1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "target/arm/idau.h" 13 #include "trace.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/timer.h" 20 #include "qemu/bitops.h" 21 #include "qemu/crc32c.h" 22 #include "qemu/qemu-print.h" 23 #include "exec/exec-all.h" 24 #include <zlib.h> /* For crc32 */ 25 #include "hw/irq.h" 26 #include "semihosting/semihost.h" 27 #include "sysemu/cpus.h" 28 #include "sysemu/cpu-timers.h" 29 #include "sysemu/kvm.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "semihosting/common-semi.h" 38 #endif 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 42 43 #ifndef CONFIG_USER_ONLY 44 45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 46 MMUAccessType access_type, ARMMMUIdx mmu_idx, 47 bool s1_is_el0, 48 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 49 target_ulong *page_size_ptr, 50 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 51 __attribute__((nonnull)); 52 #endif 53 54 static void switch_mode(CPUARMState *env, int mode); 55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 56 57 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 58 { 59 assert(ri->fieldoffset); 60 if (cpreg_field_is_64bit(ri)) { 61 return CPREG_FIELD64(env, ri); 62 } else { 63 return CPREG_FIELD32(env, ri); 64 } 65 } 66 67 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 68 uint64_t value) 69 { 70 assert(ri->fieldoffset); 71 if (cpreg_field_is_64bit(ri)) { 72 CPREG_FIELD64(env, ri) = value; 73 } else { 74 CPREG_FIELD32(env, ri) = value; 75 } 76 } 77 78 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 79 { 80 return (char *)env + ri->fieldoffset; 81 } 82 83 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 84 { 85 /* Raw read of a coprocessor register (as needed for migration, etc). */ 86 if (ri->type & ARM_CP_CONST) { 87 return ri->resetvalue; 88 } else if (ri->raw_readfn) { 89 return ri->raw_readfn(env, ri); 90 } else if (ri->readfn) { 91 return ri->readfn(env, ri); 92 } else { 93 return raw_read(env, ri); 94 } 95 } 96 97 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 98 uint64_t v) 99 { 100 /* Raw write of a coprocessor register (as needed for migration, etc). 101 * Note that constant registers are treated as write-ignored; the 102 * caller should check for success by whether a readback gives the 103 * value written. 104 */ 105 if (ri->type & ARM_CP_CONST) { 106 return; 107 } else if (ri->raw_writefn) { 108 ri->raw_writefn(env, ri, v); 109 } else if (ri->writefn) { 110 ri->writefn(env, ri, v); 111 } else { 112 raw_write(env, ri, v); 113 } 114 } 115 116 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 117 { 118 /* Return true if the regdef would cause an assertion if you called 119 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 120 * program bug for it not to have the NO_RAW flag). 121 * NB that returning false here doesn't necessarily mean that calling 122 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 123 * read/write access functions which are safe for raw use" from "has 124 * read/write access functions which have side effects but has forgotten 125 * to provide raw access functions". 126 * The tests here line up with the conditions in read/write_raw_cp_reg() 127 * and assertions in raw_read()/raw_write(). 128 */ 129 if ((ri->type & ARM_CP_CONST) || 130 ri->fieldoffset || 131 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 132 return false; 133 } 134 return true; 135 } 136 137 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 138 { 139 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 140 int i; 141 bool ok = true; 142 143 for (i = 0; i < cpu->cpreg_array_len; i++) { 144 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 145 const ARMCPRegInfo *ri; 146 uint64_t newval; 147 148 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 149 if (!ri) { 150 ok = false; 151 continue; 152 } 153 if (ri->type & ARM_CP_NO_RAW) { 154 continue; 155 } 156 157 newval = read_raw_cp_reg(&cpu->env, ri); 158 if (kvm_sync) { 159 /* 160 * Only sync if the previous list->cpustate sync succeeded. 161 * Rather than tracking the success/failure state for every 162 * item in the list, we just recheck "does the raw write we must 163 * have made in write_list_to_cpustate() read back OK" here. 164 */ 165 uint64_t oldval = cpu->cpreg_values[i]; 166 167 if (oldval == newval) { 168 continue; 169 } 170 171 write_raw_cp_reg(&cpu->env, ri, oldval); 172 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 173 continue; 174 } 175 176 write_raw_cp_reg(&cpu->env, ri, newval); 177 } 178 cpu->cpreg_values[i] = newval; 179 } 180 return ok; 181 } 182 183 bool write_list_to_cpustate(ARMCPU *cpu) 184 { 185 int i; 186 bool ok = true; 187 188 for (i = 0; i < cpu->cpreg_array_len; i++) { 189 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 190 uint64_t v = cpu->cpreg_values[i]; 191 const ARMCPRegInfo *ri; 192 193 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 194 if (!ri) { 195 ok = false; 196 continue; 197 } 198 if (ri->type & ARM_CP_NO_RAW) { 199 continue; 200 } 201 /* Write value and confirm it reads back as written 202 * (to catch read-only registers and partially read-only 203 * registers where the incoming migration value doesn't match) 204 */ 205 write_raw_cp_reg(&cpu->env, ri, v); 206 if (read_raw_cp_reg(&cpu->env, ri) != v) { 207 ok = false; 208 } 209 } 210 return ok; 211 } 212 213 static void add_cpreg_to_list(gpointer key, gpointer opaque) 214 { 215 ARMCPU *cpu = opaque; 216 uint64_t regidx; 217 const ARMCPRegInfo *ri; 218 219 regidx = *(uint32_t *)key; 220 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 221 222 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 223 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 224 /* The value array need not be initialized at this point */ 225 cpu->cpreg_array_len++; 226 } 227 } 228 229 static void count_cpreg(gpointer key, gpointer opaque) 230 { 231 ARMCPU *cpu = opaque; 232 uint64_t regidx; 233 const ARMCPRegInfo *ri; 234 235 regidx = *(uint32_t *)key; 236 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 237 238 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 239 cpu->cpreg_array_len++; 240 } 241 } 242 243 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 244 { 245 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 246 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 247 248 if (aidx > bidx) { 249 return 1; 250 } 251 if (aidx < bidx) { 252 return -1; 253 } 254 return 0; 255 } 256 257 void init_cpreg_list(ARMCPU *cpu) 258 { 259 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 260 * Note that we require cpreg_tuples[] to be sorted by key ID. 261 */ 262 GList *keys; 263 int arraylen; 264 265 keys = g_hash_table_get_keys(cpu->cp_regs); 266 keys = g_list_sort(keys, cpreg_key_compare); 267 268 cpu->cpreg_array_len = 0; 269 270 g_list_foreach(keys, count_cpreg, cpu); 271 272 arraylen = cpu->cpreg_array_len; 273 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 274 cpu->cpreg_values = g_new(uint64_t, arraylen); 275 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 276 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 277 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 278 cpu->cpreg_array_len = 0; 279 280 g_list_foreach(keys, add_cpreg_to_list, cpu); 281 282 assert(cpu->cpreg_array_len == arraylen); 283 284 g_list_free(keys); 285 } 286 287 /* 288 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 289 */ 290 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 291 const ARMCPRegInfo *ri, 292 bool isread) 293 { 294 if (!is_a64(env) && arm_current_el(env) == 3 && 295 arm_is_secure_below_el3(env)) { 296 return CP_ACCESS_TRAP_UNCATEGORIZED; 297 } 298 return CP_ACCESS_OK; 299 } 300 301 /* Some secure-only AArch32 registers trap to EL3 if used from 302 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 303 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 304 * We assume that the .access field is set to PL1_RW. 305 */ 306 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 307 const ARMCPRegInfo *ri, 308 bool isread) 309 { 310 if (arm_current_el(env) == 3) { 311 return CP_ACCESS_OK; 312 } 313 if (arm_is_secure_below_el3(env)) { 314 if (env->cp15.scr_el3 & SCR_EEL2) { 315 return CP_ACCESS_TRAP_EL2; 316 } 317 return CP_ACCESS_TRAP_EL3; 318 } 319 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 320 return CP_ACCESS_TRAP_UNCATEGORIZED; 321 } 322 323 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 324 { 325 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 326 } 327 328 /* Check for traps to "powerdown debug" registers, which are controlled 329 * by MDCR.TDOSA 330 */ 331 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 332 bool isread) 333 { 334 int el = arm_current_el(env); 335 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 336 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 337 (arm_hcr_el2_eff(env) & HCR_TGE); 338 339 if (el < 2 && mdcr_el2_tdosa) { 340 return CP_ACCESS_TRAP_EL2; 341 } 342 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 343 return CP_ACCESS_TRAP_EL3; 344 } 345 return CP_ACCESS_OK; 346 } 347 348 /* Check for traps to "debug ROM" registers, which are controlled 349 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 350 */ 351 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 352 bool isread) 353 { 354 int el = arm_current_el(env); 355 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 356 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 357 (arm_hcr_el2_eff(env) & HCR_TGE); 358 359 if (el < 2 && mdcr_el2_tdra) { 360 return CP_ACCESS_TRAP_EL2; 361 } 362 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 363 return CP_ACCESS_TRAP_EL3; 364 } 365 return CP_ACCESS_OK; 366 } 367 368 /* Check for traps to general debug registers, which are controlled 369 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 370 */ 371 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 372 bool isread) 373 { 374 int el = arm_current_el(env); 375 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 376 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 377 (arm_hcr_el2_eff(env) & HCR_TGE); 378 379 if (el < 2 && mdcr_el2_tda) { 380 return CP_ACCESS_TRAP_EL2; 381 } 382 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 383 return CP_ACCESS_TRAP_EL3; 384 } 385 return CP_ACCESS_OK; 386 } 387 388 /* Check for traps to performance monitor registers, which are controlled 389 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 390 */ 391 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 392 bool isread) 393 { 394 int el = arm_current_el(env); 395 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 396 397 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 398 return CP_ACCESS_TRAP_EL2; 399 } 400 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 401 return CP_ACCESS_TRAP_EL3; 402 } 403 return CP_ACCESS_OK; 404 } 405 406 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 407 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 408 bool isread) 409 { 410 if (arm_current_el(env) == 1) { 411 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 412 if (arm_hcr_el2_eff(env) & trap) { 413 return CP_ACCESS_TRAP_EL2; 414 } 415 } 416 return CP_ACCESS_OK; 417 } 418 419 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 420 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 421 bool isread) 422 { 423 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 424 return CP_ACCESS_TRAP_EL2; 425 } 426 return CP_ACCESS_OK; 427 } 428 429 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 430 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 431 bool isread) 432 { 433 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 434 return CP_ACCESS_TRAP_EL2; 435 } 436 return CP_ACCESS_OK; 437 } 438 439 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 440 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 441 bool isread) 442 { 443 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 444 return CP_ACCESS_TRAP_EL2; 445 } 446 return CP_ACCESS_OK; 447 } 448 449 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 450 { 451 ARMCPU *cpu = env_archcpu(env); 452 453 raw_write(env, ri, value); 454 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 455 } 456 457 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 458 { 459 ARMCPU *cpu = env_archcpu(env); 460 461 if (raw_read(env, ri) != value) { 462 /* Unlike real hardware the qemu TLB uses virtual addresses, 463 * not modified virtual addresses, so this causes a TLB flush. 464 */ 465 tlb_flush(CPU(cpu)); 466 raw_write(env, ri, value); 467 } 468 } 469 470 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 471 uint64_t value) 472 { 473 ARMCPU *cpu = env_archcpu(env); 474 475 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 476 && !extended_addresses_enabled(env)) { 477 /* For VMSA (when not using the LPAE long descriptor page table 478 * format) this register includes the ASID, so do a TLB flush. 479 * For PMSA it is purely a process ID and no action is needed. 480 */ 481 tlb_flush(CPU(cpu)); 482 } 483 raw_write(env, ri, value); 484 } 485 486 /* IS variants of TLB operations must affect all cores */ 487 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 488 uint64_t value) 489 { 490 CPUState *cs = env_cpu(env); 491 492 tlb_flush_all_cpus_synced(cs); 493 } 494 495 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 496 uint64_t value) 497 { 498 CPUState *cs = env_cpu(env); 499 500 tlb_flush_all_cpus_synced(cs); 501 } 502 503 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 504 uint64_t value) 505 { 506 CPUState *cs = env_cpu(env); 507 508 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 509 } 510 511 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 512 uint64_t value) 513 { 514 CPUState *cs = env_cpu(env); 515 516 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 517 } 518 519 /* 520 * Non-IS variants of TLB operations are upgraded to 521 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 522 * force broadcast of these operations. 523 */ 524 static bool tlb_force_broadcast(CPUARMState *env) 525 { 526 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 527 } 528 529 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 530 uint64_t value) 531 { 532 /* Invalidate all (TLBIALL) */ 533 CPUState *cs = env_cpu(env); 534 535 if (tlb_force_broadcast(env)) { 536 tlb_flush_all_cpus_synced(cs); 537 } else { 538 tlb_flush(cs); 539 } 540 } 541 542 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 543 uint64_t value) 544 { 545 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 546 CPUState *cs = env_cpu(env); 547 548 value &= TARGET_PAGE_MASK; 549 if (tlb_force_broadcast(env)) { 550 tlb_flush_page_all_cpus_synced(cs, value); 551 } else { 552 tlb_flush_page(cs, value); 553 } 554 } 555 556 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 /* Invalidate by ASID (TLBIASID) */ 560 CPUState *cs = env_cpu(env); 561 562 if (tlb_force_broadcast(env)) { 563 tlb_flush_all_cpus_synced(cs); 564 } else { 565 tlb_flush(cs); 566 } 567 } 568 569 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 570 uint64_t value) 571 { 572 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 573 CPUState *cs = env_cpu(env); 574 575 value &= TARGET_PAGE_MASK; 576 if (tlb_force_broadcast(env)) { 577 tlb_flush_page_all_cpus_synced(cs, value); 578 } else { 579 tlb_flush_page(cs, value); 580 } 581 } 582 583 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 584 uint64_t value) 585 { 586 CPUState *cs = env_cpu(env); 587 588 tlb_flush_by_mmuidx(cs, 589 ARMMMUIdxBit_E10_1 | 590 ARMMMUIdxBit_E10_1_PAN | 591 ARMMMUIdxBit_E10_0); 592 } 593 594 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 595 uint64_t value) 596 { 597 CPUState *cs = env_cpu(env); 598 599 tlb_flush_by_mmuidx_all_cpus_synced(cs, 600 ARMMMUIdxBit_E10_1 | 601 ARMMMUIdxBit_E10_1_PAN | 602 ARMMMUIdxBit_E10_0); 603 } 604 605 606 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 607 uint64_t value) 608 { 609 CPUState *cs = env_cpu(env); 610 611 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 612 } 613 614 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 615 uint64_t value) 616 { 617 CPUState *cs = env_cpu(env); 618 619 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 620 } 621 622 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 623 uint64_t value) 624 { 625 CPUState *cs = env_cpu(env); 626 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 627 628 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 629 } 630 631 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 632 uint64_t value) 633 { 634 CPUState *cs = env_cpu(env); 635 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 636 637 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 638 ARMMMUIdxBit_E2); 639 } 640 641 static const ARMCPRegInfo cp_reginfo[] = { 642 /* Define the secure and non-secure FCSE identifier CP registers 643 * separately because there is no secure bank in V8 (no _EL3). This allows 644 * the secure register to be properly reset and migrated. There is also no 645 * v8 EL1 version of the register so the non-secure instance stands alone. 646 */ 647 { .name = "FCSEIDR", 648 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 649 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 650 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 651 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 652 { .name = "FCSEIDR_S", 653 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 654 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 655 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 656 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 657 /* Define the secure and non-secure context identifier CP registers 658 * separately because there is no secure bank in V8 (no _EL3). This allows 659 * the secure register to be properly reset and migrated. In the 660 * non-secure case, the 32-bit register will have reset and migration 661 * disabled during registration as it is handled by the 64-bit instance. 662 */ 663 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 664 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 665 .access = PL1_RW, .accessfn = access_tvm_trvm, 666 .secure = ARM_CP_SECSTATE_NS, 667 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 668 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 669 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 670 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 671 .access = PL1_RW, .accessfn = access_tvm_trvm, 672 .secure = ARM_CP_SECSTATE_S, 673 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 674 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 675 REGINFO_SENTINEL 676 }; 677 678 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 679 /* NB: Some of these registers exist in v8 but with more precise 680 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 681 */ 682 /* MMU Domain access control / MPU write buffer control */ 683 { .name = "DACR", 684 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 685 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 686 .writefn = dacr_write, .raw_writefn = raw_write, 687 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 688 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 689 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 690 * For v6 and v5, these mappings are overly broad. 691 */ 692 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 693 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 694 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 695 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 696 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 697 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 698 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 699 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 700 /* Cache maintenance ops; some of this space may be overridden later. */ 701 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 702 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 703 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 704 REGINFO_SENTINEL 705 }; 706 707 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 708 /* Not all pre-v6 cores implemented this WFI, so this is slightly 709 * over-broad. 710 */ 711 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 712 .access = PL1_W, .type = ARM_CP_WFI }, 713 REGINFO_SENTINEL 714 }; 715 716 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 717 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 718 * is UNPREDICTABLE; we choose to NOP as most implementations do). 719 */ 720 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 721 .access = PL1_W, .type = ARM_CP_WFI }, 722 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 723 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 724 * OMAPCP will override this space. 725 */ 726 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 727 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 728 .resetvalue = 0 }, 729 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 730 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 731 .resetvalue = 0 }, 732 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 733 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 734 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 735 .resetvalue = 0 }, 736 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 737 * implementing it as RAZ means the "debug architecture version" bits 738 * will read as a reserved value, which should cause Linux to not try 739 * to use the debug hardware. 740 */ 741 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 742 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 743 /* MMU TLB control. Note that the wildcarding means we cover not just 744 * the unified TLB ops but also the dside/iside/inner-shareable variants. 745 */ 746 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 747 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 748 .type = ARM_CP_NO_RAW }, 749 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 750 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 751 .type = ARM_CP_NO_RAW }, 752 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 753 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 754 .type = ARM_CP_NO_RAW }, 755 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 756 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 757 .type = ARM_CP_NO_RAW }, 758 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 759 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 760 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 761 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 762 REGINFO_SENTINEL 763 }; 764 765 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 766 uint64_t value) 767 { 768 uint32_t mask = 0; 769 770 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 771 if (!arm_feature(env, ARM_FEATURE_V8)) { 772 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 773 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 774 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 775 */ 776 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 777 /* VFP coprocessor: cp10 & cp11 [23:20] */ 778 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 779 780 if (!arm_feature(env, ARM_FEATURE_NEON)) { 781 /* ASEDIS [31] bit is RAO/WI */ 782 value |= (1 << 31); 783 } 784 785 /* VFPv3 and upwards with NEON implement 32 double precision 786 * registers (D0-D31). 787 */ 788 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 789 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 790 value |= (1 << 30); 791 } 792 } 793 value &= mask; 794 } 795 796 /* 797 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 798 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 799 */ 800 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 801 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 802 value &= ~(0xf << 20); 803 value |= env->cp15.cpacr_el1 & (0xf << 20); 804 } 805 806 env->cp15.cpacr_el1 = value; 807 } 808 809 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 810 { 811 /* 812 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 813 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 814 */ 815 uint64_t value = env->cp15.cpacr_el1; 816 817 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 818 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 819 value &= ~(0xf << 20); 820 } 821 return value; 822 } 823 824 825 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 826 { 827 /* Call cpacr_write() so that we reset with the correct RAO bits set 828 * for our CPU features. 829 */ 830 cpacr_write(env, ri, 0); 831 } 832 833 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 834 bool isread) 835 { 836 if (arm_feature(env, ARM_FEATURE_V8)) { 837 /* Check if CPACR accesses are to be trapped to EL2 */ 838 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 839 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 840 return CP_ACCESS_TRAP_EL2; 841 /* Check if CPACR accesses are to be trapped to EL3 */ 842 } else if (arm_current_el(env) < 3 && 843 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 844 return CP_ACCESS_TRAP_EL3; 845 } 846 } 847 848 return CP_ACCESS_OK; 849 } 850 851 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 852 bool isread) 853 { 854 /* Check if CPTR accesses are set to trap to EL3 */ 855 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 856 return CP_ACCESS_TRAP_EL3; 857 } 858 859 return CP_ACCESS_OK; 860 } 861 862 static const ARMCPRegInfo v6_cp_reginfo[] = { 863 /* prefetch by MVA in v6, NOP in v7 */ 864 { .name = "MVA_prefetch", 865 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 866 .access = PL1_W, .type = ARM_CP_NOP }, 867 /* We need to break the TB after ISB to execute self-modifying code 868 * correctly and also to take any pending interrupts immediately. 869 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 870 */ 871 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 872 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 873 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 874 .access = PL0_W, .type = ARM_CP_NOP }, 875 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 876 .access = PL0_W, .type = ARM_CP_NOP }, 877 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 878 .access = PL1_RW, .accessfn = access_tvm_trvm, 879 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 880 offsetof(CPUARMState, cp15.ifar_ns) }, 881 .resetvalue = 0, }, 882 /* Watchpoint Fault Address Register : should actually only be present 883 * for 1136, 1176, 11MPCore. 884 */ 885 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 886 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 887 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 888 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 889 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 890 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 891 REGINFO_SENTINEL 892 }; 893 894 typedef struct pm_event { 895 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 896 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 897 bool (*supported)(CPUARMState *); 898 /* 899 * Retrieve the current count of the underlying event. The programmed 900 * counters hold a difference from the return value from this function 901 */ 902 uint64_t (*get_count)(CPUARMState *); 903 /* 904 * Return how many nanoseconds it will take (at a minimum) for count events 905 * to occur. A negative value indicates the counter will never overflow, or 906 * that the counter has otherwise arranged for the overflow bit to be set 907 * and the PMU interrupt to be raised on overflow. 908 */ 909 int64_t (*ns_per_count)(uint64_t); 910 } pm_event; 911 912 static bool event_always_supported(CPUARMState *env) 913 { 914 return true; 915 } 916 917 static uint64_t swinc_get_count(CPUARMState *env) 918 { 919 /* 920 * SW_INCR events are written directly to the pmevcntr's by writes to 921 * PMSWINC, so there is no underlying count maintained by the PMU itself 922 */ 923 return 0; 924 } 925 926 static int64_t swinc_ns_per(uint64_t ignored) 927 { 928 return -1; 929 } 930 931 /* 932 * Return the underlying cycle count for the PMU cycle counters. If we're in 933 * usermode, simply return 0. 934 */ 935 static uint64_t cycles_get_count(CPUARMState *env) 936 { 937 #ifndef CONFIG_USER_ONLY 938 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 939 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 940 #else 941 return cpu_get_host_ticks(); 942 #endif 943 } 944 945 #ifndef CONFIG_USER_ONLY 946 static int64_t cycles_ns_per(uint64_t cycles) 947 { 948 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 949 } 950 951 static bool instructions_supported(CPUARMState *env) 952 { 953 return icount_enabled() == 1; /* Precise instruction counting */ 954 } 955 956 static uint64_t instructions_get_count(CPUARMState *env) 957 { 958 return (uint64_t)icount_get_raw(); 959 } 960 961 static int64_t instructions_ns_per(uint64_t icount) 962 { 963 return icount_to_ns((int64_t)icount); 964 } 965 #endif 966 967 static bool pmu_8_1_events_supported(CPUARMState *env) 968 { 969 /* For events which are supported in any v8.1 PMU */ 970 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 971 } 972 973 static bool pmu_8_4_events_supported(CPUARMState *env) 974 { 975 /* For events which are supported in any v8.1 PMU */ 976 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 977 } 978 979 static uint64_t zero_event_get_count(CPUARMState *env) 980 { 981 /* For events which on QEMU never fire, so their count is always zero */ 982 return 0; 983 } 984 985 static int64_t zero_event_ns_per(uint64_t cycles) 986 { 987 /* An event which never fires can never overflow */ 988 return -1; 989 } 990 991 static const pm_event pm_events[] = { 992 { .number = 0x000, /* SW_INCR */ 993 .supported = event_always_supported, 994 .get_count = swinc_get_count, 995 .ns_per_count = swinc_ns_per, 996 }, 997 #ifndef CONFIG_USER_ONLY 998 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 999 .supported = instructions_supported, 1000 .get_count = instructions_get_count, 1001 .ns_per_count = instructions_ns_per, 1002 }, 1003 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1004 .supported = event_always_supported, 1005 .get_count = cycles_get_count, 1006 .ns_per_count = cycles_ns_per, 1007 }, 1008 #endif 1009 { .number = 0x023, /* STALL_FRONTEND */ 1010 .supported = pmu_8_1_events_supported, 1011 .get_count = zero_event_get_count, 1012 .ns_per_count = zero_event_ns_per, 1013 }, 1014 { .number = 0x024, /* STALL_BACKEND */ 1015 .supported = pmu_8_1_events_supported, 1016 .get_count = zero_event_get_count, 1017 .ns_per_count = zero_event_ns_per, 1018 }, 1019 { .number = 0x03c, /* STALL */ 1020 .supported = pmu_8_4_events_supported, 1021 .get_count = zero_event_get_count, 1022 .ns_per_count = zero_event_ns_per, 1023 }, 1024 }; 1025 1026 /* 1027 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1028 * events (i.e. the statistical profiling extension), this implementation 1029 * should first be updated to something sparse instead of the current 1030 * supported_event_map[] array. 1031 */ 1032 #define MAX_EVENT_ID 0x3c 1033 #define UNSUPPORTED_EVENT UINT16_MAX 1034 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1035 1036 /* 1037 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1038 * of ARM event numbers to indices in our pm_events array. 1039 * 1040 * Note: Events in the 0x40XX range are not currently supported. 1041 */ 1042 void pmu_init(ARMCPU *cpu) 1043 { 1044 unsigned int i; 1045 1046 /* 1047 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1048 * events to them 1049 */ 1050 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1051 supported_event_map[i] = UNSUPPORTED_EVENT; 1052 } 1053 cpu->pmceid0 = 0; 1054 cpu->pmceid1 = 0; 1055 1056 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1057 const pm_event *cnt = &pm_events[i]; 1058 assert(cnt->number <= MAX_EVENT_ID); 1059 /* We do not currently support events in the 0x40xx range */ 1060 assert(cnt->number <= 0x3f); 1061 1062 if (cnt->supported(&cpu->env)) { 1063 supported_event_map[cnt->number] = i; 1064 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1065 if (cnt->number & 0x20) { 1066 cpu->pmceid1 |= event_mask; 1067 } else { 1068 cpu->pmceid0 |= event_mask; 1069 } 1070 } 1071 } 1072 } 1073 1074 /* 1075 * Check at runtime whether a PMU event is supported for the current machine 1076 */ 1077 static bool event_supported(uint16_t number) 1078 { 1079 if (number > MAX_EVENT_ID) { 1080 return false; 1081 } 1082 return supported_event_map[number] != UNSUPPORTED_EVENT; 1083 } 1084 1085 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1086 bool isread) 1087 { 1088 /* Performance monitor registers user accessibility is controlled 1089 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1090 * trapping to EL2 or EL3 for other accesses. 1091 */ 1092 int el = arm_current_el(env); 1093 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1094 1095 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1096 return CP_ACCESS_TRAP; 1097 } 1098 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1099 return CP_ACCESS_TRAP_EL2; 1100 } 1101 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1102 return CP_ACCESS_TRAP_EL3; 1103 } 1104 1105 return CP_ACCESS_OK; 1106 } 1107 1108 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1109 const ARMCPRegInfo *ri, 1110 bool isread) 1111 { 1112 /* ER: event counter read trap control */ 1113 if (arm_feature(env, ARM_FEATURE_V8) 1114 && arm_current_el(env) == 0 1115 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1116 && isread) { 1117 return CP_ACCESS_OK; 1118 } 1119 1120 return pmreg_access(env, ri, isread); 1121 } 1122 1123 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1124 const ARMCPRegInfo *ri, 1125 bool isread) 1126 { 1127 /* SW: software increment write trap control */ 1128 if (arm_feature(env, ARM_FEATURE_V8) 1129 && arm_current_el(env) == 0 1130 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1131 && !isread) { 1132 return CP_ACCESS_OK; 1133 } 1134 1135 return pmreg_access(env, ri, isread); 1136 } 1137 1138 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1139 const ARMCPRegInfo *ri, 1140 bool isread) 1141 { 1142 /* ER: event counter read trap control */ 1143 if (arm_feature(env, ARM_FEATURE_V8) 1144 && arm_current_el(env) == 0 1145 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1146 return CP_ACCESS_OK; 1147 } 1148 1149 return pmreg_access(env, ri, isread); 1150 } 1151 1152 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1153 const ARMCPRegInfo *ri, 1154 bool isread) 1155 { 1156 /* CR: cycle counter read trap control */ 1157 if (arm_feature(env, ARM_FEATURE_V8) 1158 && arm_current_el(env) == 0 1159 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1160 && isread) { 1161 return CP_ACCESS_OK; 1162 } 1163 1164 return pmreg_access(env, ri, isread); 1165 } 1166 1167 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1168 * the current EL, security state, and register configuration. 1169 */ 1170 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1171 { 1172 uint64_t filter; 1173 bool e, p, u, nsk, nsu, nsh, m; 1174 bool enabled, prohibited, filtered; 1175 bool secure = arm_is_secure(env); 1176 int el = arm_current_el(env); 1177 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1178 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1179 1180 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1181 return false; 1182 } 1183 1184 if (!arm_feature(env, ARM_FEATURE_EL2) || 1185 (counter < hpmn || counter == 31)) { 1186 e = env->cp15.c9_pmcr & PMCRE; 1187 } else { 1188 e = mdcr_el2 & MDCR_HPME; 1189 } 1190 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1191 1192 if (!secure) { 1193 if (el == 2 && (counter < hpmn || counter == 31)) { 1194 prohibited = mdcr_el2 & MDCR_HPMD; 1195 } else { 1196 prohibited = false; 1197 } 1198 } else { 1199 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1200 !(env->cp15.mdcr_el3 & MDCR_SPME); 1201 } 1202 1203 if (prohibited && counter == 31) { 1204 prohibited = env->cp15.c9_pmcr & PMCRDP; 1205 } 1206 1207 if (counter == 31) { 1208 filter = env->cp15.pmccfiltr_el0; 1209 } else { 1210 filter = env->cp15.c14_pmevtyper[counter]; 1211 } 1212 1213 p = filter & PMXEVTYPER_P; 1214 u = filter & PMXEVTYPER_U; 1215 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1216 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1217 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1218 m = arm_el_is_aa64(env, 1) && 1219 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1220 1221 if (el == 0) { 1222 filtered = secure ? u : u != nsu; 1223 } else if (el == 1) { 1224 filtered = secure ? p : p != nsk; 1225 } else if (el == 2) { 1226 filtered = !nsh; 1227 } else { /* EL3 */ 1228 filtered = m != p; 1229 } 1230 1231 if (counter != 31) { 1232 /* 1233 * If not checking PMCCNTR, ensure the counter is setup to an event we 1234 * support 1235 */ 1236 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1237 if (!event_supported(event)) { 1238 return false; 1239 } 1240 } 1241 1242 return enabled && !prohibited && !filtered; 1243 } 1244 1245 static void pmu_update_irq(CPUARMState *env) 1246 { 1247 ARMCPU *cpu = env_archcpu(env); 1248 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1249 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1250 } 1251 1252 /* 1253 * Ensure c15_ccnt is the guest-visible count so that operations such as 1254 * enabling/disabling the counter or filtering, modifying the count itself, 1255 * etc. can be done logically. This is essentially a no-op if the counter is 1256 * not enabled at the time of the call. 1257 */ 1258 static void pmccntr_op_start(CPUARMState *env) 1259 { 1260 uint64_t cycles = cycles_get_count(env); 1261 1262 if (pmu_counter_enabled(env, 31)) { 1263 uint64_t eff_cycles = cycles; 1264 if (env->cp15.c9_pmcr & PMCRD) { 1265 /* Increment once every 64 processor clock cycles */ 1266 eff_cycles /= 64; 1267 } 1268 1269 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1270 1271 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1272 1ull << 63 : 1ull << 31; 1273 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1274 env->cp15.c9_pmovsr |= (1 << 31); 1275 pmu_update_irq(env); 1276 } 1277 1278 env->cp15.c15_ccnt = new_pmccntr; 1279 } 1280 env->cp15.c15_ccnt_delta = cycles; 1281 } 1282 1283 /* 1284 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1285 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1286 * pmccntr_op_start. 1287 */ 1288 static void pmccntr_op_finish(CPUARMState *env) 1289 { 1290 if (pmu_counter_enabled(env, 31)) { 1291 #ifndef CONFIG_USER_ONLY 1292 /* Calculate when the counter will next overflow */ 1293 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1294 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1295 remaining_cycles = (uint32_t)remaining_cycles; 1296 } 1297 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1298 1299 if (overflow_in > 0) { 1300 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1301 overflow_in; 1302 ARMCPU *cpu = env_archcpu(env); 1303 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1304 } 1305 #endif 1306 1307 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1308 if (env->cp15.c9_pmcr & PMCRD) { 1309 /* Increment once every 64 processor clock cycles */ 1310 prev_cycles /= 64; 1311 } 1312 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1313 } 1314 } 1315 1316 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1317 { 1318 1319 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1320 uint64_t count = 0; 1321 if (event_supported(event)) { 1322 uint16_t event_idx = supported_event_map[event]; 1323 count = pm_events[event_idx].get_count(env); 1324 } 1325 1326 if (pmu_counter_enabled(env, counter)) { 1327 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1328 1329 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1330 env->cp15.c9_pmovsr |= (1 << counter); 1331 pmu_update_irq(env); 1332 } 1333 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1334 } 1335 env->cp15.c14_pmevcntr_delta[counter] = count; 1336 } 1337 1338 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1339 { 1340 if (pmu_counter_enabled(env, counter)) { 1341 #ifndef CONFIG_USER_ONLY 1342 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1343 uint16_t event_idx = supported_event_map[event]; 1344 uint64_t delta = UINT32_MAX - 1345 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1346 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1347 1348 if (overflow_in > 0) { 1349 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1350 overflow_in; 1351 ARMCPU *cpu = env_archcpu(env); 1352 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1353 } 1354 #endif 1355 1356 env->cp15.c14_pmevcntr_delta[counter] -= 1357 env->cp15.c14_pmevcntr[counter]; 1358 } 1359 } 1360 1361 void pmu_op_start(CPUARMState *env) 1362 { 1363 unsigned int i; 1364 pmccntr_op_start(env); 1365 for (i = 0; i < pmu_num_counters(env); i++) { 1366 pmevcntr_op_start(env, i); 1367 } 1368 } 1369 1370 void pmu_op_finish(CPUARMState *env) 1371 { 1372 unsigned int i; 1373 pmccntr_op_finish(env); 1374 for (i = 0; i < pmu_num_counters(env); i++) { 1375 pmevcntr_op_finish(env, i); 1376 } 1377 } 1378 1379 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1380 { 1381 pmu_op_start(&cpu->env); 1382 } 1383 1384 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1385 { 1386 pmu_op_finish(&cpu->env); 1387 } 1388 1389 void arm_pmu_timer_cb(void *opaque) 1390 { 1391 ARMCPU *cpu = opaque; 1392 1393 /* 1394 * Update all the counter values based on the current underlying counts, 1395 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1396 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1397 * counter may expire. 1398 */ 1399 pmu_op_start(&cpu->env); 1400 pmu_op_finish(&cpu->env); 1401 } 1402 1403 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1404 uint64_t value) 1405 { 1406 pmu_op_start(env); 1407 1408 if (value & PMCRC) { 1409 /* The counter has been reset */ 1410 env->cp15.c15_ccnt = 0; 1411 } 1412 1413 if (value & PMCRP) { 1414 unsigned int i; 1415 for (i = 0; i < pmu_num_counters(env); i++) { 1416 env->cp15.c14_pmevcntr[i] = 0; 1417 } 1418 } 1419 1420 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1421 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1422 1423 pmu_op_finish(env); 1424 } 1425 1426 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1427 uint64_t value) 1428 { 1429 unsigned int i; 1430 for (i = 0; i < pmu_num_counters(env); i++) { 1431 /* Increment a counter's count iff: */ 1432 if ((value & (1 << i)) && /* counter's bit is set */ 1433 /* counter is enabled and not filtered */ 1434 pmu_counter_enabled(env, i) && 1435 /* counter is SW_INCR */ 1436 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1437 pmevcntr_op_start(env, i); 1438 1439 /* 1440 * Detect if this write causes an overflow since we can't predict 1441 * PMSWINC overflows like we can for other events 1442 */ 1443 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1444 1445 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1446 env->cp15.c9_pmovsr |= (1 << i); 1447 pmu_update_irq(env); 1448 } 1449 1450 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1451 1452 pmevcntr_op_finish(env, i); 1453 } 1454 } 1455 } 1456 1457 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1458 { 1459 uint64_t ret; 1460 pmccntr_op_start(env); 1461 ret = env->cp15.c15_ccnt; 1462 pmccntr_op_finish(env); 1463 return ret; 1464 } 1465 1466 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1467 uint64_t value) 1468 { 1469 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1470 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1471 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1472 * accessed. 1473 */ 1474 env->cp15.c9_pmselr = value & 0x1f; 1475 } 1476 1477 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1478 uint64_t value) 1479 { 1480 pmccntr_op_start(env); 1481 env->cp15.c15_ccnt = value; 1482 pmccntr_op_finish(env); 1483 } 1484 1485 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1486 uint64_t value) 1487 { 1488 uint64_t cur_val = pmccntr_read(env, NULL); 1489 1490 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1491 } 1492 1493 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1494 uint64_t value) 1495 { 1496 pmccntr_op_start(env); 1497 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1498 pmccntr_op_finish(env); 1499 } 1500 1501 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1502 uint64_t value) 1503 { 1504 pmccntr_op_start(env); 1505 /* M is not accessible from AArch32 */ 1506 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1507 (value & PMCCFILTR); 1508 pmccntr_op_finish(env); 1509 } 1510 1511 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1512 { 1513 /* M is not visible in AArch32 */ 1514 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1515 } 1516 1517 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1518 uint64_t value) 1519 { 1520 value &= pmu_counter_mask(env); 1521 env->cp15.c9_pmcnten |= value; 1522 } 1523 1524 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1525 uint64_t value) 1526 { 1527 value &= pmu_counter_mask(env); 1528 env->cp15.c9_pmcnten &= ~value; 1529 } 1530 1531 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1532 uint64_t value) 1533 { 1534 value &= pmu_counter_mask(env); 1535 env->cp15.c9_pmovsr &= ~value; 1536 pmu_update_irq(env); 1537 } 1538 1539 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1540 uint64_t value) 1541 { 1542 value &= pmu_counter_mask(env); 1543 env->cp15.c9_pmovsr |= value; 1544 pmu_update_irq(env); 1545 } 1546 1547 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1548 uint64_t value, const uint8_t counter) 1549 { 1550 if (counter == 31) { 1551 pmccfiltr_write(env, ri, value); 1552 } else if (counter < pmu_num_counters(env)) { 1553 pmevcntr_op_start(env, counter); 1554 1555 /* 1556 * If this counter's event type is changing, store the current 1557 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1558 * pmevcntr_op_finish has the correct baseline when it converts back to 1559 * a delta. 1560 */ 1561 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1562 PMXEVTYPER_EVTCOUNT; 1563 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1564 if (old_event != new_event) { 1565 uint64_t count = 0; 1566 if (event_supported(new_event)) { 1567 uint16_t event_idx = supported_event_map[new_event]; 1568 count = pm_events[event_idx].get_count(env); 1569 } 1570 env->cp15.c14_pmevcntr_delta[counter] = count; 1571 } 1572 1573 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1574 pmevcntr_op_finish(env, counter); 1575 } 1576 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1577 * PMSELR value is equal to or greater than the number of implemented 1578 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1579 */ 1580 } 1581 1582 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1583 const uint8_t counter) 1584 { 1585 if (counter == 31) { 1586 return env->cp15.pmccfiltr_el0; 1587 } else if (counter < pmu_num_counters(env)) { 1588 return env->cp15.c14_pmevtyper[counter]; 1589 } else { 1590 /* 1591 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1592 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1593 */ 1594 return 0; 1595 } 1596 } 1597 1598 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1599 uint64_t value) 1600 { 1601 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1602 pmevtyper_write(env, ri, value, counter); 1603 } 1604 1605 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1606 uint64_t value) 1607 { 1608 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1609 env->cp15.c14_pmevtyper[counter] = value; 1610 1611 /* 1612 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1613 * pmu_op_finish calls when loading saved state for a migration. Because 1614 * we're potentially updating the type of event here, the value written to 1615 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1616 * different counter type. Therefore, we need to set this value to the 1617 * current count for the counter type we're writing so that pmu_op_finish 1618 * has the correct count for its calculation. 1619 */ 1620 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1621 if (event_supported(event)) { 1622 uint16_t event_idx = supported_event_map[event]; 1623 env->cp15.c14_pmevcntr_delta[counter] = 1624 pm_events[event_idx].get_count(env); 1625 } 1626 } 1627 1628 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1629 { 1630 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1631 return pmevtyper_read(env, ri, counter); 1632 } 1633 1634 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1635 uint64_t value) 1636 { 1637 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1638 } 1639 1640 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1641 { 1642 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1643 } 1644 1645 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1646 uint64_t value, uint8_t counter) 1647 { 1648 if (counter < pmu_num_counters(env)) { 1649 pmevcntr_op_start(env, counter); 1650 env->cp15.c14_pmevcntr[counter] = value; 1651 pmevcntr_op_finish(env, counter); 1652 } 1653 /* 1654 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1655 * are CONSTRAINED UNPREDICTABLE. 1656 */ 1657 } 1658 1659 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1660 uint8_t counter) 1661 { 1662 if (counter < pmu_num_counters(env)) { 1663 uint64_t ret; 1664 pmevcntr_op_start(env, counter); 1665 ret = env->cp15.c14_pmevcntr[counter]; 1666 pmevcntr_op_finish(env, counter); 1667 return ret; 1668 } else { 1669 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1670 * are CONSTRAINED UNPREDICTABLE. */ 1671 return 0; 1672 } 1673 } 1674 1675 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1676 uint64_t value) 1677 { 1678 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1679 pmevcntr_write(env, ri, value, counter); 1680 } 1681 1682 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1683 { 1684 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1685 return pmevcntr_read(env, ri, counter); 1686 } 1687 1688 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1689 uint64_t value) 1690 { 1691 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1692 assert(counter < pmu_num_counters(env)); 1693 env->cp15.c14_pmevcntr[counter] = value; 1694 pmevcntr_write(env, ri, value, counter); 1695 } 1696 1697 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1698 { 1699 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1700 assert(counter < pmu_num_counters(env)); 1701 return env->cp15.c14_pmevcntr[counter]; 1702 } 1703 1704 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1705 uint64_t value) 1706 { 1707 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1708 } 1709 1710 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1711 { 1712 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1713 } 1714 1715 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1716 uint64_t value) 1717 { 1718 if (arm_feature(env, ARM_FEATURE_V8)) { 1719 env->cp15.c9_pmuserenr = value & 0xf; 1720 } else { 1721 env->cp15.c9_pmuserenr = value & 1; 1722 } 1723 } 1724 1725 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint64_t value) 1727 { 1728 /* We have no event counters so only the C bit can be changed */ 1729 value &= pmu_counter_mask(env); 1730 env->cp15.c9_pminten |= value; 1731 pmu_update_irq(env); 1732 } 1733 1734 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1735 uint64_t value) 1736 { 1737 value &= pmu_counter_mask(env); 1738 env->cp15.c9_pminten &= ~value; 1739 pmu_update_irq(env); 1740 } 1741 1742 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1743 uint64_t value) 1744 { 1745 /* Note that even though the AArch64 view of this register has bits 1746 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1747 * architectural requirements for bits which are RES0 only in some 1748 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1749 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1750 */ 1751 raw_write(env, ri, value & ~0x1FULL); 1752 } 1753 1754 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1755 { 1756 /* Begin with base v8.0 state. */ 1757 uint32_t valid_mask = 0x3fff; 1758 ARMCPU *cpu = env_archcpu(env); 1759 1760 if (ri->state == ARM_CP_STATE_AA64) { 1761 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1762 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1763 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1764 } 1765 valid_mask &= ~SCR_NET; 1766 1767 if (cpu_isar_feature(aa64_lor, cpu)) { 1768 valid_mask |= SCR_TLOR; 1769 } 1770 if (cpu_isar_feature(aa64_pauth, cpu)) { 1771 valid_mask |= SCR_API | SCR_APK; 1772 } 1773 if (cpu_isar_feature(aa64_sel2, cpu)) { 1774 valid_mask |= SCR_EEL2; 1775 } 1776 if (cpu_isar_feature(aa64_mte, cpu)) { 1777 valid_mask |= SCR_ATA; 1778 } 1779 } else { 1780 valid_mask &= ~(SCR_RW | SCR_ST); 1781 } 1782 1783 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1784 valid_mask &= ~SCR_HCE; 1785 1786 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1787 * supported if EL2 exists. The bit is UNK/SBZP when 1788 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1789 * when EL2 is unavailable. 