 12627 12628 /* Perform 8-bit signed saturating addition. */ 12629 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12630 { 12631 uint8_t res; 12632 12633 res = a + b; 12634 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12635 if (a & 0x80) 12636 res = 0x80; 12637 else 12638 res = 0x7f; 12639 } 12640 return res; 12641 } 12642 12643 /* Perform 16-bit signed saturating subtraction. */ 12644 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12645 { 12646 uint16_t res; 12647 12648 res = a - b; 12649 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12650 if (a & 0x8000) 12651 res = 0x8000; 12652 else 12653 res = 0x7fff; 12654 } 12655 return res; 12656 } 12657 12658 /* Perform 8-bit signed saturating subtraction. */ 12659 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12660 { 12661 uint8_t res; 12662 12663 res = a - b; 12664 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12665 if (a & 0x80) 12666 res = 0x80; 12667 else 12668 res = 0x7f; 12669 } 12670 return res; 12671 } 12672 12673 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12674 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12675 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12676 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12677 #define PFX q 12678 12679 #include "op_addsub.h" 12680 12681 /* Unsigned saturating arithmetic. */ 12682 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12683 { 12684 uint16_t res; 12685 res = a + b; 12686 if (res < a) 12687 res = 0xffff; 12688 return res; 12689 } 12690 12691 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12692 { 12693 if (a > b) 12694 return a - b; 12695 else 12696 return 0; 12697 } 12698 12699 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12700 { 12701 uint8_t res; 12702 res = a + b; 12703 if (res < a) 12704 res = 0xff; 12705 return res; 12706 } 12707 12708 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12709 { 12710 if (a > b) 12711 return a - b; 12712 else 12713 return 0; 12714 } 12715 12716 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12717 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12718 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12719 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12720 #define PFX uq 12721 12722 #include "op_addsub.h" 12723 12724 /* Signed modulo arithmetic. */ 12725 #define SARITH16(a, b, n, op) do { \ 12726 int32_t sum; \ 12727 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12728 RESULT(sum, n, 16); \ 12729 if (sum >= 0) \ 12730 ge |= 3 << (n * 2); \ 12731 } while(0) 12732 12733 #define SARITH8(a, b, n, op) do { \ 12734 int32_t sum; \ 12735 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12736 RESULT(sum, n, 8); \ 12737 if (sum >= 0) \ 12738 ge |= 1 << n; \ 12739 } while(0) 12740 12741 12742 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12743 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12744 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12745 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12746 #define PFX s 12747 #define ARITH_GE 12748 12749 #include "op_addsub.h" 12750 12751 /* Unsigned modulo arithmetic. */ 12752 #define ADD16(a, b, n) do { \ 12753 uint32_t sum; \ 12754 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12755 RESULT(sum, n, 16); \ 12756 if ((sum >> 16) == 1) \ 12757 ge |= 3 << (n * 2); \ 12758 } while(0) 12759 12760 #define ADD8(a, b, n) do { \ 12761 uint32_t sum; \ 12762 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12763 RESULT(sum, n, 8); \ 12764 if ((sum >> 8) == 1) \ 12765 ge |= 1 << n; \ 12766 } while(0) 12767 12768 #define SUB16(a, b, n) do { \ 12769 uint32_t sum; \ 12770 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12771 RESULT(sum, n, 16); \ 12772 if ((sum >> 16) == 0) \ 12773 ge |= 3 << (n * 2); \ 12774 } while(0) 12775 12776 #define SUB8(a, b, n) do { \ 12777 uint32_t sum; \ 12778 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12779 RESULT(sum, n, 8); \ 12780 if ((sum >> 8) == 0) \ 12781 ge |= 1 << n; \ 12782 } while(0) 12783 12784 #define PFX u 12785 #define ARITH_GE 12786 12787 #include "op_addsub.h" 12788 12789 /* Halved signed arithmetic. */ 12790 #define ADD16(a, b, n) \ 12791 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12792 #define SUB16(a, b, n) \ 12793 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12794 #define ADD8(a, b, n) \ 12795 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12796 #define SUB8(a, b, n) \ 12797 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12798 #define PFX sh 12799 12800 #include "op_addsub.h" 12801 12802 /* Halved unsigned arithmetic. */ 12803 #define ADD16(a, b, n) \ 12804 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12805 #define