xref: /openbmc/qemu/target/arm/helper.c (revision 5d83b9a1)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/tcg.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #include "semihosting/common-semi.h"
38 #endif
39 
40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
42 
43 #ifndef CONFIG_USER_ONLY
44 
45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
46                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
47                                bool s1_is_el0,
48                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
49                                target_ulong *page_size_ptr,
50                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
51     __attribute__((nonnull));
52 #endif
53 
54 static void switch_mode(CPUARMState *env, int mode);
55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
56 
57 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
58 {
59     ARMCPU *cpu = env_archcpu(env);
60     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
61 
62     /* VFP data registers are always little-endian.  */
63     if (reg < nregs) {
64         return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
65     }
66     if (arm_feature(env, ARM_FEATURE_NEON)) {
67         /* Aliases for Q regs.  */
68         nregs += 16;
69         if (reg < nregs) {
70             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
71             return gdb_get_reg128(buf, q[0], q[1]);
72         }
73     }
74     switch (reg - nregs) {
75     case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
76     case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
77     case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
78     }
79     return 0;
80 }
81 
82 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
83 {
84     ARMCPU *cpu = env_archcpu(env);
85     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
86 
87     if (reg < nregs) {
88         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
89         return 8;
90     }
91     if (arm_feature(env, ARM_FEATURE_NEON)) {
92         nregs += 16;
93         if (reg < nregs) {
94             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
95             q[0] = ldq_le_p(buf);
96             q[1] = ldq_le_p(buf + 8);
97             return 16;
98         }
99     }
100     switch (reg - nregs) {
101     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
102     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
103     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
104     }
105     return 0;
106 }
107 
108 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
109 {
110     switch (reg) {
111     case 0 ... 31:
112     {
113         /* 128 bit FP register - quads are in LE order */
114         uint64_t *q = aa64_vfp_qreg(env, reg);
115         return gdb_get_reg128(buf, q[1], q[0]);
116     }
117     case 32:
118         /* FPSR */
119         return gdb_get_reg32(buf, vfp_get_fpsr(env));
120     case 33:
121         /* FPCR */
122         return gdb_get_reg32(buf,vfp_get_fpcr(env));
123     default:
124         return 0;
125     }
126 }
127 
128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
129 {
130     switch (reg) {
131     case 0 ... 31:
132         /* 128 bit FP register */
133         {
134             uint64_t *q = aa64_vfp_qreg(env, reg);
135             q[0] = ldq_le_p(buf);
136             q[1] = ldq_le_p(buf + 8);
137             return 16;
138         }
139     case 32:
140         /* FPSR */
141         vfp_set_fpsr(env, ldl_p(buf));
142         return 4;
143     case 33:
144         /* FPCR */
145         vfp_set_fpcr(env, ldl_p(buf));
146         return 4;
147     default:
148         return 0;
149     }
150 }
151 
152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
153 {
154     assert(ri->fieldoffset);
155     if (cpreg_field_is_64bit(ri)) {
156         return CPREG_FIELD64(env, ri);
157     } else {
158         return CPREG_FIELD32(env, ri);
159     }
160 }
161 
162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163                       uint64_t value)
164 {
165     assert(ri->fieldoffset);
166     if (cpreg_field_is_64bit(ri)) {
167         CPREG_FIELD64(env, ri) = value;
168     } else {
169         CPREG_FIELD32(env, ri) = value;
170     }
171 }
172 
173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
174 {
175     return (char *)env + ri->fieldoffset;
176 }
177 
178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
179 {
180     /* Raw read of a coprocessor register (as needed for migration, etc). */
181     if (ri->type & ARM_CP_CONST) {
182         return ri->resetvalue;
183     } else if (ri->raw_readfn) {
184         return ri->raw_readfn(env, ri);
185     } else if (ri->readfn) {
186         return ri->readfn(env, ri);
187     } else {
188         return raw_read(env, ri);
189     }
190 }
191 
192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
193                              uint64_t v)
194 {
195     /* Raw write of a coprocessor register (as needed for migration, etc).
196      * Note that constant registers are treated as write-ignored; the
197      * caller should check for success by whether a readback gives the
198      * value written.
199      */
200     if (ri->type & ARM_CP_CONST) {
201         return;
202     } else if (ri->raw_writefn) {
203         ri->raw_writefn(env, ri, v);
204     } else if (ri->writefn) {
205         ri->writefn(env, ri, v);
206     } else {
207         raw_write(env, ri, v);
208     }
209 }
210 
211 /**
212  * arm_get/set_gdb_*: get/set a gdb register
213  * @env: the CPU state
214  * @buf: a buffer to copy to/from
215  * @reg: register number (offset from start of group)
216  *
217  * We return the number of bytes copied
218  */
219 
220 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
221 {
222     ARMCPU *cpu = env_archcpu(env);
223     const ARMCPRegInfo *ri;
224     uint32_t key;
225 
226     key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
227     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
228     if (ri) {
229         if (cpreg_field_is_64bit(ri)) {
230             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
231         } else {
232             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
233         }
234     }
235     return 0;
236 }
237 
238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
239 {
240     return 0;
241 }
242 
243 #ifdef TARGET_AARCH64
244 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
245 {
246     ARMCPU *cpu = env_archcpu(env);
247 
248     switch (reg) {
249     /* The first 32 registers are the zregs */
250     case 0 ... 31:
251     {
252         int vq, len = 0;
253         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
254             len += gdb_get_reg128(buf,
255                                   env->vfp.zregs[reg].d[vq * 2 + 1],
256                                   env->vfp.zregs[reg].d[vq * 2]);
257         }
258         return len;
259     }
260     case 32:
261         return gdb_get_reg32(buf, vfp_get_fpsr(env));
262     case 33:
263         return gdb_get_reg32(buf, vfp_get_fpcr(env));
264     /* then 16 predicates and the ffr */
265     case 34 ... 50:
266     {
267         int preg = reg - 34;
268         int vq, len = 0;
269         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
270             len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
271         }
272         return len;
273     }
274     case 51:
275     {
276         /*
277          * We report in Vector Granules (VG) which is 64bit in a Z reg
278          * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
279          */
280         int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
281         return gdb_get_reg64(buf, vq * 2);
282     }
283     default:
284         /* gdbstub asked for something out our range */
285         qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
286         break;
287     }
288 
289     return 0;
290 }
291 
292 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
293 {
294     ARMCPU *cpu = env_archcpu(env);
295 
296     /* The first 32 registers are the zregs */
297     switch (reg) {
298     /* The first 32 registers are the zregs */
299     case 0 ... 31:
300     {
301         int vq, len = 0;
302         uint64_t *p = (uint64_t *) buf;
303         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
304             env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
305             env->vfp.zregs[reg].d[vq * 2] = *p++;
306             len += 16;
307         }
308         return len;
309     }
310     case 32:
311         vfp_set_fpsr(env, *(uint32_t *)buf);
312         return 4;
313     case 33:
314         vfp_set_fpcr(env, *(uint32_t *)buf);
315         return 4;
316     case 34 ... 50:
317     {
318         int preg = reg - 34;
319         int vq, len = 0;
320         uint64_t *p = (uint64_t *) buf;
321         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
322             env->vfp.pregs[preg].p[vq / 4] = *p++;
323             len += 8;
324         }
325         return len;
326     }
327     case 51:
328         /* cannot set vg via gdbstub */
329         return 0;
330     default:
331         /* gdbstub asked for something out our range */
332         break;
333     }
334 
335     return 0;
336 }
337 #endif /* TARGET_AARCH64 */
338 
339 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
340 {
341    /* Return true if the regdef would cause an assertion if you called
342     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
343     * program bug for it not to have the NO_RAW flag).
344     * NB that returning false here doesn't necessarily mean that calling
345     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
346     * read/write access functions which are safe for raw use" from "has
347     * read/write access functions which have side effects but has forgotten
348     * to provide raw access functions".
349     * The tests here line up with the conditions in read/write_raw_cp_reg()
350     * and assertions in raw_read()/raw_write().
351     */
352     if ((ri->type & ARM_CP_CONST) ||
353         ri->fieldoffset ||
354         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
355         return false;
356     }
357     return true;
358 }
359 
360 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
361 {
362     /* Write the coprocessor state from cpu->env to the (index,value) list. */
363     int i;
364     bool ok = true;
365 
366     for (i = 0; i < cpu->cpreg_array_len; i++) {
367         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
368         const ARMCPRegInfo *ri;
369         uint64_t newval;
370 
371         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
372         if (!ri) {
373             ok = false;
374             continue;
375         }
376         if (ri->type & ARM_CP_NO_RAW) {
377             continue;
378         }
379 
380         newval = read_raw_cp_reg(&cpu->env, ri);
381         if (kvm_sync) {
382             /*
383              * Only sync if the previous list->cpustate sync succeeded.
384              * Rather than tracking the success/failure state for every
385              * item in the list, we just recheck "does the raw write we must
386              * have made in write_list_to_cpustate() read back OK" here.
387              */
388             uint64_t oldval = cpu->cpreg_values[i];
389 
390             if (oldval == newval) {
391                 continue;
392             }
393 
394             write_raw_cp_reg(&cpu->env, ri, oldval);
395             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
396                 continue;
397             }
398 
399             write_raw_cp_reg(&cpu->env, ri, newval);
400         }
401         cpu->cpreg_values[i] = newval;
402     }
403     return ok;
404 }
405 
406 bool write_list_to_cpustate(ARMCPU *cpu)
407 {
408     int i;
409     bool ok = true;
410 
411     for (i = 0; i < cpu->cpreg_array_len; i++) {
412         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
413         uint64_t v = cpu->cpreg_values[i];
414         const ARMCPRegInfo *ri;
415 
416         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
417         if (!ri) {
418             ok = false;
419             continue;
420         }
421         if (ri->type & ARM_CP_NO_RAW) {
422             continue;
423         }
424         /* Write value and confirm it reads back as written
425          * (to catch read-only registers and partially read-only
426          * registers where the incoming migration value doesn't match)
427          */
428         write_raw_cp_reg(&cpu->env, ri, v);
429         if (read_raw_cp_reg(&cpu->env, ri) != v) {
430             ok = false;
431         }
432     }
433     return ok;
434 }
435 
436 static void add_cpreg_to_list(gpointer key, gpointer opaque)
437 {
438     ARMCPU *cpu = opaque;
439     uint64_t regidx;
440     const ARMCPRegInfo *ri;
441 
442     regidx = *(uint32_t *)key;
443     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
444 
445     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
446         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
447         /* The value array need not be initialized at this point */
448         cpu->cpreg_array_len++;
449     }
450 }
451 
452 static void count_cpreg(gpointer key, gpointer opaque)
453 {
454     ARMCPU *cpu = opaque;
455     uint64_t regidx;
456     const ARMCPRegInfo *ri;
457 
458     regidx = *(uint32_t *)key;
459     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
460 
461     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
462         cpu->cpreg_array_len++;
463     }
464 }
465 
466 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
467 {
468     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
469     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
470 
471     if (aidx > bidx) {
472         return 1;
473     }
474     if (aidx < bidx) {
475         return -1;
476     }
477     return 0;
478 }
479 
480 void init_cpreg_list(ARMCPU *cpu)
481 {
482     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
483      * Note that we require cpreg_tuples[] to be sorted by key ID.
484      */
485     GList *keys;
486     int arraylen;
487 
488     keys = g_hash_table_get_keys(cpu->cp_regs);
489     keys = g_list_sort(keys, cpreg_key_compare);
490 
491     cpu->cpreg_array_len = 0;
492 
493     g_list_foreach(keys, count_cpreg, cpu);
494 
495     arraylen = cpu->cpreg_array_len;
496     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
497     cpu->cpreg_values = g_new(uint64_t, arraylen);
498     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
499     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
500     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
501     cpu->cpreg_array_len = 0;
502 
503     g_list_foreach(keys, add_cpreg_to_list, cpu);
504 
505     assert(cpu->cpreg_array_len == arraylen);
506 
507     g_list_free(keys);
508 }
509 
510 /*
511  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
512  */
513 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
514                                         const ARMCPRegInfo *ri,
515                                         bool isread)
516 {
517     if (!is_a64(env) && arm_current_el(env) == 3 &&
518         arm_is_secure_below_el3(env)) {
519         return CP_ACCESS_TRAP_UNCATEGORIZED;
520     }
521     return CP_ACCESS_OK;
522 }
523 
524 /* Some secure-only AArch32 registers trap to EL3 if used from
525  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
526  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
527  * We assume that the .access field is set to PL1_RW.
528  */
529 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
530                                             const ARMCPRegInfo *ri,
531                                             bool isread)
532 {
533     if (arm_current_el(env) == 3) {
534         return CP_ACCESS_OK;
535     }
536     if (arm_is_secure_below_el3(env)) {
537         if (env->cp15.scr_el3 & SCR_EEL2) {
538             return CP_ACCESS_TRAP_EL2;
539         }
540         return CP_ACCESS_TRAP_EL3;
541     }
542     /* This will be EL1 NS and EL2 NS, which just UNDEF */
543     return CP_ACCESS_TRAP_UNCATEGORIZED;
544 }
545 
546 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
547 {
548     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
549 }
550 
551 /* Check for traps to "powerdown debug" registers, which are controlled
552  * by MDCR.TDOSA
553  */
554 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
555                                    bool isread)
556 {
557     int el = arm_current_el(env);
558     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
559     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
560         (arm_hcr_el2_eff(env) & HCR_TGE);
561 
562     if (el < 2 && mdcr_el2_tdosa) {
563         return CP_ACCESS_TRAP_EL2;
564     }
565     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
566         return CP_ACCESS_TRAP_EL3;
567     }
568     return CP_ACCESS_OK;
569 }
570 
571 /* Check for traps to "debug ROM" registers, which are controlled
572  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
573  */
574 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
575                                   bool isread)
576 {
577     int el = arm_current_el(env);
578     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
579     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
580         (arm_hcr_el2_eff(env) & HCR_TGE);
581 
582     if (el < 2 && mdcr_el2_tdra) {
583         return CP_ACCESS_TRAP_EL2;
584     }
585     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
586         return CP_ACCESS_TRAP_EL3;
587     }
588     return CP_ACCESS_OK;
589 }
590 
591 /* Check for traps to general debug registers, which are controlled
592  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
593  */
594 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
595                                   bool isread)
596 {
597     int el = arm_current_el(env);
598     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
599     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
600         (arm_hcr_el2_eff(env) & HCR_TGE);
601 
602     if (el < 2 && mdcr_el2_tda) {
603         return CP_ACCESS_TRAP_EL2;
604     }
605     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
606         return CP_ACCESS_TRAP_EL3;
607     }
608     return CP_ACCESS_OK;
609 }
610 
611 /* Check for traps to performance monitor registers, which are controlled
612  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
613  */
614 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
615                                  bool isread)
616 {
617     int el = arm_current_el(env);
618     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
619 
620     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
621         return CP_ACCESS_TRAP_EL2;
622     }
623     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
624         return CP_ACCESS_TRAP_EL3;
625     }
626     return CP_ACCESS_OK;
627 }
628 
629 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
630 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
631                                       bool isread)
632 {
633     if (arm_current_el(env) == 1) {
634         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
635         if (arm_hcr_el2_eff(env) & trap) {
636             return CP_ACCESS_TRAP_EL2;
637         }
638     }
639     return CP_ACCESS_OK;
640 }
641 
642 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
643 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
644                                  bool isread)
645 {
646     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
647         return CP_ACCESS_TRAP_EL2;
648     }
649     return CP_ACCESS_OK;
650 }
651 
652 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
653 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
654                                   bool isread)
655 {
656     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
657         return CP_ACCESS_TRAP_EL2;
658     }
659     return CP_ACCESS_OK;
660 }
661 
662 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
663 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
664                                   bool isread)
665 {
666     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
667         return CP_ACCESS_TRAP_EL2;
668     }
669     return CP_ACCESS_OK;
670 }
671 
672 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
673 {
674     ARMCPU *cpu = env_archcpu(env);
675 
676     raw_write(env, ri, value);
677     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
678 }
679 
680 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
681 {
682     ARMCPU *cpu = env_archcpu(env);
683 
684     if (raw_read(env, ri) != value) {
685         /* Unlike real hardware the qemu TLB uses virtual addresses,
686          * not modified virtual addresses, so this causes a TLB flush.
687          */
688         tlb_flush(CPU(cpu));
689         raw_write(env, ri, value);
690     }
691 }
692 
693 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694                              uint64_t value)
695 {
696     ARMCPU *cpu = env_archcpu(env);
697 
698     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
699         && !extended_addresses_enabled(env)) {
700         /* For VMSA (when not using the LPAE long descriptor page table
701          * format) this register includes the ASID, so do a TLB flush.
702          * For PMSA it is purely a process ID and no action is needed.
703          */
704         tlb_flush(CPU(cpu));
705     }
706     raw_write(env, ri, value);
707 }
708 
709 /* IS variants of TLB operations must affect all cores */
710 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
711                              uint64_t value)
712 {
713     CPUState *cs = env_cpu(env);
714 
715     tlb_flush_all_cpus_synced(cs);
716 }
717 
718 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
719                              uint64_t value)
720 {
721     CPUState *cs = env_cpu(env);
722 
723     tlb_flush_all_cpus_synced(cs);
724 }
725 
726 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
727                              uint64_t value)
728 {
729     CPUState *cs = env_cpu(env);
730 
731     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
732 }
733 
734 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
735                              uint64_t value)
736 {
737     CPUState *cs = env_cpu(env);
738 
739     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
740 }
741 
742 /*
743  * Non-IS variants of TLB operations are upgraded to
744  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
745  * force broadcast of these operations.
746  */
747 static bool tlb_force_broadcast(CPUARMState *env)
748 {
749     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
750 }
751 
752 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
753                           uint64_t value)
754 {
755     /* Invalidate all (TLBIALL) */
756     CPUState *cs = env_cpu(env);
757 
758     if (tlb_force_broadcast(env)) {
759         tlb_flush_all_cpus_synced(cs);
760     } else {
761         tlb_flush(cs);
762     }
763 }
764 
765 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
766                           uint64_t value)
767 {
768     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
769     CPUState *cs = env_cpu(env);
770 
771     value &= TARGET_PAGE_MASK;
772     if (tlb_force_broadcast(env)) {
773         tlb_flush_page_all_cpus_synced(cs, value);
774     } else {
775         tlb_flush_page(cs, value);
776     }
777 }
778 
779 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
780                            uint64_t value)
781 {
782     /* Invalidate by ASID (TLBIASID) */
783     CPUState *cs = env_cpu(env);
784 
785     if (tlb_force_broadcast(env)) {
786         tlb_flush_all_cpus_synced(cs);
787     } else {
788         tlb_flush(cs);
789     }
790 }
791 
792 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
793                            uint64_t value)
794 {
795     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
796     CPUState *cs = env_cpu(env);
797 
798     value &= TARGET_PAGE_MASK;
799     if (tlb_force_broadcast(env)) {
800         tlb_flush_page_all_cpus_synced(cs, value);
801     } else {
802         tlb_flush_page(cs, value);
803     }
804 }
805 
806 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
807                                uint64_t value)
808 {
809     CPUState *cs = env_cpu(env);
810 
811     tlb_flush_by_mmuidx(cs,
812                         ARMMMUIdxBit_E10_1 |
813                         ARMMMUIdxBit_E10_1_PAN |
814                         ARMMMUIdxBit_E10_0);
815 }
816 
817 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
818                                   uint64_t value)
819 {
820     CPUState *cs = env_cpu(env);
821 
822     tlb_flush_by_mmuidx_all_cpus_synced(cs,
823                                         ARMMMUIdxBit_E10_1 |
824                                         ARMMMUIdxBit_E10_1_PAN |
825                                         ARMMMUIdxBit_E10_0);
826 }
827 
828 
829 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
830                               uint64_t value)
831 {
832     CPUState *cs = env_cpu(env);
833 
834     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
835 }
836 
837 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
838                                  uint64_t value)
839 {
840     CPUState *cs = env_cpu(env);
841 
842     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
843 }
844 
845 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
846                               uint64_t value)
847 {
848     CPUState *cs = env_cpu(env);
849     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
850 
851     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
852 }
853 
854 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
855                                  uint64_t value)
856 {
857     CPUState *cs = env_cpu(env);
858     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
859 
860     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
861                                              ARMMMUIdxBit_E2);
862 }
863 
864 static const ARMCPRegInfo cp_reginfo[] = {
865     /* Define the secure and non-secure FCSE identifier CP registers
866      * separately because there is no secure bank in V8 (no _EL3).  This allows
867      * the secure register to be properly reset and migrated. There is also no
868      * v8 EL1 version of the register so the non-secure instance stands alone.
869      */
870     { .name = "FCSEIDR",
871       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
872       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
873       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
874       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
875     { .name = "FCSEIDR_S",
876       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
877       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
878       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
879       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
880     /* Define the secure and non-secure context identifier CP registers
881      * separately because there is no secure bank in V8 (no _EL3).  This allows
882      * the secure register to be properly reset and migrated.  In the
883      * non-secure case, the 32-bit register will have reset and migration
884      * disabled during registration as it is handled by the 64-bit instance.
885      */
886     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
887       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
888       .access = PL1_RW, .accessfn = access_tvm_trvm,
889       .secure = ARM_CP_SECSTATE_NS,
890       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
891       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
892     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
893       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
894       .access = PL1_RW, .accessfn = access_tvm_trvm,
895       .secure = ARM_CP_SECSTATE_S,
896       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
897       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
898     REGINFO_SENTINEL
899 };
900 
901 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
902     /* NB: Some of these registers exist in v8 but with more precise
903      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
904      */
905     /* MMU Domain access control / MPU write buffer control */
906     { .name = "DACR",
907       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
908       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
909       .writefn = dacr_write, .raw_writefn = raw_write,
910       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
911                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
912     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
913      * For v6 and v5, these mappings are overly broad.
914      */
915     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
916       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
917     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
918       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
919     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
920       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
921     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
922       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
923     /* Cache maintenance ops; some of this space may be overridden later. */
924     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
925       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
926       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
927     REGINFO_SENTINEL
928 };
929 
930 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
931     /* Not all pre-v6 cores implemented this WFI, so this is slightly
932      * over-broad.
933      */
934     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
935       .access = PL1_W, .type = ARM_CP_WFI },
936     REGINFO_SENTINEL
937 };
938 
939 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
940     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
941      * is UNPREDICTABLE; we choose to NOP as most implementations do).
942      */
943     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
944       .access = PL1_W, .type = ARM_CP_WFI },
945     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
946      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
947      * OMAPCP will override this space.
948      */
949     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
950       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
951       .resetvalue = 0 },
952     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
953       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
954       .resetvalue = 0 },
955     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
956     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
957       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
958       .resetvalue = 0 },
959     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
960      * implementing it as RAZ means the "debug architecture version" bits
961      * will read as a reserved value, which should cause Linux to not try
962      * to use the debug hardware.
963      */
964     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
965       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
966     /* MMU TLB control. Note that the wildcarding means we cover not just
967      * the unified TLB ops but also the dside/iside/inner-shareable variants.
968      */
969     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
970       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
971       .type = ARM_CP_NO_RAW },
972     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
973       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
974       .type = ARM_CP_NO_RAW },
975     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
976       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
977       .type = ARM_CP_NO_RAW },
978     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
979       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
980       .type = ARM_CP_NO_RAW },
981     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
982       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
983     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
984       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
985     REGINFO_SENTINEL
986 };
987 
988 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
989                         uint64_t value)
990 {
991     uint32_t mask = 0;
992 
993     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
994     if (!arm_feature(env, ARM_FEATURE_V8)) {
995         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
996          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
997          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
998          */
999         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
1000             /* VFP coprocessor: cp10 & cp11 [23:20] */
1001             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
1002 
1003             if (!arm_feature(env, ARM_FEATURE_NEON)) {
1004                 /* ASEDIS [31] bit is RAO/WI */
1005                 value |= (1 << 31);
1006             }
1007 
1008             /* VFPv3 and upwards with NEON implement 32 double precision
1009              * registers (D0-D31).
1010              */
1011             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1012                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1013                 value |= (1 << 30);
1014             }
1015         }
1016         value &= mask;
1017     }
1018 
1019     /*
1020      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1021      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1022      */
1023     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1024         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1025         value &= ~(0xf << 20);
1026         value |= env->cp15.cpacr_el1 & (0xf << 20);
1027     }
1028 
1029     env->cp15.cpacr_el1 = value;
1030 }
1031 
1032 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1033 {
1034     /*
1035      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1036      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1037      */
1038     uint64_t value = env->cp15.cpacr_el1;
1039 
1040     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1041         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1042         value &= ~(0xf << 20);
1043     }
1044     return value;
1045 }
1046 
1047 
1048 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1049 {
1050     /* Call cpacr_write() so that we reset with the correct RAO bits set
1051      * for our CPU features.
1052      */
1053     cpacr_write(env, ri, 0);
1054 }
1055 
1056 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1057                                    bool isread)
1058 {
1059     if (arm_feature(env, ARM_FEATURE_V8)) {
1060         /* Check if CPACR accesses are to be trapped to EL2 */
1061         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
1062             (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
1063             return CP_ACCESS_TRAP_EL2;
1064         /* Check if CPACR accesses are to be trapped to EL3 */
1065         } else if (arm_current_el(env) < 3 &&
1066                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1067             return CP_ACCESS_TRAP_EL3;
1068         }
1069     }
1070 
1071     return CP_ACCESS_OK;
1072 }
1073 
1074 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1075                                   bool isread)
1076 {
1077     /* Check if CPTR accesses are set to trap to EL3 */
1078     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1079         return CP_ACCESS_TRAP_EL3;
1080     }
1081 
1082     return CP_ACCESS_OK;
1083 }
1084 
1085 static const ARMCPRegInfo v6_cp_reginfo[] = {
1086     /* prefetch by MVA in v6, NOP in v7 */
1087     { .name = "MVA_prefetch",
1088       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1089       .access = PL1_W, .type = ARM_CP_NOP },
1090     /* We need to break the TB after ISB to execute self-modifying code
1091      * correctly and also to take any pending interrupts immediately.
1092      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1093      */
1094     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1095       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1096     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1097       .access = PL0_W, .type = ARM_CP_NOP },
1098     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1099       .access = PL0_W, .type = ARM_CP_NOP },
1100     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1101       .access = PL1_RW, .accessfn = access_tvm_trvm,
1102       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1103                              offsetof(CPUARMState, cp15.ifar_ns) },
1104       .resetvalue = 0, },
1105     /* Watchpoint Fault Address Register : should actually only be present
1106      * for 1136, 1176, 11MPCore.
1107      */
1108     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1109       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1110     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1111       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1112       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1113       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1114     REGINFO_SENTINEL
1115 };
1116 
1117 /* Definitions for the PMU registers */
1118 #define PMCRN_MASK  0xf800
1119 #define PMCRN_SHIFT 11
1120 #define PMCRLC  0x40
1121 #define PMCRDP  0x20
1122 #define PMCRX   0x10
1123 #define PMCRD   0x8
1124 #define PMCRC   0x4
1125 #define PMCRP   0x2
1126 #define PMCRE   0x1
1127 /*
1128  * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1129  * which can be written as 1 to trigger behaviour but which stay RAZ).
1130  */
1131 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1132 
1133 #define PMXEVTYPER_P          0x80000000
1134 #define PMXEVTYPER_U          0x40000000
1135 #define PMXEVTYPER_NSK        0x20000000
1136 #define PMXEVTYPER_NSU        0x10000000
1137 #define PMXEVTYPER_NSH        0x08000000
1138 #define PMXEVTYPER_M          0x04000000
1139 #define PMXEVTYPER_MT         0x02000000
1140 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1141 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1142                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1143                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1144                                PMXEVTYPER_EVTCOUNT)
1145 
1146 #define PMCCFILTR             0xf8000000
1147 #define PMCCFILTR_M           PMXEVTYPER_M
1148 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1149 
1150 static inline uint32_t pmu_num_counters(CPUARMState *env)
1151 {
1152   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1153 }
1154 
1155 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1156 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1157 {
1158   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1159 }
1160 
1161 typedef struct pm_event {
1162     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1163     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1164     bool (*supported)(CPUARMState *);
1165     /*
1166      * Retrieve the current count of the underlying event. The programmed
1167      * counters hold a difference from the return value from this function
1168      */
1169     uint64_t (*get_count)(CPUARMState *);
1170     /*
1171      * Return how many nanoseconds it will take (at a minimum) for count events
1172      * to occur. A negative value indicates the counter will never overflow, or
1173      * that the counter has otherwise arranged for the overflow bit to be set
1174      * and the PMU interrupt to be raised on overflow.
1175      */
1176     int64_t (*ns_per_count)(uint64_t);
1177 } pm_event;
1178 
1179 static bool event_always_supported(CPUARMState *env)
1180 {
1181     return true;
1182 }
1183 
1184 static uint64_t swinc_get_count(CPUARMState *env)
1185 {
1186     /*
1187      * SW_INCR events are written directly to the pmevcntr's by writes to
1188      * PMSWINC, so there is no underlying count maintained by the PMU itself
1189      */
1190     return 0;
1191 }
1192 
1193 static int64_t swinc_ns_per(uint64_t ignored)
1194 {
1195     return -1;
1196 }
1197 
1198 /*
1199  * Return the underlying cycle count for the PMU cycle counters. If we're in
1200  * usermode, simply return 0.
1201  */
1202 static uint64_t cycles_get_count(CPUARMState *env)
1203 {
1204 #ifndef CONFIG_USER_ONLY
1205     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1206                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1207 #else
1208     return cpu_get_host_ticks();
1209 #endif
1210 }
1211 
1212 #ifndef CONFIG_USER_ONLY
1213 static int64_t cycles_ns_per(uint64_t cycles)
1214 {
1215     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1216 }
1217 
1218 static bool instructions_supported(CPUARMState *env)
1219 {
1220     return icount_enabled() == 1; /* Precise instruction counting */
1221 }
1222 
1223 static uint64_t instructions_get_count(CPUARMState *env)
1224 {
1225     return (uint64_t)icount_get_raw();
1226 }
1227 
1228 static int64_t instructions_ns_per(uint64_t icount)
1229 {
1230     return icount_to_ns((int64_t)icount);
1231 }
1232 #endif
1233 
1234 static bool pmu_8_1_events_supported(CPUARMState *env)
1235 {
1236     /* For events which are supported in any v8.1 PMU */
1237     return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1238 }
1239 
1240 static bool pmu_8_4_events_supported(CPUARMState *env)
1241 {
1242     /* For events which are supported in any v8.1 PMU */
1243     return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1244 }
1245 
1246 static uint64_t zero_event_get_count(CPUARMState *env)
1247 {
1248     /* For events which on QEMU never fire, so their count is always zero */
1249     return 0;
1250 }
1251 
1252 static int64_t zero_event_ns_per(uint64_t cycles)
1253 {
1254     /* An event which never fires can never overflow */
1255     return -1;
1256 }
1257 
1258 static const pm_event pm_events[] = {
1259     { .number = 0x000, /* SW_INCR */
1260       .supported = event_always_supported,
1261       .get_count = swinc_get_count,
1262       .ns_per_count = swinc_ns_per,
1263     },
1264 #ifndef CONFIG_USER_ONLY
1265     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1266       .supported = instructions_supported,
1267       .get_count = instructions_get_count,
1268       .ns_per_count = instructions_ns_per,
1269     },
1270     { .number = 0x011, /* CPU_CYCLES, Cycle */
1271       .supported = event_always_supported,
1272       .get_count = cycles_get_count,
1273       .ns_per_count = cycles_ns_per,
1274     },
1275 #endif
1276     { .number = 0x023, /* STALL_FRONTEND */
1277       .supported = pmu_8_1_events_supported,
1278       .get_count = zero_event_get_count,
1279       .ns_per_count = zero_event_ns_per,
1280     },
1281     { .number = 0x024, /* STALL_BACKEND */
1282       .supported = pmu_8_1_events_supported,
1283       .get_count = zero_event_get_count,
1284       .ns_per_count = zero_event_ns_per,
1285     },
1286     { .number = 0x03c, /* STALL */
1287       .supported = pmu_8_4_events_supported,
1288       .get_count = zero_event_get_count,
1289       .ns_per_count = zero_event_ns_per,
1290     },
1291 };
1292 
1293 /*
1294  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1295  * events (i.e. the statistical profiling extension), this implementation
1296  * should first be updated to something sparse instead of the current
1297  * supported_event_map[] array.
1298  */
1299 #define MAX_EVENT_ID 0x3c
1300 #define UNSUPPORTED_EVENT UINT16_MAX
1301 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1302 
1303 /*
1304  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1305  * of ARM event numbers to indices in our pm_events array.
1306  *
1307  * Note: Events in the 0x40XX range are not currently supported.
1308  */
1309 void pmu_init(ARMCPU *cpu)
1310 {
1311     unsigned int i;
1312 
1313     /*
1314      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1315      * events to them
1316      */
1317     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1318         supported_event_map[i] = UNSUPPORTED_EVENT;
1319     }
1320     cpu->pmceid0 = 0;
1321     cpu->pmceid1 = 0;
1322 
1323     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1324         const pm_event *cnt = &pm_events[i];
1325         assert(cnt->number <= MAX_EVENT_ID);
1326         /* We do not currently support events in the 0x40xx range */
1327         assert(cnt->number <= 0x3f);
1328 
1329         if (cnt->supported(&cpu->env)) {
1330             supported_event_map[cnt->number] = i;
1331             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1332             if (cnt->number & 0x20) {
1333                 cpu->pmceid1 |= event_mask;
1334             } else {
1335                 cpu->pmceid0 |= event_mask;
1336             }
1337         }
1338     }
1339 }
1340 
1341 /*
1342  * Check at runtime whether a PMU event is supported for the current machine
1343  */
1344 static bool event_supported(uint16_t number)
1345 {
1346     if (number > MAX_EVENT_ID) {
1347         return false;
1348     }
1349     return supported_event_map[number] != UNSUPPORTED_EVENT;
1350 }
1351 
1352 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1353                                    bool isread)
1354 {
1355     /* Performance monitor registers user accessibility is controlled
1356      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1357      * trapping to EL2 or EL3 for other accesses.
1358      */
1359     int el = arm_current_el(env);
1360     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1361 
1362     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1363         return CP_ACCESS_TRAP;
1364     }
1365     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1366         return CP_ACCESS_TRAP_EL2;
1367     }
1368     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1369         return CP_ACCESS_TRAP_EL3;
1370     }
1371 
1372     return CP_ACCESS_OK;
1373 }
1374 
1375 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1376                                            const ARMCPRegInfo *ri,
1377                                            bool isread)
1378 {
1379     /* ER: event counter read trap control */
1380     if (arm_feature(env, ARM_FEATURE_V8)
1381         && arm_current_el(env) == 0
1382         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1383         && isread) {
1384         return CP_ACCESS_OK;
1385     }
1386 
1387     return pmreg_access(env, ri, isread);
1388 }
1389 
1390 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1391                                          const ARMCPRegInfo *ri,
1392                                          bool isread)
1393 {
1394     /* SW: software increment write trap control */
1395     if (arm_feature(env, ARM_FEATURE_V8)
1396         && arm_current_el(env) == 0
1397         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1398         && !isread) {
1399         return CP_ACCESS_OK;
1400     }
1401 
1402     return pmreg_access(env, ri, isread);
1403 }
1404 
1405 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1406                                         const ARMCPRegInfo *ri,
1407                                         bool isread)
1408 {
1409     /* ER: event counter read trap control */
1410     if (arm_feature(env, ARM_FEATURE_V8)
1411         && arm_current_el(env) == 0
1412         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1413         return CP_ACCESS_OK;
1414     }
1415 
1416     return pmreg_access(env, ri, isread);
1417 }
1418 
1419 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1420                                          const ARMCPRegInfo *ri,
1421                                          bool isread)
1422 {
1423     /* CR: cycle counter read trap control */
1424     if (arm_feature(env, ARM_FEATURE_V8)
1425         && arm_current_el(env) == 0
1426         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1427         && isread) {
1428         return CP_ACCESS_OK;
1429     }
1430 
1431     return pmreg_access(env, ri, isread);
1432 }
1433 
1434 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1435  * the current EL, security state, and register configuration.
1436  */
1437 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1438 {
1439     uint64_t filter;
1440     bool e, p, u, nsk, nsu, nsh, m;
1441     bool enabled, prohibited, filtered;
1442     bool secure = arm_is_secure(env);
1443     int el = arm_current_el(env);
1444     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1445     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1446 
1447     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1448         return false;
1449     }
1450 
1451     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1452             (counter < hpmn || counter == 31)) {
1453         e = env->cp15.c9_pmcr & PMCRE;
1454     } else {
1455         e = mdcr_el2 & MDCR_HPME;
1456     }
1457     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1458 
1459     if (!secure) {
1460         if (el == 2 && (counter < hpmn || counter == 31)) {
1461             prohibited = mdcr_el2 & MDCR_HPMD;
1462         } else {
1463             prohibited = false;
1464         }
1465     } else {
1466         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1467            !(env->cp15.mdcr_el3 & MDCR_SPME);
1468     }
1469 
1470     if (prohibited && counter == 31) {
1471         prohibited = env->cp15.c9_pmcr & PMCRDP;
1472     }
1473 
1474     if (counter == 31) {
1475         filter = env->cp15.pmccfiltr_el0;
1476     } else {
1477         filter = env->cp15.c14_pmevtyper[counter];
1478     }
1479 
1480     p   = filter & PMXEVTYPER_P;
1481     u   = filter & PMXEVTYPER_U;
1482     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1483     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1484     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1485     m   = arm_el_is_aa64(env, 1) &&
1486               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1487 
1488     if (el == 0) {
1489         filtered = secure ? u : u != nsu;
1490     } else if (el == 1) {
1491         filtered = secure ? p : p != nsk;
1492     } else if (el == 2) {
1493         filtered = !nsh;
1494     } else { /* EL3 */
1495         filtered = m != p;
1496     }
1497 
1498     if (counter != 31) {
1499         /*
1500          * If not checking PMCCNTR, ensure the counter is setup to an event we
1501          * support
1502          */
1503         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1504         if (!event_supported(event)) {
1505             return false;
1506         }
1507     }
1508 
1509     return enabled && !prohibited && !filtered;
1510 }
1511 
1512 static void pmu_update_irq(CPUARMState *env)
1513 {
1514     ARMCPU *cpu = env_archcpu(env);
1515     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1516             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1517 }
1518 
1519 /*
1520  * Ensure c15_ccnt is the guest-visible count so that operations such as
1521  * enabling/disabling the counter or filtering, modifying the count itself,
1522  * etc. can be done logically. This is essentially a no-op if the counter is
1523  * not enabled at the time of the call.
1524  */
1525 static void pmccntr_op_start(CPUARMState *env)
1526 {
1527     uint64_t cycles = cycles_get_count(env);
1528 
1529     if (pmu_counter_enabled(env, 31)) {
1530         uint64_t eff_cycles = cycles;
1531         if (env->cp15.c9_pmcr & PMCRD) {
1532             /* Increment once every 64 processor clock cycles */
1533             eff_cycles /= 64;
1534         }
1535 
1536         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1537 
1538         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1539                                  1ull << 63 : 1ull << 31;
1540         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1541             env->cp15.c9_pmovsr |= (1 << 31);
1542             pmu_update_irq(env);
1543         }
1544 
1545         env->cp15.c15_ccnt = new_pmccntr;
1546     }
1547     env->cp15.c15_ccnt_delta = cycles;
1548 }
1549 
1550 /*
1551  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1552  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1553  * pmccntr_op_start.
1554  */
1555 static void pmccntr_op_finish(CPUARMState *env)
1556 {
1557     if (pmu_counter_enabled(env, 31)) {
1558 #ifndef CONFIG_USER_ONLY
1559         /* Calculate when the counter will next overflow */
1560         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1561         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1562             remaining_cycles = (uint32_t)remaining_cycles;
1563         }
1564         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1565 
1566         if (overflow_in > 0) {
1567             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1568                 overflow_in;
1569             ARMCPU *cpu = env_archcpu(env);
1570             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1571         }
1572 #endif
1573 
1574         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1575         if (env->cp15.c9_pmcr & PMCRD) {
1576             /* Increment once every 64 processor clock cycles */
1577             prev_cycles /= 64;
1578         }
1579         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1580     }
1581 }
1582 
1583 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1584 {
1585 
1586     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1587     uint64_t count = 0;
1588     if (event_supported(event)) {
1589         uint16_t event_idx = supported_event_map[event];
1590         count = pm_events[event_idx].get_count(env);
1591     }
1592 
1593     if (pmu_counter_enabled(env, counter)) {
1594         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1595 
1596         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1597             env->cp15.c9_pmovsr |= (1 << counter);
1598             pmu_update_irq(env);
1599         }
1600         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1601     }
1602     env->cp15.c14_pmevcntr_delta[counter] = count;
1603 }
1604 
1605 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1606 {
1607     if (pmu_counter_enabled(env, counter)) {
1608 #ifndef CONFIG_USER_ONLY
1609         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1610         uint16_t event_idx = supported_event_map[event];
1611         uint64_t delta = UINT32_MAX -
1612             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1613         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1614 
1615         if (overflow_in > 0) {
1616             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1617                 overflow_in;
1618             ARMCPU *cpu = env_archcpu(env);
1619             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1620         }
1621 #endif
1622 
1623         env->cp15.c14_pmevcntr_delta[counter] -=
1624             env->cp15.c14_pmevcntr[counter];
1625     }
1626 }
1627 
1628 void pmu_op_start(CPUARMState *env)
1629 {
1630     unsigned int i;
1631     pmccntr_op_start(env);
1632     for (i = 0; i < pmu_num_counters(env); i++) {
1633         pmevcntr_op_start(env, i);
1634     }
1635 }
1636 
1637 void pmu_op_finish(CPUARMState *env)
1638 {
1639     unsigned int i;
1640     pmccntr_op_finish(env);
1641     for (i = 0; i < pmu_num_counters(env); i++) {
1642         pmevcntr_op_finish(env, i);
1643     }
1644 }
1645 
1646 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1647 {
1648     pmu_op_start(&cpu->env);
1649 }
1650 
1651 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1652 {
1653     pmu_op_finish(&cpu->env);
1654 }
1655 
1656 void arm_pmu_timer_cb(void *opaque)
1657 {
1658     ARMCPU *cpu = opaque;
1659 
1660     /*
1661      * Update all the counter values based on the current underlying counts,
1662      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1663      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1664      * counter may expire.
1665      */
1666     pmu_op_start(&cpu->env);
1667     pmu_op_finish(&cpu->env);
1668 }
1669 
1670 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1671                        uint64_t value)
1672 {
1673     pmu_op_start(env);
1674 
1675     if (value & PMCRC) {
1676         /* The counter has been reset */
1677         env->cp15.c15_ccnt = 0;
1678     }
1679 
1680     if (value & PMCRP) {
1681         unsigned int i;
1682         for (i = 0; i < pmu_num_counters(env); i++) {
1683             env->cp15.c14_pmevcntr[i] = 0;
1684         }
1685     }
1686 
1687     env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1688     env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1689 
1690     pmu_op_finish(env);
1691 }
1692 
1693 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1694                           uint64_t value)
1695 {
1696     unsigned int i;
1697     for (i = 0; i < pmu_num_counters(env); i++) {
1698         /* Increment a counter's count iff: */
1699         if ((value & (1 << i)) && /* counter's bit is set */
1700                 /* counter is enabled and not filtered */
1701                 pmu_counter_enabled(env, i) &&
1702                 /* counter is SW_INCR */
1703                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1704             pmevcntr_op_start(env, i);
1705 
1706             /*
1707              * Detect if this write causes an overflow since we can't predict
1708              * PMSWINC overflows like we can for other events
1709              */
1710             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1711 
1712             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1713                 env->cp15.c9_pmovsr |= (1 << i);
1714                 pmu_update_irq(env);
1715             }
1716 
1717             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1718 
1719             pmevcntr_op_finish(env, i);
1720         }
1721     }
1722 }
1723 
1724 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1725 {
1726     uint64_t ret;
1727     pmccntr_op_start(env);
1728     ret = env->cp15.c15_ccnt;
1729     pmccntr_op_finish(env);
1730     return ret;
1731 }
1732 
1733 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734                          uint64_t value)
1735 {
1736     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1737      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1738      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1739      * accessed.
1740      */
1741     env->cp15.c9_pmselr = value & 0x1f;
1742 }
1743 
1744 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745                         uint64_t value)
1746 {
1747     pmccntr_op_start(env);
1748     env->cp15.c15_ccnt = value;
1749     pmccntr_op_finish(env);
1750 }
1751 
1752 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1753                             uint64_t value)
1754 {
1755     uint64_t cur_val = pmccntr_read(env, NULL);
1756 
1757     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1758 }
1759 
1760 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1761                             uint64_t value)
1762 {
1763     pmccntr_op_start(env);
1764     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1765     pmccntr_op_finish(env);
1766 }
1767 
1768 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1769                             uint64_t value)
1770 {
1771     pmccntr_op_start(env);
1772     /* M is not accessible from AArch32 */
1773     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1774         (value & PMCCFILTR);
1775     pmccntr_op_finish(env);
1776 }
1777 
1778 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1779 {
1780     /* M is not visible in AArch32 */
1781     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1782 }
1783 
1784 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1785                             uint64_t value)
1786 {
1787     value &= pmu_counter_mask(env);
1788     env->cp15.c9_pmcnten |= value;
1789 }
1790 
1791 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792                              uint64_t value)
1793 {
1794     value &= pmu_counter_mask(env);
1795     env->cp15.c9_pmcnten &= ~value;
1796 }
1797 
1798 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799                          uint64_t value)
1800 {
1801     value &= pmu_counter_mask(env);
1802     env->cp15.c9_pmovsr &= ~value;
1803     pmu_update_irq(env);
1804 }
1805 
1806 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                          uint64_t value)
1808 {
1809     value &= pmu_counter_mask(env);
1810     env->cp15.c9_pmovsr |= value;
1811     pmu_update_irq(env);
1812 }
1813 
1814 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                              uint64_t value, const uint8_t counter)
1816 {
1817     if (counter == 31) {
1818         pmccfiltr_write(env, ri, value);
1819     } else if (counter < pmu_num_counters(env)) {
1820         pmevcntr_op_start(env, counter);
1821 
1822         /*
1823          * If this counter's event type is changing, store the current
1824          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1825          * pmevcntr_op_finish has the correct baseline when it converts back to
1826          * a delta.
1827          */
1828         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1829             PMXEVTYPER_EVTCOUNT;
1830         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1831         if (old_event != new_event) {
1832             uint64_t count = 0;
1833             if (event_supported(new_event)) {
1834                 uint16_t event_idx = supported_event_map[new_event];
1835                 count = pm_events[event_idx].get_count(env);
1836             }
1837             env->cp15.c14_pmevcntr_delta[counter] = count;
1838         }
1839 
1840         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1841         pmevcntr_op_finish(env, counter);
1842     }
1843     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1844      * PMSELR value is equal to or greater than the number of implemented
1845      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1846      */
1847 }
1848 
1849 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1850                                const uint8_t counter)
1851 {
1852     if (counter == 31) {
1853         return env->cp15.pmccfiltr_el0;
1854     } else if (counter < pmu_num_counters(env)) {
1855         return env->cp15.c14_pmevtyper[counter];
1856     } else {
1857       /*
1858        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1859        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1860        */
1861         return 0;
1862     }
1863 }
1864 
1865 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1866                               uint64_t value)
1867 {
1868     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1869     pmevtyper_write(env, ri, value, counter);
1870 }
1871 
1872 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1873                                uint64_t value)
1874 {
1875     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1876     env->cp15.c14_pmevtyper[counter] = value;
1877 
1878     /*
1879      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1880      * pmu_op_finish calls when loading saved state for a migration. Because
1881      * we're potentially updating the type of event here, the value written to
1882      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1883      * different counter type. Therefore, we need to set this value to the
1884      * current count for the counter type we're writing so that pmu_op_finish
1885      * has the correct count for its calculation.
1886      */
1887     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1888     if (event_supported(event)) {
1889         uint16_t event_idx = supported_event_map[event];
1890         env->cp15.c14_pmevcntr_delta[counter] =
1891             pm_events[event_idx].get_count(env);
1892     }
1893 }
1894 
1895 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1896 {
1897     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1898     return pmevtyper_read(env, ri, counter);
1899 }
1900 
1901 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1902                              uint64_t value)
1903 {
1904     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1905 }
1906 
1907 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1908 {
1909     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1910 }
1911 
1912 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1913                              uint64_t value, uint8_t counter)
1914 {
1915     if (counter < pmu_num_counters(env)) {
1916         pmevcntr_op_start(env, counter);
1917         env->cp15.c14_pmevcntr[counter] = value;
1918         pmevcntr_op_finish(env, counter);
1919     }
1920     /*
1921      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1922      * are CONSTRAINED UNPREDICTABLE.