1790 * On ARMv8, this bit is always available. 1791 */ 1792 if (arm_feature(env, ARM_FEATURE_V7) && 1793 !arm_feature(env, ARM_FEATURE_V8)) { 1794 valid_mask &= ~SCR_SMD; 1795 } 1796 } 1797 1798 /* Clear all-context RES0 bits. */ 1799 value &= valid_mask; 1800 raw_write(env, ri, value); 1801 } 1802 1803 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1804 { 1805 /* 1806 * scr_write will set the RES1 bits on an AArch64-only CPU. 1807 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1808 */ 1809 scr_write(env, ri, 0); 1810 } 1811 1812 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1813 const ARMCPRegInfo *ri, 1814 bool isread) 1815 { 1816 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1817 return CP_ACCESS_TRAP_EL2; 1818 } 1819 1820 return CP_ACCESS_OK; 1821 } 1822 1823 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1824 { 1825 ARMCPU *cpu = env_archcpu(env); 1826 1827 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1828 * bank 1829 */ 1830 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1831 ri->secure & ARM_CP_SECSTATE_S); 1832 1833 return cpu->ccsidr[index]; 1834 } 1835 1836 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1837 uint64_t value) 1838 { 1839 raw_write(env, ri, value & 0xf); 1840 } 1841 1842 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1843 { 1844 CPUState *cs = env_cpu(env); 1845 bool el1 = arm_current_el(env) == 1; 1846 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1847 uint64_t ret = 0; 1848 1849 if (hcr_el2 & HCR_IMO) { 1850 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1851 ret |= CPSR_I; 1852 } 1853 } else { 1854 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1855 ret |= CPSR_I; 1856 } 1857 } 1858 1859 if (hcr_el2 & HCR_FMO) { 1860 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1861 ret |= CPSR_F; 1862 } 1863 } else { 1864 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1865 ret |= CPSR_F; 1866 } 1867 } 1868 1869 /* External aborts are not possible in QEMU so A bit is always clear */ 1870 return ret; 1871 } 1872 1873 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1874 bool isread) 1875 { 1876 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1877 return CP_ACCESS_TRAP_EL2; 1878 } 1879 1880 return CP_ACCESS_OK; 1881 } 1882 1883 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1884 bool isread) 1885 { 1886 if (arm_feature(env, ARM_FEATURE_V8)) { 1887 return access_aa64_tid1(env, ri, isread); 1888 } 1889 1890 return CP_ACCESS_OK; 1891 } 1892 1893 static const ARMCPRegInfo v7_cp_reginfo[] = { 1894 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1895 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1896 .access = PL1_W, .type = ARM_CP_NOP }, 1897 /* Performance monitors are implementation defined in v7, 1898 * but with an ARM recommended set of registers, which we 1899 * follow. 1900 * 1901 * Performance registers fall into three categories: 1902 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1903 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1904 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1905 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1906 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1907 */ 1908 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1909 .access = PL0_RW, .type = ARM_CP_ALIAS, 1910 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1911 .writefn = pmcntenset_write, 1912 .accessfn = pmreg_access, 1913 .raw_writefn = raw_write }, 1914 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1915 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1916 .access = PL0_RW, .accessfn = pmreg_access, 1917 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1918 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1919 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1920 .access = PL0_RW, 1921 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1922 .accessfn = pmreg_access, 1923 .writefn = pmcntenclr_write, 1924 .type = ARM_CP_ALIAS }, 1925 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1926 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1927 .access = PL0_RW, .accessfn = pmreg_access, 1928 .type = ARM_CP_ALIAS, 1929 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1930 .writefn = pmcntenclr_write }, 1931 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1932 .access = PL0_RW, .type = ARM_CP_IO, 1933 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1934 .accessfn = pmreg_access, 1935 .writefn = pmovsr_write, 1936 .raw_writefn = raw_write }, 1937 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1938 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1939 .access = PL0_RW, .accessfn = pmreg_access, 1940 .type = ARM_CP_ALIAS | ARM_CP_IO, 1941 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1942 .writefn = pmovsr_write, 1943 .raw_writefn = raw_write }, 1944 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1945 .access = PL0_W, .accessfn = pmreg_access_swinc, 1946 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1947 .writefn = pmswinc_write }, 1948 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1949 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1950 .access = PL0_W, .accessfn = pmreg_access_swinc, 1951 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1952 .writefn = pmswinc_write }, 1953 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1954 .access = PL0_RW, .type = ARM_CP_ALIAS, 1955 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1956 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1957 .raw_writefn = raw_write}, 1958 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1959 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1960 .access = PL0_RW, .accessfn = pmreg_access_selr, 1961 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1962 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1963 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1964 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1965 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1966 .accessfn = pmreg_access_ccntr }, 1967 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1968 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1969 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1970 .type = ARM_CP_IO, 1971 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1972 .readfn = pmccntr_read, .writefn = pmccntr_write, 1973 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1974 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1975 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1976 .access = PL0_RW, .accessfn = pmreg_access, 1977 .type = ARM_CP_ALIAS | ARM_CP_IO, 1978 .resetvalue = 0, }, 1979 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1980 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1981 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1982 .access = PL0_RW, .accessfn = pmreg_access, 1983 .type = ARM_CP_IO, 1984 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1985 .resetvalue = 0, }, 1986 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1987 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1988 .accessfn = pmreg_access, 1989 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1990 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1991 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1992 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1993 .accessfn = pmreg_access, 1994 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1995 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1996 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1997 .accessfn = pmreg_access_xevcntr, 1998 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1999 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2000 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2001 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2002 .accessfn = pmreg_access_xevcntr, 2003 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2004 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2005 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2006 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2007 .resetvalue = 0, 2008 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2009 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2010 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2011 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2012 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2013 .resetvalue = 0, 2014 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2015 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2016 .access = PL1_RW, .accessfn = access_tpm, 2017 .type = ARM_CP_ALIAS | ARM_CP_IO, 2018 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2019 .resetvalue = 0, 2020 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2021 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2022 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2023 .access = PL1_RW, .accessfn = access_tpm, 2024 .type = ARM_CP_IO, 2025 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2026 .writefn = pmintenset_write, .raw_writefn = raw_write, 2027 .resetvalue = 0x0 }, 2028 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2029 .access = PL1_RW, .accessfn = access_tpm, 2030 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2031 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2032 .writefn = pmintenclr_write, }, 2033 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2034 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2035 .access = PL1_RW, .accessfn = access_tpm, 2036 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2037 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2038 .writefn = pmintenclr_write }, 2039 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2040 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2041 .access = PL1_R, 2042 .accessfn = access_aa64_tid2, 2043 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2044 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2045 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2046 .access = PL1_RW, 2047 .accessfn = access_aa64_tid2, 2048 .writefn = csselr_write, .resetvalue = 0, 2049 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2050 offsetof(CPUARMState, cp15.csselr_ns) } }, 2051 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2052 * just RAZ for all cores: 2053 */ 2054 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2055 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2056 .access = PL1_R, .type = ARM_CP_CONST, 2057 .accessfn = access_aa64_tid1, 2058 .resetvalue = 0 }, 2059 /* Auxiliary fault status registers: these also are IMPDEF, and we 2060 * choose to RAZ/WI for all cores. 2061 */ 2062 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2063 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2064 .access = PL1_RW, .accessfn = access_tvm_trvm, 2065 .type = ARM_CP_CONST, .resetvalue = 0 }, 2066 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2067 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2068 .access = PL1_RW, .accessfn = access_tvm_trvm, 2069 .type = ARM_CP_CONST, .resetvalue = 0 }, 2070 /* MAIR can just read-as-written because we don't implement caches 2071 * and so don't need to care about memory attributes. 2072 */ 2073 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2074 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2075 .access = PL1_RW, .accessfn = access_tvm_trvm, 2076 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2077 .resetvalue = 0 }, 2078 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2079 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2080 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2081 .resetvalue = 0 }, 2082 /* For non-long-descriptor page tables these are PRRR and NMRR; 2083 * regardless they still act as reads-as-written for QEMU. 2084 */ 2085 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2086 * allows them to assign the correct fieldoffset based on the endianness 2087 * handled in the field definitions. 2088 */ 2089 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2090 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2091 .access = PL1_RW, .accessfn = access_tvm_trvm, 2092 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2093 offsetof(CPUARMState, cp15.mair0_ns) }, 2094 .resetfn = arm_cp_reset_ignore }, 2095 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2096 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2097 .access = PL1_RW, .accessfn = access_tvm_trvm, 2098 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2099 offsetof(CPUARMState, cp15.mair1_ns) }, 2100 .resetfn = arm_cp_reset_ignore }, 2101 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2102 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2103 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2104 /* 32 bit ITLB invalidates */ 2105 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2106 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2107 .writefn = tlbiall_write }, 2108 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2109 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2110 .writefn = tlbimva_write }, 2111 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2112 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2113 .writefn = tlbiasid_write }, 2114 /* 32 bit DTLB invalidates */ 2115 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2116 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2117 .writefn = tlbiall_write }, 2118 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2119 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2120 .writefn = tlbimva_write }, 2121 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2122 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2123 .writefn = tlbiasid_write }, 2124 /* 32 bit TLB invalidates */ 2125 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2126 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2127 .writefn = tlbiall_write }, 2128 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2129 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2130 .writefn = tlbimva_write }, 2131 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2132 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2133 .writefn = tlbiasid_write }, 2134 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2135 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2136 .writefn = tlbimvaa_write }, 2137 REGINFO_SENTINEL 2138 }; 2139 2140 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2141 /* 32 bit TLB invalidates, Inner Shareable */ 2142 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2143 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2144 .writefn = tlbiall_is_write }, 2145 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2146 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2147 .writefn = tlbimva_is_write }, 2148 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2149 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2150 .writefn = tlbiasid_is_write }, 2151 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2152 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2153 .writefn = tlbimvaa_is_write }, 2154 REGINFO_SENTINEL 2155 }; 2156 2157 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2158 /* PMOVSSET is not implemented in v7 before v7ve */ 2159 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2160 .access = PL0_RW, .accessfn = pmreg_access, 2161 .type = ARM_CP_ALIAS | ARM_CP_IO, 2162 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2163 .writefn = pmovsset_write, 2164 .raw_writefn = raw_write }, 2165 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2166 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2167 .access = PL0_RW, .accessfn = pmreg_access, 2168 .type = ARM_CP_ALIAS | ARM_CP_IO, 2169 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2170 .writefn = pmovsset_write, 2171 .raw_writefn = raw_write }, 2172 REGINFO_SENTINEL 2173 }; 2174 2175 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2176 uint64_t value) 2177 { 2178 value &= 1; 2179 env->teecr = value; 2180 } 2181 2182 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2183 bool isread) 2184 { 2185 /* 2186 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2187 * at all, so we don't need to check whether we're v8A. 2188 */ 2189 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2190 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2191 return CP_ACCESS_TRAP_EL2; 2192 } 2193 return CP_ACCESS_OK; 2194 } 2195 2196 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2197 bool isread) 2198 { 2199 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2200 return CP_ACCESS_TRAP; 2201 } 2202 return teecr_access(env, ri, isread); 2203 } 2204 2205 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2206 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2207 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2208 .resetvalue = 0, 2209 .writefn = teecr_write, .accessfn = teecr_access }, 2210 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2211 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2212 .accessfn = teehbr_access, .resetvalue = 0 }, 2213 REGINFO_SENTINEL 2214 }; 2215 2216 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2217 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2218 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2219 .access = PL0_RW, 2220 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2221 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2222 .access = PL0_RW, 2223 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2224 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2225 .resetfn = arm_cp_reset_ignore }, 2226 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2227 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2228 .access = PL0_R|PL1_W, 2229 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2230 .resetvalue = 0}, 2231 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2232 .access = PL0_R|PL1_W, 2233 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2234 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2235 .resetfn = arm_cp_reset_ignore }, 2236 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2237 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2238 .access = PL1_RW, 2239 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2240 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2241 .access = PL1_RW, 2242 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2243 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2244 .resetvalue = 0 }, 2245 REGINFO_SENTINEL 2246 }; 2247 2248 #ifndef CONFIG_USER_ONLY 2249 2250 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2251 bool isread) 2252 { 2253 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2254 * Writable only at the highest implemented exception level. 2255 */ 2256 int el = arm_current_el(env); 2257 uint64_t hcr; 2258 uint32_t cntkctl; 2259 2260 switch (el) { 2261 case 0: 2262 hcr = arm_hcr_el2_eff(env); 2263 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2264 cntkctl = env->cp15.cnthctl_el2; 2265 } else { 2266 cntkctl = env->cp15.c14_cntkctl; 2267 } 2268 if (!extract32(cntkctl, 0, 2)) { 2269 return CP_ACCESS_TRAP; 2270 } 2271 break; 2272 case 1: 2273 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2274 arm_is_secure_below_el3(env)) { 2275 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2276 return CP_ACCESS_TRAP_UNCATEGORIZED; 2277 } 2278 break; 2279 case 2: 2280 case 3: 2281 break; 2282 } 2283 2284 if (!isread && el < arm_highest_el(env)) { 2285 return CP_ACCESS_TRAP_UNCATEGORIZED; 2286 } 2287 2288 return CP_ACCESS_OK; 2289 } 2290 2291 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2292 bool isread) 2293 { 2294 unsigned int cur_el = arm_current_el(env); 2295 bool has_el2 = arm_is_el2_enabled(env); 2296 uint64_t hcr = arm_hcr_el2_eff(env); 2297 2298 switch (cur_el) { 2299 case 0: 2300 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2301 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2302 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2303 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2304 } 2305 2306 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2307 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2308 return CP_ACCESS_TRAP; 2309 } 2310 2311 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2312 if (hcr & HCR_E2H) { 2313 if (timeridx == GTIMER_PHYS && 2314 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2315 return CP_ACCESS_TRAP_EL2; 2316 } 2317 } else { 2318 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2319 if (has_el2 && timeridx == GTIMER_PHYS && 2320 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2321 return CP_ACCESS_TRAP_EL2; 2322 } 2323 } 2324 break; 2325 2326 case 1: 2327 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2328 if (has_el2 && timeridx == GTIMER_PHYS && 2329 (hcr & HCR_E2H 2330 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2331 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2332 return CP_ACCESS_TRAP_EL2; 2333 } 2334 break; 2335 } 2336 return CP_ACCESS_OK; 2337 } 2338 2339 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2340 bool isread) 2341 { 2342 unsigned int cur_el = arm_current_el(env); 2343 bool has_el2 = arm_is_el2_enabled(env); 2344 uint64_t hcr = arm_hcr_el2_eff(env); 2345 2346 switch (cur_el) { 2347 case 0: 2348 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2349 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2350 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2351 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2352 } 2353 2354 /* 2355 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2356 * EL0 if EL0[PV]TEN is zero. 2357 */ 2358 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2359 return CP_ACCESS_TRAP; 2360 } 2361 /* fall through */ 2362 2363 case 1: 2364 if (has_el2 && timeridx == GTIMER_PHYS) { 2365 if (hcr & HCR_E2H) { 2366 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2367 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2368 return CP_ACCESS_TRAP_EL2; 2369 } 2370 } else { 2371 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2372 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2373 return CP_ACCESS_TRAP_EL2; 2374 } 2375 } 2376 } 2377 break; 2378 } 2379 return CP_ACCESS_OK; 2380 } 2381 2382 static CPAccessResult gt_pct_access(CPUARMState *env, 2383 const ARMCPRegInfo *ri, 2384 bool isread) 2385 { 2386 return gt_counter_access(env, GTIMER_PHYS, isread); 2387 } 2388 2389 static CPAccessResult gt_vct_access(CPUARMState *env, 2390 const ARMCPRegInfo *ri, 2391 bool isread) 2392 { 2393 return gt_counter_access(env, GTIMER_VIRT, isread); 2394 } 2395 2396 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2397 bool isread) 2398 { 2399 return gt_timer_access(env, GTIMER_PHYS, isread); 2400 } 2401 2402 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2403 bool isread) 2404 { 2405 return gt_timer_access(env, GTIMER_VIRT, isread); 2406 } 2407 2408 static CPAccessResult gt_stimer_access(CPUARMState *env, 2409 const ARMCPRegInfo *ri, 2410 bool isread) 2411 { 2412 /* The AArch64 register view of the secure physical timer is 2413 * always accessible from EL3, and configurably accessible from 2414 * Secure EL1. 2415 */ 2416 switch (arm_current_el(env)) { 2417 case 1: 2418 if (!arm_is_secure(env)) { 2419 return CP_ACCESS_TRAP; 2420 } 2421 if (!(env->cp15.scr_el3 & SCR_ST)) { 2422 return CP_ACCESS_TRAP_EL3; 2423 } 2424 return CP_ACCESS_OK; 2425 case 0: 2426 case 2: 2427 return CP_ACCESS_TRAP; 2428 case 3: 2429 return CP_ACCESS_OK; 2430 default: 2431 g_assert_not_reached(); 2432 } 2433 } 2434 2435 static uint64_t gt_get_countervalue(CPUARMState *env) 2436 { 2437 ARMCPU *cpu = env_archcpu(env); 2438 2439 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2440 } 2441 2442 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2443 { 2444 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2445 2446 if (gt->ctl & 1) { 2447 /* Timer enabled: calculate and set current ISTATUS, irq, and 2448 * reset timer to when ISTATUS next has to change 2449 */ 2450 uint64_t offset = timeridx == GTIMER_VIRT ? 2451 cpu->env.cp15.cntvoff_el2 : 0; 2452 uint64_t count = gt_get_countervalue(&cpu->env); 2453 /* Note that this must be unsigned 64 bit arithmetic: */ 2454 int istatus = count - offset >= gt->cval; 2455 uint64_t nexttick; 2456 int irqstate; 2457 2458 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2459 2460 irqstate = (istatus && !(gt->ctl & 2)); 2461 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2462 2463 if (istatus) { 2464 /* Next transition is when count rolls back over to zero */ 2465 nexttick = UINT64_MAX; 2466 } else { 2467 /* Next transition is when we hit cval */ 2468 nexttick = gt->cval + offset; 2469 } 2470 /* Note that the desired next expiry time might be beyond the 2471 * signed-64-bit range of a QEMUTimer -- in this case we just 2472 * set the timer for as far in the future as possible. When the 2473 * timer expires we will reset the timer for any remaining period. 2474 */ 2475 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2476 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2477 } else { 2478 timer_mod(cpu->gt_timer[timeridx], nexttick); 2479 } 2480 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2481 } else { 2482 /* Timer disabled: ISTATUS and timer output always clear */ 2483 gt->ctl &= ~4; 2484 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2485 timer_del(cpu->gt_timer[timeridx]); 2486 trace_arm_gt_recalc_disabled(timeridx); 2487 } 2488 } 2489 2490 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2491 int timeridx) 2492 { 2493 ARMCPU *cpu = env_archcpu(env); 2494 2495 timer_del(cpu->gt_timer[timeridx]); 2496 } 2497 2498 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2499 { 2500 return gt_get_countervalue(env); 2501 } 2502 2503 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2504 { 2505 uint64_t hcr; 2506 2507 switch (arm_current_el(env)) { 2508 case 2: 2509 hcr = arm_hcr_el2_eff(env); 2510 if (hcr & HCR_E2H) { 2511 return 0; 2512 } 2513 break; 2514 case 0: 2515 hcr = arm_hcr_el2_eff(env); 2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2517 return 0; 2518 } 2519 break; 2520 } 2521 2522 return env->cp15.cntvoff_el2; 2523 } 2524 2525 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2526 { 2527 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2528 } 2529 2530 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2531 int timeridx, 2532 uint64_t value) 2533 { 2534 trace_arm_gt_cval_write(timeridx, value); 2535 env->cp15.c14_timer[timeridx].cval = value; 2536 gt_recalc_timer(env_archcpu(env), timeridx); 2537 } 2538 2539 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2540 int timeridx) 2541 { 2542 uint64_t offset = 0; 2543 2544 switch (timeridx) { 2545 case GTIMER_VIRT: 2546 case GTIMER_HYPVIRT: 2547 offset = gt_virt_cnt_offset(env); 2548 break; 2549 } 2550 2551 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2552 (gt_get_countervalue(env) - offset)); 2553 } 2554 2555 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2556 int timeridx, 2557 uint64_t value) 2558 { 2559 uint64_t offset = 0; 2560 2561 switch (timeridx) { 2562 case GTIMER_VIRT: 2563 case GTIMER_HYPVIRT: 2564 offset = gt_virt_cnt_offset(env); 2565 break; 2566 } 2567 2568 trace_arm_gt_tval_write(timeridx, value); 2569 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2570 sextract64(value, 0, 32); 2571 gt_recalc_timer(env_archcpu(env), timeridx); 2572 } 2573 2574 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2575 int timeridx, 2576 uint64_t value) 2577 { 2578 ARMCPU *cpu = env_archcpu(env); 2579 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2580 2581 trace_arm_gt_ctl_write(timeridx, value); 2582 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2583 if ((oldval ^ value) & 1) { 2584 /* Enable toggled */ 2585 gt_recalc_timer(cpu, timeridx); 2586 } else if ((oldval ^ value) & 2) { 2587 /* IMASK toggled: don't need to recalculate, 2588 * just set the interrupt line based on ISTATUS 2589 */ 2590 int irqstate = (oldval & 4) && !(value & 2); 2591 2592 trace_arm_gt_imask_toggle(timeridx, irqstate); 2593 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2594 } 2595 } 2596 2597 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2598 { 2599 gt_timer_reset(env, ri, GTIMER_PHYS); 2600 } 2601 2602 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2603 uint64_t value) 2604 { 2605 gt_cval_write(env, ri, GTIMER_PHYS, value); 2606 } 2607 2608 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2609 { 2610 return gt_tval_read(env, ri, GTIMER_PHYS); 2611 } 2612 2613 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2614 uint64_t value) 2615 { 2616 gt_tval_write(env, ri, GTIMER_PHYS, value); 2617 } 2618 2619 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2620 uint64_t value) 2621 { 2622 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2623 } 2624 2625 static int gt_phys_redir_timeridx(CPUARMState *env) 2626 { 2627 switch (arm_mmu_idx(env)) { 2628 case ARMMMUIdx_E20_0: 2629 case ARMMMUIdx_E20_2: 2630 case ARMMMUIdx_E20_2_PAN: 2631 case ARMMMUIdx_SE20_0: 2632 case ARMMMUIdx_SE20_2: 2633 case ARMMMUIdx_SE20_2_PAN: 2634 return GTIMER_HYP; 2635 default: 2636 return GTIMER_PHYS; 2637 } 2638 } 2639 2640 static int gt_virt_redir_timeridx(CPUARMState *env) 2641 { 2642 switch (arm_mmu_idx(env)) { 2643 case ARMMMUIdx_E20_0: 2644 case ARMMMUIdx_E20_2: 2645 case ARMMMUIdx_E20_2_PAN: 2646 case ARMMMUIdx_SE20_0: 2647 case ARMMMUIdx_SE20_2: 2648 case ARMMMUIdx_SE20_2_PAN: 2649 return GTIMER_HYPVIRT; 2650 default: 2651 return GTIMER_VIRT; 2652 } 2653 } 2654 2655 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2656 const ARMCPRegInfo *ri) 2657 { 2658 int timeridx = gt_phys_redir_timeridx(env); 2659 return env->cp15.c14_timer[timeridx].cval; 2660 } 2661 2662 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2663 uint64_t value) 2664 { 2665 int timeridx = gt_phys_redir_timeridx(env); 2666 gt_cval_write(env, ri, timeridx, value); 2667 } 2668 2669 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2670 const ARMCPRegInfo *ri) 2671 { 2672 int timeridx = gt_phys_redir_timeridx(env); 2673 return gt_tval_read(env, ri, timeridx); 2674 } 2675 2676 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2677 uint64_t value) 2678 { 2679 int timeridx = gt_phys_redir_timeridx(env); 2680 gt_tval_write(env, ri, timeridx, value); 2681 } 2682 2683 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2684 const ARMCPRegInfo *ri) 2685 { 2686 int timeridx = gt_phys_redir_timeridx(env); 2687 return env->cp15.c14_timer[timeridx].ctl; 2688 } 2689 2690 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2691 uint64_t value) 2692 { 2693 int timeridx = gt_phys_redir_timeridx(env); 2694 gt_ctl_write(env, ri, timeridx, value); 2695 } 2696 2697 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2698 { 2699 gt_timer_reset(env, ri, GTIMER_VIRT); 2700 } 2701 2702 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2703 uint64_t value) 2704 { 2705 gt_cval_write(env, ri, GTIMER_VIRT, value); 2706 } 2707 2708 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2709 { 2710 return gt_tval_read(env, ri, GTIMER_VIRT); 2711 } 2712 2713 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2714 uint64_t value) 2715 { 2716 gt_tval_write(env, ri, GTIMER_VIRT, value); 2717 } 2718 2719 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2720 uint64_t value) 2721 { 2722 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2723 } 2724 2725 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2726 uint64_t value) 2727 { 2728 ARMCPU *cpu = env_archcpu(env); 2729 2730 trace_arm_gt_cntvoff_write(value); 2731 raw_write(env, ri, value); 2732 gt_recalc_timer(cpu, GTIMER_VIRT); 2733 } 2734 2735 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2736 const ARMCPRegInfo *ri) 2737 { 2738 int timeridx = gt_virt_redir_timeridx(env); 2739 return env->cp15.c14_timer[timeridx].cval; 2740 } 2741 2742 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2743 uint64_t value) 2744 { 2745 int timeridx = gt_virt_redir_timeridx(env); 2746 gt_cval_write(env, ri, timeridx, value); 2747 } 2748 2749 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2750 const ARMCPRegInfo *ri) 2751 { 2752 int timeridx = gt_virt_redir_timeridx(env); 2753 return gt_tval_read(env, ri, timeridx); 2754 } 2755 2756 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2757 uint64_t value) 2758 { 2759 int timeridx = gt_virt_redir_timeridx(env); 2760 gt_tval_write(env, ri, timeridx, value); 2761 } 2762 2763 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2764 const ARMCPRegInfo *ri) 2765 { 2766 int timeridx = gt_virt_redir_timeridx(env); 2767 return env->cp15.c14_timer[timeridx].ctl; 2768 } 2769 2770 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2771 uint64_t value) 2772 { 2773 int timeridx = gt_virt_redir_timeridx(env); 2774 gt_ctl_write(env, ri, timeridx, value); 2775 } 2776 2777 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2778 { 2779 gt_timer_reset(env, ri, GTIMER_HYP); 2780 } 2781 2782 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2783 uint64_t value) 2784 { 2785 gt_cval_write(env, ri, GTIMER_HYP, value); 2786 } 2787 2788 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2789 { 2790 return gt_tval_read(env, ri, GTIMER_HYP); 2791 } 2792 2793 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2794 uint64_t value) 2795 { 2796 gt_tval_write(env, ri, GTIMER_HYP, value); 2797 } 2798 2799 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2800 uint64_t value) 2801 { 2802 gt_ctl_write(env, ri, GTIMER_HYP, value); 2803 } 2804 2805 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2806 { 2807 gt_timer_reset(env, ri, GTIMER_SEC); 2808 } 2809 2810 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2811 uint64_t value) 2812 { 2813 gt_cval_write(env, ri, GTIMER_SEC, value); 2814 } 2815 2816 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2817 { 2818 return gt_tval_read(env, ri, GTIMER_SEC); 2819 } 2820 2821 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2822 uint64_t value) 2823 { 2824 gt_tval_write(env, ri, GTIMER_SEC, value); 2825 } 2826 2827 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2828 uint64_t value) 2829 { 2830 gt_ctl_write(env, ri, GTIMER_SEC, value); 2831 } 2832 2833 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2834 { 2835 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2836 } 2837 2838 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2839 uint64_t value) 2840 { 2841 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2842 } 2843 2844 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2845 { 2846 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2847 } 2848 2849 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2850 uint64_t value) 2851 { 2852 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2853 } 2854 2855 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2859 } 2860 2861 void arm_gt_ptimer_cb(void *opaque) 2862 { 2863 ARMCPU *cpu = opaque; 2864 2865 gt_recalc_timer(cpu, GTIMER_PHYS); 2866 } 2867 2868 void arm_gt_vtimer_cb(void *opaque) 2869 { 2870 ARMCPU *cpu = opaque; 2871 2872 gt_recalc_timer(cpu, GTIMER_VIRT); 2873 } 2874 2875 void arm_gt_htimer_cb(void *opaque) 2876 { 2877 ARMCPU *cpu = opaque; 2878 2879 gt_recalc_timer(cpu, GTIMER_HYP); 2880 } 2881 2882 void arm_gt_stimer_cb(void *opaque) 2883 { 2884 ARMCPU *cpu = opaque; 2885 2886 gt_recalc_timer(cpu, GTIMER_SEC); 2887 } 2888 2889 void arm_gt_hvtimer_cb(void *opaque) 2890 { 2891 ARMCPU *cpu = opaque; 2892 2893 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2894 } 2895 2896 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2897 { 2898 ARMCPU *cpu = env_archcpu(env); 2899 2900 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2901 } 2902 2903 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2904 /* Note that CNTFRQ is purely reads-as-written for the benefit 2905 * of software; writing it doesn't actually change the timer frequency. 2906 * Our reset value matches the fixed frequency we implement the timer at. 2907 */ 2908 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2909 .type = ARM_CP_ALIAS, 2910 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2911 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2912 }, 2913 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2914 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2915 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2916 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2917 .resetfn = arm_gt_cntfrq_reset, 2918 }, 2919 /* overall control: mostly access permissions */ 2920 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2921 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2922 .access = PL1_RW, 2923 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2924 .resetvalue = 0, 2925 }, 2926 /* per-timer control */ 2927 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2928 .secure = ARM_CP_SECSTATE_NS, 2929 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2930 .accessfn = gt_ptimer_access, 2931 .fieldoffset = offsetoflow32(CPUARMState, 2932 cp15.c14_timer[GTIMER_PHYS].ctl), 2933 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2934 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2935 }, 2936 { .name = "CNTP_CTL_S", 2937 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2938 .secure = ARM_CP_SECSTATE_S, 2939 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2940 .accessfn = gt_ptimer_access, 2941 .fieldoffset = offsetoflow32(CPUARMState, 2942 cp15.c14_timer[GTIMER_SEC].ctl), 2943 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2944 }, 2945 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2946 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2947 .type = ARM_CP_IO, .access = PL0_RW, 2948 .accessfn = gt_ptimer_access, 2949 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2950 .resetvalue = 0, 2951 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2952 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2953 }, 2954 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2955 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2956 .accessfn = gt_vtimer_access, 2957 .fieldoffset = offsetoflow32(CPUARMState, 2958 cp15.c14_timer[GTIMER_VIRT].ctl), 2959 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2960 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2961 }, 2962 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2963 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2964 .type = ARM_CP_IO, .access = PL0_RW, 2965 .accessfn = gt_vtimer_access, 2966 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2967 .resetvalue = 0, 2968 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2969 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2970 }, 2971 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2972 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2973 .secure = ARM_CP_SECSTATE_NS, 2974 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2975 .accessfn = gt_ptimer_access, 2976 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2977 }, 2978 { .name = "CNTP_TVAL_S", 2979 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2980 .secure = ARM_CP_SECSTATE_S, 2981 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2982 .accessfn = gt_ptimer_access, 2983 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2984 }, 2985 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2986 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2987 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2988 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2989 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2990 }, 2991 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2992 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2993 .accessfn = gt_vtimer_access, 2994 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2995 }, 2996 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2997 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2998 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2999 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3000 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3001 }, 3002 /* The counter itself */ 3003 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3004 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3005 .accessfn = gt_pct_access, 3006 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3007 }, 3008 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3009 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3010 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3011 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3012 }, 3013 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3014 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3015 .accessfn = gt_vct_access, 3016 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3017 }, 3018 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3019 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3020 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3021 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3022 }, 3023 /* Comparison value, indicating when the timer goes off */ 3024 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3025 .secure = ARM_CP_SECSTATE_NS, 3026 .access = PL0_RW, 3027 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3028 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3029 .accessfn = gt_ptimer_access, 3030 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3031 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3032 }, 3033 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3034 .secure = ARM_CP_SECSTATE_S, 3035 .access = PL0_RW, 3036 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3037 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3038 .accessfn = gt_ptimer_access, 3039 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3040 }, 3041 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3043 .access = PL0_RW, 3044 .type = ARM_CP_IO, 3045 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3046 .resetvalue = 0, .accessfn = gt_ptimer_access, 3047 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3048 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3049 }, 3050 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3051 .access = PL0_RW, 3052 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3053 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3054 .accessfn = gt_vtimer_access, 3055 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3056 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3057 }, 3058 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3059 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3060 .access = PL0_RW, 3061 .type = ARM_CP_IO, 3062 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3063 .resetvalue = 0, .accessfn = gt_vtimer_access, 3064 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3065 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3066 }, 3067 /* Secure timer -- this is actually restricted to only EL3 3068 * and configurably Secure-EL1 via the accessfn. 3069 */ 3070 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3071 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3072 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3073 .accessfn = gt_stimer_access, 3074 .readfn = gt_sec_tval_read, 3075 .writefn = gt_sec_tval_write, 3076 .resetfn = gt_sec_timer_reset, 3077 }, 3078 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3079 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3080 .type = ARM_CP_IO, .access = PL1_RW, 3081 .accessfn = gt_stimer_access, 3082 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3083 .resetvalue = 0, 3084 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3085 }, 3086 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3087 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3088 .type = ARM_CP_IO, .access = PL1_RW, 3089 .accessfn = gt_stimer_access, 3090 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3091 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3092 }, 3093 REGINFO_SENTINEL 3094 }; 3095 3096 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3097 bool isread) 3098 { 3099 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3100 return CP_ACCESS_TRAP; 3101 } 3102 return CP_ACCESS_OK; 3103 } 3104 3105 #else 3106 3107 /* In user-mode most of the generic timer registers are inaccessible 3108 * however modern kernels (4.12+) allow access to cntvct_el0 3109 */ 3110 3111 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3112 { 3113 ARMCPU *cpu = env_archcpu(env); 3114 3115 /* Currently we have no support for QEMUTimer in linux-user so we 3116 * can't call gt_get_countervalue(env), instead we directly 3117 * call the lower level functions. 3118 */ 3119 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3120 } 3121 3122 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3123 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3125 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3126 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3127 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3128 }, 3129 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3130 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3131 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3132 .readfn = gt_virt_cnt_read, 3133 }, 3134 REGINFO_SENTINEL 3135 }; 3136 3137 #endif 3138 3139 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3140 { 3141 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3142 raw_write(env, ri, value); 3143 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3144 raw_write(env, ri, value & 0xfffff6ff); 3145 } else { 3146 raw_write(env, ri, value & 0xfffff1ff); 3147 } 3148 } 3149 3150 #ifndef CONFIG_USER_ONLY 3151 /* get_phys_addr() isn't present for user-mode-only targets */ 3152 3153 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3154 bool isread) 3155 { 3156 if (ri->opc2 & 4) { 3157 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3158 * Secure EL1 (which can only happen if EL3 is AArch64). 3159 * They are simply UNDEF if executed from NS EL1. 3160 * They function normally from EL2 or EL3. 3161 */ 3162 if (arm_current_el(env) == 1) { 3163 if (arm_is_secure_below_el3(env)) { 3164 if (env->cp15.scr_el3 & SCR_EEL2) { 3165 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3166 } 3167 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3168 } 3169 return CP_ACCESS_TRAP_UNCATEGORIZED; 3170 } 3171 } 3172 return CP_ACCESS_OK; 3173 } 3174 3175 #ifdef CONFIG_TCG 3176 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3177 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3178 { 3179 hwaddr phys_addr; 3180 target_ulong page_size; 3181 int prot; 3182 bool ret; 3183 uint64_t par64; 3184 bool format64 = false; 3185 MemTxAttrs attrs = {}; 3186 ARMMMUFaultInfo fi = {}; 3187 ARMCacheAttrs cacheattrs = {}; 3188 3189 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3190 &prot, &page_size, &fi, &cacheattrs); 3191 3192 if (ret) { 3193 /* 3194 * Some kinds of translation fault must cause exceptions rather 3195 * than being reported in the PAR. 3196 */ 3197 int current_el = arm_current_el(env); 3198 int target_el; 3199 uint32_t syn, fsr, fsc; 3200 bool take_exc = false; 3201 3202 if (fi.s1ptw && current_el == 1 3203 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3204 /* 3205 * Synchronous stage 2 fault on an access made as part of the 3206 * translation table walk for AT S1E0* or AT S1E1* insn 3207 * executed from NS EL1. If this is a synchronous external abort 3208 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3209 * to EL3. Otherwise the fault is taken as an exception to EL2, 3210 * and HPFAR_EL2 holds the faulting IPA. 3211 */ 3212 if (fi.type == ARMFault_SyncExternalOnWalk && 3213 (env->cp15.scr_el3 & SCR_EA)) { 3214 target_el = 3; 3215 } else { 3216 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3217 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3218 env->cp15.hpfar_el2 |= HPFAR_NS; 3219 } 3220 target_el = 2; 3221 } 3222 take_exc = true; 3223 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3224 /* 3225 * Synchronous external aborts during a translation table walk 3226 * are taken as Data Abort exceptions. 3227 */ 3228 if (fi.stage2) { 3229 if (current_el == 3) { 3230 target_el = 3; 3231 } else { 3232 target_el = 2; 3233 } 3234 } else { 3235 target_el = exception_target_el(env); 3236 } 3237 take_exc = true; 3238 } 3239 3240 if (take_exc) { 3241 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3242 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3243 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3244 fsr = arm_fi_to_lfsc(&fi); 3245 fsc = extract32(fsr, 0, 6); 3246 } else { 3247 fsr = arm_fi_to_sfsc(&fi); 3248 fsc = 0x3f; 3249 } 3250 /* 3251 * Report exception with ESR indicating a fault due to a 3252 * translation table walk for a cache maintenance instruction. 3253 */ 3254 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3255 fi.ea, 1, fi.s1ptw, 1, fsc); 3256 env->exception.vaddress = value; 3257 env->exception.fsr = fsr; 3258 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3259 } 3260 } 3261 3262 if (is_a64(env)) { 3263 format64 = true; 3264 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3265 /* 3266 * ATS1Cxx: 3267 * * TTBCR.EAE determines whether the result is returned using the 3268 * 32-bit or the 64-bit PAR format 3269 * * Instructions executed in Hyp mode always use the 64bit format 3270 * 3271 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3272 * * The Non-secure TTBCR.EAE bit is set to 1 3273 * * The implementation includes EL2, and the value of HCR.VM is 1 3274 * 3275 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3276 * 3277 * ATS1Hx always uses the 64bit format. 3278 */ 3279 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3280 3281 if (arm_feature(env, ARM_FEATURE_EL2)) { 3282 if (mmu_idx == ARMMMUIdx_E10_0 || 3283 mmu_idx == ARMMMUIdx_E10_1 || 3284 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3285 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3286 } else { 3287 format64 |= arm_current_el(env) == 2; 3288 } 3289 } 3290 } 3291 3292 if (format64) { 3293 /* Create a 64-bit PAR */ 3294 par64 = (1 << 11); /* LPAE bit always set */ 3295 if (!ret) { 3296 par64 |= phys_addr & ~0xfffULL; 3297 if (!attrs.secure) { 3298 par64 |= (1 << 9); /* NS */ 3299 } 3300 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3301 par64 |= cacheattrs.shareability << 7; /* SH */ 3302 } else { 3303 uint32_t fsr = arm_fi_to_lfsc(&fi); 3304 3305 par64 |= 1; /* F */ 3306 par64 |= (fsr & 0x3f) << 1; /* FS */ 3307 if (fi.stage2) { 3308 par64 |= (1 << 9); /* S */ 3309 } 3310 if (fi.s1ptw) { 3311 par64 |= (1 << 8); /* PTW */ 3312 } 3313 } 3314 } else { 3315 /* fsr is a DFSR/IFSR value for the short descriptor 3316 * translation table format (with WnR always clear). 