SUB16(a, b, n) \ 12806 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12807 #define ADD8(a, b, n) \ 12808 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12809 #define SUB8(a, b, n) \ 12810 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12811 #define PFX uh 12812 12813 #include "op_addsub.h" 12814 12815 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12816 { 12817 if (a > b) 12818 return a - b; 12819 else 12820 return b - a; 12821 } 12822 12823 /* Unsigned sum of absolute byte differences. */ 12824 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12825 { 12826 uint32_t sum; 12827 sum = do_usad(a, b); 12828 sum += do_usad(a >> 8, b >> 8); 12829 sum += do_usad(a >> 16, b >> 16); 12830 sum += do_usad(a >> 24, b >> 24); 12831 return sum; 12832 } 12833 12834 /* For ARMv6 SEL instruction. */ 12835 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12836 { 12837 uint32_t mask; 12838 12839 mask = 0; 12840 if (flags & 1) 12841 mask |= 0xff; 12842 if (flags & 2) 12843 mask |= 0xff00; 12844 if (flags & 4) 12845 mask |= 0xff0000; 12846 if (flags & 8) 12847 mask |= 0xff000000; 12848 return (a & mask) | (b & ~mask); 12849 } 12850 12851 /* CRC helpers. 12852 * The upper bytes of val (above the number specified by 'bytes') must have 12853 * been zeroed out by the caller. 12854 */ 12855 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12856 { 12857 uint8_t buf[4]; 12858 12859 stl_le_p(buf, val); 12860 12861 /* zlib crc32 converts the accumulator and output to one's complement. */ 12862 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12863 } 12864 12865 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12866 { 12867 uint8_t buf[4]; 12868 12869 stl_le_p(buf, val); 12870 12871 /* Linux crc32c converts the output to one's complement. */ 12872 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12873 } 12874 12875 /* Return the exception level to which FP-disabled exceptions should 12876 * be taken, or 0 if FP is enabled. 12877 */ 12878 int fp_exception_el(CPUARMState *env, int cur_el) 12879 { 12880 #ifndef CONFIG_USER_ONLY 12881 /* CPACR and the CPTR registers don't exist before v6, so FP is 12882 * always accessible 12883 */ 12884 if (!arm_feature(env, ARM_FEATURE_V6)) { 12885 return 0; 12886 } 12887 12888 if (arm_feature(env, ARM_FEATURE_M)) { 12889 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12890 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12891 return 1; 12892 } 12893 12894 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12895 if (!extract32(env->v7m.nsacr, 10, 1)) { 12896 /* FP insns cause a NOCP UsageFault taken to Secure */ 12897 return 3; 12898 } 12899 } 12900 12901 return 0; 12902 } 12903 12904 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12905 * 0, 2 : trap EL0 and EL1/PL1 accesses 12906 * 1 : trap only EL0 accesses 12907 * 3 : trap no accesses 12908 * This register is ignored if E2H+TGE are both set. 12909 */ 12910 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12911 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12912 12913 switch (fpen) { 12914 case 0: 12915 case 2: 12916 if (cur_el == 0 || cur_el == 1) { 12917 /* Trap to PL1, which might be EL1 or EL3 */ 12918 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12919 return 3; 12920 } 12921 return 1; 12922 } 12923 if (cur_el == 3 && !is_a64(env)) { 12924 /* Secure PL1 running at EL3 */ 12925 return 3; 12926 } 12927 break; 12928 case 1: 12929 if (cur_el == 0) { 12930 return 1; 12931 } 12932 break; 12933 case 3: 12934 break; 12935 } 12936 } 12937 12938 /* 12939 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12940 * to control non-secure access to the FPU. It doesn't have any 12941 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12942 */ 12943 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12944 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12945 if (!extract32(env->cp15.nsacr, 10, 1)) { 12946 /* FP insns act as UNDEF */ 12947 return cur_el == 2 ? 2 : 1; 12948 } 12949 } 12950 12951 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12952 * check because zero bits in the registers mean "don't trap". 