1923      */
1924 }
1925 
1926 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1927                               uint8_t counter)
1928 {
1929     if (counter < pmu_num_counters(env)) {
1930         uint64_t ret;
1931         pmevcntr_op_start(env, counter);
1932         ret = env->cp15.c14_pmevcntr[counter];
1933         pmevcntr_op_finish(env, counter);
1934         return ret;
1935     } else {
1936       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1937        * are CONSTRAINED UNPREDICTABLE. */
1938         return 0;
1939     }
1940 }
1941 
1942 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1943                              uint64_t value)
1944 {
1945     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1946     pmevcntr_write(env, ri, value, counter);
1947 }
1948 
1949 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1950 {
1951     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1952     return pmevcntr_read(env, ri, counter);
1953 }
1954 
1955 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1956                              uint64_t value)
1957 {
1958     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1959     assert(counter < pmu_num_counters(env));
1960     env->cp15.c14_pmevcntr[counter] = value;
1961     pmevcntr_write(env, ri, value, counter);
1962 }
1963 
1964 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1965 {
1966     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1967     assert(counter < pmu_num_counters(env));
1968     return env->cp15.c14_pmevcntr[counter];
1969 }
1970 
1971 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1972                              uint64_t value)
1973 {
1974     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1975 }
1976 
1977 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1978 {
1979     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1980 }
1981 
1982 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1983                             uint64_t value)
1984 {
1985     if (arm_feature(env, ARM_FEATURE_V8)) {
1986         env->cp15.c9_pmuserenr = value & 0xf;
1987     } else {
1988         env->cp15.c9_pmuserenr = value & 1;
1989     }
1990 }
1991 
1992 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1993                              uint64_t value)
1994 {
1995     /* We have no event counters so only the C bit can be changed */
1996     value &= pmu_counter_mask(env);
1997     env->cp15.c9_pminten |= value;
1998     pmu_update_irq(env);
1999 }
2000 
2001 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2002                              uint64_t value)
2003 {
2004     value &= pmu_counter_mask(env);
2005     env->cp15.c9_pminten &= ~value;
2006     pmu_update_irq(env);
2007 }
2008 
2009 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2010                        uint64_t value)
2011 {
2012     /* Note that even though the AArch64 view of this register has bits
2013      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2014      * architectural requirements for bits which are RES0 only in some
2015      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2016      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2017      */
2018     raw_write(env, ri, value & ~0x1FULL);
2019 }
2020 
2021 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2022 {
2023     /* Begin with base v8.0 state.  */
2024     uint32_t valid_mask = 0x3fff;
2025     ARMCPU *cpu = env_archcpu(env);
2026 
2027     if (ri->state == ARM_CP_STATE_AA64) {
2028         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2029             !cpu_isar_feature(aa64_aa32_el1, cpu)) {
2030                 value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
2031         }
2032         valid_mask &= ~SCR_NET;
2033 
2034         if (cpu_isar_feature(aa64_lor, cpu)) {
2035             valid_mask |= SCR_TLOR;
2036         }
2037         if (cpu_isar_feature(aa64_pauth, cpu)) {
2038             valid_mask |= SCR_API | SCR_APK;
2039         }
2040         if (cpu_isar_feature(aa64_sel2, cpu)) {
2041             valid_mask |= SCR_EEL2;
2042         }
2043         if (cpu_isar_feature(aa64_mte, cpu)) {
2044             valid_mask |= SCR_ATA;
2045         }
2046     } else {
2047         valid_mask &= ~(SCR_RW | SCR_ST);
2048     }
2049 
2050     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2051         valid_mask &= ~SCR_HCE;
2052 
2053         /* On ARMv7, SMD (or SCD as it is called in v7) is only
2054          * supported if EL2 exists. The bit is UNK/SBZP when
2055          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2056          * when EL2 is unavailable.
2057          * On ARMv8, this bit is always available.
2058          */
2059         if (arm_feature(env, ARM_FEATURE_V7) &&
2060             !arm_feature(env, ARM_FEATURE_V8)) {
2061             valid_mask &= ~SCR_SMD;
2062         }
2063     }
2064 
2065     /* Clear all-context RES0 bits.  */
2066     value &= valid_mask;
2067     raw_write(env, ri, value);
2068 }
2069 
2070 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2071 {
2072     /*
2073      * scr_write will set the RES1 bits on an AArch64-only CPU.
2074      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
2075      */
2076     scr_write(env, ri, 0);
2077 }
2078 
2079 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2080                                        const ARMCPRegInfo *ri,
2081                                        bool isread)
2082 {
2083     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2084         return CP_ACCESS_TRAP_EL2;
2085     }
2086 
2087     return CP_ACCESS_OK;
2088 }
2089 
2090 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2091 {
2092     ARMCPU *cpu = env_archcpu(env);
2093 
2094     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2095      * bank
2096      */
2097     uint32_t index = A32_BANKED_REG_GET(env, csselr,
2098                                         ri->secure & ARM_CP_SECSTATE_S);
2099 
2100     return cpu->ccsidr[index];
2101 }
2102 
2103 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2104                          uint64_t value)
2105 {
2106     raw_write(env, ri, value & 0xf);
2107 }
2108 
2109 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2110 {
2111     CPUState *cs = env_cpu(env);
2112     bool el1 = arm_current_el(env) == 1;
2113     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2114     uint64_t ret = 0;
2115 
2116     if (hcr_el2 & HCR_IMO) {
2117         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2118             ret |= CPSR_I;
2119         }
2120     } else {
2121         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2122             ret |= CPSR_I;
2123         }
2124     }
2125 
2126     if (hcr_el2 & HCR_FMO) {
2127         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2128             ret |= CPSR_F;
2129         }
2130     } else {
2131         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2132             ret |= CPSR_F;
2133         }
2134     }
2135 
2136     /* External aborts are not possible in QEMU so A bit is always clear */
2137     return ret;
2138 }
2139 
2140 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2141                                        bool isread)
2142 {
2143     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2144         return CP_ACCESS_TRAP_EL2;
2145     }
2146 
2147     return CP_ACCESS_OK;
2148 }
2149 
2150 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2151                                        bool isread)
2152 {
2153     if (arm_feature(env, ARM_FEATURE_V8)) {
2154         return access_aa64_tid1(env, ri, isread);
2155     }
2156 
2157     return CP_ACCESS_OK;
2158 }
2159 
2160 static const ARMCPRegInfo v7_cp_reginfo[] = {
2161     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2162     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2163       .access = PL1_W, .type = ARM_CP_NOP },
2164     /* Performance monitors are implementation defined in v7,
2165      * but with an ARM recommended set of registers, which we
2166      * follow.
2167      *
2168      * Performance registers fall into three categories:
2169      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2170      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2171      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2172      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2173      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2174      */
2175     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2176       .access = PL0_RW, .type = ARM_CP_ALIAS,
2177       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2178       .writefn = pmcntenset_write,
2179       .accessfn = pmreg_access,
2180       .raw_writefn = raw_write },
2181     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2182       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2183       .access = PL0_RW, .accessfn = pmreg_access,
2184       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2185       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2186     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2187       .access = PL0_RW,
2188       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2189       .accessfn = pmreg_access,
2190       .writefn = pmcntenclr_write,
2191       .type = ARM_CP_ALIAS },
2192     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2193       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2194       .access = PL0_RW, .accessfn = pmreg_access,
2195       .type = ARM_CP_ALIAS,
2196       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2197       .writefn = pmcntenclr_write },
2198     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2199       .access = PL0_RW, .type = ARM_CP_IO,
2200       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2201       .accessfn = pmreg_access,
2202       .writefn = pmovsr_write,
2203       .raw_writefn = raw_write },
2204     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2205       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2206       .access = PL0_RW, .accessfn = pmreg_access,
2207       .type = ARM_CP_ALIAS | ARM_CP_IO,
2208       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2209       .writefn = pmovsr_write,
2210       .raw_writefn = raw_write },
2211     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2212       .access = PL0_W, .accessfn = pmreg_access_swinc,
2213       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2214       .writefn = pmswinc_write },
2215     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2216       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2217       .access = PL0_W, .accessfn = pmreg_access_swinc,
2218       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2219       .writefn = pmswinc_write },
2220     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2221       .access = PL0_RW, .type = ARM_CP_ALIAS,
2222       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2223       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2224       .raw_writefn = raw_write},
2225     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2226       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2227       .access = PL0_RW, .accessfn = pmreg_access_selr,
2228       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2229       .writefn = pmselr_write, .raw_writefn = raw_write, },
2230     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2231       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2232       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2233       .accessfn = pmreg_access_ccntr },
2234     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2235       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2236       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2237       .type = ARM_CP_IO,
2238       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2239       .readfn = pmccntr_read, .writefn = pmccntr_write,
2240       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2241     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2242       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2243       .access = PL0_RW, .accessfn = pmreg_access,
2244       .type = ARM_CP_ALIAS | ARM_CP_IO,
2245       .resetvalue = 0, },
2246     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2247       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2248       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2249       .access = PL0_RW, .accessfn = pmreg_access,
2250       .type = ARM_CP_IO,
2251       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2252       .resetvalue = 0, },
2253     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2254       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2255       .accessfn = pmreg_access,
2256       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2257     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2258       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2259       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2260       .accessfn = pmreg_access,
2261       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2262     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2263       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2264       .accessfn = pmreg_access_xevcntr,
2265       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2266     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2267       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2268       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2269       .accessfn = pmreg_access_xevcntr,
2270       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2271     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2272       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2273       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2274       .resetvalue = 0,
2275       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2276     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2277       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2278       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2279       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2280       .resetvalue = 0,
2281       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2282     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2283       .access = PL1_RW, .accessfn = access_tpm,
2284       .type = ARM_CP_ALIAS | ARM_CP_IO,
2285       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2286       .resetvalue = 0,
2287       .writefn = pmintenset_write, .raw_writefn = raw_write },
2288     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2289       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2290       .access = PL1_RW, .accessfn = access_tpm,
2291       .type = ARM_CP_IO,
2292       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2293       .writefn = pmintenset_write, .raw_writefn = raw_write,
2294       .resetvalue = 0x0 },
2295     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2296       .access = PL1_RW, .accessfn = access_tpm,
2297       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2298       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2299       .writefn = pmintenclr_write, },
2300     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2301       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2302       .access = PL1_RW, .accessfn = access_tpm,
2303       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2304       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2305       .writefn = pmintenclr_write },
2306     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2307       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2308       .access = PL1_R,
2309       .accessfn = access_aa64_tid2,
2310       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2311     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2312       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2313       .access = PL1_RW,
2314       .accessfn = access_aa64_tid2,
2315       .writefn = csselr_write, .resetvalue = 0,
2316       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2317                              offsetof(CPUARMState, cp15.csselr_ns) } },
2318     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2319      * just RAZ for all cores:
2320      */
2321     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2322       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2323       .access = PL1_R, .type = ARM_CP_CONST,
2324       .accessfn = access_aa64_tid1,
2325       .resetvalue = 0 },
2326     /* Auxiliary fault status registers: these also are IMPDEF, and we
2327      * choose to RAZ/WI for all cores.
2328      */
2329     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2330       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2331       .access = PL1_RW, .accessfn = access_tvm_trvm,
2332       .type = ARM_CP_CONST, .resetvalue = 0 },
2333     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2334       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2335       .access = PL1_RW, .accessfn = access_tvm_trvm,
2336       .type = ARM_CP_CONST, .resetvalue = 0 },
2337     /* MAIR can just read-as-written because we don't implement caches
2338      * and so don't need to care about memory attributes.
2339      */
2340     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2341       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2342       .access = PL1_RW, .accessfn = access_tvm_trvm,
2343       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2344       .resetvalue = 0 },
2345     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2346       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2347       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2348       .resetvalue = 0 },
2349     /* For non-long-descriptor page tables these are PRRR and NMRR;
2350      * regardless they still act as reads-as-written for QEMU.
2351      */
2352      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2353       * allows them to assign the correct fieldoffset based on the endianness
2354       * handled in the field definitions.
2355       */
2356     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2357       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2358       .access = PL1_RW, .accessfn = access_tvm_trvm,
2359       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2360                              offsetof(CPUARMState, cp15.mair0_ns) },
2361       .resetfn = arm_cp_reset_ignore },
2362     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2363       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2364       .access = PL1_RW, .accessfn = access_tvm_trvm,
2365       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2366                              offsetof(CPUARMState, cp15.mair1_ns) },
2367       .resetfn = arm_cp_reset_ignore },
2368     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2369       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2370       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2371     /* 32 bit ITLB invalidates */
2372     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2373       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2374       .writefn = tlbiall_write },
2375     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2376       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2377       .writefn = tlbimva_write },
2378     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2379       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2380       .writefn = tlbiasid_write },
2381     /* 32 bit DTLB invalidates */
2382     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2383       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2384       .writefn = tlbiall_write },
2385     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2386       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2387       .writefn = tlbimva_write },
2388     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2389       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2390       .writefn = tlbiasid_write },
2391     /* 32 bit TLB invalidates */
2392     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2393       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2394       .writefn = tlbiall_write },
2395     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2396       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2397       .writefn = tlbimva_write },
2398     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2399       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2400       .writefn = tlbiasid_write },
2401     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2402       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2403       .writefn = tlbimvaa_write },
2404     REGINFO_SENTINEL
2405 };
2406 
2407 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2408     /* 32 bit TLB invalidates, Inner Shareable */
2409     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2410       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2411       .writefn = tlbiall_is_write },
2412     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2413       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2414       .writefn = tlbimva_is_write },
2415     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2416       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2417       .writefn = tlbiasid_is_write },
2418     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2419       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2420       .writefn = tlbimvaa_is_write },
2421     REGINFO_SENTINEL
2422 };
2423 
2424 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2425     /* PMOVSSET is not implemented in v7 before v7ve */
2426     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2427       .access = PL0_RW, .accessfn = pmreg_access,
2428       .type = ARM_CP_ALIAS | ARM_CP_IO,
2429       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2430       .writefn = pmovsset_write,
2431       .raw_writefn = raw_write },
2432     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2433       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2434       .access = PL0_RW, .accessfn = pmreg_access,
2435       .type = ARM_CP_ALIAS | ARM_CP_IO,
2436       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2437       .writefn = pmovsset_write,
2438       .raw_writefn = raw_write },
2439     REGINFO_SENTINEL
2440 };
2441 
2442 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2443                         uint64_t value)
2444 {
2445     value &= 1;
2446     env->teecr = value;
2447 }
2448 
2449 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2450                                     bool isread)
2451 {
2452     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2453         return CP_ACCESS_TRAP;
2454     }
2455     return CP_ACCESS_OK;
2456 }
2457 
2458 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2459     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2460       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2461       .resetvalue = 0,
2462       .writefn = teecr_write },
2463     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2464       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2465       .accessfn = teehbr_access, .resetvalue = 0 },
2466     REGINFO_SENTINEL
2467 };
2468 
2469 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2470     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2471       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2472       .access = PL0_RW,
2473       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2474     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2475       .access = PL0_RW,
2476       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2477                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2478       .resetfn = arm_cp_reset_ignore },
2479     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2480       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2481       .access = PL0_R|PL1_W,
2482       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2483       .resetvalue = 0},
2484     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2485       .access = PL0_R|PL1_W,
2486       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2487                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2488       .resetfn = arm_cp_reset_ignore },
2489     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2490       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2491       .access = PL1_RW,
2492       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2493     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2494       .access = PL1_RW,
2495       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2496                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2497       .resetvalue = 0 },
2498     REGINFO_SENTINEL
2499 };
2500 
2501 #ifndef CONFIG_USER_ONLY
2502 
2503 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2504                                        bool isread)
2505 {
2506     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2507      * Writable only at the highest implemented exception level.
2508      */
2509     int el = arm_current_el(env);
2510     uint64_t hcr;
2511     uint32_t cntkctl;
2512 
2513     switch (el) {
2514     case 0:
2515         hcr = arm_hcr_el2_eff(env);
2516         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2517             cntkctl = env->cp15.cnthctl_el2;
2518         } else {
2519             cntkctl = env->cp15.c14_cntkctl;
2520         }
2521         if (!extract32(cntkctl, 0, 2)) {
2522             return CP_ACCESS_TRAP;
2523         }
2524         break;
2525     case 1:
2526         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2527             arm_is_secure_below_el3(env)) {
2528             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2529             return CP_ACCESS_TRAP_UNCATEGORIZED;
2530         }
2531         break;
2532     case 2:
2533     case 3:
2534         break;
2535     }
2536 
2537     if (!isread && el < arm_highest_el(env)) {
2538         return CP_ACCESS_TRAP_UNCATEGORIZED;
2539     }
2540 
2541     return CP_ACCESS_OK;
2542 }
2543 
2544 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2545                                         bool isread)
2546 {
2547     unsigned int cur_el = arm_current_el(env);
2548     bool has_el2 = arm_is_el2_enabled(env);
2549     uint64_t hcr = arm_hcr_el2_eff(env);
2550 
2551     switch (cur_el) {
2552     case 0:
2553         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2554         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2555             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2556                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2557         }
2558 
2559         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2560         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2561             return CP_ACCESS_TRAP;
2562         }
2563 
2564         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2565         if (hcr & HCR_E2H) {
2566             if (timeridx == GTIMER_PHYS &&
2567                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2568                 return CP_ACCESS_TRAP_EL2;
2569             }
2570         } else {
2571             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2572             if (has_el2 && timeridx == GTIMER_PHYS &&
2573                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2574                 return CP_ACCESS_TRAP_EL2;
2575             }
2576         }
2577         break;
2578 
2579     case 1:
2580         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2581         if (has_el2 && timeridx == GTIMER_PHYS &&
2582             (hcr & HCR_E2H
2583              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2584              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2585             return CP_ACCESS_TRAP_EL2;
2586         }
2587         break;
2588     }
2589     return CP_ACCESS_OK;
2590 }
2591 
2592 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2593                                       bool isread)
2594 {
2595     unsigned int cur_el = arm_current_el(env);
2596     bool has_el2 = arm_is_el2_enabled(env);
2597     uint64_t hcr = arm_hcr_el2_eff(env);
2598 
2599     switch (cur_el) {
2600     case 0:
2601         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2602             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2603             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2604                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2605         }
2606 
2607         /*
2608          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2609          * EL0 if EL0[PV]TEN is zero.
2610          */
2611         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2612             return CP_ACCESS_TRAP;
2613         }
2614         /* fall through */
2615 
2616     case 1:
2617         if (has_el2 && timeridx == GTIMER_PHYS) {
2618             if (hcr & HCR_E2H) {
2619                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2620                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2621                     return CP_ACCESS_TRAP_EL2;
2622                 }
2623             } else {
2624                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2625                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2626                     return CP_ACCESS_TRAP_EL2;
2627                 }
2628             }
2629         }
2630         break;
2631     }
2632     return CP_ACCESS_OK;
2633 }
2634 
2635 static CPAccessResult gt_pct_access(CPUARMState *env,
2636                                     const ARMCPRegInfo *ri,
2637                                     bool isread)
2638 {
2639     return gt_counter_access(env, GTIMER_PHYS, isread);
2640 }
2641 
2642 static CPAccessResult gt_vct_access(CPUARMState *env,
2643                                     const ARMCPRegInfo *ri,
2644                                     bool isread)
2645 {
2646     return gt_counter_access(env, GTIMER_VIRT, isread);
2647 }
2648 
2649 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2650                                        bool isread)
2651 {
2652     return gt_timer_access(env, GTIMER_PHYS, isread);
2653 }
2654 
2655 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2656                                        bool isread)
2657 {
2658     return gt_timer_access(env, GTIMER_VIRT, isread);
2659 }
2660 
2661 static CPAccessResult gt_stimer_access(CPUARMState *env,
2662                                        const ARMCPRegInfo *ri,
2663                                        bool isread)
2664 {
2665     /* The AArch64 register view of the secure physical timer is
2666      * always accessible from EL3, and configurably accessible from
2667      * Secure EL1.
2668      */
2669     switch (arm_current_el(env)) {
2670     case 1:
2671         if (!arm_is_secure(env)) {
2672             return CP_ACCESS_TRAP;
2673         }
2674         if (!(env->cp15.scr_el3 & SCR_ST)) {
2675             return CP_ACCESS_TRAP_EL3;
2676         }
2677         return CP_ACCESS_OK;
2678     case 0:
2679     case 2:
2680         return CP_ACCESS_TRAP;
2681     case 3:
2682         return CP_ACCESS_OK;
2683     default:
2684         g_assert_not_reached();
2685     }
2686 }
2687 
2688 static uint64_t gt_get_countervalue(CPUARMState *env)
2689 {
2690     ARMCPU *cpu = env_archcpu(env);
2691 
2692     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2693 }
2694 
2695 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2696 {
2697     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2698 
2699     if (gt->ctl & 1) {
2700         /* Timer enabled: calculate and set current ISTATUS, irq, and
2701          * reset timer to when ISTATUS next has to change
2702          */
2703         uint64_t offset = timeridx == GTIMER_VIRT ?
2704                                       cpu->env.cp15.cntvoff_el2 : 0;
2705         uint64_t count = gt_get_countervalue(&cpu->env);
2706         /* Note that this must be unsigned 64 bit arithmetic: */
2707         int istatus = count - offset >= gt->cval;
2708         uint64_t nexttick;
2709         int irqstate;
2710 
2711         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2712 
2713         irqstate = (istatus && !(gt->ctl & 2));
2714         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2715 
2716         if (istatus) {
2717             /* Next transition is when count rolls back over to zero */
2718             nexttick = UINT64_MAX;
2719         } else {
2720             /* Next transition is when we hit cval */
2721             nexttick = gt->cval + offset;
2722         }
2723         /* Note that the desired next expiry time might be beyond the
2724          * signed-64-bit range of a QEMUTimer -- in this case we just
2725          * set the timer for as far in the future as possible. When the
2726          * timer expires we will reset the timer for any remaining period.
2727          */
2728         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2729             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2730         } else {
2731             timer_mod(cpu->gt_timer[timeridx], nexttick);
2732         }
2733         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2734     } else {
2735         /* Timer disabled: ISTATUS and timer output always clear */
2736         gt->ctl &= ~4;
2737         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2738         timer_del(cpu->gt_timer[timeridx]);
2739         trace_arm_gt_recalc_disabled(timeridx);
2740     }
2741 }
2742 
2743 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2744                            int timeridx)
2745 {
2746     ARMCPU *cpu = env_archcpu(env);
2747 
2748     timer_del(cpu->gt_timer[timeridx]);
2749 }
2750 
2751 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2752 {
2753     return gt_get_countervalue(env);
2754 }
2755 
2756 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2757 {
2758     uint64_t hcr;
2759 
2760     switch (arm_current_el(env)) {
2761     case 2:
2762         hcr = arm_hcr_el2_eff(env);
2763         if (hcr & HCR_E2H) {
2764             return 0;
2765         }
2766         break;
2767     case 0:
2768         hcr = arm_hcr_el2_eff(env);
2769         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2770             return 0;
2771         }
2772         break;
2773     }
2774 
2775     return env->cp15.cntvoff_el2;
2776 }
2777 
2778 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2779 {
2780     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2781 }
2782 
2783 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2784                           int timeridx,
2785                           uint64_t value)
2786 {
2787     trace_arm_gt_cval_write(timeridx, value);
2788     env->cp15.c14_timer[timeridx].cval = value;
2789     gt_recalc_timer(env_archcpu(env), timeridx);
2790 }
2791 
2792 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2793                              int timeridx)
2794 {
2795     uint64_t offset = 0;
2796 
2797     switch (timeridx) {
2798     case GTIMER_VIRT:
2799     case GTIMER_HYPVIRT:
2800         offset = gt_virt_cnt_offset(env);
2801         break;
2802     }
2803 
2804     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2805                       (gt_get_countervalue(env) - offset));
2806 }
2807 
2808 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2809                           int timeridx,
2810                           uint64_t value)
2811 {
2812     uint64_t offset = 0;
2813 
2814     switch (timeridx) {
2815     case GTIMER_VIRT:
2816     case GTIMER_HYPVIRT:
2817         offset = gt_virt_cnt_offset(env);
2818         break;
2819     }
2820 
2821     trace_arm_gt_tval_write(timeridx, value);
2822     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2823                                          sextract64(value, 0, 32);
2824     gt_recalc_timer(env_archcpu(env), timeridx);
2825 }
2826 
2827 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2828                          int timeridx,
2829                          uint64_t value)
2830 {
2831     ARMCPU *cpu = env_archcpu(env);
2832     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2833 
2834     trace_arm_gt_ctl_write(timeridx, value);
2835     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2836     if ((oldval ^ value) & 1) {
2837         /* Enable toggled */
2838         gt_recalc_timer(cpu, timeridx);
2839     } else if ((oldval ^ value) & 2) {
2840         /* IMASK toggled: don't need to recalculate,
2841          * just set the interrupt line based on ISTATUS
2842          */
2843         int irqstate = (oldval & 4) && !(value & 2);
2844 
2845         trace_arm_gt_imask_toggle(timeridx, irqstate);
2846         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2847     }
2848 }
2849 
2850 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2851 {
2852     gt_timer_reset(env, ri, GTIMER_PHYS);
2853 }
2854 
2855 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856                                uint64_t value)
2857 {
2858     gt_cval_write(env, ri, GTIMER_PHYS, value);
2859 }
2860 
2861 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2862 {
2863     return gt_tval_read(env, ri, GTIMER_PHYS);
2864 }
2865 
2866 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2867                                uint64_t value)
2868 {
2869     gt_tval_write(env, ri, GTIMER_PHYS, value);
2870 }
2871 
2872 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2873                               uint64_t value)
2874 {
2875     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2876 }
2877 
2878 static int gt_phys_redir_timeridx(CPUARMState *env)
2879 {
2880     switch (arm_mmu_idx(env)) {
2881     case ARMMMUIdx_E20_0:
2882     case ARMMMUIdx_E20_2:
2883     case ARMMMUIdx_E20_2_PAN:
2884     case ARMMMUIdx_SE20_0:
2885     case ARMMMUIdx_SE20_2:
2886     case ARMMMUIdx_SE20_2_PAN:
2887         return GTIMER_HYP;
2888     default:
2889         return GTIMER_PHYS;
2890     }
2891 }
2892 
2893 static int gt_virt_redir_timeridx(CPUARMState *env)
2894 {
2895     switch (arm_mmu_idx(env)) {
2896     case ARMMMUIdx_E20_0:
2897     case ARMMMUIdx_E20_2:
2898     case ARMMMUIdx_E20_2_PAN:
2899     case ARMMMUIdx_SE20_0:
2900     case ARMMMUIdx_SE20_2:
2901     case ARMMMUIdx_SE20_2_PAN:
2902         return GTIMER_HYPVIRT;
2903     default:
2904         return GTIMER_VIRT;
2905     }
2906 }
2907 
2908 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2909                                         const ARMCPRegInfo *ri)
2910 {
2911     int timeridx = gt_phys_redir_timeridx(env);
2912     return env->cp15.c14_timer[timeridx].cval;
2913 }
2914 
2915 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916                                      uint64_t value)
2917 {
2918     int timeridx = gt_phys_redir_timeridx(env);
2919     gt_cval_write(env, ri, timeridx, value);
2920 }
2921 
2922 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2923                                         const ARMCPRegInfo *ri)
2924 {
2925     int timeridx = gt_phys_redir_timeridx(env);
2926     return gt_tval_read(env, ri, timeridx);
2927 }
2928 
2929 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2930                                      uint64_t value)
2931 {
2932     int timeridx = gt_phys_redir_timeridx(env);
2933     gt_tval_write(env, ri, timeridx, value);
2934 }
2935 
2936 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2937                                        const ARMCPRegInfo *ri)
2938 {
2939     int timeridx = gt_phys_redir_timeridx(env);
2940     return env->cp15.c14_timer[timeridx].ctl;
2941 }
2942 
2943 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944                                     uint64_t value)
2945 {
2946     int timeridx = gt_phys_redir_timeridx(env);
2947     gt_ctl_write(env, ri, timeridx, value);
2948 }
2949 
2950 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2951 {
2952     gt_timer_reset(env, ri, GTIMER_VIRT);
2953 }
2954 
2955 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2956                                uint64_t value)
2957 {
2958     gt_cval_write(env, ri, GTIMER_VIRT, value);
2959 }
2960 
2961 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2962 {
2963     return gt_tval_read(env, ri, GTIMER_VIRT);
2964 }
2965 
2966 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2967                                uint64_t value)
2968 {
2969     gt_tval_write(env, ri, GTIMER_VIRT, value);
2970 }
2971 
2972 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2973                               uint64_t value)
2974 {
2975     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2976 }
2977 
2978 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2979                               uint64_t value)
2980 {
2981     ARMCPU *cpu = env_archcpu(env);
2982 
2983     trace_arm_gt_cntvoff_write(value);
2984     raw_write(env, ri, value);
2985     gt_recalc_timer(cpu, GTIMER_VIRT);
2986 }
2987 
2988 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2989                                         const ARMCPRegInfo *ri)
2990 {
2991     int timeridx = gt_virt_redir_timeridx(env);
2992     return env->cp15.c14_timer[timeridx].cval;
2993 }
2994 
2995 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2996                                      uint64_t value)
2997 {
2998     int timeridx = gt_virt_redir_timeridx(env);
2999     gt_cval_write(env, ri, timeridx, value);
3000 }
3001 
3002 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3003                                         const ARMCPRegInfo *ri)
3004 {
3005     int timeridx = gt_virt_redir_timeridx(env);
3006     return gt_tval_read(env, ri, timeridx);
3007 }
3008 
3009 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010                                      uint64_t value)
3011 {
3012     int timeridx = gt_virt_redir_timeridx(env);
3013     gt_tval_write(env, ri, timeridx, value);
3014 }
3015 
3016 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3017                                        const ARMCPRegInfo *ri)
3018 {
3019     int timeridx = gt_virt_redir_timeridx(env);
3020     return env->cp15.c14_timer[timeridx].ctl;
3021 }
3022 
3023 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024                                     uint64_t value)
3025 {
3026     int timeridx = gt_virt_redir_timeridx(env);
3027     gt_ctl_write(env, ri, timeridx, value);
3028 }
3029 
3030 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3031 {
3032     gt_timer_reset(env, ri, GTIMER_HYP);
3033 }
3034 
3035 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3036                               uint64_t value)
3037 {
3038     gt_cval_write(env, ri, GTIMER_HYP, value);
3039 }
3040 
3041 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3042 {
3043     return gt_tval_read(env, ri, GTIMER_HYP);
3044 }
3045 
3046 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047                               uint64_t value)
3048 {
3049     gt_tval_write(env, ri, GTIMER_HYP, value);
3050 }
3051 
3052 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3053                               uint64_t value)
3054 {
3055     gt_ctl_write(env, ri, GTIMER_HYP, value);
3056 }
3057 
3058 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3059 {
3060     gt_timer_reset(env, ri, GTIMER_SEC);
3061 }
3062 
3063 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064                               uint64_t value)
3065 {
3066     gt_cval_write(env, ri, GTIMER_SEC, value);
3067 }
3068 
3069 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3070 {
3071     return gt_tval_read(env, ri, GTIMER_SEC);
3072 }
3073 
3074 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3075                               uint64_t value)
3076 {
3077     gt_tval_write(env, ri, GTIMER_SEC, value);
3078 }
3079 
3080 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3081                               uint64_t value)
3082 {
3083     gt_ctl_write(env, ri, GTIMER_SEC, value);
3084 }
3085 
3086 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3087 {
3088     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3089 }
3090 
3091 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3092                              uint64_t value)
3093 {
3094     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3095 }
3096 
3097 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3098 {
3099     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3100 }
3101 
3102 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3103                              uint64_t value)
3104 {
3105     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3106 }
3107 
3108 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109                             uint64_t value)
3110 {
3111     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3112 }
3113 
3114 void arm_gt_ptimer_cb(void *opaque)
3115 {
3116     ARMCPU *cpu = opaque;
3117 
3118     gt_recalc_timer(cpu, GTIMER_PHYS);
3119 }
3120 
3121 void arm_gt_vtimer_cb(void *opaque)
3122 {
3123     ARMCPU *cpu = opaque;
3124 
3125     gt_recalc_timer(cpu, GTIMER_VIRT);
3126 }
3127 
3128 void arm_gt_htimer_cb(void *opaque)
3129 {
3130     ARMCPU *cpu = opaque;
3131 
3132     gt_recalc_timer(cpu, GTIMER_HYP);
3133 }
3134 
3135 void arm_gt_stimer_cb(void *opaque)
3136 {
3137     ARMCPU *cpu = opaque;
3138 
3139     gt_recalc_timer(cpu, GTIMER_SEC);
3140 }
3141 
3142 void arm_gt_hvtimer_cb(void *opaque)
3143 {
3144     ARMCPU *cpu = opaque;
3145 
3146     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3147 }
3148 
3149 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3150 {
3151     ARMCPU *cpu = env_archcpu(env);
3152 
3153     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3154 }
3155 
3156 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3157     /* Note that CNTFRQ is purely reads-as-written for the benefit
3158      * of software; writing it doesn't actually change the timer frequency.
3159      * Our reset value matches the fixed frequency we implement the timer at.
3160      */
3161     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3162       .type = ARM_CP_ALIAS,
3163       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3164       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3165     },
3166     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3167       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3168       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3169       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3170       .resetfn = arm_gt_cntfrq_reset,
3171     },
3172     /* overall control: mostly access permissions */
3173     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3174       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3175       .access = PL1_RW,
3176       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3177       .resetvalue = 0,
3178     },
3179     /* per-timer control */
3180     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3181       .secure = ARM_CP_SECSTATE_NS,
3182       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3183       .accessfn = gt_ptimer_access,
3184       .fieldoffset = offsetoflow32(CPUARMState,
3185                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3186       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3187       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3188     },
3189     { .name = "CNTP_CTL_S",
3190       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3191       .secure = ARM_CP_SECSTATE_S,
3192       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3193       .accessfn = gt_ptimer_access,
3194       .fieldoffset = offsetoflow32(CPUARMState,
3195                                    cp15.c14_timer[GTIMER_SEC].ctl),
3196       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3197     },
3198     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3199       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3200       .type = ARM_CP_IO, .access = PL0_RW,
3201       .accessfn = gt_ptimer_access,
3202       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3203       .resetvalue = 0,
3204       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3205       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3206     },
3207     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3208       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3209       .accessfn = gt_vtimer_access,
3210       .fieldoffset = offsetoflow32(CPUARMState,
3211                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3212       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3213       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3214     },
3215     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3216       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3217       .type = ARM_CP_IO, .access = PL0_RW,
3218       .accessfn = gt_vtimer_access,
3219       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3220       .resetvalue = 0,
3221       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3222       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3223     },
3224     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3225     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3226       .secure = ARM_CP_SECSTATE_NS,
3227       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3228       .accessfn = gt_ptimer_access,
3229       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3230     },
3231     { .name = "CNTP_TVAL_S",
3232       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3233       .secure = ARM_CP_SECSTATE_S,
3234       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3235       .accessfn = gt_ptimer_access,
3236       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3237     },
3238     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3239       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3240       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3241       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3242       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3243     },
3244     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3245       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3246       .accessfn = gt_vtimer_access,
3247       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3248     },
3249     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3250       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3251       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3252       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3253       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3254     },
3255     /* The counter itself */
3256     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3257       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3258       .accessfn = gt_pct_access,
3259       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3260     },
3261     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3262       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3263       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3264       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3265     },
3266     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3267       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3268       .accessfn = gt_vct_access,
3269       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3270     },
3271     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3272       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3273       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3274       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3275     },
3276     /* Comparison value, indicating when the timer goes off */
3277     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3278       .secure = ARM_CP_SECSTATE_NS,
3279       .access = PL0_RW,
3280       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3281       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3282       .accessfn = gt_ptimer_access,
3283       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3284       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3285     },
3286     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3287       .secure = ARM_CP_SECSTATE_S,
3288       .access = PL0_RW,
3289       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3290       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3291       .accessfn = gt_ptimer_access,
3292       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3293     },
3294     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3295       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3296       .access = PL0_RW,
3297       .type = ARM_CP_IO,
3298       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3299       .resetvalue = 0, .accessfn = gt_ptimer_access,
3300       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3301       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3302     },
3303     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3304       .access = PL0_RW,
3305       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3306       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3307       .accessfn = gt_vtimer_access,
3308       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3309       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3310     },
3311     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3312       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3313       .access = PL0_RW,
3314       .type = ARM_CP_IO,
3315       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3316       .resetvalue = 0, .accessfn = gt_vtimer_access,
3317       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3318       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3319     },
3320     /* Secure timer -- this is actually restricted to only EL3
3321      * and configurably Secure-EL1 via the accessfn.
3322      */
3323     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3324       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3325       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3326       .accessfn = gt_stimer_access,
3327       .readfn = gt_sec_tval_read,
3328       .writefn = gt_sec_tval_write,
3329       .resetfn = gt_sec_timer_reset,
3330     },
3331     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3332       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3333       .type = ARM_CP_IO, .access = PL1_RW,
3334       .accessfn = gt_stimer_access,
3335       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3336       .resetvalue = 0,
3337       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3338     },
3339     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3340       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3341       .type = ARM_CP_IO, .access = PL1_RW,
3342       .accessfn = gt_stimer_access,
3343       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3344       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3345     },
3346     REGINFO_SENTINEL
3347 };
3348 
3349 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3350                                  bool isread)
3351 {
3352     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3353         return CP_ACCESS_TRAP;
3354     }
3355     return CP_ACCESS_OK;
3356 }
3357 
3358 #else
3359 
3360 /* In user-mode most of the generic timer registers are inaccessible
3361  * however modern kernels (4.12+) allow access to cntvct_el0
3362  */
3363 
3364 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3365 {
3366     ARMCPU *cpu = env_archcpu(env);
3367 
3368     /* Currently we have no support for QEMUTimer in linux-user so we
3369      * can't call gt_get_countervalue(env), instead we directly
3370      * call the lower level functions.
3371      */
3372     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3373 }
3374 
3375 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3376     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3377       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3378       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3379       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3380       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3381     },
3382     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3383       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3384       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3385       .readfn = gt_virt_cnt_read,
3386     },
3387     REGINFO_SENTINEL
3388 };
3389 
3390 #endif
3391 
3392 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3393 {
3394     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3395         raw_write(env, ri, value);
3396     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3397         raw_write(env, ri, value & 0xfffff6ff);
3398     } else {
3399         raw_write(env, ri, value & 0xfffff1ff);
3400     }
3401 }
3402 
3403 #ifndef CONFIG_USER_ONLY
3404 /* get_phys_addr() isn't present for user-mode-only targets */
3405 
3406 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3407                                  bool isread)
3408 {
3409     if (ri->opc2 & 4) {
3410         /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3411          * Secure EL1 (which can only happen if EL3 is AArch64).
3412          * They are simply UNDEF if executed from NS EL1.
3413          * They function normally from EL2 or EL3.
3414          */
3415         if (arm_current_el(env) == 1) {
3416             if (arm_is_secure_below_el3(env)) {
3417                 if (env->cp15.scr_el3 & SCR_EEL2) {
3418                     return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3419                 }
3420                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3421             }
3422             return CP_ACCESS_TRAP_UNCATEGORIZED;
3423         }
3424     }
3425     return CP_ACCESS_OK;
3426 }
3427 
3428 #ifdef CONFIG_TCG
3429 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3430                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3431 {
3432     hwaddr phys_addr;
3433     target_ulong page_size;
3434     int prot;
3435     bool ret;
3436     uint64_t par64;
3437     bool format64 = false;
3438     MemTxAttrs attrs = {};
3439     ARMMMUFaultInfo fi = {};
3440     ARMCacheAttrs cacheattrs = {};
3441 
3442     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3443                         &prot, &page_size, &fi, &cacheattrs);
3444 
3445     if (ret) {
3446         /*
3447          * Some kinds of translation fault must cause exceptions rather
3448          * than being reported in the PAR.
3449          */
3450         int current_el = arm_current_el(env);
3451         int target_el;
3452         uint32_t syn, fsr, fsc;
3453         bool take_exc = false;
3454 
3455         if (fi.s1ptw && current_el == 1
3456             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3457             /*
3458              * Synchronous stage 2 fault on an access made as part of the
3459              * translation table walk for AT S1E0* or AT S1E1* insn
3460              * executed from NS EL1. If this is a synchronous external abort
3461              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3462              * to EL3. Otherwise the fault is taken as an exception to EL2,
3463              * and HPFAR_EL2 holds the faulting IPA.
3464              */
3465             if (fi.type == ARMFault_SyncExternalOnWalk &&
3466                 (env->cp15.scr_el3 & SCR_EA)) {
3467                 target_el = 3;
3468             } else {
3469                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3470                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3471                     env->cp15.hpfar_el2 |= HPFAR_NS;
3472                 }
3473                 target_el = 2;
3474             }
3475             take_exc = true;
3476         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3477             /*
3478              * Synchronous external aborts during a translation table walk
3479              * are taken as Data Abort exceptions.
3480              */
3481             if (fi.stage2) {
3482                 if (current_el == 3) {
3483                     target_el = 3;
3484                 } else {
3485                     target_el = 2;
3486                 }
3487             } else {
3488                 target_el = exception_target_el(env);
3489             }
3490             take_exc = true;
3491         }
3492 
3493         if (take_exc) {
3494             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3495             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3496                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3497                 fsr = arm_fi_to_lfsc(&fi);
3498                 fsc = extract32(fsr, 0, 6);
3499             } else {
3500                 fsr = arm_fi_to_sfsc(&fi);
3501                 fsc = 0x3f;
3502             }
3503             /*
3504              * Report exception with ESR indicating a fault due to a
3505              * translation table walk for a cache maintenance instruction.
3506              */
3507             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3508                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3509             env->exception.vaddress = value;
3510             env->exception.fsr = fsr;
3511             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3512         }
3513     }
3514 
3515     if (is_a64(env)) {
3516         format64 = true;
3517     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3518         /*
3519          * ATS1Cxx:
3520          * * TTBCR.EAE determines whether the result is returned using the
3521          *   32-bit or the 64-bit PAR format
3522          * * Instructions executed in Hyp mode always use the 64bit format
3523          *
3524          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3525          * * The Non-secure TTBCR.EAE bit is set to 1
3526          * * The implementation includes EL2, and the value of HCR.VM is 1
3527          *
3528          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3529          *
3530          * ATS1Hx always uses the 64bit format.
3531          */
3532         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3533 
3534         if (arm_feature(env, ARM_FEATURE_EL2)) {
3535             if (mmu_idx == ARMMMUIdx_E10_0 ||
3536                 mmu_idx == ARMMMUIdx_E10_1 ||
3537                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3538                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3539             } else {
3540                 format64 |= arm_current_el(env) == 2;
3541             }
3542         }
3543     }
3544 
3545     if (format64) {
3546         /* Create a 64-bit PAR */
3547         par64 = (1 << 11); /* LPAE bit always set */
3548         if (!ret) {
3549             par64 |= phys_addr & ~0xfffULL;
3550             if (!attrs.secure) {
3551                 par64 |= (1 << 9); /* NS */
3552             }
3553             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3554             par64 |= cacheattrs.shareability << 7; /* SH */
3555         } else {
3556             uint32_t fsr = arm_fi_to_lfsc(&fi);
3557 
3558             par64 |= 1; /* F */
3559             par64 |= (fsr & 0x3f) << 1; /* FS */
3560             if (fi.stage2) {
3561                 par64 |= (1 << 9); /* S */
3562             }
3563             if (fi.s1ptw) {
3564                 par64 |= (1 << 8); /* PTW */
3565             }
3566         }
3567     } else {
3568         /* fsr is a DFSR/IFSR value for the short descriptor
3569          * translation table format (with WnR always clear).
3570          * Convert it to a 32-bit PAR.
3571          */
3572         if (!ret) {
3573             /* We do not set any attribute bits in the PAR */
3574             if (page_size == (1 << 24)
3575                 && arm_feature(env, ARM_FEATURE_V7)) {
3576                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3577             } else {
3578                 par64 = phys_addr & 0xfffff000;
3579             }
3580             if (!attrs.secure) {
3581                 par64 |= (1 << 9); /* NS */
3582             }
3583         } else {
3584             uint32_t fsr = arm_fi_to_sfsc(&fi);
3585 
3586             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3587                     ((fsr & 0xf) << 1) | 1;
3588         }
3589     }
3590     return par64;
3591 }
3592 #endif /* CONFIG_TCG */
3593 
3594 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3595 {
3596 #ifdef CONFIG_TCG
3597     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3598     uint64_t par64;
3599     ARMMMUIdx mmu_idx;
3600     int el = arm_current_el(env);
3601     bool secure = arm_is_secure_below_el3(env);
3602 
3603     switch (ri->opc2 & 6) {
3604     case 0:
3605         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3606         switch (el) {
3607         case 3:
3608             mmu_idx = ARMMMUIdx_SE3;
3609             break;
3610         case 2:
3611             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3612             /* fall through */
3613         case 1:
3614             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3615                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3616                            : ARMMMUIdx_Stage1_E1_PAN);
3617             } else {
3618                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3619             }
3620             break;
3621         default:
3622             g_assert_not_reached();
3623         }
3624         break;
3625     case 2:
3626         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3627         switch (el) {
3628         case 3:
3629             mmu_idx = ARMMMUIdx_SE10_0;
3630             break;
3631         case 2:
3632             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3633             mmu_idx = ARMMMUIdx_Stage1_E0;
3634             break;
3635         case 1:
3636             mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3637             break;
3638         default:
3639             g_assert_not_reached();
3640         }
3641         break;
3642     case 4:
3643         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3644         mmu_idx = ARMMMUIdx_E10_1;
3645         break;
3646     case 6:
3647         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3648         mmu_idx = ARMMMUIdx_E10_0;
3649         break;
3650     default:
3651         g_assert_not_reached();
3652     }
3653 
3654     par64 = do_ats_write(env, value, access_type, mmu_idx);
3655 
3656     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3657 #else
3658     /* Handled by hardware accelerator. */
3659     g_assert_not_reached();
3660 #endif /* CONFIG_TCG */
3661 }
3662 
3663 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3664                         uint64_t value)
3665 {
3666 #ifdef CONFIG_TCG
3667     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3668     uint64_t par64;
3669 
3670     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3671 
3672     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3673 #else
3674     /* Handled by hardware accelerator. */
3675     g_assert_not_reached();
3676 #endif /* CONFIG_TCG */
3677 }
3678 
3679 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3680                                      bool isread)
3681 {
3682     if (arm_current_el(env) == 3 &&
3683         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3684         return CP_ACCESS_TRAP;
3685     }
3686     return CP_ACCESS_OK;
3687 }
3688 
3689 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3690                         uint64_t value)
3691 {
3692 #ifdef CONFIG_TCG
3693     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3694     ARMMMUIdx mmu_idx;
3695     int secure = arm_is_secure_below_el3(env);
3696 
3697     switch (ri->opc2 & 6) {
3698     case 0:
3699         switch (ri->opc1) {
3700         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3701             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3702                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3703                            : ARMMMUIdx_Stage1_E1_PAN);
3704             } else {
3705                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3706             }
3707             break;
3708         case 4: /* AT S1E2R, AT S1E2W */
3709             mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3710             break;
3711         case 6: /* AT S1E3R, AT S1E3W */
3712             mmu_idx = ARMMMUIdx_SE3;
3713             break;
3714         default:
3715             g_assert_not_reached();
3716         }
3717         break;
3718     case 2: /* AT S1E0R, AT S1E0W */
3719         mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3720         break;
3721     case 4: /* AT S12E1R, AT S12E1W */
3722         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3723         break;
3724     case 6: /* AT S12E0R, AT S12E0W */
3725         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3726         break;
3727     default:
3728         g_assert_not_reached();
3729     }
3730 
3731     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3732 #else
3733     /* Handled by hardware accelerator. */
3734     g_assert_not_reached();
3735 #endif /* CONFIG_TCG */
3736 }
3737 #endif
3738 
3739 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3740     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3741       .access = PL1_RW, .resetvalue = 0,
3742       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3743                              offsetoflow32(CPUARMState, cp15.par_ns) },
3744       .writefn = par_write },
3745 #ifndef CONFIG_USER_ONLY
3746     /* This underdecoding is safe because the reginfo is NO_RAW. */
3747     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3748       .access = PL1_W, .accessfn = ats_access,
3749       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3750 #endif
3751     REGINFO_SENTINEL
3752 };
3753 
3754 /* Return basic MPU access permission bits.  */
3755 static uint32_t simple_mpu_ap_bits(uint32_t val)
3756 {
3757     uint32_t ret;
3758     uint32_t mask;
3759     int i;
3760     ret = 0;
3761     mask = 3;
3762     for (i = 0; i < 16; i += 2) {
3763         ret |= (val >> i) & mask;
3764         mask <<= 2;
3765     }
3766     return ret;
3767 }
3768 
3769 /* Pad basic MPU access permission bits to extended format.  */
3770 static uint32_t extended_mpu_ap_bits(uint32_t val)
3771 {
3772     uint32_t ret;
3773     uint32_t mask;
3774     int i;
3775     ret = 0;
3776     mask = 3;
3777     for (i = 0; i < 16; i += 2) {
3778         ret |= (val & mask) << i;
3779         mask <<= 2;
3780     }
3781     return ret;
3782 }
3783 
3784 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785                                  uint64_t value)
3786 {
3787     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3788 }
3789 
3790 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3791 {
3792     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3793 }
3794 
3795 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3796                                  uint64_t value)
3797 {
3798     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3799 }
3800 
3801 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3802 {
3803     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3804 }
3805 
3806 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3807 {
3808     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3809 
3810     if (!u32p) {
3811         return 0;
3812     }
3813 
3814     u32p += env->pmsav7.rnr[M_REG_NS];
3815     return *u32p;
3816 }
3817 
3818 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3819                          uint64_t value)
3820 {
3821     ARMCPU *cpu = env_archcpu(env);
3822     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3823 
3824     if (!u32p) {
3825         return;
3826     }
3827 
3828     u32p += env->pmsav7.rnr[M_REG_NS];
3829     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3830     *u32p = value;
3831 }
3832 
3833 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3834                               uint64_t value)
3835 {
3836     ARMCPU *cpu = env_archcpu(env);
3837     uint32_t nrgs = cpu->pmsav7_dregion;
3838 
3839     if (value >= nrgs) {
3840         qemu_log_mask(LOG_GUEST_ERROR,
3841                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3842                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3843         return;
3844     }
3845 
3846     raw_write(env, ri, value);
3847 }
3848 
3849 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3850     /* Reset for all these registers is handled in arm_cpu_reset(),
3851      * because the PMSAv7 is also used by M-profile CPUs, which do
3852      * not register cpregs but still need the state to be reset.