3317 * Convert it to a 32-bit PAR. 3318 */ 3319 if (!ret) { 3320 /* We do not set any attribute bits in the PAR */ 3321 if (page_size == (1 << 24) 3322 && arm_feature(env, ARM_FEATURE_V7)) { 3323 par64 = (phys_addr & 0xff000000) | (1 << 1); 3324 } else { 3325 par64 = phys_addr & 0xfffff000; 3326 } 3327 if (!attrs.secure) { 3328 par64 |= (1 << 9); /* NS */ 3329 } 3330 } else { 3331 uint32_t fsr = arm_fi_to_sfsc(&fi); 3332 3333 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3334 ((fsr & 0xf) << 1) | 1; 3335 } 3336 } 3337 return par64; 3338 } 3339 #endif /* CONFIG_TCG */ 3340 3341 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3342 { 3343 #ifdef CONFIG_TCG 3344 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3345 uint64_t par64; 3346 ARMMMUIdx mmu_idx; 3347 int el = arm_current_el(env); 3348 bool secure = arm_is_secure_below_el3(env); 3349 3350 switch (ri->opc2 & 6) { 3351 case 0: 3352 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3353 switch (el) { 3354 case 3: 3355 mmu_idx = ARMMMUIdx_SE3; 3356 break; 3357 case 2: 3358 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3359 /* fall through */ 3360 case 1: 3361 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3362 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3363 : ARMMMUIdx_Stage1_E1_PAN); 3364 } else { 3365 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3366 } 3367 break; 3368 default: 3369 g_assert_not_reached(); 3370 } 3371 break; 3372 case 2: 3373 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3374 switch (el) { 3375 case 3: 3376 mmu_idx = ARMMMUIdx_SE10_0; 3377 break; 3378 case 2: 3379 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3380 mmu_idx = ARMMMUIdx_Stage1_E0; 3381 break; 3382 case 1: 3383 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3384 break; 3385 default: 3386 g_assert_not_reached(); 3387 } 3388 break; 3389 case 4: 3390 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3391 mmu_idx = ARMMMUIdx_E10_1; 3392 break; 3393 case 6: 3394 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3395 mmu_idx = ARMMMUIdx_E10_0; 3396 break; 3397 default: 3398 g_assert_not_reached(); 3399 } 3400 3401 par64 = do_ats_write(env, value, access_type, mmu_idx); 3402 3403 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3404 #else 3405 /* Handled by hardware accelerator. */ 3406 g_assert_not_reached(); 3407 #endif /* CONFIG_TCG */ 3408 } 3409 3410 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3411 uint64_t value) 3412 { 3413 #ifdef CONFIG_TCG 3414 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3415 uint64_t par64; 3416 3417 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3418 3419 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3420 #else 3421 /* Handled by hardware accelerator. */ 3422 g_assert_not_reached(); 3423 #endif /* CONFIG_TCG */ 3424 } 3425 3426 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3427 bool isread) 3428 { 3429 if (arm_current_el(env) == 3 && 3430 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3431 return CP_ACCESS_TRAP; 3432 } 3433 return CP_ACCESS_OK; 3434 } 3435 3436 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3437 uint64_t value) 3438 { 3439 #ifdef CONFIG_TCG 3440 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3441 ARMMMUIdx mmu_idx; 3442 int secure = arm_is_secure_below_el3(env); 3443 3444 switch (ri->opc2 & 6) { 3445 case 0: 3446 switch (ri->opc1) { 3447 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3448 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3449 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3450 : ARMMMUIdx_Stage1_E1_PAN); 3451 } else { 3452 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3453 } 3454 break; 3455 case 4: /* AT S1E2R, AT S1E2W */ 3456 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3457 break; 3458 case 6: /* AT S1E3R, AT S1E3W */ 3459 mmu_idx = ARMMMUIdx_SE3; 3460 break; 3461 default: 3462 g_assert_not_reached(); 3463 } 3464 break; 3465 case 2: /* AT S1E0R, AT S1E0W */ 3466 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3467 break; 3468 case 4: /* AT S12E1R, AT S12E1W */ 3469 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3470 break; 3471 case 6: /* AT S12E0R, AT S12E0W */ 3472 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3473 break; 3474 default: 3475 g_assert_not_reached(); 3476 } 3477 3478 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3479 #else 3480 /* Handled by hardware accelerator. */ 3481 g_assert_not_reached(); 3482 #endif /* CONFIG_TCG */ 3483 } 3484 #endif 3485 3486 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3487 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3488 .access = PL1_RW, .resetvalue = 0, 3489 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3490 offsetoflow32(CPUARMState, cp15.par_ns) }, 3491 .writefn = par_write }, 3492 #ifndef CONFIG_USER_ONLY 3493 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3494 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3495 .access = PL1_W, .accessfn = ats_access, 3496 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3497 #endif 3498 REGINFO_SENTINEL 3499 }; 3500 3501 /* Return basic MPU access permission bits. */ 3502 static uint32_t simple_mpu_ap_bits(uint32_t val) 3503 { 3504 uint32_t ret; 3505 uint32_t mask; 3506 int i; 3507 ret = 0; 3508 mask = 3; 3509 for (i = 0; i < 16; i += 2) { 3510 ret |= (val >> i) & mask; 3511 mask <<= 2; 3512 } 3513 return ret; 3514 } 3515 3516 /* Pad basic MPU access permission bits to extended format. */ 3517 static uint32_t extended_mpu_ap_bits(uint32_t val) 3518 { 3519 uint32_t ret; 3520 uint32_t mask; 3521 int i; 3522 ret = 0; 3523 mask = 3; 3524 for (i = 0; i < 16; i += 2) { 3525 ret |= (val & mask) << i; 3526 mask <<= 2; 3527 } 3528 return ret; 3529 } 3530 3531 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3532 uint64_t value) 3533 { 3534 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3535 } 3536 3537 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3538 { 3539 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3540 } 3541 3542 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3543 uint64_t value) 3544 { 3545 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3546 } 3547 3548 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3549 { 3550 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3551 } 3552 3553 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3554 { 3555 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3556 3557 if (!u32p) { 3558 return 0; 3559 } 3560 3561 u32p += env->pmsav7.rnr[M_REG_NS]; 3562 return *u32p; 3563 } 3564 3565 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3566 uint64_t value) 3567 { 3568 ARMCPU *cpu = env_archcpu(env); 3569 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3570 3571 if (!u32p) { 3572 return; 3573 } 3574 3575 u32p += env->pmsav7.rnr[M_REG_NS]; 3576 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3577 *u32p = value; 3578 } 3579 3580 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3581 uint64_t value) 3582 { 3583 ARMCPU *cpu = env_archcpu(env); 3584 uint32_t nrgs = cpu->pmsav7_dregion; 3585 3586 if (value >= nrgs) { 3587 qemu_log_mask(LOG_GUEST_ERROR, 3588 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3589 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3590 return; 3591 } 3592 3593 raw_write(env, ri, value); 3594 } 3595 3596 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3597 /* Reset for all these registers is handled in arm_cpu_reset(), 3598 * because the PMSAv7 is also used by M-profile CPUs, which do 3599 * not register cpregs but still need the state to be reset. 3600 */ 3601 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3602 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3603 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3604 .readfn = pmsav7_read, .writefn = pmsav7_write, 3605 .resetfn = arm_cp_reset_ignore }, 3606 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3607 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3608 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3609 .readfn = pmsav7_read, .writefn = pmsav7_write, 3610 .resetfn = arm_cp_reset_ignore }, 3611 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3612 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3613 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3614 .readfn = pmsav7_read, .writefn = pmsav7_write, 3615 .resetfn = arm_cp_reset_ignore }, 3616 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3617 .access = PL1_RW, 3618 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3619 .writefn = pmsav7_rgnr_write, 3620 .resetfn = arm_cp_reset_ignore }, 3621 REGINFO_SENTINEL 3622 }; 3623 3624 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3625 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3626 .access = PL1_RW, .type = ARM_CP_ALIAS, 3627 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3628 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3629 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3630 .access = PL1_RW, .type = ARM_CP_ALIAS, 3631 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3632 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3633 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3634 .access = PL1_RW, 3635 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3636 .resetvalue = 0, }, 3637 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3638 .access = PL1_RW, 3639 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3640 .resetvalue = 0, }, 3641 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3642 .access = PL1_RW, 3643 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3644 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3645 .access = PL1_RW, 3646 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3647 /* Protection region base and size registers */ 3648 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3649 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3650 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3651 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3652 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3653 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3654 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3655 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3656 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3657 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3658 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3659 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3660 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3661 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3662 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3663 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3664 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3665 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3666 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3667 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3668 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3669 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3670 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3671 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3672 REGINFO_SENTINEL 3673 }; 3674 3675 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3676 uint64_t value) 3677 { 3678 TCR *tcr = raw_ptr(env, ri); 3679 int maskshift = extract32(value, 0, 3); 3680 3681 if (!arm_feature(env, ARM_FEATURE_V8)) { 3682 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3683 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3684 * using Long-desciptor translation table format */ 3685 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3686 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3687 /* In an implementation that includes the Security Extensions 3688 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3689 * Short-descriptor translation table format. 3690 */ 3691 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3692 } else { 3693 value &= TTBCR_N; 3694 } 3695 } 3696 3697 /* Update the masks corresponding to the TCR bank being written 3698 * Note that we always calculate mask and base_mask, but 3699 * they are only used for short-descriptor tables (ie if EAE is 0); 3700 * for long-descriptor tables the TCR fields are used differently 3701 * and the mask and base_mask values are meaningless. 3702 */ 3703 tcr->raw_tcr = value; 3704 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3705 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3706 } 3707 3708 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3709 uint64_t value) 3710 { 3711 ARMCPU *cpu = env_archcpu(env); 3712 TCR *tcr = raw_ptr(env, ri); 3713 3714 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3715 /* With LPAE the TTBCR could result in a change of ASID 3716 * via the TTBCR.A1 bit, so do a TLB flush. 3717 */ 3718 tlb_flush(CPU(cpu)); 3719 } 3720 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3721 value = deposit64(tcr->raw_tcr, 0, 32, value); 3722 vmsa_ttbcr_raw_write(env, ri, value); 3723 } 3724 3725 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3726 { 3727 TCR *tcr = raw_ptr(env, ri); 3728 3729 /* Reset both the TCR as well as the masks corresponding to the bank of 3730 * the TCR being reset. 3731 */ 3732 tcr->raw_tcr = 0; 3733 tcr->mask = 0; 3734 tcr->base_mask = 0xffffc000u; 3735 } 3736 3737 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3738 uint64_t value) 3739 { 3740 ARMCPU *cpu = env_archcpu(env); 3741 TCR *tcr = raw_ptr(env, ri); 3742 3743 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3744 tlb_flush(CPU(cpu)); 3745 tcr->raw_tcr = value; 3746 } 3747 3748 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3749 uint64_t value) 3750 { 3751 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3752 if (cpreg_field_is_64bit(ri) && 3753 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3754 ARMCPU *cpu = env_archcpu(env); 3755 tlb_flush(CPU(cpu)); 3756 } 3757 raw_write(env, ri, value); 3758 } 3759 3760 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3761 uint64_t value) 3762 { 3763 /* 3764 * If we are running with E2&0 regime, then an ASID is active. 3765 * Flush if that might be changing. Note we're not checking 3766 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3767 * holds the active ASID, only checking the field that might. 3768 */ 3769 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3770 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3771 uint16_t mask = ARMMMUIdxBit_E20_2 | 3772 ARMMMUIdxBit_E20_2_PAN | 3773 ARMMMUIdxBit_E20_0; 3774 3775 if (arm_is_secure_below_el3(env)) { 3776 mask >>= ARM_MMU_IDX_A_NS; 3777 } 3778 3779 tlb_flush_by_mmuidx(env_cpu(env), mask); 3780 } 3781 raw_write(env, ri, value); 3782 } 3783 3784 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3785 uint64_t value) 3786 { 3787 ARMCPU *cpu = env_archcpu(env); 3788 CPUState *cs = CPU(cpu); 3789 3790 /* 3791 * A change in VMID to the stage2 page table (Stage2) invalidates 3792 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3793 */ 3794 if (raw_read(env, ri) != value) { 3795 uint16_t mask = ARMMMUIdxBit_E10_1 | 3796 ARMMMUIdxBit_E10_1_PAN | 3797 ARMMMUIdxBit_E10_0; 3798 3799 if (arm_is_secure_below_el3(env)) { 3800 mask >>= ARM_MMU_IDX_A_NS; 3801 } 3802 3803 tlb_flush_by_mmuidx(cs, mask); 3804 raw_write(env, ri, value); 3805 } 3806 } 3807 3808 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3809 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3810 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3811 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3812 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3813 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3814 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3815 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3816 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3817 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3818 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3819 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3820 offsetof(CPUARMState, cp15.dfar_ns) } }, 3821 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3822 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3823 .access = PL1_RW, .accessfn = access_tvm_trvm, 3824 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3825 .resetvalue = 0, }, 3826 REGINFO_SENTINEL 3827 }; 3828 3829 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3830 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3831 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3832 .access = PL1_RW, .accessfn = access_tvm_trvm, 3833 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3834 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3835 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3836 .access = PL1_RW, .accessfn = access_tvm_trvm, 3837 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3838 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3839 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3840 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3841 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3842 .access = PL1_RW, .accessfn = access_tvm_trvm, 3843 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3844 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3845 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3846 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3847 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3848 .access = PL1_RW, .accessfn = access_tvm_trvm, 3849 .writefn = vmsa_tcr_el12_write, 3850 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3851 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3852 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3853 .access = PL1_RW, .accessfn = access_tvm_trvm, 3854 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3855 .raw_writefn = vmsa_ttbcr_raw_write, 3856 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3857 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3858 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3859 REGINFO_SENTINEL 3860 }; 3861 3862 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3863 * qemu tlbs nor adjusting cached masks. 3864 */ 3865 static const ARMCPRegInfo ttbcr2_reginfo = { 3866 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3867 .access = PL1_RW, .accessfn = access_tvm_trvm, 3868 .type = ARM_CP_ALIAS, 3869 .bank_fieldoffsets = { 3870 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3871 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3872 }, 3873 }; 3874 3875 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3876 uint64_t value) 3877 { 3878 env->cp15.c15_ticonfig = value & 0xe7; 3879 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3880 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3881 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3882 } 3883 3884 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3885 uint64_t value) 3886 { 3887 env->cp15.c15_threadid = value & 0xffff; 3888 } 3889 3890 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3891 uint64_t value) 3892 { 3893 /* Wait-for-interrupt (deprecated) */ 3894 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3895 } 3896 3897 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3898 uint64_t value) 3899 { 3900 /* On OMAP there are registers indicating the max/min index of dcache lines 3901 * containing a dirty line; cache flush operations have to reset these. 3902 */ 3903 env->cp15.c15_i_max = 0x000; 3904 env->cp15.c15_i_min = 0xff0; 3905 } 3906 3907 static const ARMCPRegInfo omap_cp_reginfo[] = { 3908 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3909 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3910 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3911 .resetvalue = 0, }, 3912 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3913 .access = PL1_RW, .type = ARM_CP_NOP }, 3914 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3915 .access = PL1_RW, 3916 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3917 .writefn = omap_ticonfig_write }, 3918 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3919 .access = PL1_RW, 3920 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3921 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3922 .access = PL1_RW, .resetvalue = 0xff0, 3923 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3924 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3925 .access = PL1_RW, 3926 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3927 .writefn = omap_threadid_write }, 3928 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3929 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3930 .type = ARM_CP_NO_RAW, 3931 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3932 /* TODO: Peripheral port remap register: 3933 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3934 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3935 * when MMU is off. 3936 */ 3937 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3938 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3939 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3940 .writefn = omap_cachemaint_write }, 3941 { .name = "C9", .cp = 15, .crn = 9, 3942 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3943 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3944 REGINFO_SENTINEL 3945 }; 3946 3947 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3948 uint64_t value) 3949 { 3950 env->cp15.c15_cpar = value & 0x3fff; 3951 } 3952 3953 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3954 { .name = "XSCALE_CPAR", 3955 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3956 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3957 .writefn = xscale_cpar_write, }, 3958 { .name = "XSCALE_AUXCR", 3959 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3960 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3961 .resetvalue = 0, }, 3962 /* XScale specific cache-lockdown: since we have no cache we NOP these 3963 * and hope the guest does not really rely on cache behaviour. 3964 */ 3965 { .name = "XSCALE_LOCK_ICACHE_LINE", 3966 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3967 .access = PL1_W, .type = ARM_CP_NOP }, 3968 { .name = "XSCALE_UNLOCK_ICACHE", 3969 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3970 .access = PL1_W, .type = ARM_CP_NOP }, 3971 { .name = "XSCALE_DCACHE_LOCK", 3972 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3973 .access = PL1_RW, .type = ARM_CP_NOP }, 3974 { .name = "XSCALE_UNLOCK_DCACHE", 3975 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3976 .access = PL1_W, .type = ARM_CP_NOP }, 3977 REGINFO_SENTINEL 3978 }; 3979 3980 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3981 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3982 * implementation of this implementation-defined space. 3983 * Ideally this should eventually disappear in favour of actually 3984 * implementing the correct behaviour for all cores. 3985 */ 3986 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3987 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3988 .access = PL1_RW, 3989 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3990 .resetvalue = 0 }, 3991 REGINFO_SENTINEL 3992 }; 3993 3994 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3995 /* Cache status: RAZ because we have no cache so it's always clean */ 3996 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3997 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3998 .resetvalue = 0 }, 3999 REGINFO_SENTINEL 4000 }; 4001 4002 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4003 /* We never have a a block transfer operation in progress */ 4004 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4005 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4006 .resetvalue = 0 }, 4007 /* The cache ops themselves: these all NOP for QEMU */ 4008 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4009 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4010 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4011 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4012 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4013 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4014 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4015 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4016 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4017 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4018 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4019 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4020 REGINFO_SENTINEL 4021 }; 4022 4023 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4024 /* The cache test-and-clean instructions always return (1 << 30) 4025 * to indicate that there are no dirty cache lines. 4026 */ 4027 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4028 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4029 .resetvalue = (1 << 30) }, 4030 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4031 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4032 .resetvalue = (1 << 30) }, 4033 REGINFO_SENTINEL 4034 }; 4035 4036 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4037 /* Ignore ReadBuffer accesses */ 4038 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4039 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4040 .access = PL1_RW, .resetvalue = 0, 4041 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4042 REGINFO_SENTINEL 4043 }; 4044 4045 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4046 { 4047 unsigned int cur_el = arm_current_el(env); 4048 4049 if (arm_is_el2_enabled(env) && cur_el == 1) { 4050 return env->cp15.vpidr_el2; 4051 } 4052 return raw_read(env, ri); 4053 } 4054 4055 static uint64_t mpidr_read_val(CPUARMState *env) 4056 { 4057 ARMCPU *cpu = env_archcpu(env); 4058 uint64_t mpidr = cpu->mp_affinity; 4059 4060 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4061 mpidr |= (1U << 31); 4062 /* Cores which are uniprocessor (non-coherent) 4063 * but still implement the MP extensions set 4064 * bit 30. (For instance, Cortex-R5). 4065 */ 4066 if (cpu->mp_is_up) { 4067 mpidr |= (1u << 30); 4068 } 4069 } 4070 return mpidr; 4071 } 4072 4073 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4074 { 4075 unsigned int cur_el = arm_current_el(env); 4076 4077 if (arm_is_el2_enabled(env) && cur_el == 1) { 4078 return env->cp15.vmpidr_el2; 4079 } 4080 return mpidr_read_val(env); 4081 } 4082 4083 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4084 /* NOP AMAIR0/1 */ 4085 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4086 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4087 .access = PL1_RW, .accessfn = access_tvm_trvm, 4088 .type = ARM_CP_CONST, .resetvalue = 0 }, 4089 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4090 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4091 .access = PL1_RW, .accessfn = access_tvm_trvm, 4092 .type = ARM_CP_CONST, .resetvalue = 0 }, 4093 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4094 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4095 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4096 offsetof(CPUARMState, cp15.par_ns)} }, 4097 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4098 .access = PL1_RW, .accessfn = access_tvm_trvm, 4099 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4100 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4101 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4102 .writefn = vmsa_ttbr_write, }, 4103 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4104 .access = PL1_RW, .accessfn = access_tvm_trvm, 4105 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4106 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4107 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4108 .writefn = vmsa_ttbr_write, }, 4109 REGINFO_SENTINEL 4110 }; 4111 4112 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4113 { 4114 return vfp_get_fpcr(env); 4115 } 4116 4117 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4118 uint64_t value) 4119 { 4120 vfp_set_fpcr(env, value); 4121 } 4122 4123 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4124 { 4125 return vfp_get_fpsr(env); 4126 } 4127 4128 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4129 uint64_t value) 4130 { 4131 vfp_set_fpsr(env, value); 4132 } 4133 4134 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4135 bool isread) 4136 { 4137 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4138 return CP_ACCESS_TRAP; 4139 } 4140 return CP_ACCESS_OK; 4141 } 4142 4143 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4144 uint64_t value) 4145 { 4146 env->daif = value & PSTATE_DAIF; 4147 } 4148 4149 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4150 { 4151 return env->pstate & PSTATE_PAN; 4152 } 4153 4154 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4155 uint64_t value) 4156 { 4157 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4158 } 4159 4160 static const ARMCPRegInfo pan_reginfo = { 4161 .name = "PAN", .state = ARM_CP_STATE_AA64, 4162 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4163 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4164 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4165 }; 4166 4167 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4168 { 4169 return env->pstate & PSTATE_UAO; 4170 } 4171 4172 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4173 uint64_t value) 4174 { 4175 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4176 } 4177 4178 static const ARMCPRegInfo uao_reginfo = { 4179 .name = "UAO", .state = ARM_CP_STATE_AA64, 4180 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4181 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4182 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4183 }; 4184 4185 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4186 { 4187 return env->pstate & PSTATE_DIT; 4188 } 4189 4190 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4191 uint64_t value) 4192 { 4193 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4194 } 4195 4196 static const ARMCPRegInfo dit_reginfo = { 4197 .name = "DIT", .state = ARM_CP_STATE_AA64, 4198 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4199 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4200 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4201 }; 4202 4203 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4204 { 4205 return env->pstate & PSTATE_SSBS; 4206 } 4207 4208 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4209 uint64_t value) 4210 { 4211 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4212 } 4213 4214 static const ARMCPRegInfo ssbs_reginfo = { 4215 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4216 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4217 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4218 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4219 }; 4220 4221 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4222 const ARMCPRegInfo *ri, 4223 bool isread) 4224 { 4225 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4226 switch (arm_current_el(env)) { 4227 case 0: 4228 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4229 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4230 return CP_ACCESS_TRAP; 4231 } 4232 /* fall through */ 4233 case 1: 4234 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4235 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4236 return CP_ACCESS_TRAP_EL2; 4237 } 4238 break; 4239 } 4240 return CP_ACCESS_OK; 4241 } 4242 4243 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4244 const ARMCPRegInfo *ri, 4245 bool isread) 4246 { 4247 /* Cache invalidate/clean to Point of Unification... */ 4248 switch (arm_current_el(env)) { 4249 case 0: 4250 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4251 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4252 return CP_ACCESS_TRAP; 4253 } 4254 /* fall through */ 4255 case 1: 4256 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4257 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4258 return CP_ACCESS_TRAP_EL2; 4259 } 4260 break; 4261 } 4262 return CP_ACCESS_OK; 4263 } 4264 4265 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4266 * Page D4-1736 (DDI0487A.b) 4267 */ 4268 4269 static int vae1_tlbmask(CPUARMState *env) 4270 { 4271 uint64_t hcr = arm_hcr_el2_eff(env); 4272 uint16_t mask; 4273 4274 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4275 mask = ARMMMUIdxBit_E20_2 | 4276 ARMMMUIdxBit_E20_2_PAN | 4277 ARMMMUIdxBit_E20_0; 4278 } else { 4279 mask = ARMMMUIdxBit_E10_1 | 4280 ARMMMUIdxBit_E10_1_PAN | 4281 ARMMMUIdxBit_E10_0; 4282 } 4283 4284 if (arm_is_secure_below_el3(env)) { 4285 mask >>= ARM_MMU_IDX_A_NS; 4286 } 4287 4288 return mask; 4289 } 4290 4291 /* Return 56 if TBI is enabled, 64 otherwise. */ 4292 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4293 uint64_t addr) 4294 { 4295 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4296 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4297 int select = extract64(addr, 55, 1); 4298 4299 return (tbi >> select) & 1 ? 56 : 64; 4300 } 4301 4302 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4303 { 4304 uint64_t hcr = arm_hcr_el2_eff(env); 4305 ARMMMUIdx mmu_idx; 4306 4307 /* Only the regime of the mmu_idx below is significant. */ 4308 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4309 mmu_idx = ARMMMUIdx_E20_0; 4310 } else { 4311 mmu_idx = ARMMMUIdx_E10_0; 4312 } 4313 4314 if (arm_is_secure_below_el3(env)) { 4315 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4316 } 4317 4318 return tlbbits_for_regime(env, mmu_idx, addr); 4319 } 4320 4321 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4322 uint64_t value) 4323 { 4324 CPUState *cs = env_cpu(env); 4325 int mask = vae1_tlbmask(env); 4326 4327 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4328 } 4329 4330 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4331 uint64_t value) 4332 { 4333 CPUState *cs = env_cpu(env); 4334 int mask = vae1_tlbmask(env); 4335 4336 if (tlb_force_broadcast(env)) { 4337 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4338 } else { 4339 tlb_flush_by_mmuidx(cs, mask); 4340 } 4341 } 4342 4343 static int alle1_tlbmask(CPUARMState *env) 4344 { 4345 /* 4346 * Note that the 'ALL' scope must invalidate both stage 1 and 4347 * stage 2 translations, whereas most other scopes only invalidate 4348 * stage 1 translations. 4349 */ 4350 if (arm_is_secure_below_el3(env)) { 4351 return ARMMMUIdxBit_SE10_1 | 4352 ARMMMUIdxBit_SE10_1_PAN | 4353 ARMMMUIdxBit_SE10_0; 4354 } else { 4355 return ARMMMUIdxBit_E10_1 | 4356 ARMMMUIdxBit_E10_1_PAN | 4357 ARMMMUIdxBit_E10_0; 4358 } 4359 } 4360 4361 static int e2_tlbmask(CPUARMState *env) 4362 { 4363 if (arm_is_secure_below_el3(env)) { 4364 return ARMMMUIdxBit_SE20_0 | 4365 ARMMMUIdxBit_SE20_2 | 4366 ARMMMUIdxBit_SE20_2_PAN | 4367 ARMMMUIdxBit_SE2; 4368 } else { 4369 return ARMMMUIdxBit_E20_0 | 4370 ARMMMUIdxBit_E20_2 | 4371 ARMMMUIdxBit_E20_2_PAN | 4372 ARMMMUIdxBit_E2; 4373 } 4374 } 4375 4376 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4377 uint64_t value) 4378 { 4379 CPUState *cs = env_cpu(env); 4380 int mask = alle1_tlbmask(env); 4381 4382 tlb_flush_by_mmuidx(cs, mask); 4383 } 4384 4385 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4386 uint64_t value) 4387 { 4388 CPUState *cs = env_cpu(env); 4389 int mask = e2_tlbmask(env); 4390 4391 tlb_flush_by_mmuidx(cs, mask); 4392 } 4393 4394 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4395 uint64_t value) 4396 { 4397 ARMCPU *cpu = env_archcpu(env); 4398 CPUState *cs = CPU(cpu); 4399 4400 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4401 } 4402 4403 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4404 uint64_t value) 4405 { 4406 CPUState *cs = env_cpu(env); 4407 int mask = alle1_tlbmask(env); 4408 4409 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4410 } 4411 4412 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4413 uint64_t value) 4414 { 4415 CPUState *cs = env_cpu(env); 4416 int mask = e2_tlbmask(env); 4417 4418 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4419 } 4420 4421 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4422 uint64_t value) 4423 { 4424 CPUState *cs = env_cpu(env); 4425 4426 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4427 } 4428 4429 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4430 uint64_t value) 4431 { 4432 /* Invalidate by VA, EL2 4433 * Currently handles both VAE2 and VALE2, since we don't support 4434 * flush-last-level-only. 4435 */ 4436 CPUState *cs = env_cpu(env); 4437 int mask = e2_tlbmask(env); 4438 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4439 4440 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4441 } 4442 4443 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4444 uint64_t value) 4445 { 4446 /* Invalidate by VA, EL3 4447 * Currently handles both VAE3 and VALE3, since we don't support 4448 * flush-last-level-only. 4449 */ 4450 ARMCPU *cpu = env_archcpu(env); 4451 CPUState *cs = CPU(cpu); 4452 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4453 4454 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4455 } 4456 4457 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4458 uint64_t value) 4459 { 4460 CPUState *cs = env_cpu(env); 4461 int mask = vae1_tlbmask(env); 4462 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4463 int bits = vae1_tlbbits(env, pageaddr); 4464 4465 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4466 } 4467 4468 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4469 uint64_t value) 4470 { 4471 /* Invalidate by VA, EL1&0 (AArch64 version). 4472 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4473 * since we don't support flush-for-specific-ASID-only or 4474 * flush-last-level-only. 4475 */ 4476 CPUState *cs = env_cpu(env); 4477 int mask = vae1_tlbmask(env); 4478 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4479 int bits = vae1_tlbbits(env, pageaddr); 4480 4481 if (tlb_force_broadcast(env)) { 4482 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4483 } else { 4484 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4485 } 4486 } 4487 4488 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4489 uint64_t value) 4490 { 4491 CPUState *cs = env_cpu(env); 4492 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4493 bool secure = arm_is_secure_below_el3(env); 4494 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4495 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4496 pageaddr); 4497 4498 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4499 } 4500 4501 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4502 uint64_t value) 4503 { 4504 CPUState *cs = env_cpu(env); 4505 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4506 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4507 4508 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4509 ARMMMUIdxBit_SE3, bits); 4510 } 4511 4512 #ifdef TARGET_AARCH64 4513 typedef struct { 4514 uint64_t base; 4515 uint64_t length; 4516 } TLBIRange; 4517 4518 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4519 uint64_t value) 4520 { 4521 unsigned int page_size_granule, page_shift, num, scale, exponent; 4522 /* Extract one bit to represent the va selector in use. */ 4523 uint64_t select = sextract64(value, 36, 1); 4524 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4525 TLBIRange ret = { }; 4526 4527 page_size_granule = extract64(value, 46, 2); 4528 4529 /* The granule encoded in value must match the granule in use. */ 4530 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) { 4531 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4532 page_size_granule); 4533 return ret; 4534 } 4535 4536 page_shift = (page_size_granule - 1) * 2 + 12; 4537 num = extract64(value, 39, 5); 4538 scale = extract64(value, 44, 2); 4539 exponent = (5 * scale) + 1; 4540 4541 ret.length = (num + 1) << (exponent + page_shift); 4542 4543 if (param.select) { 4544 ret.base = sextract64(value, 0, 37); 4545 } else { 4546 ret.base = extract64(value, 0, 37); 4547 } 4548 if (param.ds) { 4549 /* 4550 * With DS=1, BaseADDR is always shifted 16 so that it is able 4551 * to address all 52 va bits. The input address is perforce 4552 * aligned on a 64k boundary regardless of translation granule. 4553 */ 4554 page_shift = 16; 4555 } 4556 ret.base <<= page_shift; 4557 4558 return ret; 4559 } 4560 4561 static void do_rvae_write(CPUARMState *env, uint64_t value, 4562 int idxmap, bool synced) 4563 { 4564 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4565 TLBIRange range; 4566 int bits; 4567 4568 range = tlbi_aa64_get_range(env, one_idx, value); 4569 bits = tlbbits_for_regime(env, one_idx, range.base); 4570 4571 if (synced) { 4572 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4573 range.base, 4574 range.length, 4575 idxmap, 4576 bits); 4577 } else { 4578 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4579 range.length, idxmap, bits); 4580 } 4581 } 4582 4583 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4584 const ARMCPRegInfo *ri, 4585 uint64_t value) 4586 { 4587 /* 4588 * Invalidate by VA range, EL1&0. 4589 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4590 * since we don't support flush-for-specific-ASID-only or 4591 * flush-last-level-only. 4592 */ 4593 4594 do_rvae_write(env, value, vae1_tlbmask(env), 4595 tlb_force_broadcast(env)); 4596 } 4597 4598 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4599 const ARMCPRegInfo *ri, 4600 uint64_t value) 4601 { 4602 /* 4603 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4604 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4605 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4606 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4607 * shareable specific flushes. 4608 */ 4609 4610 do_rvae_write(env, value, vae1_tlbmask(env), true); 4611 } 4612 4613 static int vae2_tlbmask(CPUARMState *env) 4614 { 4615 return (arm_is_secure_below_el3(env) 4616 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4617 } 4618 4619 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4620 const ARMCPRegInfo *ri, 4621 uint64_t value) 4622 { 4623 /* 4624 * Invalidate by VA range, EL2. 4625 * Currently handles all of RVAE2 and RVALE2, 4626 * since we don't support flush-for-specific-ASID-only or 4627 * flush-last-level-only. 4628 */ 4629 4630 do_rvae_write(env, value, vae2_tlbmask(env), 4631 tlb_force_broadcast(env)); 4632 4633 4634 } 4635 4636 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4637 const ARMCPRegInfo *ri, 4638 uint64_t value) 4639 { 4640 /* 4641 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4642 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4643 * since we don't support flush-for-specific-ASID-only, 4644 * flush-last-level-only or inner/outer shareable specific flushes. 4645 */ 4646 4647 do_rvae_write(env, value, vae2_tlbmask(env), true); 4648 4649 } 4650 4651 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4652 const ARMCPRegInfo *ri, 4653 uint64_t value) 4654 { 4655 /* 4656 * Invalidate by VA range, EL3. 4657 * Currently handles all of RVAE3 and RVALE3, 4658 * since we don't support flush-for-specific-ASID-only or 4659 * flush-last-level-only. 4660 */ 4661 4662 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4663 tlb_force_broadcast(env)); 4664 } 4665 4666 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4667 const ARMCPRegInfo *ri, 4668 uint64_t value) 4669 { 4670 /* 4671 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4672 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4673 * since we don't support flush-for-specific-ASID-only, 4674 * flush-last-level-only or inner/outer specific flushes. 4675 */ 4676 4677 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4678 } 4679 #endif 4680 4681 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4682 bool isread) 4683 { 4684 int cur_el = arm_current_el(env); 4685 4686 if (cur_el < 2) { 4687 uint64_t hcr = arm_hcr_el2_eff(env); 4688 4689 if (cur_el == 0) { 4690 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4691 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4692 return CP_ACCESS_TRAP_EL2; 4693 } 4694 } else { 4695 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4696 return CP_ACCESS_TRAP; 4697 } 4698 if (hcr & HCR_TDZ) { 4699 return CP_ACCESS_TRAP_EL2; 4700 } 4701 } 4702 } else if (hcr & HCR_TDZ) { 4703 return CP_ACCESS_TRAP_EL2; 4704 } 4705 } 4706 return CP_ACCESS_OK; 4707 } 4708 4709 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4710 { 4711 ARMCPU *cpu = env_archcpu(env); 4712 int dzp_bit = 1 << 4; 4713 4714 /* DZP indicates whether DC ZVA access is allowed */ 4715 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4716 dzp_bit = 0; 4717 } 4718 return cpu->dcz_blocksize | dzp_bit; 4719 } 4720 4721 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4722 bool isread) 4723 { 4724 if (!(env->pstate & PSTATE_SP)) { 4725 /* Access to SP_EL0 is undefined if it's being used as 4726 * the stack pointer. 4727 */ 4728 return CP_ACCESS_TRAP_UNCATEGORIZED; 4729 } 4730 return CP_ACCESS_OK; 4731 } 4732 4733 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4734 { 4735 return env->pstate & PSTATE_SP; 4736 } 4737 4738 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4739 { 4740 update_spsel(env, val); 4741 } 4742 4743 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4744 uint64_t value) 4745 { 4746 ARMCPU *cpu = env_archcpu(env); 4747 4748 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4749 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4750 value &= ~SCTLR_M; 4751 } 4752 4753 /* ??? Lots of these bits are not implemented. */ 4754 4755 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4756 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4757 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4758 } else { 4759 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4760 SCTLR_ATA0 | SCTLR_ATA); 4761 } 4762 } 4763 4764 if (raw_read(env, ri) == value) { 4765 /* Skip the TLB flush if nothing actually changed; Linux likes 4766 * to do a lot of pointless SCTLR writes. 4767 */ 4768 return; 4769 } 4770 4771 raw_write(env, ri, value); 4772 4773 /* This may enable/disable the MMU, so do a TLB flush. */ 4774 tlb_flush(CPU(cpu)); 4775 4776 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4777 /* 4778 * Normally we would always end the TB on an SCTLR write; see the 4779 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4780 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4781 * of hflags from the translator, so do it here. 4782 */ 4783 arm_rebuild_hflags(env); 4784 } 4785 } 4786 4787 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4788 uint64_t value) 4789 { 4790 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4791 } 4792 4793 static const ARMCPRegInfo v8_cp_reginfo[] = { 4794 /* Minimal set of EL0-visible registers. This will need to be expanded 4795 * significantly for system emulation of AArch64 CPUs. 4796 */ 4797 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4798 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4799 .access = PL0_RW, .type = ARM_CP_NZCV }, 4800 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4801 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4802 .type = ARM_CP_NO_RAW, 4803 .access = PL0_RW, .accessfn = aa64_daif_access, 4804 .fieldoffset = offsetof(CPUARMState, daif), 4805 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4806 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4807 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4808 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4809 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4810 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4811 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4812 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4813 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4814 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4815 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4816 .access = PL0_R, .type = ARM_CP_NO_RAW, 4817 .readfn = aa64_dczid_read }, 4818 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4819 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4820 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4821 #ifndef CONFIG_USER_ONLY 4822 /* Avoid overhead of an access check that always passes in user-mode */ 4823 .accessfn = aa64_zva_access, 4824 #endif 4825 }, 4826 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4827 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4828 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4829 /* Cache ops: all NOPs since we don't emulate caches */ 4830 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4831 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4832 .access = PL1_W, .type = ARM_CP_NOP, 4833 .accessfn = aa64_cacheop_pou_access }, 4834 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4835 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4836 .access = PL1_W, .type = ARM_CP_NOP, 4837 .accessfn = aa64_cacheop_pou_access }, 4838 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4839 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4840 .access = PL0_W, .type = ARM_CP_NOP, 4841 .accessfn = aa64_cacheop_pou_access }, 4842 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4843 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4844 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4845 .type = ARM_CP_NOP }, 4846 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4847 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4848 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4849 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4850 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4851 .access = PL0_W, .type = ARM_CP_NOP, 4852 .accessfn = aa64_cacheop_poc_access }, 4853 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4854 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4855 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4856 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4857 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4858 .access = PL0_W, .type = ARM_CP_NOP, 4859 .accessfn = aa64_cacheop_pou_access }, 4860 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4861 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4862 .access = PL0_W, .type = ARM_CP_NOP, 4863 .accessfn = aa64_cacheop_poc_access }, 4864 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4865 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4866 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4867 /* TLBI operations */ 4868 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4869 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4870 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4871 .writefn = tlbi_aa64_vmalle1is_write }, 4872 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4873 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4874 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4875 .writefn = tlbi_aa64_vae1is_write }, 4876 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4877 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4878 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4879 .writefn = tlbi_aa64_vmalle1is_write }, 4880 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4881 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4882 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4883 .writefn = tlbi_aa64_vae1is_write }, 4884 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4885 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4886 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4887 .writefn = tlbi_aa64_vae1is_write }, 4888 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4889 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4890 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4891 .writefn = tlbi_aa64_vae1is_write }, 4892 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4893 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4894 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4895 .writefn = tlbi_aa64_vmalle1_write }, 4896 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4897 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4898 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4899 .writefn = tlbi_aa64_vae1_write }, 4900 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4901 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4902 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4903 .writefn = tlbi_aa64_vmalle1_write }, 4904 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4905 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4906 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4907 .writefn = tlbi_aa64_vae1_write }, 4908 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4909 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4910 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4911 .writefn = tlbi_aa64_vae1_write }, 4912 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4913 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4914 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4915 .writefn = tlbi_aa64_vae1_write }, 4916 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4917 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4918 .access = PL2_W, .type = ARM_CP_NOP }, 4919 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4920 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4921 .access = PL2_W, .type = ARM_CP_NOP }, 4922 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4923 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4924 .access = PL2_W, .type = ARM_CP_NO_RAW, 4925 .writefn = tlbi_aa64_alle1is_write }, 4926 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4927 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4928 .access = PL2_W, .type = ARM_CP_NO_RAW, 4929 .writefn = tlbi_aa64_alle1is_write }, 4930 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4932 .access = PL2_W, .type = ARM_CP_NOP }, 4933 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4934 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4935 .access = PL2_W, .type = ARM_CP_NOP }, 4936 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4937 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4938 .access = PL2_W, .type = ARM_CP_NO_RAW, 4939 .writefn = tlbi_aa64_alle1_write }, 4940 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4941 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4942 .access = PL2_W, .type = ARM_CP_NO_RAW, 4943 .writefn = tlbi_aa64_alle1is_write }, 4944 #ifndef CONFIG_USER_ONLY 4945 /* 64 bit address translation operations */ 4946 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4947 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4948 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4949 .writefn = ats_write64 }, 4950 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4951 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4952 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4953 .writefn = ats_write64 }, 4954 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4955 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4956 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4957 .writefn = ats_write64 }, 4958 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4959 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4960 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4961 .writefn = ats_write64 }, 4962 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4963 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4964 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4965 .writefn = ats_write64 }, 4966 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4967 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4968 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4969 .writefn = ats_write64 }, 4970 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4971 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4972 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4973 .writefn = ats_write64 }, 4974 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4975 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4976 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4977 .writefn = ats_write64 }, 4978 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4979 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4980 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4981 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4982 .writefn = ats_write64 }, 4983 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4984 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4985 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4986 .writefn = ats_write64 }, 4987 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4988 .type = ARM_CP_ALIAS, 4989 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4990 .access = PL1_RW, .resetvalue = 0, 4991 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4992 .writefn = par_write }, 4993 #endif 4994 /* TLB invalidate last level of translation table walk */ 4995 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4996 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4997 .writefn = tlbimva_is_write }, 4998 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4999 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5000 .writefn = tlbimvaa_is_write }, 5001 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5002 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5003 .writefn = tlbimva_write }, 5004 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5005 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5006 .writefn = tlbimvaa_write }, 5007 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5008 .type = ARM_CP_NO_RAW, .access = PL2_W, 5009 .writefn = tlbimva_hyp_write }, 5010 { .name = "TLBIMVALHIS", 5011 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5012 .type = ARM_CP_NO_RAW, .access = PL2_W, 5013 .writefn = tlbimva_hyp_is_write }, 5014 { .name = "TLBIIPAS2", 5015 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5016 .type = ARM_CP_NOP, .access = PL2_W }, 5017 { .name = "TLBIIPAS2IS", 5018 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5019 .type = ARM_CP_NOP, .access = PL2_W }, 5020 { .name = "TLBIIPAS2L", 5021 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5022 .type = ARM_CP_NOP, .access = PL2_W }, 5023 { .name = "TLBIIPAS2LIS", 5024 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5025 .type = ARM_CP_NOP, .access = PL2_W }, 5026 /* 32 bit cache operations */ 5027 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5028 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5029 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5030 .type = ARM_CP_NOP, .access = PL1_W }, 5031 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5032 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5033 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5034 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5035 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5036 .type = ARM_CP_NOP, .access = PL1_W }, 5037 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5038 .type = ARM_CP_NOP, .access = PL1_W }, 5039 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5040 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5041 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5042 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5043 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5044 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5045 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5046 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5047 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5048 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5049 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5050 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5051 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5052 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5053 /* MMU Domain access control / MPU write buffer control */ 5054 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5055 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5056 .writefn = dacr_write, .raw_writefn = raw_write, 5057 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5058 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5059 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5060 .type = ARM_CP_ALIAS, 5061 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5062 .access = PL1_RW, 5063 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5064 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5065 .type = ARM_CP_ALIAS, 5066 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5067 .access = PL1_RW, 5068 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5069 /* We rely on the access checks not allowing the guest to write to the 5070 * state field when SPSel indicates that it's being used as the stack 5071 * pointer. 