12953 */ 12954 12955 /* CPTR_EL2 : present in v7VE or v8 */ 12956 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12957 && arm_is_el2_enabled(env)) { 12958 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12959 return 2; 12960 } 12961 12962 /* CPTR_EL3 : present in v8 */ 12963 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12964 /* Trap all FP ops to EL3 */ 12965 return 3; 12966 } 12967 #endif 12968 return 0; 12969 } 12970 12971 /* Return the exception level we're running at if this is our mmu_idx */ 12972 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12973 { 12974 if (mmu_idx & ARM_MMU_IDX_M) { 12975 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12976 } 12977 12978 switch (mmu_idx) { 12979 case ARMMMUIdx_E10_0: 12980 case ARMMMUIdx_E20_0: 12981 case ARMMMUIdx_SE10_0: 12982 case ARMMMUIdx_SE20_0: 12983 return 0; 12984 case ARMMMUIdx_E10_1: 12985 case ARMMMUIdx_E10_1_PAN: 12986 case ARMMMUIdx_SE10_1: 12987 case ARMMMUIdx_SE10_1_PAN: 12988 return 1; 12989 case ARMMMUIdx_E2: 12990 case ARMMMUIdx_E20_2: 12991 case ARMMMUIdx_E20_2_PAN: 12992 case ARMMMUIdx_SE2: 12993 case ARMMMUIdx_SE20_2: 12994 case ARMMMUIdx_SE20_2_PAN: 12995 return 2; 12996 case ARMMMUIdx_SE3: 12997 return 3; 12998 default: 12999 g_assert_not_reached(); 13000 } 13001 } 13002 13003 #ifndef CONFIG_TCG 13004 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13005 { 13006 g_assert_not_reached(); 13007 } 13008 #endif 13009 13010 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13011 { 13012 ARMMMUIdx idx; 13013 uint64_t hcr; 13014 13015 if (arm_feature(env, ARM_FEATURE_M)) { 13016 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13017 } 13018 13019 /* See ARM pseudo-function ELIsInHost. */ 13020 switch (el) { 13021 case 0: 13022 hcr = arm_hcr_el2_eff(env); 13023 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13024 idx = ARMMMUIdx_E20_0; 13025 } else { 13026 idx = ARMMMUIdx_E10_0; 13027 } 13028 break; 13029 case 1: 13030 if (env->pstate & PSTATE_PAN) { 13031 idx = ARMMMUIdx_E10_1_PAN; 13032 } else { 13033 idx = ARMMMUIdx_E10_1; 13034 } 13035 break; 13036 case 2: 13037 /* Note that TGE does not apply at EL2. */ 13038 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13039 if (env->pstate & PSTATE_PAN) { 13040 idx = ARMMMUIdx_E20_2_PAN; 13041 } else { 13042 idx = ARMMMUIdx_E20_2; 13043 } 13044 } else { 13045 idx = ARMMMUIdx_E2; 13046 } 13047 break; 13048 case 3: 13049 return ARMMMUIdx_SE3; 13050 default: 13051 g_assert_not_reached(); 13052 } 13053 13054 if (arm_is_secure_below_el3(env)) { 13055 idx &= ~ARM_MMU_IDX_A_NS; 13056 } 13057 13058 return idx; 13059 } 13060 13061 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13062 { 13063 return arm_mmu_idx_el(env, arm_current_el(env)); 13064 } 13065 13066 #ifndef CONFIG_USER_ONLY 13067 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13068 { 13069 return stage_1_mmu_idx(arm_mmu_idx(env)); 13070 } 13071 #endif 13072 13073 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13074 ARMMMUIdx mmu_idx, 13075 CPUARMTBFlags flags) 13076 { 13077 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13078 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13079 13080 if (arm_singlestep_active(env)) { 13081 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13082 } 13083 return flags; 13084 } 13085 13086 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13087 ARMMMUIdx mmu_idx, 13088 CPUARMTBFlags flags) 13089 { 13090 bool sctlr_b = arm_sctlr_b(env); 13091 13092 if (sctlr_b) { 13093 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13094 } 13095 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13096 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13097 } 13098 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13099 13100 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13101 } 13102 13103 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13104 ARMMMUIdx mmu_idx) 13105 { 13106 CPUARMTBFlags flags = {}; 13107 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13108 13109 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13110 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13111 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13112 } 13113 13114 if (arm_v7m_is_handler_mode(env)) { 13115 DP_TBFLAG_M32(flags, HANDLER, 1); 13116 } 13117 13118 /* 13119 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13120 * is suppressing them because the requested execution priority 13121 * is less than 0. 13122 */ 13123 if (arm_feature(env, ARM_FEATURE_V8) && 13124 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13125 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13126 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13127 } 13128 13129 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13130 } 13131 13132 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13133 { 13134 CPUARMTBFlags flags = {}; 13135 13136 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13137 return flags; 13138 } 13139 13140 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13141 ARMMMUIdx mmu_idx) 13142 { 13143 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13144 int el = arm_current_el(env); 13145 13146 if (arm_sctlr(env, el) & SCTLR_A) { 13147 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13148 } 13149 13150 if (arm_el_is_aa64(env, 1)) { 13151 DP_TBFLAG_A32(flags, VFPEN, 1); 13152 } 13153 13154 if (el < 2 && env->cp15.hstr_el2 && 13155 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13156 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13157 } 13158 13159 if (env->uncached_cpsr & CPSR_IL) { 13160 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13161 } 13162 13163 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13164 } 13165 13166 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13167 ARMMMUIdx mmu_idx) 13168 { 13169 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13170 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13171 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13172 uint64_t sctlr; 13173 int tbii, tbid; 13174 13175 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13176 13177 /* Get control bits for tagged addresses. */ 13178 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13179 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13180 13181 DP_TBFLAG_A64(flags, TBII, tbii); 13182 DP_TBFLAG_A64(flags, TBID, tbid); 13183 13184 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13185 int sve_el = sve_exception_el(env, el); 13186 uint32_t zcr_len; 13187 13188 /* 13189 * If SVE is disabled, but FP is enabled, 13190 * then the effective len is 0. 13191 */ 13192 if (sve_el != 0 && fp_el == 0) { 13193 zcr_len = 0; 13194 } else { 13195 zcr_len = sve_zcr_len_for_el(env, el); 13196 } 13197 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13198 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13199 } 13200 13201 sctlr = regime_sctlr(env, stage1); 13202 13203 if (sctlr & SCTLR_A) { 13204 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13205 } 13206 13207 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13208 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13209 } 13210 13211 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13212 /* 13213 * In order to save space in flags, we record only whether 13214 * pauth is "inactive", meaning all insns are implemented as 13215 * a nop, or "active" when some action must be performed. 13216 * The decision of which action to take is left to a helper. 13217 */ 13218 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13219 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13220 } 13221 } 13222 13223 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13224 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13225 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13226 DP_TBFLAG_A64(flags, BT, 1); 13227 } 13228 } 13229 13230 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13231 if (!(env->pstate & PSTATE_UAO)) { 13232 switch (mmu_idx) { 13233 case ARMMMUIdx_E10_1: 13234 case ARMMMUIdx_E10_1_PAN: 13235 case ARMMMUIdx_SE10_1: 13236 case ARMMMUIdx_SE10_1_PAN: 13237 /* TODO: ARMv8.3-NV */ 13238 DP_TBFLAG_A64(flags, UNPRIV, 1); 13239 break; 13240 case ARMMMUIdx_E20_2: 13241 case ARMMMUIdx_E20_2_PAN: 13242 case ARMMMUIdx_SE20_2: 13243 case ARMMMUIdx_SE20_2_PAN: 13244 /* 13245 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13246 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13247 */ 13248 if (env->cp15.hcr_el2 & HCR_TGE) { 13249 DP_TBFLAG_A64(flags, UNPRIV, 1); 13250 } 13251 break; 13252 default: 13253 break; 13254 } 13255 } 13256 13257 if (env->pstate & PSTATE_IL) { 13258 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13259 } 13260 13261 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13262 /* 13263 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13264 * if all accesses must be Unchecked: 13265 * 1) If no TBI, then there are no tags in the address to check, 13266 * 2) If Tag Check Override, then all accesses are Unchecked, 13267 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13268 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13269 */ 13270 if (allocation_tag_access_enabled(env, el, sctlr)) { 13271 DP_TBFLAG_A64(flags, ATA, 1); 13272 if (tbid 13273 && !(env->pstate & PSTATE_TCO) 13274 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13275 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13276 } 13277 } 13278 /* And again for unprivileged accesses, if required. */ 13279 if (EX_TBFLAG_A64(flags, UNPRIV) 13280 && tbid 13281 && !