3853      */
3854     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3855       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3856       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3857       .readfn = pmsav7_read, .writefn = pmsav7_write,
3858       .resetfn = arm_cp_reset_ignore },
3859     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3860       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3861       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3862       .readfn = pmsav7_read, .writefn = pmsav7_write,
3863       .resetfn = arm_cp_reset_ignore },
3864     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3865       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3866       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3867       .readfn = pmsav7_read, .writefn = pmsav7_write,
3868       .resetfn = arm_cp_reset_ignore },
3869     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3870       .access = PL1_RW,
3871       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3872       .writefn = pmsav7_rgnr_write,
3873       .resetfn = arm_cp_reset_ignore },
3874     REGINFO_SENTINEL
3875 };
3876 
3877 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3878     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3879       .access = PL1_RW, .type = ARM_CP_ALIAS,
3880       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3881       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3882     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3883       .access = PL1_RW, .type = ARM_CP_ALIAS,
3884       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3885       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3886     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3887       .access = PL1_RW,
3888       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3889       .resetvalue = 0, },
3890     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3891       .access = PL1_RW,
3892       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3893       .resetvalue = 0, },
3894     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3895       .access = PL1_RW,
3896       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3897     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3898       .access = PL1_RW,
3899       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3900     /* Protection region base and size registers */
3901     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3902       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3903       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3904     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3905       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3906       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3907     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3908       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3909       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3910     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3911       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3912       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3913     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3914       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3915       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3916     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3917       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3918       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3919     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3920       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3921       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3922     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3923       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3924       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3925     REGINFO_SENTINEL
3926 };
3927 
3928 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3929                                  uint64_t value)
3930 {
3931     TCR *tcr = raw_ptr(env, ri);
3932     int maskshift = extract32(value, 0, 3);
3933 
3934     if (!arm_feature(env, ARM_FEATURE_V8)) {
3935         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3936             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3937              * using Long-desciptor translation table format */
3938             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3939         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3940             /* In an implementation that includes the Security Extensions
3941              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3942              * Short-descriptor translation table format.
3943              */
3944             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3945         } else {
3946             value &= TTBCR_N;
3947         }
3948     }
3949 
3950     /* Update the masks corresponding to the TCR bank being written
3951      * Note that we always calculate mask and base_mask, but
3952      * they are only used for short-descriptor tables (ie if EAE is 0);
3953      * for long-descriptor tables the TCR fields are used differently
3954      * and the mask and base_mask values are meaningless.
3955      */
3956     tcr->raw_tcr = value;
3957     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3958     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3959 }
3960 
3961 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3962                              uint64_t value)
3963 {
3964     ARMCPU *cpu = env_archcpu(env);
3965     TCR *tcr = raw_ptr(env, ri);
3966 
3967     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3968         /* With LPAE the TTBCR could result in a change of ASID
3969          * via the TTBCR.A1 bit, so do a TLB flush.
3970          */
3971         tlb_flush(CPU(cpu));
3972     }
3973     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3974     value = deposit64(tcr->raw_tcr, 0, 32, value);
3975     vmsa_ttbcr_raw_write(env, ri, value);
3976 }
3977 
3978 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3979 {
3980     TCR *tcr = raw_ptr(env, ri);
3981 
3982     /* Reset both the TCR as well as the masks corresponding to the bank of
3983      * the TCR being reset.
3984      */
3985     tcr->raw_tcr = 0;
3986     tcr->mask = 0;
3987     tcr->base_mask = 0xffffc000u;
3988 }
3989 
3990 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3991                                uint64_t value)
3992 {
3993     ARMCPU *cpu = env_archcpu(env);
3994     TCR *tcr = raw_ptr(env, ri);
3995 
3996     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3997     tlb_flush(CPU(cpu));
3998     tcr->raw_tcr = value;
3999 }
4000 
4001 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4002                             uint64_t value)
4003 {
4004     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4005     if (cpreg_field_is_64bit(ri) &&
4006         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4007         ARMCPU *cpu = env_archcpu(env);
4008         tlb_flush(CPU(cpu));
4009     }
4010     raw_write(env, ri, value);
4011 }
4012 
4013 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4014                                     uint64_t value)
4015 {
4016     /*
4017      * If we are running with E2&0 regime, then an ASID is active.
4018      * Flush if that might be changing.  Note we're not checking
4019      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4020      * holds the active ASID, only checking the field that might.
4021      */
4022     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4023         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4024         uint16_t mask = ARMMMUIdxBit_E20_2 |
4025                         ARMMMUIdxBit_E20_2_PAN |
4026                         ARMMMUIdxBit_E20_0;
4027 
4028         if (arm_is_secure_below_el3(env)) {
4029             mask >>= ARM_MMU_IDX_A_NS;
4030         }
4031 
4032         tlb_flush_by_mmuidx(env_cpu(env), mask);
4033     }
4034     raw_write(env, ri, value);
4035 }
4036 
4037 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4038                         uint64_t value)
4039 {
4040     ARMCPU *cpu = env_archcpu(env);
4041     CPUState *cs = CPU(cpu);
4042 
4043     /*
4044      * A change in VMID to the stage2 page table (Stage2) invalidates
4045      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4046      */
4047     if (raw_read(env, ri) != value) {
4048         uint16_t mask = ARMMMUIdxBit_E10_1 |
4049                         ARMMMUIdxBit_E10_1_PAN |
4050                         ARMMMUIdxBit_E10_0;
4051 
4052         if (arm_is_secure_below_el3(env)) {
4053             mask >>= ARM_MMU_IDX_A_NS;
4054         }
4055 
4056         tlb_flush_by_mmuidx(cs, mask);
4057         raw_write(env, ri, value);
4058     }
4059 }
4060 
4061 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4062     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4063       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4064       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4065                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4066     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4067       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4068       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4069                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4070     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4071       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4072       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4073                              offsetof(CPUARMState, cp15.dfar_ns) } },
4074     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4075       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4076       .access = PL1_RW, .accessfn = access_tvm_trvm,
4077       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4078       .resetvalue = 0, },
4079     REGINFO_SENTINEL
4080 };
4081 
4082 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4083     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4084       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4085       .access = PL1_RW, .accessfn = access_tvm_trvm,
4086       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4087     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4088       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4089       .access = PL1_RW, .accessfn = access_tvm_trvm,
4090       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4091       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4092                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4093     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4094       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4095       .access = PL1_RW, .accessfn = access_tvm_trvm,
4096       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4097       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4098                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4099     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4100       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4101       .access = PL1_RW, .accessfn = access_tvm_trvm,
4102       .writefn = vmsa_tcr_el12_write,
4103       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4104       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4105     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4106       .access = PL1_RW, .accessfn = access_tvm_trvm,
4107       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4108       .raw_writefn = vmsa_ttbcr_raw_write,
4109       /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
4110       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
4111                              offsetof(CPUARMState, cp15.tcr_el[1])} },
4112     REGINFO_SENTINEL
4113 };
4114 
4115 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4116  * qemu tlbs nor adjusting cached masks.
4117  */
4118 static const ARMCPRegInfo ttbcr2_reginfo = {
4119     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4120     .access = PL1_RW, .accessfn = access_tvm_trvm,
4121     .type = ARM_CP_ALIAS,
4122     .bank_fieldoffsets = {
4123         offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
4124         offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
4125     },
4126 };
4127 
4128 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4129                                 uint64_t value)
4130 {
4131     env->cp15.c15_ticonfig = value & 0xe7;
4132     /* The OS_TYPE bit in this register changes the reported CPUID! */
4133     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4134         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4135 }
4136 
4137 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4138                                 uint64_t value)
4139 {
4140     env->cp15.c15_threadid = value & 0xffff;
4141 }
4142 
4143 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4144                            uint64_t value)
4145 {
4146     /* Wait-for-interrupt (deprecated) */
4147     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4148 }
4149 
4150 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4151                                   uint64_t value)
4152 {
4153     /* On OMAP there are registers indicating the max/min index of dcache lines
4154      * containing a dirty line; cache flush operations have to reset these.
4155      */
4156     env->cp15.c15_i_max = 0x000;
4157     env->cp15.c15_i_min = 0xff0;
4158 }
4159 
4160 static const ARMCPRegInfo omap_cp_reginfo[] = {
4161     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4162       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4163       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4164       .resetvalue = 0, },
4165     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4166       .access = PL1_RW, .type = ARM_CP_NOP },
4167     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4168       .access = PL1_RW,
4169       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4170       .writefn = omap_ticonfig_write },
4171     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4172       .access = PL1_RW,
4173       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4174     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4175       .access = PL1_RW, .resetvalue = 0xff0,
4176       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4177     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4178       .access = PL1_RW,
4179       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4180       .writefn = omap_threadid_write },
4181     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4182       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4183       .type = ARM_CP_NO_RAW,
4184       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4185     /* TODO: Peripheral port remap register:
4186      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4187      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4188      * when MMU is off.
4189      */
4190     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4191       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4192       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4193       .writefn = omap_cachemaint_write },
4194     { .name = "C9", .cp = 15, .crn = 9,
4195       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4196       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4197     REGINFO_SENTINEL
4198 };
4199 
4200 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4201                               uint64_t value)
4202 {
4203     env->cp15.c15_cpar = value & 0x3fff;
4204 }
4205 
4206 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4207     { .name = "XSCALE_CPAR",
4208       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4209       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4210       .writefn = xscale_cpar_write, },
4211     { .name = "XSCALE_AUXCR",
4212       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4213       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4214       .resetvalue = 0, },
4215     /* XScale specific cache-lockdown: since we have no cache we NOP these
4216      * and hope the guest does not really rely on cache behaviour.
4217      */
4218     { .name = "XSCALE_LOCK_ICACHE_LINE",
4219       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4220       .access = PL1_W, .type = ARM_CP_NOP },
4221     { .name = "XSCALE_UNLOCK_ICACHE",
4222       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4223       .access = PL1_W, .type = ARM_CP_NOP },
4224     { .name = "XSCALE_DCACHE_LOCK",
4225       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4226       .access = PL1_RW, .type = ARM_CP_NOP },
4227     { .name = "XSCALE_UNLOCK_DCACHE",
4228       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4229       .access = PL1_W, .type = ARM_CP_NOP },
4230     REGINFO_SENTINEL
4231 };
4232 
4233 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4234     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4235      * implementation of this implementation-defined space.
4236      * Ideally this should eventually disappear in favour of actually
4237      * implementing the correct behaviour for all cores.
4238      */
4239     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4240       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4241       .access = PL1_RW,
4242       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4243       .resetvalue = 0 },
4244     REGINFO_SENTINEL
4245 };
4246 
4247 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4248     /* Cache status: RAZ because we have no cache so it's always clean */
4249     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4250       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4251       .resetvalue = 0 },
4252     REGINFO_SENTINEL
4253 };
4254 
4255 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4256     /* We never have a a block transfer operation in progress */
4257     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4258       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4259       .resetvalue = 0 },
4260     /* The cache ops themselves: these all NOP for QEMU */
4261     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4262       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4263     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4264       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4265     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4266       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4267     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4268       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4269     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4270       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4271     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4272       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4273     REGINFO_SENTINEL
4274 };
4275 
4276 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4277     /* The cache test-and-clean instructions always return (1 << 30)
4278      * to indicate that there are no dirty cache lines.
4279      */
4280     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4281       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4282       .resetvalue = (1 << 30) },
4283     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4284       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4285       .resetvalue = (1 << 30) },
4286     REGINFO_SENTINEL
4287 };
4288 
4289 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4290     /* Ignore ReadBuffer accesses */
4291     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4292       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4293       .access = PL1_RW, .resetvalue = 0,
4294       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4295     REGINFO_SENTINEL
4296 };
4297 
4298 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4299 {
4300     unsigned int cur_el = arm_current_el(env);
4301 
4302     if (arm_is_el2_enabled(env) && cur_el == 1) {
4303         return env->cp15.vpidr_el2;
4304     }
4305     return raw_read(env, ri);
4306 }
4307 
4308 static uint64_t mpidr_read_val(CPUARMState *env)
4309 {
4310     ARMCPU *cpu = env_archcpu(env);
4311     uint64_t mpidr = cpu->mp_affinity;
4312 
4313     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4314         mpidr |= (1U << 31);
4315         /* Cores which are uniprocessor (non-coherent)
4316          * but still implement the MP extensions set
4317          * bit 30. (For instance, Cortex-R5).
4318          */
4319         if (cpu->mp_is_up) {
4320             mpidr |= (1u << 30);
4321         }
4322     }
4323     return mpidr;
4324 }
4325 
4326 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4327 {
4328     unsigned int cur_el = arm_current_el(env);
4329 
4330     if (arm_is_el2_enabled(env) && cur_el == 1) {
4331         return env->cp15.vmpidr_el2;
4332     }
4333     return mpidr_read_val(env);
4334 }
4335 
4336 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4337     /* NOP AMAIR0/1 */
4338     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4339       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4340       .access = PL1_RW, .accessfn = access_tvm_trvm,
4341       .type = ARM_CP_CONST, .resetvalue = 0 },
4342     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4343     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4344       .access = PL1_RW, .accessfn = access_tvm_trvm,
4345       .type = ARM_CP_CONST, .resetvalue = 0 },
4346     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4347       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4348       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4349                              offsetof(CPUARMState, cp15.par_ns)} },
4350     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4351       .access = PL1_RW, .accessfn = access_tvm_trvm,
4352       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4353       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4354                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4355       .writefn = vmsa_ttbr_write, },
4356     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4357       .access = PL1_RW, .accessfn = access_tvm_trvm,
4358       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4359       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4360                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4361       .writefn = vmsa_ttbr_write, },
4362     REGINFO_SENTINEL
4363 };
4364 
4365 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4366 {
4367     return vfp_get_fpcr(env);
4368 }
4369 
4370 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4371                             uint64_t value)
4372 {
4373     vfp_set_fpcr(env, value);
4374 }
4375 
4376 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4377 {
4378     return vfp_get_fpsr(env);
4379 }
4380 
4381 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4382                             uint64_t value)
4383 {
4384     vfp_set_fpsr(env, value);
4385 }
4386 
4387 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4388                                        bool isread)
4389 {
4390     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4391         return CP_ACCESS_TRAP;
4392     }
4393     return CP_ACCESS_OK;
4394 }
4395 
4396 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4397                             uint64_t value)
4398 {
4399     env->daif = value & PSTATE_DAIF;
4400 }
4401 
4402 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4403 {
4404     return env->pstate & PSTATE_PAN;
4405 }
4406 
4407 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4408                            uint64_t value)
4409 {
4410     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4411 }
4412 
4413 static const ARMCPRegInfo pan_reginfo = {
4414     .name = "PAN", .state = ARM_CP_STATE_AA64,
4415     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4416     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4417     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4418 };
4419 
4420 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4421 {
4422     return env->pstate & PSTATE_UAO;
4423 }
4424 
4425 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4426                            uint64_t value)
4427 {
4428     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4429 }
4430 
4431 static const ARMCPRegInfo uao_reginfo = {
4432     .name = "UAO", .state = ARM_CP_STATE_AA64,
4433     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4434     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4435     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4436 };
4437 
4438 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4439 {
4440     return env->pstate & PSTATE_DIT;
4441 }
4442 
4443 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4444                            uint64_t value)
4445 {
4446     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4447 }
4448 
4449 static const ARMCPRegInfo dit_reginfo = {
4450     .name = "DIT", .state = ARM_CP_STATE_AA64,
4451     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4452     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4453     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4454 };
4455 
4456 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4457 {
4458     return env->pstate & PSTATE_SSBS;
4459 }
4460 
4461 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4462                            uint64_t value)
4463 {
4464     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4465 }
4466 
4467 static const ARMCPRegInfo ssbs_reginfo = {
4468     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4469     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4470     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4471     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4472 };
4473 
4474 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4475                                               const ARMCPRegInfo *ri,
4476                                               bool isread)
4477 {
4478     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4479     switch (arm_current_el(env)) {
4480     case 0:
4481         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4482         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4483             return CP_ACCESS_TRAP;
4484         }
4485         /* fall through */
4486     case 1:
4487         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4488         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4489             return CP_ACCESS_TRAP_EL2;
4490         }
4491         break;
4492     }
4493     return CP_ACCESS_OK;
4494 }
4495 
4496 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4497                                               const ARMCPRegInfo *ri,
4498                                               bool isread)
4499 {
4500     /* Cache invalidate/clean to Point of Unification... */
4501     switch (arm_current_el(env)) {
4502     case 0:
4503         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4504         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4505             return CP_ACCESS_TRAP;
4506         }
4507         /* fall through */
4508     case 1:
4509         /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4510         if (arm_hcr_el2_eff(env) & HCR_TPU) {
4511             return CP_ACCESS_TRAP_EL2;
4512         }
4513         break;
4514     }
4515     return CP_ACCESS_OK;
4516 }
4517 
4518 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4519  * Page D4-1736 (DDI0487A.b)
4520  */
4521 
4522 static int vae1_tlbmask(CPUARMState *env)
4523 {
4524     uint64_t hcr = arm_hcr_el2_eff(env);
4525     uint16_t mask;
4526 
4527     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4528         mask = ARMMMUIdxBit_E20_2 |
4529                ARMMMUIdxBit_E20_2_PAN |
4530                ARMMMUIdxBit_E20_0;
4531     } else {
4532         mask = ARMMMUIdxBit_E10_1 |
4533                ARMMMUIdxBit_E10_1_PAN |
4534                ARMMMUIdxBit_E10_0;
4535     }
4536 
4537     if (arm_is_secure_below_el3(env)) {
4538         mask >>= ARM_MMU_IDX_A_NS;
4539     }
4540 
4541     return mask;
4542 }
4543 
4544 /* Return 56 if TBI is enabled, 64 otherwise. */
4545 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4546                               uint64_t addr)
4547 {
4548     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4549     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4550     int select = extract64(addr, 55, 1);
4551 
4552     return (tbi >> select) & 1 ? 56 : 64;
4553 }
4554 
4555 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4556 {
4557     uint64_t hcr = arm_hcr_el2_eff(env);
4558     ARMMMUIdx mmu_idx;
4559 
4560     /* Only the regime of the mmu_idx below is significant. */
4561     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4562         mmu_idx = ARMMMUIdx_E20_0;
4563     } else {
4564         mmu_idx = ARMMMUIdx_E10_0;
4565     }
4566 
4567     if (arm_is_secure_below_el3(env)) {
4568         mmu_idx &= ~ARM_MMU_IDX_A_NS;
4569     }
4570 
4571     return tlbbits_for_regime(env, mmu_idx, addr);
4572 }
4573 
4574 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4575                                       uint64_t value)
4576 {
4577     CPUState *cs = env_cpu(env);
4578     int mask = vae1_tlbmask(env);
4579 
4580     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4581 }
4582 
4583 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4584                                     uint64_t value)
4585 {
4586     CPUState *cs = env_cpu(env);
4587     int mask = vae1_tlbmask(env);
4588 
4589     if (tlb_force_broadcast(env)) {
4590         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4591     } else {
4592         tlb_flush_by_mmuidx(cs, mask);
4593     }
4594 }
4595 
4596 static int alle1_tlbmask(CPUARMState *env)
4597 {
4598     /*
4599      * Note that the 'ALL' scope must invalidate both stage 1 and
4600      * stage 2 translations, whereas most other scopes only invalidate
4601      * stage 1 translations.
4602      */
4603     if (arm_is_secure_below_el3(env)) {
4604         return ARMMMUIdxBit_SE10_1 |
4605                ARMMMUIdxBit_SE10_1_PAN |
4606                ARMMMUIdxBit_SE10_0;
4607     } else {
4608         return ARMMMUIdxBit_E10_1 |
4609                ARMMMUIdxBit_E10_1_PAN |
4610                ARMMMUIdxBit_E10_0;
4611     }
4612 }
4613 
4614 static int e2_tlbmask(CPUARMState *env)
4615 {
4616     if (arm_is_secure_below_el3(env)) {
4617         return ARMMMUIdxBit_SE20_0 |
4618                ARMMMUIdxBit_SE20_2 |
4619                ARMMMUIdxBit_SE20_2_PAN |
4620                ARMMMUIdxBit_SE2;
4621     } else {
4622         return ARMMMUIdxBit_E20_0 |
4623                ARMMMUIdxBit_E20_2 |
4624                ARMMMUIdxBit_E20_2_PAN |
4625                ARMMMUIdxBit_E2;
4626     }
4627 }
4628 
4629 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4630                                   uint64_t value)
4631 {
4632     CPUState *cs = env_cpu(env);
4633     int mask = alle1_tlbmask(env);
4634 
4635     tlb_flush_by_mmuidx(cs, mask);
4636 }
4637 
4638 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4639                                   uint64_t value)
4640 {
4641     CPUState *cs = env_cpu(env);
4642     int mask = e2_tlbmask(env);
4643 
4644     tlb_flush_by_mmuidx(cs, mask);
4645 }
4646 
4647 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4648                                   uint64_t value)
4649 {
4650     ARMCPU *cpu = env_archcpu(env);
4651     CPUState *cs = CPU(cpu);
4652 
4653     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4654 }
4655 
4656 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4657                                     uint64_t value)
4658 {
4659     CPUState *cs = env_cpu(env);
4660     int mask = alle1_tlbmask(env);
4661 
4662     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4663 }
4664 
4665 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4666                                     uint64_t value)
4667 {
4668     CPUState *cs = env_cpu(env);
4669     int mask = e2_tlbmask(env);
4670 
4671     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4672 }
4673 
4674 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4675                                     uint64_t value)
4676 {
4677     CPUState *cs = env_cpu(env);
4678 
4679     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4680 }
4681 
4682 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4683                                  uint64_t value)
4684 {
4685     /* Invalidate by VA, EL2
4686      * Currently handles both VAE2 and VALE2, since we don't support
4687      * flush-last-level-only.
4688      */
4689     CPUState *cs = env_cpu(env);
4690     int mask = e2_tlbmask(env);
4691     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4692 
4693     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4694 }
4695 
4696 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4697                                  uint64_t value)
4698 {
4699     /* Invalidate by VA, EL3
4700      * Currently handles both VAE3 and VALE3, since we don't support
4701      * flush-last-level-only.
4702      */
4703     ARMCPU *cpu = env_archcpu(env);
4704     CPUState *cs = CPU(cpu);
4705     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4706 
4707     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4708 }
4709 
4710 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4711                                    uint64_t value)
4712 {
4713     CPUState *cs = env_cpu(env);
4714     int mask = vae1_tlbmask(env);
4715     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4716     int bits = vae1_tlbbits(env, pageaddr);
4717 
4718     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4719 }
4720 
4721 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4722                                  uint64_t value)
4723 {
4724     /* Invalidate by VA, EL1&0 (AArch64 version).
4725      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4726      * since we don't support flush-for-specific-ASID-only or
4727      * flush-last-level-only.
4728      */
4729     CPUState *cs = env_cpu(env);
4730     int mask = vae1_tlbmask(env);
4731     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4732     int bits = vae1_tlbbits(env, pageaddr);
4733 
4734     if (tlb_force_broadcast(env)) {
4735         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4736     } else {
4737         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4738     }
4739 }
4740 
4741 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4742                                    uint64_t value)
4743 {
4744     CPUState *cs = env_cpu(env);
4745     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4746     bool secure = arm_is_secure_below_el3(env);
4747     int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4748     int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4749                                   pageaddr);
4750 
4751     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4752 }
4753 
4754 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4755                                    uint64_t value)
4756 {
4757     CPUState *cs = env_cpu(env);
4758     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4759     int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4760 
4761     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4762                                                   ARMMMUIdxBit_SE3, bits);
4763 }
4764 
4765 #ifdef TARGET_AARCH64
4766 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env,
4767                                            uint64_t value)
4768 {
4769     unsigned int page_shift;
4770     unsigned int page_size_granule;
4771     uint64_t num;
4772     uint64_t scale;
4773     uint64_t exponent;
4774     uint64_t length;
4775 
4776     num = extract64(value, 39, 4);
4777     scale = extract64(value, 44, 2);
4778     page_size_granule = extract64(value, 46, 2);
4779 
4780     page_shift = page_size_granule * 2 + 12;
4781 
4782     if (page_size_granule == 0) {
4783         qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n",
4784                       page_size_granule);
4785         return 0;
4786     }
4787 
4788     exponent = (5 * scale) + 1;
4789     length = (num + 1) << (exponent + page_shift);
4790 
4791     return length;
4792 }
4793 
4794 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value,
4795                                         bool two_ranges)
4796 {
4797     /* TODO: ARMv8.7 FEAT_LPA2 */
4798     uint64_t pageaddr;
4799 
4800     if (two_ranges) {
4801         pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS;
4802     } else {
4803         pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS;
4804     }
4805 
4806     return pageaddr;
4807 }
4808 
4809 static void do_rvae_write(CPUARMState *env, uint64_t value,
4810                           int idxmap, bool synced)
4811 {
4812     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4813     bool two_ranges = regime_has_2_ranges(one_idx);
4814     uint64_t baseaddr, length;
4815     int bits;
4816 
4817     baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges);
4818     length = tlbi_aa64_range_get_length(env, value);
4819     bits = tlbbits_for_regime(env, one_idx, baseaddr);
4820 
4821     if (synced) {
4822         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4823                                                   baseaddr,
4824                                                   length,
4825                                                   idxmap,
4826                                                   bits);
4827     } else {
4828         tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr,
4829                                   length, idxmap, bits);
4830     }
4831 }
4832 
4833 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4834                                   const ARMCPRegInfo *ri,
4835                                   uint64_t value)
4836 {
4837     /*
4838      * Invalidate by VA range, EL1&0.
4839      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4840      * since we don't support flush-for-specific-ASID-only or
4841      * flush-last-level-only.
4842      */
4843 
4844     do_rvae_write(env, value, vae1_tlbmask(env),
4845                   tlb_force_broadcast(env));
4846 }
4847 
4848 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4849                                     const ARMCPRegInfo *ri,
4850                                     uint64_t value)
4851 {
4852     /*
4853      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4854      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4855      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4856      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4857      * shareable specific flushes.
4858      */
4859 
4860     do_rvae_write(env, value, vae1_tlbmask(env), true);
4861 }
4862 
4863 static int vae2_tlbmask(CPUARMState *env)
4864 {
4865     return (arm_is_secure_below_el3(env)
4866             ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4867 }
4868 
4869 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4870                                   const ARMCPRegInfo *ri,
4871                                   uint64_t value)
4872 {
4873     /*
4874      * Invalidate by VA range, EL2.
4875      * Currently handles all of RVAE2 and RVALE2,
4876      * since we don't support flush-for-specific-ASID-only or
4877      * flush-last-level-only.
4878      */
4879 
4880     do_rvae_write(env, value, vae2_tlbmask(env),
4881                   tlb_force_broadcast(env));
4882 
4883 
4884 }
4885 
4886 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4887                                     const ARMCPRegInfo *ri,
4888                                     uint64_t value)
4889 {
4890     /*
4891      * Invalidate by VA range, Inner/Outer Shareable, EL2.
4892      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4893      * since we don't support flush-for-specific-ASID-only,
4894      * flush-last-level-only or inner/outer shareable specific flushes.
4895      */
4896 
4897     do_rvae_write(env, value, vae2_tlbmask(env), true);
4898 
4899 }
4900 
4901 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4902                                   const ARMCPRegInfo *ri,
4903                                   uint64_t value)
4904 {
4905     /*
4906      * Invalidate by VA range, EL3.
4907      * Currently handles all of RVAE3 and RVALE3,
4908      * since we don't support flush-for-specific-ASID-only or
4909      * flush-last-level-only.
4910      */
4911 
4912     do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4913                   tlb_force_broadcast(env));
4914 }
4915 
4916 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4917                                     const ARMCPRegInfo *ri,
4918                                     uint64_t value)
4919 {
4920     /*
4921      * Invalidate by VA range, EL3, Inner/Outer Shareable.
4922      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4923      * since we don't support flush-for-specific-ASID-only,
4924      * flush-last-level-only or inner/outer specific flushes.
4925      */
4926 
4927     do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4928 }
4929 #endif
4930 
4931 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4932                                       bool isread)
4933 {
4934     int cur_el = arm_current_el(env);
4935 
4936     if (cur_el < 2) {
4937         uint64_t hcr = arm_hcr_el2_eff(env);
4938 
4939         if (cur_el == 0) {
4940             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4941                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4942                     return CP_ACCESS_TRAP_EL2;
4943                 }
4944             } else {
4945                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4946                     return CP_ACCESS_TRAP;
4947                 }
4948                 if (hcr & HCR_TDZ) {
4949                     return CP_ACCESS_TRAP_EL2;
4950                 }
4951             }
4952         } else if (hcr & HCR_TDZ) {
4953             return CP_ACCESS_TRAP_EL2;
4954         }
4955     }
4956     return CP_ACCESS_OK;
4957 }
4958 
4959 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4960 {
4961     ARMCPU *cpu = env_archcpu(env);
4962     int dzp_bit = 1 << 4;
4963 
4964     /* DZP indicates whether DC ZVA access is allowed */
4965     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4966         dzp_bit = 0;
4967     }
4968     return cpu->dcz_blocksize | dzp_bit;
4969 }
4970 
4971 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4972                                     bool isread)
4973 {
4974     if (!(env->pstate & PSTATE_SP)) {
4975         /* Access to SP_EL0 is undefined if it's being used as
4976          * the stack pointer.
4977          */
4978         return CP_ACCESS_TRAP_UNCATEGORIZED;
4979     }
4980     return CP_ACCESS_OK;
4981 }
4982 
4983 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4984 {
4985     return env->pstate & PSTATE_SP;
4986 }
4987 
4988 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4989 {
4990     update_spsel(env, val);
4991 }
4992 
4993 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4994                         uint64_t value)
4995 {
4996     ARMCPU *cpu = env_archcpu(env);
4997 
4998     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4999         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5000         value &= ~SCTLR_M;
5001     }
5002 
5003     /* ??? Lots of these bits are not implemented.  */
5004 
5005     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5006         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5007             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5008         } else {
5009             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5010                        SCTLR_ATA0 | SCTLR_ATA);
5011         }
5012     }
5013 
5014     if (raw_read(env, ri) == value) {
5015         /* Skip the TLB flush if nothing actually changed; Linux likes
5016          * to do a lot of pointless SCTLR writes.
5017          */
5018         return;
5019     }
5020 
5021     raw_write(env, ri, value);
5022 
5023     /* This may enable/disable the MMU, so do a TLB flush.  */
5024     tlb_flush(CPU(cpu));
5025 
5026     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
5027         /*
5028          * Normally we would always end the TB on an SCTLR write; see the
5029          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5030          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5031          * of hflags from the translator, so do it here.
5032          */
5033         arm_rebuild_hflags(env);
5034     }
5035 }
5036 
5037 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
5038                                      bool isread)
5039 {
5040     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
5041         return CP_ACCESS_TRAP_FP_EL2;
5042     }
5043     if (env->cp15.cptr_el[3] & CPTR_TFP) {
5044         return CP_ACCESS_TRAP_FP_EL3;
5045     }
5046     return CP_ACCESS_OK;
5047 }
5048 
5049 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5050                        uint64_t value)
5051 {
5052     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
5053 }
5054 
5055 static const ARMCPRegInfo v8_cp_reginfo[] = {
5056     /* Minimal set of EL0-visible registers. This will need to be expanded
5057      * significantly for system emulation of AArch64 CPUs.
5058      */
5059     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5060       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5061       .access = PL0_RW, .type = ARM_CP_NZCV },
5062     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5063       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5064       .type = ARM_CP_NO_RAW,
5065       .access = PL0_RW, .accessfn = aa64_daif_access,
5066       .fieldoffset = offsetof(CPUARMState, daif),
5067       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5068     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5069       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5070       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5071       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5072     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5073       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5074       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5075       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5076     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5077       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5078       .access = PL0_R, .type = ARM_CP_NO_RAW,
5079       .readfn = aa64_dczid_read },
5080     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5081       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5082       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5083 #ifndef CONFIG_USER_ONLY
5084       /* Avoid overhead of an access check that always passes in user-mode */
5085       .accessfn = aa64_zva_access,
5086 #endif
5087     },
5088     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5089       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5090       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5091     /* Cache ops: all NOPs since we don't emulate caches */
5092     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5093       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5094       .access = PL1_W, .type = ARM_CP_NOP,
5095       .accessfn = aa64_cacheop_pou_access },
5096     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5097       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5098       .access = PL1_W, .type = ARM_CP_NOP,
5099       .accessfn = aa64_cacheop_pou_access },
5100     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5101       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5102       .access = PL0_W, .type = ARM_CP_NOP,
5103       .accessfn = aa64_cacheop_pou_access },
5104     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5105       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5106       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5107       .type = ARM_CP_NOP },
5108     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5109       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5110       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5111     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5112       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5113       .access = PL0_W, .type = ARM_CP_NOP,
5114       .accessfn = aa64_cacheop_poc_access },
5115     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5116       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5117       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5118     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5119       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5120       .access = PL0_W, .type = ARM_CP_NOP,
5121       .accessfn = aa64_cacheop_pou_access },
5122     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5123       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5124       .access = PL0_W, .type = ARM_CP_NOP,
5125       .accessfn = aa64_cacheop_poc_access },
5126     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5127       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5128       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5129     /* TLBI operations */
5130     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5131       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5132       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5133       .writefn = tlbi_aa64_vmalle1is_write },
5134     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5135       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5136       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5137       .writefn = tlbi_aa64_vae1is_write },
5138     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5139       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5140       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5141       .writefn = tlbi_aa64_vmalle1is_write },
5142     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5143       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5144       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5145       .writefn = tlbi_aa64_vae1is_write },
5146     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5147       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5148       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5149       .writefn = tlbi_aa64_vae1is_write },
5150     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5151       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5152       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5153       .writefn = tlbi_aa64_vae1is_write },
5154     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5155       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5156       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5157       .writefn = tlbi_aa64_vmalle1_write },
5158     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5159       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5160       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5161       .writefn = tlbi_aa64_vae1_write },
5162     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5163       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5164       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5165       .writefn = tlbi_aa64_vmalle1_write },
5166     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5167       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5168       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5169       .writefn = tlbi_aa64_vae1_write },
5170     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5171       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5172       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5173       .writefn = tlbi_aa64_vae1_write },
5174     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5175       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5176       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5177       .writefn = tlbi_aa64_vae1_write },
5178     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5179       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5180       .access = PL2_W, .type = ARM_CP_NOP },
5181     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5182       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5183       .access = PL2_W, .type = ARM_CP_NOP },
5184     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5185       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5186       .access = PL2_W, .type = ARM_CP_NO_RAW,
5187       .writefn = tlbi_aa64_alle1is_write },
5188     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5189       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5190       .access = PL2_W, .type = ARM_CP_NO_RAW,
5191       .writefn = tlbi_aa64_alle1is_write },
5192     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5193       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5194       .access = PL2_W, .type = ARM_CP_NOP },
5195     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5196       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5197       .access = PL2_W, .type = ARM_CP_NOP },
5198     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5199       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5200       .access = PL2_W, .type = ARM_CP_NO_RAW,
5201       .writefn = tlbi_aa64_alle1_write },
5202     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5203       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5204       .access = PL2_W, .type = ARM_CP_NO_RAW,
5205       .writefn = tlbi_aa64_alle1is_write },
5206 #ifndef CONFIG_USER_ONLY
5207     /* 64 bit address translation operations */
5208     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5209       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5210       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5211       .writefn = ats_write64 },
5212     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5213       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5214       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5215       .writefn = ats_write64 },
5216     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5217       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5218       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5219       .writefn = ats_write64 },
5220     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5221       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5222       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5223       .writefn = ats_write64 },
5224     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5225       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5226       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5227       .writefn = ats_write64 },
5228     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5229       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5230       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5231       .writefn = ats_write64 },
5232     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5233       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5234       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5235       .writefn = ats_write64 },
5236     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5237       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5238       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5239       .writefn = ats_write64 },
5240     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5241     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5242       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5243       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5244       .writefn = ats_write64 },
5245     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5246       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5247       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5248       .writefn = ats_write64 },
5249     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5250       .type = ARM_CP_ALIAS,
5251       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5252       .access = PL1_RW, .resetvalue = 0,
5253       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5254       .writefn = par_write },
5255 #endif
5256     /* TLB invalidate last level of translation table walk */
5257     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5258       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5259       .writefn = tlbimva_is_write },
5260     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5261       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5262       .writefn = tlbimvaa_is_write },
5263     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5264       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5265       .writefn = tlbimva_write },
5266     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5267       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5268       .writefn = tlbimvaa_write },
5269     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5270       .type = ARM_CP_NO_RAW, .access = PL2_W,
5271       .writefn = tlbimva_hyp_write },
5272     { .name = "TLBIMVALHIS",
5273       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5274       .type = ARM_CP_NO_RAW, .access = PL2_W,
5275       .writefn = tlbimva_hyp_is_write },
5276     { .name = "TLBIIPAS2",
5277       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5278       .type = ARM_CP_NOP, .access = PL2_W },
5279     { .name = "TLBIIPAS2IS",
5280       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5281       .type = ARM_CP_NOP, .access = PL2_W },
5282     { .name = "TLBIIPAS2L",
5283       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5284       .type = ARM_CP_NOP, .access = PL2_W },
5285     { .name = "TLBIIPAS2LIS",
5286       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5287       .type = ARM_CP_NOP, .access = PL2_W },
5288     /* 32 bit cache operations */
5289     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5290       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5291     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5292       .type = ARM_CP_NOP, .access = PL1_W },
5293     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5294       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5295     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5296       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5297     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5298       .type = ARM_CP_NOP, .access = PL1_W },
5299     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5300       .type = ARM_CP_NOP, .access = PL1_W },
5301     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5302       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5303     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5304       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5305     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5306       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5307     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5308       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5309     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5310       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5311     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5312       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5313     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5314       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5315     /* MMU Domain access control / MPU write buffer control */
5316     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5317       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5318       .writefn = dacr_write, .raw_writefn = raw_write,
5319       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5320                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5321     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5322       .type = ARM_CP_ALIAS,
5323       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5324       .access = PL1_RW,
5325       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5326     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5327       .type = ARM_CP_ALIAS,
5328       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5329       .access = PL1_RW,
5330       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5331     /* We rely on the access checks not allowing the guest to write to the
5332      * state field when SPSel indicates that it's being used as the stack
5333      * pointer.
5334      */
5335     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5336       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5337       .access = PL1_RW, .accessfn = sp_el0_access,
5338       .type = ARM_CP_ALIAS,
5339       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5340     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5341       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5342       .access = PL2_RW, .type = ARM_CP_ALIAS,
5343       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5344     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5345       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5346       .type = ARM_CP_NO_RAW,
5347       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5348     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5349       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5350       .type = ARM_CP_ALIAS,
5351       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5352       .access = PL2_RW, .accessfn = fpexc32_access },
5353     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5354       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5355       .access = PL2_RW, .resetvalue = 0,
5356       .writefn = dacr_write, .raw_writefn = raw_write,
5357       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5358     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5359       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5360       .access = PL2_RW, .resetvalue = 0,
5361       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5362     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5363       .type = ARM_CP_ALIAS,
5364       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5365       .access = PL2_RW,
5366       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5367     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5368       .type = ARM_CP_ALIAS,
5369       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5370       .access = PL2_RW,
5371       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5372     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5373       .type = ARM_CP_ALIAS,
5374       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5375       .access = PL2_RW,
5376       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5377     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5378       .type = ARM_CP_ALIAS,
5379       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5380       .access = PL2_RW,
5381       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5382     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5383       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5384       .resetvalue = 0,
5385       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5386     { .name = "SDCR", .type = ARM_CP_ALIAS,
5387       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5388       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5389       .writefn = sdcr_write,
5390       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5391     REGINFO_SENTINEL
5392 };
5393 
5394 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
5395 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5396     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5397       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5398       .access = PL2_RW,
5399       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5400     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5401       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5402       .access = PL2_RW,
5403       .type = ARM_CP_CONST, .resetvalue = 0 },
5404     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5405       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5406       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5407     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5408       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5409       .access = PL2_RW,
5410       .type = ARM_CP_CONST, .resetvalue = 0 },
5411     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5412       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5413       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5414     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5415       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5416       .access = PL2_RW, .type = ARM_CP_CONST,
5417       .resetvalue = 0 },
5418     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5419       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5420       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5421     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5422       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5423       .access = PL2_RW, .type = ARM_CP_CONST,
5424       .resetvalue = 0 },
5425     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5426       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5427       .access = PL2_RW, .type = ARM_CP_CONST,
5428       .resetvalue = 0 },
5429     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5430       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5431       .access = PL2_RW, .type = ARM_CP_CONST,
5432       .resetvalue = 0 },
5433     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5434       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5435       .access = PL2_RW, .type = ARM_CP_CONST,
5436       .resetvalue = 0 },
5437     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5438       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5439       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5440     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5441       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5442       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5443       .type = ARM_CP_CONST, .resetvalue = 0 },
5444     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5445       .cp = 15, .opc1 = 6, .crm = 2,
5446       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5447       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5448     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5449       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5450       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5451     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5452       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5453       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5454     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5455       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5456       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5457     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5458       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5459       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5460     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5461       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5462       .resetvalue = 0 },
5463     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5464       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5465       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5466     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5467       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5468       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5469     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5470       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5471       .resetvalue = 0 },
5472     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5473       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5474       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5475     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5476       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5477       .resetvalue = 0 },
5478     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5479       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5480       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5481     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5482       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5483       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5484     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5485       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5486       .access = PL2_RW, .accessfn = access_tda,
5487       .type = ARM_CP_CONST, .resetvalue = 0 },
5488     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5489       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5490       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5491       .type = ARM_CP_CONST, .resetvalue = 0 },
5492     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5493       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5494       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5495     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5496       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5497       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5498     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5499       .type = ARM_CP_CONST,
5500       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5501       .access = PL2_RW, .resetvalue = 0 },
5502     REGINFO_SENTINEL
5503 };
5504 
5505 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5506 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5507     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5508       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5509       .access = PL2_RW,
5510       .type = ARM_CP_CONST, .resetvalue = 0 },
5511     REGINFO_SENTINEL
5512 };
5513 
5514 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5515 {
5516     ARMCPU *cpu = env_archcpu(env);
5517 
5518     if (arm_feature(env, ARM_FEATURE_V8)) {
5519         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5520     } else {
5521         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5522     }
5523 
5524     if (arm_feature(env, ARM_FEATURE_EL3)) {
5525         valid_mask &= ~HCR_HCD;
5526     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5527         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5528          * However, if we're using the SMC PSCI conduit then QEMU is
5529          * effectively acting like EL3 firmware and so the guest at
5530          * EL2 should retain the ability to prevent EL1 from being
5531          * able to make SMC calls into the ersatz firmware, so in
5532          * that case HCR.TSC should be read/write.
5533          */
5534         valid_mask &= ~HCR_TSC;
5535     }
5536 
5537     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5538         if (cpu_isar_feature(aa64_vh, cpu)) {
5539             valid_mask |= HCR_E2H;
5540         }
5541         if (cpu_isar_feature(aa64_lor, cpu)) {
5542             valid_mask |= HCR_TLOR;
5543         }
5544         if (cpu_isar_feature(aa64_pauth, cpu)) {
5545             valid_mask |= HCR_API | HCR_APK;
5546         }
5547         if (cpu_isar_feature(aa64_mte, cpu)) {
5548             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5549         }
5550     }
5551 
5552     /* Clear RES0 bits.  */
5553     value &= valid_mask;
5554 
5555     /*
5556      * These bits change the MMU setup:
5557      * HCR_VM enables stage 2 translation
5558      * HCR_PTW forbids certain page-table setups
5559      * HCR_DC disables stage1 and enables stage2 translation
5560      * HCR_DCT enables tagging on (disabled) stage1 translation
5561      */
5562     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5563         tlb_flush(CPU(cpu));
5564     }
5565     env->cp15.hcr_el2 = value;
5566 
5567     /*
5568      * Updates to VI and VF require us to update the status of
5569      * virtual interrupts, which are the logical OR of these bits
5570      * and the state of the input lines from the GIC. (This requires
5571      * that we have the iothread lock, which is done by marking the
5572      * reginfo structs as ARM_CP_IO.)
5573      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5574      * possible for it to be taken immediately, because VIRQ and
5575      * VFIQ are masked unless running at EL0 or EL1, and HCR
5576      * can only be written at EL2.
5577      */
5578     g_assert(qemu_mutex_iothread_locked());
5579     arm_cpu_update_virq(cpu);
5580     arm_cpu_update_vfiq(cpu);
5581 }
5582 
5583 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5584 {
5585     do_hcr_write(env, value, 0);
5586 }
5587 
5588 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5589                           uint64_t value)
5590 {
5591     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5592     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5593     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5594 }
5595 
5596 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5597                          uint64_t value)
5598 {
5599     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5600     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5601     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5602 }
5603 
5604 /*
5605  * Return the effective value of HCR_EL2.
5606  * Bits that are not included here:
5607  * RW       (read from SCR_EL3.RW as needed)
5608  */
5609 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5610 {
5611     uint64_t ret = env->cp15.hcr_el2;
5612 
5613     if (!arm_is_el2_enabled(env)) {
5614         /*
5615          * "This register has no effect if EL2 is not enabled in the
5616          * current Security state".  This is ARMv8.4-SecEL2 speak for
5617          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5618          *
5619          * Prior to that, the language was "In an implementation that
5620          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5621          * as if this field is 0 for all purposes other than a direct
5622          * read or write access of HCR_EL2".  With lots of enumeration
5623          * on a per-field basis.  In current QEMU, this is condition
5624          * is arm_is_secure_below_el3.
5625          *
5626          * Since the v8.4 language applies to the entire register, and
5627          * appears to be backward compatible, use that.
5628          */
5629         return 0;
5630     }
5631 
5632     /*
5633      * For a cpu that supports both aarch64 and aarch32, we can set bits
5634      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5635      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5636      */
5637     if (!arm_el_is_aa64(env, 2)) {
5638         uint64_t aa32_valid;
5639 
5640         /*
5641          * These bits are up-to-date as of ARMv8.6.
5642          * For HCR, it's easiest to list just the 2 bits that are invalid.
5643          * For HCR2, list those that are valid.