5072 */ 5073 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5074 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5075 .access = PL1_RW, .accessfn = sp_el0_access, 5076 .type = ARM_CP_ALIAS, 5077 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5078 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5079 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5080 .access = PL2_RW, .type = ARM_CP_ALIAS, 5081 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5082 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5083 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5084 .type = ARM_CP_NO_RAW, 5085 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5086 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5087 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5088 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_FPU, 5089 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5090 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5091 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5092 .access = PL2_RW, .resetvalue = 0, 5093 .writefn = dacr_write, .raw_writefn = raw_write, 5094 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5095 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5096 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5097 .access = PL2_RW, .resetvalue = 0, 5098 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5099 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5100 .type = ARM_CP_ALIAS, 5101 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5102 .access = PL2_RW, 5103 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5104 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5105 .type = ARM_CP_ALIAS, 5106 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5107 .access = PL2_RW, 5108 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5109 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5110 .type = ARM_CP_ALIAS, 5111 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5112 .access = PL2_RW, 5113 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5114 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5115 .type = ARM_CP_ALIAS, 5116 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5117 .access = PL2_RW, 5118 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5119 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5120 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5121 .resetvalue = 0, 5122 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5123 { .name = "SDCR", .type = ARM_CP_ALIAS, 5124 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5125 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5126 .writefn = sdcr_write, 5127 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5128 REGINFO_SENTINEL 5129 }; 5130 5131 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5132 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5133 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5134 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5135 .access = PL2_RW, 5136 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5137 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5138 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5139 .access = PL2_RW, 5140 .type = ARM_CP_CONST, .resetvalue = 0 }, 5141 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5142 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5143 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5144 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5145 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5146 .access = PL2_RW, 5147 .type = ARM_CP_CONST, .resetvalue = 0 }, 5148 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5149 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5150 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5151 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5152 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5153 .access = PL2_RW, .type = ARM_CP_CONST, 5154 .resetvalue = 0 }, 5155 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5156 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5157 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5158 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5159 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5160 .access = PL2_RW, .type = ARM_CP_CONST, 5161 .resetvalue = 0 }, 5162 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5163 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5164 .access = PL2_RW, .type = ARM_CP_CONST, 5165 .resetvalue = 0 }, 5166 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5167 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5168 .access = PL2_RW, .type = ARM_CP_CONST, 5169 .resetvalue = 0 }, 5170 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5171 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5172 .access = PL2_RW, .type = ARM_CP_CONST, 5173 .resetvalue = 0 }, 5174 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5175 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5176 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5177 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5178 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5179 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5180 .type = ARM_CP_CONST, .resetvalue = 0 }, 5181 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5182 .cp = 15, .opc1 = 6, .crm = 2, 5183 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5184 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5185 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5186 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5187 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5188 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5189 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5190 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5191 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5192 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5193 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5194 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5195 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5196 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5197 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5198 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5199 .resetvalue = 0 }, 5200 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5201 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5202 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5203 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5204 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5205 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5206 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5207 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5208 .resetvalue = 0 }, 5209 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5210 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5211 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5212 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5213 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5214 .resetvalue = 0 }, 5215 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5216 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5217 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5218 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5219 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5220 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5221 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5222 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5223 .access = PL2_RW, .accessfn = access_tda, 5224 .type = ARM_CP_CONST, .resetvalue = 0 }, 5225 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5226 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5227 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5228 .type = ARM_CP_CONST, .resetvalue = 0 }, 5229 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5230 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5231 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5232 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5233 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5234 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5235 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5236 .type = ARM_CP_CONST, 5237 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5238 .access = PL2_RW, .resetvalue = 0 }, 5239 REGINFO_SENTINEL 5240 }; 5241 5242 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5243 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5244 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5245 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5246 .access = PL2_RW, 5247 .type = ARM_CP_CONST, .resetvalue = 0 }, 5248 REGINFO_SENTINEL 5249 }; 5250 5251 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5252 { 5253 ARMCPU *cpu = env_archcpu(env); 5254 5255 if (arm_feature(env, ARM_FEATURE_V8)) { 5256 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5257 } else { 5258 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5259 } 5260 5261 if (arm_feature(env, ARM_FEATURE_EL3)) { 5262 valid_mask &= ~HCR_HCD; 5263 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5264 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5265 * However, if we're using the SMC PSCI conduit then QEMU is 5266 * effectively acting like EL3 firmware and so the guest at 5267 * EL2 should retain the ability to prevent EL1 from being 5268 * able to make SMC calls into the ersatz firmware, so in 5269 * that case HCR.TSC should be read/write. 5270 */ 5271 valid_mask &= ~HCR_TSC; 5272 } 5273 5274 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5275 if (cpu_isar_feature(aa64_vh, cpu)) { 5276 valid_mask |= HCR_E2H; 5277 } 5278 if (cpu_isar_feature(aa64_lor, cpu)) { 5279 valid_mask |= HCR_TLOR; 5280 } 5281 if (cpu_isar_feature(aa64_pauth, cpu)) { 5282 valid_mask |= HCR_API | HCR_APK; 5283 } 5284 if (cpu_isar_feature(aa64_mte, cpu)) { 5285 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5286 } 5287 } 5288 5289 /* Clear RES0 bits. */ 5290 value &= valid_mask; 5291 5292 /* 5293 * These bits change the MMU setup: 5294 * HCR_VM enables stage 2 translation 5295 * HCR_PTW forbids certain page-table setups 5296 * HCR_DC disables stage1 and enables stage2 translation 5297 * HCR_DCT enables tagging on (disabled) stage1 translation 5298 */ 5299 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5300 tlb_flush(CPU(cpu)); 5301 } 5302 env->cp15.hcr_el2 = value; 5303 5304 /* 5305 * Updates to VI and VF require us to update the status of 5306 * virtual interrupts, which are the logical OR of these bits 5307 * and the state of the input lines from the GIC. (This requires 5308 * that we have the iothread lock, which is done by marking the 5309 * reginfo structs as ARM_CP_IO.) 5310 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5311 * possible for it to be taken immediately, because VIRQ and 5312 * VFIQ are masked unless running at EL0 or EL1, and HCR 5313 * can only be written at EL2. 5314 */ 5315 g_assert(qemu_mutex_iothread_locked()); 5316 arm_cpu_update_virq(cpu); 5317 arm_cpu_update_vfiq(cpu); 5318 } 5319 5320 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5321 { 5322 do_hcr_write(env, value, 0); 5323 } 5324 5325 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5326 uint64_t value) 5327 { 5328 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5329 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5330 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5331 } 5332 5333 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5334 uint64_t value) 5335 { 5336 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5337 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5338 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5339 } 5340 5341 /* 5342 * Return the effective value of HCR_EL2. 5343 * Bits that are not included here: 5344 * RW (read from SCR_EL3.RW as needed) 5345 */ 5346 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5347 { 5348 uint64_t ret = env->cp15.hcr_el2; 5349 5350 if (!arm_is_el2_enabled(env)) { 5351 /* 5352 * "This register has no effect if EL2 is not enabled in the 5353 * current Security state". This is ARMv8.4-SecEL2 speak for 5354 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5355 * 5356 * Prior to that, the language was "In an implementation that 5357 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5358 * as if this field is 0 for all purposes other than a direct 5359 * read or write access of HCR_EL2". With lots of enumeration 5360 * on a per-field basis. In current QEMU, this is condition 5361 * is arm_is_secure_below_el3. 5362 * 5363 * Since the v8.4 language applies to the entire register, and 5364 * appears to be backward compatible, use that. 5365 */ 5366 return 0; 5367 } 5368 5369 /* 5370 * For a cpu that supports both aarch64 and aarch32, we can set bits 5371 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5372 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5373 */ 5374 if (!arm_el_is_aa64(env, 2)) { 5375 uint64_t aa32_valid; 5376 5377 /* 5378 * These bits are up-to-date as of ARMv8.6. 5379 * For HCR, it's easiest to list just the 2 bits that are invalid. 5380 * For HCR2, list those that are valid. 5381 */ 5382 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5383 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5384 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5385 ret &= aa32_valid; 5386 } 5387 5388 if (ret & HCR_TGE) { 5389 /* These bits are up-to-date as of ARMv8.6. */ 5390 if (ret & HCR_E2H) { 5391 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5392 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5393 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5394 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5395 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5396 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5397 } else { 5398 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5399 } 5400 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5401 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5402 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5403 HCR_TLOR); 5404 } 5405 5406 return ret; 5407 } 5408 5409 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5410 uint64_t value) 5411 { 5412 /* 5413 * For A-profile AArch32 EL3, if NSACR.CP10 5414 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5415 */ 5416 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5417 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5418 value &= ~(0x3 << 10); 5419 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5420 } 5421 env->cp15.cptr_el[2] = value; 5422 } 5423 5424 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5425 { 5426 /* 5427 * For A-profile AArch32 EL3, if NSACR.CP10 5428 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5429 */ 5430 uint64_t value = env->cp15.cptr_el[2]; 5431 5432 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5433 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5434 value |= 0x3 << 10; 5435 } 5436 return value; 5437 } 5438 5439 static const ARMCPRegInfo el2_cp_reginfo[] = { 5440 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5441 .type = ARM_CP_IO, 5442 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5443 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5444 .writefn = hcr_write }, 5445 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5446 .type = ARM_CP_ALIAS | ARM_CP_IO, 5447 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5448 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5449 .writefn = hcr_writelow }, 5450 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5451 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5452 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5453 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5454 .type = ARM_CP_ALIAS, 5455 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5456 .access = PL2_RW, 5457 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5458 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5459 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5460 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5461 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5462 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5463 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5464 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5465 .type = ARM_CP_ALIAS, 5466 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5467 .access = PL2_RW, 5468 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5469 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5470 .type = ARM_CP_ALIAS, 5471 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5472 .access = PL2_RW, 5473 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5474 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5475 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5476 .access = PL2_RW, .writefn = vbar_write, 5477 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5478 .resetvalue = 0 }, 5479 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5480 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5481 .access = PL3_RW, .type = ARM_CP_ALIAS, 5482 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5483 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5484 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5485 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5486 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5487 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5488 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5489 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5490 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5491 .resetvalue = 0 }, 5492 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5493 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5494 .access = PL2_RW, .type = ARM_CP_ALIAS, 5495 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5496 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5497 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5498 .access = PL2_RW, .type = ARM_CP_CONST, 5499 .resetvalue = 0 }, 5500 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5501 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5502 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5503 .access = PL2_RW, .type = ARM_CP_CONST, 5504 .resetvalue = 0 }, 5505 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5506 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5507 .access = PL2_RW, .type = ARM_CP_CONST, 5508 .resetvalue = 0 }, 5509 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5510 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5511 .access = PL2_RW, .type = ARM_CP_CONST, 5512 .resetvalue = 0 }, 5513 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5514 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5515 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5516 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5517 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5518 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5519 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5520 .type = ARM_CP_ALIAS, 5521 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5522 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5523 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5524 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5525 .access = PL2_RW, 5526 /* no .writefn needed as this can't cause an ASID change; 5527 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5528 */ 5529 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5530 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5531 .cp = 15, .opc1 = 6, .crm = 2, 5532 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5533 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5534 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5535 .writefn = vttbr_write }, 5536 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5537 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5538 .access = PL2_RW, .writefn = vttbr_write, 5539 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5540 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5541 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5542 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5543 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5544 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5545 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5546 .access = PL2_RW, .resetvalue = 0, 5547 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5548 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5549 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5550 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5551 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5552 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5553 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5554 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5555 { .name = "TLBIALLNSNH", 5556 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5557 .type = ARM_CP_NO_RAW, .access = PL2_W, 5558 .writefn = tlbiall_nsnh_write }, 5559 { .name = "TLBIALLNSNHIS", 5560 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5561 .type = ARM_CP_NO_RAW, .access = PL2_W, 5562 .writefn = tlbiall_nsnh_is_write }, 5563 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5564 .type = ARM_CP_NO_RAW, .access = PL2_W, 5565 .writefn = tlbiall_hyp_write }, 5566 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5567 .type = ARM_CP_NO_RAW, .access = PL2_W, 5568 .writefn = tlbiall_hyp_is_write }, 5569 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5570 .type = ARM_CP_NO_RAW, .access = PL2_W, 5571 .writefn = tlbimva_hyp_write }, 5572 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5573 .type = ARM_CP_NO_RAW, .access = PL2_W, 5574 .writefn = tlbimva_hyp_is_write }, 5575 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5576 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5577 .type = ARM_CP_NO_RAW, .access = PL2_W, 5578 .writefn = tlbi_aa64_alle2_write }, 5579 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5580 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5581 .type = ARM_CP_NO_RAW, .access = PL2_W, 5582 .writefn = tlbi_aa64_vae2_write }, 5583 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5584 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5585 .access = PL2_W, .type = ARM_CP_NO_RAW, 5586 .writefn = tlbi_aa64_vae2_write }, 5587 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5588 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5589 .access = PL2_W, .type = ARM_CP_NO_RAW, 5590 .writefn = tlbi_aa64_alle2is_write }, 5591 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5592 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5593 .type = ARM_CP_NO_RAW, .access = PL2_W, 5594 .writefn = tlbi_aa64_vae2is_write }, 5595 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5596 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5597 .access = PL2_W, .type = ARM_CP_NO_RAW, 5598 .writefn = tlbi_aa64_vae2is_write }, 5599 #ifndef CONFIG_USER_ONLY 5600 /* Unlike the other EL2-related AT operations, these must 5601 * UNDEF from EL3 if EL2 is not implemented, which is why we 5602 * define them here rather than with the rest of the AT ops. 5603 */ 5604 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5605 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5606 .access = PL2_W, .accessfn = at_s1e2_access, 5607 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5608 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5609 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5610 .access = PL2_W, .accessfn = at_s1e2_access, 5611 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5612 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5613 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5614 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5615 * to behave as if SCR.NS was 1. 5616 */ 5617 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5618 .access = PL2_W, 5619 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5620 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5621 .access = PL2_W, 5622 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5623 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5624 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5625 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5626 * reset values as IMPDEF. We choose to reset to 3 to comply with 5627 * both ARMv7 and ARMv8. 5628 */ 5629 .access = PL2_RW, .resetvalue = 3, 5630 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5631 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5632 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5633 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5634 .writefn = gt_cntvoff_write, 5635 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5636 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5637 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5638 .writefn = gt_cntvoff_write, 5639 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5640 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5641 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5642 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5643 .type = ARM_CP_IO, .access = PL2_RW, 5644 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5645 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5646 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5647 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5648 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5649 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5650 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5651 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5652 .resetfn = gt_hyp_timer_reset, 5653 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5654 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5655 .type = ARM_CP_IO, 5656 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5657 .access = PL2_RW, 5658 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5659 .resetvalue = 0, 5660 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5661 #endif 5662 /* The only field of MDCR_EL2 that has a defined architectural reset value 5663 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5664 */ 5665 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5666 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5667 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5668 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5669 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5670 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5671 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5672 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5673 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5674 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5675 .access = PL2_RW, 5676 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5677 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5678 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5679 .access = PL2_RW, 5680 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5681 REGINFO_SENTINEL 5682 }; 5683 5684 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5685 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5686 .type = ARM_CP_ALIAS | ARM_CP_IO, 5687 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5688 .access = PL2_RW, 5689 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5690 .writefn = hcr_writehigh }, 5691 REGINFO_SENTINEL 5692 }; 5693 5694 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5695 bool isread) 5696 { 5697 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5698 return CP_ACCESS_OK; 5699 } 5700 return CP_ACCESS_TRAP_UNCATEGORIZED; 5701 } 5702 5703 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5704 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5705 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5706 .access = PL2_RW, .accessfn = sel2_access, 5707 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5708 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5709 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5710 .access = PL2_RW, .accessfn = sel2_access, 5711 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5712 REGINFO_SENTINEL 5713 }; 5714 5715 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5716 bool isread) 5717 { 5718 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5719 * At Secure EL1 it traps to EL3 or EL2. 5720 */ 5721 if (arm_current_el(env) == 3) { 5722 return CP_ACCESS_OK; 5723 } 5724 if (arm_is_secure_below_el3(env)) { 5725 if (env->cp15.scr_el3 & SCR_EEL2) { 5726 return CP_ACCESS_TRAP_EL2; 5727 } 5728 return CP_ACCESS_TRAP_EL3; 5729 } 5730 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5731 if (isread) { 5732 return CP_ACCESS_OK; 5733 } 5734 return CP_ACCESS_TRAP_UNCATEGORIZED; 5735 } 5736 5737 static const ARMCPRegInfo el3_cp_reginfo[] = { 5738 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5739 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5740 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5741 .resetfn = scr_reset, .writefn = scr_write }, 5742 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5743 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5744 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5745 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5746 .writefn = scr_write }, 5747 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5748 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5749 .access = PL3_RW, .resetvalue = 0, 5750 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5751 { .name = "SDER", 5752 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5753 .access = PL3_RW, .resetvalue = 0, 5754 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5755 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5756 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5757 .writefn = vbar_write, .resetvalue = 0, 5758 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5759 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5760 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5761 .access = PL3_RW, .resetvalue = 0, 5762 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5763 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5764 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5765 .access = PL3_RW, 5766 /* no .writefn needed as this can't cause an ASID change; 5767 * we must provide a .raw_writefn and .resetfn because we handle 5768 * reset and migration for the AArch32 TTBCR(S), which might be 5769 * using mask and base_mask. 5770 */ 5771 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5772 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5773 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5774 .type = ARM_CP_ALIAS, 5775 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5776 .access = PL3_RW, 5777 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5778 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5779 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5780 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5781 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5782 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5783 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5784 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5785 .type = ARM_CP_ALIAS, 5786 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5787 .access = PL3_RW, 5788 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5789 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5790 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5791 .access = PL3_RW, .writefn = vbar_write, 5792 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5793 .resetvalue = 0 }, 5794 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5795 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5796 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5797 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5798 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5799 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5800 .access = PL3_RW, .resetvalue = 0, 5801 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5802 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5803 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5804 .access = PL3_RW, .type = ARM_CP_CONST, 5805 .resetvalue = 0 }, 5806 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5807 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5808 .access = PL3_RW, .type = ARM_CP_CONST, 5809 .resetvalue = 0 }, 5810 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5811 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5812 .access = PL3_RW, .type = ARM_CP_CONST, 5813 .resetvalue = 0 }, 5814 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5815 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5816 .access = PL3_W, .type = ARM_CP_NO_RAW, 5817 .writefn = tlbi_aa64_alle3is_write }, 5818 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5819 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5820 .access = PL3_W, .type = ARM_CP_NO_RAW, 5821 .writefn = tlbi_aa64_vae3is_write }, 5822 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5823 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5824 .access = PL3_W, .type = ARM_CP_NO_RAW, 5825 .writefn = tlbi_aa64_vae3is_write }, 5826 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5827 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5828 .access = PL3_W, .type = ARM_CP_NO_RAW, 5829 .writefn = tlbi_aa64_alle3_write }, 5830 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5831 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5832 .access = PL3_W, .type = ARM_CP_NO_RAW, 5833 .writefn = tlbi_aa64_vae3_write }, 5834 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5835 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5836 .access = PL3_W, .type = ARM_CP_NO_RAW, 5837 .writefn = tlbi_aa64_vae3_write }, 5838 REGINFO_SENTINEL 5839 }; 5840 5841 #ifndef CONFIG_USER_ONLY 5842 /* Test if system register redirection is to occur in the current state. */ 5843 static bool redirect_for_e2h(CPUARMState *env) 5844 { 5845 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5846 } 5847 5848 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5849 { 5850 CPReadFn *readfn; 5851 5852 if (redirect_for_e2h(env)) { 5853 /* Switch to the saved EL2 version of the register. */ 5854 ri = ri->opaque; 5855 readfn = ri->readfn; 5856 } else { 5857 readfn = ri->orig_readfn; 5858 } 5859 if (readfn == NULL) { 5860 readfn = raw_read; 5861 } 5862 return readfn(env, ri); 5863 } 5864 5865 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5866 uint64_t value) 5867 { 5868 CPWriteFn *writefn; 5869 5870 if (redirect_for_e2h(env)) { 5871 /* Switch to the saved EL2 version of the register. */ 5872 ri = ri->opaque; 5873 writefn = ri->writefn; 5874 } else { 5875 writefn = ri->orig_writefn; 5876 } 5877 if (writefn == NULL) { 5878 writefn = raw_write; 5879 } 5880 writefn(env, ri, value); 5881 } 5882 5883 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5884 { 5885 struct E2HAlias { 5886 uint32_t src_key, dst_key, new_key; 5887 const char *src_name, *dst_name, *new_name; 5888 bool (*feature)(const ARMISARegisters *id); 5889 }; 5890 5891 #define K(op0, op1, crn, crm, op2) \ 5892 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5893 5894 static const struct E2HAlias aliases[] = { 5895 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5896 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5897 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5898 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5899 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5900 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5901 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5902 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5903 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5904 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5905 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5906 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5907 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5908 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5909 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5910 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5911 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5912 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5913 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5914 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5915 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5916 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5917 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5918 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5919 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5920 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5921 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5922 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5923 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5924 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5925 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5926 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5927 5928 /* 5929 * Note that redirection of ZCR is mentioned in the description 5930 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5931 * not in the summary table. 5932 */ 5933 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5934 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5935 5936 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5937 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5938 5939 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5940 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5941 }; 5942 #undef K 5943 5944 size_t i; 5945 5946 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5947 const struct E2HAlias *a = &aliases[i]; 5948 ARMCPRegInfo *src_reg, *dst_reg; 5949 5950 if (a->feature && !a->feature(&cpu->isar)) { 5951 continue; 5952 } 5953 5954 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5955 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5956 g_assert(src_reg != NULL); 5957 g_assert(dst_reg != NULL); 5958 5959 /* Cross-compare names to detect typos in the keys. */ 5960 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5961 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5962 5963 /* None of the core system registers use opaque; we will. */ 5964 g_assert(src_reg->opaque == NULL); 5965 5966 /* Create alias before redirection so we dup the right data. */ 5967 if (a->new_key) { 5968 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5969 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5970 bool ok; 5971 5972 new_reg->name = a->new_name; 5973 new_reg->type |= ARM_CP_ALIAS; 5974 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5975 new_reg->access &= PL2_RW | PL3_RW; 5976 5977 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5978 g_assert(ok); 5979 } 5980 5981 src_reg->opaque = dst_reg; 5982 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5983 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5984 if (!src_reg->raw_readfn) { 5985 src_reg->raw_readfn = raw_read; 5986 } 5987 if (!src_reg->raw_writefn) { 5988 src_reg->raw_writefn = raw_write; 5989 } 5990 src_reg->readfn = el2_e2h_read; 5991 src_reg->writefn = el2_e2h_write; 5992 } 5993 } 5994 #endif 5995 5996 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5997 bool isread) 5998 { 5999 int cur_el = arm_current_el(env); 6000 6001 if (cur_el < 2) { 6002 uint64_t hcr = arm_hcr_el2_eff(env); 6003 6004 if (cur_el == 0) { 6005 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6006 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6007 return CP_ACCESS_TRAP_EL2; 6008 } 6009 } else { 6010 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6011 return CP_ACCESS_TRAP; 6012 } 6013 if (hcr & HCR_TID2) { 6014 return CP_ACCESS_TRAP_EL2; 6015 } 6016 } 6017 } else if (hcr & HCR_TID2) { 6018 return CP_ACCESS_TRAP_EL2; 6019 } 6020 } 6021 6022 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6023 return CP_ACCESS_TRAP_EL2; 6024 } 6025 6026 return CP_ACCESS_OK; 6027 } 6028 6029 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6030 uint64_t value) 6031 { 6032 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6033 * read via a bit in OSLSR_EL1. 6034 */ 6035 int oslock; 6036 6037 if (ri->state == ARM_CP_STATE_AA32) { 6038 oslock = (value == 0xC5ACCE55); 6039 } else { 6040 oslock = value & 1; 6041 } 6042 6043 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6044 } 6045 6046 static const ARMCPRegInfo debug_cp_reginfo[] = { 6047 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6048 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6049 * unlike DBGDRAR it is never accessible from EL0. 6050 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6051 * accessor. 6052 */ 6053 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6054 .access = PL0_R, .accessfn = access_tdra, 6055 .type = ARM_CP_CONST, .resetvalue = 0 }, 6056 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6057 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6058 .access = PL1_R, .accessfn = access_tdra, 6059 .type = ARM_CP_CONST, .resetvalue = 0 }, 6060 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6061 .access = PL0_R, .accessfn = access_tdra, 6062 .type = ARM_CP_CONST, .resetvalue = 0 }, 6063 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6064 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6065 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6066 .access = PL1_RW, .accessfn = access_tda, 6067 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6068 .resetvalue = 0 }, 6069 /* 6070 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 6071 * Debug Communication Channel is not implemented. 6072 */ 6073 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 6074 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 6075 .access = PL0_R, .accessfn = access_tda, 6076 .type = ARM_CP_CONST, .resetvalue = 0 }, 6077 /* 6078 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 6079 * it is unlikely a guest will care. 6080 * We don't implement the configurable EL0 access. 6081 */ 6082 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 6083 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6084 .type = ARM_CP_ALIAS, 6085 .access = PL1_R, .accessfn = access_tda, 6086 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6087 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6088 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6089 .access = PL1_W, .type = ARM_CP_NO_RAW, 6090 .accessfn = access_tdosa, 6091 .writefn = oslar_write }, 6092 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6093 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6094 .access = PL1_R, .resetvalue = 10, 6095 .accessfn = access_tdosa, 6096 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6097 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6098 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6099 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6100 .access = PL1_RW, .accessfn = access_tdosa, 6101 .type = ARM_CP_NOP }, 6102 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6103 * implement vector catch debug events yet. 6104 */ 6105 { .name = "DBGVCR", 6106 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6107 .access = PL1_RW, .accessfn = access_tda, 6108 .type = ARM_CP_NOP }, 6109 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6110 * to save and restore a 32-bit guest's DBGVCR) 6111 */ 6112 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6113 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6114 .access = PL2_RW, .accessfn = access_tda, 6115 .type = ARM_CP_NOP }, 6116 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6117 * Channel but Linux may try to access this register. The 32-bit 6118 * alias is DBGDCCINT. 6119 */ 6120 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6121 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6122 .access = PL1_RW, .accessfn = access_tda, 6123 .type = ARM_CP_NOP }, 6124 REGINFO_SENTINEL 6125 }; 6126 6127 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6128 /* 64 bit access versions of the (dummy) debug registers */ 6129 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6130 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6131 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6132 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6133 REGINFO_SENTINEL 6134 }; 6135 6136 /* Return the exception level to which exceptions should be taken 6137 * via SVEAccessTrap. If an exception should be routed through 6138 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6139 * take care of raising that exception. 6140 * C.f. the ARM pseudocode function CheckSVEEnabled. 6141 */ 6142 int sve_exception_el(CPUARMState *env, int el) 6143 { 6144 #ifndef CONFIG_USER_ONLY 6145 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6146 6147 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6148 /* Check CPACR.ZEN. */ 6149 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 6150 case 1: 6151 if (el != 0) { 6152 break; 6153 } 6154 /* fall through */ 6155 case 0: 6156 case 2: 6157 /* route_to_el2 */ 6158 return hcr_el2 & HCR_TGE ? 2 : 1; 6159 } 6160 6161 /* Check CPACR.FPEN. */ 6162 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 6163 case 1: 6164 if (el != 0) { 6165 break; 6166 } 6167 /* fall through */ 6168 case 0: 6169 case 2: 6170 return 0; 6171 } 6172 } 6173 6174 /* 6175 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). 6176 */ 6177 if (el <= 2) { 6178 if (hcr_el2 & HCR_E2H) { 6179 /* Check CPTR_EL2.ZEN. */ 6180 switch (extract32(env->cp15.cptr_el[2], 16, 2)) { 6181 case 1: 6182 if (el != 0 || !