(env->pstate & PSTATE_TCO) 13282 && (sctlr & SCTLR_TCF0) 13283 && allocation_tag_access_enabled(env, 0, sctlr)) { 13284 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13285 } 13286 /* Cache TCMA as well as TBI. */ 13287 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13288 } 13289 13290 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13291 } 13292 13293 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13294 { 13295 int el = arm_current_el(env); 13296 int fp_el = fp_exception_el(env, el); 13297 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13298 13299 if (is_a64(env)) { 13300 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13301 } else if (arm_feature(env, ARM_FEATURE_M)) { 13302 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13303 } else { 13304 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13305 } 13306 } 13307 13308 void arm_rebuild_hflags(CPUARMState *env) 13309 { 13310 env->hflags = rebuild_hflags_internal(env); 13311 } 13312 13313 /* 13314 * If we have triggered a EL state change we can't rely on the 13315 * translator having passed it to us, we need to recompute. 13316 */ 13317 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13318 { 13319 int el = arm_current_el(env); 13320 int fp_el = fp_exception_el(env, el); 13321 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13322 13323 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13324 } 13325 13326 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13327 { 13328 int fp_el = fp_exception_el(env, el); 13329 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13330 13331 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13332 } 13333 13334 /* 13335 * If we have triggered a EL state change we can't rely on the 13336 * translator having passed it to us, we need to recompute. 13337 */ 13338 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13339 { 13340 int el = arm_current_el(env); 13341 int fp_el = fp_exception_el(env, el); 13342 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13343 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13344 } 13345 13346 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13347 { 13348 int fp_el = fp_exception_el(env, el); 13349 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13350 13351 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13352 } 13353 13354 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13355 { 13356 int fp_el = fp_exception_el(env, el); 13357 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13358 13359 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13360 } 13361 13362 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13363 { 13364 #ifdef CONFIG_DEBUG_TCG 13365 CPUARMTBFlags c = env->hflags; 13366 CPUARMTBFlags r = rebuild_hflags_internal(env); 13367 13368 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13369 fprintf(stderr, "TCG hflags mismatch " 13370 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13371 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13372 c.flags, c.flags2, r.flags, r.flags2); 13373 abort(); 13374 } 13375 #endif 13376 } 13377 13378 static bool mve_no_pred(CPUARMState *env) 13379 { 13380 /* 13381 * Return true if there is definitely no predication of MVE 13382 * instructions by VPR or LTPSIZE. (Returning false even if there 13383 * isn't any predication is OK; generated code will just be 13384 * a little worse.) 13385 * If the CPU does not implement MVE then this TB flag is always 0. 13386 * 13387 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13388 * logic in gen_update_fp_context() needs to be updated to match. 13389 * 13390 * We do not include the effect of the ECI bits here -- they are 13391 * tracked in other TB flags. This simplifies the logic for 13392 * "when did we emit code that changes the MVE_NO_PRED TB flag 13393 * and thus need to end the TB?". 13394 */ 13395 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13396 return false; 13397 } 13398 if (env->v7m.vpr) { 13399 return false; 13400 } 13401 if (env->v7m.ltpsize < 4) { 13402 return false; 13403 } 13404 return true; 13405 } 13406 13407 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13408 target_ulong *cs_base, uint32_t *pflags) 13409 { 13410 CPUARMTBFlags flags; 13411 13412 assert_hflags_rebuild_correctly(env); 13413 flags = env->hflags; 13414 13415 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13416 *pc = env->pc; 13417 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13418 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13419 } 13420 } else { 13421 *pc = env->regs[15]; 13422 13423 if (arm_feature(env, ARM_FEATURE_M)) { 13424 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13425 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13426 != env->v7m.secure) { 13427 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13428 } 13429 13430 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13431 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13432 (env->v7m.secure && 13433 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13434 /* 13435 * ASPEN is set, but FPCA/SFPA indicate that there is no 13436 * active FP context; we must create