5644          */
5645         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5646         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5647                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5648         ret &= aa32_valid;
5649     }
5650 
5651     if (ret & HCR_TGE) {
5652         /* These bits are up-to-date as of ARMv8.6.  */
5653         if (ret & HCR_E2H) {
5654             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5655                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5656                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5657                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5658                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5659                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5660         } else {
5661             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5662         }
5663         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5664                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5665                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5666                  HCR_TLOR);
5667     }
5668 
5669     return ret;
5670 }
5671 
5672 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5673                            uint64_t value)
5674 {
5675     /*
5676      * For A-profile AArch32 EL3, if NSACR.CP10
5677      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5678      */
5679     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5680         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5681         value &= ~(0x3 << 10);
5682         value |= env->cp15.cptr_el[2] & (0x3 << 10);
5683     }
5684     env->cp15.cptr_el[2] = value;
5685 }
5686 
5687 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5688 {
5689     /*
5690      * For A-profile AArch32 EL3, if NSACR.CP10
5691      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5692      */
5693     uint64_t value = env->cp15.cptr_el[2];
5694 
5695     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5696         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5697         value |= 0x3 << 10;
5698     }
5699     return value;
5700 }
5701 
5702 static const ARMCPRegInfo el2_cp_reginfo[] = {
5703     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5704       .type = ARM_CP_IO,
5705       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5706       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5707       .writefn = hcr_write },
5708     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5709       .type = ARM_CP_ALIAS | ARM_CP_IO,
5710       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5711       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5712       .writefn = hcr_writelow },
5713     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5714       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5715       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5716     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5717       .type = ARM_CP_ALIAS,
5718       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5719       .access = PL2_RW,
5720       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5721     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5722       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5723       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5724     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5725       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5726       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5727     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5728       .type = ARM_CP_ALIAS,
5729       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5730       .access = PL2_RW,
5731       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5732     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5733       .type = ARM_CP_ALIAS,
5734       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5735       .access = PL2_RW,
5736       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5737     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5738       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5739       .access = PL2_RW, .writefn = vbar_write,
5740       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5741       .resetvalue = 0 },
5742     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5743       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5744       .access = PL3_RW, .type = ARM_CP_ALIAS,
5745       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5746     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5747       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5748       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5749       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5750       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5751     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5752       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5753       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5754       .resetvalue = 0 },
5755     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5756       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5757       .access = PL2_RW, .type = ARM_CP_ALIAS,
5758       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5759     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5760       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5761       .access = PL2_RW, .type = ARM_CP_CONST,
5762       .resetvalue = 0 },
5763     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5764     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5765       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5766       .access = PL2_RW, .type = ARM_CP_CONST,
5767       .resetvalue = 0 },
5768     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5769       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5770       .access = PL2_RW, .type = ARM_CP_CONST,
5771       .resetvalue = 0 },
5772     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5773       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5774       .access = PL2_RW, .type = ARM_CP_CONST,
5775       .resetvalue = 0 },
5776     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5777       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5778       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5779       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5780       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5781     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5782       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5783       .type = ARM_CP_ALIAS,
5784       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5785       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5786     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5787       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5788       .access = PL2_RW,
5789       /* no .writefn needed as this can't cause an ASID change;
5790        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5791        */
5792       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5793     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5794       .cp = 15, .opc1 = 6, .crm = 2,
5795       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5796       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5797       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5798       .writefn = vttbr_write },
5799     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5800       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5801       .access = PL2_RW, .writefn = vttbr_write,
5802       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5803     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5804       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5805       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5806       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5807     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5808       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5809       .access = PL2_RW, .resetvalue = 0,
5810       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5811     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5812       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5813       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5814       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5815     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5816       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5817       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5818     { .name = "TLBIALLNSNH",
5819       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5820       .type = ARM_CP_NO_RAW, .access = PL2_W,
5821       .writefn = tlbiall_nsnh_write },
5822     { .name = "TLBIALLNSNHIS",
5823       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5824       .type = ARM_CP_NO_RAW, .access = PL2_W,
5825       .writefn = tlbiall_nsnh_is_write },
5826     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5827       .type = ARM_CP_NO_RAW, .access = PL2_W,
5828       .writefn = tlbiall_hyp_write },
5829     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5830       .type = ARM_CP_NO_RAW, .access = PL2_W,
5831       .writefn = tlbiall_hyp_is_write },
5832     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5833       .type = ARM_CP_NO_RAW, .access = PL2_W,
5834       .writefn = tlbimva_hyp_write },
5835     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5836       .type = ARM_CP_NO_RAW, .access = PL2_W,
5837       .writefn = tlbimva_hyp_is_write },
5838     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5839       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5840       .type = ARM_CP_NO_RAW, .access = PL2_W,
5841       .writefn = tlbi_aa64_alle2_write },
5842     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5843       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5844       .type = ARM_CP_NO_RAW, .access = PL2_W,
5845       .writefn = tlbi_aa64_vae2_write },
5846     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5847       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5848       .access = PL2_W, .type = ARM_CP_NO_RAW,
5849       .writefn = tlbi_aa64_vae2_write },
5850     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5851       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5852       .access = PL2_W, .type = ARM_CP_NO_RAW,
5853       .writefn = tlbi_aa64_alle2is_write },
5854     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5855       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5856       .type = ARM_CP_NO_RAW, .access = PL2_W,
5857       .writefn = tlbi_aa64_vae2is_write },
5858     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5859       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5860       .access = PL2_W, .type = ARM_CP_NO_RAW,
5861       .writefn = tlbi_aa64_vae2is_write },
5862 #ifndef CONFIG_USER_ONLY
5863     /* Unlike the other EL2-related AT operations, these must
5864      * UNDEF from EL3 if EL2 is not implemented, which is why we
5865      * define them here rather than with the rest of the AT ops.
5866      */
5867     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5868       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5869       .access = PL2_W, .accessfn = at_s1e2_access,
5870       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5871     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5872       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5873       .access = PL2_W, .accessfn = at_s1e2_access,
5874       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5875     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5876      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5877      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5878      * to behave as if SCR.NS was 1.
5879      */
5880     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5881       .access = PL2_W,
5882       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5883     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5884       .access = PL2_W,
5885       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5886     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5887       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5888       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5889        * reset values as IMPDEF. We choose to reset to 3 to comply with
5890        * both ARMv7 and ARMv8.
5891        */
5892       .access = PL2_RW, .resetvalue = 3,
5893       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5894     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5895       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5896       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5897       .writefn = gt_cntvoff_write,
5898       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5899     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5900       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5901       .writefn = gt_cntvoff_write,
5902       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5903     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5904       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5905       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5906       .type = ARM_CP_IO, .access = PL2_RW,
5907       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5908     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5909       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5910       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5911       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5912     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5913       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5914       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5915       .resetfn = gt_hyp_timer_reset,
5916       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5917     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5918       .type = ARM_CP_IO,
5919       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5920       .access = PL2_RW,
5921       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5922       .resetvalue = 0,
5923       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5924 #endif
5925     /* The only field of MDCR_EL2 that has a defined architectural reset value
5926      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5927      */
5928     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5929       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5930       .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5931       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5932     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5933       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5934       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5935       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5936     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5937       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5938       .access = PL2_RW,
5939       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5940     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5941       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5942       .access = PL2_RW,
5943       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5944     REGINFO_SENTINEL
5945 };
5946 
5947 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5948     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5949       .type = ARM_CP_ALIAS | ARM_CP_IO,
5950       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5951       .access = PL2_RW,
5952       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5953       .writefn = hcr_writehigh },
5954     REGINFO_SENTINEL
5955 };
5956 
5957 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5958                                   bool isread)
5959 {
5960     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5961         return CP_ACCESS_OK;
5962     }
5963     return CP_ACCESS_TRAP_UNCATEGORIZED;
5964 }
5965 
5966 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5967     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5968       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5969       .access = PL2_RW, .accessfn = sel2_access,
5970       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5971     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5972       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5973       .access = PL2_RW, .accessfn = sel2_access,
5974       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5975     REGINFO_SENTINEL
5976 };
5977 
5978 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5979                                    bool isread)
5980 {
5981     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5982      * At Secure EL1 it traps to EL3 or EL2.
5983      */
5984     if (arm_current_el(env) == 3) {
5985         return CP_ACCESS_OK;
5986     }
5987     if (arm_is_secure_below_el3(env)) {
5988         if (env->cp15.scr_el3 & SCR_EEL2) {
5989             return CP_ACCESS_TRAP_EL2;
5990         }
5991         return CP_ACCESS_TRAP_EL3;
5992     }
5993     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5994     if (isread) {
5995         return CP_ACCESS_OK;
5996     }
5997     return CP_ACCESS_TRAP_UNCATEGORIZED;
5998 }
5999 
6000 static const ARMCPRegInfo el3_cp_reginfo[] = {
6001     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6002       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6003       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6004       .resetfn = scr_reset, .writefn = scr_write },
6005     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6006       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6007       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6008       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6009       .writefn = scr_write },
6010     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6011       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6012       .access = PL3_RW, .resetvalue = 0,
6013       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6014     { .name = "SDER",
6015       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6016       .access = PL3_RW, .resetvalue = 0,
6017       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6018     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6019       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6020       .writefn = vbar_write, .resetvalue = 0,
6021       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6022     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6023       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6024       .access = PL3_RW, .resetvalue = 0,
6025       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6026     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6027       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6028       .access = PL3_RW,
6029       /* no .writefn needed as this can't cause an ASID change;
6030        * we must provide a .raw_writefn and .resetfn because we handle
6031        * reset and migration for the AArch32 TTBCR(S), which might be
6032        * using mask and base_mask.
6033        */
6034       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
6035       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6036     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6037       .type = ARM_CP_ALIAS,
6038       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6039       .access = PL3_RW,
6040       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6041     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6042       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6043       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6044     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6045       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6046       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6047     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6048       .type = ARM_CP_ALIAS,
6049       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6050       .access = PL3_RW,
6051       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6052     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6053       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6054       .access = PL3_RW, .writefn = vbar_write,
6055       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6056       .resetvalue = 0 },
6057     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6058       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6059       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6060       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6061     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6062       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6063       .access = PL3_RW, .resetvalue = 0,
6064       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6065     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6066       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6067       .access = PL3_RW, .type = ARM_CP_CONST,
6068       .resetvalue = 0 },
6069     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6070       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6071       .access = PL3_RW, .type = ARM_CP_CONST,
6072       .resetvalue = 0 },
6073     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6074       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6075       .access = PL3_RW, .type = ARM_CP_CONST,
6076       .resetvalue = 0 },
6077     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6078       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6079       .access = PL3_W, .type = ARM_CP_NO_RAW,
6080       .writefn = tlbi_aa64_alle3is_write },
6081     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6082       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6083       .access = PL3_W, .type = ARM_CP_NO_RAW,
6084       .writefn = tlbi_aa64_vae3is_write },
6085     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6086       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6087       .access = PL3_W, .type = ARM_CP_NO_RAW,
6088       .writefn = tlbi_aa64_vae3is_write },
6089     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6090       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6091       .access = PL3_W, .type = ARM_CP_NO_RAW,
6092       .writefn = tlbi_aa64_alle3_write },
6093     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6094       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6095       .access = PL3_W, .type = ARM_CP_NO_RAW,
6096       .writefn = tlbi_aa64_vae3_write },
6097     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6098       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6099       .access = PL3_W, .type = ARM_CP_NO_RAW,
6100       .writefn = tlbi_aa64_vae3_write },
6101     REGINFO_SENTINEL
6102 };
6103 
6104 #ifndef CONFIG_USER_ONLY
6105 /* Test if system register redirection is to occur in the current state.  */
6106 static bool redirect_for_e2h(CPUARMState *env)
6107 {
6108     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6109 }
6110 
6111 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6112 {
6113     CPReadFn *readfn;
6114 
6115     if (redirect_for_e2h(env)) {
6116         /* Switch to the saved EL2 version of the register.  */
6117         ri = ri->opaque;
6118         readfn = ri->readfn;
6119     } else {
6120         readfn = ri->orig_readfn;
6121     }
6122     if (readfn == NULL) {
6123         readfn = raw_read;
6124     }
6125     return readfn(env, ri);
6126 }
6127 
6128 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6129                           uint64_t value)
6130 {
6131     CPWriteFn *writefn;
6132 
6133     if (redirect_for_e2h(env)) {
6134         /* Switch to the saved EL2 version of the register.  */
6135         ri = ri->opaque;
6136         writefn = ri->writefn;
6137     } else {
6138         writefn = ri->orig_writefn;
6139     }
6140     if (writefn == NULL) {
6141         writefn = raw_write;
6142     }
6143     writefn(env, ri, value);
6144 }
6145 
6146 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6147 {
6148     struct E2HAlias {
6149         uint32_t src_key, dst_key, new_key;
6150         const char *src_name, *dst_name, *new_name;
6151         bool (*feature)(const ARMISARegisters *id);
6152     };
6153 
6154 #define K(op0, op1, crn, crm, op2) \
6155     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6156 
6157     static const struct E2HAlias aliases[] = {
6158         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6159           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6160         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6161           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6162         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6163           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6164         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6165           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6166         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6167           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6168         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6169           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6170         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6171           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6172         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6173           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6174         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6175           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6176         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6177           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6178         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6179           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6180         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6181           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6182         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6183           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6184         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6185           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6186         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6187           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6188         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6189           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6190 
6191         /*
6192          * Note that redirection of ZCR is mentioned in the description
6193          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6194          * not in the summary table.
6195          */
6196         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6197           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6198 
6199         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6200           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6201 
6202         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6203         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6204     };
6205 #undef K
6206 
6207     size_t i;
6208 
6209     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6210         const struct E2HAlias *a = &aliases[i];
6211         ARMCPRegInfo *src_reg, *dst_reg;
6212 
6213         if (a->feature && !a->feature(&cpu->isar)) {
6214             continue;
6215         }
6216 
6217         src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
6218         dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
6219         g_assert(src_reg != NULL);
6220         g_assert(dst_reg != NULL);
6221 
6222         /* Cross-compare names to detect typos in the keys.  */
6223         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6224         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6225 
6226         /* None of the core system registers use opaque; we will.  */
6227         g_assert(src_reg->opaque == NULL);
6228 
6229         /* Create alias before redirection so we dup the right data. */
6230         if (a->new_key) {
6231             ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6232             uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
6233             bool ok;
6234 
6235             new_reg->name = a->new_name;
6236             new_reg->type |= ARM_CP_ALIAS;
6237             /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6238             new_reg->access &= PL2_RW | PL3_RW;
6239 
6240             ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
6241             g_assert(ok);
6242         }
6243 
6244         src_reg->opaque = dst_reg;
6245         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6246         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6247         if (!src_reg->raw_readfn) {
6248             src_reg->raw_readfn = raw_read;
6249         }
6250         if (!src_reg->raw_writefn) {
6251             src_reg->raw_writefn = raw_write;
6252         }
6253         src_reg->readfn = el2_e2h_read;
6254         src_reg->writefn = el2_e2h_write;
6255     }
6256 }
6257 #endif
6258 
6259 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6260                                      bool isread)
6261 {
6262     int cur_el = arm_current_el(env);
6263 
6264     if (cur_el < 2) {
6265         uint64_t hcr = arm_hcr_el2_eff(env);
6266 
6267         if (cur_el == 0) {
6268             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6269                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6270                     return CP_ACCESS_TRAP_EL2;
6271                 }
6272             } else {
6273                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6274                     return CP_ACCESS_TRAP;
6275                 }
6276                 if (hcr & HCR_TID2) {
6277                     return CP_ACCESS_TRAP_EL2;
6278                 }
6279             }
6280         } else if (hcr & HCR_TID2) {
6281             return CP_ACCESS_TRAP_EL2;
6282         }
6283     }
6284 
6285     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6286         return CP_ACCESS_TRAP_EL2;
6287     }
6288 
6289     return CP_ACCESS_OK;
6290 }
6291 
6292 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6293                         uint64_t value)
6294 {
6295     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6296      * read via a bit in OSLSR_EL1.
6297      */
6298     int oslock;
6299 
6300     if (ri->state == ARM_CP_STATE_AA32) {
6301         oslock = (value == 0xC5ACCE55);
6302     } else {
6303         oslock = value & 1;
6304     }
6305 
6306     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6307 }
6308 
6309 static const ARMCPRegInfo debug_cp_reginfo[] = {
6310     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6311      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6312      * unlike DBGDRAR it is never accessible from EL0.
6313      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6314      * accessor.
6315      */
6316     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6317       .access = PL0_R, .accessfn = access_tdra,
6318       .type = ARM_CP_CONST, .resetvalue = 0 },
6319     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6320       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6321       .access = PL1_R, .accessfn = access_tdra,
6322       .type = ARM_CP_CONST, .resetvalue = 0 },
6323     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6324       .access = PL0_R, .accessfn = access_tdra,
6325       .type = ARM_CP_CONST, .resetvalue = 0 },
6326     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6327     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6328       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6329       .access = PL1_RW, .accessfn = access_tda,
6330       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6331       .resetvalue = 0 },
6332     /*
6333      * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
6334      * Debug Communication Channel is not implemented.
6335      */
6336     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
6337       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
6338       .access = PL0_R, .accessfn = access_tda,
6339       .type = ARM_CP_CONST, .resetvalue = 0 },
6340     /*
6341      * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
6342      * it is unlikely a guest will care.
6343      * We don't implement the configurable EL0 access.
6344      */
6345     { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
6346       .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6347       .type = ARM_CP_ALIAS,
6348       .access = PL1_R, .accessfn = access_tda,
6349       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6350     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6351       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6352       .access = PL1_W, .type = ARM_CP_NO_RAW,
6353       .accessfn = access_tdosa,
6354       .writefn = oslar_write },
6355     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6356       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6357       .access = PL1_R, .resetvalue = 10,
6358       .accessfn = access_tdosa,
6359       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6360     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6361     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6362       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6363       .access = PL1_RW, .accessfn = access_tdosa,
6364       .type = ARM_CP_NOP },
6365     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6366      * implement vector catch debug events yet.
6367      */
6368     { .name = "DBGVCR",
6369       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6370       .access = PL1_RW, .accessfn = access_tda,
6371       .type = ARM_CP_NOP },
6372     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6373      * to save and restore a 32-bit guest's DBGVCR)
6374      */
6375     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6376       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6377       .access = PL2_RW, .accessfn = access_tda,
6378       .type = ARM_CP_NOP },
6379     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6380      * Channel but Linux may try to access this register. The 32-bit
6381      * alias is DBGDCCINT.
6382      */
6383     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6384       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6385       .access = PL1_RW, .accessfn = access_tda,
6386       .type = ARM_CP_NOP },
6387     REGINFO_SENTINEL
6388 };
6389 
6390 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6391     /* 64 bit access versions of the (dummy) debug registers */
6392     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6393       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6394     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6395       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6396     REGINFO_SENTINEL
6397 };
6398 
6399 /* Return the exception level to which exceptions should be taken
6400  * via SVEAccessTrap.  If an exception should be routed through
6401  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6402  * take care of raising that exception.
6403  * C.f. the ARM pseudocode function CheckSVEEnabled.
6404  */
6405 int sve_exception_el(CPUARMState *env, int el)
6406 {
6407 #ifndef CONFIG_USER_ONLY
6408     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6409 
6410     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6411         bool disabled = false;
6412 
6413         /* The CPACR.ZEN controls traps to EL1:
6414          * 0, 2 : trap EL0 and EL1 accesses
6415          * 1    : trap only EL0 accesses
6416          * 3    : trap no accesses
6417          */
6418         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6419             disabled = true;
6420         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6421             disabled = el == 0;
6422         }
6423         if (disabled) {
6424             /* route_to_el2 */
6425             return hcr_el2 & HCR_TGE ? 2 : 1;
6426         }
6427 
6428         /* Check CPACR.FPEN.  */
6429         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6430             disabled = true;
6431         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6432             disabled = el == 0;
6433         }
6434         if (disabled) {
6435             return 0;
6436         }
6437     }
6438 
6439     /* CPTR_EL2.  Since TZ and TFP are positive,
6440      * they will be zero when EL2 is not present.
6441      */
6442     if (el <= 2 && arm_is_el2_enabled(env)) {
6443         if (env->cp15.cptr_el[2] & CPTR_TZ) {
6444             return 2;
6445         }
6446         if (env->cp15.cptr_el[2] & CPTR_TFP) {
6447             return 0;
6448         }
6449     }
6450 
6451     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6452     if (arm_feature(env, ARM_FEATURE_EL3)
6453         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6454         return 3;
6455     }
6456 #endif
6457     return 0;
6458 }
6459 
6460 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6461 {
6462     uint32_t end_len;
6463 
6464     start_len = MIN(start_len, ARM_MAX_VQ - 1);
6465     end_len = start_len;
6466 
6467     if (!test_bit(start_len, cpu->sve_vq_map)) {
6468         end_len = find_last_bit(cpu->sve_vq_map, start_len);
6469         assert(end_len < start_len);
6470     }
6471     return end_len;
6472 }
6473 
6474 /*
6475  * Given that SVE is enabled, return the vector length for EL.
6476  */
6477 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6478 {
6479     ARMCPU *cpu = env_archcpu(env);
6480     uint32_t zcr_len = cpu->sve_max_vq - 1;
6481 
6482     if (el <= 1) {
6483         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6484     }
6485     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6486         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6487     }
6488     if (arm_feature(env, ARM_FEATURE_EL3)) {
6489         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6490     }
6491 
6492     return aarch64_sve_zcr_get_valid_len(cpu, zcr_len);
6493 }
6494 
6495 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6496                       uint64_t value)
6497 {
6498     int cur_el = arm_current_el(env);
6499     int old_len = sve_zcr_len_for_el(env, cur_el);
6500     int new_len;
6501 
6502     /* Bits other than [3:0] are RAZ/WI.  */
6503     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6504     raw_write(env, ri, value & 0xf);
6505 
6506     /*
6507      * Because we arrived here, we know both FP and SVE are enabled;
6508      * otherwise we would have trapped access to the ZCR_ELn register.
6509      */
6510     new_len = sve_zcr_len_for_el(env, cur_el);
6511     if (new_len < old_len) {
6512         aarch64_sve_narrow_vq(env, new_len + 1);
6513     }
6514 }
6515 
6516 static const ARMCPRegInfo zcr_el1_reginfo = {
6517     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6518     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6519     .access = PL1_RW, .type = ARM_CP_SVE,
6520     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6521     .writefn = zcr_write, .raw_writefn = raw_write
6522 };
6523 
6524 static const ARMCPRegInfo zcr_el2_reginfo = {
6525     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6526     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6527     .access = PL2_RW, .type = ARM_CP_SVE,
6528     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6529     .writefn = zcr_write, .raw_writefn = raw_write
6530 };
6531 
6532 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6533     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6534     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6535     .access = PL2_RW, .type = ARM_CP_SVE,
6536     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6537 };
6538 
6539 static const ARMCPRegInfo zcr_el3_reginfo = {
6540     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6541     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6542     .access = PL3_RW, .type = ARM_CP_SVE,
6543     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6544     .writefn = zcr_write, .raw_writefn = raw_write
6545 };
6546 
6547 void hw_watchpoint_update(ARMCPU *cpu, int n)
6548 {
6549     CPUARMState *env = &cpu->env;
6550     vaddr len = 0;
6551     vaddr wvr = env->cp15.dbgwvr[n];
6552     uint64_t wcr = env->cp15.dbgwcr[n];
6553     int mask;
6554     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6555 
6556     if (env->cpu_watchpoint[n]) {
6557         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6558         env->cpu_watchpoint[n] = NULL;
6559     }
6560 
6561     if (!extract64(wcr, 0, 1)) {
6562         /* E bit clear : watchpoint disabled */
6563         return;
6564     }
6565 
6566     switch (extract64(wcr, 3, 2)) {
6567     case 0:
6568         /* LSC 00 is reserved and must behave as if the wp is disabled */
6569         return;
6570     case 1:
6571         flags |= BP_MEM_READ;
6572         break;
6573     case 2:
6574         flags |= BP_MEM_WRITE;
6575         break;
6576     case 3:
6577         flags |= BP_MEM_ACCESS;
6578         break;
6579     }
6580 
6581     /* Attempts to use both MASK and BAS fields simultaneously are
6582      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6583      * thus generating a watchpoint for every byte in the masked region.
6584      */
6585     mask = extract64(wcr, 24, 4);
6586     if (mask == 1 || mask == 2) {
6587         /* Reserved values of MASK; we must act as if the mask value was
6588          * some non-reserved value, or as if the watchpoint were disabled.
6589          * We choose the latter.
6590          */
6591         return;
6592     } else if (mask) {
6593         /* Watchpoint covers an aligned area up to 2GB in size */
6594         len = 1ULL << mask;
6595         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6596          * whether the watchpoint fires when the unmasked bits match; we opt
6597          * to generate the exceptions.
6598          */
6599         wvr &= ~(len - 1);
6600     } else {
6601         /* Watchpoint covers bytes defined by the byte address select bits */
6602         int bas = extract64(wcr, 5, 8);
6603         int basstart;
6604 
6605         if (extract64(wvr, 2, 1)) {
6606             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6607              * ignored, and BAS[3:0] define which bytes to watch.
6608              */
6609             bas &= 0xf;
6610         }
6611 
6612         if (bas == 0) {
6613             /* This must act as if the watchpoint is disabled */
6614             return;
6615         }
6616 
6617         /* The BAS bits are supposed to be programmed to indicate a contiguous
6618          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6619          * we fire for each byte in the word/doubleword addressed by the WVR.
6620          * We choose to ignore any non-zero bits after the first range of 1s.
6621          */
6622         basstart = ctz32(bas);
6623         len = cto32(bas >> basstart);
6624         wvr += basstart;
6625     }
6626 
6627     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6628                           &env->cpu_watchpoint[n]);
6629 }
6630 
6631 void hw_watchpoint_update_all(ARMCPU *cpu)
6632 {
6633     int i;
6634     CPUARMState *env = &cpu->env;
6635 
6636     /* Completely clear out existing QEMU watchpoints and our array, to
6637      * avoid possible stale entries following migration load.
6638      */
6639     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6640     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6641 
6642     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6643         hw_watchpoint_update(cpu, i);
6644     }
6645 }
6646 
6647 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6648                          uint64_t value)
6649 {
6650     ARMCPU *cpu = env_archcpu(env);
6651     int i = ri->crm;
6652 
6653     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6654      * register reads and behaves as if values written are sign extended.
6655      * Bits [1:0] are RES0.
6656      */
6657     value = sextract64(value, 0, 49) & ~3ULL;
6658 
6659     raw_write(env, ri, value);
6660     hw_watchpoint_update(cpu, i);
6661 }
6662 
6663 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6664                          uint64_t value)
6665 {
6666     ARMCPU *cpu = env_archcpu(env);
6667     int i = ri->crm;
6668 
6669     raw_write(env, ri, value);
6670     hw_watchpoint_update(cpu, i);
6671 }
6672 
6673 void hw_breakpoint_update(ARMCPU *cpu, int n)
6674 {
6675     CPUARMState *env = &cpu->env;
6676     uint64_t bvr = env->cp15.dbgbvr[n];
6677     uint64_t bcr = env->cp15.dbgbcr[n];
6678     vaddr addr;
6679     int bt;
6680     int flags = BP_CPU;
6681 
6682     if (env->cpu_breakpoint[n]) {
6683         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6684         env->cpu_breakpoint[n] = NULL;
6685     }
6686 
6687     if (!extract64(bcr, 0, 1)) {
6688         /* E bit clear : watchpoint disabled */
6689         return;
6690     }
6691 
6692     bt = extract64(bcr, 20, 4);
6693 
6694     switch (bt) {
6695     case 4: /* unlinked address mismatch (reserved if AArch64) */
6696     case 5: /* linked address mismatch (reserved if AArch64) */
6697         qemu_log_mask(LOG_UNIMP,
6698                       "arm: address mismatch breakpoint types not implemented\n");
6699         return;
6700     case 0: /* unlinked address match */
6701     case 1: /* linked address match */
6702     {
6703         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6704          * we behave as if the register was sign extended. Bits [1:0] are
6705          * RES0. The BAS field is used to allow setting breakpoints on 16
6706          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6707          * a bp will fire if the addresses covered by the bp and the addresses
6708          * covered by the insn overlap but the insn doesn't start at the
6709          * start of the bp address range. We choose to require the insn and
6710          * the bp to have the same address. The constraints on writing to
6711          * BAS enforced in dbgbcr_write mean we have only four cases:
6712          *  0b0000  => no breakpoint
6713          *  0b0011  => breakpoint on addr
6714          *  0b1100  => breakpoint on addr + 2
6715          *  0b1111  => breakpoint on addr
6716          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6717          */
6718         int bas = extract64(bcr, 5, 4);
6719         addr = sextract64(bvr, 0, 49) & ~3ULL;
6720         if (bas == 0) {
6721             return;
6722         }
6723         if (bas == 0xc) {
6724             addr += 2;
6725         }
6726         break;
6727     }
6728     case 2: /* unlinked context ID match */
6729     case 8: /* unlinked VMID match (reserved if no EL2) */
6730     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6731         qemu_log_mask(LOG_UNIMP,
6732                       "arm: unlinked context breakpoint types not implemented\n");
6733         return;
6734     case 9: /* linked VMID match (reserved if no EL2) */
6735     case 11: /* linked context ID and VMID match (reserved if no EL2) */
6736     case 3: /* linked context ID match */
6737     default:
6738         /* We must generate no events for Linked context matches (unless
6739          * they are linked to by some other bp/wp, which is handled in
6740          * updates for the linking bp/wp). We choose to also generate no events
6741          * for reserved values.
6742          */
6743         return;
6744     }
6745 
6746     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6747 }
6748 
6749 void hw_breakpoint_update_all(ARMCPU *cpu)
6750 {
6751     int i;
6752     CPUARMState *env = &cpu->env;
6753 
6754     /* Completely clear out existing QEMU breakpoints and our array, to
6755      * avoid possible stale entries following migration load.
6756      */
6757     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6758     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6759 
6760     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6761         hw_breakpoint_update(cpu, i);
6762     }
6763 }
6764 
6765 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6766                          uint64_t value)
6767 {
6768     ARMCPU *cpu = env_archcpu(env);
6769     int i = ri->crm;
6770 
6771     raw_write(env, ri, value);
6772     hw_breakpoint_update(cpu, i);
6773 }
6774 
6775 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6776                          uint64_t value)
6777 {
6778     ARMCPU *cpu = env_archcpu(env);
6779     int i = ri->crm;
6780 
6781     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6782      * copy of BAS[0].
6783      */
6784     value = deposit64(value, 6, 1, extract64(value, 5, 1));
6785     value = deposit64(value, 8, 1, extract64(value, 7, 1));
6786 
6787     raw_write(env, ri, value);
6788     hw_breakpoint_update(cpu, i);
6789 }
6790 
6791 static void define_debug_regs(ARMCPU *cpu)
6792 {
6793     /* Define v7 and v8 architectural debug registers.
6794      * These are just dummy implementations for now.
6795      */
6796     int i;
6797     int wrps, brps, ctx_cmps;
6798 
6799     /*
6800      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6801      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
6802      * the register must not exist for this cpu.
6803      */
6804     if (cpu->isar.dbgdidr != 0) {
6805         ARMCPRegInfo dbgdidr = {
6806             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6807             .opc1 = 0, .opc2 = 0,
6808             .access = PL0_R, .accessfn = access_tda,
6809             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6810         };
6811         define_one_arm_cp_reg(cpu, &dbgdidr);
6812     }
6813 
6814     /* Note that all these register fields hold "number of Xs minus 1". */
6815     brps = arm_num_brps(cpu);
6816     wrps = arm_num_wrps(cpu);
6817     ctx_cmps = arm_num_ctx_cmps(cpu);
6818 
6819     assert(ctx_cmps <= brps);
6820 
6821     define_arm_cp_regs(cpu, debug_cp_reginfo);
6822 
6823     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6824         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6825     }
6826 
6827     for (i = 0; i < brps; i++) {
6828         ARMCPRegInfo dbgregs[] = {
6829             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6830               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6831               .access = PL1_RW, .accessfn = access_tda,
6832               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6833               .writefn = dbgbvr_write, .raw_writefn = raw_write
6834             },
6835             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6836               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6837               .access = PL1_RW, .accessfn = access_tda,
6838               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6839               .writefn = dbgbcr_write, .raw_writefn = raw_write
6840             },
6841             REGINFO_SENTINEL
6842         };
6843         define_arm_cp_regs(cpu, dbgregs);
6844     }
6845 
6846     for (i = 0; i < wrps; i++) {
6847         ARMCPRegInfo dbgregs[] = {
6848             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6849               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6850               .access = PL1_RW, .accessfn = access_tda,
6851               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6852               .writefn = dbgwvr_write, .raw_writefn = raw_write
6853             },
6854             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6855               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6856               .access = PL1_RW, .accessfn = access_tda,
6857               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6858               .writefn = dbgwcr_write, .raw_writefn = raw_write
6859             },
6860             REGINFO_SENTINEL
6861         };
6862         define_arm_cp_regs(cpu, dbgregs);
6863     }
6864 }
6865 
6866 static void define_pmu_regs(ARMCPU *cpu)
6867 {
6868     /*
6869      * v7 performance monitor control register: same implementor
6870      * field as main ID register, and we implement four counters in
6871      * addition to the cycle count register.
6872      */
6873     unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6874     ARMCPRegInfo pmcr = {
6875         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6876         .access = PL0_RW,
6877         .type = ARM_CP_IO | ARM_CP_ALIAS,
6878         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6879         .accessfn = pmreg_access, .writefn = pmcr_write,
6880         .raw_writefn = raw_write,
6881     };
6882     ARMCPRegInfo pmcr64 = {
6883         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6884         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6885         .access = PL0_RW, .accessfn = pmreg_access,
6886         .type = ARM_CP_IO,
6887         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6888         .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6889                       PMCRLC,
6890         .writefn = pmcr_write, .raw_writefn = raw_write,
6891     };
6892     define_one_arm_cp_reg(cpu, &pmcr);
6893     define_one_arm_cp_reg(cpu, &pmcr64);
6894     for (i = 0; i < pmcrn; i++) {
6895         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6896         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6897         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6898         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6899         ARMCPRegInfo pmev_regs[] = {
6900             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6901               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6902               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6903               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6904               .accessfn = pmreg_access },
6905             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6906               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6907               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6908               .type = ARM_CP_IO,
6909               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6910               .raw_readfn = pmevcntr_rawread,
6911               .raw_writefn = pmevcntr_rawwrite },
6912             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6913               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6914               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6915               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6916               .accessfn = pmreg_access },
6917             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6918               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6919               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6920               .type = ARM_CP_IO,
6921               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6922               .raw_writefn = pmevtyper_rawwrite },
6923             REGINFO_SENTINEL
6924         };
6925         define_arm_cp_regs(cpu, pmev_regs);
6926         g_free(pmevcntr_name);
6927         g_free(pmevcntr_el0_name);
6928         g_free(pmevtyper_name);
6929         g_free(pmevtyper_el0_name);
6930     }
6931     if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6932         ARMCPRegInfo v81_pmu_regs[] = {
6933             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6934               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6935               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6936               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6937             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6938               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6939               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6940               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6941             REGINFO_SENTINEL
6942         };
6943         define_arm_cp_regs(cpu, v81_pmu_regs);
6944     }
6945     if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6946         static const ARMCPRegInfo v84_pmmir = {
6947             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6948             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6949             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6950             .resetvalue = 0
6951         };
6952         define_one_arm_cp_reg(cpu, &v84_pmmir);
6953     }
6954 }
6955 
6956 /* We don't know until after realize whether there's a GICv3
6957  * attached, and that is what registers the gicv3 sysregs.
6958  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6959  * at runtime.
6960  */
6961 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6962 {
6963     ARMCPU *cpu = env_archcpu(env);
6964     uint64_t pfr1 = cpu->isar.id_pfr1;
6965 
6966     if (env->gicv3state) {
6967         pfr1 |= 1 << 28;
6968     }
6969     return pfr1;
6970 }
6971 
6972 #ifndef CONFIG_USER_ONLY
6973 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6974 {
6975     ARMCPU *cpu = env_archcpu(env);
6976     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6977 
6978     if (env->gicv3state) {
6979         pfr0 |= 1 << 24;
6980     }
6981     return pfr0;
6982 }
6983 #endif
6984 
6985 /* Shared logic between LORID and the rest of the LOR* registers.
6986  * Secure state exclusion has already been dealt with.
6987  */
6988 static CPAccessResult access_lor_ns(CPUARMState *env,
6989                                     const ARMCPRegInfo *ri, bool isread)
6990 {
6991     int el = arm_current_el(env);
6992 
6993     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6994         return CP_ACCESS_TRAP_EL2;
6995     }
6996     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6997         return CP_ACCESS_TRAP_EL3;
6998     }
6999     return CP_ACCESS_OK;
7000 }
7001 
7002 static CPAccessResult access_lor_other(CPUARMState *env,
7003                                        const ARMCPRegInfo *ri, bool isread)
7004 {
7005     if (arm_is_secure_below_el3(env)) {
7006         /* Access denied in secure mode.  */
7007         return CP_ACCESS_TRAP;
7008     }
7009     return access_lor_ns(env, ri, isread);
7010 }
7011 
7012 /*
7013  * A trivial implementation of ARMv8.1-LOR leaves all of these
7014  * registers fixed at 0, which indicates that there are zero
7015  * supported Limited Ordering regions.
7016  */
7017 static const ARMCPRegInfo lor_reginfo[] = {
7018     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7019       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7020       .access = PL1_RW, .accessfn = access_lor_other,
7021       .type = ARM_CP_CONST, .resetvalue = 0 },
7022     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7023       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7024       .access = PL1_RW, .accessfn = access_lor_other,
7025       .type = ARM_CP_CONST, .resetvalue = 0 },
7026     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7027       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7028       .access = PL1_RW, .accessfn = access_lor_other,
7029       .type = ARM_CP_CONST, .resetvalue = 0 },
7030     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7031       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7032       .access = PL1_RW, .accessfn = access_lor_other,
7033       .type = ARM_CP_CONST, .resetvalue = 0 },
7034     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7035       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7036       .access = PL1_R, .accessfn = access_lor_ns,
7037       .type = ARM_CP_CONST, .resetvalue = 0 },
7038     REGINFO_SENTINEL
7039 };
7040 
7041 #ifdef TARGET_AARCH64
7042 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7043                                    bool isread)
7044 {
7045     int el = arm_current_el(env);
7046 
7047     if (el < 2 &&
7048         arm_feature(env, ARM_FEATURE_EL2) &&
7049         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7050         return CP_ACCESS_TRAP_EL2;
7051     }
7052     if (el < 3 &&
7053         arm_feature(env, ARM_FEATURE_EL3) &&
7054         !(env->cp15.scr_el3 & SCR_APK)) {
7055         return CP_ACCESS_TRAP_EL3;
7056     }
7057     return CP_ACCESS_OK;
7058 }
7059 
7060 static const ARMCPRegInfo pauth_reginfo[] = {
7061     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7062       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7063       .access = PL1_RW, .accessfn = access_pauth,
7064       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7065     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7066       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7067       .access = PL1_RW, .accessfn = access_pauth,
7068       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7069     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7070       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7071       .access = PL1_RW, .accessfn = access_pauth,
7072       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7073     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7074       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7075       .access = PL1_RW, .accessfn = access_pauth,
7076       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7077     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7078       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7079       .access = PL1_RW, .accessfn = access_pauth,
7080       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7081     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7082       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7083       .access = PL1_RW, .accessfn = access_pauth,
7084       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7085     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7086       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7087       .access = PL1_RW, .accessfn = access_pauth,
7088       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7089     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7090       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7091       .access = PL1_RW, .accessfn = access_pauth,
7092       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7093     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7094       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7095       .access = PL1_RW, .accessfn = access_pauth,
7096       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7097     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7098       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7099       .access = PL1_RW, .accessfn = access_pauth,
7100       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7101     REGINFO_SENTINEL
7102 };
7103 
7104 static const ARMCPRegInfo tlbirange_reginfo[] = {
7105     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7106       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7107       .access = PL1_W, .type = ARM_CP_NO_RAW,
7108       .writefn = tlbi_aa64_rvae1is_write },
7109     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7110       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7111       .access = PL1_W, .type = ARM_CP_NO_RAW,
7112       .writefn = tlbi_aa64_rvae1is_write },
7113    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7114       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7115       .access = PL1_W, .type = ARM_CP_NO_RAW,
7116       .writefn = tlbi_aa64_rvae1is_write },
7117     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7118       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7119       .access = PL1_W, .type = ARM_CP_NO_RAW,
7120       .writefn = tlbi_aa64_rvae1is_write },
7121     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7122       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7123       .access = PL1_W, .type = ARM_CP_NO_RAW,
7124       .writefn = tlbi_aa64_rvae1is_write },
7125     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7126       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7127       .access = PL1_W, .type = ARM_CP_NO_RAW,
7128       .writefn = tlbi_aa64_rvae1is_write },
7129    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7130       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7131       .access = PL1_W, .type = ARM_CP_NO_RAW,
7132       .writefn = tlbi_aa64_rvae1is_write },
7133     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7134       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7135       .access = PL1_W, .type = ARM_CP_NO_RAW,
7136       .writefn = tlbi_aa64_rvae1is_write },
7137     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7138       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7139       .access = PL1_W, .type = ARM_CP_NO_RAW,
7140       .writefn = tlbi_aa64_rvae1_write },
7141     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7142       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7143       .access = PL1_W, .type = ARM_CP_NO_RAW,
7144       .writefn = tlbi_aa64_rvae1_write },
7145    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7146       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7147       .access = PL1_W, .type = ARM_CP_NO_RAW,
7148       .writefn = tlbi_aa64_rvae1_write },
7149     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7150       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7151       .access = PL1_W, .type = ARM_CP_NO_RAW,
7152       .writefn = tlbi_aa64_rvae1_write },
7153     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7154       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7155       .access = PL2_W, .type = ARM_CP_NOP },
7156     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7157       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7158       .access = PL2_W, .type = ARM_CP_NOP },
7159     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7160       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7161       .access = PL2_W, .type = ARM_CP_NO_RAW,
7162       .writefn = tlbi_aa64_rvae2is_write },
7163    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7164       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7165       .access = PL2_W, .type = ARM_CP_NO_RAW,
7166       .writefn = tlbi_aa64_rvae2is_write },
7167     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7168       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7169       .access = PL2_W, .type = ARM_CP_NOP },
7170    { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7171       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7172       .access = PL2_W, .type = ARM_CP_NOP },
7173    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7174       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7175       .access = PL2_W, .type = ARM_CP_NO_RAW,
7176       .writefn = tlbi_aa64_rvae2is_write },
7177    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7178       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7179       .access = PL2_W, .type = ARM_CP_NO_RAW,
7180       .writefn = tlbi_aa64_rvae2is_write },
7181     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7182       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7183       .access = PL2_W, .type = ARM_CP_NO_RAW,
7184       .writefn = tlbi_aa64_rvae2_write },
7185    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7186       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7187       .access = PL2_W, .type = ARM_CP_NO_RAW,
7188       .writefn = tlbi_aa64_rvae2_write },
7189    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7190       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7191       .access = PL3_W, .type = ARM_CP_NO_RAW,
7192       .writefn = tlbi_aa64_rvae3is_write },
7193    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7194       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7195       .access = PL3_W, .type = ARM_CP_NO_RAW,
7196       .writefn = tlbi_aa64_rvae3is_write },
7197    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7198       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7199       .access = PL3_W, .type = ARM_CP_NO_RAW,
7200       .writefn = tlbi_aa64_rvae3is_write },
7201    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7202       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7203       .access = PL3_W, .type = ARM_CP_NO_RAW,
7204       .writefn = tlbi_aa64_rvae3is_write },
7205    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7206       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7207       .access = PL3_W, .type = ARM_CP_NO_RAW,
7208       .writefn = tlbi_aa64_rvae3_write },
7209    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7210       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7211       .access = PL3_W, .type = ARM_CP_NO_RAW,
7212       .writefn = tlbi_aa64_rvae3_write },
7213     REGINFO_SENTINEL
7214 };
7215 
7216 static const ARMCPRegInfo tlbios_reginfo[] = {
7217     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7218       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7219       .access = PL1_W, .type = ARM_CP_NO_RAW,
7220       .writefn = tlbi_aa64_vmalle1is_write },
7221     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7222       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7223       .access = PL1_W, .type = ARM_CP_NO_RAW,
7224       .writefn = tlbi_aa64_vmalle1is_write },
7225     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7226       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7227       .access = PL2_W, .type = ARM_CP_NO_RAW,
7228       .writefn = tlbi_aa64_alle2is_write },
7229    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7230       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7231       .access = PL2_W, .type = ARM_CP_NO_RAW,
7232       .writefn = tlbi_aa64_alle1is_write },
7233     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7234       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7235       .access = PL2_W, .type = ARM_CP_NO_RAW,
7236       .writefn = tlbi_aa64_alle1is_write },
7237     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7238       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7239       .access = PL2_W, .type = ARM_CP_NOP },
7240     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7241       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7242       .access = PL2_W, .type = ARM_CP_NOP },
7243     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7244       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7245       .access = PL2_W, .type = ARM_CP_NOP },
7246     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7247       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7248       .access = PL2_W, .type = ARM_CP_NOP },
7249     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7250       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7251       .access = PL3_W, .type = ARM_CP_NO_RAW,
7252       .writefn = tlbi_aa64_alle3is_write },
7253     REGINFO_SENTINEL
7254 };
7255 
7256 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7257 {
7258     Error *err = NULL;
7259     uint64_t ret;
7260 
7261     /* Success sets NZCV = 0000.  */
7262     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7263 
7264     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7265         /*
7266          * ??? Failed, for unknown reasons in the crypto subsystem.
7267          * The best we can do is log the reason and return the
7268          * timed-out indication to the guest.  There is no reason
7269          * we know to expect this failure to be transitory, so the
7270          * guest may well hang retrying the operation.
7271          */
7272         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7273                       ri->name, error_get_pretty(err));
7274         error_free(err);
7275 
7276         env->ZF = 0; /* NZCF = 0100 */
7277         return 0;
7278     }
7279     return ret;
7280 }
7281 
7282 /* We do not support re-seeding, so the two registers operate the same.  */
7283 static const ARMCPRegInfo rndr_reginfo[] = {
7284     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7285       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7286       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7287       .access = PL0_R, .readfn = rndr_readfn },
7288     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7289       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7290       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7291       .access = PL0_R, .readfn = rndr_readfn },
7292     REGINFO_SENTINEL
7293 };
7294 
7295 #ifndef CONFIG_USER_ONLY
7296 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7297                           uint64_t value)
7298 {
7299     ARMCPU *cpu = env_archcpu(env);
7300     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7301     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7302     uint64_t vaddr_in = (uint64_t) value;
7303     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7304     void *haddr;
7305     int mem_idx = cpu_mmu_index(env, false);
7306 
7307     /* This won't be crossing page boundaries */
7308     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7309     if (haddr) {
7310 
7311         ram_addr_t offset;
7312         MemoryRegion *mr;
7313 
7314         /* RCU lock is already being held */
7315         mr = memory_region_from_host(haddr, &offset);
7316 
7317         if (mr) {
7318             memory_region_writeback(mr, offset, dline_size);
7319         }
7320     }
7321 }
7322 
7323 static const ARMCPRegInfo dcpop_reg[] = {
7324     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7325       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7326       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7327       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7328     REGINFO_SENTINEL
7329 };
7330 
7331 static const ARMCPRegInfo dcpodp_reg[] = {
7332     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7333       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7334       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7335       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7336     REGINFO_SENTINEL
7337 };
7338 #endif /*CONFIG_USER_ONLY*/
7339 
7340 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7341                                        bool isread)
7342 {
7343     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7344         return CP_ACCESS_TRAP_EL2;
7345     }
7346 
7347     return CP_ACCESS_OK;
7348 }
7349 
7350 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7351                                  bool isread)
7352 {
7353     int el = arm_current_el(env);
7354 
7355     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7356         uint64_t hcr = arm_hcr_el2_eff(env);
7357         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7358             return CP_ACCESS_TRAP_EL2;
7359         }
7360     }
7361     if (el < 3 &&
7362         arm_feature(env, ARM_FEATURE_EL3) &&
7363         !(env->cp15.scr_el3 & SCR_ATA)) {
7364         return CP_ACCESS_TRAP_EL3;
7365     }
7366     return CP_ACCESS_OK;
7367 }
7368 
7369 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7370 {
7371     return env->pstate & PSTATE_TCO;
7372 }
7373 
7374 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7375 {
7376     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7377 }
7378 
7379 static const ARMCPRegInfo mte_reginfo[] = {
7380     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7381       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7382       .access = PL1_RW, .accessfn = access_mte,
7383       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7384     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7385       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7386       .access = PL1_RW, .accessfn = access_mte,
7387       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7388     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7389       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7390       .access = PL2_RW, .accessfn = access_mte,
7391       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7392     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7393       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7394       .access = PL3_RW,
7395       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7396     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7397       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7398       .access = PL1_RW, .accessfn = access_mte,
7399       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7400     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7401       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7402       .access = PL1_RW, .accessfn = access_mte,
7403       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7404     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7405       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7406       .access = PL1_R, .accessfn = access_aa64_tid5,
7407       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7408     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7409       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7410       .type = ARM_CP_NO_RAW,
7411       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7412     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7413       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7414       .type = ARM_CP_NOP, .access = PL1_W,
7415       .accessfn = aa64_cacheop_poc_access },
7416     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7417       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7418       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7419     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7420       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7421       .type = ARM_CP_NOP, .access = PL1_W,
7422       .accessfn = aa64_cacheop_poc_access },
7423     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7424       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7425       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7426     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7427       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7428       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7429     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7430       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7431       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7432     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7433       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7434       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7435     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7436       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7437       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7438     REGINFO_SENTINEL
7439 };
7440 
7441 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7442     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7443       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7444       .type = ARM_CP_CONST, .access = PL0_RW, },
7445     REGINFO_SENTINEL
7446 };
7447 
7448 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7449     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7450       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7451       .type = ARM_CP_NOP, .access = PL0_W,
7452       .accessfn = aa64_cacheop_poc_access },
7453     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7454       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7455       .type = ARM_CP_NOP, .access = PL0_W,
7456       .accessfn = aa64_cacheop_poc_access },
7457     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7458       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7459       .type = ARM_CP_NOP, .access = PL0_W,
7460       .accessfn = aa64_cacheop_poc_access },
7461     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7462       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7463       .type = ARM_CP_NOP, .access = PL0_W,
7464       .accessfn = aa64_cacheop_poc_access },
7465     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7466       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7467       .type = ARM_CP_NOP, .access = PL0_W,
7468       .accessfn = aa64_cacheop_poc_access },
7469     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7470       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7471       .type = ARM_CP_NOP, .access = PL0_W,
7472       .accessfn = aa64_cacheop_poc_access },
7473     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7474       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7475       .type = ARM_CP_NOP, .access = PL0_W,
7476       .accessfn = aa64_cacheop_poc_access },
7477     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7478       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7479       .type = ARM_CP_NOP, .access = PL0_W,
7480       .accessfn = aa64_cacheop_poc_access },
7481     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7482       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7483       .access = PL0_W, .type = ARM_CP_DC_GVA,
7484 #ifndef CONFIG_USER_ONLY
7485       /* Avoid overhead of an access check that always passes in user-mode */
7486       .accessfn = aa64_zva_access,
7487 #endif
7488     },
7489     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7490       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7491       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7492 #ifndef CONFIG_USER_ONLY
7493       /* Avoid overhead of an access check that always passes in user-mode */
7494       .accessfn = aa64_zva_access,
7495 #endif
7496     },
7497     REGINFO_SENTINEL
7498 };
7499 
7500 #endif
7501 
7502 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7503                                      bool isread)
7504 {
7505     int el = arm_current_el(env);
7506 
7507     if (el == 0) {
7508         uint64_t sctlr = arm_sctlr(env, el);
7509         if (!(sctlr & SCTLR_EnRCTX)) {
7510             return CP_ACCESS_TRAP;
7511         }
7512     } else if (el == 1) {
7513         uint64_t hcr = arm_hcr_el2_eff(env);
7514         if (hcr & HCR_NV) {
7515             return CP_ACCESS_TRAP_EL2;
7516         }
7517     }
7518     return CP_ACCESS_OK;
7519 }
7520 
7521 static const ARMCPRegInfo predinv_reginfo[] = {
7522     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7523       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7524       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7525     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7526       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7527       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7528     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7529       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7530       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7531     /*
7532      * Note the AArch32 opcodes have a different OPC1.