(hcr_el2 & HCR_TGE)) { 6183 break; 6184 } 6185 /* fall through */ 6186 case 0: 6187 case 2: 6188 return 2; 6189 } 6190 6191 /* Check CPTR_EL2.FPEN. */ 6192 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 6193 case 1: 6194 if (el == 2 || !(hcr_el2 & HCR_TGE)) { 6195 break; 6196 } 6197 /* fall through */ 6198 case 0: 6199 case 2: 6200 return 0; 6201 } 6202 } else if (arm_is_el2_enabled(env)) { 6203 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6204 return 2; 6205 } 6206 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6207 return 0; 6208 } 6209 } 6210 } 6211 6212 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6213 if (arm_feature(env, ARM_FEATURE_EL3) 6214 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6215 return 3; 6216 } 6217 #endif 6218 return 0; 6219 } 6220 6221 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6222 { 6223 uint32_t end_len; 6224 6225 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6226 end_len = start_len; 6227 6228 if (!test_bit(start_len, cpu->sve_vq_map)) { 6229 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6230 assert(end_len < start_len); 6231 } 6232 return end_len; 6233 } 6234 6235 /* 6236 * Given that SVE is enabled, return the vector length for EL. 6237 */ 6238 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6239 { 6240 ARMCPU *cpu = env_archcpu(env); 6241 uint32_t zcr_len = cpu->sve_max_vq - 1; 6242 6243 if (el <= 1 && 6244 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6245 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6246 } 6247 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6248 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6249 } 6250 if (arm_feature(env, ARM_FEATURE_EL3)) { 6251 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6252 } 6253 6254 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6255 } 6256 6257 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6258 uint64_t value) 6259 { 6260 int cur_el = arm_current_el(env); 6261 int old_len = sve_zcr_len_for_el(env, cur_el); 6262 int new_len; 6263 6264 /* Bits other than [3:0] are RAZ/WI. */ 6265 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6266 raw_write(env, ri, value & 0xf); 6267 6268 /* 6269 * Because we arrived here, we know both FP and SVE are enabled; 6270 * otherwise we would have trapped access to the ZCR_ELn register. 6271 */ 6272 new_len = sve_zcr_len_for_el(env, cur_el); 6273 if (new_len < old_len) { 6274 aarch64_sve_narrow_vq(env, new_len + 1); 6275 } 6276 } 6277 6278 static const ARMCPRegInfo zcr_el1_reginfo = { 6279 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6280 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6281 .access = PL1_RW, .type = ARM_CP_SVE, 6282 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6283 .writefn = zcr_write, .raw_writefn = raw_write 6284 }; 6285 6286 static const ARMCPRegInfo zcr_el2_reginfo = { 6287 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6288 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6289 .access = PL2_RW, .type = ARM_CP_SVE, 6290 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6291 .writefn = zcr_write, .raw_writefn = raw_write 6292 }; 6293 6294 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6295 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6296 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6297 .access = PL2_RW, .type = ARM_CP_SVE, 6298 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6299 }; 6300 6301 static const ARMCPRegInfo zcr_el3_reginfo = { 6302 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6303 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6304 .access = PL3_RW, .type = ARM_CP_SVE, 6305 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6306 .writefn = zcr_write, .raw_writefn = raw_write 6307 }; 6308 6309 void hw_watchpoint_update(ARMCPU *cpu, int n) 6310 { 6311 CPUARMState *env = &cpu->env; 6312 vaddr len = 0; 6313 vaddr wvr = env->cp15.dbgwvr[n]; 6314 uint64_t wcr = env->cp15.dbgwcr[n]; 6315 int mask; 6316 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6317 6318 if (env->cpu_watchpoint[n]) { 6319 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6320 env->cpu_watchpoint[n] = NULL; 6321 } 6322 6323 if (!extract64(wcr, 0, 1)) { 6324 /* E bit clear : watchpoint disabled */ 6325 return; 6326 } 6327 6328 switch (extract64(wcr, 3, 2)) { 6329 case 0: 6330 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6331 return; 6332 case 1: 6333 flags |= BP_MEM_READ; 6334 break; 6335 case 2: 6336 flags |= BP_MEM_WRITE; 6337 break; 6338 case 3: 6339 flags |= BP_MEM_ACCESS; 6340 break; 6341 } 6342 6343 /* Attempts to use both MASK and BAS fields simultaneously are 6344 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6345 * thus generating a watchpoint for every byte in the masked region. 6346 */ 6347 mask = extract64(wcr, 24, 4); 6348 if (mask == 1 || mask == 2) { 6349 /* Reserved values of MASK; we must act as if the mask value was 6350 * some non-reserved value, or as if the watchpoint were disabled. 6351 * We choose the latter. 6352 */ 6353 return; 6354 } else if (mask) { 6355 /* Watchpoint covers an aligned area up to 2GB in size */ 6356 len = 1ULL << mask; 6357 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6358 * whether the watchpoint fires when the unmasked bits match; we opt 6359 * to generate the exceptions. 6360 */ 6361 wvr &= ~(len - 1); 6362 } else { 6363 /* Watchpoint covers bytes defined by the byte address select bits */ 6364 int bas = extract64(wcr, 5, 8); 6365 int basstart; 6366 6367 if (extract64(wvr, 2, 1)) { 6368 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6369 * ignored, and BAS[3:0] define which bytes to watch. 6370 */ 6371 bas &= 0xf; 6372 } 6373 6374 if (bas == 0) { 6375 /* This must act as if the watchpoint is disabled */ 6376 return; 6377 } 6378 6379 /* The BAS bits are supposed to be programmed to indicate a contiguous 6380 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6381 * we fire for each byte in the word/doubleword addressed by the WVR. 6382 * We choose to ignore any non-zero bits after the first range of 1s. 6383 */ 6384 basstart = ctz32(bas); 6385 len = cto32(bas >> basstart); 6386 wvr += basstart; 6387 } 6388 6389 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6390 &env->cpu_watchpoint[n]); 6391 } 6392 6393 void hw_watchpoint_update_all(ARMCPU *cpu) 6394 { 6395 int i; 6396 CPUARMState *env = &cpu->env; 6397 6398 /* Completely clear out existing QEMU watchpoints and our array, to 6399 * avoid possible stale entries following migration load. 6400 */ 6401 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6402 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6403 6404 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6405 hw_watchpoint_update(cpu, i); 6406 } 6407 } 6408 6409 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6410 uint64_t value) 6411 { 6412 ARMCPU *cpu = env_archcpu(env); 6413 int i = ri->crm; 6414 6415 /* 6416 * Bits [1:0] are RES0. 6417 * 6418 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA) 6419 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if 6420 * they contain the value written. It is CONSTRAINED UNPREDICTABLE 6421 * whether the RESS bits are ignored when comparing an address. 6422 * 6423 * Therefore we are allowed to compare the entire register, which lets 6424 * us avoid considering whether or not FEAT_LVA is actually enabled. 6425 */ 6426 value &= ~3ULL; 6427 6428 raw_write(env, ri, value); 6429 hw_watchpoint_update(cpu, i); 6430 } 6431 6432 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6433 uint64_t value) 6434 { 6435 ARMCPU *cpu = env_archcpu(env); 6436 int i = ri->crm; 6437 6438 raw_write(env, ri, value); 6439 hw_watchpoint_update(cpu, i); 6440 } 6441 6442 void hw_breakpoint_update(ARMCPU *cpu, int n) 6443 { 6444 CPUARMState *env = &cpu->env; 6445 uint64_t bvr = env->cp15.dbgbvr[n]; 6446 uint64_t bcr = env->cp15.dbgbcr[n]; 6447 vaddr addr; 6448 int bt; 6449 int flags = BP_CPU; 6450 6451 if (env->cpu_breakpoint[n]) { 6452 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6453 env->cpu_breakpoint[n] = NULL; 6454 } 6455 6456 if (!extract64(bcr, 0, 1)) { 6457 /* E bit clear : watchpoint disabled */ 6458 return; 6459 } 6460 6461 bt = extract64(bcr, 20, 4); 6462 6463 switch (bt) { 6464 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6465 case 5: /* linked address mismatch (reserved if AArch64) */ 6466 qemu_log_mask(LOG_UNIMP, 6467 "arm: address mismatch breakpoint types not implemented\n"); 6468 return; 6469 case 0: /* unlinked address match */ 6470 case 1: /* linked address match */ 6471 { 6472 /* 6473 * Bits [1:0] are RES0. 6474 * 6475 * It is IMPLEMENTATION DEFINED whether bits [63:49] 6476 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit 6477 * of the VA field ([48] or [52] for FEAT_LVA), or whether the 6478 * value is read as written. It is CONSTRAINED UNPREDICTABLE 6479 * whether the RESS bits are ignored when comparing an address. 6480 * Therefore we are allowed to compare the entire register, which 6481 * lets us avoid considering whether FEAT_LVA is actually enabled. 6482 * 6483 * The BAS field is used to allow setting breakpoints on 16-bit 6484 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6485 * a bp will fire if the addresses covered by the bp and the addresses 6486 * covered by the insn overlap but the insn doesn't start at the 6487 * start of the bp address range. We choose to require the insn and 6488 * the bp to have the same address. The constraints on writing to 6489 * BAS enforced in dbgbcr_write mean we have only four cases: 6490 * 0b0000 => no breakpoint 6491 * 0b0011 => breakpoint on addr 6492 * 0b1100 => breakpoint on addr + 2 6493 * 0b1111 => breakpoint on addr 6494 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6495 */ 6496 int bas = extract64(bcr, 5, 4); 6497 addr = bvr & ~3ULL; 6498 if (bas == 0) { 6499 return; 6500 } 6501 if (bas == 0xc) { 6502 addr += 2; 6503 } 6504 break; 6505 } 6506 case 2: /* unlinked context ID match */ 6507 case 8: /* unlinked VMID match (reserved if no EL2) */ 6508 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6509 qemu_log_mask(LOG_UNIMP, 6510 "arm: unlinked context breakpoint types not implemented\n"); 6511 return; 6512 case 9: /* linked VMID match (reserved if no EL2) */ 6513 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6514 case 3: /* linked context ID match */ 6515 default: 6516 /* We must generate no events for Linked context matches (unless 6517 * they are linked to by some other bp/wp, which is handled in 6518 * updates for the linking bp/wp). We choose to also generate no events 6519 * for reserved values. 6520 */ 6521 return; 6522 } 6523 6524 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6525 } 6526 6527 void hw_breakpoint_update_all(ARMCPU *cpu) 6528 { 6529 int i; 6530 CPUARMState *env = &cpu->env; 6531 6532 /* Completely clear out existing QEMU breakpoints and our array, to 6533 * avoid possible stale entries following migration load. 6534 */ 6535 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6536 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6537 6538 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6539 hw_breakpoint_update(cpu, i); 6540 } 6541 } 6542 6543 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6544 uint64_t value) 6545 { 6546 ARMCPU *cpu = env_archcpu(env); 6547 int i = ri->crm; 6548 6549 raw_write(env, ri, value); 6550 hw_breakpoint_update(cpu, i); 6551 } 6552 6553 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6554 uint64_t value) 6555 { 6556 ARMCPU *cpu = env_archcpu(env); 6557 int i = ri->crm; 6558 6559 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6560 * copy of BAS[0]. 6561 */ 6562 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6563 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6564 6565 raw_write(env, ri, value); 6566 hw_breakpoint_update(cpu, i); 6567 } 6568 6569 static void define_debug_regs(ARMCPU *cpu) 6570 { 6571 /* Define v7 and v8 architectural debug registers. 6572 * These are just dummy implementations for now. 6573 */ 6574 int i; 6575 int wrps, brps, ctx_cmps; 6576 6577 /* 6578 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6579 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6580 * the register must not exist for this cpu. 6581 */ 6582 if (cpu->isar.dbgdidr != 0) { 6583 ARMCPRegInfo dbgdidr = { 6584 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6585 .opc1 = 0, .opc2 = 0, 6586 .access = PL0_R, .accessfn = access_tda, 6587 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6588 }; 6589 define_one_arm_cp_reg(cpu, &dbgdidr); 6590 } 6591 6592 /* Note that all these register fields hold "number of Xs minus 1". */ 6593 brps = arm_num_brps(cpu); 6594 wrps = arm_num_wrps(cpu); 6595 ctx_cmps = arm_num_ctx_cmps(cpu); 6596 6597 assert(ctx_cmps <= brps); 6598 6599 define_arm_cp_regs(cpu, debug_cp_reginfo); 6600 6601 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6602 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6603 } 6604 6605 for (i = 0; i < brps; i++) { 6606 ARMCPRegInfo dbgregs[] = { 6607 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6608 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6609 .access = PL1_RW, .accessfn = access_tda, 6610 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6611 .writefn = dbgbvr_write, .raw_writefn = raw_write 6612 }, 6613 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6614 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6615 .access = PL1_RW, .accessfn = access_tda, 6616 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6617 .writefn = dbgbcr_write, .raw_writefn = raw_write 6618 }, 6619 REGINFO_SENTINEL 6620 }; 6621 define_arm_cp_regs(cpu, dbgregs); 6622 } 6623 6624 for (i = 0; i < wrps; i++) { 6625 ARMCPRegInfo dbgregs[] = { 6626 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6627 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6628 .access = PL1_RW, .accessfn = access_tda, 6629 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6630 .writefn = dbgwvr_write, .raw_writefn = raw_write 6631 }, 6632 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6633 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6634 .access = PL1_RW, .accessfn = access_tda, 6635 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6636 .writefn = dbgwcr_write, .raw_writefn = raw_write 6637 }, 6638 REGINFO_SENTINEL 6639 }; 6640 define_arm_cp_regs(cpu, dbgregs); 6641 } 6642 } 6643 6644 static void define_pmu_regs(ARMCPU *cpu) 6645 { 6646 /* 6647 * v7 performance monitor control register: same implementor 6648 * field as main ID register, and we implement four counters in 6649 * addition to the cycle count register. 6650 */ 6651 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6652 ARMCPRegInfo pmcr = { 6653 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6654 .access = PL0_RW, 6655 .type = ARM_CP_IO | ARM_CP_ALIAS, 6656 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6657 .accessfn = pmreg_access, .writefn = pmcr_write, 6658 .raw_writefn = raw_write, 6659 }; 6660 ARMCPRegInfo pmcr64 = { 6661 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6662 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6663 .access = PL0_RW, .accessfn = pmreg_access, 6664 .type = ARM_CP_IO, 6665 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6666 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6667 PMCRLC, 6668 .writefn = pmcr_write, .raw_writefn = raw_write, 6669 }; 6670 define_one_arm_cp_reg(cpu, &pmcr); 6671 define_one_arm_cp_reg(cpu, &pmcr64); 6672 for (i = 0; i < pmcrn; i++) { 6673 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6674 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6675 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6676 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6677 ARMCPRegInfo pmev_regs[] = { 6678 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6679 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6680 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6681 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6682 .accessfn = pmreg_access }, 6683 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6684 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6685 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6686 .type = ARM_CP_IO, 6687 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6688 .raw_readfn = pmevcntr_rawread, 6689 .raw_writefn = pmevcntr_rawwrite }, 6690 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6691 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6692 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6693 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6694 .accessfn = pmreg_access }, 6695 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6696 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6697 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6698 .type = ARM_CP_IO, 6699 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6700 .raw_writefn = pmevtyper_rawwrite }, 6701 REGINFO_SENTINEL 6702 }; 6703 define_arm_cp_regs(cpu, pmev_regs); 6704 g_free(pmevcntr_name); 6705 g_free(pmevcntr_el0_name); 6706 g_free(pmevtyper_name); 6707 g_free(pmevtyper_el0_name); 6708 } 6709 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6710 ARMCPRegInfo v81_pmu_regs[] = { 6711 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6712 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6713 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6714 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6715 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6716 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6717 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6718 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6719 REGINFO_SENTINEL 6720 }; 6721 define_arm_cp_regs(cpu, v81_pmu_regs); 6722 } 6723 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6724 static const ARMCPRegInfo v84_pmmir = { 6725 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6726 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6727 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6728 .resetvalue = 0 6729 }; 6730 define_one_arm_cp_reg(cpu, &v84_pmmir); 6731 } 6732 } 6733 6734 /* We don't know until after realize whether there's a GICv3 6735 * attached, and that is what registers the gicv3 sysregs. 6736 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6737 * at runtime. 6738 */ 6739 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6740 { 6741 ARMCPU *cpu = env_archcpu(env); 6742 uint64_t pfr1 = cpu->isar.id_pfr1; 6743 6744 if (env->gicv3state) { 6745 pfr1 |= 1 << 28; 6746 } 6747 return pfr1; 6748 } 6749 6750 #ifndef CONFIG_USER_ONLY 6751 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6752 { 6753 ARMCPU *cpu = env_archcpu(env); 6754 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6755 6756 if (env->gicv3state) { 6757 pfr0 |= 1 << 24; 6758 } 6759 return pfr0; 6760 } 6761 #endif 6762 6763 /* Shared logic between LORID and the rest of the LOR* registers. 6764 * Secure state exclusion has already been dealt with. 6765 */ 6766 static CPAccessResult access_lor_ns(CPUARMState *env, 6767 const ARMCPRegInfo *ri, bool isread) 6768 { 6769 int el = arm_current_el(env); 6770 6771 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6772 return CP_ACCESS_TRAP_EL2; 6773 } 6774 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6775 return CP_ACCESS_TRAP_EL3; 6776 } 6777 return CP_ACCESS_OK; 6778 } 6779 6780 static CPAccessResult access_lor_other(CPUARMState *env, 6781 const ARMCPRegInfo *ri, bool isread) 6782 { 6783 if (arm_is_secure_below_el3(env)) { 6784 /* Access denied in secure mode. */ 6785 return CP_ACCESS_TRAP; 6786 } 6787 return access_lor_ns(env, ri, isread); 6788 } 6789 6790 /* 6791 * A trivial implementation of ARMv8.1-LOR leaves all of these 6792 * registers fixed at 0, which indicates that there are zero 6793 * supported Limited Ordering regions. 6794 */ 6795 static const ARMCPRegInfo lor_reginfo[] = { 6796 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6797 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6798 .access = PL1_RW, .accessfn = access_lor_other, 6799 .type = ARM_CP_CONST, .resetvalue = 0 }, 6800 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6801 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6802 .access = PL1_RW, .accessfn = access_lor_other, 6803 .type = ARM_CP_CONST, .resetvalue = 0 }, 6804 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6805 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6806 .access = PL1_RW, .accessfn = access_lor_other, 6807 .type = ARM_CP_CONST, .resetvalue = 0 }, 6808 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6809 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6810 .access = PL1_RW, .accessfn = access_lor_other, 6811 .type = ARM_CP_CONST, .resetvalue = 0 }, 6812 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6813 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6814 .access = PL1_R, .accessfn = access_lor_ns, 6815 .type = ARM_CP_CONST, .resetvalue = 0 }, 6816 REGINFO_SENTINEL 6817 }; 6818 6819 #ifdef TARGET_AARCH64 6820 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6821 bool isread) 6822 { 6823 int el = arm_current_el(env); 6824 6825 if (el < 2 && 6826 arm_feature(env, ARM_FEATURE_EL2) && 6827 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6828 return CP_ACCESS_TRAP_EL2; 6829 } 6830 if (el < 3 && 6831 arm_feature(env, ARM_FEATURE_EL3) && 6832 !(env->cp15.scr_el3 & SCR_APK)) { 6833 return CP_ACCESS_TRAP_EL3; 6834 } 6835 return CP_ACCESS_OK; 6836 } 6837 6838 static const ARMCPRegInfo pauth_reginfo[] = { 6839 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6840 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6841 .access = PL1_RW, .accessfn = access_pauth, 6842 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6843 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6844 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6845 .access = PL1_RW, .accessfn = access_pauth, 6846 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6847 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6848 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6849 .access = PL1_RW, .accessfn = access_pauth, 6850 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6851 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6852 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6853 .access = PL1_RW, .accessfn = access_pauth, 6854 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6855 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6856 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6857 .access = PL1_RW, .accessfn = access_pauth, 6858 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6859 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6860 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6861 .access = PL1_RW, .accessfn = access_pauth, 6862 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6863 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6864 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6865 .access = PL1_RW, .accessfn = access_pauth, 6866 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6867 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6868 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6869 .access = PL1_RW, .accessfn = access_pauth, 6870 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6871 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6872 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6873 .access = PL1_RW, .accessfn = access_pauth, 6874 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6875 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6876 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6877 .access = PL1_RW, .accessfn = access_pauth, 6878 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6879 REGINFO_SENTINEL 6880 }; 6881 6882 static const ARMCPRegInfo tlbirange_reginfo[] = { 6883 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6884 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6885 .access = PL1_W, .type = ARM_CP_NO_RAW, 6886 .writefn = tlbi_aa64_rvae1is_write }, 6887 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6888 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6889 .access = PL1_W, .type = ARM_CP_NO_RAW, 6890 .writefn = tlbi_aa64_rvae1is_write }, 6891 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6892 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6893 .access = PL1_W, .type = ARM_CP_NO_RAW, 6894 .writefn = tlbi_aa64_rvae1is_write }, 6895 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6896 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6897 .access = PL1_W, .type = ARM_CP_NO_RAW, 6898 .writefn = tlbi_aa64_rvae1is_write }, 6899 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6900 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6901 .access = PL1_W, .type = ARM_CP_NO_RAW, 6902 .writefn = tlbi_aa64_rvae1is_write }, 6903 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6904 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6905 .access = PL1_W, .type = ARM_CP_NO_RAW, 6906 .writefn = tlbi_aa64_rvae1is_write }, 6907 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6908 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6909 .access = PL1_W, .type = ARM_CP_NO_RAW, 6910 .writefn = tlbi_aa64_rvae1is_write }, 6911 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6912 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6913 .access = PL1_W, .type = ARM_CP_NO_RAW, 6914 .writefn = tlbi_aa64_rvae1is_write }, 6915 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6916 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6917 .access = PL1_W, .type = ARM_CP_NO_RAW, 6918 .writefn = tlbi_aa64_rvae1_write }, 6919 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6920 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6921 .access = PL1_W, .type = ARM_CP_NO_RAW, 6922 .writefn = tlbi_aa64_rvae1_write }, 6923 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6924 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6925 .access = PL1_W, .type = ARM_CP_NO_RAW, 6926 .writefn = tlbi_aa64_rvae1_write }, 6927 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6928 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6929 .access = PL1_W, .type = ARM_CP_NO_RAW, 6930 .writefn = tlbi_aa64_rvae1_write }, 6931 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6933 .access = PL2_W, .type = ARM_CP_NOP }, 6934 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6936 .access = PL2_W, .type = ARM_CP_NOP }, 6937 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6938 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6939 .access = PL2_W, .type = ARM_CP_NO_RAW, 6940 .writefn = tlbi_aa64_rvae2is_write }, 6941 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6942 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6943 .access = PL2_W, .type = ARM_CP_NO_RAW, 6944 .writefn = tlbi_aa64_rvae2is_write }, 6945 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6946 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6947 .access = PL2_W, .type = ARM_CP_NOP }, 6948 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6949 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6950 .access = PL2_W, .type = ARM_CP_NOP }, 6951 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6952 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6953 .access = PL2_W, .type = ARM_CP_NO_RAW, 6954 .writefn = tlbi_aa64_rvae2is_write }, 6955 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6956 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6957 .access = PL2_W, .type = ARM_CP_NO_RAW, 6958 .writefn = tlbi_aa64_rvae2is_write }, 6959 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6960 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6961 .access = PL2_W, .type = ARM_CP_NO_RAW, 6962 .writefn = tlbi_aa64_rvae2_write }, 6963 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6964 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6965 .access = PL2_W, .type = ARM_CP_NO_RAW, 6966 .writefn = tlbi_aa64_rvae2_write }, 6967 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6968 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6969 .access = PL3_W, .type = ARM_CP_NO_RAW, 6970 .writefn = tlbi_aa64_rvae3is_write }, 6971 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6972 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6973 .access = PL3_W, .type = ARM_CP_NO_RAW, 6974 .writefn = tlbi_aa64_rvae3is_write }, 6975 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6976 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6977 .access = PL3_W, .type = ARM_CP_NO_RAW, 6978 .writefn = tlbi_aa64_rvae3is_write }, 6979 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6980 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6981 .access = PL3_W, .type = ARM_CP_NO_RAW, 6982 .writefn = tlbi_aa64_rvae3is_write }, 6983 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6984 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6985 .access = PL3_W, .type = ARM_CP_NO_RAW, 6986 .writefn = tlbi_aa64_rvae3_write }, 6987 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6988 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6989 .access = PL3_W, .type = ARM_CP_NO_RAW, 6990 .writefn = tlbi_aa64_rvae3_write }, 6991 REGINFO_SENTINEL 6992 }; 6993 6994 static const ARMCPRegInfo tlbios_reginfo[] = { 6995 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6996 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6997 .access = PL1_W, .type = ARM_CP_NO_RAW, 6998 .writefn = tlbi_aa64_vmalle1is_write }, 6999 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7000 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7001 .access = PL1_W, .type = ARM_CP_NO_RAW, 7002 .writefn = tlbi_aa64_vae1is_write }, 7003 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7004 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7005 .access = PL1_W, .type = ARM_CP_NO_RAW, 7006 .writefn = tlbi_aa64_vmalle1is_write }, 7007 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7008 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7009 .access = PL1_W, .type = ARM_CP_NO_RAW, 7010 .writefn = tlbi_aa64_vae1is_write }, 7011 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7012 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7013 .access = PL1_W, .type = ARM_CP_NO_RAW, 7014 .writefn = tlbi_aa64_vae1is_write }, 7015 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7016 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7017 .access = PL1_W, .type = ARM_CP_NO_RAW, 7018 .writefn = tlbi_aa64_vae1is_write }, 7019 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7020 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7021 .access = PL2_W, .type = ARM_CP_NO_RAW, 7022 .writefn = tlbi_aa64_alle2is_write }, 7023 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7024 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7025 .access = PL2_W, .type = ARM_CP_NO_RAW, 7026 .writefn = tlbi_aa64_vae2is_write }, 7027 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7028 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7029 .access = PL2_W, .type = ARM_CP_NO_RAW, 7030 .writefn = tlbi_aa64_alle1is_write }, 7031 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7032 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7033 .access = PL2_W, .type = ARM_CP_NO_RAW, 7034 .writefn = tlbi_aa64_vae2is_write }, 7035 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7036 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7037 .access = PL2_W, .type = ARM_CP_NO_RAW, 7038 .writefn = tlbi_aa64_alle1is_write }, 7039 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7040 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7041 .access = PL2_W, .type = ARM_CP_NOP }, 7042 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7043 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7044 .access = PL2_W, .type = ARM_CP_NOP }, 7045 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7046 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7047 .access = PL2_W, .type = ARM_CP_NOP }, 7048 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7049 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7050 .access = PL2_W, .type = ARM_CP_NOP }, 7051 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7052 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7053 .access = PL3_W, .type = ARM_CP_NO_RAW, 7054 .writefn = tlbi_aa64_alle3is_write }, 7055 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7056 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7057 .access = PL3_W, .type = ARM_CP_NO_RAW, 7058 .writefn = tlbi_aa64_vae3is_write }, 7059 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7060 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7061 .access = PL3_W, .type = ARM_CP_NO_RAW, 7062 .writefn = tlbi_aa64_vae3is_write }, 7063 REGINFO_SENTINEL 7064 }; 7065 7066 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7067 { 7068 Error *err = NULL; 7069 uint64_t ret; 7070 7071 /* Success sets NZCV = 0000. */ 7072 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7073 7074 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7075 /* 7076 * ??? Failed, for unknown reasons in the crypto subsystem. 7077 * The best we can do is log the reason and return the 7078 * timed-out indication to the guest. There is no reason 7079 * we know to expect this failure to be transitory, so the 7080 * guest may well hang retrying the operation. 7081 */ 7082 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7083 ri->name, error_get_pretty(err)); 7084 error_free(err); 7085 7086 env->ZF = 0; /* NZCF = 0100 */ 7087 return 0; 7088 } 7089 return ret; 7090 } 7091 7092 /* We do not support re-seeding, so the two registers operate the same. */ 7093 static const ARMCPRegInfo rndr_reginfo[] = { 7094 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7095 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7096 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7097 .access = PL0_R, .readfn = rndr_readfn }, 7098 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7099 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7100 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7101 .access = PL0_R, .readfn = rndr_readfn }, 7102 REGINFO_SENTINEL 7103 }; 7104 7105 #ifndef CONFIG_USER_ONLY 7106 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7107 uint64_t value) 7108 { 7109 ARMCPU *cpu = env_archcpu(env); 7110 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7111 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7112 uint64_t vaddr_in = (uint64_t) value; 7113 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7114 void *haddr; 7115 int mem_idx = cpu_mmu_index(env, false); 7116 7117 /* This won't be crossing page boundaries */ 7118 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7119 if (haddr) { 7120 7121 ram_addr_t offset; 7122 MemoryRegion *mr; 7123 7124 /* RCU lock is already being held */ 7125 mr = memory_region_from_host(haddr, &offset); 7126 7127 if (mr) { 7128 memory_region_writeback(mr, offset, dline_size); 7129 } 7130 } 7131 } 7132 7133 static const ARMCPRegInfo dcpop_reg[] = { 7134 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7135 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7136 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7137 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7138 REGINFO_SENTINEL 7139 }; 7140 7141 static const ARMCPRegInfo dcpodp_reg[] = { 7142 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7143 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7144 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7145 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7146 REGINFO_SENTINEL 7147 }; 7148 #endif /*CONFIG_USER_ONLY*/ 7149 7150 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7151 bool isread) 7152 { 7153 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7154 return CP_ACCESS_TRAP_EL2; 7155 } 7156 7157 return CP_ACCESS_OK; 7158 } 7159 7160 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7161 bool isread) 7162 { 7163 int el = arm_current_el(env); 7164 7165 if (el < 2 && arm_is_el2_enabled(env)) { 7166 uint64_t hcr = arm_hcr_el2_eff(env); 7167 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7168 return CP_ACCESS_TRAP_EL2; 7169 } 7170 } 7171 if (el < 3 && 7172 arm_feature(env, ARM_FEATURE_EL3) && 7173 !(env->cp15.scr_el3 & SCR_ATA)) { 7174 return CP_ACCESS_TRAP_EL3; 7175 } 7176 return CP_ACCESS_OK; 7177 } 7178 7179 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7180 { 7181 return env->pstate & PSTATE_TCO; 7182 } 7183 7184 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7185 { 7186 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7187 } 7188 7189 static const ARMCPRegInfo mte_reginfo[] = { 7190 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7191 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7192 .access = PL1_RW, .accessfn = access_mte, 7193 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7194 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7195 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7196 .access = PL1_RW, .accessfn = access_mte, 7197 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7198 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7199 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7200 .access = PL2_RW, .accessfn = access_mte, 7201 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7202 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7203 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7204 .access = PL3_RW, 7205 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7206 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7207 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7208 .access = PL1_RW, .accessfn = access_mte, 7209 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7210 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7211 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7212 .access = PL1_RW, .accessfn = access_mte, 7213 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7214 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7215 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7216 .access = PL1_R, .accessfn = access_aa64_tid5, 7217 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7218 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7219 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7220 .type = ARM_CP_NO_RAW, 7221 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7222 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7223 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7224 .type = ARM_CP_NOP, .access = PL1_W, 7225 .accessfn = aa64_cacheop_poc_access }, 7226 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7227 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7228 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7229 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7230 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7231 .type = ARM_CP_NOP, .access = PL1_W, 7232 .accessfn = aa64_cacheop_poc_access }, 7233 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7234 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7235 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7236 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7237 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7238 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7239 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7240 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7241 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7242 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7243 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7244 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7245 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7246 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7247 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7248 REGINFO_SENTINEL 7249 }; 7250 7251 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7252 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7253 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7254 .type = ARM_CP_CONST, .access = PL0_RW, }, 7255 REGINFO_SENTINEL 7256 }; 7257 7258 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7259 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7260 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7261 .type = ARM_CP_NOP, .access = PL0_W, 7262 .accessfn = aa64_cacheop_poc_access }, 7263 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7264 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7265 .type = ARM_CP_NOP, .access = PL0_W, 7266 .accessfn = aa64_cacheop_poc_access }, 7267 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7268 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7269 .type = ARM_CP_NOP, .access = PL0_W, 7270 .accessfn = aa64_cacheop_poc_access }, 7271 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7272 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7273 .type = ARM_CP_NOP, .access = PL0_W, 7274 .accessfn = aa64_cacheop_poc_access }, 7275 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7276 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7277 .type = ARM_CP_NOP, .access = PL0_W, 7278 .accessfn = aa64_cacheop_poc_access }, 7279 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7280 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7281 .type = ARM_CP_NOP, .access = PL0_W, 7282 .accessfn = aa64_cacheop_poc_access }, 7283 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7284 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7285 .type = ARM_CP_NOP, .access = PL0_W, 7286 .accessfn = aa64_cacheop_poc_access }, 7287 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7288 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7289 .type = ARM_CP_NOP, .access = PL0_W, 7290 .accessfn = aa64_cacheop_poc_access }, 7291 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7292 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7293 .access = PL0_W, .type = ARM_CP_DC_GVA, 7294 #ifndef CONFIG_USER_ONLY 7295 /* Avoid overhead of an access check that always passes in user-mode */ 7296 .accessfn = aa64_zva_access, 7297 #endif 7298 }, 7299 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7300 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7301 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7302 #ifndef CONFIG_USER_ONLY 7303 /* Avoid overhead of an access check that always passes in user-mode */ 7304 .accessfn = aa64_zva_access, 7305 #endif 7306 }, 7307 REGINFO_SENTINEL 7308 }; 7309 7310 #endif 7311 7312 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7313 bool isread) 7314 { 7315 int el = arm_current_el(env); 7316 7317 if (el == 0) { 7318 uint64_t sctlr = arm_sctlr(env, el); 7319 if (!(sctlr & SCTLR_EnRCTX)) { 7320 return CP_ACCESS_TRAP; 7321 } 7322 } else if (el == 1) { 7323 uint64_t hcr = arm_hcr_el2_eff(env); 7324 if (hcr & HCR_NV) { 7325 return CP_ACCESS_TRAP_EL2; 7326 } 7327 } 7328 return CP_ACCESS_OK; 7329 } 7330 7331 static const ARMCPRegInfo predinv_reginfo[] = { 7332 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7333 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7334 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7335 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7336 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7337 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7338 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7339 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7340 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7341 /* 7342 * Note the AArch32 opcodes have a different OPC1. 7343 */ 7344 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7345 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7346 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7347 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7348 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7349 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7350 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7351 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7352 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7353 REGINFO_SENTINEL 7354 }; 7355 7356 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7357 { 7358 /* Read the high 32 bits of the current CCSIDR */ 7359 return extract64(ccsidr_read(env, ri), 32, 32); 7360 } 7361 7362 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7363 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7364 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7365 .access = PL1_R, 7366 .accessfn = access_aa64_tid2, 7367 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7368 REGINFO_SENTINEL 7369 }; 7370 7371 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7372 bool isread) 7373 { 7374 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7375 return CP_ACCESS_TRAP_EL2; 7376 } 7377 7378 return CP_ACCESS_OK; 7379 } 7380 7381 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7382 bool isread) 7383 { 7384 if (arm_feature(env, ARM_FEATURE_V8)) { 7385 return access_aa64_tid3(env, ri, isread); 7386 } 7387 7388 return CP_ACCESS_OK; 7389 } 7390 7391 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7392 bool isread) 7393 { 7394 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7395 return CP_ACCESS_TRAP_EL2; 7396 } 7397 7398 return CP_ACCESS_OK; 7399 } 7400 7401 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7402 const ARMCPRegInfo *ri, bool isread) 7403 { 7404 /* 7405 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7406 * in v7A, not in v8A. 7407 */ 7408 if (!arm_feature(env, ARM_FEATURE_V8) && 7409 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7410 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7411 return CP_ACCESS_TRAP_EL2; 7412 } 7413 return CP_ACCESS_OK; 7414 } 7415 7416 static const ARMCPRegInfo jazelle_regs[] = { 7417 { .name = "JIDR", 7418 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7419 .access = PL1_R, .accessfn = access_jazelle, 7420 .type = ARM_CP_CONST, .resetvalue = 0 }, 7421 { .name = "JOSCR", 7422 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7423 .accessfn = access_joscr_jmcr, 7424 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7425 { .name = "JMCR", 7426 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7427 .accessfn = access_joscr_jmcr, 7428 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7429 REGINFO_SENTINEL 7430 }; 7431 7432 static const ARMCPRegInfo vhe_reginfo[] = { 7433 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7434 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7435 .access = PL2_RW, 7436 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7437 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7438 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7439 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7440 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7441 #ifndef CONFIG_USER_ONLY 7442 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7443 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7444 .fieldoffset = 7445 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7446 .type = ARM_CP_IO, .access = PL2_RW, 7447 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7448 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7449 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7450 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7451 .resetfn = gt_hv_timer_reset, 7452 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7453 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7454 .type = ARM_CP_IO, 7455 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7456 .access = PL2_RW, 7457 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7458 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7459 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7460 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7461 .type = ARM_CP_IO | ARM_CP_ALIAS, 7462 .access = PL2_RW, .accessfn = e2h_access, 7463 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7464 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7465 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7466 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7467 .type = ARM_CP_IO | ARM_CP_ALIAS, 7468 .access = PL2_RW, .accessfn = e2h_access, 7469 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7470 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7471 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7472 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7473 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7474 .access = PL2_RW, .accessfn = e2h_access, 7475 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7476 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7477 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7478 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7479 .access = PL2_RW, .accessfn = e2h_access, 7480 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7481 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7482 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7483 .type = ARM_CP_IO | ARM_CP_ALIAS, 7484 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7485 .access = PL2_RW, .accessfn = e2h_access, 7486 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7487 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7488 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7489 .type = ARM_CP_IO | ARM_CP_ALIAS, 7490 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7491 .access = PL2_RW, .accessfn = e2h_access, 7492 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7493 #endif 7494 REGINFO_SENTINEL 7495 }; 7496 7497 #ifndef CONFIG_USER_ONLY 7498 static const ARMCPRegInfo ats1e1_reginfo[] = { 7499 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7500 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7501 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7502 .writefn = ats_write64 }, 7503 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7504 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7505 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7506 .writefn = ats_write64 }, 7507 REGINFO_SENTINEL 7508 }; 7509 7510 static const ARMCPRegInfo ats1cp_reginfo[] = { 7511 { .name = "ATS1CPRP", 7512 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7513 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7514 .writefn = ats_write }, 7515 { .name = "ATS1CPWP", 7516 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7517 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7518 .writefn = ats_write }, 7519 REGINFO_SENTINEL 7520 }; 7521 #endif 7522 7523 /* 7524 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7525 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7526 * is non-zero, which is never for ARMv7, optionally in ARMv8 7527 * and mandatorily for ARMv8.2 and up. 7528 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7529 * implementation is RAZ/WI we can ignore this detail, as we 7530 * do for ACTLR. 7531 */ 7532 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7533 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7534 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7535 .access = PL1_RW, .accessfn = access_tacr, 7536 .type = ARM_CP_CONST, .resetvalue = 0 }, 7537 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7538 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7539 .access = PL2_RW, .type = ARM_CP_CONST, 7540 .resetvalue = 0 }, 7541 REGINFO_SENTINEL 7542 }; 7543 7544 void register_cp_regs_for_features(ARMCPU *cpu) 7545 { 7546 /* Register all the coprocessor registers based on feature bits */ 7547 CPUARMState *env = &cpu->env; 7548 if (arm_feature(env, ARM_FEATURE_M)) { 7549 /* M profile has no coprocessor registers */ 7550 return; 7551 } 7552 7553 define_arm_cp_regs(cpu, cp_reginfo); 7554 if (!arm_feature(env, ARM_FEATURE_V8)) { 7555 /* Must go early as it is full of wildcards that may be 7556 * overridden by later definitions. 