a new FP context before 13437 * executing any FP insn. 13438 */ 13439 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13440 } 13441 13442 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13443 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13444 DP_TBFLAG_M32(flags, LSPACT, 1); 13445 } 13446 13447 if (mve_no_pred(env)) { 13448 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13449 } 13450 } else { 13451 /* 13452 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13453 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13454 */ 13455 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13456 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13457 } else { 13458 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13459 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13460 } 13461 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13462 DP_TBFLAG_A32(flags, VFPEN, 1); 13463 } 13464 } 13465 13466 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13467 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13468 } 13469 13470 /* 13471 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13472 * states defined in the ARM ARM for software singlestep: 13473 * SS_ACTIVE PSTATE.SS State 13474 * 0 x Inactive (the TB flag for SS is always 0) 13475 * 1 0 Active-pending 13476 * 1 1 Active-not-pending 13477 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13478 */ 13479 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13480 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13481 } 13482 13483 *pflags = flags.flags; 13484 *cs_base = flags.flags2; 13485 } 13486 13487 #ifdef TARGET_AARCH64 13488 /* 13489 * The manual says that when SVE is enabled and VQ is widened the 13490 * implementation is allowed to zero the previously inaccessible 13491 * portion of the registers. The corollary to that is that when 13492 * SVE is enabled and VQ is narrowed we are also allowed to zero 13493 * the now inaccessible portion of the registers. 13494 * 13495 * The intent of this is that no predicate bit beyond VQ is ever set. 13496 * Which means that some operations on predicate registers themselves 13497 * may operate on full uint64_t or even unrolled across the maximum 13498 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13499 * may well be cheaper than conditionals to restrict the operation 13500 * to the relevant portion of a uint16_t[16]. 13501 */ 13502 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13503 { 13504 int i, j; 13505 uint64_t pmask; 13506 13507 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13508 assert(vq <= env_archcpu(env)->sve_max_vq); 13509 13510 /* Zap the high bits of the zregs. */ 13511 for (i = 0; i < 32; i++) { 13512 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13513 } 13514 13515 /* Zap the high bits of the pregs and ffr. */ 13516 pmask = 0; 13517 if (vq & 3) { 13518 pmask = ~(-1ULL << (16 * (vq & 3))); 13519 } 13520 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13521 for (i = 0; i < 17; ++i) { 13522 env->vfp.pregs[i].p[j] &= pmask; 13523 } 13524 pmask = 0; 13525 } 13526 } 13527 13528 /* 13529 * Notice a change in SVE vector size when changing EL. 13530 */ 13531 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13532 int new_el, bool el0_a64) 13533 { 13534 ARMCPU *cpu = env_archcpu(env); 13535 int old_len, new_len; 13536 bool old_a64, new_a64; 13537 13538 /* Nothing to do if no SVE. */ 13539 if (!cpu_isar_feature(aa64_sve, cpu)) { 13540 return; 13541 } 13542 13543 /* Nothing to do if FP is disabled in either EL. */ 13544 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13545 return; 13546 } 13547 13548 /* 13549 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13550 * at ELx, or not available because the EL is in AArch32 state, then 13551 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13552 * has an effective value of 0". 13553 * 13554 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13555 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13556 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13557 * we already have the correct register contents when encountering the 13558 * vq0->vq0 transition between EL0->EL1. 13559 */ 13560 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13561 old_len = (old_a64 && !sve_exception_el(env, old_el) 13562 ? sve_zcr_len_for_el(env, old_el) : 0); 13563 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13564 new_len = (new_a64 && !sve_exception_el(env, new_el) 13565 ? sve_zcr_len_for_el(env, new_el) : 0); 13566 13567 /* When changing vector length, clear inaccessible state. */ 13568 if (new_len < old_len) { 13569 aarch64_sve_narrow_vq(env, new_len + 1); 13570 } 13571 } 13572 #endif 13573