7533      */
7534     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7535       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7536       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7537     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7538       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7539       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7540     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7541       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7542       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7543     REGINFO_SENTINEL
7544 };
7545 
7546 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7547 {
7548     /* Read the high 32 bits of the current CCSIDR */
7549     return extract64(ccsidr_read(env, ri), 32, 32);
7550 }
7551 
7552 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7553     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7554       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7555       .access = PL1_R,
7556       .accessfn = access_aa64_tid2,
7557       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7558     REGINFO_SENTINEL
7559 };
7560 
7561 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7562                                        bool isread)
7563 {
7564     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7565         return CP_ACCESS_TRAP_EL2;
7566     }
7567 
7568     return CP_ACCESS_OK;
7569 }
7570 
7571 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7572                                        bool isread)
7573 {
7574     if (arm_feature(env, ARM_FEATURE_V8)) {
7575         return access_aa64_tid3(env, ri, isread);
7576     }
7577 
7578     return CP_ACCESS_OK;
7579 }
7580 
7581 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7582                                      bool isread)
7583 {
7584     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7585         return CP_ACCESS_TRAP_EL2;
7586     }
7587 
7588     return CP_ACCESS_OK;
7589 }
7590 
7591 static const ARMCPRegInfo jazelle_regs[] = {
7592     { .name = "JIDR",
7593       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7594       .access = PL1_R, .accessfn = access_jazelle,
7595       .type = ARM_CP_CONST, .resetvalue = 0 },
7596     { .name = "JOSCR",
7597       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7598       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7599     { .name = "JMCR",
7600       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7601       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7602     REGINFO_SENTINEL
7603 };
7604 
7605 static const ARMCPRegInfo vhe_reginfo[] = {
7606     { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7607       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7608       .access = PL2_RW,
7609       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7610     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7611       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7612       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7613       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7614 #ifndef CONFIG_USER_ONLY
7615     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7616       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7617       .fieldoffset =
7618         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7619       .type = ARM_CP_IO, .access = PL2_RW,
7620       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7621     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7622       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7623       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7624       .resetfn = gt_hv_timer_reset,
7625       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7626     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7627       .type = ARM_CP_IO,
7628       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7629       .access = PL2_RW,
7630       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7631       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7632     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7633       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7634       .type = ARM_CP_IO | ARM_CP_ALIAS,
7635       .access = PL2_RW, .accessfn = e2h_access,
7636       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7637       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7638     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7639       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7640       .type = ARM_CP_IO | ARM_CP_ALIAS,
7641       .access = PL2_RW, .accessfn = e2h_access,
7642       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7643       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7644     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7645       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7646       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7647       .access = PL2_RW, .accessfn = e2h_access,
7648       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7649     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7650       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7651       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7652       .access = PL2_RW, .accessfn = e2h_access,
7653       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7654     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7655       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7656       .type = ARM_CP_IO | ARM_CP_ALIAS,
7657       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7658       .access = PL2_RW, .accessfn = e2h_access,
7659       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7660     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7661       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7662       .type = ARM_CP_IO | ARM_CP_ALIAS,
7663       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7664       .access = PL2_RW, .accessfn = e2h_access,
7665       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7666 #endif
7667     REGINFO_SENTINEL
7668 };
7669 
7670 #ifndef CONFIG_USER_ONLY
7671 static const ARMCPRegInfo ats1e1_reginfo[] = {
7672     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7673       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7674       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7675       .writefn = ats_write64 },
7676     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7677       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7678       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7679       .writefn = ats_write64 },
7680     REGINFO_SENTINEL
7681 };
7682 
7683 static const ARMCPRegInfo ats1cp_reginfo[] = {
7684     { .name = "ATS1CPRP",
7685       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7686       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7687       .writefn = ats_write },
7688     { .name = "ATS1CPWP",
7689       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7690       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7691       .writefn = ats_write },
7692     REGINFO_SENTINEL
7693 };
7694 #endif
7695 
7696 /*
7697  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7698  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7699  * is non-zero, which is never for ARMv7, optionally in ARMv8
7700  * and mandatorily for ARMv8.2 and up.
7701  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7702  * implementation is RAZ/WI we can ignore this detail, as we
7703  * do for ACTLR.
7704  */
7705 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7706     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7707       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7708       .access = PL1_RW, .accessfn = access_tacr,
7709       .type = ARM_CP_CONST, .resetvalue = 0 },
7710     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7711       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7712       .access = PL2_RW, .type = ARM_CP_CONST,
7713       .resetvalue = 0 },
7714     REGINFO_SENTINEL
7715 };
7716 
7717 void register_cp_regs_for_features(ARMCPU *cpu)
7718 {
7719     /* Register all the coprocessor registers based on feature bits */
7720     CPUARMState *env = &cpu->env;
7721     if (arm_feature(env, ARM_FEATURE_M)) {
7722         /* M profile has no coprocessor registers */
7723         return;
7724     }
7725 
7726     define_arm_cp_regs(cpu, cp_reginfo);
7727     if (!arm_feature(env, ARM_FEATURE_V8)) {
7728         /* Must go early as it is full of wildcards that may be
7729          * overridden by later definitions.
7730          */
7731         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7732     }
7733 
7734     if (arm_feature(env, ARM_FEATURE_V6)) {
7735         /* The ID registers all have impdef reset values */
7736         ARMCPRegInfo v6_idregs[] = {
7737             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7738               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7739               .access = PL1_R, .type = ARM_CP_CONST,
7740               .accessfn = access_aa32_tid3,
7741               .resetvalue = cpu->isar.id_pfr0 },
7742             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7743              * the value of the GIC field until after we define these regs.
7744              */
7745             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7746               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7747               .access = PL1_R, .type = ARM_CP_NO_RAW,
7748               .accessfn = access_aa32_tid3,
7749               .readfn = id_pfr1_read,
7750               .writefn = arm_cp_write_ignore },
7751             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7752               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7753               .access = PL1_R, .type = ARM_CP_CONST,
7754               .accessfn = access_aa32_tid3,
7755               .resetvalue = cpu->isar.id_dfr0 },
7756             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7757               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7758               .access = PL1_R, .type = ARM_CP_CONST,
7759               .accessfn = access_aa32_tid3,
7760               .resetvalue = cpu->id_afr0 },
7761             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7762               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7763               .access = PL1_R, .type = ARM_CP_CONST,
7764               .accessfn = access_aa32_tid3,
7765               .resetvalue = cpu->isar.id_mmfr0 },
7766             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7767               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7768               .access = PL1_R, .type = ARM_CP_CONST,
7769               .accessfn = access_aa32_tid3,
7770               .resetvalue = cpu->isar.id_mmfr1 },
7771             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7772               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7773               .access = PL1_R, .type = ARM_CP_CONST,
7774               .accessfn = access_aa32_tid3,
7775               .resetvalue = cpu->isar.id_mmfr2 },
7776             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7777               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7778               .access = PL1_R, .type = ARM_CP_CONST,
7779               .accessfn = access_aa32_tid3,
7780               .resetvalue = cpu->isar.id_mmfr3 },
7781             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7782               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7783               .access = PL1_R, .type = ARM_CP_CONST,
7784               .accessfn = access_aa32_tid3,
7785               .resetvalue = cpu->isar.id_isar0 },
7786             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7787               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7788               .access = PL1_R, .type = ARM_CP_CONST,
7789               .accessfn = access_aa32_tid3,
7790               .resetvalue = cpu->isar.id_isar1 },
7791             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7792               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7793               .access = PL1_R, .type = ARM_CP_CONST,
7794               .accessfn = access_aa32_tid3,
7795               .resetvalue = cpu->isar.id_isar2 },
7796             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7797               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7798               .access = PL1_R, .type = ARM_CP_CONST,
7799               .accessfn = access_aa32_tid3,
7800               .resetvalue = cpu->isar.id_isar3 },
7801             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7802               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7803               .access = PL1_R, .type = ARM_CP_CONST,
7804               .accessfn = access_aa32_tid3,
7805               .resetvalue = cpu->isar.id_isar4 },
7806             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7807               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7808               .access = PL1_R, .type = ARM_CP_CONST,
7809               .accessfn = access_aa32_tid3,
7810               .resetvalue = cpu->isar.id_isar5 },
7811             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7812               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7813               .access = PL1_R, .type = ARM_CP_CONST,
7814               .accessfn = access_aa32_tid3,
7815               .resetvalue = cpu->isar.id_mmfr4 },
7816             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7817               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7818               .access = PL1_R, .type = ARM_CP_CONST,
7819               .accessfn = access_aa32_tid3,
7820               .resetvalue = cpu->isar.id_isar6 },
7821             REGINFO_SENTINEL
7822         };
7823         define_arm_cp_regs(cpu, v6_idregs);
7824         define_arm_cp_regs(cpu, v6_cp_reginfo);
7825     } else {
7826         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7827     }
7828     if (arm_feature(env, ARM_FEATURE_V6K)) {
7829         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7830     }
7831     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7832         !arm_feature(env, ARM_FEATURE_PMSA)) {
7833         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7834     }
7835     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7836         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7837     }
7838     if (arm_feature(env, ARM_FEATURE_V7)) {
7839         ARMCPRegInfo clidr = {
7840             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7841             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7842             .access = PL1_R, .type = ARM_CP_CONST,
7843             .accessfn = access_aa64_tid2,
7844             .resetvalue = cpu->clidr
7845         };
7846         define_one_arm_cp_reg(cpu, &clidr);
7847         define_arm_cp_regs(cpu, v7_cp_reginfo);
7848         define_debug_regs(cpu);
7849         define_pmu_regs(cpu);
7850     } else {
7851         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7852     }
7853     if (arm_feature(env, ARM_FEATURE_V8)) {
7854         /* AArch64 ID registers, which all have impdef reset values.
7855          * Note that within the ID register ranges the unused slots
7856          * must all RAZ, not UNDEF; future architecture versions may
7857          * define new registers here.
7858          */
7859         ARMCPRegInfo v8_idregs[] = {
7860             /*
7861              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7862              * emulation because we don't know the right value for the
7863              * GIC field until after we define these regs.
7864              */
7865             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7866               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7867               .access = PL1_R,
7868 #ifdef CONFIG_USER_ONLY
7869               .type = ARM_CP_CONST,
7870               .resetvalue = cpu->isar.id_aa64pfr0
7871 #else
7872               .type = ARM_CP_NO_RAW,
7873               .accessfn = access_aa64_tid3,
7874               .readfn = id_aa64pfr0_read,
7875               .writefn = arm_cp_write_ignore
7876 #endif
7877             },
7878             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7879               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7880               .access = PL1_R, .type = ARM_CP_CONST,
7881               .accessfn = access_aa64_tid3,
7882               .resetvalue = cpu->isar.id_aa64pfr1},
7883             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7884               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7885               .access = PL1_R, .type = ARM_CP_CONST,
7886               .accessfn = access_aa64_tid3,
7887               .resetvalue = 0 },
7888             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7889               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7890               .access = PL1_R, .type = ARM_CP_CONST,
7891               .accessfn = access_aa64_tid3,
7892               .resetvalue = 0 },
7893             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7894               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7895               .access = PL1_R, .type = ARM_CP_CONST,
7896               .accessfn = access_aa64_tid3,
7897               .resetvalue = cpu->isar.id_aa64zfr0 },
7898             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7899               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7900               .access = PL1_R, .type = ARM_CP_CONST,
7901               .accessfn = access_aa64_tid3,
7902               .resetvalue = 0 },
7903             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7904               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7905               .access = PL1_R, .type = ARM_CP_CONST,
7906               .accessfn = access_aa64_tid3,
7907               .resetvalue = 0 },
7908             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7909               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7910               .access = PL1_R, .type = ARM_CP_CONST,
7911               .accessfn = access_aa64_tid3,
7912               .resetvalue = 0 },
7913             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7914               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7915               .access = PL1_R, .type = ARM_CP_CONST,
7916               .accessfn = access_aa64_tid3,
7917               .resetvalue = cpu->isar.id_aa64dfr0 },
7918             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7919               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7920               .access = PL1_R, .type = ARM_CP_CONST,
7921               .accessfn = access_aa64_tid3,
7922               .resetvalue = cpu->isar.id_aa64dfr1 },
7923             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7924               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7925               .access = PL1_R, .type = ARM_CP_CONST,
7926               .accessfn = access_aa64_tid3,
7927               .resetvalue = 0 },
7928             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7929               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7930               .access = PL1_R, .type = ARM_CP_CONST,
7931               .accessfn = access_aa64_tid3,
7932               .resetvalue = 0 },
7933             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7934               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7935               .access = PL1_R, .type = ARM_CP_CONST,
7936               .accessfn = access_aa64_tid3,
7937               .resetvalue = cpu->id_aa64afr0 },
7938             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7939               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7940               .access = PL1_R, .type = ARM_CP_CONST,
7941               .accessfn = access_aa64_tid3,
7942               .resetvalue = cpu->id_aa64afr1 },
7943             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7944               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7945               .access = PL1_R, .type = ARM_CP_CONST,
7946               .accessfn = access_aa64_tid3,
7947               .resetvalue = 0 },
7948             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7949               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7950               .access = PL1_R, .type = ARM_CP_CONST,
7951               .accessfn = access_aa64_tid3,
7952               .resetvalue = 0 },
7953             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7954               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7955               .access = PL1_R, .type = ARM_CP_CONST,
7956               .accessfn = access_aa64_tid3,
7957               .resetvalue = cpu->isar.id_aa64isar0 },
7958             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7959               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7960               .access = PL1_R, .type = ARM_CP_CONST,
7961               .accessfn = access_aa64_tid3,
7962               .resetvalue = cpu->isar.id_aa64isar1 },
7963             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7964               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7965               .access = PL1_R, .type = ARM_CP_CONST,
7966               .accessfn = access_aa64_tid3,
7967               .resetvalue = 0 },
7968             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7969               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7970               .access = PL1_R, .type = ARM_CP_CONST,
7971               .accessfn = access_aa64_tid3,
7972               .resetvalue = 0 },
7973             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7974               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7975               .access = PL1_R, .type = ARM_CP_CONST,
7976               .accessfn = access_aa64_tid3,
7977               .resetvalue = 0 },
7978             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7979               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7980               .access = PL1_R, .type = ARM_CP_CONST,
7981               .accessfn = access_aa64_tid3,
7982               .resetvalue = 0 },
7983             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7984               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7985               .access = PL1_R, .type = ARM_CP_CONST,
7986               .accessfn = access_aa64_tid3,
7987               .resetvalue = 0 },
7988             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7989               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7990               .access = PL1_R, .type = ARM_CP_CONST,
7991               .accessfn = access_aa64_tid3,
7992               .resetvalue = 0 },
7993             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7994               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7995               .access = PL1_R, .type = ARM_CP_CONST,
7996               .accessfn = access_aa64_tid3,
7997               .resetvalue = cpu->isar.id_aa64mmfr0 },
7998             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7999               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8000               .access = PL1_R, .type = ARM_CP_CONST,
8001               .accessfn = access_aa64_tid3,
8002               .resetvalue = cpu->isar.id_aa64mmfr1 },
8003             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8004               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8005               .access = PL1_R, .type = ARM_CP_CONST,
8006               .accessfn = access_aa64_tid3,
8007               .resetvalue = cpu->isar.id_aa64mmfr2 },
8008             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8009               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8010               .access = PL1_R, .type = ARM_CP_CONST,
8011               .accessfn = access_aa64_tid3,
8012               .resetvalue = 0 },
8013             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8014               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8015               .access = PL1_R, .type = ARM_CP_CONST,
8016               .accessfn = access_aa64_tid3,
8017               .resetvalue = 0 },
8018             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8019               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8020               .access = PL1_R, .type = ARM_CP_CONST,
8021               .accessfn = access_aa64_tid3,
8022               .resetvalue = 0 },
8023             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8024               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8025               .access = PL1_R, .type = ARM_CP_CONST,
8026               .accessfn = access_aa64_tid3,
8027               .resetvalue = 0 },
8028             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8029               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8030               .access = PL1_R, .type = ARM_CP_CONST,
8031               .accessfn = access_aa64_tid3,
8032               .resetvalue = 0 },
8033             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8034               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8035               .access = PL1_R, .type = ARM_CP_CONST,
8036               .accessfn = access_aa64_tid3,
8037               .resetvalue = cpu->isar.mvfr0 },
8038             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8039               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8040               .access = PL1_R, .type = ARM_CP_CONST,
8041               .accessfn = access_aa64_tid3,
8042               .resetvalue = cpu->isar.mvfr1 },
8043             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8044               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8045               .access = PL1_R, .type = ARM_CP_CONST,
8046               .accessfn = access_aa64_tid3,
8047               .resetvalue = cpu->isar.mvfr2 },
8048             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8049               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8050               .access = PL1_R, .type = ARM_CP_CONST,
8051               .accessfn = access_aa64_tid3,
8052               .resetvalue = 0 },
8053             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8054               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8055               .access = PL1_R, .type = ARM_CP_CONST,
8056               .accessfn = access_aa64_tid3,
8057               .resetvalue = cpu->isar.id_pfr2 },
8058             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8059               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8060               .access = PL1_R, .type = ARM_CP_CONST,
8061               .accessfn = access_aa64_tid3,
8062               .resetvalue = 0 },
8063             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8064               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8065               .access = PL1_R, .type = ARM_CP_CONST,
8066               .accessfn = access_aa64_tid3,
8067               .resetvalue = 0 },
8068             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8069               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8070               .access = PL1_R, .type = ARM_CP_CONST,
8071               .accessfn = access_aa64_tid3,
8072               .resetvalue = 0 },
8073             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8074               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8075               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8076               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8077             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8078               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8079               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8080               .resetvalue = cpu->pmceid0 },
8081             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8082               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8083               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8084               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8085             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8086               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8087               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8088               .resetvalue = cpu->pmceid1 },
8089             REGINFO_SENTINEL
8090         };
8091 #ifdef CONFIG_USER_ONLY
8092         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8093             { .name = "ID_AA64PFR0_EL1",
8094               .exported_bits = 0x000f000f00ff0000,
8095               .fixed_bits    = 0x0000000000000011 },
8096             { .name = "ID_AA64PFR1_EL1",
8097               .exported_bits = 0x00000000000000f0 },
8098             { .name = "ID_AA64PFR*_EL1_RESERVED",
8099               .is_glob = true                     },
8100             { .name = "ID_AA64ZFR0_EL1"           },
8101             { .name = "ID_AA64MMFR0_EL1",
8102               .fixed_bits    = 0x00000000ff000000 },
8103             { .name = "ID_AA64MMFR1_EL1"          },
8104             { .name = "ID_AA64MMFR*_EL1_RESERVED",
8105               .is_glob = true                     },
8106             { .name = "ID_AA64DFR0_EL1",
8107               .fixed_bits    = 0x0000000000000006 },
8108             { .name = "ID_AA64DFR1_EL1"           },
8109             { .name = "ID_AA64DFR*_EL1_RESERVED",
8110               .is_glob = true                     },
8111             { .name = "ID_AA64AFR*",
8112               .is_glob = true                     },
8113             { .name = "ID_AA64ISAR0_EL1",
8114               .exported_bits = 0x00fffffff0fffff0 },
8115             { .name = "ID_AA64ISAR1_EL1",
8116               .exported_bits = 0x000000f0ffffffff },
8117             { .name = "ID_AA64ISAR*_EL1_RESERVED",
8118               .is_glob = true                     },
8119             REGUSERINFO_SENTINEL
8120         };
8121         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8122 #endif
8123         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8124         if (!arm_feature(env, ARM_FEATURE_EL3) &&
8125             !arm_feature(env, ARM_FEATURE_EL2)) {
8126             ARMCPRegInfo rvbar = {
8127                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
8128                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8129                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
8130             };
8131             define_one_arm_cp_reg(cpu, &rvbar);
8132         }
8133         define_arm_cp_regs(cpu, v8_idregs);
8134         define_arm_cp_regs(cpu, v8_cp_reginfo);
8135     }
8136     if (arm_feature(env, ARM_FEATURE_EL2)) {
8137         uint64_t vmpidr_def = mpidr_read_val(env);
8138         ARMCPRegInfo vpidr_regs[] = {
8139             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8140               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8141               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8142               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
8143               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8144             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8145               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8146               .access = PL2_RW, .resetvalue = cpu->midr,
8147               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8148             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8149               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8150               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8151               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
8152               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8153             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8154               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8155               .access = PL2_RW,
8156               .resetvalue = vmpidr_def,
8157               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8158             REGINFO_SENTINEL
8159         };
8160         define_arm_cp_regs(cpu, vpidr_regs);
8161         define_arm_cp_regs(cpu, el2_cp_reginfo);
8162         if (arm_feature(env, ARM_FEATURE_V8)) {
8163             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8164         }
8165         if (cpu_isar_feature(aa64_sel2, cpu)) {
8166             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8167         }
8168         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8169         if (!arm_feature(env, ARM_FEATURE_EL3)) {
8170             ARMCPRegInfo rvbar = {
8171                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8172                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8173                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
8174             };
8175             define_one_arm_cp_reg(cpu, &rvbar);
8176         }
8177     } else {
8178         /* If EL2 is missing but higher ELs are enabled, we need to
8179          * register the no_el2 reginfos.
8180          */
8181         if (arm_feature(env, ARM_FEATURE_EL3)) {
8182             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
8183              * of MIDR_EL1 and MPIDR_EL1.
8184              */
8185             ARMCPRegInfo vpidr_regs[] = {
8186                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8187                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8188                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
8189                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
8190                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8191                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8192                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8193                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
8194                   .type = ARM_CP_NO_RAW,
8195                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
8196                 REGINFO_SENTINEL
8197             };
8198             define_arm_cp_regs(cpu, vpidr_regs);
8199             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
8200             if (arm_feature(env, ARM_FEATURE_V8)) {
8201                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
8202             }
8203         }
8204     }
8205     if (arm_feature(env, ARM_FEATURE_EL3)) {
8206         define_arm_cp_regs(cpu, el3_cp_reginfo);
8207         ARMCPRegInfo el3_regs[] = {
8208             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8209               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8210               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
8211             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8212               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8213               .access = PL3_RW,
8214               .raw_writefn = raw_write, .writefn = sctlr_write,
8215               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8216               .resetvalue = cpu->reset_sctlr },
8217             REGINFO_SENTINEL
8218         };
8219 
8220         define_arm_cp_regs(cpu, el3_regs);
8221     }
8222     /* The behaviour of NSACR is sufficiently various that we don't
8223      * try to describe it in a single reginfo:
8224      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8225      *     reads as constant 0xc00 from NS EL1 and NS EL2
8226      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8227      *  if v7 without EL3, register doesn't exist
8228      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8229      */
8230     if (arm_feature(env, ARM_FEATURE_EL3)) {
8231         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8232             ARMCPRegInfo nsacr = {
8233                 .name = "NSACR", .type = ARM_CP_CONST,
8234                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8235                 .access = PL1_RW, .accessfn = nsacr_access,
8236                 .resetvalue = 0xc00
8237             };
8238             define_one_arm_cp_reg(cpu, &nsacr);
8239         } else {
8240             ARMCPRegInfo nsacr = {
8241                 .name = "NSACR",
8242                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8243                 .access = PL3_RW | PL1_R,
8244                 .resetvalue = 0,
8245                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8246             };
8247             define_one_arm_cp_reg(cpu, &nsacr);
8248         }
8249     } else {
8250         if (arm_feature(env, ARM_FEATURE_V8)) {
8251             ARMCPRegInfo nsacr = {
8252                 .name = "NSACR", .type = ARM_CP_CONST,
8253                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8254                 .access = PL1_R,
8255                 .resetvalue = 0xc00
8256             };
8257             define_one_arm_cp_reg(cpu, &nsacr);
8258         }
8259     }
8260 
8261     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8262         if (arm_feature(env, ARM_FEATURE_V6)) {
8263             /* PMSAv6 not implemented */
8264             assert(arm_feature(env, ARM_FEATURE_V7));
8265             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8266             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8267         } else {
8268             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8269         }
8270     } else {
8271         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8272         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8273         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8274         if (cpu_isar_feature(aa32_hpd, cpu)) {
8275             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8276         }
8277     }
8278     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8279         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8280     }
8281     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8282         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8283     }
8284     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8285         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8286     }
8287     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8288         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8289     }
8290     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8291         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8292     }
8293     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8294         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8295     }
8296     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8297         define_arm_cp_regs(cpu, omap_cp_reginfo);
8298     }
8299     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8300         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8301     }
8302     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8303         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8304     }
8305     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8306         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8307     }
8308     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8309         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8310     }
8311     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8312         define_arm_cp_regs(cpu, jazelle_regs);
8313     }
8314     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8315      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8316      * be read-only (ie write causes UNDEF exception).
8317      */
8318     {
8319         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8320             /* Pre-v8 MIDR space.
8321              * Note that the MIDR isn't a simple constant register because
8322              * of the TI925 behaviour where writes to another register can
8323              * cause the MIDR value to change.
8324              *
8325              * Unimplemented registers in the c15 0 0 0 space default to
8326              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8327              * and friends override accordingly.
8328              */
8329             { .name = "MIDR",
8330               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8331               .access = PL1_R, .resetvalue = cpu->midr,
8332               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8333               .readfn = midr_read,
8334               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8335               .type = ARM_CP_OVERRIDE },
8336             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8337             { .name = "DUMMY",
8338               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8339               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8340             { .name = "DUMMY",
8341               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8342               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8343             { .name = "DUMMY",
8344               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8345               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8346             { .name = "DUMMY",
8347               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8348               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8349             { .name = "DUMMY",
8350               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8351               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8352             REGINFO_SENTINEL
8353         };
8354         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8355             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8356               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8357               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8358               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8359               .readfn = midr_read },
8360             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8361             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8362               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8363               .access = PL1_R, .resetvalue = cpu->midr },
8364             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8365               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8366               .access = PL1_R, .resetvalue = cpu->midr },
8367             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8368               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8369               .access = PL1_R,
8370               .accessfn = access_aa64_tid1,
8371               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8372             REGINFO_SENTINEL
8373         };
8374         ARMCPRegInfo id_cp_reginfo[] = {
8375             /* These are common to v8 and pre-v8 */
8376             { .name = "CTR",
8377               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8378               .access = PL1_R, .accessfn = ctr_el0_access,
8379               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8380             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8381               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8382               .access = PL0_R, .accessfn = ctr_el0_access,
8383               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8384             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8385             { .name = "TCMTR",
8386               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8387               .access = PL1_R,
8388               .accessfn = access_aa32_tid1,
8389               .type = ARM_CP_CONST, .resetvalue = 0 },
8390             REGINFO_SENTINEL
8391         };
8392         /* TLBTR is specific to VMSA */
8393         ARMCPRegInfo id_tlbtr_reginfo = {
8394               .name = "TLBTR",
8395               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8396               .access = PL1_R,
8397               .accessfn = access_aa32_tid1,
8398               .type = ARM_CP_CONST, .resetvalue = 0,
8399         };
8400         /* MPUIR is specific to PMSA V6+ */
8401         ARMCPRegInfo id_mpuir_reginfo = {
8402               .name = "MPUIR",
8403               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8404               .access = PL1_R, .type = ARM_CP_CONST,
8405               .resetvalue = cpu->pmsav7_dregion << 8
8406         };
8407         ARMCPRegInfo crn0_wi_reginfo = {
8408             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8409             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8410             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8411         };
8412 #ifdef CONFIG_USER_ONLY
8413         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8414             { .name = "MIDR_EL1",
8415               .exported_bits = 0x00000000ffffffff },
8416             { .name = "REVIDR_EL1"                },
8417             REGUSERINFO_SENTINEL
8418         };
8419         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8420 #endif
8421         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8422             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8423             ARMCPRegInfo *r;
8424             /* Register the blanket "writes ignored" value first to cover the
8425              * whole space. Then update the specific ID registers to allow write
8426              * access, so that they ignore writes rather than causing them to
8427              * UNDEF.
8428              */
8429             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8430             for (r = id_pre_v8_midr_cp_reginfo;
8431                  r->type != ARM_CP_SENTINEL; r++) {
8432                 r->access = PL1_RW;
8433             }
8434             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8435                 r->access = PL1_RW;
8436             }
8437             id_mpuir_reginfo.access = PL1_RW;
8438             id_tlbtr_reginfo.access = PL1_RW;
8439         }
8440         if (arm_feature(env, ARM_FEATURE_V8)) {
8441             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8442         } else {
8443             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8444         }
8445         define_arm_cp_regs(cpu, id_cp_reginfo);
8446         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8447             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8448         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8449             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8450         }
8451     }
8452 
8453     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8454         ARMCPRegInfo mpidr_cp_reginfo[] = {
8455             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8456               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8457               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8458             REGINFO_SENTINEL
8459         };
8460 #ifdef CONFIG_USER_ONLY
8461         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8462             { .name = "MPIDR_EL1",
8463               .fixed_bits = 0x0000000080000000 },
8464             REGUSERINFO_SENTINEL
8465         };
8466         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8467 #endif
8468         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8469     }
8470 
8471     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8472         ARMCPRegInfo auxcr_reginfo[] = {
8473             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8474               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8475               .access = PL1_RW, .accessfn = access_tacr,
8476               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8477             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8478               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8479               .access = PL2_RW, .type = ARM_CP_CONST,
8480               .resetvalue = 0 },
8481             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8482               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8483               .access = PL3_RW, .type = ARM_CP_CONST,
8484               .resetvalue = 0 },
8485             REGINFO_SENTINEL
8486         };
8487         define_arm_cp_regs(cpu, auxcr_reginfo);
8488         if (cpu_isar_feature(aa32_ac2, cpu)) {
8489             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8490         }
8491     }
8492 
8493     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8494         /*
8495          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8496          * There are two flavours:
8497          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8498          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8499          *      32-bit register visible to AArch32 at a different encoding
8500          *      to the "flavour 1" register and with the bits rearranged to
8501          *      be able to squash a 64-bit address into the 32-bit view.
8502          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8503          * in future if we support AArch32-only configs of some of the
8504          * AArch64 cores we might need to add a specific feature flag
8505          * to indicate cores with "flavour 2" CBAR.
8506          */
8507         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8508             /* 32 bit view is [31:18] 0...0 [43:32]. */
8509             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8510                 | extract64(cpu->reset_cbar, 32, 12);
8511             ARMCPRegInfo cbar_reginfo[] = {
8512                 { .name = "CBAR",
8513                   .type = ARM_CP_CONST,
8514                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8515                   .access = PL1_R, .resetvalue = cbar32 },
8516                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8517                   .type = ARM_CP_CONST,
8518                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8519                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8520                 REGINFO_SENTINEL
8521             };
8522             /* We don't implement a r/w 64 bit CBAR currently */
8523             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8524             define_arm_cp_regs(cpu, cbar_reginfo);
8525         } else {
8526             ARMCPRegInfo cbar = {
8527                 .name = "CBAR",
8528                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8529                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8530                 .fieldoffset = offsetof(CPUARMState,
8531                                         cp15.c15_config_base_address)
8532             };
8533             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8534                 cbar.access = PL1_R;
8535                 cbar.fieldoffset = 0;
8536                 cbar.type = ARM_CP_CONST;
8537             }
8538             define_one_arm_cp_reg(cpu, &cbar);
8539         }
8540     }
8541 
8542     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8543         ARMCPRegInfo vbar_cp_reginfo[] = {
8544             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8545               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8546               .access = PL1_RW, .writefn = vbar_write,
8547               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8548                                      offsetof(CPUARMState, cp15.vbar_ns) },
8549               .resetvalue = 0 },
8550             REGINFO_SENTINEL
8551         };
8552         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8553     }
8554 
8555     /* Generic registers whose values depend on the implementation */
8556     {
8557         ARMCPRegInfo sctlr = {
8558             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8559             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8560             .access = PL1_RW, .accessfn = access_tvm_trvm,
8561             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8562                                    offsetof(CPUARMState, cp15.sctlr_ns) },
8563             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8564             .raw_writefn = raw_write,
8565         };
8566         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8567             /* Normally we would always end the TB on an SCTLR write, but Linux
8568              * arch/arm/mach-pxa/sleep.S expects two instructions following
8569              * an MMU enable to execute from cache.  Imitate this behaviour.
8570              */
8571             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8572         }
8573         define_one_arm_cp_reg(cpu, &sctlr);
8574     }
8575 
8576     if (cpu_isar_feature(aa64_lor, cpu)) {
8577         define_arm_cp_regs(cpu, lor_reginfo);
8578     }
8579     if (cpu_isar_feature(aa64_pan, cpu)) {
8580         define_one_arm_cp_reg(cpu, &pan_reginfo);
8581     }
8582 #ifndef CONFIG_USER_ONLY
8583     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8584         define_arm_cp_regs(cpu, ats1e1_reginfo);
8585     }
8586     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8587         define_arm_cp_regs(cpu, ats1cp_reginfo);
8588     }
8589 #endif
8590     if (cpu_isar_feature(aa64_uao, cpu)) {
8591         define_one_arm_cp_reg(cpu, &uao_reginfo);
8592     }
8593 
8594     if (cpu_isar_feature(aa64_dit, cpu)) {
8595         define_one_arm_cp_reg(cpu, &dit_reginfo);
8596     }
8597     if (cpu_isar_feature(aa64_ssbs, cpu)) {
8598         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8599     }
8600 
8601     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8602         define_arm_cp_regs(cpu, vhe_reginfo);
8603     }
8604 
8605     if (cpu_isar_feature(aa64_sve, cpu)) {
8606         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8607         if (arm_feature(env, ARM_FEATURE_EL2)) {
8608             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8609         } else {
8610             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8611         }
8612         if (arm_feature(env, ARM_FEATURE_EL3)) {
8613             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8614         }
8615     }
8616 
8617 #ifdef TARGET_AARCH64
8618     if (cpu_isar_feature(aa64_pauth, cpu)) {
8619         define_arm_cp_regs(cpu, pauth_reginfo);
8620     }
8621     if (cpu_isar_feature(aa64_rndr, cpu)) {
8622         define_arm_cp_regs(cpu, rndr_reginfo);
8623     }
8624     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8625         define_arm_cp_regs(cpu, tlbirange_reginfo);
8626     }
8627     if (cpu_isar_feature(aa64_tlbios, cpu)) {
8628         define_arm_cp_regs(cpu, tlbios_reginfo);
8629     }
8630 #ifndef CONFIG_USER_ONLY
8631     /* Data Cache clean instructions up to PoP */
8632     if (cpu_isar_feature(aa64_dcpop, cpu)) {
8633         define_one_arm_cp_reg(cpu, dcpop_reg);
8634 
8635         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8636             define_one_arm_cp_reg(cpu, dcpodp_reg);
8637         }
8638     }
8639 #endif /*CONFIG_USER_ONLY*/
8640 
8641     /*
8642      * If full MTE is enabled, add all of the system registers.
8643      * If only "instructions available at EL0" are enabled,
8644      * then define only a RAZ/WI version of PSTATE.TCO.
8645      */
8646     if (cpu_isar_feature(aa64_mte, cpu)) {
8647         define_arm_cp_regs(cpu, mte_reginfo);
8648         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8649     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8650         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8651         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8652     }
8653 #endif
8654 
8655     if (cpu_isar_feature(any_predinv, cpu)) {
8656         define_arm_cp_regs(cpu, predinv_reginfo);
8657     }
8658 
8659     if (cpu_isar_feature(any_ccidx, cpu)) {
8660         define_arm_cp_regs(cpu, ccsidr2_reginfo);
8661     }
8662 
8663 #ifndef CONFIG_USER_ONLY
8664     /*
8665      * Register redirections and aliases must be done last,
8666      * after the registers from the other extensions have been defined.
8667      */
8668     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8669         define_arm_vh_e2h_redirects_aliases(cpu);
8670     }
8671 #endif
8672 }
8673 
8674 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8675 {
8676     CPUState *cs = CPU(cpu);
8677     CPUARMState *env = &cpu->env;
8678 
8679     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8680         /*
8681          * The lower part of each SVE register aliases to the FPU
8682          * registers so we don't need to include both.
8683          */
8684 #ifdef TARGET_AARCH64
8685         if (isar_feature_aa64_sve(&cpu->isar)) {
8686             gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8687                                      arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8688                                      "sve-registers.xml", 0);
8689         } else
8690 #endif
8691         {
8692             gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8693                                      aarch64_fpu_gdb_set_reg,
8694                                      34, "aarch64-fpu.xml", 0);
8695         }
8696     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8697         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8698                                  51, "arm-neon.xml", 0);
8699     } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8700         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8701                                  35, "arm-vfp3.xml", 0);
8702     } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8703         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8704                                  19, "arm-vfp.xml", 0);
8705     }
8706     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8707                              arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8708                              "system-registers.xml", 0);
8709 
8710 }
8711 
8712 /* Sort alphabetically by type name, except for "any". */
8713 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8714 {
8715     ObjectClass *class_a = (ObjectClass *)a;
8716     ObjectClass *class_b = (ObjectClass *)b;
8717     const char *name_a, *name_b;
8718 
8719     name_a = object_class_get_name(class_a);
8720     name_b = object_class_get_name(class_b);
8721     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8722         return 1;
8723     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8724         return -1;
8725     } else {
8726         return strcmp(name_a, name_b);
8727     }
8728 }
8729 
8730 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8731 {
8732     ObjectClass *oc = data;
8733     const char *typename;
8734     char *name;
8735 
8736     typename = object_class_get_name(oc);
8737     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8738     qemu_printf("  %s\n", name);
8739     g_free(name);
8740 }
8741 
8742 void arm_cpu_list(void)
8743 {
8744     GSList *list;
8745 
8746     list = object_class_get_list(TYPE_ARM_CPU, false);
8747     list = g_slist_sort(list, arm_cpu_list_compare);
8748     qemu_printf("Available CPUs:\n");
8749     g_slist_foreach(list, arm_cpu_list_entry, NULL);
8750     g_slist_free(list);
8751 }
8752 
8753 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8754 {
8755     ObjectClass *oc = data;
8756     CpuDefinitionInfoList **cpu_list = user_data;
8757     CpuDefinitionInfo *info;
8758     const char *typename;
8759 
8760     typename = object_class_get_name(oc);
8761     info = g_malloc0(sizeof(*info));
8762     info->name = g_strndup(typename,
8763                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
8764     info->q_typename = g_strdup(typename);
8765 
8766     QAPI_LIST_PREPEND(*cpu_list, info);
8767 }
8768 
8769 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8770 {
8771     CpuDefinitionInfoList *cpu_list = NULL;
8772     GSList *list;
8773 
8774     list = object_class_get_list(TYPE_ARM_CPU, false);
8775     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8776     g_slist_free(list);
8777 
8778     return cpu_list;
8779 }
8780 
8781 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8782                                    void *opaque, int state, int secstate,
8783                                    int crm, int opc1, int opc2,
8784                                    const char *name)
8785 {
8786     /* Private utility function for define_one_arm_cp_reg_with_opaque():
8787      * add a single reginfo struct to the hash table.
8788      */
8789     uint32_t *key = g_new(uint32_t, 1);
8790     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8791     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8792     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8793 
8794     r2->name = g_strdup(name);
8795     /* Reset the secure state to the specific incoming state.  This is
8796      * necessary as the register may have been defined with both states.
8797      */
8798     r2->secure = secstate;
8799 
8800     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8801         /* Register is banked (using both entries in array).
8802          * Overwriting fieldoffset as the array is only used to define
8803          * banked registers but later only fieldoffset is used.
8804          */
8805         r2->fieldoffset = r->bank_fieldoffsets[ns];
8806     }
8807 
8808     if (state == ARM_CP_STATE_AA32) {
8809         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8810             /* If the register is banked then we don't need to migrate or
8811              * reset the 32-bit instance in certain cases:
8812              *
8813              * 1) If the register has both 32-bit and 64-bit instances then we
8814              *    can count on the 64-bit instance taking care of the
8815              *    non-secure bank.
8816              * 2) If ARMv8 is enabled then we can count on a 64-bit version
8817              *    taking care of the secure bank.  This requires that separate
8818              *    32 and 64-bit definitions are provided.
8819              */
8820             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8821                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8822                 r2->type |= ARM_CP_ALIAS;
8823             }
8824         } else if ((secstate != r->secure) && !ns) {
8825             /* The register is not banked so we only want to allow migration of
8826              * the non-secure instance.
8827              */
8828             r2->type |= ARM_CP_ALIAS;
8829         }
8830 
8831         if (r->state == ARM_CP_STATE_BOTH) {
8832             /* We assume it is a cp15 register if the .cp field is left unset.
8833              */
8834             if (r2->cp == 0) {
8835                 r2->cp = 15;
8836             }
8837 
8838 #ifdef HOST_WORDS_BIGENDIAN
8839             if (r2->fieldoffset) {
8840                 r2->fieldoffset += sizeof(uint32_t);
8841             }
8842 #endif
8843         }
8844     }
8845     if (state == ARM_CP_STATE_AA64) {
8846         /* To allow abbreviation of ARMCPRegInfo
8847          * definitions, we treat cp == 0 as equivalent to
8848          * the value for "standard guest-visible sysreg".
8849          * STATE_BOTH definitions are also always "standard
8850          * sysreg" in their AArch64 view (the .cp value may
8851          * be non-zero for the benefit of the AArch32 view).
8852          */
8853         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8854             r2->cp = CP_REG_ARM64_SYSREG_CP;
8855         }
8856         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8857                                   r2->opc0, opc1, opc2);
8858     } else {
8859         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8860     }
8861     if (opaque) {
8862         r2->opaque = opaque;
8863     }
8864     /* reginfo passed to helpers is correct for the actual access,
8865      * and is never ARM_CP_STATE_BOTH:
8866      */
8867     r2->state = state;
8868     /* Make sure reginfo passed to helpers for wildcarded regs
8869      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8870      */
8871     r2->crm = crm;
8872     r2->opc1 = opc1;
8873     r2->opc2 = opc2;
8874     /* By convention, for wildcarded registers only the first
8875      * entry is used for migration; the others are marked as
8876      * ALIAS so we don't try to transfer the register
8877      * multiple times. Special registers (ie NOP/WFI) are
8878      * never migratable and not even raw-accessible.
8879      */
8880     if ((r->type & ARM_CP_SPECIAL)) {
8881         r2->type |= ARM_CP_NO_RAW;
8882     }
8883     if (((r->crm == CP_ANY) && crm != 0) ||
8884         ((r->opc1 == CP_ANY) && opc1 != 0) ||
8885         ((r->opc2 == CP_ANY) && opc2 != 0)) {
8886         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8887     }
8888 
8889     /* Check that raw accesses are either forbidden or handled. Note that
8890      * we can't assert this earlier because the setup of fieldoffset for
8891      * banked registers has to be done first.
8892      */
8893     if (!(r2->type & ARM_CP_NO_RAW)) {
8894         assert(!raw_accessors_invalid(r2));
8895     }
8896 
8897     /* Overriding of an existing definition must be explicitly
8898      * requested.
8899      */
8900     if (!(r->type & ARM_CP_OVERRIDE)) {
8901         ARMCPRegInfo *oldreg;
8902         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8903         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8904             fprintf(stderr, "Register redefined: cp=%d %d bit "
8905                     "crn=%d crm=%d opc1=%d opc2=%d, "
8906                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8907                     r2->crn, r2->crm, r2->opc1, r2->opc2,
8908                     oldreg->name, r2->name);
8909             g_assert_not_reached();
8910         }
8911     }
8912     g_hash_table_insert(cpu->cp_regs, key, r2);
8913 }
8914 
8915 
8916 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8917                                        const ARMCPRegInfo *r, void *opaque)
8918 {
8919     /* Define implementations of coprocessor registers.
8920      * We store these in a hashtable because typically
8921      * there are less than 150 registers in a space which
8922      * is 16*16*16*8*8 = 262144 in size.
8923      * Wildcarding is supported for the crm, opc1 and opc2 fields.
8924      * If a register is defined twice then the second definition is
8925      * used, so this can be used to define some generic registers and
8926      * then override them with implementation specific variations.
8927      * At least one of the original and the second definition should
8928      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8929      * against accidental use.
8930      *
8931      * The state field defines whether the register is to be
8932      * visible in the AArch32 or AArch64 execution state. If the
8933      * state is set to ARM_CP_STATE_BOTH then we synthesise a
8934      * reginfo structure for the AArch32 view, which sees the lower
8935      * 32 bits of the 64 bit register.
8936      *
8937      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8938      * be wildcarded. AArch64 registers are always considered to be 64
8939      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8940      * the register, if any.
8941      */
8942     int crm, opc1, opc2, state;
8943     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8944     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8945     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8946     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8947     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8948     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8949     /* 64 bit registers have only CRm and Opc1 fields */
8950     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8951     /* op0 only exists in the AArch64 encodings */
8952     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8953     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8954     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8955     /*
8956      * This API is only for Arm's system coprocessors (14 and 15) or
8957      * (M-profile or v7A-and-earlier only) for implementation defined
8958      * coprocessors in the range 0..7.  Our decode assumes this, since
8959      * 8..13 can be used for other insns including VFP and Neon. See
8960      * valid_cp() in translate.c.  Assert here that we haven't tried
8961      * to use an invalid coprocessor number.
8962      */
8963     switch (r->state) {
8964     case ARM_CP_STATE_BOTH:
8965         /* 0 has a special meaning, but otherwise the same rules as AA32. */
8966         if (r->cp == 0) {
8967             break;
8968         }
8969         /* fall through */
8970     case ARM_CP_STATE_AA32:
8971         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8972             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8973             assert(r->cp >= 14 && r->cp <= 15);
8974         } else {
8975             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8976         }
8977         break;
8978     case ARM_CP_STATE_AA64:
8979         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8980         break;
8981     default:
8982         g_assert_not_reached();
8983     }
8984     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8985      * encodes a minimum access level for the register. We roll this
8986      * runtime check into our general permission check code, so check
8987      * here that the reginfo's specified permissions are strict enough
8988      * to encompass the generic architectural permission check.