7557 */ 7558 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7559 } 7560 7561 if (arm_feature(env, ARM_FEATURE_V6)) { 7562 /* The ID registers all have impdef reset values */ 7563 ARMCPRegInfo v6_idregs[] = { 7564 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7565 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7566 .access = PL1_R, .type = ARM_CP_CONST, 7567 .accessfn = access_aa32_tid3, 7568 .resetvalue = cpu->isar.id_pfr0 }, 7569 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7570 * the value of the GIC field until after we define these regs. 7571 */ 7572 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7573 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7574 .access = PL1_R, .type = ARM_CP_NO_RAW, 7575 .accessfn = access_aa32_tid3, 7576 .readfn = id_pfr1_read, 7577 .writefn = arm_cp_write_ignore }, 7578 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7579 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7580 .access = PL1_R, .type = ARM_CP_CONST, 7581 .accessfn = access_aa32_tid3, 7582 .resetvalue = cpu->isar.id_dfr0 }, 7583 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7584 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7585 .access = PL1_R, .type = ARM_CP_CONST, 7586 .accessfn = access_aa32_tid3, 7587 .resetvalue = cpu->id_afr0 }, 7588 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7589 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7590 .access = PL1_R, .type = ARM_CP_CONST, 7591 .accessfn = access_aa32_tid3, 7592 .resetvalue = cpu->isar.id_mmfr0 }, 7593 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7594 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7595 .access = PL1_R, .type = ARM_CP_CONST, 7596 .accessfn = access_aa32_tid3, 7597 .resetvalue = cpu->isar.id_mmfr1 }, 7598 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7599 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7600 .access = PL1_R, .type = ARM_CP_CONST, 7601 .accessfn = access_aa32_tid3, 7602 .resetvalue = cpu->isar.id_mmfr2 }, 7603 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7604 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7605 .access = PL1_R, .type = ARM_CP_CONST, 7606 .accessfn = access_aa32_tid3, 7607 .resetvalue = cpu->isar.id_mmfr3 }, 7608 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7609 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7610 .access = PL1_R, .type = ARM_CP_CONST, 7611 .accessfn = access_aa32_tid3, 7612 .resetvalue = cpu->isar.id_isar0 }, 7613 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7614 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7615 .access = PL1_R, .type = ARM_CP_CONST, 7616 .accessfn = access_aa32_tid3, 7617 .resetvalue = cpu->isar.id_isar1 }, 7618 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7619 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7620 .access = PL1_R, .type = ARM_CP_CONST, 7621 .accessfn = access_aa32_tid3, 7622 .resetvalue = cpu->isar.id_isar2 }, 7623 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7624 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7625 .access = PL1_R, .type = ARM_CP_CONST, 7626 .accessfn = access_aa32_tid3, 7627 .resetvalue = cpu->isar.id_isar3 }, 7628 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7629 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7630 .access = PL1_R, .type = ARM_CP_CONST, 7631 .accessfn = access_aa32_tid3, 7632 .resetvalue = cpu->isar.id_isar4 }, 7633 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7634 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7635 .access = PL1_R, .type = ARM_CP_CONST, 7636 .accessfn = access_aa32_tid3, 7637 .resetvalue = cpu->isar.id_isar5 }, 7638 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7639 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7640 .access = PL1_R, .type = ARM_CP_CONST, 7641 .accessfn = access_aa32_tid3, 7642 .resetvalue = cpu->isar.id_mmfr4 }, 7643 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7644 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7645 .access = PL1_R, .type = ARM_CP_CONST, 7646 .accessfn = access_aa32_tid3, 7647 .resetvalue = cpu->isar.id_isar6 }, 7648 REGINFO_SENTINEL 7649 }; 7650 define_arm_cp_regs(cpu, v6_idregs); 7651 define_arm_cp_regs(cpu, v6_cp_reginfo); 7652 } else { 7653 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7654 } 7655 if (arm_feature(env, ARM_FEATURE_V6K)) { 7656 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7657 } 7658 if (arm_feature(env, ARM_FEATURE_V7MP) && 7659 !arm_feature(env, ARM_FEATURE_PMSA)) { 7660 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7661 } 7662 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7663 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7664 } 7665 if (arm_feature(env, ARM_FEATURE_V7)) { 7666 ARMCPRegInfo clidr = { 7667 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7668 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7669 .access = PL1_R, .type = ARM_CP_CONST, 7670 .accessfn = access_aa64_tid2, 7671 .resetvalue = cpu->clidr 7672 }; 7673 define_one_arm_cp_reg(cpu, &clidr); 7674 define_arm_cp_regs(cpu, v7_cp_reginfo); 7675 define_debug_regs(cpu); 7676 define_pmu_regs(cpu); 7677 } else { 7678 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7679 } 7680 if (arm_feature(env, ARM_FEATURE_V8)) { 7681 /* AArch64 ID registers, which all have impdef reset values. 7682 * Note that within the ID register ranges the unused slots 7683 * must all RAZ, not UNDEF; future architecture versions may 7684 * define new registers here. 7685 */ 7686 ARMCPRegInfo v8_idregs[] = { 7687 /* 7688 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7689 * emulation because we don't know the right value for the 7690 * GIC field until after we define these regs. 7691 */ 7692 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7693 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7694 .access = PL1_R, 7695 #ifdef CONFIG_USER_ONLY 7696 .type = ARM_CP_CONST, 7697 .resetvalue = cpu->isar.id_aa64pfr0 7698 #else 7699 .type = ARM_CP_NO_RAW, 7700 .accessfn = access_aa64_tid3, 7701 .readfn = id_aa64pfr0_read, 7702 .writefn = arm_cp_write_ignore 7703 #endif 7704 }, 7705 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7706 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7707 .access = PL1_R, .type = ARM_CP_CONST, 7708 .accessfn = access_aa64_tid3, 7709 .resetvalue = cpu->isar.id_aa64pfr1}, 7710 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7711 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7712 .access = PL1_R, .type = ARM_CP_CONST, 7713 .accessfn = access_aa64_tid3, 7714 .resetvalue = 0 }, 7715 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7716 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7717 .access = PL1_R, .type = ARM_CP_CONST, 7718 .accessfn = access_aa64_tid3, 7719 .resetvalue = 0 }, 7720 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7721 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7722 .access = PL1_R, .type = ARM_CP_CONST, 7723 .accessfn = access_aa64_tid3, 7724 .resetvalue = cpu->isar.id_aa64zfr0 }, 7725 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7726 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7727 .access = PL1_R, .type = ARM_CP_CONST, 7728 .accessfn = access_aa64_tid3, 7729 .resetvalue = 0 }, 7730 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7732 .access = PL1_R, .type = ARM_CP_CONST, 7733 .accessfn = access_aa64_tid3, 7734 .resetvalue = 0 }, 7735 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7736 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7737 .access = PL1_R, .type = ARM_CP_CONST, 7738 .accessfn = access_aa64_tid3, 7739 .resetvalue = 0 }, 7740 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7741 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7742 .access = PL1_R, .type = ARM_CP_CONST, 7743 .accessfn = access_aa64_tid3, 7744 .resetvalue = cpu->isar.id_aa64dfr0 }, 7745 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7746 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7747 .access = PL1_R, .type = ARM_CP_CONST, 7748 .accessfn = access_aa64_tid3, 7749 .resetvalue = cpu->isar.id_aa64dfr1 }, 7750 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7751 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7752 .access = PL1_R, .type = ARM_CP_CONST, 7753 .accessfn = access_aa64_tid3, 7754 .resetvalue = 0 }, 7755 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7756 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7757 .access = PL1_R, .type = ARM_CP_CONST, 7758 .accessfn = access_aa64_tid3, 7759 .resetvalue = 0 }, 7760 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7761 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7762 .access = PL1_R, .type = ARM_CP_CONST, 7763 .accessfn = access_aa64_tid3, 7764 .resetvalue = cpu->id_aa64afr0 }, 7765 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7766 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7767 .access = PL1_R, .type = ARM_CP_CONST, 7768 .accessfn = access_aa64_tid3, 7769 .resetvalue = cpu->id_aa64afr1 }, 7770 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7771 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7772 .access = PL1_R, .type = ARM_CP_CONST, 7773 .accessfn = access_aa64_tid3, 7774 .resetvalue = 0 }, 7775 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7777 .access = PL1_R, .type = ARM_CP_CONST, 7778 .accessfn = access_aa64_tid3, 7779 .resetvalue = 0 }, 7780 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7781 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7782 .access = PL1_R, .type = ARM_CP_CONST, 7783 .accessfn = access_aa64_tid3, 7784 .resetvalue = cpu->isar.id_aa64isar0 }, 7785 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7786 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7787 .access = PL1_R, .type = ARM_CP_CONST, 7788 .accessfn = access_aa64_tid3, 7789 .resetvalue = cpu->isar.id_aa64isar1 }, 7790 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7791 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7792 .access = PL1_R, .type = ARM_CP_CONST, 7793 .accessfn = access_aa64_tid3, 7794 .resetvalue = 0 }, 7795 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7797 .access = PL1_R, .type = ARM_CP_CONST, 7798 .accessfn = access_aa64_tid3, 7799 .resetvalue = 0 }, 7800 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7801 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7802 .access = PL1_R, .type = ARM_CP_CONST, 7803 .accessfn = access_aa64_tid3, 7804 .resetvalue = 0 }, 7805 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7807 .access = PL1_R, .type = ARM_CP_CONST, 7808 .accessfn = access_aa64_tid3, 7809 .resetvalue = 0 }, 7810 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7811 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7812 .access = PL1_R, .type = ARM_CP_CONST, 7813 .accessfn = access_aa64_tid3, 7814 .resetvalue = 0 }, 7815 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7817 .access = PL1_R, .type = ARM_CP_CONST, 7818 .accessfn = access_aa64_tid3, 7819 .resetvalue = 0 }, 7820 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7821 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7822 .access = PL1_R, .type = ARM_CP_CONST, 7823 .accessfn = access_aa64_tid3, 7824 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7825 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7826 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7827 .access = PL1_R, .type = ARM_CP_CONST, 7828 .accessfn = access_aa64_tid3, 7829 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7830 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7831 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7832 .access = PL1_R, .type = ARM_CP_CONST, 7833 .accessfn = access_aa64_tid3, 7834 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7835 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7837 .access = PL1_R, .type = ARM_CP_CONST, 7838 .accessfn = access_aa64_tid3, 7839 .resetvalue = 0 }, 7840 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7841 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7842 .access = PL1_R, .type = ARM_CP_CONST, 7843 .accessfn = access_aa64_tid3, 7844 .resetvalue = 0 }, 7845 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7846 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7847 .access = PL1_R, .type = ARM_CP_CONST, 7848 .accessfn = access_aa64_tid3, 7849 .resetvalue = 0 }, 7850 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7851 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7852 .access = PL1_R, .type = ARM_CP_CONST, 7853 .accessfn = access_aa64_tid3, 7854 .resetvalue = 0 }, 7855 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7856 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7857 .access = PL1_R, .type = ARM_CP_CONST, 7858 .accessfn = access_aa64_tid3, 7859 .resetvalue = 0 }, 7860 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7861 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7862 .access = PL1_R, .type = ARM_CP_CONST, 7863 .accessfn = access_aa64_tid3, 7864 .resetvalue = cpu->isar.mvfr0 }, 7865 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7866 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7867 .access = PL1_R, .type = ARM_CP_CONST, 7868 .accessfn = access_aa64_tid3, 7869 .resetvalue = cpu->isar.mvfr1 }, 7870 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7871 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7872 .access = PL1_R, .type = ARM_CP_CONST, 7873 .accessfn = access_aa64_tid3, 7874 .resetvalue = cpu->isar.mvfr2 }, 7875 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7877 .access = PL1_R, .type = ARM_CP_CONST, 7878 .accessfn = access_aa64_tid3, 7879 .resetvalue = 0 }, 7880 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7881 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7882 .access = PL1_R, .type = ARM_CP_CONST, 7883 .accessfn = access_aa64_tid3, 7884 .resetvalue = cpu->isar.id_pfr2 }, 7885 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7886 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7887 .access = PL1_R, .type = ARM_CP_CONST, 7888 .accessfn = access_aa64_tid3, 7889 .resetvalue = 0 }, 7890 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7891 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7892 .access = PL1_R, .type = ARM_CP_CONST, 7893 .accessfn = access_aa64_tid3, 7894 .resetvalue = 0 }, 7895 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7896 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7897 .access = PL1_R, .type = ARM_CP_CONST, 7898 .accessfn = access_aa64_tid3, 7899 .resetvalue = 0 }, 7900 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7901 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7902 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7903 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7904 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7905 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7906 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7907 .resetvalue = cpu->pmceid0 }, 7908 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7909 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7910 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7911 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7912 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7913 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7914 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7915 .resetvalue = cpu->pmceid1 }, 7916 REGINFO_SENTINEL 7917 }; 7918 #ifdef CONFIG_USER_ONLY 7919 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7920 { .name = "ID_AA64PFR0_EL1", 7921 .exported_bits = 0x000f000f00ff0000, 7922 .fixed_bits = 0x0000000000000011 }, 7923 { .name = "ID_AA64PFR1_EL1", 7924 .exported_bits = 0x00000000000000f0 }, 7925 { .name = "ID_AA64PFR*_EL1_RESERVED", 7926 .is_glob = true }, 7927 { .name = "ID_AA64ZFR0_EL1" }, 7928 { .name = "ID_AA64MMFR0_EL1", 7929 .fixed_bits = 0x00000000ff000000 }, 7930 { .name = "ID_AA64MMFR1_EL1" }, 7931 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7932 .is_glob = true }, 7933 { .name = "ID_AA64DFR0_EL1", 7934 .fixed_bits = 0x0000000000000006 }, 7935 { .name = "ID_AA64DFR1_EL1" }, 7936 { .name = "ID_AA64DFR*_EL1_RESERVED", 7937 .is_glob = true }, 7938 { .name = "ID_AA64AFR*", 7939 .is_glob = true }, 7940 { .name = "ID_AA64ISAR0_EL1", 7941 .exported_bits = 0x00fffffff0fffff0 }, 7942 { .name = "ID_AA64ISAR1_EL1", 7943 .exported_bits = 0x000000f0ffffffff }, 7944 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7945 .is_glob = true }, 7946 REGUSERINFO_SENTINEL 7947 }; 7948 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7949 #endif 7950 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7951 if (!arm_feature(env, ARM_FEATURE_EL3) && 7952 !arm_feature(env, ARM_FEATURE_EL2)) { 7953 ARMCPRegInfo rvbar = { 7954 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7955 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7956 .access = PL1_R, 7957 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7958 }; 7959 define_one_arm_cp_reg(cpu, &rvbar); 7960 } 7961 define_arm_cp_regs(cpu, v8_idregs); 7962 define_arm_cp_regs(cpu, v8_cp_reginfo); 7963 } 7964 if (arm_feature(env, ARM_FEATURE_EL2)) { 7965 uint64_t vmpidr_def = mpidr_read_val(env); 7966 ARMCPRegInfo vpidr_regs[] = { 7967 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7968 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7969 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7970 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7971 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7972 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7973 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7974 .access = PL2_RW, .resetvalue = cpu->midr, 7975 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7976 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7977 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7978 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7979 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7980 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7981 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7982 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7983 .access = PL2_RW, 7984 .resetvalue = vmpidr_def, 7985 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7986 REGINFO_SENTINEL 7987 }; 7988 define_arm_cp_regs(cpu, vpidr_regs); 7989 define_arm_cp_regs(cpu, el2_cp_reginfo); 7990 if (arm_feature(env, ARM_FEATURE_V8)) { 7991 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7992 } 7993 if (cpu_isar_feature(aa64_sel2, cpu)) { 7994 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7995 } 7996 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7997 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7998 ARMCPRegInfo rvbar = { 7999 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8000 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8001 .access = PL2_R, 8002 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8003 }; 8004 define_one_arm_cp_reg(cpu, &rvbar); 8005 } 8006 } else { 8007 /* If EL2 is missing but higher ELs are enabled, we need to 8008 * register the no_el2 reginfos. 8009 */ 8010 if (arm_feature(env, ARM_FEATURE_EL3)) { 8011 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 8012 * of MIDR_EL1 and MPIDR_EL1. 8013 */ 8014 ARMCPRegInfo vpidr_regs[] = { 8015 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8016 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8017 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8018 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 8019 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8020 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8021 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8022 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8023 .type = ARM_CP_NO_RAW, 8024 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 8025 REGINFO_SENTINEL 8026 }; 8027 define_arm_cp_regs(cpu, vpidr_regs); 8028 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 8029 if (arm_feature(env, ARM_FEATURE_V8)) { 8030 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 8031 } 8032 } 8033 } 8034 if (arm_feature(env, ARM_FEATURE_EL3)) { 8035 define_arm_cp_regs(cpu, el3_cp_reginfo); 8036 ARMCPRegInfo el3_regs[] = { 8037 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8038 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8039 .access = PL3_R, 8040 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8041 }, 8042 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8043 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8044 .access = PL3_RW, 8045 .raw_writefn = raw_write, .writefn = sctlr_write, 8046 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8047 .resetvalue = cpu->reset_sctlr }, 8048 REGINFO_SENTINEL 8049 }; 8050 8051 define_arm_cp_regs(cpu, el3_regs); 8052 } 8053 /* The behaviour of NSACR is sufficiently various that we don't 8054 * try to describe it in a single reginfo: 8055 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8056 * reads as constant 0xc00 from NS EL1 and NS EL2 8057 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8058 * if v7 without EL3, register doesn't exist 8059 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8060 */ 8061 if (arm_feature(env, ARM_FEATURE_EL3)) { 8062 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8063 ARMCPRegInfo nsacr = { 8064 .name = "NSACR", .type = ARM_CP_CONST, 8065 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8066 .access = PL1_RW, .accessfn = nsacr_access, 8067 .resetvalue = 0xc00 8068 }; 8069 define_one_arm_cp_reg(cpu, &nsacr); 8070 } else { 8071 ARMCPRegInfo nsacr = { 8072 .name = "NSACR", 8073 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8074 .access = PL3_RW | PL1_R, 8075 .resetvalue = 0, 8076 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8077 }; 8078 define_one_arm_cp_reg(cpu, &nsacr); 8079 } 8080 } else { 8081 if (arm_feature(env, ARM_FEATURE_V8)) { 8082 ARMCPRegInfo nsacr = { 8083 .name = "NSACR", .type = ARM_CP_CONST, 8084 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8085 .access = PL1_R, 8086 .resetvalue = 0xc00 8087 }; 8088 define_one_arm_cp_reg(cpu, &nsacr); 8089 } 8090 } 8091 8092 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8093 if (arm_feature(env, ARM_FEATURE_V6)) { 8094 /* PMSAv6 not implemented */ 8095 assert(arm_feature(env, ARM_FEATURE_V7)); 8096 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8097 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8098 } else { 8099 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8100 } 8101 } else { 8102 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8103 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8104 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8105 if (cpu_isar_feature(aa32_hpd, cpu)) { 8106 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8107 } 8108 } 8109 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8110 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8111 } 8112 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8113 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8114 } 8115 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8116 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8117 } 8118 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8119 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8120 } 8121 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8122 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8123 } 8124 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8125 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8126 } 8127 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8128 define_arm_cp_regs(cpu, omap_cp_reginfo); 8129 } 8130 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8131 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8132 } 8133 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8134 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8135 } 8136 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8137 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8138 } 8139 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8140 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8141 } 8142 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8143 define_arm_cp_regs(cpu, jazelle_regs); 8144 } 8145 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8146 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8147 * be read-only (ie write causes UNDEF exception). 8148 */ 8149 { 8150 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8151 /* Pre-v8 MIDR space. 8152 * Note that the MIDR isn't a simple constant register because 8153 * of the TI925 behaviour where writes to another register can 8154 * cause the MIDR value to change. 8155 * 8156 * Unimplemented registers in the c15 0 0 0 space default to 8157 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8158 * and friends override accordingly. 8159 */ 8160 { .name = "MIDR", 8161 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8162 .access = PL1_R, .resetvalue = cpu->midr, 8163 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8164 .readfn = midr_read, 8165 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8166 .type = ARM_CP_OVERRIDE }, 8167 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8168 { .name = "DUMMY", 8169 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8170 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8171 { .name = "DUMMY", 8172 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8173 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8174 { .name = "DUMMY", 8175 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8176 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8177 { .name = "DUMMY", 8178 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8179 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8180 { .name = "DUMMY", 8181 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8182 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8183 REGINFO_SENTINEL 8184 }; 8185 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8186 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8187 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8188 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8189 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8190 .readfn = midr_read }, 8191 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8192 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8193 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8194 .access = PL1_R, .resetvalue = cpu->midr }, 8195 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8196 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8197 .access = PL1_R, .resetvalue = cpu->midr }, 8198 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8199 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8200 .access = PL1_R, 8201 .accessfn = access_aa64_tid1, 8202 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8203 REGINFO_SENTINEL 8204 }; 8205 ARMCPRegInfo id_cp_reginfo[] = { 8206 /* These are common to v8 and pre-v8 */ 8207 { .name = "CTR", 8208 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8209 .access = PL1_R, .accessfn = ctr_el0_access, 8210 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8211 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8212 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8213 .access = PL0_R, .accessfn = ctr_el0_access, 8214 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8215 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8216 { .name = "TCMTR", 8217 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8218 .access = PL1_R, 8219 .accessfn = access_aa32_tid1, 8220 .type = ARM_CP_CONST, .resetvalue = 0 }, 8221 REGINFO_SENTINEL 8222 }; 8223 /* TLBTR is specific to VMSA */ 8224 ARMCPRegInfo id_tlbtr_reginfo = { 8225 .name = "TLBTR", 8226 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8227 .access = PL1_R, 8228 .accessfn = access_aa32_tid1, 8229 .type = ARM_CP_CONST, .resetvalue = 0, 8230 }; 8231 /* MPUIR is specific to PMSA V6+ */ 8232 ARMCPRegInfo id_mpuir_reginfo = { 8233 .name = "MPUIR", 8234 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8235 .access = PL1_R, .type = ARM_CP_CONST, 8236 .resetvalue = cpu->pmsav7_dregion << 8 8237 }; 8238 ARMCPRegInfo crn0_wi_reginfo = { 8239 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8240 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8241 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8242 }; 8243 #ifdef CONFIG_USER_ONLY 8244 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8245 { .name = "MIDR_EL1", 8246 .exported_bits = 0x00000000ffffffff }, 8247 { .name = "REVIDR_EL1" }, 8248 REGUSERINFO_SENTINEL 8249 }; 8250 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8251 #endif 8252 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8253 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8254 ARMCPRegInfo *r; 8255 /* Register the blanket "writes ignored" value first to cover the 8256 * whole space. Then update the specific ID registers to allow write 8257 * access, so that they ignore writes rather than causing them to 8258 * UNDEF. 8259 */ 8260 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8261 for (r = id_pre_v8_midr_cp_reginfo; 8262 r->type != ARM_CP_SENTINEL; r++) { 8263 r->access = PL1_RW; 8264 } 8265 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8266 r->access = PL1_RW; 8267 } 8268 id_mpuir_reginfo.access = PL1_RW; 8269 id_tlbtr_reginfo.access = PL1_RW; 8270 } 8271 if (arm_feature(env, ARM_FEATURE_V8)) { 8272 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8273 } else { 8274 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8275 } 8276 define_arm_cp_regs(cpu, id_cp_reginfo); 8277 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8278 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8279 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8280 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8281 } 8282 } 8283 8284 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8285 ARMCPRegInfo mpidr_cp_reginfo[] = { 8286 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8287 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8288 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8289 REGINFO_SENTINEL 8290 }; 8291 #ifdef CONFIG_USER_ONLY 8292 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8293 { .name = "MPIDR_EL1", 8294 .fixed_bits = 0x0000000080000000 }, 8295 REGUSERINFO_SENTINEL 8296 }; 8297 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8298 #endif 8299 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8300 } 8301 8302 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8303 ARMCPRegInfo auxcr_reginfo[] = { 8304 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8305 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8306 .access = PL1_RW, .accessfn = access_tacr, 8307 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8308 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8309 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8310 .access = PL2_RW, .type = ARM_CP_CONST, 8311 .resetvalue = 0 }, 8312 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8313 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8314 .access = PL3_RW, .type = ARM_CP_CONST, 8315 .resetvalue = 0 }, 8316 REGINFO_SENTINEL 8317 }; 8318 define_arm_cp_regs(cpu, auxcr_reginfo); 8319 if (cpu_isar_feature(aa32_ac2, cpu)) { 8320 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8321 } 8322 } 8323 8324 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8325 /* 8326 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8327 * There are two flavours: 8328 * (1) older 32-bit only cores have a simple 32-bit CBAR 8329 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8330 * 32-bit register visible to AArch32 at a different encoding 8331 * to the "flavour 1" register and with the bits rearranged to 8332 * be able to squash a 64-bit address into the 32-bit view. 8333 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8334 * in future if we support AArch32-only configs of some of the 8335 * AArch64 cores we might need to add a specific feature flag 8336 * to indicate cores with "flavour 2" CBAR. 8337 */ 8338 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8339 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8340 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8341 | extract64(cpu->reset_cbar, 32, 12); 8342 ARMCPRegInfo cbar_reginfo[] = { 8343 { .name = "CBAR", 8344 .type = ARM_CP_CONST, 8345 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8346 .access = PL1_R, .resetvalue = cbar32 }, 8347 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8348 .type = ARM_CP_CONST, 8349 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8350 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8351 REGINFO_SENTINEL 8352 }; 8353 /* We don't implement a r/w 64 bit CBAR currently */ 8354 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8355 define_arm_cp_regs(cpu, cbar_reginfo); 8356 } else { 8357 ARMCPRegInfo cbar = { 8358 .name = "CBAR", 8359 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8360 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8361 .fieldoffset = offsetof(CPUARMState, 8362 cp15.c15_config_base_address) 8363 }; 8364 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8365 cbar.access = PL1_R; 8366 cbar.fieldoffset = 0; 8367 cbar.type = ARM_CP_CONST; 8368 } 8369 define_one_arm_cp_reg(cpu, &cbar); 8370 } 8371 } 8372 8373 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8374 ARMCPRegInfo vbar_cp_reginfo[] = { 8375 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8376 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8377 .access = PL1_RW, .writefn = vbar_write, 8378 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8379 offsetof(CPUARMState, cp15.vbar_ns) }, 8380 .resetvalue = 0 }, 8381 REGINFO_SENTINEL 8382 }; 8383 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8384 } 8385 8386 /* Generic registers whose values depend on the implementation */ 8387 { 8388 ARMCPRegInfo sctlr = { 8389 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8390 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8391 .access = PL1_RW, .accessfn = access_tvm_trvm, 8392 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8393 offsetof(CPUARMState, cp15.sctlr_ns) }, 8394 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8395 .raw_writefn = raw_write, 8396 }; 8397 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8398 /* Normally we would always end the TB on an SCTLR write, but Linux 8399 * arch/arm/mach-pxa/sleep.S expects two instructions following 8400 * an MMU enable to execute from cache. Imitate this behaviour. 8401 */ 8402 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8403 } 8404 define_one_arm_cp_reg(cpu, &sctlr); 8405 } 8406 8407 if (cpu_isar_feature(aa64_lor, cpu)) { 8408 define_arm_cp_regs(cpu, lor_reginfo); 8409 } 8410 if (cpu_isar_feature(aa64_pan, cpu)) { 8411 define_one_arm_cp_reg(cpu, &pan_reginfo); 8412 } 8413 #ifndef CONFIG_USER_ONLY 8414 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8415 define_arm_cp_regs(cpu, ats1e1_reginfo); 8416 } 8417 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8418 define_arm_cp_regs(cpu, ats1cp_reginfo); 8419 } 8420 #endif 8421 if (cpu_isar_feature(aa64_uao, cpu)) { 8422 define_one_arm_cp_reg(cpu, &uao_reginfo); 8423 } 8424 8425 if (cpu_isar_feature(aa64_dit, cpu)) { 8426 define_one_arm_cp_reg(cpu, &dit_reginfo); 8427 } 8428 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8429 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8430 } 8431 8432 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8433 define_arm_cp_regs(cpu, vhe_reginfo); 8434 } 8435 8436 if (cpu_isar_feature(aa64_sve, cpu)) { 8437 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8438 if (arm_feature(env, ARM_FEATURE_EL2)) { 8439 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8440 } else { 8441 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8442 } 8443 if (arm_feature(env, ARM_FEATURE_EL3)) { 8444 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8445 } 8446 } 8447 8448 #ifdef TARGET_AARCH64 8449 if (cpu_isar_feature(aa64_pauth, cpu)) { 8450 define_arm_cp_regs(cpu, pauth_reginfo); 8451 } 8452 if (cpu_isar_feature(aa64_rndr, cpu)) { 8453 define_arm_cp_regs(cpu, rndr_reginfo); 8454 } 8455 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8456 define_arm_cp_regs(cpu, tlbirange_reginfo); 8457 } 8458 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8459 define_arm_cp_regs(cpu, tlbios_reginfo); 8460 } 8461 #ifndef CONFIG_USER_ONLY 8462 /* Data Cache clean instructions up to PoP */ 8463 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8464 define_one_arm_cp_reg(cpu, dcpop_reg); 8465 8466 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8467 define_one_arm_cp_reg(cpu, dcpodp_reg); 8468 } 8469 } 8470 #endif /*CONFIG_USER_ONLY*/ 8471 8472 /* 8473 * If full MTE is enabled, add all of the system registers. 8474 * If only "instructions available at EL0" are enabled, 8475 * then define only a RAZ/WI version of PSTATE.TCO. 8476 */ 8477 if (cpu_isar_feature(aa64_mte, cpu)) { 8478 define_arm_cp_regs(cpu, mte_reginfo); 8479 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8480 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8481 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8482 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8483 } 8484 #endif 8485 8486 if (cpu_isar_feature(any_predinv, cpu)) { 8487 define_arm_cp_regs(cpu, predinv_reginfo); 8488 } 8489 8490 if (cpu_isar_feature(any_ccidx, cpu)) { 8491 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8492 } 8493 8494 #ifndef CONFIG_USER_ONLY 8495 /* 8496 * Register redirections and aliases must be done last, 8497 * after the registers from the other extensions have been defined. 8498 */ 8499 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8500 define_arm_vh_e2h_redirects_aliases(cpu); 8501 } 8502 #endif 8503 } 8504 8505 /* Sort alphabetically by type name, except for "any". */ 8506 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8507 { 8508 ObjectClass *class_a = (ObjectClass *)a; 8509 ObjectClass *class_b = (ObjectClass *)b; 8510 const char *name_a, *name_b; 8511 8512 name_a = object_class_get_name(class_a); 8513 name_b = object_class_get_name(class_b); 8514 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8515 return 1; 8516 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8517 return -1; 8518 } else { 8519 return strcmp(name_a, name_b); 8520 } 8521 } 8522 8523 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8524 { 8525 ObjectClass *oc = data; 8526 const char *typename; 8527 char *name; 8528 8529 typename = object_class_get_name(oc); 8530 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8531 qemu_printf(" %s\n", name); 8532 g_free(name); 8533 } 8534 8535 void arm_cpu_list(void) 8536 { 8537 GSList *list; 8538 8539 list = object_class_get_list(TYPE_ARM_CPU, false); 8540 list = g_slist_sort(list, arm_cpu_list_compare); 8541 qemu_printf("Available CPUs:\n"); 8542 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8543 g_slist_free(list); 8544 } 8545 8546 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8547 { 8548 ObjectClass *oc = data; 8549 CpuDefinitionInfoList **cpu_list = user_data; 8550 CpuDefinitionInfo *info; 8551 const char *typename; 8552 8553 typename = object_class_get_name(oc); 8554 info = g_malloc0(sizeof(*info)); 8555 info->name = g_strndup(typename, 8556 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8557 info->q_typename = g_strdup(typename); 8558 8559 QAPI_LIST_PREPEND(*cpu_list, info); 8560 } 8561 8562 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8563 { 8564 CpuDefinitionInfoList *cpu_list = NULL; 8565 GSList *list; 8566 8567 list = object_class_get_list(TYPE_ARM_CPU, false); 8568 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8569 g_slist_free(list); 8570 8571 return cpu_list; 8572 } 8573 8574 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8575 void *opaque, int state, int secstate, 8576 int crm, int opc1, int opc2, 8577 const char *name) 8578 { 8579 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8580 * add a single reginfo struct to the hash table. 8581 */ 8582 uint32_t *key = g_new(uint32_t, 1); 8583 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8584 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8585 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8586 8587 r2->name = g_strdup(name); 8588 /* Reset the secure state to the specific incoming state. This is 8589 * necessary as the register may have been defined with both states. 8590 */ 8591 r2->secure = secstate; 8592 8593 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8594 /* Register is banked (using both entries in array). 8595 * Overwriting fieldoffset as the array is only used to define 8596 * banked registers but later only fieldoffset is used. 8597 */ 8598 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8599 } 8600 8601 if (state == ARM_CP_STATE_AA32) { 8602 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8603 /* If the register is banked then we don't need to migrate or 8604 * reset the 32-bit instance in certain cases: 8605 * 8606 * 1) If the register has both 32-bit and 64-bit instances then we 8607 * can count on the 64-bit instance taking care of the 8608 * non-secure bank. 8609 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8610 * taking care of the secure bank. This requires that separate 8611 * 32 and 64-bit definitions are provided. 8612 */ 8613 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8614 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8615 r2->type |= ARM_CP_ALIAS; 8616 } 8617 } else if ((secstate != r->secure) && !ns) { 8618 /* The register is not banked so we only want to allow migration of 8619 * the non-secure instance. 8620 */ 8621 r2->type |= ARM_CP_ALIAS; 8622 } 8623 8624 if (r->state == ARM_CP_STATE_BOTH) { 8625 /* We assume it is a cp15 register if the .cp field is left unset. 8626 */ 8627 if (r2->cp == 0) { 8628 r2->cp = 15; 8629 } 8630 8631 #if HOST_BIG_ENDIAN 8632 if (r2->fieldoffset) { 8633 r2->fieldoffset += sizeof(uint32_t); 8634 } 8635 #endif 8636 } 8637 } 8638 if (state == ARM_CP_STATE_AA64) { 8639 /* To allow abbreviation of ARMCPRegInfo 8640 * definitions, we treat cp == 0 as equivalent to 8641 * the value for "standard guest-visible sysreg". 8642 * STATE_BOTH definitions are also always "standard 8643 * sysreg" in their AArch64 view (the .cp value may 8644 * be non-zero for the benefit of the AArch32 view). 8645 */ 8646 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8647 r2->cp = CP_REG_ARM64_SYSREG_CP; 8648 } 8649 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8650 r2->opc0, opc1, opc2); 8651 } else { 8652 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8653 } 8654 if (opaque) { 8655 r2->opaque = opaque; 8656 } 8657 /* reginfo passed to helpers is correct for the actual access, 8658 * and is never ARM_CP_STATE_BOTH: 8659 */ 8660 r2->state = state; 8661 /* Make sure reginfo passed to helpers for wildcarded regs 8662 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8663 */ 8664 r2->crm = crm; 8665 r2->opc1 = opc1; 8666 r2->opc2 = opc2; 8667 /* By convention, for wildcarded registers only the first 8668 * entry is used for migration; the others are marked as 8669 * ALIAS so we don't try to transfer the register 8670 * multiple times. Special registers (ie NOP/WFI) are 8671 * never migratable and not even raw-accessible. 8672 */ 8673 if ((r->type & ARM_CP_SPECIAL)) { 8674 r2->type |= ARM_CP_NO_RAW; 8675 } 8676 if (((r->crm == CP_ANY) && crm != 0) || 8677 ((r->opc1 == CP_ANY) && opc1 != 0) || 8678 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8679 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8680 } 8681 8682 /* Check that raw accesses are either forbidden or handled. Note that 8683 * we can't assert this earlier because the setup of fieldoffset for 8684 * banked registers has to be done first. 8685 */ 8686 if (!(r2->type & ARM_CP_NO_RAW)) { 8687 assert(!raw_accessors_invalid(r2)); 8688 } 8689 8690 /* Overriding of an existing definition must be explicitly 8691 * requested. 8692 */ 8693 if (!(r->type & ARM_CP_OVERRIDE)) { 8694 ARMCPRegInfo *oldreg; 8695 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8696 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8697 fprintf(stderr, "Register redefined: cp=%d %d bit " 8698 "crn=%d crm=%d opc1=%d opc2=%d, " 8699 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8700 r2->crn, r2->crm, r2->opc1, r2->opc2, 8701 oldreg->name, r2->name); 8702 g_assert_not_reached(); 8703 } 8704 } 8705 g_hash_table_insert(cpu->cp_regs, key, r2); 8706 } 8707 8708 8709 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8710 const ARMCPRegInfo *r, void *opaque) 8711 { 8712 /* Define implementations of coprocessor registers. 8713 * We store these in a hashtable because typically 8714 * there are less than 150 registers in a space which 8715 * is 16*16*16*8*8 = 262144 in size. 8716 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8717 * If a register is defined twice then the second definition is 8718 * used, so this can be used to define some generic registers and 8719 * then override them with implementation specific variations. 8720 * At least one of the original and the second definition should 8721 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8722 * against accidental use. 8723 * 8724 * The state field defines whether the register is to be 8725 * visible in the AArch32 or AArch64 execution state. If the 8726 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8727 * reginfo structure for the AArch32 view, which sees the lower 8728 * 32 bits of the 64 bit register. 8729 * 8730 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8731 * be wildcarded. AArch64 registers are always considered to be 64 8732 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8733 * the register, if any. 8734 */ 8735 int crm, opc1, opc2, state; 8736 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8737 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8738 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8739 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8740 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8741 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8742 /* 64 bit registers have only CRm and Opc1 fields */ 8743 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8744 /* op0 only exists in the AArch64 encodings */ 8745 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8746 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8747 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8748 /* 8749 * This API is only for Arm's system coprocessors (14 and 15) or 8750 * (M-profile or v7A-and-earlier only) for implementation defined 8751 * coprocessors in the range 0..7. Our decode assumes this, since 8752 * 8..13 can be used for other insns including VFP and Neon. See 8753 * valid_cp() in translate.c. Assert here that we haven't tried 8754 * to use an invalid coprocessor number. 8755 */ 8756 switch (r->state) { 8757 case ARM_CP_STATE_BOTH: 8758 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8759 if (r->cp == 0) { 8760 break; 8761 } 8762 /* fall through */ 8763 case ARM_CP_STATE_AA32: 8764 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8765 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8766 assert(r->cp >= 14 && r->cp <= 15); 8767 } else { 8768 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8769 } 8770 break; 8771 case ARM_CP_STATE_AA64: 8772 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8773 break; 8774 default: 8775 g_assert_not_reached(); 8776 } 8777 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8778 * encodes a minimum access level for the register. We roll this 8779 * runtime check into our general permission check code, so check 8780 * here that the reginfo's specified permissions are strict enough 8781 * to encompass the generic architectural permission check. 8782 */ 8783 if (r->state != ARM_CP_STATE_AA32) { 8784 int mask = 0; 8785 switch (r->opc1) { 8786 case 0: 8787 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8788 mask = PL0U_R | PL1_RW; 8789 break; 8790 case 1: case 2: 8791 /* min_EL EL1 */ 8792 mask = PL1_RW; 8793 break; 8794 case 3: 8795 /* min_EL EL0 */ 8796 mask = PL0_RW; 8797 break; 8798 case 4: 8799 case 5: 8800 /* min_EL EL2 */ 8801 mask = PL2_RW; 8802 break; 8803 case 6: 8804 /* min_EL EL3 */ 8805 mask = PL3_RW; 8806 break; 8807 case 7: 8808 /* min_EL EL1, secure mode only (we don't check the latter) */ 8809 mask = PL1_RW; 8810 break; 8811 default: 8812 /* broken reginfo with out-of-range opc1 */ 8813 assert(false); 8814 break; 8815 } 8816 /* assert our permissions are not too lax (stricter is fine) */ 8817 assert((r->access & ~mask) == 0); 8818 } 8819 8820 /* Check that the register definition has enough info to handle 8821 * reads and writes if they are permitted. 8822 */ 8823 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8824 if (r->access & PL3_R) { 8825 assert((r->fieldoffset || 8826 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8827 r->readfn); 8828 } 8829 if (r->access & PL3_W) { 8830 assert((r->fieldoffset || 8831 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8832 r->writefn); 8833 } 8834 } 8835 /* Bad type field probably means missing sentinel at end of reg list */ 8836 assert(cptype_valid(r->type)); 8837 for (crm = crmmin; crm <= crmmax; crm++) { 8838 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8839 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8840 for (state = ARM_CP_STATE_AA32; 8841 state <= ARM_CP_STATE_AA64; state++) { 8842 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8843 continue; 8844 } 8845 if (state == ARM_CP_STATE_AA32) { 8846 /* Under AArch32 CP registers can be common 8847 * (same for secure and non-secure world) or banked. 8848 */ 8849 char *name; 8850 8851 switch (r->secure) { 8852 case ARM_CP_SECSTATE_S: 8853 case ARM_CP_SECSTATE_NS: 8854 add_cpreg_to_hashtable(cpu, r, opaque, state, 8855 r->secure, crm, opc1, opc2, 8856 r->name); 8857 break; 8858 default: 8859 name = g_strdup_printf("%s_S", r->name); 8860 add_cpreg_to_hashtable(cpu, r, opaque, state, 8861 ARM_CP_SECSTATE_S, 8862 crm, opc1, opc2, name); 8863 g_free(name); 8864 add_cpreg_to_hashtable(cpu, r, opaque, state, 8865 ARM_CP_SECSTATE_NS, 8866 crm, opc1, opc2, r->name); 8867 break; 8868 } 8869 } else { 8870 /* AArch64 registers get mapped to non-secure instance 8871 * of AArch32 */ 8872 add_cpreg_to_hashtable(cpu, r, opaque, state, 8873 ARM_CP_SECSTATE_NS, 8874 crm, opc1, opc2, r->name); 8875 } 8876 } 8877 } 8878 } 8879 } 8880 } 8881 8882 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8883 const ARMCPRegInfo *regs, void *opaque) 8884 { 8885 /* Define a whole list of registers */ 8886 const ARMCPRegInfo *r; 8887 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8888 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8889 } 8890 } 8891 8892 /* 8893 * Modify ARMCPRegInfo for access from userspace. 8894 * 8895 * This is a data driven modification directed by 8896 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8897 * user-space cannot alter any values and dynamic values pertaining to 8898 * execution state are hidden from user space view anyway. 8899 */ 8900 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8901 { 8902 const ARMCPRegUserSpaceInfo *m; 8903 ARMCPRegInfo *r; 8904 8905 for (m = mods; m->name; m++) { 8906 GPatternSpec *pat = NULL; 8907 if (m->is_glob) { 8908 pat = g_pattern_spec_new(m->name); 8909 } 8910 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8911 if (pat && g_pattern_match_string(pat, r->name)) { 8912 r->type = ARM_CP_CONST; 8913 r->access = PL0U_R; 8914 r->resetvalue = 0; 8915 /* continue */ 8916 } else if (strcmp(r->name, m->name) == 0) { 8917 r->type = ARM_CP_CONST; 8918 r->access = PL0U_R; 8919 r->resetvalue &= m->exported_bits; 8920 r->resetvalue |= m->fixed_bits; 8921 break; 8922 } 8923 } 8924 if (pat) { 8925 g_pattern_spec_free(pat); 8926 } 8927 } 8928 } 8929 8930 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8931 { 8932 return g_hash_table_lookup(cpregs, &encoded_cp); 8933 } 8934 8935 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8936 uint64_t value) 8937 { 8938 /* Helper coprocessor write function for write-ignore registers */ 8939 } 8940 8941 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8942 { 8943 /* Helper coprocessor write function for read-as-zero registers */ 8944 return 0; 8945 } 8946 8947 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8948 { 8949 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8950 } 8951 8952 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8953 { 8954 /* Return true if it is not valid for us to switch to 8955 * this CPU mode (ie all the UNPREDICTABLE cases in 8956 * the ARM ARM CPSRWriteByInstr pseudocode). 8957 */ 8958 8959 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8960 if (write_type == CPSRWriteByInstr && 8961 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8962 mode == ARM_CPU_MODE_HYP)) { 8963 return 1; 8964 } 8965 8966 switch (mode) { 8967 case ARM_CPU_MODE_USR: 8968 return 0; 8969 case ARM_CPU_MODE_SYS: 8970 case ARM_CPU_MODE_SVC: 8971 case ARM_CPU_MODE_ABT: 8972 case ARM_CPU_MODE_UND: 8973 case ARM_CPU_MODE_IRQ: 8974 case ARM_CPU_MODE_FIQ: 8975 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8976 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8977 */ 8978 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8979 * and CPS are treated as illegal mode changes. 