8989      */
8990     if (r->state != ARM_CP_STATE_AA32) {
8991         int mask = 0;
8992         switch (r->opc1) {
8993         case 0:
8994             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8995             mask = PL0U_R | PL1_RW;
8996             break;
8997         case 1: case 2:
8998             /* min_EL EL1 */
8999             mask = PL1_RW;
9000             break;
9001         case 3:
9002             /* min_EL EL0 */
9003             mask = PL0_RW;
9004             break;
9005         case 4:
9006         case 5:
9007             /* min_EL EL2 */
9008             mask = PL2_RW;
9009             break;
9010         case 6:
9011             /* min_EL EL3 */
9012             mask = PL3_RW;
9013             break;
9014         case 7:
9015             /* min_EL EL1, secure mode only (we don't check the latter) */
9016             mask = PL1_RW;
9017             break;
9018         default:
9019             /* broken reginfo with out-of-range opc1 */
9020             assert(false);
9021             break;
9022         }
9023         /* assert our permissions are not too lax (stricter is fine) */
9024         assert((r->access & ~mask) == 0);
9025     }
9026 
9027     /* Check that the register definition has enough info to handle
9028      * reads and writes if they are permitted.
9029      */
9030     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
9031         if (r->access & PL3_R) {
9032             assert((r->fieldoffset ||
9033                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9034                    r->readfn);
9035         }
9036         if (r->access & PL3_W) {
9037             assert((r->fieldoffset ||
9038                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9039                    r->writefn);
9040         }
9041     }
9042     /* Bad type field probably means missing sentinel at end of reg list */
9043     assert(cptype_valid(r->type));
9044     for (crm = crmmin; crm <= crmmax; crm++) {
9045         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9046             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9047                 for (state = ARM_CP_STATE_AA32;
9048                      state <= ARM_CP_STATE_AA64; state++) {
9049                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9050                         continue;
9051                     }
9052                     if (state == ARM_CP_STATE_AA32) {
9053                         /* Under AArch32 CP registers can be common
9054                          * (same for secure and non-secure world) or banked.
9055                          */
9056                         char *name;
9057 
9058                         switch (r->secure) {
9059                         case ARM_CP_SECSTATE_S:
9060                         case ARM_CP_SECSTATE_NS:
9061                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9062                                                    r->secure, crm, opc1, opc2,
9063                                                    r->name);
9064                             break;
9065                         default:
9066                             name = g_strdup_printf("%s_S", r->name);
9067                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9068                                                    ARM_CP_SECSTATE_S,
9069                                                    crm, opc1, opc2, name);
9070                             g_free(name);
9071                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9072                                                    ARM_CP_SECSTATE_NS,
9073                                                    crm, opc1, opc2, r->name);
9074                             break;
9075                         }
9076                     } else {
9077                         /* AArch64 registers get mapped to non-secure instance
9078                          * of AArch32 */
9079                         add_cpreg_to_hashtable(cpu, r, opaque, state,
9080                                                ARM_CP_SECSTATE_NS,
9081                                                crm, opc1, opc2, r->name);
9082                     }
9083                 }
9084             }
9085         }
9086     }
9087 }
9088 
9089 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
9090                                     const ARMCPRegInfo *regs, void *opaque)
9091 {
9092     /* Define a whole list of registers */
9093     const ARMCPRegInfo *r;
9094     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
9095         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
9096     }
9097 }
9098 
9099 /*
9100  * Modify ARMCPRegInfo for access from userspace.
9101  *
9102  * This is a data driven modification directed by
9103  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9104  * user-space cannot alter any values and dynamic values pertaining to
9105  * execution state are hidden from user space view anyway.
9106  */
9107 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
9108 {
9109     const ARMCPRegUserSpaceInfo *m;
9110     ARMCPRegInfo *r;
9111 
9112     for (m = mods; m->name; m++) {
9113         GPatternSpec *pat = NULL;
9114         if (m->is_glob) {
9115             pat = g_pattern_spec_new(m->name);
9116         }
9117         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
9118             if (pat && g_pattern_match_string(pat, r->name)) {
9119                 r->type = ARM_CP_CONST;
9120                 r->access = PL0U_R;
9121                 r->resetvalue = 0;
9122                 /* continue */
9123             } else if (strcmp(r->name, m->name) == 0) {
9124                 r->type = ARM_CP_CONST;
9125                 r->access = PL0U_R;
9126                 r->resetvalue &= m->exported_bits;
9127                 r->resetvalue |= m->fixed_bits;
9128                 break;
9129             }
9130         }
9131         if (pat) {
9132             g_pattern_spec_free(pat);
9133         }
9134     }
9135 }
9136 
9137 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9138 {
9139     return g_hash_table_lookup(cpregs, &encoded_cp);
9140 }
9141 
9142 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9143                          uint64_t value)
9144 {
9145     /* Helper coprocessor write function for write-ignore registers */
9146 }
9147 
9148 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9149 {
9150     /* Helper coprocessor write function for read-as-zero registers */
9151     return 0;
9152 }
9153 
9154 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9155 {
9156     /* Helper coprocessor reset function for do-nothing-on-reset registers */
9157 }
9158 
9159 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9160 {
9161     /* Return true if it is not valid for us to switch to
9162      * this CPU mode (ie all the UNPREDICTABLE cases in
9163      * the ARM ARM CPSRWriteByInstr pseudocode).
9164      */
9165 
9166     /* Changes to or from Hyp via MSR and CPS are illegal. */
9167     if (write_type == CPSRWriteByInstr &&
9168         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9169          mode == ARM_CPU_MODE_HYP)) {
9170         return 1;
9171     }
9172 
9173     switch (mode) {
9174     case ARM_CPU_MODE_USR:
9175         return 0;
9176     case ARM_CPU_MODE_SYS:
9177     case ARM_CPU_MODE_SVC:
9178     case ARM_CPU_MODE_ABT:
9179     case ARM_CPU_MODE_UND:
9180     case ARM_CPU_MODE_IRQ:
9181     case ARM_CPU_MODE_FIQ:
9182         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
9183          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9184          */
9185         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9186          * and CPS are treated as illegal mode changes.
9187          */
9188         if (write_type == CPSRWriteByInstr &&
9189             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9190             (arm_hcr_el2_eff(env) & HCR_TGE)) {
9191             return 1;
9192         }
9193         return 0;
9194     case ARM_CPU_MODE_HYP:
9195         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9196     case ARM_CPU_MODE_MON:
9197         return arm_current_el(env) < 3;
9198     default:
9199         return 1;
9200     }
9201 }
9202 
9203 uint32_t cpsr_read(CPUARMState *env)
9204 {
9205     int ZF;
9206     ZF = (env->ZF == 0);
9207     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9208         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9209         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9210         | ((env->condexec_bits & 0xfc) << 8)
9211         | (env->GE << 16) | (env->daif & CPSR_AIF);
9212 }
9213 
9214 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9215                 CPSRWriteType write_type)
9216 {
9217     uint32_t changed_daif;
9218 
9219     if (mask & CPSR_NZCV) {
9220         env->ZF = (~val) & CPSR_Z;
9221         env->NF = val;
9222         env->CF = (val >> 29) & 1;
9223         env->VF = (val << 3) & 0x80000000;
9224     }
9225     if (mask & CPSR_Q)
9226         env->QF = ((val & CPSR_Q) != 0);
9227     if (mask & CPSR_T)
9228         env->thumb = ((val & CPSR_T) != 0);
9229     if (mask & CPSR_IT_0_1) {
9230         env->condexec_bits &= ~3;
9231         env->condexec_bits |= (val >> 25) & 3;
9232     }
9233     if (mask & CPSR_IT_2_7) {
9234         env->condexec_bits &= 3;
9235         env->condexec_bits |= (val >> 8) & 0xfc;
9236     }
9237     if (mask & CPSR_GE) {
9238         env->GE = (val >> 16) & 0xf;
9239     }
9240 
9241     /* In a V7 implementation that includes the security extensions but does
9242      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9243      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9244      * bits respectively.
9245      *
9246      * In a V8 implementation, it is permitted for privileged software to
9247      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9248      */
9249     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9250         arm_feature(env, ARM_FEATURE_EL3) &&
9251         !arm_feature(env, ARM_FEATURE_EL2) &&
9252         !arm_is_secure(env)) {
9253 
9254         changed_daif = (env->daif ^ val) & mask;
9255 
9256         if (changed_daif & CPSR_A) {
9257             /* Check to see if we are allowed to change the masking of async
9258              * abort exceptions from a non-secure state.
9259              */
9260             if (!(env->cp15.scr_el3 & SCR_AW)) {
9261                 qemu_log_mask(LOG_GUEST_ERROR,
9262                               "Ignoring attempt to switch CPSR_A flag from "
9263                               "non-secure world with SCR.AW bit clear\n");
9264                 mask &= ~CPSR_A;
9265             }
9266         }
9267 
9268         if (changed_daif & CPSR_F) {
9269             /* Check to see if we are allowed to change the masking of FIQ
9270              * exceptions from a non-secure state.
9271              */
9272             if (!(env->cp15.scr_el3 & SCR_FW)) {
9273                 qemu_log_mask(LOG_GUEST_ERROR,
9274                               "Ignoring attempt to switch CPSR_F flag from "
9275                               "non-secure world with SCR.FW bit clear\n");
9276                 mask &= ~CPSR_F;
9277             }
9278 
9279             /* Check whether non-maskable FIQ (NMFI) support is enabled.
9280              * If this bit is set software is not allowed to mask
9281              * FIQs, but is allowed to set CPSR_F to 0.
9282              */
9283             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9284                 (val & CPSR_F)) {
9285                 qemu_log_mask(LOG_GUEST_ERROR,
9286                               "Ignoring attempt to enable CPSR_F flag "
9287                               "(non-maskable FIQ [NMFI] support enabled)\n");
9288                 mask &= ~CPSR_F;
9289             }
9290         }
9291     }
9292 
9293     env->daif &= ~(CPSR_AIF & mask);
9294     env->daif |= val & CPSR_AIF & mask;
9295 
9296     if (write_type != CPSRWriteRaw &&
9297         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9298         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9299             /* Note that we can only get here in USR mode if this is a
9300              * gdb stub write; for this case we follow the architectural
9301              * behaviour for guest writes in USR mode of ignoring an attempt
9302              * to switch mode. (Those are caught by translate.c for writes
9303              * triggered by guest instructions.)
9304              */
9305             mask &= ~CPSR_M;
9306         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9307             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9308              * v7, and has defined behaviour in v8:
9309              *  + leave CPSR.M untouched
9310              *  + allow changes to the other CPSR fields
9311              *  + set PSTATE.IL
9312              * For user changes via the GDB stub, we don't set PSTATE.IL,
9313              * as this would be unnecessarily harsh for a user error.
9314              */
9315             mask &= ~CPSR_M;
9316             if (write_type != CPSRWriteByGDBStub &&
9317                 arm_feature(env, ARM_FEATURE_V8)) {
9318                 mask |= CPSR_IL;
9319                 val |= CPSR_IL;
9320             }
9321             qemu_log_mask(LOG_GUEST_ERROR,
9322                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9323                           aarch32_mode_name(env->uncached_cpsr),
9324                           aarch32_mode_name(val));
9325         } else {
9326             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9327                           write_type == CPSRWriteExceptionReturn ?
9328                           "Exception return from AArch32" :
9329                           "AArch32 mode switch from",
9330                           aarch32_mode_name(env->uncached_cpsr),
9331                           aarch32_mode_name(val), env->regs[15]);
9332             switch_mode(env, val & CPSR_M);
9333         }
9334     }
9335     mask &= ~CACHED_CPSR_BITS;
9336     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9337 }
9338 
9339 /* Sign/zero extend */
9340 uint32_t HELPER(sxtb16)(uint32_t x)
9341 {
9342     uint32_t res;
9343     res = (uint16_t)(int8_t)x;
9344     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9345     return res;
9346 }
9347 
9348 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9349 {
9350     /*
9351      * Take a division-by-zero exception if necessary; otherwise return
9352      * to get the usual non-trapping division behaviour (result of 0)
9353      */
9354     if (arm_feature(env, ARM_FEATURE_M)
9355         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9356         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9357     }
9358 }
9359 
9360 uint32_t HELPER(uxtb16)(uint32_t x)
9361 {
9362     uint32_t res;
9363     res = (uint16_t)(uint8_t)x;
9364     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9365     return res;
9366 }
9367 
9368 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9369 {
9370     if (den == 0) {
9371         handle_possible_div0_trap(env, GETPC());
9372         return 0;
9373     }
9374     if (num == INT_MIN && den == -1) {
9375         return INT_MIN;
9376     }
9377     return num / den;
9378 }
9379 
9380 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9381 {
9382     if (den == 0) {
9383         handle_possible_div0_trap(env, GETPC());
9384         return 0;
9385     }
9386     return num / den;
9387 }
9388 
9389 uint32_t HELPER(rbit)(uint32_t x)
9390 {
9391     return revbit32(x);
9392 }
9393 
9394 #ifdef CONFIG_USER_ONLY
9395 
9396 static void switch_mode(CPUARMState *env, int mode)
9397 {
9398     ARMCPU *cpu = env_archcpu(env);
9399 
9400     if (mode != ARM_CPU_MODE_USR) {
9401         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9402     }
9403 }
9404 
9405 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9406                                  uint32_t cur_el, bool secure)
9407 {
9408     return 1;
9409 }
9410 
9411 void aarch64_sync_64_to_32(CPUARMState *env)
9412 {
9413     g_assert_not_reached();
9414 }
9415 
9416 #else
9417 
9418 static void switch_mode(CPUARMState *env, int mode)
9419 {
9420     int old_mode;
9421     int i;
9422 
9423     old_mode = env->uncached_cpsr & CPSR_M;
9424     if (mode == old_mode)
9425         return;
9426 
9427     if (old_mode == ARM_CPU_MODE_FIQ) {
9428         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9429         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9430     } else if (mode == ARM_CPU_MODE_FIQ) {
9431         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9432         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9433     }
9434 
9435     i = bank_number(old_mode);
9436     env->banked_r13[i] = env->regs[13];
9437     env->banked_spsr[i] = env->spsr;
9438 
9439     i = bank_number(mode);
9440     env->regs[13] = env->banked_r13[i];
9441     env->spsr = env->banked_spsr[i];
9442 
9443     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9444     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9445 }
9446 
9447 /* Physical Interrupt Target EL Lookup Table
9448  *
9449  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9450  *
9451  * The below multi-dimensional table is used for looking up the target
9452  * exception level given numerous condition criteria.  Specifically, the
9453  * target EL is based on SCR and HCR routing controls as well as the
9454  * currently executing EL and secure state.
9455  *
9456  *    Dimensions:
9457  *    target_el_table[2][2][2][2][2][4]
9458  *                    |  |  |  |  |  +--- Current EL
9459  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9460  *                    |  |  |  +--------- HCR mask override
9461  *                    |  |  +------------ SCR exec state control
9462  *                    |  +--------------- SCR mask override
9463  *                    +------------------ 32-bit(0)/64-bit(1) EL3
9464  *
9465  *    The table values are as such:
9466  *    0-3 = EL0-EL3
9467  *     -1 = Cannot occur
9468  *
9469  * The ARM ARM target EL table includes entries indicating that an "exception
9470  * is not taken".  The two cases where this is applicable are:
9471  *    1) An exception is taken from EL3 but the SCR does not have the exception
9472  *    routed to EL3.
9473  *    2) An exception is taken from EL2 but the HCR does not have the exception
9474  *    routed to EL2.
9475  * In these two cases, the below table contain a target of EL1.  This value is
9476  * returned as it is expected that the consumer of the table data will check
9477  * for "target EL >= current EL" to ensure the exception is not taken.
9478  *
9479  *            SCR     HCR
9480  *         64  EA     AMO                 From
9481  *        BIT IRQ     IMO      Non-secure         Secure
9482  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9483  */
9484 static const int8_t target_el_table[2][2][2][2][2][4] = {
9485     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9486        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9487       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9488        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9489      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9490        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9491       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9492        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9493     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9494        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
9495       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
9496        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
9497      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9498        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9499       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
9500        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
9501 };
9502 
9503 /*
9504  * Determine the target EL for physical exceptions
9505  */
9506 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9507                                  uint32_t cur_el, bool secure)
9508 {
9509     CPUARMState *env = cs->env_ptr;
9510     bool rw;
9511     bool scr;
9512     bool hcr;
9513     int target_el;
9514     /* Is the highest EL AArch64? */
9515     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9516     uint64_t hcr_el2;
9517 
9518     if (arm_feature(env, ARM_FEATURE_EL3)) {
9519         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9520     } else {
9521         /* Either EL2 is the highest EL (and so the EL2 register width
9522          * is given by is64); or there is no EL2 or EL3, in which case
9523          * the value of 'rw' does not affect the table lookup anyway.
9524          */
9525         rw = is64;
9526     }
9527 
9528     hcr_el2 = arm_hcr_el2_eff(env);
9529     switch (excp_idx) {
9530     case EXCP_IRQ:
9531         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9532         hcr = hcr_el2 & HCR_IMO;
9533         break;
9534     case EXCP_FIQ:
9535         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9536         hcr = hcr_el2 & HCR_FMO;
9537         break;
9538     default:
9539         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9540         hcr = hcr_el2 & HCR_AMO;
9541         break;
9542     };
9543 
9544     /*
9545      * For these purposes, TGE and AMO/IMO/FMO both force the
9546      * interrupt to EL2.  Fold TGE into the bit extracted above.
9547      */
9548     hcr |= (hcr_el2 & HCR_TGE) != 0;
9549 
9550     /* Perform a table-lookup for the target EL given the current state */
9551     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9552 
9553     assert(target_el > 0);
9554 
9555     return target_el;
9556 }
9557 
9558 void arm_log_exception(int idx)
9559 {
9560     if (qemu_loglevel_mask(CPU_LOG_INT)) {
9561         const char *exc = NULL;
9562         static const char * const excnames[] = {
9563             [EXCP_UDEF] = "Undefined Instruction",
9564             [EXCP_SWI] = "SVC",
9565             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9566             [EXCP_DATA_ABORT] = "Data Abort",
9567             [EXCP_IRQ] = "IRQ",
9568             [EXCP_FIQ] = "FIQ",
9569             [EXCP_BKPT] = "Breakpoint",
9570             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9571             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9572             [EXCP_HVC] = "Hypervisor Call",
9573             [EXCP_HYP_TRAP] = "Hypervisor Trap",
9574             [EXCP_SMC] = "Secure Monitor Call",
9575             [EXCP_VIRQ] = "Virtual IRQ",
9576             [EXCP_VFIQ] = "Virtual FIQ",
9577             [EXCP_SEMIHOST] = "Semihosting call",
9578             [EXCP_NOCP] = "v7M NOCP UsageFault",
9579             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9580             [EXCP_STKOF] = "v8M STKOF UsageFault",
9581             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9582             [EXCP_LSERR] = "v8M LSERR UsageFault",
9583             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9584             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9585         };
9586 
9587         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9588             exc = excnames[idx];
9589         }
9590         if (!exc) {
9591             exc = "unknown";
9592         }
9593         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9594     }
9595 }
9596 
9597 /*
9598  * Function used to synchronize QEMU's AArch64 register set with AArch32
9599  * register set.  This is necessary when switching between AArch32 and AArch64
9600  * execution state.
9601  */
9602 void aarch64_sync_32_to_64(CPUARMState *env)
9603 {
9604     int i;
9605     uint32_t mode = env->uncached_cpsr & CPSR_M;
9606 
9607     /* We can blanket copy R[0:7] to X[0:7] */
9608     for (i = 0; i < 8; i++) {
9609         env->xregs[i] = env->regs[i];
9610     }
9611 
9612     /*
9613      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9614      * Otherwise, they come from the banked user regs.
9615      */
9616     if (mode == ARM_CPU_MODE_FIQ) {
9617         for (i = 8; i < 13; i++) {
9618             env->xregs[i] = env->usr_regs[i - 8];
9619         }
9620     } else {
9621         for (i = 8; i < 13; i++) {
9622             env->xregs[i] = env->regs[i];
9623         }
9624     }
9625 
9626     /*
9627      * Registers x13-x23 are the various mode SP and FP registers. Registers
9628      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9629      * from the mode banked register.
9630      */
9631     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9632         env->xregs[13] = env->regs[13];
9633         env->xregs[14] = env->regs[14];
9634     } else {
9635         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9636         /* HYP is an exception in that it is copied from r14 */
9637         if (mode == ARM_CPU_MODE_HYP) {
9638             env->xregs[14] = env->regs[14];
9639         } else {
9640             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9641         }
9642     }
9643 
9644     if (mode == ARM_CPU_MODE_HYP) {
9645         env->xregs[15] = env->regs[13];
9646     } else {
9647         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9648     }
9649 
9650     if (mode == ARM_CPU_MODE_IRQ) {
9651         env->xregs[16] = env->regs[14];
9652         env->xregs[17] = env->regs[13];
9653     } else {
9654         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9655         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9656     }
9657 
9658     if (mode == ARM_CPU_MODE_SVC) {
9659         env->xregs[18] = env->regs[14];
9660         env->xregs[19] = env->regs[13];
9661     } else {
9662         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9663         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9664     }
9665 
9666     if (mode == ARM_CPU_MODE_ABT) {
9667         env->xregs[20] = env->regs[14];
9668         env->xregs[21] = env->regs[13];
9669     } else {
9670         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9671         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9672     }
9673 
9674     if (mode == ARM_CPU_MODE_UND) {
9675         env->xregs[22] = env->regs[14];
9676         env->xregs[23] = env->regs[13];
9677     } else {
9678         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9679         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9680     }
9681 
9682     /*
9683      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9684      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9685      * FIQ bank for r8-r14.
9686      */
9687     if (mode == ARM_CPU_MODE_FIQ) {
9688         for (i = 24; i < 31; i++) {
9689             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9690         }
9691     } else {
9692         for (i = 24; i < 29; i++) {
9693             env->xregs[i] = env->fiq_regs[i - 24];
9694         }
9695         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9696         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9697     }
9698 
9699     env->pc = env->regs[15];
9700 }
9701 
9702 /*
9703  * Function used to synchronize QEMU's AArch32 register set with AArch64
9704  * register set.  This is necessary when switching between AArch32 and AArch64
9705  * execution state.
9706  */
9707 void aarch64_sync_64_to_32(CPUARMState *env)
9708 {
9709     int i;
9710     uint32_t mode = env->uncached_cpsr & CPSR_M;
9711 
9712     /* We can blanket copy X[0:7] to R[0:7] */
9713     for (i = 0; i < 8; i++) {
9714         env->regs[i] = env->xregs[i];
9715     }
9716 
9717     /*
9718      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9719      * Otherwise, we copy x8-x12 into the banked user regs.
9720      */
9721     if (mode == ARM_CPU_MODE_FIQ) {
9722         for (i = 8; i < 13; i++) {
9723             env->usr_regs[i - 8] = env->xregs[i];
9724         }
9725     } else {
9726         for (i = 8; i < 13; i++) {
9727             env->regs[i] = env->xregs[i];
9728         }
9729     }
9730 
9731     /*
9732      * Registers r13 & r14 depend on the current mode.
9733      * If we are in a given mode, we copy the corresponding x registers to r13
9734      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9735      * for the mode.
9736      */
9737     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9738         env->regs[13] = env->xregs[13];
9739         env->regs[14] = env->xregs[14];
9740     } else {
9741         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9742 
9743         /*
9744          * HYP is an exception in that it does not have its own banked r14 but
9745          * shares the USR r14
9746          */
9747         if (mode == ARM_CPU_MODE_HYP) {
9748             env->regs[14] = env->xregs[14];
9749         } else {
9750             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9751         }
9752     }
9753 
9754     if (mode == ARM_CPU_MODE_HYP) {
9755         env->regs[13] = env->xregs[15];
9756     } else {
9757         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9758     }
9759 
9760     if (mode == ARM_CPU_MODE_IRQ) {
9761         env->regs[14] = env->xregs[16];
9762         env->regs[13] = env->xregs[17];
9763     } else {
9764         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9765         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9766     }
9767 
9768     if (mode == ARM_CPU_MODE_SVC) {
9769         env->regs[14] = env->xregs[18];
9770         env->regs[13] = env->xregs[19];
9771     } else {
9772         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9773         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9774     }
9775 
9776     if (mode == ARM_CPU_MODE_ABT) {
9777         env->regs[14] = env->xregs[20];
9778         env->regs[13] = env->xregs[21];
9779     } else {
9780         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9781         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9782     }
9783 
9784     if (mode == ARM_CPU_MODE_UND) {
9785         env->regs[14] = env->xregs[22];
9786         env->regs[13] = env->xregs[23];
9787     } else {
9788         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9789         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9790     }
9791 
9792     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9793      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9794      * FIQ bank for r8-r14.
9795      */
9796     if (mode == ARM_CPU_MODE_FIQ) {
9797         for (i = 24; i < 31; i++) {
9798             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9799         }
9800     } else {
9801         for (i = 24; i < 29; i++) {
9802             env->fiq_regs[i - 24] = env->xregs[i];
9803         }
9804         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9805         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9806     }
9807 
9808     env->regs[15] = env->pc;
9809 }
9810 
9811 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9812                                    uint32_t mask, uint32_t offset,
9813                                    uint32_t newpc)
9814 {
9815     int new_el;
9816 
9817     /* Change the CPU state so as to actually take the exception. */
9818     switch_mode(env, new_mode);
9819 
9820     /*
9821      * For exceptions taken to AArch32 we must clear the SS bit in both
9822      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9823      */
9824     env->pstate &= ~PSTATE_SS;
9825     env->spsr = cpsr_read(env);
9826     /* Clear IT bits.  */
9827     env->condexec_bits = 0;
9828     /* Switch to the new mode, and to the correct instruction set.  */
9829     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9830 
9831     /* This must be after mode switching. */
9832     new_el = arm_current_el(env);
9833 
9834     /* Set new mode endianness */
9835     env->uncached_cpsr &= ~CPSR_E;
9836     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9837         env->uncached_cpsr |= CPSR_E;
9838     }
9839     /* J and IL must always be cleared for exception entry */
9840     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9841     env->daif |= mask;
9842 
9843     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9844         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9845             env->uncached_cpsr |= CPSR_SSBS;
9846         } else {
9847             env->uncached_cpsr &= ~CPSR_SSBS;
9848         }
9849     }
9850 
9851     if (new_mode == ARM_CPU_MODE_HYP) {
9852         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9853         env->elr_el[2] = env->regs[15];
9854     } else {
9855         /* CPSR.PAN is normally preserved preserved unless...  */
9856         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9857             switch (new_el) {
9858             case 3:
9859                 if (!arm_is_secure_below_el3(env)) {
9860                     /* ... the target is EL3, from non-secure state.  */
9861                     env->uncached_cpsr &= ~CPSR_PAN;
9862                     break;
9863                 }
9864                 /* ... the target is EL3, from secure state ... */
9865                 /* fall through */
9866             case 1:
9867                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9868                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9869                     env->uncached_cpsr |= CPSR_PAN;
9870                 }
9871                 break;
9872             }
9873         }
9874         /*
9875          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9876          * and we should just guard the thumb mode on V4
9877          */
9878         if (arm_feature(env, ARM_FEATURE_V4T)) {
9879             env->thumb =
9880                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9881         }
9882         env->regs[14] = env->regs[15] + offset;
9883     }
9884     env->regs[15] = newpc;
9885     arm_rebuild_hflags(env);
9886 }
9887 
9888 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9889 {
9890     /*
9891      * Handle exception entry to Hyp mode; this is sufficiently
9892      * different to entry to other AArch32 modes that we handle it
9893      * separately here.
9894      *
9895      * The vector table entry used is always the 0x14 Hyp mode entry point,
9896      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9897      * The offset applied to the preferred return address is always zero
9898      * (see DDI0487C.a section G1.12.3).
9899      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9900      */
9901     uint32_t addr, mask;
9902     ARMCPU *cpu = ARM_CPU(cs);
9903     CPUARMState *env = &cpu->env;
9904 
9905     switch (cs->exception_index) {
9906     case EXCP_UDEF:
9907         addr = 0x04;
9908         break;
9909     case EXCP_SWI:
9910         addr = 0x14;
9911         break;
9912     case EXCP_BKPT:
9913         /* Fall through to prefetch abort.  */
9914     case EXCP_PREFETCH_ABORT:
9915         env->cp15.ifar_s = env->exception.vaddress;
9916         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9917                       (uint32_t)env->exception.vaddress);
9918         addr = 0x0c;
9919         break;
9920     case EXCP_DATA_ABORT:
9921         env->cp15.dfar_s = env->exception.vaddress;
9922         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9923                       (uint32_t)env->exception.vaddress);
9924         addr = 0x10;
9925         break;
9926     case EXCP_IRQ:
9927         addr = 0x18;
9928         break;
9929     case EXCP_FIQ:
9930         addr = 0x1c;
9931         break;
9932     case EXCP_HVC:
9933         addr = 0x08;
9934         break;
9935     case EXCP_HYP_TRAP:
9936         addr = 0x14;
9937         break;
9938     default:
9939         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9940     }
9941 
9942     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9943         if (!arm_feature(env, ARM_FEATURE_V8)) {
9944             /*
9945              * QEMU syndrome values are v8-style. v7 has the IL bit
9946              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9947              * If this is a v7 CPU, squash the IL bit in those cases.
9948              */
9949             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9950                 (cs->exception_index == EXCP_DATA_ABORT &&
9951                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9952                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9953                 env->exception.syndrome &= ~ARM_EL_IL;
9954             }
9955         }
9956         env->cp15.esr_el[2] = env->exception.syndrome;
9957     }
9958 
9959     if (arm_current_el(env) != 2 && addr < 0x14) {
9960         addr = 0x14;
9961     }
9962 
9963     mask = 0;
9964     if (!(env->cp15.scr_el3 & SCR_EA)) {
9965         mask |= CPSR_A;
9966     }
9967     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9968         mask |= CPSR_I;
9969     }
9970     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9971         mask |= CPSR_F;
9972     }
9973 
9974     addr += env->cp15.hvbar;
9975 
9976     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9977 }
9978 
9979 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9980 {
9981     ARMCPU *cpu = ARM_CPU(cs);
9982     CPUARMState *env = &cpu->env;
9983     uint32_t addr;
9984     uint32_t mask;
9985     int new_mode;
9986     uint32_t offset;
9987     uint32_t moe;
9988 
9989     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9990     switch (syn_get_ec(env->exception.syndrome)) {
9991     case EC_BREAKPOINT:
9992     case EC_BREAKPOINT_SAME_EL:
9993         moe = 1;
9994         break;
9995     case EC_WATCHPOINT:
9996     case EC_WATCHPOINT_SAME_EL:
9997         moe = 10;
9998         break;
9999     case EC_AA32_BKPT:
10000         moe = 3;
10001         break;
10002     case EC_VECTORCATCH:
10003         moe = 5;
10004         break;
10005     default:
10006         moe = 0;
10007         break;
10008     }
10009 
10010     if (moe) {
10011         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10012     }
10013 
10014     if (env->exception.target_el == 2) {
10015         arm_cpu_do_interrupt_aarch32_hyp(cs);
10016         return;
10017     }
10018 
10019     switch (cs->exception_index) {
10020     case EXCP_UDEF:
10021         new_mode = ARM_CPU_MODE_UND;
10022         addr = 0x04;
10023         mask = CPSR_I;
10024         if (env->thumb)
10025             offset = 2;
10026         else
10027             offset = 4;
10028         break;
10029     case EXCP_SWI:
10030         new_mode = ARM_CPU_MODE_SVC;
10031         addr = 0x08;
10032         mask = CPSR_I;
10033         /* The PC already points to the next instruction.  */
10034         offset = 0;
10035         break;
10036     case EXCP_BKPT:
10037         /* Fall through to prefetch abort.  */
10038     case EXCP_PREFETCH_ABORT:
10039         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10040         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10041         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10042                       env->exception.fsr, (uint32_t)env->exception.vaddress);
10043         new_mode = ARM_CPU_MODE_ABT;
10044         addr = 0x0c;
10045         mask = CPSR_A | CPSR_I;
10046         offset = 4;
10047         break;
10048     case EXCP_DATA_ABORT:
10049         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10050         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10051         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10052                       env->exception.fsr,
10053                       (uint32_t)env->exception.vaddress);
10054         new_mode = ARM_CPU_MODE_ABT;
10055         addr = 0x10;
10056         mask = CPSR_A | CPSR_I;
10057         offset = 8;
10058         break;
10059     case EXCP_IRQ:
10060         new_mode = ARM_CPU_MODE_IRQ;
10061         addr = 0x18;
10062         /* Disable IRQ and imprecise data aborts.  */
10063         mask = CPSR_A | CPSR_I;
10064         offset = 4;
10065         if (env->cp15.scr_el3 & SCR_IRQ) {
10066             /* IRQ routed to monitor mode */
10067             new_mode = ARM_CPU_MODE_MON;
10068             mask |= CPSR_F;
10069         }
10070         break;
10071     case EXCP_FIQ:
10072         new_mode = ARM_CPU_MODE_FIQ;
10073         addr = 0x1c;
10074         /* Disable FIQ, IRQ and imprecise data aborts.  */
10075         mask = CPSR_A | CPSR_I | CPSR_F;
10076         if (env->cp15.scr_el3 & SCR_FIQ) {
10077             /* FIQ routed to monitor mode */
10078             new_mode = ARM_CPU_MODE_MON;
10079         }
10080         offset = 4;
10081         break;
10082     case EXCP_VIRQ:
10083         new_mode = ARM_CPU_MODE_IRQ;
10084         addr = 0x18;
10085         /* Disable IRQ and imprecise data aborts.  */
10086         mask = CPSR_A | CPSR_I;
10087         offset = 4;
10088         break;
10089     case EXCP_VFIQ:
10090         new_mode = ARM_CPU_MODE_FIQ;
10091         addr = 0x1c;
10092         /* Disable FIQ, IRQ and imprecise data aborts.  */
10093         mask = CPSR_A | CPSR_I | CPSR_F;
10094         offset = 4;
10095         break;
10096     case EXCP_SMC:
10097         new_mode = ARM_CPU_MODE_MON;
10098         addr = 0x08;
10099         mask = CPSR_A | CPSR_I | CPSR_F;
10100         offset = 0;
10101         break;
10102     default:
10103         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10104         return; /* Never happens.  Keep compiler happy.  */
10105     }
10106 
10107     if (new_mode == ARM_CPU_MODE_MON) {
10108         addr += env->cp15.mvbar;
10109     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10110         /* High vectors. When enabled, base address cannot be remapped. */
10111         addr += 0xffff0000;
10112     } else {
10113         /* ARM v7 architectures provide a vector base address register to remap
10114          * the interrupt vector table.
10115          * This register is only followed in non-monitor mode, and is banked.
10116          * Note: only bits 31:5 are valid.
10117          */
10118         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10119     }
10120 
10121     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10122         env->cp15.scr_el3 &= ~SCR_NS;
10123     }
10124 
10125     take_aarch32_exception(env, new_mode, mask, offset, addr);
10126 }
10127 
10128 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10129 {
10130     /*
10131      * Return the register number of the AArch64 view of the AArch32
10132      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10133      * be that of the AArch32 mode the exception came from.
10134      */
10135     int mode = env->uncached_cpsr & CPSR_M;
10136 
10137     switch (aarch32_reg) {
10138     case 0 ... 7:
10139         return aarch32_reg;
10140     case 8 ... 12:
10141         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10142     case 13:
10143         switch (mode) {
10144         case ARM_CPU_MODE_USR:
10145         case ARM_CPU_MODE_SYS:
10146             return 13;
10147         case ARM_CPU_MODE_HYP:
10148             return 15;
10149         case ARM_CPU_MODE_IRQ:
10150             return 17;
10151         case ARM_CPU_MODE_SVC:
10152             return 19;
10153         case ARM_CPU_MODE_ABT:
10154             return 21;
10155         case ARM_CPU_MODE_UND:
10156             return 23;
10157         case ARM_CPU_MODE_FIQ:
10158             return 29;
10159         default:
10160             g_assert_not_reached();
10161         }
10162     case 14:
10163         switch (mode) {
10164         case ARM_CPU_MODE_USR:
10165         case ARM_CPU_MODE_SYS:
10166         case ARM_CPU_MODE_HYP:
10167             return 14;
10168         case ARM_CPU_MODE_IRQ:
10169             return 16;
10170         case ARM_CPU_MODE_SVC:
10171             return 18;
10172         case ARM_CPU_MODE_ABT:
10173             return 20;
10174         case ARM_CPU_MODE_UND:
10175             return 22;
10176         case ARM_CPU_MODE_FIQ:
10177             return 30;
10178         default:
10179             g_assert_not_reached();
10180         }
10181     case 15:
10182         return 31;
10183     default:
10184         g_assert_not_reached();
10185     }
10186 }
10187 
10188 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10189 {
10190     uint32_t ret = cpsr_read(env);
10191 
10192     /* Move DIT to the correct location for SPSR_ELx */
10193     if (ret & CPSR_DIT) {
10194         ret &= ~CPSR_DIT;
10195         ret |= PSTATE_DIT;
10196     }
10197     /* Merge PSTATE.SS into SPSR_ELx */
10198     ret |= env->pstate & PSTATE_SS;
10199 
10200     return ret;
10201 }
10202 
10203 /* Handle exception entry to a target EL which is using AArch64 */
10204 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10205 {
10206     ARMCPU *cpu = ARM_CPU(cs);
10207     CPUARMState *env = &cpu->env;
10208     unsigned int new_el = env->exception.target_el;
10209     target_ulong addr = env->cp15.vbar_el[new_el];
10210     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10211     unsigned int old_mode;
10212     unsigned int cur_el = arm_current_el(env);
10213     int rt;
10214 
10215     /*
10216      * Note that new_el can never be 0.  If cur_el is 0, then
10217      * el0_a64 is is_a64(), else el0_a64 is ignored.
10218      */
10219     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10220 
10221     if (cur_el < new_el) {
10222         /* Entry vector offset depends on whether the implemented EL
10223          * immediately lower than the target level is using AArch32 or AArch64
10224          */
10225         bool is_aa64;
10226         uint64_t hcr;
10227 
10228         switch (new_el) {
10229         case 3:
10230             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10231             break;
10232         case 2:
10233             hcr = arm_hcr_el2_eff(env);
10234             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10235                 is_aa64 = (hcr & HCR_RW) != 0;
10236                 break;
10237             }
10238             /* fall through */
10239         case 1:
10240             is_aa64 = is_a64(env);
10241             break;
10242         default:
10243             g_assert_not_reached();
10244         }
10245 
10246         if (is_aa64) {
10247             addr += 0x400;
10248         } else {
10249             addr += 0x600;
10250         }
10251     } else if (pstate_read(env) & PSTATE_SP) {
10252         addr += 0x200;
10253     }
10254 
10255     switch (cs->exception_index) {
10256     case EXCP_PREFETCH_ABORT:
10257     case EXCP_DATA_ABORT:
10258         env->cp15.far_el[new_el] = env->exception.vaddress;
10259         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10260                       env->cp15.far_el[new_el]);
10261         /* fall through */
10262     case EXCP_BKPT:
10263     case EXCP_UDEF:
10264     case EXCP_SWI:
10265     case EXCP_HVC:
10266     case EXCP_HYP_TRAP:
10267     case EXCP_SMC:
10268         switch (syn_get_ec(env->exception.syndrome)) {
10269         case EC_ADVSIMDFPACCESSTRAP:
10270             /*
10271              * QEMU internal FP/SIMD syndromes from AArch32 include the
10272              * TA and coproc fields which are only exposed if the exception
10273              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10274              * AArch64 format syndrome.
10275              */
10276             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10277             break;
10278         case EC_CP14RTTRAP:
10279         case EC_CP15RTTRAP:
10280         case EC_CP14DTTRAP:
10281             /*
10282              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10283              * the raw register field from the insn; when taking this to
10284              * AArch64 we must convert it to the AArch64 view of the register
10285              * number. Notice that we read a 4-bit AArch32 register number and
10286              * write back a 5-bit AArch64 one.
10287              */
10288             rt = extract32(env->exception.syndrome, 5, 4);
10289             rt = aarch64_regnum(env, rt);
10290             env->exception.syndrome = deposit32(env->exception.syndrome,
10291                                                 5, 5, rt);
10292             break;
10293         case EC_CP15RRTTRAP:
10294         case EC_CP14RRTTRAP:
10295             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10296             rt = extract32(env->exception.syndrome, 5, 4);
10297             rt = aarch64_regnum(env, rt);
10298             env->exception.syndrome = deposit32(env->exception.syndrome,
10299                                                 5, 5, rt);
10300             rt = extract32(env->exception.syndrome, 10, 4);
10301             rt = aarch64_regnum(env, rt);
10302             env->exception.syndrome = deposit32(env->exception.syndrome,
10303                                                 10, 5, rt);
10304             break;
10305         }
10306         env->cp15.esr_el[new_el] = env->exception.syndrome;
10307         break;
10308     case EXCP_IRQ:
10309     case EXCP_VIRQ:
10310         addr += 0x80;
10311         break;
10312     case EXCP_FIQ:
10313     case EXCP_VFIQ:
10314         addr += 0x100;
10315         break;
10316     default:
10317         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10318     }
10319 
10320     if (is_a64(env)) {
10321         old_mode = pstate_read(env);
10322         aarch64_save_sp(env, arm_current_el(env));
10323         env->elr_el[new_el] = env->pc;
10324     } else {
10325         old_mode = cpsr_read_for_spsr_elx(env);
10326         env->elr_el[new_el] = env->regs[15];
10327 
10328         aarch64_sync_32_to_64(env);
10329 
10330         env->condexec_bits = 0;
10331     }
10332     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10333 
10334     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10335                   env->elr_el[new_el]);
10336 
10337     if (cpu_isar_feature(aa64_pan, cpu)) {
10338         /* The value of PSTATE.PAN is normally preserved, except when ... */
10339         new_mode |= old_mode & PSTATE_PAN;
10340         switch (new_el) {
10341         case 2:
10342             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10343             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10344                 != (HCR_E2H | HCR_TGE)) {
10345                 break;
10346             }
10347             /* fall through */
10348         case 1:
10349             /* ... the target is EL1 ... */
10350             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10351             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10352                 new_mode |= PSTATE_PAN;
10353             }
10354             break;
10355         }
10356     }
10357     if (cpu_isar_feature(aa64_mte, cpu)) {
10358         new_mode |= PSTATE_TCO;
10359     }
10360 
10361     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10362         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10363             new_mode |= PSTATE_SSBS;
10364         } else {
10365             new_mode &= ~PSTATE_SSBS;
10366         }
10367     }
10368 
10369     pstate_write(env, PSTATE_DAIF | new_mode);
10370     env->aarch64 = 1;
10371     aarch64_restore_sp(env, new_el);
10372     helper_rebuild_hflags_a64(env, new_el);
10373 
10374     env->pc = addr;
10375 
10376     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10377                   new_el, env->pc, pstate_read(env));
10378 }
10379 
10380 /*
10381  * Do semihosting call and set the appropriate return value. All the
10382  * permission and validity checks have been done at translate time.
10383  *
10384  * We only see semihosting exceptions in TCG only as they are not
10385  * trapped to the hypervisor in KVM.
10386  */
10387 #ifdef CONFIG_TCG
10388 static void handle_semihosting(CPUState *cs)
10389 {
10390     ARMCPU *cpu = ARM_CPU(cs);
10391     CPUARMState *env = &cpu->env;
10392 
10393     if (is_a64(env)) {
10394         qemu_log_mask(CPU_LOG_INT,
10395                       "...handling as semihosting call 0x%" PRIx64 "\n",
10396                       env->xregs[0]);
10397         env->xregs[0] = do_common_semihosting(cs);
10398         env->pc += 4;
10399     } else {
10400         qemu_log_mask(CPU_LOG_INT,
10401                       "...handling as semihosting call 0x%x\n",
10402                       env->regs[0]);
10403         env->regs[0] = do_common_semihosting(cs);
10404         env->regs[15] += env->thumb ? 2 : 4;
10405     }
10406 }
10407 #endif
10408 
10409 /* Handle a CPU exception for A and R profile CPUs.
10410  * Do any appropriate logging, handle PSCI calls, and then hand off
10411  * to the AArch64-entry or AArch32-entry function depending on the
10412  * target exception level's register width.
10413  *
10414  * Note: this is used for both TCG (as the do_interrupt tcg op),
10415  *       and KVM to re-inject guest debug exceptions, and to
10416  *       inject a Synchronous-External-Abort.
10417  */
10418 void arm_cpu_do_interrupt(CPUState *cs)
10419 {
10420     ARMCPU *cpu = ARM_CPU(cs);
10421     CPUARMState *env = &cpu->env;
10422     unsigned int new_el = env->exception.target_el;
10423 
10424     assert(!arm_feature(env, ARM_FEATURE_M));
10425 
10426     arm_log_exception(cs->exception_index);
10427     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10428                   new_el);
10429     if (qemu_loglevel_mask(CPU_LOG_INT)
10430         && !excp_is_internal(cs->exception_index)) {
10431         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10432                       syn_get_ec(env->exception.syndrome),
10433                       env->exception.syndrome);
10434     }
10435 
10436     if (arm_is_psci_call(cpu, cs->exception_index)) {
10437         arm_handle_psci_call(cpu);
10438         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10439         return;
10440     }
10441 
10442     /*
10443      * Semihosting semantics depend on the register width of the code
10444      * that caused the exception, not the target exception level, so
10445      * must be handled here.
10446      */
10447 #ifdef CONFIG_TCG
10448     if (cs->exception_index == EXCP_SEMIHOST) {
10449         handle_semihosting(cs);
10450         return;
10451     }
10452 #endif
10453 
10454     /* Hooks may change global state so BQL should be held, also the
10455      * BQL needs to be held for any modification of
10456      * cs->interrupt_request.
10457      */
10458     g_assert(qemu_mutex_iothread_locked());
10459 
10460     arm_call_pre_el_change_hook(cpu);
10461 
10462     assert(!excp_is_internal(cs->exception_index));
10463     if (arm_el_is_aa64(env, new_el)) {
10464         arm_cpu_do_interrupt_aarch64(cs);
10465     } else {
10466         arm_cpu_do_interrupt_aarch32(cs);
10467     }
10468 
10469     arm_call_el_change_hook(cpu);
10470 
10471     if (!kvm_enabled()) {
10472         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10473     }
10474 }
10475 #endif /* !CONFIG_USER_ONLY */
10476 
10477 uint64_t arm_sctlr(CPUARMState *env, int el)
10478 {
10479     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10480     if (el == 0) {
10481         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10482         el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10483              ? 2 : 1;
10484     }
10485     return env->cp15.sctlr_el[el];
10486 }
10487 
10488 /* Return the SCTLR value which controls this address translation regime */
10489 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10490 {
10491     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10492 }
10493 
10494 #ifndef CONFIG_USER_ONLY
10495 
10496 /* Return true if the specified stage of address translation is disabled */
10497 static inline bool regime_translation_disabled(CPUARMState *env,
10498                                                ARMMMUIdx mmu_idx)
10499 {
10500     uint64_t hcr_el2;
10501 
10502     if (arm_feature(env, ARM_FEATURE_M)) {
10503         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10504                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10505         case R_V7M_MPU_CTRL_ENABLE_MASK:
10506             /* Enabled, but not for HardFault and NMI */
10507             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10508         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10509             /* Enabled for all cases */
10510             return false;
10511         case 0:
10512         default:
10513             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10514              * we warned about that in armv7m_nvic.c when the guest set it.
10515              */
10516             return true;
10517         }
10518     }
10519 
10520     hcr_el2 = arm_hcr_el2_eff(env);
10521 
10522     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10523         /* HCR.DC means HCR.VM behaves as 1 */
10524         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10525     }
10526 
10527     if (hcr_el2 & HCR_TGE) {
10528         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10529         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10530             return true;
10531         }
10532     }
10533 
10534     if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10535         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10536         return true;
10537     }
10538 
10539     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10540 }
10541 
10542 static inline bool regime_translation_big_endian(CPUARMState *env,
10543                                                  ARMMMUIdx mmu_idx)
10544 {
10545     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10546 }
10547 
10548 /* Return the TTBR associated with this translation regime */
10549 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10550                                    int ttbrn)
10551 {
10552     if (mmu_idx == ARMMMUIdx_Stage2) {
10553         return env->cp15.vttbr_el2;
10554     }
10555     if (mmu_idx == ARMMMUIdx_Stage2_S) {
10556         return env->cp15.vsttbr_el2;
10557     }
10558     if (ttbrn == 0) {
10559         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10560     } else {
10561         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10562     }
10563 }
10564 
10565 #endif /* !CONFIG_USER_ONLY */
10566 
10567 /* Convert a possible stage1+2 MMU index into the appropriate
10568  * stage 1 MMU index
10569  */
10570 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10571 {
10572     switch (mmu_idx) {
10573     case ARMMMUIdx_SE10_0:
10574         return ARMMMUIdx_Stage1_SE0;
10575     case ARMMMUIdx_SE10_1:
10576         return ARMMMUIdx_Stage1_SE1;
10577     case ARMMMUIdx_SE10_1_PAN:
10578         return ARMMMUIdx_Stage1_SE1_PAN;
10579     case ARMMMUIdx_E10_0:
10580         return ARMMMUIdx_Stage1_E0;
10581     case ARMMMUIdx_E10_1:
10582         return ARMMMUIdx_Stage1_E1;
10583     case ARMMMUIdx_E10_1_PAN:
10584         return ARMMMUIdx_Stage1_E1_PAN;
10585     default:
10586         return mmu_idx;
10587     }
10588 }
10589 
10590 /* Return true if the translation regime is using LPAE format page tables */
10591 static inline bool regime_using_lpae_format(CPUARMState *env,
10592                                             ARMMMUIdx mmu_idx)
10593 {
10594     int el = regime_el(env, mmu_idx);
10595     if (el == 2 || arm_el_is_aa64(env, el)) {
10596         return true;
10597     }
10598     if (arm_feature(env, ARM_FEATURE_LPAE)
10599         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10600         return true;
10601     }
10602     return false;
10603 }
10604 
10605 /* Returns true if the stage 1 translation regime is using LPAE format page
10606  * tables. Used when raising alignment exceptions, whose FSR changes depending
10607  * on whether the long or short descriptor format is in use. */
10608 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10609 {
10610     mmu_idx = stage_1_mmu_idx(mmu_idx);
10611 
10612     return regime_using_lpae_format(env, mmu_idx);
10613 }
10614 
10615 #ifndef CONFIG_USER_ONLY
10616 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10617 {
10618     switch (mmu_idx) {
10619     case ARMMMUIdx_SE10_0:
10620     case ARMMMUIdx_E20_0:
10621     case ARMMMUIdx_SE20_0:
10622     case ARMMMUIdx_Stage1_E0:
10623     case ARMMMUIdx_Stage1_SE0:
10624     case ARMMMUIdx_MUser:
10625     case ARMMMUIdx_MSUser:
10626     case ARMMMUIdx_MUserNegPri:
10627     case ARMMMUIdx_MSUserNegPri:
10628         return true;
10629     default:
10630         return false;
10631     case ARMMMUIdx_E10_0:
10632     case ARMMMUIdx_E10_1:
10633     case ARMMMUIdx_E10_1_PAN:
10634         g_assert_not_reached();
10635     }
10636 }
10637 
10638 /* Translate section/page access permissions to page
10639  * R/W protection flags
10640  *
10641  * @env:         CPUARMState
10642  * @mmu_idx:     MMU index indicating required translation regime
10643  * @ap:          The 3-bit access permissions (AP[2:0])
10644  * @domain_prot: The 2-bit domain access permissions
10645  */
10646 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10647                                 int ap, int domain_prot)
10648 {
10649     bool is_user = regime_is_user(env, mmu_idx);
10650 
10651     if (domain_prot == 3) {
10652         return PAGE_READ | PAGE_WRITE;
10653     }
10654 
10655     switch (ap) {
10656     case 0:
10657         if (arm_feature(env, ARM_FEATURE_V7)) {
10658             return 0;
10659         }
10660         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10661         case SCTLR_S:
10662             return is_user ? 0 : PAGE_READ;
10663         case SCTLR_R:
10664             return PAGE_READ;
10665         default:
10666             return 0;
10667         }
10668     case 1:
10669         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10670     case 2:
10671         if (is_user) {
10672             return PAGE_READ;
10673         } else {
10674             return PAGE_READ | PAGE_WRITE;
10675         }
10676     case 3:
10677         return PAGE_READ | PAGE_WRITE;
10678     case 4: /* Reserved.  */
10679         return 0;
10680     case 5:
10681         return is_user ? 0 : PAGE_READ;
10682     case 6:
10683         return PAGE_READ;
10684     case 7:
10685         if (!arm_feature(env, ARM_FEATURE_V6K)) {
10686             return 0;
10687         }
10688         return PAGE_READ;
10689     default:
10690         g_assert_not_reached();
10691     }
10692 }
10693 
10694 /* Translate section/page access permissions to page
10695  * R/W protection flags.
10696  *
10697  * @ap:      The 2-bit simple AP (AP[2:1])
10698  * @is_user: TRUE if accessing from PL0
10699  */
10700 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10701 {
10702     switch (ap) {
10703     case 0:
10704         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10705     case 1:
10706         return PAGE_READ | PAGE_WRITE;
10707     case 2:
10708         return is_user ? 0 : PAGE_READ;
10709     case 3:
10710         return PAGE_READ;
10711     default:
10712         g_assert_not_reached();
10713     }
10714 }
10715 
10716 static inline int
10717 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10718 {
10719     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10720 }
10721 
10722 /* Translate S2 section/page access permissions to protection flags
10723  *
10724  * @env:     CPUARMState
10725  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10726  * @xn:      XN (execute-never) bits
10727  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10728  */
10729 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10730 {
10731     int prot = 0;
10732 
10733     if (s2ap & 1) {
10734         prot |= PAGE_READ;
10735     }
10736     if (s2ap & 2) {
10737         prot |= PAGE_WRITE;
10738     }
10739 
10740     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10741         switch (xn) {
10742         case 0:
10743             prot |= PAGE_EXEC;
10744             break;
10745         case 1:
10746             if (s1_is_el0) {
10747                 prot |= PAGE_EXEC;
10748             }
10749             break;
10750         case 2:
10751             break;
10752         case 3:
10753             if (!s1_is_el0) {
10754                 prot |= PAGE_EXEC;
10755             }
10756             break;
10757         default:
10758             g_assert_not_reached();
10759         }
10760     } else {
10761         if (!extract32(xn, 1, 1)) {
10762             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10763                 prot |= PAGE_EXEC;
10764             }
10765         }
10766     }
10767     return prot;
10768 }
10769 
10770 /* Translate section/page access permissions to protection flags
10771  *
10772  * @env:     CPUARMState
10773  * @mmu_idx: MMU index indicating required translation regime
10774  * @is_aa64: TRUE if AArch64
10775  * @ap:      The 2-bit simple AP (AP[2:1])
10776  * @ns:      NS (non-secure) bit
10777  * @xn:      XN (execute-never) bit
10778  * @pxn:     PXN (privileged execute-never) bit
10779  */
10780 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10781                       int ap, int ns, int xn, int pxn)
10782 {
10783     bool is_user = regime_is_user(env, mmu_idx);
10784     int prot_rw, user_rw;
10785     bool have_wxn;
10786     int wxn = 0;
10787 
10788     assert(mmu_idx != ARMMMUIdx_Stage2);
10789     assert(mmu_idx != ARMMMUIdx_Stage2_S);
10790 
10791     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10792     if (is_user) {
10793         prot_rw = user_rw;
10794     } else {
10795         if (user_rw && regime_is_pan(env, mmu_idx)) {
10796             /* PAN forbids data accesses but doesn't affect insn fetch */
10797             prot_rw = 0;
10798         } else {
10799             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10800         }
10801     }
10802 
10803     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10804         return prot_rw;
10805     }
10806 
10807     /* TODO have_wxn should be replaced with
10808      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10809      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10810      * compatible processors have EL2, which is required for [U]WXN.
10811      */
10812     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10813 
10814     if (have_wxn) {
10815         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10816     }
10817 
10818     if (is_aa64) {
10819         if (regime_has_2_ranges(mmu_idx) && !is_user) {
10820             xn = pxn || (user_rw & PAGE_WRITE);
10821         }
10822     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10823         switch (regime_el(env, mmu_idx)) {
10824         case 1:
10825         case 3:
10826             if (is_user) {
10827                 xn = xn || !(user_rw & PAGE_READ);
10828             } else {
10829                 int uwxn = 0;
10830                 if (have_wxn) {
10831                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10832                 }
10833                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10834                      (uwxn && (user_rw & PAGE_WRITE));
10835             }
10836             break;
10837         case 2:
10838             break;
10839         }
10840     } else {
10841         xn = wxn = 0;
10842     }
10843 
10844     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10845         return prot_rw;
10846     }
10847     return prot_rw | PAGE_EXEC;
10848 }
10849 
10850 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10851                                      uint32_t *table, uint32_t address)
10852 {
10853     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10854     TCR *tcr = regime_tcr(env, mmu_idx);
10855 
10856     if (address & tcr->mask) {
10857         if (tcr->raw_tcr & TTBCR_PD1) {
10858             /* Translation table walk disabled for TTBR1 */
10859             return false;
10860         }
10861         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10862     } else {
10863         if (tcr->raw_tcr & TTBCR_PD0) {
10864             /* Translation table walk disabled for TTBR0 */
10865             return false;
10866         }
10867         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10868     }
10869     *table |= (address >> 18) & 0x3ffc;
10870     return true;
10871 }
10872 
10873 /* Translate a S1 pagetable walk through S2 if needed.  */
10874 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10875                                hwaddr addr, bool *is_secure,
10876                                ARMMMUFaultInfo *fi)
10877 {
10878     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10879         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10880         target_ulong s2size;
10881         hwaddr s2pa;
10882         int s2prot;
10883         int ret;
10884         ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10885                                           : ARMMMUIdx_Stage2;
10886         ARMCacheAttrs cacheattrs = {};
10887         MemTxAttrs txattrs = {};
10888 
10889         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10890                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
10891                                  &cacheattrs);
10892         if (ret) {
10893             assert(fi->type != ARMFault_None);
10894             fi->s2addr = addr;
10895             fi->stage2 = true;
10896             fi->s1ptw = true;
10897             fi->s1ns = !*is_secure;
10898             return ~0;
10899         }
10900         if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10901             (cacheattrs.attrs & 0xf0) == 0) {
10902             /*
10903              * PTW set and S1 walk touched S2 Device memory:
10904              * generate Permission fault.
10905              */
10906             fi->type = ARMFault_Permission;
10907             fi->s2addr = addr;
10908             fi->stage2 = true;
10909             fi->s1ptw = true;
10910             fi->s1ns = !*is_secure;
10911             return ~0;
10912         }
10913 
10914         if (arm_is_secure_below_el3(env)) {
10915             /* Check if page table walk is to secure or non-secure PA space. */
10916             if (*is_secure) {
10917                 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10918             } else {
10919                 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10920             }
10921         } else {
10922             assert(!*is_secure);
10923         }
10924 
10925         addr = s2pa;
10926     }
10927     return addr;
10928 }
10929 
10930 /* All loads done in the course of a page table walk go through here. */
10931 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10932                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10933 {
10934     ARMCPU *cpu = ARM_CPU(cs);
10935     CPUARMState *env = &cpu->env;
10936     MemTxAttrs attrs = {};
10937     MemTxResult result = MEMTX_OK;
10938     AddressSpace *as;
10939     uint32_t data;
10940 
10941     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10942     attrs.secure = is_secure;
10943     as = arm_addressspace(cs, attrs);
10944     if (fi->s1ptw) {
10945         return 0;
10946     }
10947     if (regime_translation_big_endian(env, mmu_idx)) {
10948         data = address_space_ldl_be(as, addr, attrs, &result);
10949     } else {
10950         data = address_space_ldl_le(as, addr, attrs, &result);
10951     }
10952     if (result == MEMTX_OK) {
10953         return data;
10954     }
10955     fi->type = ARMFault_SyncExternalOnWalk;
10956     fi->ea = arm_extabort_type(result);
10957     return 0;
10958 }
10959 
10960 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10961                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10962 {
10963     ARMCPU *cpu = ARM_CPU(cs);
10964     CPUARMState *env = &cpu->env;
10965     MemTxAttrs attrs = {};
10966     MemTxResult result = MEMTX_OK;
10967     AddressSpace *as;
10968     uint64_t data;
10969 
10970     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10971     attrs.secure = is_secure;
10972     as = arm_addressspace(cs, attrs);
10973     if (fi->s1ptw) {
10974         return 0;
10975     }
10976     if (regime_translation_big_endian(env, mmu_idx)) {
10977         data = address_space_ldq_be(as, addr, attrs, &result);
10978     } else {
10979         data = address_space_ldq_le(as, addr, attrs, &result);
10980     }
10981     if (result == MEMTX_OK) {
10982         return data;
10983     }
10984     fi->type = ARMFault_SyncExternalOnWalk;
10985     fi->ea = arm_extabort_type(result);
10986     return 0;
10987 }
10988 
10989 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10990                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10991                              hwaddr *phys_ptr, int *prot,
10992                              target_ulong *page_size,
10993                              ARMMMUFaultInfo *fi)
10994 {
10995     CPUState *cs = env_cpu(env);
10996     int level = 1;
10997     uint32_t table;
10998     uint32_t desc;
10999     int type;
11000     int ap;
11001     int domain = 0;
11002     int domain_prot;
11003     hwaddr phys_addr;
11004     uint32_t dacr;
11005 
11006     /* Pagetable walk.  */
11007     /* Lookup l1 descriptor.  */
11008     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11009         /* Section translation fault if page walk is disabled by PD0 or PD1 */
11010         fi->type = ARMFault_Translation;
11011         goto do_fault;
11012     }
11013     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11014                        mmu_idx, fi);
11015     if (fi->type != ARMFault_None) {
11016         goto do_fault;
11017     }
11018     type = (desc & 3);
11019     domain = (desc >> 5) & 0x0f;
11020     if (regime_el(env, mmu_idx) == 1) {
11021         dacr = env->cp15.dacr_ns;
11022     } else {
11023         dacr = env->cp15.dacr_s;
11024     }
11025     domain_prot = (dacr >> (domain * 2)) & 3;
11026     if (type == 0) {
11027         /* Section translation fault.  */
11028         fi->type = ARMFault_Translation;
11029         goto do_fault;
11030     }
11031     if (type != 2) {
11032         level = 2;
11033     }
11034     if (domain_prot == 0 || domain_prot == 2) {
11035         fi->type = ARMFault_Domain;
11036         goto do_fault;
11037     }
11038     if (type == 2) {
11039         /* 1Mb section.  */
11040         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11041         ap = (desc >> 10) & 3;
11042         *page_size = 1024 * 1024;
11043     } else {
11044         /* Lookup l2 entry.  */
11045         if (type == 1) {
11046             /* Coarse pagetable.  */
11047             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11048         } else {
11049             /* Fine pagetable.  */
11050             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
11051         }
11052         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11053                            mmu_idx, fi);
11054         if (fi->type != ARMFault_None) {
11055             goto do_fault;
11056         }
11057         switch (desc & 3) {
11058         case 0: /* Page translation fault.  */
11059             fi->type = ARMFault_Translation;
11060             goto do_fault;
11061         case 1: /* 64k page.  */
11062             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11063             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
11064             *page_size = 0x10000;
11065             break;
11066         case 2: /* 4k page.  */
11067             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11068             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
11069             *page_size = 0x1000;
11070             break;
11071         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
11072             if (type == 1) {
11073                 /* ARMv6/XScale extended small page format */
11074                 if (arm_feature(env, ARM_FEATURE_XSCALE)
11075                     || arm_feature(env, ARM_FEATURE_V6)) {
11076                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11077                     *page_size = 0x1000;
11078                 } else {
11079                     /* UNPREDICTABLE in ARMv5; we choose to take a
11080                      * page translation fault.
11081                      */
11082                     fi->type = ARMFault_Translation;
11083                     goto do_fault;
11084                 }
11085             } else {
11086                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
11087                 *page_size = 0x400;
11088             }
11089             ap = (desc >> 4) & 3;
11090             break;
11091         default:
11092             /* Never happens, but compiler isn't smart enough to tell.  */
11093             abort();
11094         }
11095     }
11096     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11097     *prot |= *prot ? PAGE_EXEC : 0;
11098     if (!(*prot & (1 << access_type))) {
11099         /* Access permission fault.  */
11100         fi->type = ARMFault_Permission;
11101         goto do_fault;
11102     }
11103     *phys_ptr = phys_addr;
11104     return false;
11105 do_fault:
11106     fi->domain = domain;
11107     fi->level = level;
11108     return true;
11109 }
11110 
11111 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
11112                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
11113                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11114                              target_ulong *page_size, ARMMMUFaultInfo *fi)
11115 {
11116     CPUState *cs = env_cpu(env);
11117     ARMCPU *cpu = env_archcpu(env);
11118     int level = 1;
11119     uint32_t table;
11120     uint32_t desc;
11121     uint32_t xn;
11122     uint32_t pxn = 0;
11123     int type;
11124     int ap;
11125     int domain = 0;
11126     int domain_prot;
11127     hwaddr phys_addr;
11128     uint32_t dacr;
11129     bool ns;
11130 
11131     /* Pagetable walk.  */
11132     /* Lookup l1 descriptor.  */
11133     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11134         /* Section translation fault if page walk is disabled by PD0 or PD1 */
11135         fi->type = ARMFault_Translation;
11136         goto do_fault;
11137     }
11138     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11139                        mmu_idx, fi);
11140     if (fi->type != ARMFault_None) {
11141         goto do_fault;
11142     }
11143     type = (desc & 3);
11144     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
11145         /* Section translation fault, or attempt to use the encoding
11146          * which is Reserved on implementations without PXN.
11147          */
11148         fi->type = ARMFault_Translation;
11149         goto do_fault;
11150     }
11151     if ((type == 1) || !(desc & (1 << 18))) {
11152         /* Page or Section.  */
11153         domain = (desc >> 5) & 0x0f;
11154     }
11155     if (regime_el(env, mmu_idx) == 1) {
11156         dacr = env->cp15.dacr_ns;
11157     } else {
11158         dacr = env->cp15.dacr_s;
11159     }
11160     if (type == 1) {
11161         level = 2;
11162     }
11163     domain_prot = (dacr >> (domain * 2)) & 3;
11164     if (domain_prot == 0 || domain_prot == 2) {
11165         /* Section or Page domain fault */
11166         fi->type = ARMFault_Domain;
11167         goto do_fault;
11168     }
11169     if (type != 1) {
11170         if (desc & (1 << 18)) {
11171             /* Supersection.  */
11172             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
11173             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
11174             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
11175             *page_size = 0x1000000;
11176         } else {
11177             /* Section.  */
11178             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11179             *page_size = 0x100000;
11180         }
11181         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
11182         xn = desc & (1 << 4);
11183         pxn = desc & 1;
11184         ns = extract32(desc, 19, 1);
11185     } else {
11186         if (cpu_isar_feature(aa32_pxn, cpu)) {
11187             pxn = (desc >> 2) & 1;
11188         }
11189         ns = extract32(desc, 3, 1);
11190         /* Lookup l2 entry.  */
11191         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11192         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11193                            mmu_idx, fi);
11194         if (fi->type != ARMFault_None) {
11195             goto do_fault;
11196         }
11197         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11198         switch (desc & 3) {
11199         case 0: /* Page translation fault.  */
11200             fi->type = ARMFault_Translation;
11201             goto do_fault;
11202         case 1: /* 64k page.  */
11203             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11204             xn = desc & (1 << 15);
11205             *page_size = 0x10000;
11206             break;
11207         case 2: case 3: /* 4k page.  */
11208             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11209             xn = desc & 1;
11210             *page_size = 0x1000;
11211             break;
11212         default:
11213             /* Never happens, but compiler isn't smart enough to tell.  */
11214             abort();
11215         }
11216     }
11217     if (domain_prot == 3) {
11218         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11219     } else {
11220         if (pxn && !regime_is_user(env, mmu_idx)) {
11221             xn = 1;
11222         }
11223         if (xn && access_type == MMU_INST_FETCH) {
11224             fi->type = ARMFault_Permission;
11225             goto do_fault;
11226         }
11227 
11228         if (arm_feature(env, ARM_FEATURE_V6K) &&
11229                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11230             /* The simplified model uses AP[0] as an access control bit.  */
11231             if ((ap & 1) == 0) {
11232                 /* Access flag fault.  */
11233                 fi->type = ARMFault_AccessFlag;
11234                 goto do_fault;
11235             }
11236             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11237         } else {
11238             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11239         }
11240         if (*prot && !xn) {
11241             *prot |= PAGE_EXEC;
11242         }
11243         if (!(*prot & (1 << access_type))) {
11244             /* Access permission fault.  */
11245             fi->type = ARMFault_Permission;
11246             goto do_fault;
11247         }
11248     }
11249     if (ns) {
11250         /* The NS bit will (as required by the architecture) have no effect if
11251          * the CPU doesn't support TZ or this is a non-secure translation
11252          * regime, because the attribute will already be non-secure.
11253          */
11254         attrs->secure = false;
11255     }
11256     *phys_ptr = phys_addr;
11257     return false;
11258 do_fault:
11259     fi->domain = domain;
11260     fi->level = level;
11261     return true;
11262 }
11263 
11264 /*
11265  * check_s2_mmu_setup
11266  * @cpu:        ARMCPU
11267  * @is_aa64:    True if the translation regime is in AArch64 state
11268  * @startlevel: Suggested starting level
11269  * @inputsize:  Bitsize of IPAs
11270  * @stride:     Page-table stride (See the ARM ARM)
11271  *
11272  * Returns true if the suggested S2 translation parameters are OK and
11273  * false otherwise.
11274  */
11275 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11276                                int inputsize, int stride)
11277 {
11278     const int grainsize = stride + 3;
11279     int startsizecheck;
11280 
11281     /* Negative levels are never allowed.  */
11282     if (level < 0) {
11283         return false;
11284     }
11285 
11286     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11287     if (startsizecheck < 1 || startsizecheck > stride + 4) {
11288         return false;
11289     }
11290 
11291     if (is_aa64) {
11292         CPUARMState *env = &cpu->env;
11293         unsigned int pamax = arm_pamax(cpu);
11294 
11295         switch (stride) {
11296         case 13: /* 64KB Pages.  */
11297             if (level == 0 || (level == 1 && pamax <= 42)) {
11298                 return false;
11299             }
11300             break;
11301         case 11: /* 16KB Pages.  */
11302             if (level == 0 || (level == 1 && pamax <= 40)) {
11303                 return false;
11304             }
11305             break;
11306         case 9: /* 4KB Pages.  */
11307             if (level == 0 && pamax <= 42) {
11308                 return false;
11309             }
11310             break;
11311         default:
11312             g_assert_not_reached();
11313         }
11314 
11315         /* Inputsize checks.  */
11316         if (inputsize > pamax &&
11317             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
11318             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
11319             return false;
11320         }
11321     } else {
11322         /* AArch32 only supports 4KB pages. Assert on that.  */
11323         assert(stride == 9);
11324 
11325         if (level == 0) {
11326             return false;
11327         }
11328     }
11329     return true;
11330 }
11331 
11332 /* Translate from the 4-bit stage 2 representation of
11333  * memory attributes (without cache-allocation hints) to
11334  * the 8-bit representation of the stage 1 MAIR registers
11335  * (which includes allocation hints).
11336  *
11337  * ref: shared/translation/attrs/S2AttrDecode()
11338  *      .../S2ConvertAttrsHints()
11339  */
11340 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11341 {
11342     uint8_t hiattr = extract32(s2attrs, 2, 2);
11343     uint8_t loattr = extract32(s2attrs, 0, 2);
11344     uint8_t hihint = 0, lohint = 0;
11345 
11346     if (hiattr != 0) { /* normal memory */
11347         if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11348             hiattr = loattr = 1; /* non-cacheable */
11349         } else {
11350             if (hiattr != 1) { /* Write-through or write-back */
11351                 hihint = 3; /* RW allocate */
11352             }
11353             if (loattr != 1) { /* Write-through or write-back */
11354                 lohint = 3; /* RW allocate */
11355             }
11356         }
11357     }
11358 
11359     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11360 }
11361 #endif /* !CONFIG_USER_ONLY */
11362 
11363 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11364 {
11365     if (regime_has_2_ranges(mmu_idx)) {
11366         return extract64(tcr, 37, 2);
11367     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11368         return 0; /* VTCR_EL2 */
11369     } else {
11370         /* Replicate the single TBI bit so we always have 2 bits.  */
11371         return extract32(tcr, 20, 1) * 3;
11372     }
11373 }
11374 
11375 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11376 {
11377     if (regime_has_2_ranges(mmu_idx)) {
11378         return extract64(tcr, 51, 2);
11379     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11380         return 0; /* VTCR_EL2 */
11381     } else {
11382         /* Replicate the single TBID bit so we always have 2 bits.  */
11383         return extract32(tcr, 29, 1) * 3;
11384     }
11385 }
11386 
11387 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11388 {
11389     if (regime_has_2_ranges(mmu_idx)) {
11390         return extract64(tcr, 57, 2);
11391     } else {
11392         /* Replicate the single TCMA bit so we always have 2 bits.  */
11393         return extract32(tcr, 30, 1) * 3;
11394     }
11395 }
11396 
11397 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11398                                    ARMMMUIdx mmu_idx, bool data)
11399 {
11400     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11401     bool epd, hpd, using16k, using64k;
11402     int select, tsz, tbi, max_tsz;
11403 
11404     if (!regime_has_2_ranges(mmu_idx)) {
11405         select = 0;
11406         tsz = extract32(tcr, 0, 6);
11407         using64k = extract32(tcr, 14, 1);
11408         using16k = extract32(tcr, 15, 1);
11409         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11410             /* VTCR_EL2 */
11411             hpd = false;
11412         } else {
11413             hpd = extract32(tcr, 24, 1);
11414         }
11415         epd = false;
11416     } else {
11417         /*
11418          * Bit 55 is always between the two regions, and is canonical for
11419          * determining if address tagging is enabled.
11420          */
11421         select = extract64(va, 55, 1);
11422         if (!select) {
11423             tsz = extract32(tcr, 0, 6);
11424             epd = extract32(tcr, 7, 1);
11425             using64k = extract32(tcr, 14, 1);
11426             using16k = extract32(tcr, 15, 1);
11427             hpd = extract64(tcr, 41, 1);
11428         } else {
11429             int tg = extract32(tcr, 30, 2);
11430             using16k = tg == 1;
11431             using64k = tg == 3;
11432             tsz = extract32(tcr, 16, 6);
11433             epd = extract32(tcr, 23, 1);
11434             hpd = extract64(tcr, 42, 1);
11435         }
11436     }
11437 
11438     if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
11439         max_tsz = 48 - using64k;
11440     } else {
11441         max_tsz = 39;
11442     }
11443 
11444     tsz = MIN(tsz, max_tsz);
11445     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
11446 
11447     /* Present TBI as a composite with TBID.  */
11448     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11449     if (!data) {
11450         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11451     }
11452     tbi = (tbi >> select) & 1;
11453 
11454     return (ARMVAParameters) {
11455         .tsz = tsz,
11456         .select = select,
11457         .tbi = tbi,
11458         .epd = epd,
11459         .hpd = hpd,
11460         .using16k = using16k,
11461         .using64k = using64k,
11462     };
11463 }
11464 
11465 #ifndef CONFIG_USER_ONLY
11466 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11467                                           ARMMMUIdx mmu_idx)
11468 {
11469     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11470     uint32_t el = regime_el(env, mmu_idx);
11471     int select, tsz;
11472     bool epd, hpd;
11473 
11474     assert(mmu_idx != ARMMMUIdx_Stage2_S);
11475 
11476     if (mmu_idx == ARMMMUIdx_Stage2) {
11477         /* VTCR */
11478         bool sext = extract32(tcr, 4, 1);
11479         bool sign = extract32(tcr, 3, 1);
11480 
11481         /*
11482          * If the sign-extend bit is not the same as t0sz[3], the result
11483          * is unpredictable. Flag this as a guest error.
11484          */
11485         if (sign != sext) {
11486             qemu_log_mask(LOG_GUEST_ERROR,
11487                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11488         }
11489         tsz = sextract32(tcr, 0, 4) + 8;
11490         select = 0;
11491         hpd = false;
11492         epd = false;
11493     } else if (el == 2) {
11494         /* HTCR */
11495         tsz = extract32(tcr, 0, 3);
11496         select = 0;
11497         hpd = extract64(tcr, 24, 1);
11498         epd = false;
11499     } else {
11500         int t0sz = extract32(tcr, 0, 3);
11501         int t1sz = extract32(tcr, 16, 3);
11502 
11503         if (t1sz == 0) {
11504             select = va > (0xffffffffu >> t0sz);
11505         } else {
11506             /* Note that we will detect errors later.  */
11507             select = va >= ~(0xffffffffu >> t1sz);
11508         }
11509         if (!select) {
11510             tsz = t0sz;
11511             epd = extract32(tcr, 7, 1);
11512             hpd = extract64(tcr, 41, 1);
11513         } else {
11514             tsz = t1sz;
11515             epd = extract32(tcr, 23, 1);
11516             hpd = extract64(tcr, 42, 1);
11517         }
11518         /* For aarch32, hpd0 is not enabled without t2e as well.  */
11519         hpd &= extract32(tcr, 6, 1);
11520     }
11521 
11522     return (ARMVAParameters) {
11523         .tsz = tsz,
11524         .select = select,
11525         .epd = epd,
11526         .hpd = hpd,
11527     };
11528 }
11529 
11530 /**
11531  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11532  *
11533  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11534  * prot and page_size may not be filled in, and the populated fsr value provides
11535  * information on why the translation aborted, in the format of a long-format
11536  * DFSR/IFSR fault register, with the following caveats:
11537  *  * the WnR bit is never set (the caller must do this).
11538  *
11539  * @env: CPUARMState
11540  * @address: virtual address to get physical address for
11541  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11542  * @mmu_idx: MMU index indicating required translation regime
11543  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11544  *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
11545  *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11546  * @phys_ptr: set to the physical address corresponding to the virtual address
11547  * @attrs: set to the memory transaction attributes to use
11548  * @prot: set to the permissions for the page containing phys_ptr
11549  * @page_size_ptr: set to the size of the page containing phys_ptr
11550  * @fi: set to fault info if the translation fails
11551  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11552  */
11553 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11554                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
11555                                bool s1_is_el0,
11556                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11557                                target_ulong *page_size_ptr,
11558                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11559 {
11560     ARMCPU *cpu = env_archcpu(env);
11561     CPUState *cs = CPU(cpu);
11562     /* Read an LPAE long-descriptor translation table. */
11563     ARMFaultType fault_type = ARMFault_Translation;
11564     uint32_t level;
11565     ARMVAParameters param;
11566     uint64_t ttbr;
11567     hwaddr descaddr, indexmask, indexmask_grainsize;
11568     uint32_t tableattrs;
11569     target_ulong page_size;
11570     uint32_t attrs;
11571     int32_t stride;
11572     int addrsize, inputsize;
11573     TCR *tcr = regime_tcr(env, mmu_idx);
11574     int ap, ns, xn, pxn;
11575     uint32_t el = regime_el(env, mmu_idx);
11576     uint64_t descaddrmask;
11577     bool aarch64 = arm_el_is_aa64(env, el);
11578     bool guarded = false;
11579 
11580     /* TODO: This code does not support shareability levels. */
11581     if (aarch64) {
11582         param = aa64_va_parameters(env, address, mmu_idx,
11583                                    access_type != MMU_INST_FETCH);
11584         level = 0;
11585         addrsize = 64 - 8 * param.tbi;
11586         inputsize = 64 - param.tsz;
11587     } else {
11588         param = aa32_va_parameters(env, address, mmu_idx);
11589         level = 1;
11590         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11591         inputsize = addrsize - param.tsz;
11592     }
11593 
11594     /*
11595      * We determined the region when collecting the parameters, but we
11596      * have not yet validated that the address is valid for the region.
11597      * Extract the top bits and verify that they all match select.
11598      *
11599      * For aa32, if inputsize == addrsize, then we have selected the
11600      * region by exclusion in aa32_va_parameters and there is no more
11601      * validation to do here.
11602      */
11603     if (inputsize < addrsize) {
11604         target_ulong top_bits = sextract64(address, inputsize,
11605                                            addrsize - inputsize);
11606         if (-top_bits != param.select) {
11607             /* The gap between the two regions is a Translation fault */
11608             fault_type = ARMFault_Translation;
11609             goto do_fault;
11610         }
11611     }
11612 
11613     if (param.using64k) {
11614         stride = 13;
11615     } else if (param.using16k) {
11616         stride = 11;
11617     } else {
11618         stride = 9;
11619     }
11620 
11621     /* Note that QEMU ignores shareability and cacheability attributes,
11622      * so we don't need to do anything with the SH, ORGN, IRGN fields
11623      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11624      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11625      * implement any ASID-like capability so we can ignore it (instead
11626      * we will always flush the TLB any time the ASID is changed).
11627      */
11628     ttbr = regime_ttbr(env, mmu_idx, param.select);
11629 
11630     /* Here we should have set up all the parameters for the translation:
11631      * inputsize, ttbr, epd, stride, tbi
11632      */
11633 
11634     if (param.epd) {
11635         /* Translation table walk disabled => Translation fault on TLB miss
11636          * Note: This is always 0 on 64-bit EL2 and EL3.
11637          */
11638         goto do_fault;
11639     }
11640 
11641     if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11642         /* The starting level depends on the virtual address size (which can
11643          * be up to 48 bits) and the translation granule size. It indicates
11644          * the number of strides (stride bits at a time) needed to
11645          * consume the bits of the input address. In the pseudocode this is:
11646          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11647          * where their 'inputsize' is our 'inputsize', 'grainsize' is
11648          * our 'stride + 3' and 'stride' is our 'stride'.
11649          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11650          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11651          * = 4 - (inputsize - 4) / stride;
11652          */
11653         level = 4 - (inputsize - 4) / stride;
11654     } else {
11655         /* For stage 2 translations the starting level is specified by the
11656          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11657          */
11658         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11659         uint32_t startlevel;
11660         bool ok;
11661 
11662         if (!aarch64 || stride == 9) {
11663             /* AArch32 or 4KB pages */
11664             startlevel = 2 - sl0;
11665 
11666             if (cpu_isar_feature(aa64_st, cpu)) {
11667                 startlevel &= 3;
11668             }
11669         } else {
11670             /* 16KB or 64KB pages */
11671             startlevel = 3 - sl0;
11672         }
11673 
11674         /* Check that the starting level is valid. */
11675         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11676                                 inputsize, stride);
11677         if (!ok) {
11678             fault_type = ARMFault_Translation;
11679             goto do_fault;
11680         }
11681         level = startlevel;
11682     }
11683 
11684     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11685     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11686 
11687     /* Now we can extract the actual base address from the TTBR */
11688     descaddr = extract64(ttbr, 0, 48);
11689     /*
11690      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11691      * and also to mask out CnP (bit 0) which could validly be non-zero.
11692      */
11693     descaddr &= ~indexmask;
11694 
11695     /* The address field in the descriptor goes up to bit 39 for ARMv7
11696      * but up to bit 47 for ARMv8, but we use the descaddrmask
11697      * up to bit 39 for AArch32, because we don't need other bits in that case
11698      * to construct next descriptor address (anyway they should be all zeroes).
11699      */
11700     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11701                    ~indexmask_grainsize;
11702 
11703     /* Secure accesses start with the page table in secure memory and
11704      * can be downgraded to non-secure at any step. Non-secure accesses
11705      * remain non-secure. We implement this by just ORing in the NSTable/NS
11706      * bits at each step.
11707      */
11708     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11709     for (;;) {
11710         uint64_t descriptor;
11711         bool nstable;
11712 
11713         descaddr |= (address >> (stride * (4 - level))) & indexmask;
11714         descaddr &= ~7ULL;
11715         nstable = extract32(tableattrs, 4, 1);
11716         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11717         if (fi->type != ARMFault_None) {
11718             goto do_fault;
11719         }
11720 
11721         if (!(descriptor & 1) ||
11722             (!(descriptor & 2) && (level == 3))) {
11723             /* Invalid, or the Reserved level 3 encoding */
11724             goto do_fault;
11725         }
11726         descaddr = descriptor & descaddrmask;
11727 
11728         if ((descriptor & 2) && (level < 3)) {
11729             /* Table entry. The top five bits are attributes which may
11730              * propagate down through lower levels of the table (and
11731              * which are all arranged so that 0 means "no effect", so
11732              * we can gather them up by ORing in the bits at each level).
11733              */
11734             tableattrs |= extract64(descriptor, 59, 5);
11735             level++;
11736             indexmask = indexmask_grainsize;
11737             continue;
11738         }
11739         /* Block entry at level 1 or 2, or page entry at level 3.
11740          * These are basically the same thing, although the number
11741          * of bits we pull in from the vaddr varies.
11742          */
11743         page_size = (1ULL << ((stride * (4 - level)) + 3));
11744         descaddr |= (address & (page_size - 1));
11745         /* Extract attributes from the descriptor */
11746         attrs = extract64(descriptor, 2, 10)
11747             | (extract64(descriptor, 52, 12) << 10);
11748 
11749         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11750             /* Stage 2 table descriptors do not include any attribute fields */
11751             break;
11752         }
11753         /* Merge in attributes from table descriptors */
11754         attrs |= nstable << 3; /* NS */
11755         guarded = extract64(descriptor, 50, 1);  /* GP */
11756         if (param.hpd) {
11757             /* HPD disables all the table attributes except NSTable.  */
11758             break;
11759         }
11760         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11761         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11762          * means "force PL1 access only", which means forcing AP[1] to 0.
11763          */
11764         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11765         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11766         break;
11767     }
11768     /* Here descaddr is the final physical address, and attributes
11769      * are all in attrs.
11770      */
11771     fault_type = ARMFault_AccessFlag;
11772     if ((attrs & (1 << 8)) == 0) {
11773         /* Access flag */
11774         goto do_fault;
11775     }
11776 
11777     ap = extract32(attrs, 4, 2);
11778 
11779     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11780         ns = mmu_idx == ARMMMUIdx_Stage2;
11781         xn = extract32(attrs, 11, 2);
11782         *prot = get_S2prot(env, ap, xn, s1_is_el0);
11783     } else {
11784         ns = extract32(attrs, 3, 1);
11785         xn = extract32(attrs, 12, 1);
11786         pxn = extract32(attrs, 11, 1);
11787         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11788     }
11789 
11790     fault_type = ARMFault_Permission;
11791     if (!(*prot & (1 << access_type))) {
11792         goto do_fault;
11793     }
11794 
11795     if (ns) {
11796         /* The NS bit will (as required by the architecture) have no effect if
11797          * the CPU doesn't support TZ or this is a non-secure translation
11798          * regime, because the attribute will already be non-secure.
11799          */
11800         txattrs->secure = false;
11801     }
11802     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11803     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11804         arm_tlb_bti_gp(txattrs) = true;
11805     }
11806 
11807     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11808         cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11809     } else {
11810         /* Index into MAIR registers for cache attributes */
11811         uint8_t attrindx = extract32(attrs, 0, 3);
11812         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11813         assert(attrindx <= 7);
11814         cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11815     }
11816     cacheattrs->shareability = extract32(attrs, 6, 2);
11817 
11818     *phys_ptr = descaddr;
11819     *page_size_ptr = page_size;
11820     return false;
11821 
11822 do_fault:
11823     fi->type = fault_type;
11824     fi->level = level;
11825     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11826     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11827                                mmu_idx == ARMMMUIdx_Stage2_S);
11828     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11829     return true;
11830 }
11831 
11832 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11833                                                 ARMMMUIdx mmu_idx,
11834                                                 int32_t address, int *prot)
11835 {
11836     if (!arm_feature(env, ARM_FEATURE_M)) {
11837         *prot = PAGE_READ | PAGE_WRITE;
11838         switch (address) {
11839         case 0xF0000000 ... 0xFFFFFFFF:
11840             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11841                 /* hivecs execing is ok */
11842                 *prot |= PAGE_EXEC;
11843             }
11844             break;
11845         case 0x00000000 ... 0x7FFFFFFF:
11846             *prot |= PAGE_EXEC;
11847             break;
11848         }
11849     } else {
11850         /* Default system address map for M profile cores.
11851          * The architecture specifies which regions are execute-never;
11852          * at the MPU level no other checks are defined.
11853          */
11854         switch (address) {
11855         case 0x00000000 ... 0x1fffffff: /* ROM */
11856         case 0x20000000 ... 0x3fffffff: /* SRAM */
11857         case 0x60000000 ... 0x7fffffff: /* RAM */
11858         case 0x80000000 ... 0x9fffffff: /* RAM */
11859             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11860             break;
11861         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11862         case 0xa0000000 ... 0xbfffffff: /* Device */
11863         case 0xc0000000 ... 0xdfffffff: /* Device */
11864         case 0xe0000000 ... 0xffffffff: /* System */
11865             *prot = PAGE_READ | PAGE_WRITE;
11866             break;
11867         default:
11868             g_assert_not_reached();
11869         }
11870     }
11871 }
11872 
11873 static bool pmsav7_use_background_region(ARMCPU *cpu,
11874                                          ARMMMUIdx mmu_idx, bool is_user)
11875 {
11876     /* Return true if we should use the default memory map as a
11877      * "background" region if there are no hits against any MPU regions.
11878      */
11879     CPUARMState *env = &cpu->env;
11880 
11881     if (is_user) {
11882         return false;
11883     }
11884 
11885     if (arm_feature(env, ARM_FEATURE_M)) {
11886         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11887             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11888     } else {
11889         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11890     }
11891 }
11892 
11893 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11894 {
11895     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11896     return arm_feature(env, ARM_FEATURE_M) &&
11897         extract32(address, 20, 12) == 0xe00;
11898 }
11899 
11900 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11901 {
11902     /* True if address is in the M profile system region
11903      * 0xe0000000 - 0xffffffff
11904      */
11905     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11906 }
11907 
11908 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11909                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11910                                  hwaddr *phys_ptr, int *prot,
11911                                  target_ulong *page_size,
11912                                  ARMMMUFaultInfo *fi)
11913 {
11914     ARMCPU *cpu = env_archcpu(env);
11915     int n;
11916     bool is_user = regime_is_user(env, mmu_idx);
11917 
11918     *phys_ptr = address;
11919     *page_size = TARGET_PAGE_SIZE;
11920     *prot = 0;
11921 
11922     if (regime_translation_disabled(env, mmu_idx) ||
11923         m_is_ppb_region(env, address)) {
11924         /* MPU disabled or M profile PPB access: use default memory map.
11925          * The other case which uses the default memory map in the
11926          * v7M ARM ARM pseudocode is exception vector reads from the vector
11927          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11928          * which always does a direct read using address_space_ldl(), rather
11929          * than going via this function, so we don't need to check that here.
11930          */
11931         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11932     } else { /* MPU enabled */
11933         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11934             /* region search */
11935             uint32_t base = env->pmsav7.drbar[n];
11936             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11937             uint32_t rmask;
11938             bool srdis = false;
11939 
11940             if (!(env->pmsav7.drsr[n] & 0x1)) {
11941                 continue;
11942             }
11943 
11944             if (!rsize) {
11945                 qemu_log_mask(LOG_GUEST_ERROR,
11946                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11947                 continue;
11948             }
11949             rsize++;
11950             rmask = (1ull << rsize) - 1;
11951 
11952             if (base & rmask) {
11953                 qemu_log_mask(LOG_GUEST_ERROR,
11954                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11955                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11956                               n, base, rmask);
11957                 continue;
11958             }
11959 
11960             if (address < base || address > base + rmask) {
11961                 /*
11962                  * Address not in this region. We must check whether the
11963                  * region covers addresses in the same page as our address.
11964                  * In that case we must not report a size that covers the
11965                  * whole page for a subsequent hit against a different MPU
11966                  * region or the background region, because it would result in
11967                  * incorrect TLB hits for subsequent accesses to addresses that
11968                  * are in this MPU region.
11969                  */
11970                 if (ranges_overlap(base, rmask,
11971                                    address & TARGET_PAGE_MASK,
11972                                    TARGET_PAGE_SIZE)) {
11973                     *page_size = 1;
11974                 }
11975                 continue;
11976             }
11977 
11978             /* Region matched */
11979 
11980             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11981                 int i, snd;
11982                 uint32_t srdis_mask;
11983 
11984                 rsize -= 3; /* sub region size (power of 2) */
11985                 snd = ((address - base) >> rsize) & 0x7;
11986                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11987 
11988                 srdis_mask = srdis ? 0x3 : 0x0;
11989                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11990                     /* This will check in groups of 2, 4 and then 8, whether
11991                      * the subregion bits are consistent. rsize is incremented
11992                      * back up to give the region size, considering consistent
11993                      * adjacent subregions as one region. Stop testing if rsize
11994                      * is already big enough for an entire QEMU page.
11995                      */
11996                     int snd_rounded = snd & ~(i - 1);
11997                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11998                                                      snd_rounded + 8, i);
11999                     if (srdis_mask ^ srdis_multi) {
12000                         break;
12001                     }
12002                     srdis_mask = (srdis_mask << i) | srdis_mask;
12003                     rsize++;
12004                 }
12005             }
12006             if (srdis) {
12007                 continue;
12008             }
12009             if (rsize < TARGET_PAGE_BITS) {
12010                 *page_size = 1 << rsize;
12011             }
12012             break;
12013         }
12014 
12015         if (n == -1) { /* no hits */
12016             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12017                 /* background fault */
12018                 fi->type = ARMFault_Background;
12019                 return true;
12020             }
12021             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12022         } else { /* a MPU hit! */
12023             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
12024             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
12025 
12026             if (m_is_system_region(env, address)) {
12027                 /* System space is always execute never */
12028                 xn = 1;
12029             }
12030 
12031             if (is_user) { /* User mode AP bit decoding */
12032                 switch (ap) {
12033                 case 0:
12034                 case 1:
12035                 case 5:
12036                     break; /* no access */
12037                 case 3:
12038                     *prot |= PAGE_WRITE;
12039                     /* fall through */
12040                 case 2:
12041                 case 6:
12042                     *prot |= PAGE_READ | PAGE_EXEC;
12043                     break;
12044                 case 7:
12045                     /* for v7M, same as 6; for R profile a reserved value */
12046                     if (arm_feature(env, ARM_FEATURE_M)) {
12047                         *prot |= PAGE_READ | PAGE_EXEC;
12048                         break;
12049                     }
12050                     /* fall through */
12051                 default:
12052                     qemu_log_mask(LOG_GUEST_ERROR,
12053                                   "DRACR[%d]: Bad value for AP bits: 0x%"
12054                                   PRIx32 "\n", n, ap);
12055                 }
12056             } else { /* Priv. mode AP bits decoding */
12057                 switch (ap) {
12058                 case 0:
12059                     break; /* no access */
12060                 case 1:
12061                 case 2:
12062                 case 3:
12063                     *prot |= PAGE_WRITE;
12064                     /* fall through */
12065                 case 5:
12066                 case 6:
12067                     *prot |= PAGE_READ | PAGE_EXEC;
12068                     break;
12069                 case 7:
12070                     /* for v7M, same as 6; for R profile a reserved value */
12071                     if (arm_feature(env, ARM_FEATURE_M)) {
12072                         *prot |= PAGE_READ | PAGE_EXEC;
12073                         break;
12074                     }
12075                     /* fall through */
12076                 default:
12077                     qemu_log_mask(LOG_GUEST_ERROR,
12078                                   "DRACR[%d]: Bad value for AP bits: 0x%"
12079                                   PRIx32 "\n", n, ap);
12080                 }
12081             }
12082 
12083             /* execute never */
12084             if (xn) {
12085                 *prot &= ~PAGE_EXEC;
12086             }
12087         }
12088     }
12089 
12090     fi->type = ARMFault_Permission;
12091     fi->level = 1;
12092     return !(*prot & (1 << access_type));
12093 }
12094 
12095 static bool v8m_is_sau_exempt(CPUARMState *env,
12096                               uint32_t address, MMUAccessType access_type)
12097 {
12098     /* The architecture specifies that certain address ranges are
12099      * exempt from v8M SAU/IDAU checks.
12100      */
12101     return
12102         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
12103         (address >= 0xe0000000 && address <= 0xe0002fff) ||
12104         (address >= 0xe000e000 && address <= 0xe000efff) ||
12105         (address >= 0xe002e000 && address <= 0xe002efff) ||
12106         (address >= 0xe0040000 && address <= 0xe0041fff) ||
12107         (address >= 0xe00ff000 && address <= 0xe00fffff);
12108 }
12109 
12110 void v8m_security_lookup(CPUARMState *env, uint32_t address,
12111                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12112                                 V8M_SAttributes *sattrs)
12113 {
12114     /* Look up the security attributes for this address. Compare the
12115      * pseudocode SecurityCheck() function.
12116      * We assume the caller has zero-initialized *sattrs.