8980 */ 8981 if (write_type == CPSRWriteByInstr && 8982 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8983 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8984 return 1; 8985 } 8986 return 0; 8987 case ARM_CPU_MODE_HYP: 8988 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8989 case ARM_CPU_MODE_MON: 8990 return arm_current_el(env) < 3; 8991 default: 8992 return 1; 8993 } 8994 } 8995 8996 uint32_t cpsr_read(CPUARMState *env) 8997 { 8998 int ZF; 8999 ZF = (env->ZF == 0); 9000 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9001 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9002 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9003 | ((env->condexec_bits & 0xfc) << 8) 9004 | (env->GE << 16) | (env->daif & CPSR_AIF); 9005 } 9006 9007 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9008 CPSRWriteType write_type) 9009 { 9010 uint32_t changed_daif; 9011 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9012 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9013 9014 if (mask & CPSR_NZCV) { 9015 env->ZF = (~val) & CPSR_Z; 9016 env->NF = val; 9017 env->CF = (val >> 29) & 1; 9018 env->VF = (val << 3) & 0x80000000; 9019 } 9020 if (mask & CPSR_Q) 9021 env->QF = ((val & CPSR_Q) != 0); 9022 if (mask & CPSR_T) 9023 env->thumb = ((val & CPSR_T) != 0); 9024 if (mask & CPSR_IT_0_1) { 9025 env->condexec_bits &= ~3; 9026 env->condexec_bits |= (val >> 25) & 3; 9027 } 9028 if (mask & CPSR_IT_2_7) { 9029 env->condexec_bits &= 3; 9030 env->condexec_bits |= (val >> 8) & 0xfc; 9031 } 9032 if (mask & CPSR_GE) { 9033 env->GE = (val >> 16) & 0xf; 9034 } 9035 9036 /* In a V7 implementation that includes the security extensions but does 9037 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9038 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9039 * bits respectively. 9040 * 9041 * In a V8 implementation, it is permitted for privileged software to 9042 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9043 */ 9044 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9045 arm_feature(env, ARM_FEATURE_EL3) && 9046 !arm_feature(env, ARM_FEATURE_EL2) && 9047 !arm_is_secure(env)) { 9048 9049 changed_daif = (env->daif ^ val) & mask; 9050 9051 if (changed_daif & CPSR_A) { 9052 /* Check to see if we are allowed to change the masking of async 9053 * abort exceptions from a non-secure state. 9054 */ 9055 if (!(env->cp15.scr_el3 & SCR_AW)) { 9056 qemu_log_mask(LOG_GUEST_ERROR, 9057 "Ignoring attempt to switch CPSR_A flag from " 9058 "non-secure world with SCR.AW bit clear\n"); 9059 mask &= ~CPSR_A; 9060 } 9061 } 9062 9063 if (changed_daif & CPSR_F) { 9064 /* Check to see if we are allowed to change the masking of FIQ 9065 * exceptions from a non-secure state. 9066 */ 9067 if (!(env->cp15.scr_el3 & SCR_FW)) { 9068 qemu_log_mask(LOG_GUEST_ERROR, 9069 "Ignoring attempt to switch CPSR_F flag from " 9070 "non-secure world with SCR.FW bit clear\n"); 9071 mask &= ~CPSR_F; 9072 } 9073 9074 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9075 * If this bit is set software is not allowed to mask 9076 * FIQs, but is allowed to set CPSR_F to 0. 9077 */ 9078 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9079 (val & CPSR_F)) { 9080 qemu_log_mask(LOG_GUEST_ERROR, 9081 "Ignoring attempt to enable CPSR_F flag " 9082 "(non-maskable FIQ [NMFI] support enabled)\n"); 9083 mask &= ~CPSR_F; 9084 } 9085 } 9086 } 9087 9088 env->daif &= ~(CPSR_AIF & mask); 9089 env->daif |= val & CPSR_AIF & mask; 9090 9091 if (write_type != CPSRWriteRaw && 9092 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9093 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9094 /* Note that we can only get here in USR mode if this is a 9095 * gdb stub write; for this case we follow the architectural 9096 * behaviour for guest writes in USR mode of ignoring an attempt 9097 * to switch mode. (Those are caught by translate.c for writes 9098 * triggered by guest instructions.) 9099 */ 9100 mask &= ~CPSR_M; 9101 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9102 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9103 * v7, and has defined behaviour in v8: 9104 * + leave CPSR.M untouched 9105 * + allow changes to the other CPSR fields 9106 * + set PSTATE.IL 9107 * For user changes via the GDB stub, we don't set PSTATE.IL, 9108 * as this would be unnecessarily harsh for a user error. 9109 */ 9110 mask &= ~CPSR_M; 9111 if (write_type != CPSRWriteByGDBStub && 9112 arm_feature(env, ARM_FEATURE_V8)) { 9113 mask |= CPSR_IL; 9114 val |= CPSR_IL; 9115 } 9116 qemu_log_mask(LOG_GUEST_ERROR, 9117 "Illegal AArch32 mode switch attempt from %s to %s\n", 9118 aarch32_mode_name(env->uncached_cpsr), 9119 aarch32_mode_name(val)); 9120 } else { 9121 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9122 write_type == CPSRWriteExceptionReturn ? 9123 "Exception return from AArch32" : 9124 "AArch32 mode switch from", 9125 aarch32_mode_name(env->uncached_cpsr), 9126 aarch32_mode_name(val), env->regs[15]); 9127 switch_mode(env, val & CPSR_M); 9128 } 9129 } 9130 mask &= ~CACHED_CPSR_BITS; 9131 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9132 if (rebuild_hflags) { 9133 arm_rebuild_hflags(env); 9134 } 9135 } 9136 9137 /* Sign/zero extend */ 9138 uint32_t HELPER(sxtb16)(uint32_t x) 9139 { 9140 uint32_t res; 9141 res = (uint16_t)(int8_t)x; 9142 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9143 return res; 9144 } 9145 9146 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9147 { 9148 /* 9149 * Take a division-by-zero exception if necessary; otherwise return 9150 * to get the usual non-trapping division behaviour (result of 0) 9151 */ 9152 if (arm_feature(env, ARM_FEATURE_M) 9153 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9154 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9155 } 9156 } 9157 9158 uint32_t HELPER(uxtb16)(uint32_t x) 9159 { 9160 uint32_t res; 9161 res = (uint16_t)(uint8_t)x; 9162 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9163 return res; 9164 } 9165 9166 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9167 { 9168 if (den == 0) { 9169 handle_possible_div0_trap(env, GETPC()); 9170 return 0; 9171 } 9172 if (num == INT_MIN && den == -1) { 9173 return INT_MIN; 9174 } 9175 return num / den; 9176 } 9177 9178 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9179 { 9180 if (den == 0) { 9181 handle_possible_div0_trap(env, GETPC()); 9182 return 0; 9183 } 9184 return num / den; 9185 } 9186 9187 uint32_t HELPER(rbit)(uint32_t x) 9188 { 9189 return revbit32(x); 9190 } 9191 9192 #ifdef CONFIG_USER_ONLY 9193 9194 static void switch_mode(CPUARMState *env, int mode) 9195 { 9196 ARMCPU *cpu = env_archcpu(env); 9197 9198 if (mode != ARM_CPU_MODE_USR) { 9199 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9200 } 9201 } 9202 9203 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9204 uint32_t cur_el, bool secure) 9205 { 9206 return 1; 9207 } 9208 9209 void aarch64_sync_64_to_32(CPUARMState *env) 9210 { 9211 g_assert_not_reached(); 9212 } 9213 9214 #else 9215 9216 static void switch_mode(CPUARMState *env, int mode) 9217 { 9218 int old_mode; 9219 int i; 9220 9221 old_mode = env->uncached_cpsr & CPSR_M; 9222 if (mode == old_mode) 9223 return; 9224 9225 if (old_mode == ARM_CPU_MODE_FIQ) { 9226 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9227 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9228 } else if (mode == ARM_CPU_MODE_FIQ) { 9229 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9230 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9231 } 9232 9233 i = bank_number(old_mode); 9234 env->banked_r13[i] = env->regs[13]; 9235 env->banked_spsr[i] = env->spsr; 9236 9237 i = bank_number(mode); 9238 env->regs[13] = env->banked_r13[i]; 9239 env->spsr = env->banked_spsr[i]; 9240 9241 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9242 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9243 } 9244 9245 /* Physical Interrupt Target EL Lookup Table 9246 * 9247 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9248 * 9249 * The below multi-dimensional table is used for looking up the target 9250 * exception level given numerous condition criteria. Specifically, the 9251 * target EL is based on SCR and HCR routing controls as well as the 9252 * currently executing EL and secure state. 9253 * 9254 * Dimensions: 9255 * target_el_table[2][2][2][2][2][4] 9256 * | | | | | +--- Current EL 9257 * | | | | +------ Non-secure(0)/Secure(1) 9258 * | | | +--------- HCR mask override 9259 * | | +------------ SCR exec state control 9260 * | +--------------- SCR mask override 9261 * +------------------ 32-bit(0)/64-bit(1) EL3 9262 * 9263 * The table values are as such: 9264 * 0-3 = EL0-EL3 9265 * -1 = Cannot occur 9266 * 9267 * The ARM ARM target EL table includes entries indicating that an "exception 9268 * is not taken". The two cases where this is applicable are: 9269 * 1) An exception is taken from EL3 but the SCR does not have the exception 9270 * routed to EL3. 9271 * 2) An exception is taken from EL2 but the HCR does not have the exception 9272 * routed to EL2. 9273 * In these two cases, the below table contain a target of EL1. This value is 9274 * returned as it is expected that the consumer of the table data will check 9275 * for "target EL >= current EL" to ensure the exception is not taken. 9276 * 9277 * SCR HCR 9278 * 64 EA AMO From 9279 * BIT IRQ IMO Non-secure Secure 9280 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9281 */ 9282 static const int8_t target_el_table[2][2][2][2][2][4] = { 9283 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9284 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9285 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9286 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9287 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9288 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9289 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9290 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9291 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9292 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9293 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9294 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9295 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9296 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9297 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9298 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9299 }; 9300 9301 /* 9302 * Determine the target EL for physical exceptions 9303 */ 9304 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9305 uint32_t cur_el, bool secure) 9306 { 9307 CPUARMState *env = cs->env_ptr; 9308 bool rw; 9309 bool scr; 9310 bool hcr; 9311 int target_el; 9312 /* Is the highest EL AArch64? */ 9313 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9314 uint64_t hcr_el2; 9315 9316 if (arm_feature(env, ARM_FEATURE_EL3)) { 9317 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9318 } else { 9319 /* Either EL2 is the highest EL (and so the EL2 register width 9320 * is given by is64); or there is no EL2 or EL3, in which case 9321 * the value of 'rw' does not affect the table lookup anyway. 9322 */ 9323 rw = is64; 9324 } 9325 9326 hcr_el2 = arm_hcr_el2_eff(env); 9327 switch (excp_idx) { 9328 case EXCP_IRQ: 9329 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9330 hcr = hcr_el2 & HCR_IMO; 9331 break; 9332 case EXCP_FIQ: 9333 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9334 hcr = hcr_el2 & HCR_FMO; 9335 break; 9336 default: 9337 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9338 hcr = hcr_el2 & HCR_AMO; 9339 break; 9340 }; 9341 9342 /* 9343 * For these purposes, TGE and AMO/IMO/FMO both force the 9344 * interrupt to EL2. Fold TGE into the bit extracted above. 9345 */ 9346 hcr |= (hcr_el2 & HCR_TGE) != 0; 9347 9348 /* Perform a table-lookup for the target EL given the current state */ 9349 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9350 9351 assert(target_el > 0); 9352 9353 return target_el; 9354 } 9355 9356 void arm_log_exception(CPUState *cs) 9357 { 9358 int idx = cs->exception_index; 9359 9360 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9361 const char *exc = NULL; 9362 static const char * const excnames[] = { 9363 [EXCP_UDEF] = "Undefined Instruction", 9364 [EXCP_SWI] = "SVC", 9365 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9366 [EXCP_DATA_ABORT] = "Data Abort", 9367 [EXCP_IRQ] = "IRQ", 9368 [EXCP_FIQ] = "FIQ", 9369 [EXCP_BKPT] = "Breakpoint", 9370 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9371 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9372 [EXCP_HVC] = "Hypervisor Call", 9373 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9374 [EXCP_SMC] = "Secure Monitor Call", 9375 [EXCP_VIRQ] = "Virtual IRQ", 9376 [EXCP_VFIQ] = "Virtual FIQ", 9377 [EXCP_SEMIHOST] = "Semihosting call", 9378 [EXCP_NOCP] = "v7M NOCP UsageFault", 9379 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9380 [EXCP_STKOF] = "v8M STKOF UsageFault", 9381 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9382 [EXCP_LSERR] = "v8M LSERR UsageFault", 9383 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9384 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9385 }; 9386 9387 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9388 exc = excnames[idx]; 9389 } 9390 if (!exc) { 9391 exc = "unknown"; 9392 } 9393 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9394 idx, exc, cs->cpu_index); 9395 } 9396 } 9397 9398 /* 9399 * Function used to synchronize QEMU's AArch64 register set with AArch32 9400 * register set. This is necessary when switching between AArch32 and AArch64 9401 * execution state. 9402 */ 9403 void aarch64_sync_32_to_64(CPUARMState *env) 9404 { 9405 int i; 9406 uint32_t mode = env->uncached_cpsr & CPSR_M; 9407 9408 /* We can blanket copy R[0:7] to X[0:7] */ 9409 for (i = 0; i < 8; i++) { 9410 env->xregs[i] = env->regs[i]; 9411 } 9412 9413 /* 9414 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9415 * Otherwise, they come from the banked user regs. 9416 */ 9417 if (mode == ARM_CPU_MODE_FIQ) { 9418 for (i = 8; i < 13; i++) { 9419 env->xregs[i] = env->usr_regs[i - 8]; 9420 } 9421 } else { 9422 for (i = 8; i < 13; i++) { 9423 env->xregs[i] = env->regs[i]; 9424 } 9425 } 9426 9427 /* 9428 * Registers x13-x23 are the various mode SP and FP registers. Registers 9429 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9430 * from the mode banked register. 9431 */ 9432 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9433 env->xregs[13] = env->regs[13]; 9434 env->xregs[14] = env->regs[14]; 9435 } else { 9436 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9437 /* HYP is an exception in that it is copied from r14 */ 9438 if (mode == ARM_CPU_MODE_HYP) { 9439 env->xregs[14] = env->regs[14]; 9440 } else { 9441 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9442 } 9443 } 9444 9445 if (mode == ARM_CPU_MODE_HYP) { 9446 env->xregs[15] = env->regs[13]; 9447 } else { 9448 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9449 } 9450 9451 if (mode == ARM_CPU_MODE_IRQ) { 9452 env->xregs[16] = env->regs[14]; 9453 env->xregs[17] = env->regs[13]; 9454 } else { 9455 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9456 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9457 } 9458 9459 if (mode == ARM_CPU_MODE_SVC) { 9460 env->xregs[18] = env->regs[14]; 9461 env->xregs[19] = env->regs[13]; 9462 } else { 9463 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9464 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9465 } 9466 9467 if (mode == ARM_CPU_MODE_ABT) { 9468 env->xregs[20] = env->regs[14]; 9469 env->xregs[21] = env->regs[13]; 9470 } else { 9471 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9472 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9473 } 9474 9475 if (mode == ARM_CPU_MODE_UND) { 9476 env->xregs[22] = env->regs[14]; 9477 env->xregs[23] = env->regs[13]; 9478 } else { 9479 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9480 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9481 } 9482 9483 /* 9484 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9485 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9486 * FIQ bank for r8-r14. 9487 */ 9488 if (mode == ARM_CPU_MODE_FIQ) { 9489 for (i = 24; i < 31; i++) { 9490 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9491 } 9492 } else { 9493 for (i = 24; i < 29; i++) { 9494 env->xregs[i] = env->fiq_regs[i - 24]; 9495 } 9496 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9497 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9498 } 9499 9500 env->pc = env->regs[15]; 9501 } 9502 9503 /* 9504 * Function used to synchronize QEMU's AArch32 register set with AArch64 9505 * register set. This is necessary when switching between AArch32 and AArch64 9506 * execution state. 9507 */ 9508 void aarch64_sync_64_to_32(CPUARMState *env) 9509 { 9510 int i; 9511 uint32_t mode = env->uncached_cpsr & CPSR_M; 9512 9513 /* We can blanket copy X[0:7] to R[0:7] */ 9514 for (i = 0; i < 8; i++) { 9515 env->regs[i] = env->xregs[i]; 9516 } 9517 9518 /* 9519 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9520 * Otherwise, we copy x8-x12 into the banked user regs. 9521 */ 9522 if (mode == ARM_CPU_MODE_FIQ) { 9523 for (i = 8; i < 13; i++) { 9524 env->usr_regs[i - 8] = env->xregs[i]; 9525 } 9526 } else { 9527 for (i = 8; i < 13; i++) { 9528 env->regs[i] = env->xregs[i]; 9529 } 9530 } 9531 9532 /* 9533 * Registers r13 & r14 depend on the current mode. 9534 * If we are in a given mode, we copy the corresponding x registers to r13 9535 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9536 * for the mode. 9537 */ 9538 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9539 env->regs[13] = env->xregs[13]; 9540 env->regs[14] = env->xregs[14]; 9541 } else { 9542 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9543 9544 /* 9545 * HYP is an exception in that it does not have its own banked r14 but 9546 * shares the USR r14 9547 */ 9548 if (mode == ARM_CPU_MODE_HYP) { 9549 env->regs[14] = env->xregs[14]; 9550 } else { 9551 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9552 } 9553 } 9554 9555 if (mode == ARM_CPU_MODE_HYP) { 9556 env->regs[13] = env->xregs[15]; 9557 } else { 9558 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9559 } 9560 9561 if (mode == ARM_CPU_MODE_IRQ) { 9562 env->regs[14] = env->xregs[16]; 9563 env->regs[13] = env->xregs[17]; 9564 } else { 9565 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9566 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9567 } 9568 9569 if (mode == ARM_CPU_MODE_SVC) { 9570 env->regs[14] = env->xregs[18]; 9571 env->regs[13] = env->xregs[19]; 9572 } else { 9573 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9574 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9575 } 9576 9577 if (mode == ARM_CPU_MODE_ABT) { 9578 env->regs[14] = env->xregs[20]; 9579 env->regs[13] = env->xregs[21]; 9580 } else { 9581 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9582 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9583 } 9584 9585 if (mode == ARM_CPU_MODE_UND) { 9586 env->regs[14] = env->xregs[22]; 9587 env->regs[13] = env->xregs[23]; 9588 } else { 9589 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9590 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9591 } 9592 9593 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9594 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9595 * FIQ bank for r8-r14. 9596 */ 9597 if (mode == ARM_CPU_MODE_FIQ) { 9598 for (i = 24; i < 31; i++) { 9599 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9600 } 9601 } else { 9602 for (i = 24; i < 29; i++) { 9603 env->fiq_regs[i - 24] = env->xregs[i]; 9604 } 9605 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9606 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9607 } 9608 9609 env->regs[15] = env->pc; 9610 } 9611 9612 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9613 uint32_t mask, uint32_t offset, 9614 uint32_t newpc) 9615 { 9616 int new_el; 9617 9618 /* Change the CPU state so as to actually take the exception. */ 9619 switch_mode(env, new_mode); 9620 9621 /* 9622 * For exceptions taken to AArch32 we must clear the SS bit in both 9623 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9624 */ 9625 env->pstate &= ~PSTATE_SS; 9626 env->spsr = cpsr_read(env); 9627 /* Clear IT bits. */ 9628 env->condexec_bits = 0; 9629 /* Switch to the new mode, and to the correct instruction set. */ 9630 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9631 9632 /* This must be after mode switching. */ 9633 new_el = arm_current_el(env); 9634 9635 /* Set new mode endianness */ 9636 env->uncached_cpsr &= ~CPSR_E; 9637 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9638 env->uncached_cpsr |= CPSR_E; 9639 } 9640 /* J and IL must always be cleared for exception entry */ 9641 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9642 env->daif |= mask; 9643 9644 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9645 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9646 env->uncached_cpsr |= CPSR_SSBS; 9647 } else { 9648 env->uncached_cpsr &= ~CPSR_SSBS; 9649 } 9650 } 9651 9652 if (new_mode == ARM_CPU_MODE_HYP) { 9653 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9654 env->elr_el[2] = env->regs[15]; 9655 } else { 9656 /* CPSR.PAN is normally preserved preserved unless... */ 9657 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9658 switch (new_el) { 9659 case 3: 9660 if (!arm_is_secure_below_el3(env)) { 9661 /* ... the target is EL3, from non-secure state. */ 9662 env->uncached_cpsr &= ~CPSR_PAN; 9663 break; 9664 } 9665 /* ... the target is EL3, from secure state ... */ 9666 /* fall through */ 9667 case 1: 9668 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9669 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9670 env->uncached_cpsr |= CPSR_PAN; 9671 } 9672 break; 9673 } 9674 } 9675 /* 9676 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9677 * and we should just guard the thumb mode on V4 9678 */ 9679 if (arm_feature(env, ARM_FEATURE_V4T)) { 9680 env->thumb = 9681 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9682 } 9683 env->regs[14] = env->regs[15] + offset; 9684 } 9685 env->regs[15] = newpc; 9686 arm_rebuild_hflags(env); 9687 } 9688 9689 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9690 { 9691 /* 9692 * Handle exception entry to Hyp mode; this is sufficiently 9693 * different to entry to other AArch32 modes that we handle it 9694 * separately here. 9695 * 9696 * The vector table entry used is always the 0x14 Hyp mode entry point, 9697 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9698 * The offset applied to the preferred return address is always zero 9699 * (see DDI0487C.a section G1.12.3). 9700 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9701 */ 9702 uint32_t addr, mask; 9703 ARMCPU *cpu = ARM_CPU(cs); 9704 CPUARMState *env = &cpu->env; 9705 9706 switch (cs->exception_index) { 9707 case EXCP_UDEF: 9708 addr = 0x04; 9709 break; 9710 case EXCP_SWI: 9711 addr = 0x08; 9712 break; 9713 case EXCP_BKPT: 9714 /* Fall through to prefetch abort. */ 9715 case EXCP_PREFETCH_ABORT: 9716 env->cp15.ifar_s = env->exception.vaddress; 9717 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9718 (uint32_t)env->exception.vaddress); 9719 addr = 0x0c; 9720 break; 9721 case EXCP_DATA_ABORT: 9722 env->cp15.dfar_s = env->exception.vaddress; 9723 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9724 (uint32_t)env->exception.vaddress); 9725 addr = 0x10; 9726 break; 9727 case EXCP_IRQ: 9728 addr = 0x18; 9729 break; 9730 case EXCP_FIQ: 9731 addr = 0x1c; 9732 break; 9733 case EXCP_HVC: 9734 addr = 0x08; 9735 break; 9736 case EXCP_HYP_TRAP: 9737 addr = 0x14; 9738 break; 9739 default: 9740 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9741 } 9742 9743 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9744 if (!arm_feature(env, ARM_FEATURE_V8)) { 9745 /* 9746 * QEMU syndrome values are v8-style. v7 has the IL bit 9747 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9748 * If this is a v7 CPU, squash the IL bit in those cases. 9749 */ 9750 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9751 (cs->exception_index == EXCP_DATA_ABORT && 9752 !(env->exception.syndrome & ARM_EL_ISV)) || 9753 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9754 env->exception.syndrome &= ~ARM_EL_IL; 9755 } 9756 } 9757 env->cp15.esr_el[2] = env->exception.syndrome; 9758 } 9759 9760 if (arm_current_el(env) != 2 && addr < 0x14) { 9761 addr = 0x14; 9762 } 9763 9764 mask = 0; 9765 if (!(env->cp15.scr_el3 & SCR_EA)) { 9766 mask |= CPSR_A; 9767 } 9768 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9769 mask |= CPSR_I; 9770 } 9771 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9772 mask |= CPSR_F; 9773 } 9774 9775 addr += env->cp15.hvbar; 9776 9777 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9778 } 9779 9780 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9781 { 9782 ARMCPU *cpu = ARM_CPU(cs); 9783 CPUARMState *env = &cpu->env; 9784 uint32_t addr; 9785 uint32_t mask; 9786 int new_mode; 9787 uint32_t offset; 9788 uint32_t moe; 9789 9790 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9791 switch (syn_get_ec(env->exception.syndrome)) { 9792 case EC_BREAKPOINT: 9793 case EC_BREAKPOINT_SAME_EL: 9794 moe = 1; 9795 break; 9796 case EC_WATCHPOINT: 9797 case EC_WATCHPOINT_SAME_EL: 9798 moe = 10; 9799 break; 9800 case EC_AA32_BKPT: 9801 moe = 3; 9802 break; 9803 case EC_VECTORCATCH: 9804 moe = 5; 9805 break; 9806 default: 9807 moe = 0; 9808 break; 9809 } 9810 9811 if (moe) { 9812 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9813 } 9814 9815 if (env->exception.target_el == 2) { 9816 arm_cpu_do_interrupt_aarch32_hyp(cs); 9817 return; 9818 } 9819 9820 switch (cs->exception_index) { 9821 case EXCP_UDEF: 9822 new_mode = ARM_CPU_MODE_UND; 9823 addr = 0x04; 9824 mask = CPSR_I; 9825 if (env->thumb) 9826 offset = 2; 9827 else 9828 offset = 4; 9829 break; 9830 case EXCP_SWI: 9831 new_mode = ARM_CPU_MODE_SVC; 9832 addr = 0x08; 9833 mask = CPSR_I; 9834 /* The PC already points to the next instruction. */ 9835 offset = 0; 9836 break; 9837 case EXCP_BKPT: 9838 /* Fall through to prefetch abort. */ 9839 case EXCP_PREFETCH_ABORT: 9840 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9841 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9842 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9843 env->exception.fsr, (uint32_t)env->exception.vaddress); 9844 new_mode = ARM_CPU_MODE_ABT; 9845 addr = 0x0c; 9846 mask = CPSR_A | CPSR_I; 9847 offset = 4; 9848 break; 9849 case EXCP_DATA_ABORT: 9850 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9851 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9852 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9853 env->exception.fsr, 9854 (uint32_t)env->exception.vaddress); 9855 new_mode = ARM_CPU_MODE_ABT; 9856 addr = 0x10; 9857 mask = CPSR_A | CPSR_I; 9858 offset = 8; 9859 break; 9860 case EXCP_IRQ: 9861 new_mode = ARM_CPU_MODE_IRQ; 9862 addr = 0x18; 9863 /* Disable IRQ and imprecise data aborts. */ 9864 mask = CPSR_A | CPSR_I; 9865 offset = 4; 9866 if (env->cp15.scr_el3 & SCR_IRQ) { 9867 /* IRQ routed to monitor mode */ 9868 new_mode = ARM_CPU_MODE_MON; 9869 mask |= CPSR_F; 9870 } 9871 break; 9872 case EXCP_FIQ: 9873 new_mode = ARM_CPU_MODE_FIQ; 9874 addr = 0x1c; 9875 /* Disable FIQ, IRQ and imprecise data aborts. */ 9876 mask = CPSR_A | CPSR_I | CPSR_F; 9877 if (env->cp15.scr_el3 & SCR_FIQ) { 9878 /* FIQ routed to monitor mode */ 9879 new_mode = ARM_CPU_MODE_MON; 9880 } 9881 offset = 4; 9882 break; 9883 case EXCP_VIRQ: 9884 new_mode = ARM_CPU_MODE_IRQ; 9885 addr = 0x18; 9886 /* Disable IRQ and imprecise data aborts. */ 9887 mask = CPSR_A | CPSR_I; 9888 offset = 4; 9889 break; 9890 case EXCP_VFIQ: 9891 new_mode = ARM_CPU_MODE_FIQ; 9892 addr = 0x1c; 9893 /* Disable FIQ, IRQ and imprecise data aborts. */ 9894 mask = CPSR_A | CPSR_I | CPSR_F; 9895 offset = 4; 9896 break; 9897 case EXCP_SMC: 9898 new_mode = ARM_CPU_MODE_MON; 9899 addr = 0x08; 9900 mask = CPSR_A | CPSR_I | CPSR_F; 9901 offset = 0; 9902 break; 9903 default: 9904 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9905 return; /* Never happens. Keep compiler happy. */ 9906 } 9907 9908 if (new_mode == ARM_CPU_MODE_MON) { 9909 addr += env->cp15.mvbar; 9910 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9911 /* High vectors. When enabled, base address cannot be remapped. */ 9912 addr += 0xffff0000; 9913 } else { 9914 /* ARM v7 architectures provide a vector base address register to remap 9915 * the interrupt vector table. 9916 * This register is only followed in non-monitor mode, and is banked. 9917 * Note: only bits 31:5 are valid. 9918 */ 9919 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9920 } 9921 9922 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9923 env->cp15.scr_el3 &= ~SCR_NS; 9924 } 9925 9926 take_aarch32_exception(env, new_mode, mask, offset, addr); 9927 } 9928 9929 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9930 { 9931 /* 9932 * Return the register number of the AArch64 view of the AArch32 9933 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9934 * be that of the AArch32 mode the exception came from. 9935 */ 9936 int mode = env->uncached_cpsr & CPSR_M; 9937 9938 switch (aarch32_reg) { 9939 case 0 ... 7: 9940 return aarch32_reg; 9941 case 8 ... 12: 9942 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9943 case 13: 9944 switch (mode) { 9945 case ARM_CPU_MODE_USR: 9946 case ARM_CPU_MODE_SYS: 9947 return 13; 9948 case ARM_CPU_MODE_HYP: 9949 return 15; 9950 case ARM_CPU_MODE_IRQ: 9951 return 17; 9952 case ARM_CPU_MODE_SVC: 9953 return 19; 9954 case ARM_CPU_MODE_ABT: 9955 return 21; 9956 case ARM_CPU_MODE_UND: 9957 return 23; 9958 case ARM_CPU_MODE_FIQ: 9959 return 29; 9960 default: 9961 g_assert_not_reached(); 9962 } 9963 case 14: 9964 switch (mode) { 9965 case ARM_CPU_MODE_USR: 9966 case ARM_CPU_MODE_SYS: 9967 case ARM_CPU_MODE_HYP: 9968 return 14; 9969 case ARM_CPU_MODE_IRQ: 9970 return 16; 9971 case ARM_CPU_MODE_SVC: 9972 return 18; 9973 case ARM_CPU_MODE_ABT: 9974 return 20; 9975 case ARM_CPU_MODE_UND: 9976 return 22; 9977 case ARM_CPU_MODE_FIQ: 9978 return 30; 9979 default: 9980 g_assert_not_reached(); 9981 } 9982 case 15: 9983 return 31; 9984 default: 9985 g_assert_not_reached(); 9986 } 9987 } 9988 9989 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 9990 { 9991 uint32_t ret = cpsr_read(env); 9992 9993 /* Move DIT to the correct location for SPSR_ELx */ 9994 if (ret & CPSR_DIT) { 9995 ret &= ~CPSR_DIT; 9996 ret |= PSTATE_DIT; 9997 } 9998 /* Merge PSTATE.SS into SPSR_ELx */ 9999 ret |= env->pstate & PSTATE_SS; 10000 10001 return ret; 10002 } 10003 10004 /* Handle exception entry to a target EL which is using AArch64 */ 10005 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10006 { 10007 ARMCPU *cpu = ARM_CPU(cs); 10008 CPUARMState *env = &cpu->env; 10009 unsigned int new_el = env->exception.target_el; 10010 target_ulong addr = env->cp15.vbar_el[new_el]; 10011 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10012 unsigned int old_mode; 10013 unsigned int cur_el = arm_current_el(env); 10014 int rt; 10015 10016 /* 10017 * Note that new_el can never be 0. If cur_el is 0, then 10018 * el0_a64 is is_a64(), else el0_a64 is ignored. 10019 */ 10020 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10021 10022 if (cur_el < new_el) { 10023 /* Entry vector offset depends on whether the implemented EL 10024 * immediately lower than the target level is using AArch32 or AArch64 10025 */ 10026 bool is_aa64; 10027 uint64_t hcr; 10028 10029 switch (new_el) { 10030 case 3: 10031 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10032 break; 10033 case 2: 10034 hcr = arm_hcr_el2_eff(env); 10035 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10036 is_aa64 = (hcr & HCR_RW) != 0; 10037 break; 10038 } 10039 /* fall through */ 10040 case 1: 10041 is_aa64 = is_a64(env); 10042 break; 10043 default: 10044 g_assert_not_reached(); 10045 } 10046 10047 if (is_aa64) { 10048 addr += 0x400; 10049 } else { 10050 addr += 0x600; 10051 } 10052 } else if (pstate_read(env) & PSTATE_SP) { 10053 addr += 0x200; 10054 } 10055 10056 switch (cs->exception_index) { 10057 case EXCP_PREFETCH_ABORT: 10058 case EXCP_DATA_ABORT: 10059 env->cp15.far_el[new_el] = env->exception.vaddress; 10060 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10061 env->cp15.far_el[new_el]); 10062 /* fall through */ 10063 case EXCP_BKPT: 10064 case EXCP_UDEF: 10065 case EXCP_SWI: 10066 case EXCP_HVC: 10067 case EXCP_HYP_TRAP: 10068 case EXCP_SMC: 10069 switch (syn_get_ec(env->exception.syndrome)) { 10070 case EC_ADVSIMDFPACCESSTRAP: 10071 /* 10072 * QEMU internal FP/SIMD syndromes from AArch32 include the 10073 * TA and coproc fields which are only exposed if the exception 10074 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10075 * AArch64 format syndrome. 10076 */ 10077 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10078 break; 10079 case EC_CP14RTTRAP: 10080 case EC_CP15RTTRAP: 10081 case EC_CP14DTTRAP: 10082 /* 10083 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10084 * the raw register field from the insn; when taking this to 10085 * AArch64 we must convert it to the AArch64 view of the register 10086 * number. Notice that we read a 4-bit AArch32 register number and 10087 * write back a 5-bit AArch64 one. 10088 */ 10089 rt = extract32(env->exception.syndrome, 5, 4); 10090 rt = aarch64_regnum(env, rt); 10091 env->exception.syndrome = deposit32(env->exception.syndrome, 10092 5, 5, rt); 10093 break; 10094 case EC_CP15RRTTRAP: 10095 case EC_CP14RRTTRAP: 10096 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10097 rt = extract32(env->exception.syndrome, 5, 4); 10098 rt = aarch64_regnum(env, rt); 10099 env->exception.syndrome = deposit32(env->exception.syndrome, 10100 5, 5, rt); 10101 rt = extract32(env->exception.syndrome, 10, 4); 10102 rt = aarch64_regnum(env, rt); 10103 env->exception.syndrome = deposit32(env->exception.syndrome, 10104 10, 5, rt); 10105 break; 10106 } 10107 env->cp15.esr_el[new_el] = env->exception.syndrome; 10108 break; 10109 case EXCP_IRQ: 10110 case EXCP_VIRQ: 10111 addr += 0x80; 10112 break; 10113 case EXCP_FIQ: 10114 case EXCP_VFIQ: 10115 addr += 0x100; 10116 break; 10117 default: 10118 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10119 } 10120 10121 if (is_a64(env)) { 10122 old_mode = pstate_read(env); 10123 aarch64_save_sp(env, arm_current_el(env)); 10124 env->elr_el[new_el] = env->pc; 10125 } else { 10126 old_mode = cpsr_read_for_spsr_elx(env); 10127 env->elr_el[new_el] = env->regs[15]; 10128 10129 aarch64_sync_32_to_64(env); 10130 10131 env->condexec_bits = 0; 10132 } 10133 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10134 10135 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10136 env->elr_el[new_el]); 10137 10138 if (cpu_isar_feature(aa64_pan, cpu)) { 10139 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10140 new_mode |= old_mode & PSTATE_PAN; 10141 switch (new_el) { 10142 case 2: 10143 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10144 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10145 != (HCR_E2H | HCR_TGE)) { 10146 break; 10147 } 10148 /* fall through */ 10149 case 1: 10150 /* ... the target is EL1 ... */ 10151 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10152 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10153 new_mode |= PSTATE_PAN; 10154 } 10155 break; 10156 } 10157 } 10158 if (cpu_isar_feature(aa64_mte, cpu)) { 10159 new_mode |= PSTATE_TCO; 10160 } 10161 10162 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10163 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10164 new_mode |= PSTATE_SSBS; 10165 } else { 10166 new_mode &= ~PSTATE_SSBS; 10167 } 10168 } 10169 10170 pstate_write(env, PSTATE_DAIF | new_mode); 10171 env->aarch64 = true; 10172 aarch64_restore_sp(env, new_el); 10173 helper_rebuild_hflags_a64(env, new_el); 10174 10175 env->pc = addr; 10176 10177 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10178 new_el, env->pc, pstate_read(env)); 10179 } 10180 10181 /* 10182 * Do semihosting call and set the appropriate return value. All the 10183 * permission and validity checks have been done at translate time. 10184 * 10185 * We only see semihosting exceptions in TCG only as they are not 10186 * trapped to the hypervisor in KVM. 10187 */ 10188 #ifdef CONFIG_TCG 10189 static void handle_semihosting(CPUState *cs) 10190 { 10191 ARMCPU *cpu = ARM_CPU(cs); 10192 CPUARMState *env = &cpu->env; 10193 10194 if (is_a64(env)) { 10195 qemu_log_mask(CPU_LOG_INT, 10196 "...handling as semihosting call 0x%" PRIx64 "\n", 10197 env->xregs[0]); 10198 env->xregs[0] = do_common_semihosting(cs); 10199 env->pc += 4; 10200 } else { 10201 qemu_log_mask(CPU_LOG_INT, 10202 "...handling as semihosting call 0x%x\n", 10203 env->regs[0]); 10204 env->regs[0] = do_common_semihosting(cs); 10205 env->regs[15] += env->thumb ? 2 : 4; 10206 } 10207 } 10208 #endif 10209 10210 /* Handle a CPU exception for A and R profile CPUs. 10211 * Do any appropriate logging, handle PSCI calls, and then hand off 10212 * to the AArch64-entry or AArch32-entry function depending on the 10213 * target exception level's register width. 10214 * 10215 * Note: this is used for both TCG (as the do_interrupt tcg op), 10216 * and KVM to re-inject guest debug exceptions, and to 10217 * inject a Synchronous-External-Abort. 10218 */ 10219 void arm_cpu_do_interrupt(CPUState *cs) 10220 { 10221 ARMCPU *cpu = ARM_CPU(cs); 10222 CPUARMState *env = &cpu->env; 10223 unsigned int new_el = env->exception.target_el; 10224 10225 assert(!arm_feature(env, ARM_FEATURE_M)); 10226 10227 arm_log_exception(cs); 10228 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10229 new_el); 10230 if (qemu_loglevel_mask(CPU_LOG_INT) 10231 && !excp_is_internal(cs->exception_index)) { 10232 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10233 syn_get_ec(env->exception.syndrome), 10234 env->exception.syndrome); 10235 } 10236 10237 if (arm_is_psci_call(cpu, cs->exception_index)) { 10238 arm_handle_psci_call(cpu); 10239 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10240 return; 10241 } 10242 10243 /* 10244 * Semihosting semantics depend on the register width of the code 10245 * that caused the exception, not the target exception level, so 10246 * must be handled here. 10247 */ 10248 #ifdef CONFIG_TCG 10249 if (cs->exception_index == EXCP_SEMIHOST) { 10250 handle_semihosting(cs); 10251 return; 10252 } 10253 #endif 10254 10255 /* Hooks may change global state so BQL should be held, also the 10256 * BQL needs to be held for any modification of 10257 * cs->interrupt_request. 10258 */ 10259 g_assert(qemu_mutex_iothread_locked()); 10260 10261 arm_call_pre_el_change_hook(cpu); 10262 10263 assert(!excp_is_internal(cs->exception_index)); 10264 if (arm_el_is_aa64(env, new_el)) { 10265 arm_cpu_do_interrupt_aarch64(cs); 10266 } else { 10267 arm_cpu_do_interrupt_aarch32(cs); 10268 } 10269 10270 arm_call_el_change_hook(cpu); 10271 10272 if (!kvm_enabled()) { 10273 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10274 } 10275 } 10276 #endif /* !CONFIG_USER_ONLY */ 10277 10278 uint64_t arm_sctlr(CPUARMState *env, int el) 10279 { 10280 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10281 if (el == 0) { 10282 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10283 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10284 ? 2 : 1; 10285 } 10286 return env->cp15.sctlr_el[el]; 10287 } 10288 10289 /* Return the SCTLR value which controls this address translation regime */ 10290 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10291 { 10292 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10293 } 10294 10295 #ifndef CONFIG_USER_ONLY 10296 10297 /* Return true if the specified stage of address translation is disabled */ 10298 static inline bool regime_translation_disabled(CPUARMState *env, 10299 ARMMMUIdx mmu_idx) 10300 { 10301 uint64_t hcr_el2; 10302 10303 if (arm_feature(env, ARM_FEATURE_M)) { 10304 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10305 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10306 case R_V7M_MPU_CTRL_ENABLE_MASK: 10307 /* Enabled, but not for HardFault and NMI */ 10308 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10309 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10310 /* Enabled for all cases */ 10311 return false; 10312 case 0: 10313 default: 10314 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10315 * we warned about that in armv7m_nvic.c when the guest set it. 10316 */ 10317 return true; 10318 } 10319 } 10320 10321 hcr_el2 = arm_hcr_el2_eff(env); 10322 10323 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10324 /* HCR.DC means HCR.VM behaves as 1 */ 10325 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10326 } 10327 10328 if (hcr_el2 & HCR_TGE) { 10329 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10330 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10331 return true; 10332 } 10333 } 10334 10335 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10336 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10337 return true; 10338 } 10339 10340 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10341 } 10342 10343 static inline bool regime_translation_big_endian(CPUARMState *env, 10344 ARMMMUIdx mmu_idx) 10345 { 10346 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10347 } 10348 10349 /* Return the TTBR associated with this translation regime */ 10350 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10351 int ttbrn) 10352 { 10353 if (mmu_idx == ARMMMUIdx_Stage2) { 10354 return env->cp15.vttbr_el2; 10355 } 10356 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10357 return env->cp15.vsttbr_el2; 10358 } 10359 if (ttbrn == 0) { 10360 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10361 } else { 10362 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10363 } 10364 } 10365 10366 #endif /* !CONFIG_USER_ONLY */ 10367 10368 /* Convert a possible stage1+2 MMU index into the appropriate 10369 * stage 1 MMU index 10370 */ 10371 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10372 { 10373 switch (mmu_idx) { 10374 case ARMMMUIdx_SE10_0: 10375 return ARMMMUIdx_Stage1_SE0; 10376 case ARMMMUIdx_SE10_1: 10377 return ARMMMUIdx_Stage1_SE1; 10378 case ARMMMUIdx_SE10_1_PAN: 10379 return ARMMMUIdx_Stage1_SE1_PAN; 10380 case ARMMMUIdx_E10_0: 10381 return ARMMMUIdx_Stage1_E0; 10382 case ARMMMUIdx_E10_1: 10383 return ARMMMUIdx_Stage1_E1; 10384 case ARMMMUIdx_E10_1_PAN: 10385 return ARMMMUIdx_Stage1_E1_PAN; 10386 default: 10387 return mmu_idx; 10388 } 10389 } 10390 10391 /* Return true if the translation regime is using LPAE format page tables */ 10392 static inline bool regime_using_lpae_format(CPUARMState *env, 10393 ARMMMUIdx mmu_idx) 10394 { 10395 int el = regime_el(env, mmu_idx); 10396 if (el == 2 || arm_el_is_aa64(env, el)) { 10397 return true; 10398 } 10399 if (arm_feature(env, ARM_FEATURE_LPAE) 10400 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10401 return true; 10402 } 10403 return false; 10404 } 10405 10406 /* Returns true if the stage 1 translation regime is using LPAE format page 10407 * tables. Used when raising alignment exceptions, whose FSR changes depending 10408 * on whether the long or short descriptor format is in use. */ 10409 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10410 { 10411 mmu_idx = stage_1_mmu_idx(mmu_idx); 10412 10413 return regime_using_lpae_format(env, mmu_idx); 10414 } 10415 10416 #ifndef CONFIG_USER_ONLY 10417 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10418 { 10419 switch (mmu_idx) { 10420 case ARMMMUIdx_SE10_0: 10421 case ARMMMUIdx_E20_0: 10422 case ARMMMUIdx_SE20_0: 10423 case ARMMMUIdx_Stage1_E0: 10424 case ARMMMUIdx_Stage1_SE0: 10425 case ARMMMUIdx_MUser: 10426 case ARMMMUIdx_MSUser: 10427 case ARMMMUIdx_MUserNegPri: 10428 case ARMMMUIdx_MSUserNegPri: 10429 return true; 10430 default: 10431 return false; 10432 case ARMMMUIdx_E10_0: 10433 case ARMMMUIdx_E10_1: 10434 case ARMMMUIdx_E10_1_PAN: 10435 g_assert_not_reached(); 10436 } 10437 } 10438 10439 /* Translate section/page access permissions to page 10440 * R/W protection flags 10441 * 10442 * @env: CPUARMState 10443 * @mmu_idx: MMU index indicating required translation regime 10444 * @ap: The 3-bit access permissions (AP[2:0]) 10445 * @domain_prot: The 2-bit domain access permissions 10446 */ 10447 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10448 int ap, int domain_prot) 10449 { 10450 bool is_user = regime_is_user(env, mmu_idx); 10451 10452 if (domain_prot == 3) { 10453 return PAGE_READ | PAGE_WRITE; 10454 } 10455 10456 switch (ap) { 10457 case 0: 10458 if (arm_feature(env, ARM_FEATURE_V7)) { 10459 return 0; 10460 } 10461 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10462 case SCTLR_S: 10463 return is_user ? 0 : PAGE_READ; 10464 case SCTLR_R: 10465 return PAGE_READ; 10466 default: 10467 return 0; 10468 } 10469 case 1: 10470 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10471 case 2: 10472 if (is_user) { 10473 return PAGE_READ; 10474 } else { 10475 return PAGE_READ | PAGE_WRITE; 10476 } 10477 case 3: 10478 return PAGE_READ | PAGE_WRITE; 10479 case 4: /* Reserved. */ 10480 return 0; 10481 case 5: 10482 return is_user ? 0 : PAGE_READ; 10483 case 6: 10484 return PAGE_READ; 10485 case 7: 10486 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10487 return 0; 10488 } 10489 return PAGE_READ; 10490 default: 10491 g_assert_not_reached(); 10492 } 10493 } 10494 10495 /* Translate section/page access permissions to page 10496 * R/W protection flags. 10497 * 10498 * @ap: The 2-bit simple AP (AP[2:1]) 10499 * @is_user: TRUE if accessing from PL0 10500 */ 10501 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10502 { 10503 switch (ap) { 10504 case 0: 10505 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10506 case 1: 10507 return PAGE_READ | PAGE_WRITE; 10508 case 2: 10509 return is_user ? 0 : PAGE_READ; 10510 case 3: 10511 return PAGE_READ; 10512 default: 10513 g_assert_not_reached(); 10514 } 10515 } 10516 10517 static inline int 10518 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10519 { 10520 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10521 } 10522 10523 /* Translate S2 section/page access permissions to protection flags 10524 * 10525 * @env: CPUARMState 10526 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10527 * @xn: XN (execute-never) bits 10528 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10529 */ 10530 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10531 { 10532 int prot = 0; 10533 10534 if (s2ap & 1) { 10535 prot |= PAGE_READ; 10536 } 10537 if (s2ap & 2) { 10538 prot |= PAGE_WRITE; 10539 } 10540 10541 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10542 switch (xn) { 10543 case 0: 10544 prot |= PAGE_EXEC; 10545 break; 10546 case 1: 10547 if (s1_is_el0) { 10548 prot |= PAGE_EXEC; 10549 } 10550 break; 10551 case 2: 10552 break; 10553 case 3: 10554 if (!s1_is_el0) { 10555 prot |= PAGE_EXEC; 10556 } 10557 break; 10558 default: 10559 g_assert_not_reached(); 10560 } 10561 } else { 10562 if (!extract32(xn, 1, 1)) { 10563 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10564 prot |= PAGE_EXEC; 10565 } 10566 } 10567 } 10568 return prot; 10569 } 10570 10571 /* Translate section/page access permissions to protection flags 10572 * 10573 * @env: CPUARMState 10574 * @mmu_idx: MMU index indicating required translation regime 10575 * @is_aa64: TRUE if AArch64 10576 * @ap: The 2-bit simple AP (AP[2:1]) 10577 * @ns: NS (non-secure) bit 10578 * @xn: XN (execute-never) bit 10579 * @pxn: PXN (privileged execute-never) bit 10580 */ 10581 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10582 int ap, int ns, int xn, int pxn) 10583 { 10584 bool is_user = regime_is_user(env, mmu_idx); 10585 int prot_rw, user_rw; 10586 bool have_wxn; 10587 int wxn = 0; 10588 10589 assert(mmu_idx != ARMMMUIdx_Stage2); 10590 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10591 10592 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10593 if (is_user) { 10594 prot_rw = user_rw; 10595 } else { 10596 if (user_rw && regime_is_pan(env, mmu_idx)) { 10597 /* PAN forbids data accesses but doesn't affect insn fetch */ 10598 prot_rw = 0; 10599 } else { 10600 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10601 } 10602 } 10603 10604 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10605 return prot_rw; 10606 } 10607 10608 /* TODO have_wxn should be replaced with 10609 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10610 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10611 * compatible processors have EL2, which is required for [U]WXN. 10612 */ 10613 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10614 10615 if (have_wxn) { 10616 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10617 } 10618 10619 if (is_aa64) { 10620 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10621 xn = pxn || (user_rw & PAGE_WRITE); 10622 } 10623 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10624 switch (regime_el(env, mmu_idx)) { 10625 case 1: 10626 case 3: 10627 if (is_user) { 10628 xn = xn || !(user_rw & PAGE_READ); 10629 } else { 10630 int uwxn = 0; 10631 if (have_wxn) { 10632 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10633 } 10634 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10635 (uwxn && (user_rw & PAGE_WRITE)); 10636 } 10637 break; 10638 case 2: 10639 break; 10640 } 10641 } else { 10642 xn = wxn = 0; 10643 } 10644 10645 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10646 return prot_rw; 10647 } 10648 return prot_rw | PAGE_EXEC; 10649 } 10650 10651 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10652 uint32_t *table, uint32_t address) 10653 { 10654 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10655 TCR *tcr = regime_tcr(env, mmu_idx); 10656 10657 if (address & tcr->mask) { 10658 if (tcr->raw_tcr & TTBCR_PD1) { 10659 /* Translation table walk disabled for TTBR1 */ 10660 return false; 10661 } 10662 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10663 } else { 10664 if (tcr->raw_tcr & TTBCR_PD0) { 10665 /* Translation table walk disabled for TTBR0 */ 10666 return false; 10667 } 10668 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10669 } 10670 *table |= (address >> 18) & 0x3ffc; 10671 return true; 10672 } 10673 10674 /* Translate a S1 pagetable walk through S2 if needed. */ 10675 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10676 hwaddr addr, bool *is_secure, 10677 ARMMMUFaultInfo *fi) 10678 { 10679 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10680 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10681 target_ulong s2size; 10682 hwaddr s2pa; 10683 int s2prot; 10684 int ret; 10685 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10686 : ARMMMUIdx_Stage2; 10687 ARMCacheAttrs cacheattrs = {}; 10688 MemTxAttrs txattrs = {}; 10689 10690 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10691 &s2pa, &txattrs, &s2prot, &s2size, fi, 10692 &cacheattrs); 10693 if (ret) { 10694 assert(fi->type != ARMFault_None); 10695 fi->s2addr = addr; 10696 fi->stage2 = true; 10697 fi->s1ptw = true; 10698 fi->s1ns = !*is_secure; 10699 return ~0; 10700 } 10701 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10702 (cacheattrs.attrs & 0xf0) == 0) { 10703 /* 10704 * PTW set and S1 walk touched S2 Device memory: 10705 * generate Permission fault. 10706 */ 10707 fi->type = ARMFault_Permission; 10708 fi->s2addr = addr; 10709 fi->stage2 = true; 10710 fi->s1ptw = true; 10711 fi->s1ns = !*is_secure; 10712 return ~0; 10713 } 10714 10715 if (arm_is_secure_below_el3(env)) { 10716 /* Check if page table walk is to secure or non-secure PA space. */ 10717 if (*is_secure) { 10718 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10719 } else { 10720 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10721 } 10722 } else { 10723 assert(!