12117      */
12118     ARMCPU *cpu = env_archcpu(env);
12119     int r;
12120     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
12121     int idau_region = IREGION_NOTVALID;
12122     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12123     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12124 
12125     if (cpu->idau) {
12126         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
12127         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
12128 
12129         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
12130                    &idau_nsc);
12131     }
12132 
12133     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
12134         /* 0xf0000000..0xffffffff is always S for insn fetches */
12135         return;
12136     }
12137 
12138     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
12139         sattrs->ns = !regime_is_secure(env, mmu_idx);
12140         return;
12141     }
12142 
12143     if (idau_region != IREGION_NOTVALID) {
12144         sattrs->irvalid = true;
12145         sattrs->iregion = idau_region;
12146     }
12147 
12148     switch (env->sau.ctrl & 3) {
12149     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
12150         break;
12151     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12152         sattrs->ns = true;
12153         break;
12154     default: /* SAU.ENABLE == 1 */
12155         for (r = 0; r < cpu->sau_sregion; r++) {
12156             if (env->sau.rlar[r] & 1) {
12157                 uint32_t base = env->sau.rbar[r] & ~0x1f;
12158                 uint32_t limit = env->sau.rlar[r] | 0x1f;
12159 
12160                 if (base <= address && limit >= address) {
12161                     if (base > addr_page_base || limit < addr_page_limit) {
12162                         sattrs->subpage = true;
12163                     }
12164                     if (sattrs->srvalid) {
12165                         /* If we hit in more than one region then we must report
12166                          * as Secure, not NS-Callable, with no valid region
12167                          * number info.
12168                          */
12169                         sattrs->ns = false;
12170                         sattrs->nsc = false;
12171                         sattrs->sregion = 0;
12172                         sattrs->srvalid = false;
12173                         break;
12174                     } else {
12175                         if (env->sau.rlar[r] & 2) {
12176                             sattrs->nsc = true;
12177                         } else {
12178                             sattrs->ns = true;
12179                         }
12180                         sattrs->srvalid = true;
12181                         sattrs->sregion = r;
12182                     }
12183                 } else {
12184                     /*
12185                      * Address not in this region. We must check whether the
12186                      * region covers addresses in the same page as our address.
12187                      * In that case we must not report a size that covers the
12188                      * whole page for a subsequent hit against a different MPU
12189                      * region or the background region, because it would result
12190                      * in incorrect TLB hits for subsequent accesses to
12191                      * addresses that are in this MPU region.
12192                      */
12193                     if (limit >= base &&
12194                         ranges_overlap(base, limit - base + 1,
12195                                        addr_page_base,
12196                                        TARGET_PAGE_SIZE)) {
12197                         sattrs->subpage = true;
12198                     }
12199                 }
12200             }
12201         }
12202         break;
12203     }
12204 
12205     /*
12206      * The IDAU will override the SAU lookup results if it specifies
12207      * higher security than the SAU does.
12208      */
12209     if (!idau_ns) {
12210         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12211             sattrs->ns = false;
12212             sattrs->nsc = idau_nsc;
12213         }
12214     }
12215 }
12216 
12217 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12218                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
12219                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
12220                               int *prot, bool *is_subpage,
12221                               ARMMMUFaultInfo *fi, uint32_t *mregion)
12222 {
12223     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12224      * that a full phys-to-virt translation does).
12225      * mregion is (if not NULL) set to the region number which matched,
12226      * or -1 if no region number is returned (MPU off, address did not
12227      * hit a region, address hit in multiple regions).
12228      * We set is_subpage to true if the region hit doesn't cover the
12229      * entire TARGET_PAGE the address is within.
12230      */
12231     ARMCPU *cpu = env_archcpu(env);
12232     bool is_user = regime_is_user(env, mmu_idx);
12233     uint32_t secure = regime_is_secure(env, mmu_idx);
12234     int n;
12235     int matchregion = -1;
12236     bool hit = false;
12237     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12238     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12239 
12240     *is_subpage = false;
12241     *phys_ptr = address;
12242     *prot = 0;
12243     if (mregion) {
12244         *mregion = -1;
12245     }
12246 
12247     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12248      * was an exception vector read from the vector table (which is always
12249      * done using the default system address map), because those accesses
12250      * are done in arm_v7m_load_vector(), which always does a direct
12251      * read using address_space_ldl(), rather than going via this function.
12252      */
12253     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12254         hit = true;
12255     } else if (m_is_ppb_region(env, address)) {
12256         hit = true;
12257     } else {
12258         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12259             hit = true;
12260         }
12261 
12262         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12263             /* region search */
12264             /* Note that the base address is bits [31:5] from the register
12265              * with bits [4:0] all zeroes, but the limit address is bits
12266              * [31:5] from the register with bits [4:0] all ones.
12267              */
12268             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12269             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12270 
12271             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12272                 /* Region disabled */
12273                 continue;
12274             }
12275 
12276             if (address < base || address > limit) {
12277                 /*
12278                  * Address not in this region. We must check whether the
12279                  * region covers addresses in the same page as our address.
12280                  * In that case we must not report a size that covers the
12281                  * whole page for a subsequent hit against a different MPU
12282                  * region or the background region, because it would result in
12283                  * incorrect TLB hits for subsequent accesses to addresses that
12284                  * are in this MPU region.
12285                  */
12286                 if (limit >= base &&
12287                     ranges_overlap(base, limit - base + 1,
12288                                    addr_page_base,
12289                                    TARGET_PAGE_SIZE)) {
12290                     *is_subpage = true;
12291                 }
12292                 continue;
12293             }
12294 
12295             if (base > addr_page_base || limit < addr_page_limit) {
12296                 *is_subpage = true;
12297             }
12298 
12299             if (matchregion != -1) {
12300                 /* Multiple regions match -- always a failure (unlike
12301                  * PMSAv7 where highest-numbered-region wins)
12302                  */
12303                 fi->type = ARMFault_Permission;
12304                 fi->level = 1;
12305                 return true;
12306             }
12307 
12308             matchregion = n;
12309             hit = true;
12310         }
12311     }
12312 
12313     if (!hit) {
12314         /* background fault */
12315         fi->type = ARMFault_Background;
12316         return true;
12317     }
12318 
12319     if (matchregion == -1) {
12320         /* hit using the background region */
12321         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12322     } else {
12323         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12324         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12325         bool pxn = false;
12326 
12327         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12328             pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12329         }
12330 
12331         if (m_is_system_region(env, address)) {
12332             /* System space is always execute never */
12333             xn = 1;
12334         }
12335 
12336         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12337         if (*prot && !xn && !(pxn && !is_user)) {
12338             *prot |= PAGE_EXEC;
12339         }
12340         /* We don't need to look the attribute up in the MAIR0/MAIR1
12341          * registers because that only tells us about cacheability.
12342          */
12343         if (mregion) {
12344             *mregion = matchregion;
12345         }
12346     }
12347 
12348     fi->type = ARMFault_Permission;
12349     fi->level = 1;
12350     return !(*prot & (1 << access_type));
12351 }
12352 
12353 
12354 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12355                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12356                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
12357                                  int *prot, target_ulong *page_size,
12358                                  ARMMMUFaultInfo *fi)
12359 {
12360     uint32_t secure = regime_is_secure(env, mmu_idx);
12361     V8M_SAttributes sattrs = {};
12362     bool ret;
12363     bool mpu_is_subpage;
12364 
12365     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12366         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12367         if (access_type == MMU_INST_FETCH) {
12368             /* Instruction fetches always use the MMU bank and the
12369              * transaction attribute determined by the fetch address,
12370              * regardless of CPU state. This is painful for QEMU
12371              * to handle, because it would mean we need to encode
12372              * into the mmu_idx not just the (user, negpri) information
12373              * for the current security state but also that for the
12374              * other security state, which would balloon the number
12375              * of mmu_idx values needed alarmingly.
12376              * Fortunately we can avoid this because it's not actually
12377              * possible to arbitrarily execute code from memory with
12378              * the wrong security attribute: it will always generate
12379              * an exception of some kind or another, apart from the
12380              * special case of an NS CPU executing an SG instruction
12381              * in S&NSC memory. So we always just fail the translation
12382              * here and sort things out in the exception handler
12383              * (including possibly emulating an SG instruction).
12384              */
12385             if (sattrs.ns != !secure) {
12386                 if (sattrs.nsc) {
12387                     fi->type = ARMFault_QEMU_NSCExec;
12388                 } else {
12389                     fi->type = ARMFault_QEMU_SFault;
12390                 }
12391                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12392                 *phys_ptr = address;
12393                 *prot = 0;
12394                 return true;
12395             }
12396         } else {
12397             /* For data accesses we always use the MMU bank indicated
12398              * by the current CPU state, but the security attributes
12399              * might downgrade a secure access to nonsecure.
12400              */
12401             if (sattrs.ns) {
12402                 txattrs->secure = false;
12403             } else if (!secure) {
12404                 /* NS access to S memory must fault.
12405                  * Architecturally we should first check whether the
12406                  * MPU information for this address indicates that we
12407                  * are doing an unaligned access to Device memory, which
12408                  * should generate a UsageFault instead. QEMU does not
12409                  * currently check for that kind of unaligned access though.
12410                  * If we added it we would need to do so as a special case
12411                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12412                  */
12413                 fi->type = ARMFault_QEMU_SFault;
12414                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12415                 *phys_ptr = address;
12416                 *prot = 0;
12417                 return true;
12418             }
12419         }
12420     }
12421 
12422     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12423                             txattrs, prot, &mpu_is_subpage, fi, NULL);
12424     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12425     return ret;
12426 }
12427 
12428 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12429                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12430                                  hwaddr *phys_ptr, int *prot,
12431                                  ARMMMUFaultInfo *fi)
12432 {
12433     int n;
12434     uint32_t mask;
12435     uint32_t base;
12436     bool is_user = regime_is_user(env, mmu_idx);
12437 
12438     if (regime_translation_disabled(env, mmu_idx)) {
12439         /* MPU disabled.  */
12440         *phys_ptr = address;
12441         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12442         return false;
12443     }
12444 
12445     *phys_ptr = address;
12446     for (n = 7; n >= 0; n--) {
12447         base = env->cp15.c6_region[n];
12448         if ((base & 1) == 0) {
12449             continue;
12450         }
12451         mask = 1 << ((base >> 1) & 0x1f);
12452         /* Keep this shift separate from the above to avoid an
12453            (undefined) << 32.  */
12454         mask = (mask << 1) - 1;
12455         if (((base ^ address) & ~mask) == 0) {
12456             break;
12457         }
12458     }
12459     if (n < 0) {
12460         fi->type = ARMFault_Background;
12461         return true;
12462     }
12463 
12464     if (access_type == MMU_INST_FETCH) {
12465         mask = env->cp15.pmsav5_insn_ap;
12466     } else {
12467         mask = env->cp15.pmsav5_data_ap;
12468     }
12469     mask = (mask >> (n * 4)) & 0xf;
12470     switch (mask) {
12471     case 0:
12472         fi->type = ARMFault_Permission;
12473         fi->level = 1;
12474         return true;
12475     case 1:
12476         if (is_user) {
12477             fi->type = ARMFault_Permission;
12478             fi->level = 1;
12479             return true;
12480         }
12481         *prot = PAGE_READ | PAGE_WRITE;
12482         break;
12483     case 2:
12484         *prot = PAGE_READ;
12485         if (!is_user) {
12486             *prot |= PAGE_WRITE;
12487         }
12488         break;
12489     case 3:
12490         *prot = PAGE_READ | PAGE_WRITE;
12491         break;
12492     case 5:
12493         if (is_user) {
12494             fi->type = ARMFault_Permission;
12495             fi->level = 1;
12496             return true;
12497         }
12498         *prot = PAGE_READ;
12499         break;
12500     case 6:
12501         *prot = PAGE_READ;
12502         break;
12503     default:
12504         /* Bad permission.  */
12505         fi->type = ARMFault_Permission;
12506         fi->level = 1;
12507         return true;
12508     }
12509     *prot |= PAGE_EXEC;
12510     return false;
12511 }
12512 
12513 /* Combine either inner or outer cacheability attributes for normal
12514  * memory, according to table D4-42 and pseudocode procedure
12515  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12516  *
12517  * NB: only stage 1 includes allocation hints (RW bits), leading to
12518  * some asymmetry.
12519  */
12520 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12521 {
12522     if (s1 == 4 || s2 == 4) {
12523         /* non-cacheable has precedence */
12524         return 4;
12525     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12526         /* stage 1 write-through takes precedence */
12527         return s1;
12528     } else if (extract32(s2, 2, 2) == 2) {
12529         /* stage 2 write-through takes precedence, but the allocation hint
12530          * is still taken from stage 1
12531          */
12532         return (2 << 2) | extract32(s1, 0, 2);
12533     } else { /* write-back */
12534         return s1;
12535     }
12536 }
12537 
12538 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12539  * and CombineS1S2Desc()
12540  *
12541  * @s1:      Attributes from stage 1 walk
12542  * @s2:      Attributes from stage 2 walk
12543  */
12544 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12545 {
12546     uint8_t s1lo, s2lo, s1hi, s2hi;
12547     ARMCacheAttrs ret;
12548     bool tagged = false;
12549 
12550     if (s1.attrs == 0xf0) {
12551         tagged = true;
12552         s1.attrs = 0xff;
12553     }
12554 
12555     s1lo = extract32(s1.attrs, 0, 4);
12556     s2lo = extract32(s2.attrs, 0, 4);
12557     s1hi = extract32(s1.attrs, 4, 4);
12558     s2hi = extract32(s2.attrs, 4, 4);
12559 
12560     /* Combine shareability attributes (table D4-43) */
12561     if (s1.shareability == 2 || s2.shareability == 2) {
12562         /* if either are outer-shareable, the result is outer-shareable */
12563         ret.shareability = 2;
12564     } else if (s1.shareability == 3 || s2.shareability == 3) {
12565         /* if either are inner-shareable, the result is inner-shareable */
12566         ret.shareability = 3;
12567     } else {
12568         /* both non-shareable */
12569         ret.shareability = 0;
12570     }
12571 
12572     /* Combine memory type and cacheability attributes */
12573     if (s1hi == 0 || s2hi == 0) {
12574         /* Device has precedence over normal */
12575         if (s1lo == 0 || s2lo == 0) {
12576             /* nGnRnE has precedence over anything */
12577             ret.attrs = 0;
12578         } else if (s1lo == 4 || s2lo == 4) {
12579             /* non-Reordering has precedence over Reordering */
12580             ret.attrs = 4;  /* nGnRE */
12581         } else if (s1lo == 8 || s2lo == 8) {
12582             /* non-Gathering has precedence over Gathering */
12583             ret.attrs = 8;  /* nGRE */
12584         } else {
12585             ret.attrs = 0xc; /* GRE */
12586         }
12587 
12588         /* Any location for which the resultant memory type is any
12589          * type of Device memory is always treated as Outer Shareable.
12590          */
12591         ret.shareability = 2;
12592     } else { /* Normal memory */
12593         /* Outer/inner cacheability combine independently */
12594         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12595                   | combine_cacheattr_nibble(s1lo, s2lo);
12596 
12597         if (ret.attrs == 0x44) {
12598             /* Any location for which the resultant memory type is Normal
12599              * Inner Non-cacheable, Outer Non-cacheable is always treated
12600              * as Outer Shareable.
12601              */
12602             ret.shareability = 2;
12603         }
12604     }
12605 
12606     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12607     if (tagged && ret.attrs == 0xff) {
12608         ret.attrs = 0xf0;
12609     }
12610 
12611     return ret;
12612 }
12613 
12614 
12615 /* get_phys_addr - get the physical address for this virtual address
12616  *
12617  * Find the physical address corresponding to the given virtual address,
12618  * by doing a translation table walk on MMU based systems or using the
12619  * MPU state on MPU based systems.
12620  *
12621  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12622  * prot and page_size may not be filled in, and the populated fsr value provides
12623  * information on why the translation aborted, in the format of a
12624  * DFSR/IFSR fault register, with the following caveats:
12625  *  * we honour the short vs long DFSR format differences.
12626  *  * the WnR bit is never set (the caller must do this).
12627  *  * for PSMAv5 based systems we don't bother to return a full FSR format
12628  *    value.
12629  *
12630  * @env: CPUARMState
12631  * @address: virtual address to get physical address for
12632  * @access_type: 0 for read, 1 for write, 2 for execute
12633  * @mmu_idx: MMU index indicating required translation regime
12634  * @phys_ptr: set to the physical address corresponding to the virtual address
12635  * @attrs: set to the memory transaction attributes to use
12636  * @prot: set to the permissions for the page containing phys_ptr
12637  * @page_size: set to the size of the page containing phys_ptr
12638  * @fi: set to fault info if the translation fails
12639  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12640  */
12641 bool get_phys_addr(CPUARMState *env, target_ulong address,
12642                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
12643                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12644                    target_ulong *page_size,
12645                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12646 {
12647     ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12648 
12649     if (mmu_idx != s1_mmu_idx) {
12650         /* Call ourselves recursively to do the stage 1 and then stage 2
12651          * translations if mmu_idx is a two-stage regime.
12652          */
12653         if (arm_feature(env, ARM_FEATURE_EL2)) {
12654             hwaddr ipa;
12655             int s2_prot;
12656             int ret;
12657             ARMCacheAttrs cacheattrs2 = {};
12658             ARMMMUIdx s2_mmu_idx;
12659             bool is_el0;
12660 
12661             ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12662                                 attrs, prot, page_size, fi, cacheattrs);
12663 
12664             /* If S1 fails or S2 is disabled, return early.  */
12665             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12666                 *phys_ptr = ipa;
12667                 return ret;
12668             }
12669 
12670             s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12671             is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12672 
12673             /* S1 is done. Now do S2 translation.  */
12674             ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12675                                      phys_ptr, attrs, &s2_prot,
12676                                      page_size, fi, &cacheattrs2);
12677             fi->s2addr = ipa;
12678             /* Combine the S1 and S2 perms.  */
12679             *prot &= s2_prot;
12680 
12681             /* If S2 fails, return early.  */
12682             if (ret) {
12683                 return ret;
12684             }
12685 
12686             /* Combine the S1 and S2 cache attributes. */
12687             if (arm_hcr_el2_eff(env) & HCR_DC) {
12688                 /*
12689                  * HCR.DC forces the first stage attributes to
12690                  *  Normal Non-Shareable,
12691                  *  Inner Write-Back Read-Allocate Write-Allocate,
12692                  *  Outer Write-Back Read-Allocate Write-Allocate.
12693                  * Do not overwrite Tagged within attrs.
12694                  */
12695                 if (cacheattrs->attrs != 0xf0) {
12696                     cacheattrs->attrs = 0xff;
12697                 }
12698                 cacheattrs->shareability = 0;
12699             }
12700             *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12701 
12702             /* Check if IPA translates to secure or non-secure PA space. */
12703             if (arm_is_secure_below_el3(env)) {
12704                 if (attrs->secure) {
12705                     attrs->secure =
12706                         !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12707                 } else {
12708                     attrs->secure =
12709                         !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12710                         || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
12711                 }
12712             }
12713             return 0;
12714         } else {
12715             /*
12716              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12717              */
12718             mmu_idx = stage_1_mmu_idx(mmu_idx);
12719         }
12720     }
12721 
12722     /* The page table entries may downgrade secure to non-secure, but
12723      * cannot upgrade an non-secure translation regime's attributes
12724      * to secure.
12725      */
12726     attrs->secure = regime_is_secure(env, mmu_idx);
12727     attrs->user = regime_is_user(env, mmu_idx);
12728 
12729     /* Fast Context Switch Extension. This doesn't exist at all in v8.
12730      * In v7 and earlier it affects all stage 1 translations.
12731      */
12732     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12733         && !arm_feature(env, ARM_FEATURE_V8)) {
12734         if (regime_el(env, mmu_idx) == 3) {
12735             address += env->cp15.fcseidr_s;
12736         } else {
12737             address += env->cp15.fcseidr_ns;
12738         }
12739     }
12740 
12741     if (arm_feature(env, ARM_FEATURE_PMSA)) {
12742         bool ret;
12743         *page_size = TARGET_PAGE_SIZE;
12744 
12745         if (arm_feature(env, ARM_FEATURE_V8)) {
12746             /* PMSAv8 */
12747             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12748                                        phys_ptr, attrs, prot, page_size, fi);
12749         } else if (arm_feature(env, ARM_FEATURE_V7)) {
12750             /* PMSAv7 */
12751             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12752                                        phys_ptr, prot, page_size, fi);
12753         } else {
12754             /* Pre-v7 MPU */
12755             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12756                                        phys_ptr, prot, fi);
12757         }
12758         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12759                       " mmu_idx %u -> %s (prot %c%c%c)\n",
12760                       access_type == MMU_DATA_LOAD ? "reading" :
12761                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12762                       (uint32_t)address, mmu_idx,
12763                       ret ? "Miss" : "Hit",
12764                       *prot & PAGE_READ ? 'r' : '-',
12765                       *prot & PAGE_WRITE ? 'w' : '-',
12766                       *prot & PAGE_EXEC ? 'x' : '-');
12767 
12768         return ret;
12769     }
12770 
12771     /* Definitely a real MMU, not an MPU */
12772 
12773     if (regime_translation_disabled(env, mmu_idx)) {
12774         uint64_t hcr;
12775         uint8_t memattr;
12776 
12777         /*
12778          * MMU disabled.  S1 addresses within aa64 translation regimes are
12779          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12780          */
12781         if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12782             int r_el = regime_el(env, mmu_idx);
12783             if (arm_el_is_aa64(env, r_el)) {
12784                 int pamax = arm_pamax(env_archcpu(env));
12785                 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12786                 int addrtop, tbi;
12787 
12788                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12789                 if (access_type == MMU_INST_FETCH) {
12790                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12791                 }
12792                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12793                 addrtop = (tbi ? 55 : 63);
12794 
12795                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12796                     fi->type = ARMFault_AddressSize;
12797                     fi->level = 0;
12798                     fi->stage2 = false;
12799                     return 1;
12800                 }
12801 
12802                 /*
12803                  * When TBI is disabled, we've just validated that all of the
12804                  * bits above PAMax are zero, so logically we only need to
12805                  * clear the top byte for TBI.  But it's clearer to follow
12806                  * the pseudocode set of addrdesc.paddress.
12807                  */
12808                 address = extract64(address, 0, 52);
12809             }
12810         }
12811         *phys_ptr = address;
12812         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12813         *page_size = TARGET_PAGE_SIZE;
12814 
12815         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12816         hcr = arm_hcr_el2_eff(env);
12817         cacheattrs->shareability = 0;
12818         if (hcr & HCR_DC) {
12819             if (hcr & HCR_DCT) {
12820                 memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
12821             } else {
12822                 memattr = 0xff;  /* Normal, WB, RWA */
12823             }
12824         } else if (access_type == MMU_INST_FETCH) {
12825             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12826                 memattr = 0xee;  /* Normal, WT, RA, NT */
12827             } else {
12828                 memattr = 0x44;  /* Normal, NC, No */
12829             }
12830             cacheattrs->shareability = 2; /* outer sharable */
12831         } else {
12832             memattr = 0x00;      /* Device, nGnRnE */
12833         }
12834         cacheattrs->attrs = memattr;
12835         return 0;
12836     }
12837 
12838     if (regime_using_lpae_format(env, mmu_idx)) {
12839         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12840                                   phys_ptr, attrs, prot, page_size,
12841                                   fi, cacheattrs);
12842     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12843         return get_phys_addr_v6(env, address, access_type, mmu_idx,
12844                                 phys_ptr, attrs, prot, page_size, fi);
12845     } else {
12846         return get_phys_addr_v5(env, address, access_type, mmu_idx,
12847                                     phys_ptr, prot, page_size, fi);
12848     }
12849 }
12850 
12851 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12852                                          MemTxAttrs *attrs)
12853 {
12854     ARMCPU *cpu = ARM_CPU(cs);
12855     CPUARMState *env = &cpu->env;
12856     hwaddr phys_addr;
12857     target_ulong page_size;
12858     int prot;
12859     bool ret;
12860     ARMMMUFaultInfo fi = {};
12861     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12862     ARMCacheAttrs cacheattrs = {};
12863 
12864     *attrs = (MemTxAttrs) {};
12865 
12866     ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12867                         attrs, &prot, &page_size, &fi, &cacheattrs);
12868 
12869     if (ret) {
12870         return -1;
12871     }
12872     return phys_addr;
12873 }
12874 
12875 #endif
12876 
12877 /* Note that signed overflow is undefined in C.  The following routines are
12878    careful to use unsigned types where modulo arithmetic is required.
12879    Failure to do so _will_ break on newer gcc.  */
12880 
12881 /* Signed saturating arithmetic.  */
12882 
12883 /* Perform 16-bit signed saturating addition.  */
12884 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12885 {
12886     uint16_t res;
12887 
12888     res = a + b;
12889     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12890         if (a & 0x8000)
12891             res = 0x8000;
12892         else
12893             res = 0x7fff;
12894     }
12895     return res;
12896 }
12897 
12898 /* Perform 8-bit signed saturating addition.  */
12899 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12900 {
12901     uint8_t res;
12902 
12903     res = a + b;
12904     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12905         if (a & 0x80)
12906             res = 0x80;
12907         else
12908             res = 0x7f;
12909     }
12910     return res;
12911 }
12912 
12913 /* Perform 16-bit signed saturating subtraction.  */
12914 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12915 {
12916     uint16_t res;
12917 
12918     res = a - b;
12919     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12920         if (a & 0x8000)
12921             res = 0x8000;
12922         else
12923             res = 0x7fff;
12924     }
12925     return res;
12926 }
12927 
12928 /* Perform 8-bit signed saturating subtraction.  */
12929 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12930 {
12931     uint8_t res;
12932 
12933     res = a - b;
12934     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12935         if (a & 0x80)
12936             res = 0x80;
12937         else
12938             res = 0x7f;
12939     }
12940     return res;
12941 }
12942 
12943 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12944 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12945 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12946 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12947 #define PFX q
12948 
12949 #include "op_addsub.h"
12950 
12951 /* Unsigned saturating arithmetic.  */
12952 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12953 {
12954     uint16_t res;
12955     res = a + b;
12956     if (res < a)
12957         res = 0xffff;
12958     return res;
12959 }
12960 
12961 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12962 {
12963     if (a > b)
12964         return a - b;
12965     else
12966         return 0;
12967 }
12968 
12969 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12970 {
12971     uint8_t res;
12972     res = a + b;
12973     if (res < a)
12974         res = 0xff;
12975     return res;
12976 }
12977 
12978 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12979 {
12980     if (a > b)
12981         return a - b;
12982     else
12983         return 0;
12984 }
12985 
12986 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12987 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12988 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12989 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12990 #define PFX uq
12991 
12992 #include "op_addsub.h"
12993 
12994 /* Signed modulo arithmetic.  */
12995 #define SARITH16(a, b, n, op) do { \
12996     int32_t sum; \
12997     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12998     RESULT(sum, n, 16); \
12999     if (sum >= 0) \
13000         ge |= 3 << (n * 2); \
13001     } while(0)
13002 
13003 #define SARITH8(a, b, n, op) do { \
13004     int32_t sum; \
13005     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
13006     RESULT(sum, n, 8); \
13007     if (sum >= 0) \
13008         ge |= 1 << n; \
13009     } while(0)
13010 
13011 
13012 #define ADD16(a, b, n) SARITH16(a, b, n, +)
13013 #define SUB16(a, b, n) SARITH16(a, b, n, -)
13014 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
13015 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
13016 #define PFX s
13017 #define ARITH_GE
13018 
13019 #include "op_addsub.h"
13020 
13021 /* Unsigned modulo arithmetic.  */
13022 #define ADD16(a, b, n) do { \
13023     uint32_t sum; \
13024     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
13025     RESULT(sum, n, 16); \
13026     if ((sum >> 16) == 1) \
13027         ge |= 3 << (n * 2); \
13028     } while(0)
13029 
13030 #define ADD8(a, b, n) do { \
13031     uint32_t sum; \
13032     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13033     RESULT(sum, n, 8); \
13034     if ((sum >> 8) == 1) \
13035         ge |= 1 << n; \
13036     } while(0)
13037 
13038 #define SUB16(a, b, n) do { \
13039     uint32_t sum; \
13040     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13041     RESULT(sum, n, 16); \
13042     if ((sum >> 16) == 0) \
13043         ge |= 3 << (n * 2); \
13044     } while(0)
13045 
13046 #define SUB8(a, b, n) do { \
13047     uint32_t sum; \
13048     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13049     RESULT(sum, n, 8); \
13050     if ((sum >> 8) == 0) \
13051         ge |= 1 << n; \
13052     } while(0)
13053 
13054 #define PFX u
13055 #define ARITH_GE
13056 
13057 #include "op_addsub.h"
13058 
13059 /* Halved signed arithmetic.  */
13060 #define ADD16(a, b, n) \
13061   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13062 #define SUB16(a, b, n) \
13063   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13064 #define ADD8(a, b, n) \
13065   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13066 #define SUB8(a, b, n) \
13067   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13068 #define PFX sh
13069 
13070 #include "op_addsub.h"
13071 
13072 /* Halved unsigned arithmetic.  */
13073 #define ADD16(a, b, n) \
13074   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13075 #define SUB16(a, b, n) \
13076   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13077 #define ADD8(a, b, n) \
13078   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13079 #define SUB8(a, b, n) \
13080   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13081 #define PFX uh
13082 
13083 #include "op_addsub.h"
13084 
13085 static inline uint8_t do_usad(uint8_t a, uint8_t b)
13086 {
13087     if (a > b)
13088         return a - b;
13089     else
13090         return b - a;
13091 }
13092 
13093 /* Unsigned sum of absolute byte differences.  */
13094 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13095 {
13096     uint32_t sum;
13097     sum = do_usad(a, b);
13098     sum += do_usad(a >> 8, b >> 8);
13099     sum += do_usad(a >> 16, b >> 16);
13100     sum += do_usad(a >> 24, b >> 24);
13101     return sum;
13102 }
13103 
13104 /* For ARMv6 SEL instruction.  */
13105 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13106 {
13107     uint32_t mask;
13108 
13109     mask = 0;
13110     if (flags & 1)
13111         mask |= 0xff;
13112     if (flags & 2)
13113         mask |= 0xff00;
13114     if (flags & 4)
13115         mask |= 0xff0000;
13116     if (flags & 8)
13117         mask |= 0xff000000;
13118     return (a & mask) | (b & ~mask);
13119 }
13120 
13121 /* CRC helpers.
13122  * The upper bytes of val (above the number specified by 'bytes') must have
13123  * been zeroed out by the caller.
13124  */
13125 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13126 {
13127     uint8_t buf[4];
13128 
13129     stl_le_p(buf, val);
13130 
13131     /* zlib crc32 converts the accumulator and output to one's complement.  */
13132     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13133 }
13134 
13135 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13136 {
13137     uint8_t buf[4];
13138 
13139     stl_le_p(buf, val);
13140 
13141     /* Linux crc32c converts the output to one's complement.  */
13142     return crc32c(acc, buf, bytes) ^ 0xffffffff;
13143 }
13144 
13145 /* Return the exception level to which FP-disabled exceptions should
13146  * be taken, or 0 if FP is enabled.
13147  */
13148 int fp_exception_el(CPUARMState *env, int cur_el)
13149 {
13150 #ifndef CONFIG_USER_ONLY
13151     /* CPACR and the CPTR registers don't exist before v6, so FP is
13152      * always accessible
13153      */
13154     if (!arm_feature(env, ARM_FEATURE_V6)) {
13155         return 0;
13156     }
13157 
13158     if (arm_feature(env, ARM_FEATURE_M)) {
13159         /* CPACR can cause a NOCP UsageFault taken to current security state */
13160         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13161             return 1;
13162         }
13163 
13164         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13165             if (!extract32(env->v7m.nsacr, 10, 1)) {
13166                 /* FP insns cause a NOCP UsageFault taken to Secure */
13167                 return 3;
13168             }
13169         }
13170 
13171         return 0;
13172     }
13173 
13174     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13175      * 0, 2 : trap EL0 and EL1/PL1 accesses
13176      * 1    : trap only EL0 accesses
13177      * 3    : trap no accesses
13178      * This register is ignored if E2H+TGE are both set.
13179      */
13180     if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13181         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13182 
13183         switch (fpen) {
13184         case 0:
13185         case 2:
13186             if (cur_el == 0 || cur_el == 1) {
13187                 /* Trap to PL1, which might be EL1 or EL3 */
13188                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13189                     return 3;
13190                 }
13191                 return 1;
13192             }
13193             if (cur_el == 3 && !is_a64(env)) {
13194                 /* Secure PL1 running at EL3 */
13195                 return 3;
13196             }
13197             break;
13198         case 1:
13199             if (cur_el == 0) {
13200                 return 1;
13201             }
13202             break;
13203         case 3:
13204             break;
13205         }
13206     }
13207 
13208     /*
13209      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
13210      * to control non-secure access to the FPU. It doesn't have any
13211      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
13212      */
13213     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
13214          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
13215         if (!extract32(env->cp15.nsacr, 10, 1)) {
13216             /* FP insns act as UNDEF */
13217             return cur_el == 2 ? 2 : 1;
13218         }
13219     }
13220 
13221     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13222      * check because zero bits in the registers mean "don't trap".
13223      */
13224 
13225     /* CPTR_EL2 : present in v7VE or v8 */
13226     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13227         && arm_is_el2_enabled(env)) {
13228         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13229         return 2;
13230     }
13231 
13232     /* CPTR_EL3 : present in v8 */
13233     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13234         /* Trap all FP ops to EL3 */
13235         return 3;
13236     }
13237 #endif
13238     return 0;
13239 }
13240 
13241 /* Return the exception level we're running at if this is our mmu_idx */
13242 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
13243 {
13244     if (mmu_idx & ARM_MMU_IDX_M) {
13245         return mmu_idx & ARM_MMU_IDX_M_PRIV;
13246     }
13247 
13248     switch (mmu_idx) {
13249     case ARMMMUIdx_E10_0:
13250     case ARMMMUIdx_E20_0:
13251     case ARMMMUIdx_SE10_0:
13252     case ARMMMUIdx_SE20_0:
13253         return 0;
13254     case ARMMMUIdx_E10_1:
13255     case ARMMMUIdx_E10_1_PAN:
13256     case ARMMMUIdx_SE10_1:
13257     case ARMMMUIdx_SE10_1_PAN:
13258         return 1;
13259     case ARMMMUIdx_E2:
13260     case ARMMMUIdx_E20_2:
13261     case ARMMMUIdx_E20_2_PAN:
13262     case ARMMMUIdx_SE2:
13263     case ARMMMUIdx_SE20_2:
13264     case ARMMMUIdx_SE20_2_PAN:
13265         return 2;
13266     case ARMMMUIdx_SE3:
13267         return 3;
13268     default:
13269         g_assert_not_reached();
13270     }
13271 }
13272 
13273 #ifndef CONFIG_TCG
13274 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13275 {
13276     g_assert_not_reached();
13277 }
13278 #endif
13279 
13280 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
13281 {
13282     ARMMMUIdx idx;
13283     uint64_t hcr;
13284 
13285     if (arm_feature(env, ARM_FEATURE_M)) {
13286         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13287     }
13288 
13289     /* See ARM pseudo-function ELIsInHost.  */
13290     switch (el) {
13291     case 0:
13292         hcr = arm_hcr_el2_eff(env);
13293         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13294             idx = ARMMMUIdx_E20_0;
13295         } else {
13296             idx = ARMMMUIdx_E10_0;
13297         }
13298         break;
13299     case 1:
13300         if (env->pstate & PSTATE_PAN) {
13301             idx = ARMMMUIdx_E10_1_PAN;
13302         } else {
13303             idx = ARMMMUIdx_E10_1;
13304         }
13305         break;
13306     case 2:
13307         /* Note that TGE does not apply at EL2.  */
13308         if (arm_hcr_el2_eff(env) & HCR_E2H) {
13309             if (env->pstate & PSTATE_PAN) {
13310                 idx = ARMMMUIdx_E20_2_PAN;
13311             } else {
13312                 idx = ARMMMUIdx_E20_2;
13313             }
13314         } else {
13315             idx = ARMMMUIdx_E2;
13316         }
13317         break;
13318     case 3:
13319         return ARMMMUIdx_SE3;
13320     default:
13321         g_assert_not_reached();
13322     }
13323 
13324     if (arm_is_secure_below_el3(env)) {
13325         idx &= ~ARM_MMU_IDX_A_NS;
13326     }
13327 
13328     return idx;
13329 }
13330 
13331 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13332 {
13333     return arm_mmu_idx_el(env, arm_current_el(env));
13334 }
13335 
13336 #ifndef CONFIG_USER_ONLY
13337 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13338 {
13339     return stage_1_mmu_idx(arm_mmu_idx(env));
13340 }
13341 #endif
13342 
13343 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13344                                            ARMMMUIdx mmu_idx,
13345                                            CPUARMTBFlags flags)
13346 {
13347     DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13348     DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13349 
13350     if (arm_singlestep_active(env)) {
13351         DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13352     }
13353     return flags;
13354 }
13355 
13356 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13357                                               ARMMMUIdx mmu_idx,
13358                                               CPUARMTBFlags flags)
13359 {
13360     bool sctlr_b = arm_sctlr_b(env);
13361 
13362     if (sctlr_b) {
13363         DP_TBFLAG_A32(flags, SCTLR__B, 1);
13364     }
13365     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13366         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13367     }
13368     DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13369 
13370     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13371 }
13372 
13373 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13374                                         ARMMMUIdx mmu_idx)
13375 {
13376     CPUARMTBFlags flags = {};
13377     uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13378 
13379     /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13380     if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13381         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13382     }
13383 
13384     if (arm_v7m_is_handler_mode(env)) {
13385         DP_TBFLAG_M32(flags, HANDLER, 1);
13386     }
13387 
13388     /*
13389      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13390      * is suppressing them because the requested execution priority
13391      * is less than 0.
13392      */
13393     if (arm_feature(env, ARM_FEATURE_V8) &&
13394         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13395           (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13396         DP_TBFLAG_M32(flags, STACKCHECK, 1);
13397     }
13398 
13399     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13400 }
13401 
13402 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13403 {
13404     CPUARMTBFlags flags = {};
13405 
13406     DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13407     return flags;
13408 }
13409 
13410 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13411                                         ARMMMUIdx mmu_idx)
13412 {
13413     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13414     int el = arm_current_el(env);
13415 
13416     if (arm_sctlr(env, el) & SCTLR_A) {
13417         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13418     }
13419 
13420     if (arm_el_is_aa64(env, 1)) {
13421         DP_TBFLAG_A32(flags, VFPEN, 1);
13422     }
13423 
13424     if (el < 2 && env->cp15.hstr_el2 &&
13425         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13426         DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13427     }
13428 
13429     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13430 }
13431 
13432 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13433                                         ARMMMUIdx mmu_idx)
13434 {
13435     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13436     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13437     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13438     uint64_t sctlr;
13439     int tbii, tbid;
13440 
13441     DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13442 
13443     /* Get control bits for tagged addresses.  */
13444     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13445     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13446 
13447     DP_TBFLAG_A64(flags, TBII, tbii);
13448     DP_TBFLAG_A64(flags, TBID, tbid);
13449 
13450     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13451         int sve_el = sve_exception_el(env, el);
13452         uint32_t zcr_len;
13453 
13454         /*
13455          * If SVE is disabled, but FP is enabled,
13456          * then the effective len is 0.
13457          */
13458         if (sve_el != 0 && fp_el == 0) {
13459             zcr_len = 0;
13460         } else {
13461             zcr_len = sve_zcr_len_for_el(env, el);
13462         }
13463         DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13464         DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13465     }
13466 
13467     sctlr = regime_sctlr(env, stage1);
13468 
13469     if (sctlr & SCTLR_A) {
13470         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13471     }
13472 
13473     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13474         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13475     }
13476 
13477     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13478         /*
13479          * In order to save space in flags, we record only whether
13480          * pauth is "inactive", meaning all insns are implemented as
13481          * a nop, or "active" when some action must be performed.
13482          * The decision of which action to take is left to a helper.
13483          */
13484         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13485             DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13486         }
13487     }
13488 
13489     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13490         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13491         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13492             DP_TBFLAG_A64(flags, BT, 1);
13493         }
13494     }
13495 
13496     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13497     if (!(env->pstate & PSTATE_UAO)) {
13498         switch (mmu_idx) {
13499         case ARMMMUIdx_E10_1:
13500         case ARMMMUIdx_E10_1_PAN:
13501         case ARMMMUIdx_SE10_1:
13502         case ARMMMUIdx_SE10_1_PAN:
13503             /* TODO: ARMv8.3-NV */
13504             DP_TBFLAG_A64(flags, UNPRIV, 1);
13505             break;
13506         case ARMMMUIdx_E20_2:
13507         case ARMMMUIdx_E20_2_PAN:
13508         case ARMMMUIdx_SE20_2:
13509         case ARMMMUIdx_SE20_2_PAN:
13510             /*
13511              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13512              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13513              */
13514             if (env->cp15.hcr_el2 & HCR_TGE) {
13515                 DP_TBFLAG_A64(flags, UNPRIV, 1);
13516             }
13517             break;
13518         default:
13519             break;
13520         }
13521     }
13522 
13523     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13524         /*
13525          * Set MTE_ACTIVE if any access may be Checked, and leave clear
13526          * if all accesses must be Unchecked:
13527          * 1) If no TBI, then there are no tags in the address to check,
13528          * 2) If Tag Check Override, then all accesses are Unchecked,
13529          * 3) If Tag Check Fail == 0, then Checked access have no effect,
13530          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13531          */
13532         if (allocation_tag_access_enabled(env, el, sctlr)) {
13533             DP_TBFLAG_A64(flags, ATA, 1);
13534             if (tbid
13535                 && !(env->pstate & PSTATE_TCO)
13536                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13537                 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13538             }
13539         }
13540         /* And again for unprivileged accesses, if required.  */
13541         if (EX_TBFLAG_A64(flags, UNPRIV)
13542             && tbid
13543             && !(env->pstate & PSTATE_TCO)
13544             && (sctlr & SCTLR_TCF0)
13545             && allocation_tag_access_enabled(env, 0, sctlr)) {
13546             DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13547         }
13548         /* Cache TCMA as well as TBI. */
13549         DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13550     }
13551 
13552     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13553 }
13554 
13555 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13556 {
13557     int el = arm_current_el(env);
13558     int fp_el = fp_exception_el(env, el);
13559     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13560 
13561     if (is_a64(env)) {
13562         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13563     } else if (arm_feature(env, ARM_FEATURE_M)) {
13564         return rebuild_hflags_m32(env, fp_el, mmu_idx);
13565     } else {
13566         return rebuild_hflags_a32(env, fp_el, mmu_idx);
13567     }
13568 }
13569 
13570 void arm_rebuild_hflags(CPUARMState *env)
13571 {
13572     env->hflags = rebuild_hflags_internal(env);
13573 }
13574 
13575 /*
13576  * If we have triggered a EL state change we can't rely on the
13577  * translator having passed it to us, we need to recompute.
13578  */
13579 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13580 {
13581     int el = arm_current_el(env);
13582     int fp_el = fp_exception_el(env, el);
13583     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13584 
13585     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13586 }
13587 
13588 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13589 {
13590     int fp_el = fp_exception_el(env, el);
13591     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13592 
13593     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13594 }
13595 
13596 /*
13597  * If we have triggered a EL state change we can't rely on the
13598  * translator having passed it to us, we need to recompute.
13599  */
13600 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13601 {
13602     int el = arm_current_el(env);
13603     int fp_el = fp_exception_el(env, el);
13604     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13605     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13606 }
13607 
13608 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13609 {
13610     int fp_el = fp_exception_el(env, el);
13611     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13612 
13613     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13614 }
13615 
13616 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13617 {
13618     int fp_el = fp_exception_el(env, el);
13619     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13620 
13621     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13622 }
13623 
13624 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13625 {
13626 #ifdef CONFIG_DEBUG_TCG
13627     CPUARMTBFlags c = env->hflags;
13628     CPUARMTBFlags r = rebuild_hflags_internal(env);
13629 
13630     if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13631         fprintf(stderr, "TCG hflags mismatch "
13632                         "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13633                         " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13634                 c.flags, c.flags2, r.flags, r.flags2);
13635         abort();
13636     }
13637 #endif
13638 }
13639 
13640 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13641                           target_ulong *cs_base, uint32_t *pflags)
13642 {
13643     CPUARMTBFlags flags;
13644 
13645     assert_hflags_rebuild_correctly(env);
13646     flags = env->hflags;
13647 
13648     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13649         *pc = env->pc;
13650         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13651             DP_TBFLAG_A64(flags, BTYPE, env->btype);
13652         }
13653     } else {
13654         *pc = env->regs[15];
13655 
13656         if (arm_feature(env, ARM_FEATURE_M)) {
13657             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13658                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13659                 != env->v7m.secure) {
13660                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13661             }
13662 
13663             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13664                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13665                  (env->v7m.secure &&
13666                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13667                 /*
13668                  * ASPEN is set, but FPCA/SFPA indicate that there is no
13669                  * active FP context; we must create a new FP context before
13670                  * executing any FP insn.
13671                  */
13672                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13673             }
13674 
13675             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13676             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13677                 DP_TBFLAG_M32(flags, LSPACT, 1);
13678             }
13679         } else {
13680             /*
13681              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13682              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13683              */
13684             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13685                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13686             } else {
13687                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13688                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13689             }
13690             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13691                 DP_TBFLAG_A32(flags, VFPEN, 1);
13692             }
13693         }
13694 
13695         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13696         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13697     }
13698 
13699     /*
13700      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13701      * states defined in the ARM ARM for software singlestep:
13702      *  SS_ACTIVE   PSTATE.SS   State
13703      *     0            x       Inactive (the TB flag for SS is always 0)
13704      *     1            0       Active-pending
13705      *     1            1       Active-not-pending
13706      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13707      */
13708     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13709         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13710     }
13711 
13712     *pflags = flags.flags;
13713     *cs_base = flags.flags2;
13714 }
13715 
13716 #ifdef TARGET_AARCH64
13717 /*
13718  * The manual says that when SVE is enabled and VQ is widened the
13719  * implementation is allowed to zero the previously inaccessible
13720  * portion of the registers.  The corollary to that is that when
13721  * SVE is enabled and VQ is narrowed we are also allowed to zero
13722  * the now inaccessible portion of the registers.
13723  *
13724  * The intent of this is that no predicate bit beyond VQ is ever set.
13725  * Which means that some operations on predicate registers themselves
13726  * may operate on full uint64_t or even unrolled across the maximum
13727  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13728  * may well be cheaper than conditionals to restrict the operation
13729  * to the relevant portion of a uint16_t[16].
13730  */
13731 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13732 {
13733     int i, j;
13734     uint64_t pmask;
13735 
13736     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13737     assert(vq <= env_archcpu(env)->sve_max_vq);
13738 
13739     /* Zap the high bits of the zregs.  */
13740     for (i = 0; i < 32; i++) {
13741         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13742     }
13743 
13744     /* Zap the high bits of the pregs and ffr.  */
13745     pmask = 0;
13746     if (vq & 3) {
13747         pmask = ~(-1ULL << (16 * (vq & 3)));
13748     }
13749     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13750         for (i = 0; i < 17; ++i) {
13751             env->vfp.pregs[i].p[j] &= pmask;
13752         }
13753         pmask = 0;
13754     }
13755 }
13756 
13757 /*
13758  * Notice a change in SVE vector size when changing EL.
13759  */
13760 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13761                            int new_el, bool el0_a64)
13762 {
13763     ARMCPU *cpu = env_archcpu(env);
13764     int old_len, new_len;
13765     bool old_a64, new_a64;
13766 
13767     /* Nothing to do if no SVE.  */
13768     if (!cpu_isar_feature(aa64_sve, cpu)) {
13769         return;
13770     }
13771 
13772     /* Nothing to do if FP is disabled in either EL.  */
13773     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13774         return;
13775     }
13776 
13777     /*
13778      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13779      * at ELx, or not available because the EL is in AArch32 state, then
13780      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13781      * has an effective value of 0".
13782      *
13783      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13784      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13785      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13786      * we already have the correct register contents when encountering the
13787      * vq0->vq0 transition between EL0->EL1.
13788      */
13789     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13790     old_len = (old_a64 && !sve_exception_el(env, old_el)
13791                ? sve_zcr_len_for_el(env, old_el) : 0);
13792     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13793     new_len = (new_a64 && !sve_exception_el(env, new_el)
13794                ? sve_zcr_len_for_el(env, new_el) : 0);
13795 
13796     /* When changing vector length, clear inaccessible state.  */
13797     if (new_len < old_len) {
13798         aarch64_sve_narrow_vq(env, new_len + 1);
13799     }
13800 }
13801 #endif
13802