*is_secure); 10724 } 10725 10726 addr = s2pa; 10727 } 10728 return addr; 10729 } 10730 10731 /* All loads done in the course of a page table walk go through here. */ 10732 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10733 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10734 { 10735 ARMCPU *cpu = ARM_CPU(cs); 10736 CPUARMState *env = &cpu->env; 10737 MemTxAttrs attrs = {}; 10738 MemTxResult result = MEMTX_OK; 10739 AddressSpace *as; 10740 uint32_t data; 10741 10742 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10743 attrs.secure = is_secure; 10744 as = arm_addressspace(cs, attrs); 10745 if (fi->s1ptw) { 10746 return 0; 10747 } 10748 if (regime_translation_big_endian(env, mmu_idx)) { 10749 data = address_space_ldl_be(as, addr, attrs, &result); 10750 } else { 10751 data = address_space_ldl_le(as, addr, attrs, &result); 10752 } 10753 if (result == MEMTX_OK) { 10754 return data; 10755 } 10756 fi->type = ARMFault_SyncExternalOnWalk; 10757 fi->ea = arm_extabort_type(result); 10758 return 0; 10759 } 10760 10761 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10762 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10763 { 10764 ARMCPU *cpu = ARM_CPU(cs); 10765 CPUARMState *env = &cpu->env; 10766 MemTxAttrs attrs = {}; 10767 MemTxResult result = MEMTX_OK; 10768 AddressSpace *as; 10769 uint64_t data; 10770 10771 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10772 attrs.secure = is_secure; 10773 as = arm_addressspace(cs, attrs); 10774 if (fi->s1ptw) { 10775 return 0; 10776 } 10777 if (regime_translation_big_endian(env, mmu_idx)) { 10778 data = address_space_ldq_be(as, addr, attrs, &result); 10779 } else { 10780 data = address_space_ldq_le(as, addr, attrs, &result); 10781 } 10782 if (result == MEMTX_OK) { 10783 return data; 10784 } 10785 fi->type = ARMFault_SyncExternalOnWalk; 10786 fi->ea = arm_extabort_type(result); 10787 return 0; 10788 } 10789 10790 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10791 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10792 hwaddr *phys_ptr, int *prot, 10793 target_ulong *page_size, 10794 ARMMMUFaultInfo *fi) 10795 { 10796 CPUState *cs = env_cpu(env); 10797 int level = 1; 10798 uint32_t table; 10799 uint32_t desc; 10800 int type; 10801 int ap; 10802 int domain = 0; 10803 int domain_prot; 10804 hwaddr phys_addr; 10805 uint32_t dacr; 10806 10807 /* Pagetable walk. */ 10808 /* Lookup l1 descriptor. */ 10809 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10810 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10811 fi->type = ARMFault_Translation; 10812 goto do_fault; 10813 } 10814 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10815 mmu_idx, fi); 10816 if (fi->type != ARMFault_None) { 10817 goto do_fault; 10818 } 10819 type = (desc & 3); 10820 domain = (desc >> 5) & 0x0f; 10821 if (regime_el(env, mmu_idx) == 1) { 10822 dacr = env->cp15.dacr_ns; 10823 } else { 10824 dacr = env->cp15.dacr_s; 10825 } 10826 domain_prot = (dacr >> (domain * 2)) & 3; 10827 if (type == 0) { 10828 /* Section translation fault. */ 10829 fi->type = ARMFault_Translation; 10830 goto do_fault; 10831 } 10832 if (type != 2) { 10833 level = 2; 10834 } 10835 if (domain_prot == 0 || domain_prot == 2) { 10836 fi->type = ARMFault_Domain; 10837 goto do_fault; 10838 } 10839 if (type == 2) { 10840 /* 1Mb section. */ 10841 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10842 ap = (desc >> 10) & 3; 10843 *page_size = 1024 * 1024; 10844 } else { 10845 /* Lookup l2 entry. */ 10846 if (type == 1) { 10847 /* Coarse pagetable. */ 10848 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10849 } else { 10850 /* Fine pagetable. */ 10851 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10852 } 10853 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10854 mmu_idx, fi); 10855 if (fi->type != ARMFault_None) { 10856 goto do_fault; 10857 } 10858 switch (desc & 3) { 10859 case 0: /* Page translation fault. */ 10860 fi->type = ARMFault_Translation; 10861 goto do_fault; 10862 case 1: /* 64k page. */ 10863 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10864 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10865 *page_size = 0x10000; 10866 break; 10867 case 2: /* 4k page. */ 10868 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10869 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10870 *page_size = 0x1000; 10871 break; 10872 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10873 if (type == 1) { 10874 /* ARMv6/XScale extended small page format */ 10875 if (arm_feature(env, ARM_FEATURE_XSCALE) 10876 || arm_feature(env, ARM_FEATURE_V6)) { 10877 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10878 *page_size = 0x1000; 10879 } else { 10880 /* UNPREDICTABLE in ARMv5; we choose to take a 10881 * page translation fault. 10882 */ 10883 fi->type = ARMFault_Translation; 10884 goto do_fault; 10885 } 10886 } else { 10887 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10888 *page_size = 0x400; 10889 } 10890 ap = (desc >> 4) & 3; 10891 break; 10892 default: 10893 /* Never happens, but compiler isn't smart enough to tell. */ 10894 abort(); 10895 } 10896 } 10897 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10898 *prot |= *prot ? PAGE_EXEC : 0; 10899 if (!(*prot & (1 << access_type))) { 10900 /* Access permission fault. */ 10901 fi->type = ARMFault_Permission; 10902 goto do_fault; 10903 } 10904 *phys_ptr = phys_addr; 10905 return false; 10906 do_fault: 10907 fi->domain = domain; 10908 fi->level = level; 10909 return true; 10910 } 10911 10912 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10913 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10914 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10915 target_ulong *page_size, ARMMMUFaultInfo *fi) 10916 { 10917 CPUState *cs = env_cpu(env); 10918 ARMCPU *cpu = env_archcpu(env); 10919 int level = 1; 10920 uint32_t table; 10921 uint32_t desc; 10922 uint32_t xn; 10923 uint32_t pxn = 0; 10924 int type; 10925 int ap; 10926 int domain = 0; 10927 int domain_prot; 10928 hwaddr phys_addr; 10929 uint32_t dacr; 10930 bool ns; 10931 10932 /* Pagetable walk. */ 10933 /* Lookup l1 descriptor. */ 10934 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10935 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10936 fi->type = ARMFault_Translation; 10937 goto do_fault; 10938 } 10939 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10940 mmu_idx, fi); 10941 if (fi->type != ARMFault_None) { 10942 goto do_fault; 10943 } 10944 type = (desc & 3); 10945 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10946 /* Section translation fault, or attempt to use the encoding 10947 * which is Reserved on implementations without PXN. 10948 */ 10949 fi->type = ARMFault_Translation; 10950 goto do_fault; 10951 } 10952 if ((type == 1) || !(desc & (1 << 18))) { 10953 /* Page or Section. */ 10954 domain = (desc >> 5) & 0x0f; 10955 } 10956 if (regime_el(env, mmu_idx) == 1) { 10957 dacr = env->cp15.dacr_ns; 10958 } else { 10959 dacr = env->cp15.dacr_s; 10960 } 10961 if (type == 1) { 10962 level = 2; 10963 } 10964 domain_prot = (dacr >> (domain * 2)) & 3; 10965 if (domain_prot == 0 || domain_prot == 2) { 10966 /* Section or Page domain fault */ 10967 fi->type = ARMFault_Domain; 10968 goto do_fault; 10969 } 10970 if (type != 1) { 10971 if (desc & (1 << 18)) { 10972 /* Supersection. */ 10973 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10974 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10975 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10976 *page_size = 0x1000000; 10977 } else { 10978 /* Section. */ 10979 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10980 *page_size = 0x100000; 10981 } 10982 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10983 xn = desc & (1 << 4); 10984 pxn = desc & 1; 10985 ns = extract32(desc, 19, 1); 10986 } else { 10987 if (cpu_isar_feature(aa32_pxn, cpu)) { 10988 pxn = (desc >> 2) & 1; 10989 } 10990 ns = extract32(desc, 3, 1); 10991 /* Lookup l2 entry. */ 10992 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10993 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10994 mmu_idx, fi); 10995 if (fi->type != ARMFault_None) { 10996 goto do_fault; 10997 } 10998 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10999 switch (desc & 3) { 11000 case 0: /* Page translation fault. */ 11001 fi->type = ARMFault_Translation; 11002 goto do_fault; 11003 case 1: /* 64k page. */ 11004 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11005 xn = desc & (1 << 15); 11006 *page_size = 0x10000; 11007 break; 11008 case 2: case 3: /* 4k page. */ 11009 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11010 xn = desc & 1; 11011 *page_size = 0x1000; 11012 break; 11013 default: 11014 /* Never happens, but compiler isn't smart enough to tell. */ 11015 abort(); 11016 } 11017 } 11018 if (domain_prot == 3) { 11019 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11020 } else { 11021 if (pxn && !regime_is_user(env, mmu_idx)) { 11022 xn = 1; 11023 } 11024 if (xn && access_type == MMU_INST_FETCH) { 11025 fi->type = ARMFault_Permission; 11026 goto do_fault; 11027 } 11028 11029 if (arm_feature(env, ARM_FEATURE_V6K) && 11030 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11031 /* The simplified model uses AP[0] as an access control bit. */ 11032 if ((ap & 1) == 0) { 11033 /* Access flag fault. */ 11034 fi->type = ARMFault_AccessFlag; 11035 goto do_fault; 11036 } 11037 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11038 } else { 11039 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11040 } 11041 if (*prot && !xn) { 11042 *prot |= PAGE_EXEC; 11043 } 11044 if (!(*prot & (1 << access_type))) { 11045 /* Access permission fault. */ 11046 fi->type = ARMFault_Permission; 11047 goto do_fault; 11048 } 11049 } 11050 if (ns) { 11051 /* The NS bit will (as required by the architecture) have no effect if 11052 * the CPU doesn't support TZ or this is a non-secure translation 11053 * regime, because the attribute will already be non-secure. 11054 */ 11055 attrs->secure = false; 11056 } 11057 *phys_ptr = phys_addr; 11058 return false; 11059 do_fault: 11060 fi->domain = domain; 11061 fi->level = level; 11062 return true; 11063 } 11064 11065 /* 11066 * check_s2_mmu_setup 11067 * @cpu: ARMCPU 11068 * @is_aa64: True if the translation regime is in AArch64 state 11069 * @startlevel: Suggested starting level 11070 * @inputsize: Bitsize of IPAs 11071 * @stride: Page-table stride (See the ARM ARM) 11072 * 11073 * Returns true if the suggested S2 translation parameters are OK and 11074 * false otherwise. 11075 */ 11076 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11077 int inputsize, int stride, int outputsize) 11078 { 11079 const int grainsize = stride + 3; 11080 int startsizecheck; 11081 11082 /* 11083 * Negative levels are usually not allowed... 11084 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which 11085 * begins with level -1. Note that previous feature tests will have 11086 * eliminated this combination if it is not enabled. 11087 */ 11088 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { 11089 return false; 11090 } 11091 11092 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11093 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11094 return false; 11095 } 11096 11097 if (is_aa64) { 11098 switch (stride) { 11099 case 13: /* 64KB Pages. */ 11100 if (level == 0 || (level == 1 && outputsize <= 42)) { 11101 return false; 11102 } 11103 break; 11104 case 11: /* 16KB Pages. */ 11105 if (level == 0 || (level == 1 && outputsize <= 40)) { 11106 return false; 11107 } 11108 break; 11109 case 9: /* 4KB Pages. */ 11110 if (level == 0 && outputsize <= 42) { 11111 return false; 11112 } 11113 break; 11114 default: 11115 g_assert_not_reached(); 11116 } 11117 11118 /* Inputsize checks. */ 11119 if (inputsize > outputsize && 11120 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 11121 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11122 return false; 11123 } 11124 } else { 11125 /* AArch32 only supports 4KB pages. Assert on that. */ 11126 assert(stride == 9); 11127 11128 if (level == 0) { 11129 return false; 11130 } 11131 } 11132 return true; 11133 } 11134 11135 /* Translate from the 4-bit stage 2 representation of 11136 * memory attributes (without cache-allocation hints) to 11137 * the 8-bit representation of the stage 1 MAIR registers 11138 * (which includes allocation hints). 11139 * 11140 * ref: shared/translation/attrs/S2AttrDecode() 11141 * .../S2ConvertAttrsHints() 11142 */ 11143 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11144 { 11145 uint8_t hiattr = extract32(s2attrs, 2, 2); 11146 uint8_t loattr = extract32(s2attrs, 0, 2); 11147 uint8_t hihint = 0, lohint = 0; 11148 11149 if (hiattr != 0) { /* normal memory */ 11150 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11151 hiattr = loattr = 1; /* non-cacheable */ 11152 } else { 11153 if (hiattr != 1) { /* Write-through or write-back */ 11154 hihint = 3; /* RW allocate */ 11155 } 11156 if (loattr != 1) { /* Write-through or write-back */ 11157 lohint = 3; /* RW allocate */ 11158 } 11159 } 11160 } 11161 11162 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11163 } 11164 #endif /* !CONFIG_USER_ONLY */ 11165 11166 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 11167 static const uint8_t pamax_map[] = { 11168 [0] = 32, 11169 [1] = 36, 11170 [2] = 40, 11171 [3] = 42, 11172 [4] = 44, 11173 [5] = 48, 11174 [6] = 52, 11175 }; 11176 11177 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 11178 unsigned int arm_pamax(ARMCPU *cpu) 11179 { 11180 unsigned int parange = 11181 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11182 11183 /* 11184 * id_aa64mmfr0 is a read-only register so values outside of the 11185 * supported mappings can be considered an implementation error. 11186 */ 11187 assert(parange < ARRAY_SIZE(pamax_map)); 11188 return pamax_map[parange]; 11189 } 11190 11191 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11192 { 11193 if (regime_has_2_ranges(mmu_idx)) { 11194 return extract64(tcr, 37, 2); 11195 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11196 return 0; /* VTCR_EL2 */ 11197 } else { 11198 /* Replicate the single TBI bit so we always have 2 bits. */ 11199 return extract32(tcr, 20, 1) * 3; 11200 } 11201 } 11202 11203 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11204 { 11205 if (regime_has_2_ranges(mmu_idx)) { 11206 return extract64(tcr, 51, 2); 11207 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11208 return 0; /* VTCR_EL2 */ 11209 } else { 11210 /* Replicate the single TBID bit so we always have 2 bits. */ 11211 return extract32(tcr, 29, 1) * 3; 11212 } 11213 } 11214 11215 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11216 { 11217 if (regime_has_2_ranges(mmu_idx)) { 11218 return extract64(tcr, 57, 2); 11219 } else { 11220 /* Replicate the single TCMA bit so we always have 2 bits. */ 11221 return extract32(tcr, 30, 1) * 3; 11222 } 11223 } 11224 11225 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11226 ARMMMUIdx mmu_idx, bool data) 11227 { 11228 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11229 bool epd, hpd, using16k, using64k, tsz_oob, ds; 11230 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11231 ARMCPU *cpu = env_archcpu(env); 11232 11233 if (!regime_has_2_ranges(mmu_idx)) { 11234 select = 0; 11235 tsz = extract32(tcr, 0, 6); 11236 using64k = extract32(tcr, 14, 1); 11237 using16k = extract32(tcr, 15, 1); 11238 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11239 /* VTCR_EL2 */ 11240 hpd = false; 11241 } else { 11242 hpd = extract32(tcr, 24, 1); 11243 } 11244 epd = false; 11245 sh = extract32(tcr, 12, 2); 11246 ps = extract32(tcr, 16, 3); 11247 ds = extract64(tcr, 32, 1); 11248 } else { 11249 /* 11250 * Bit 55 is always between the two regions, and is canonical for 11251 * determining if address tagging is enabled. 11252 */ 11253 select = extract64(va, 55, 1); 11254 if (!select) { 11255 tsz = extract32(tcr, 0, 6); 11256 epd = extract32(tcr, 7, 1); 11257 sh = extract32(tcr, 12, 2); 11258 using64k = extract32(tcr, 14, 1); 11259 using16k = extract32(tcr, 15, 1); 11260 hpd = extract64(tcr, 41, 1); 11261 } else { 11262 int tg = extract32(tcr, 30, 2); 11263 using16k = tg == 1; 11264 using64k = tg == 3; 11265 tsz = extract32(tcr, 16, 6); 11266 epd = extract32(tcr, 23, 1); 11267 sh = extract32(tcr, 28, 2); 11268 hpd = extract64(tcr, 42, 1); 11269 } 11270 ps = extract64(tcr, 32, 3); 11271 ds = extract64(tcr, 59, 1); 11272 } 11273 11274 if (cpu_isar_feature(aa64_st, cpu)) { 11275 max_tsz = 48 - using64k; 11276 } else { 11277 max_tsz = 39; 11278 } 11279 11280 /* 11281 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11282 * adjust the effective value of DS, as documented. 11283 */ 11284 min_tsz = 16; 11285 if (using64k) { 11286 if (cpu_isar_feature(aa64_lva, cpu)) { 11287 min_tsz = 12; 11288 } 11289 ds = false; 11290 } else if (ds) { 11291 switch (mmu_idx) { 11292 case ARMMMUIdx_Stage2: 11293 case ARMMMUIdx_Stage2_S: 11294 if (using16k) { 11295 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11296 } else { 11297 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11298 } 11299 break; 11300 default: 11301 if (using16k) { 11302 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11303 } else { 11304 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11305 } 11306 break; 11307 } 11308 if (ds) { 11309 min_tsz = 12; 11310 } 11311 } 11312 11313 if (tsz > max_tsz) { 11314 tsz = max_tsz; 11315 tsz_oob = true; 11316 } else if (tsz < min_tsz) { 11317 tsz = min_tsz; 11318 tsz_oob = true; 11319 } else { 11320 tsz_oob = false; 11321 } 11322 11323 /* Present TBI as a composite with TBID. */ 11324 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11325 if (!data) { 11326 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11327 } 11328 tbi = (tbi >> select) & 1; 11329 11330 return (ARMVAParameters) { 11331 .tsz = tsz, 11332 .ps = ps, 11333 .sh = sh, 11334 .select = select, 11335 .tbi = tbi, 11336 .epd = epd, 11337 .hpd = hpd, 11338 .using16k = using16k, 11339 .using64k = using64k, 11340 .tsz_oob = tsz_oob, 11341 .ds = ds, 11342 }; 11343 } 11344 11345 #ifndef CONFIG_USER_ONLY 11346 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11347 ARMMMUIdx mmu_idx) 11348 { 11349 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11350 uint32_t el = regime_el(env, mmu_idx); 11351 int select, tsz; 11352 bool epd, hpd; 11353 11354 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11355 11356 if (mmu_idx == ARMMMUIdx_Stage2) { 11357 /* VTCR */ 11358 bool sext = extract32(tcr, 4, 1); 11359 bool sign = extract32(tcr, 3, 1); 11360 11361 /* 11362 * If the sign-extend bit is not the same as t0sz[3], the result 11363 * is unpredictable. Flag this as a guest error. 11364 */ 11365 if (sign != sext) { 11366 qemu_log_mask(LOG_GUEST_ERROR, 11367 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11368 } 11369 tsz = sextract32(tcr, 0, 4) + 8; 11370 select = 0; 11371 hpd = false; 11372 epd = false; 11373 } else if (el == 2) { 11374 /* HTCR */ 11375 tsz = extract32(tcr, 0, 3); 11376 select = 0; 11377 hpd = extract64(tcr, 24, 1); 11378 epd = false; 11379 } else { 11380 int t0sz = extract32(tcr, 0, 3); 11381 int t1sz = extract32(tcr, 16, 3); 11382 11383 if (t1sz == 0) { 11384 select = va > (0xffffffffu >> t0sz); 11385 } else { 11386 /* Note that we will detect errors later. */ 11387 select = va >= ~(0xffffffffu >> t1sz); 11388 } 11389 if (!select) { 11390 tsz = t0sz; 11391 epd = extract32(tcr, 7, 1); 11392 hpd = extract64(tcr, 41, 1); 11393 } else { 11394 tsz = t1sz; 11395 epd = extract32(tcr, 23, 1); 11396 hpd = extract64(tcr, 42, 1); 11397 } 11398 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11399 hpd &= extract32(tcr, 6, 1); 11400 } 11401 11402 return (ARMVAParameters) { 11403 .tsz = tsz, 11404 .select = select, 11405 .epd = epd, 11406 .hpd = hpd, 11407 }; 11408 } 11409 11410 /** 11411 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11412 * 11413 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11414 * prot and page_size may not be filled in, and the populated fsr value provides 11415 * information on why the translation aborted, in the format of a long-format 11416 * DFSR/IFSR fault register, with the following caveats: 11417 * * the WnR bit is never set (the caller must do this). 11418 * 11419 * @env: CPUARMState 11420 * @address: virtual address to get physical address for 11421 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11422 * @mmu_idx: MMU index indicating required translation regime 11423 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11424 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11425 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11426 * @phys_ptr: set to the physical address corresponding to the virtual address 11427 * @attrs: set to the memory transaction attributes to use 11428 * @prot: set to the permissions for the page containing phys_ptr 11429 * @page_size_ptr: set to the size of the page containing phys_ptr 11430 * @fi: set to fault info if the translation fails 11431 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11432 */ 11433 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11434 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11435 bool s1_is_el0, 11436 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11437 target_ulong *page_size_ptr, 11438 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11439 { 11440 ARMCPU *cpu = env_archcpu(env); 11441 CPUState *cs = CPU(cpu); 11442 /* Read an LPAE long-descriptor translation table. */ 11443 ARMFaultType fault_type = ARMFault_Translation; 11444 uint32_t level; 11445 ARMVAParameters param; 11446 uint64_t ttbr; 11447 hwaddr descaddr, indexmask, indexmask_grainsize; 11448 uint32_t tableattrs; 11449 target_ulong page_size; 11450 uint32_t attrs; 11451 int32_t stride; 11452 int addrsize, inputsize, outputsize; 11453 TCR *tcr = regime_tcr(env, mmu_idx); 11454 int ap, ns, xn, pxn; 11455 uint32_t el = regime_el(env, mmu_idx); 11456 uint64_t descaddrmask; 11457 bool aarch64 = arm_el_is_aa64(env, el); 11458 bool guarded = false; 11459 11460 /* TODO: This code does not support shareability levels. */ 11461 if (aarch64) { 11462 int ps; 11463 11464 param = aa64_va_parameters(env, address, mmu_idx, 11465 access_type != MMU_INST_FETCH); 11466 level = 0; 11467 11468 /* 11469 * If TxSZ is programmed to a value larger than the maximum, 11470 * or smaller than the effective minimum, it is IMPLEMENTATION 11471 * DEFINED whether we behave as if the field were programmed 11472 * within bounds, or if a level 0 Translation fault is generated. 11473 * 11474 * With FEAT_LVA, fault on less than minimum becomes required, 11475 * so our choice is to always raise the fault. 11476 */ 11477 if (param.tsz_oob) { 11478 fault_type = ARMFault_Translation; 11479 goto do_fault; 11480 } 11481 11482 addrsize = 64 - 8 * param.tbi; 11483 inputsize = 64 - param.tsz; 11484 11485 /* 11486 * Bound PS by PARANGE to find the effective output address size. 11487 * ID_AA64MMFR0 is a read-only register so values outside of the 11488 * supported mappings can be considered an implementation error. 11489 */ 11490 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11491 ps = MIN(ps, param.ps); 11492 assert(ps < ARRAY_SIZE(pamax_map)); 11493 outputsize = pamax_map[ps]; 11494 } else { 11495 param = aa32_va_parameters(env, address, mmu_idx); 11496 level = 1; 11497 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11498 inputsize = addrsize - param.tsz; 11499 outputsize = 40; 11500 } 11501 11502 /* 11503 * We determined the region when collecting the parameters, but we 11504 * have not yet validated that the address is valid for the region. 11505 * Extract the top bits and verify that they all match select. 11506 * 11507 * For aa32, if inputsize == addrsize, then we have selected the 11508 * region by exclusion in aa32_va_parameters and there is no more 11509 * validation to do here. 11510 */ 11511 if (inputsize < addrsize) { 11512 target_ulong top_bits = sextract64(address, inputsize, 11513 addrsize - inputsize); 11514 if (-top_bits != param.select) { 11515 /* The gap between the two regions is a Translation fault */ 11516 fault_type = ARMFault_Translation; 11517 goto do_fault; 11518 } 11519 } 11520 11521 if (param.using64k) { 11522 stride = 13; 11523 } else if (param.using16k) { 11524 stride = 11; 11525 } else { 11526 stride = 9; 11527 } 11528 11529 /* Note that QEMU ignores shareability and cacheability attributes, 11530 * so we don't need to do anything with the SH, ORGN, IRGN fields 11531 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11532 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11533 * implement any ASID-like capability so we can ignore it (instead 11534 * we will always flush the TLB any time the ASID is changed). 11535 */ 11536 ttbr = regime_ttbr(env, mmu_idx, param.select); 11537 11538 /* Here we should have set up all the parameters for the translation: 11539 * inputsize, ttbr, epd, stride, tbi 11540 */ 11541 11542 if (param.epd) { 11543 /* Translation table walk disabled => Translation fault on TLB miss 11544 * Note: This is always 0 on 64-bit EL2 and EL3. 11545 */ 11546 goto do_fault; 11547 } 11548 11549 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11550 /* The starting level depends on the virtual address size (which can 11551 * be up to 48 bits) and the translation granule size. It indicates 11552 * the number of strides (stride bits at a time) needed to 11553 * consume the bits of the input address. In the pseudocode this is: 11554 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11555 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11556 * our 'stride + 3' and 'stride' is our 'stride'. 11557 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11558 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11559 * = 4 - (inputsize - 4) / stride; 11560 */ 11561 level = 4 - (inputsize - 4) / stride; 11562 } else { 11563 /* For stage 2 translations the starting level is specified by the 11564 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11565 */ 11566 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11567 uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1); 11568 uint32_t startlevel; 11569 bool ok; 11570 11571 /* SL2 is RES0 unless DS=1 & 4kb granule. */ 11572 if (param.ds && stride == 9 && sl2) { 11573 if (sl0 != 0) { 11574 level = 0; 11575 fault_type = ARMFault_Translation; 11576 goto do_fault; 11577 } 11578 startlevel = -1; 11579 } else if (!aarch64 || stride == 9) { 11580 /* AArch32 or 4KB pages */ 11581 startlevel = 2 - sl0; 11582 11583 if (cpu_isar_feature(aa64_st, cpu)) { 11584 startlevel &= 3; 11585 } 11586 } else { 11587 /* 16KB or 64KB pages */ 11588 startlevel = 3 - sl0; 11589 } 11590 11591 /* Check that the starting level is valid. */ 11592 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11593 inputsize, stride, outputsize); 11594 if (!ok) { 11595 fault_type = ARMFault_Translation; 11596 goto do_fault; 11597 } 11598 level = startlevel; 11599 } 11600 11601 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 11602 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 11603 11604 /* Now we can extract the actual base address from the TTBR */ 11605 descaddr = extract64(ttbr, 0, 48); 11606 11607 /* 11608 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 11609 * 11610 * Otherwise, if the base address is out of range, raise AddressSizeFault. 11611 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 11612 * but we've just cleared the bits above 47, so simplify the test. 11613 */ 11614 if (outputsize > 48) { 11615 descaddr |= extract64(ttbr, 2, 4) << 48; 11616 } else if (descaddr >> outputsize) { 11617 level = 0; 11618 fault_type = ARMFault_AddressSize; 11619 goto do_fault; 11620 } 11621 11622 /* 11623 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11624 * and also to mask out CnP (bit 0) which could validly be non-zero. 11625 */ 11626 descaddr &= ~indexmask; 11627 11628 /* 11629 * For AArch32, the address field in the descriptor goes up to bit 39 11630 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 11631 * or an AddressSize fault is raised. So for v8 we extract those SBZ 11632 * bits as part of the address, which will be checked via outputsize. 11633 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 11634 * the highest bits of a 52-bit output are placed elsewhere. 11635 */ 11636 if (param.ds) { 11637 descaddrmask = MAKE_64BIT_MASK(0, 50); 11638 } else if (arm_feature(env, ARM_FEATURE_V8)) { 11639 descaddrmask = MAKE_64BIT_MASK(0, 48); 11640 } else { 11641 descaddrmask = MAKE_64BIT_MASK(0, 40); 11642 } 11643 descaddrmask &= ~indexmask_grainsize; 11644 11645 /* Secure accesses start with the page table in secure memory and 11646 * can be downgraded to non-secure at any step. Non-secure accesses 11647 * remain non-secure. We implement this by just ORing in the NSTable/NS 11648 * bits at each step. 11649 */ 11650 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11651 for (;;) { 11652 uint64_t descriptor; 11653 bool nstable; 11654 11655 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11656 descaddr &= ~7ULL; 11657 nstable = extract32(tableattrs, 4, 1); 11658 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11659 if (fi->type != ARMFault_None) { 11660 goto do_fault; 11661 } 11662 11663 if (!(descriptor & 1) || 11664 (!(descriptor & 2) && (level == 3))) { 11665 /* Invalid, or the Reserved level 3 encoding */ 11666 goto do_fault; 11667 } 11668 11669 descaddr = descriptor & descaddrmask; 11670 11671 /* 11672 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 11673 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 11674 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 11675 * raise AddressSizeFault. 11676 */ 11677 if (outputsize > 48) { 11678 if (param.ds) { 11679 descaddr |= extract64(descriptor, 8, 2) << 50; 11680 } else { 11681 descaddr |= extract64(descriptor, 12, 4) << 48; 11682 } 11683 } else if (descaddr >> outputsize) { 11684 fault_type = ARMFault_AddressSize; 11685 goto do_fault; 11686 } 11687 11688 if ((descriptor & 2) && (level < 3)) { 11689 /* Table entry. The top five bits are attributes which may 11690 * propagate down through lower levels of the table (and 11691 * which are all arranged so that 0 means "no effect", so 11692 * we can gather them up by ORing in the bits at each level). 11693 */ 11694 tableattrs |= extract64(descriptor, 59, 5); 11695 level++; 11696 indexmask = indexmask_grainsize; 11697 continue; 11698 } 11699 /* 11700 * Block entry at level 1 or 2, or page entry at level 3. 11701 * These are basically the same thing, although the number 11702 * of bits we pull in from the vaddr varies. Note that although 11703 * descaddrmask masks enough of the low bits of the descriptor 11704 * to give a correct page or table address, the address field 11705 * in a block descriptor is smaller; so we need to explicitly 11706 * clear the lower bits here before ORing in the low vaddr bits. 11707 */ 11708 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11709 descaddr &= ~(page_size - 1); 11710 descaddr |= (address & (page_size - 1)); 11711 /* Extract attributes from the descriptor */ 11712 attrs = extract64(descriptor, 2, 10) 11713 | (extract64(descriptor, 52, 12) << 10); 11714 11715 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11716 /* Stage 2 table descriptors do not include any attribute fields */ 11717 break; 11718 } 11719 /* Merge in attributes from table descriptors */ 11720 attrs |= nstable << 3; /* NS */ 11721 guarded = extract64(descriptor, 50, 1); /* GP */ 11722 if (param.hpd) { 11723 /* HPD disables all the table attributes except NSTable. */ 11724 break; 11725 } 11726 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11727 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11728 * means "force PL1 access only", which means forcing AP[1] to 0. 11729 */ 11730 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11731 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11732 break; 11733 } 11734 /* Here descaddr is the final physical address, and attributes 11735 * are all in attrs. 11736 */ 11737 fault_type = ARMFault_AccessFlag; 11738 if ((attrs & (1 << 8)) == 0) { 11739 /* Access flag */ 11740 goto do_fault; 11741 } 11742 11743 ap = extract32(attrs, 4, 2); 11744 11745 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11746 ns = mmu_idx == ARMMMUIdx_Stage2; 11747 xn = extract32(attrs, 11, 2); 11748 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11749 } else { 11750 ns = extract32(attrs, 3, 1); 11751 xn = extract32(attrs, 12, 1); 11752 pxn = extract32(attrs, 11, 1); 11753 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11754 } 11755 11756 fault_type = ARMFault_Permission; 11757 if (!(*prot & (1 << access_type))) { 11758 goto do_fault; 11759 } 11760 11761 if (ns) { 11762 /* The NS bit will (as required by the architecture) have no effect if 11763 * the CPU doesn't support TZ or this is a non-secure translation 11764 * regime, because the attribute will already be non-secure. 11765 */ 11766 txattrs->secure = false; 11767 } 11768 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11769 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11770 arm_tlb_bti_gp(txattrs) = true; 11771 } 11772 11773 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11774 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11775 } else { 11776 /* Index into MAIR registers for cache attributes */ 11777 uint8_t attrindx = extract32(attrs, 0, 3); 11778 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11779 assert(attrindx <= 7); 11780 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11781 } 11782 11783 /* 11784 * For FEAT_LPA2 and effective DS, the SH field in the attributes 11785 * was re-purposed for output address bits. The SH attribute in 11786 * that case comes from TCR_ELx, which we extracted earlier. 11787 */ 11788 if (param.ds) { 11789 cacheattrs->shareability = param.sh; 11790 } else { 11791 cacheattrs->shareability = extract32(attrs, 6, 2); 11792 } 11793 11794 *phys_ptr = descaddr; 11795 *page_size_ptr = page_size; 11796 return false; 11797 11798 do_fault: 11799 fi->type = fault_type; 11800 fi->level = level; 11801 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11802 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11803 mmu_idx == ARMMMUIdx_Stage2_S); 11804 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11805 return true; 11806 } 11807 11808 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11809 ARMMMUIdx mmu_idx, 11810 int32_t address, int *prot) 11811 { 11812 if (!arm_feature(env, ARM_FEATURE_M)) { 11813 *prot = PAGE_READ | PAGE_WRITE; 11814 switch (address) { 11815 case 0xF0000000 ... 0xFFFFFFFF: 11816 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11817 /* hivecs execing is ok */ 11818 *prot |= PAGE_EXEC; 11819 } 11820 break; 11821 case 0x00000000 ... 0x7FFFFFFF: 11822 *prot |= PAGE_EXEC; 11823 break; 11824 } 11825 } else { 11826 /* Default system address map for M profile cores. 11827 * The architecture specifies which regions are execute-never; 11828 * at the MPU level no other checks are defined. 11829 */ 11830 switch (address) { 11831 case 0x00000000 ... 0x1fffffff: /* ROM */ 11832 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11833 case 0x60000000 ... 0x7fffffff: /* RAM */ 11834 case 0x80000000 ... 0x9fffffff: /* RAM */ 11835 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11836 break; 11837 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11838 case 0xa0000000 ... 0xbfffffff: /* Device */ 11839 case 0xc0000000 ... 0xdfffffff: /* Device */ 11840 case 0xe0000000 ... 0xffffffff: /* System */ 11841 *prot = PAGE_READ | PAGE_WRITE; 11842 break; 11843 default: 11844 g_assert_not_reached(); 11845 } 11846 } 11847 } 11848 11849 static bool pmsav7_use_background_region(ARMCPU *cpu, 11850 ARMMMUIdx mmu_idx, bool is_user) 11851 { 11852 /* Return true if we should use the default memory map as a 11853 * "background" region if there are no hits against any MPU regions. 11854 */ 11855 CPUARMState *env = &cpu->env; 11856 11857 if (is_user) { 11858 return false; 11859 } 11860 11861 if (arm_feature(env, ARM_FEATURE_M)) { 11862 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11863 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11864 } else { 11865 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11866 } 11867 } 11868 11869 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11870 { 11871 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11872 return arm_feature(env, ARM_FEATURE_M) && 11873 extract32(address, 20, 12) == 0xe00; 11874 } 11875 11876 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11877 { 11878 /* True if address is in the M profile system region 11879 * 0xe0000000 - 0xffffffff 11880 */ 11881 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11882 } 11883 11884 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11885 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11886 hwaddr *phys_ptr, int *prot, 11887 target_ulong *page_size, 11888 ARMMMUFaultInfo *fi) 11889 { 11890 ARMCPU *cpu = env_archcpu(env); 11891 int n; 11892 bool is_user = regime_is_user(env, mmu_idx); 11893 11894 *phys_ptr = address; 11895 *page_size = TARGET_PAGE_SIZE; 11896 *prot = 0; 11897 11898 if (regime_translation_disabled(env, mmu_idx) || 11899 m_is_ppb_region(env, address)) { 11900 /* MPU disabled or M profile PPB access: use default memory map. 11901 * The other case which uses the default memory map in the 11902 * v7M ARM ARM pseudocode is exception vector reads from the vector 11903 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11904 * which always does a direct read using address_space_ldl(), rather 11905 * than going via this function, so we don't need to check that here. 11906 */ 11907 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11908 } else { /* MPU enabled */ 11909 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11910 /* region search */ 11911 uint32_t base = env->pmsav7.drbar[n]; 11912 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11913 uint32_t rmask; 11914 bool srdis = false; 11915 11916 if (!(env->pmsav7.drsr[n] & 0x1)) { 11917 continue; 11918 } 11919 11920 if (!rsize) { 11921 qemu_log_mask(LOG_GUEST_ERROR, 11922 "DRSR[%d]: Rsize field cannot be 0\n", n); 11923 continue; 11924 } 11925 rsize++; 11926 rmask = (1ull << rsize) - 1; 11927 11928 if (base & rmask) { 11929 qemu_log_mask(LOG_GUEST_ERROR, 11930 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11931 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11932 n, base, rmask); 11933 continue; 11934 } 11935 11936 if (address < base || address > base + rmask) { 11937 /* 11938 * Address not in this region. We must check whether the 11939 * region covers addresses in the same page as our address. 11940 * In that case we must not report a size that covers the 11941 * whole page for a subsequent hit against a different MPU 11942 * region or the background region, because it would result in 11943 * incorrect TLB hits for subsequent accesses to addresses that 11944 * are in this MPU region. 11945 */ 11946 if (ranges_overlap(base, rmask, 11947 address & TARGET_PAGE_MASK, 11948 TARGET_PAGE_SIZE)) { 11949 *page_size = 1; 11950 } 11951 continue; 11952 } 11953 11954 /* Region matched */ 11955 11956 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11957 int i, snd; 11958 uint32_t srdis_mask; 11959 11960 rsize -= 3; /* sub region size (power of 2) */ 11961 snd = ((address - base) >> rsize) & 0x7; 11962 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11963 11964 srdis_mask = srdis ? 0x3 : 0x0; 11965 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11966 /* This will check in groups of 2, 4 and then 8, whether 11967 * the subregion bits are consistent. rsize is incremented 11968 * back up to give the region size, considering consistent 11969 * adjacent subregions as one region. Stop testing if rsize 11970 * is already big enough for an entire QEMU page. 11971 */ 11972 int snd_rounded = snd & ~(i - 1); 11973 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11974 snd_rounded + 8, i); 11975 if (srdis_mask ^ srdis_multi) { 11976 break; 11977 } 11978 srdis_mask = (srdis_mask << i) | srdis_mask; 11979 rsize++; 11980 } 11981 } 11982 if (srdis) { 11983 continue; 11984 } 11985 if (rsize < TARGET_PAGE_BITS) { 11986 *page_size = 1 << rsize; 11987 } 11988 break; 11989 } 11990 11991 if (n == -1) { /* no hits */ 11992 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11993 /* background fault */ 11994 fi->type = ARMFault_Background; 11995 return true; 11996 } 11997 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11998 } else { /* a MPU hit! */ 11999 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 12000 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 12001 12002 if (m_is_system_region(env, address)) { 12003 /* System space is always execute never */ 12004 xn = 1; 12005 } 12006 12007 if (is_user) { /* User mode AP bit decoding */ 12008 switch (ap) { 12009 case 0: 12010 case 1: 12011 case 5: 12012 break; /* no access */ 12013 case 3: 12014 *prot |= PAGE_WRITE; 12015 /* fall through */ 12016 case 2: 12017 case 6: 12018 *prot |= PAGE_READ | PAGE_EXEC; 12019 break; 12020 case 7: 12021 /* for v7M, same as 6; for R profile a reserved value */ 12022 if (arm_feature(env, ARM_FEATURE_M)) { 12023 *prot |= PAGE_READ | PAGE_EXEC; 12024 break; 12025 } 12026 /* fall through */ 12027 default: 12028 qemu_log_mask(LOG_GUEST_ERROR, 12029 "DRACR[%d]: Bad value for AP bits: 0x%" 12030 PRIx32 "\n", n, ap); 12031 } 12032 } else { /* Priv. mode AP bits decoding */ 12033 switch (ap) { 12034 case 0: 12035 break; /* no access */ 12036 case 1: 12037 case 2: 12038 case 3: 12039 *prot |= PAGE_WRITE; 12040 /* fall through */ 12041 case 5: 12042 case 6: 12043 *prot |= PAGE_READ | PAGE_EXEC; 12044 break; 12045 case 7: 12046 /* for v7M, same as 6; for R profile a reserved value */ 12047 if (arm_feature(env, ARM_FEATURE_M)) { 12048 *prot |= PAGE_READ | PAGE_EXEC; 12049 break; 12050 } 12051 /* fall through */ 12052 default: 12053 qemu_log_mask(LOG_GUEST_ERROR, 12054 "DRACR[%d]: Bad value for AP bits: 0x%" 12055 PRIx32 "\n", n, ap); 12056 } 12057 } 12058 12059 /* execute never */ 12060 if (xn) { 12061 *prot &= ~PAGE_EXEC; 12062 } 12063 } 12064 } 12065 12066 fi->type = ARMFault_Permission; 12067 fi->level = 1; 12068 return !(*prot & (1 << access_type)); 12069 } 12070 12071 static bool v8m_is_sau_exempt(CPUARMState *env, 12072 uint32_t address, MMUAccessType access_type) 12073 { 12074 /* The architecture specifies that certain address ranges are 12075 * exempt from v8M SAU/IDAU checks. 12076 */ 12077 return 12078 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 12079 (address >= 0xe0000000 && address <= 0xe0002fff) || 12080 (address >= 0xe000e000 && address <= 0xe000efff) || 12081 (address >= 0xe002e000 && address <= 0xe002efff) || 12082 (address >= 0xe0040000 && address <= 0xe0041fff) || 12083 (address >= 0xe00ff000 && address <= 0xe00fffff); 12084 } 12085 12086 void v8m_security_lookup(CPUARMState *env, uint32_t address, 12087 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12088 V8M_SAttributes *sattrs) 12089 { 12090 /* Look up the security attributes for this address. Compare the 12091 * pseudocode SecurityCheck() function. 12092 * We assume the caller has zero-initialized *sattrs. 12093 */ 12094 ARMCPU *cpu = env_archcpu(env); 12095 int r; 12096 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12097 int idau_region = IREGION_NOTVALID; 12098 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12099 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12100 12101 if (cpu->idau) { 12102 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12103 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12104 12105 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12106 &idau_nsc); 12107 } 12108 12109 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12110 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12111 return; 12112 } 12113 12114 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12115 sattrs->ns = !regime_is_secure(env, mmu_idx); 12116 return; 12117 } 12118 12119 if (idau_region != IREGION_NOTVALID) { 12120 sattrs->irvalid = true; 12121 sattrs->iregion = idau_region; 12122 } 12123 12124 switch (env->sau.ctrl & 3) { 12125 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12126 break; 12127 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12128 sattrs->ns = true; 12129 break; 12130 default: /* SAU.ENABLE == 1 */ 12131 for (r = 0; r < cpu->sau_sregion; r++) { 12132 if (env->sau.rlar[r] & 1) { 12133 uint32_t base = env->sau.rbar[r] & ~0x1f; 12134 uint32_t limit = env->sau.rlar[r] | 0x1f; 12135 12136 if (base <= address && limit >= address) { 12137 if (base > addr_page_base || limit < addr_page_limit) { 12138 sattrs->subpage = true; 12139 } 12140 if (sattrs->srvalid) { 12141 /* If we hit in more than one region then we must report 12142 * as Secure, not NS-Callable, with no valid region 12143 * number info. 12144 */ 12145 sattrs->ns = false; 12146 sattrs->nsc = false; 12147 sattrs->sregion = 0; 12148 sattrs->srvalid = false; 12149 break; 12150 } else { 12151 if (env->sau.rlar[r] & 2) { 12152 sattrs->nsc = true; 12153 } else { 12154 sattrs->ns = true; 12155 } 12156 sattrs->srvalid = true; 12157 sattrs->sregion = r; 12158 } 12159 } else { 12160 /* 12161 * Address not in this region. We must check whether the 12162 * region covers addresses in the same page as our address. 12163 * In that case we must not report a size that covers the 12164 * whole page for a subsequent hit against a different MPU 12165 * region or the background region, because it would result 12166 * in incorrect TLB hits for subsequent accesses to 12167 * addresses that are in this MPU region. 12168 */ 12169 if (limit >= base && 12170 ranges_overlap(base, limit - base + 1, 12171 addr_page_base, 12172 TARGET_PAGE_SIZE)) { 12173 sattrs->subpage = true; 12174 } 12175 } 12176 } 12177 } 12178 break; 12179 } 12180 12181 /* 12182 * The IDAU will override the SAU lookup results if it specifies 12183 * higher security than the SAU does. 12184 */ 12185 if (!idau_ns) { 12186 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12187 sattrs->ns = false; 12188 sattrs->nsc = idau_nsc; 12189 } 12190 } 12191 } 12192 12193 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12194 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12195 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12196 int *prot, bool *is_subpage, 12197 ARMMMUFaultInfo *fi, uint32_t *mregion) 12198 { 12199 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12200 * that a full phys-to-virt translation does). 12201 * mregion is (if not NULL) set to the region number which matched, 12202 * or -1 if no region number is returned (MPU off, address did not 12203 * hit a region, address hit in multiple regions). 12204 * We set is_subpage to true if the region hit doesn't cover the 12205 * entire TARGET_PAGE the address is within. 12206 */ 12207 ARMCPU *cpu = env_archcpu(env); 12208 bool is_user = regime_is_user(env, mmu_idx); 12209 uint32_t secure = regime_is_secure(env, mmu_idx); 12210 int n; 12211 int matchregion = -1; 12212 bool hit = false; 12213 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12214 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12215 12216 *is_subpage = false; 12217 *phys_ptr = address; 12218 *prot = 0; 12219 if (mregion) { 12220 *mregion = -1; 12221 } 12222 12223 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12224 * was an exception vector read from the vector table (which is always 12225 * done using the default system address map), because those accesses 12226 * are done in arm_v7m_load_vector(), which always does a direct 12227 * read using address_space_ldl(), rather than going via this function. 12228 */ 12229 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12230 hit = true; 12231 } else if (m_is_ppb_region(env, address)) { 12232 hit = true; 12233 } else { 12234 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12235 hit = true; 12236 } 12237 12238 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12239 /* region search */ 12240 /* Note that the base address is bits [31:5] from the register 12241 * with bits [4:0] all zeroes, but the limit address is bits 12242 * [31:5] from the register with bits [4:0] all ones. 12243 */ 12244 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12245 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12246 12247 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12248 /* Region disabled */ 12249 continue; 12250 } 12251 12252 if (address < base || address > limit) { 12253 /* 12254 * Address not in this region. We must check whether the 12255 * region covers addresses in the same page as our address. 12256 * In that case we must not report a size that covers the 12257 * whole page for a subsequent hit against a different MPU 12258 * region or the background region, because it would result in 12259 * incorrect TLB hits for subsequent accesses to addresses that 12260 * are in this MPU region. 12261 */ 12262 if (limit >= base && 12263 ranges_overlap(base, limit - base + 1, 12264 addr_page_base, 12265 TARGET_PAGE_SIZE)) { 12266 *is_subpage = true; 12267 } 12268 continue; 12269 } 12270 12271 if (base > addr_page_base || limit < addr_page_limit) { 12272 *is_subpage = true; 12273 } 12274 12275 if (matchregion != -1) { 12276 /* Multiple regions match -- always a failure (unlike 12277 * PMSAv7 where highest-numbered-region wins) 12278 */ 12279 fi->type = ARMFault_Permission; 12280 fi->level = 1; 12281 return true; 12282 } 12283 12284 matchregion = n; 12285 hit = true; 12286 } 12287 } 12288 12289 if (!hit) { 12290 /* background fault */ 12291 fi->type = ARMFault_Background; 12292 return true; 12293 } 12294 12295 if (matchregion == -1) { 12296 /* hit using the background region */ 12297 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12298 } else { 12299 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12300 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12301 bool pxn = false; 12302 12303 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12304 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12305 } 12306 12307 if (m_is_system_region(env, address)) { 12308 /* System space is always execute never */ 12309 xn = 1; 12310 } 12311 12312 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12313 if (*prot && !xn && !(pxn && !is_user)) { 12314 *prot |= PAGE_EXEC; 12315 } 12316 /* We don't need to look the attribute up in the MAIR0/MAIR1 12317 * registers because that only tells us about cacheability. 12318 */ 12319 if (mregion) { 12320 *mregion = matchregion; 12321 } 12322 } 12323 12324 fi->type = ARMFault_Permission; 12325 fi->level = 1; 12326 return !(*prot & (1 << access_type)); 12327 } 12328 12329 12330 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12331 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12332 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12333 int *prot, target_ulong *page_size, 12334 ARMMMUFaultInfo *fi) 12335 { 12336 uint32_t secure = regime_is_secure(env, mmu_idx); 12337 V8M_SAttributes sattrs = {}; 12338 bool ret; 12339 bool mpu_is_subpage; 12340 12341 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12342 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12343 if (access_type == MMU_INST_FETCH) { 12344 /* Instruction fetches always use the MMU bank and the 12345 * transaction attribute determined by the fetch address, 12346 * regardless of CPU state. This is painful for QEMU 12347 * to handle, because it would mean we need to encode 12348 * into the mmu_idx not just the (user, negpri) information 12349 * for the current security state but also that for the 12350 * other security state, which would balloon the number 12351 * of mmu_idx values needed alarmingly. 12352 * Fortunately we can avoid this because it's not actually 12353 * possible to arbitrarily execute code from memory with 12354 * the wrong security attribute: it will always generate 12355 * an exception of some kind or another, apart from the 12356 * special case of an NS CPU executing an SG instruction 12357 * in S&NSC memory. So we always just fail the translation 12358 * here and sort things out in the exception handler 12359 * (including possibly emulating an SG instruction). 12360 */ 12361 if (sattrs.ns != !secure) { 12362 if (sattrs.nsc) { 12363 fi->type = ARMFault_QEMU_NSCExec; 12364 } else { 12365 fi->type = ARMFault_QEMU_SFault; 12366 } 12367 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12368 *phys_ptr = address; 12369 *prot = 0; 12370 return true; 12371 } 12372 } else { 12373 /* For data accesses we always use the MMU bank indicated 12374 * by the current CPU state, but the security attributes 12375 * might downgrade a secure access to nonsecure. 12376 */ 12377 if (sattrs.ns) { 12378 txattrs->secure = false; 12379 } else if (!secure) { 12380 /* NS access to S memory must fault. 12381 * Architecturally we should first check whether the 12382 * MPU information for this address indicates that we 12383 * are doing an unaligned access to Device memory, which 12384 * should generate a UsageFault instead. QEMU does not 12385 * currently check for that kind of unaligned access though. 12386 * If we added it we would need to do so as a special case 12387 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12388 */ 12389 fi->type = ARMFault_QEMU_SFault; 12390 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12391 *phys_ptr = address; 12392 *prot = 0; 12393 return true; 12394 } 12395 } 12396 } 12397 12398 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12399 txattrs, prot, &mpu_is_subpage, fi, NULL); 12400 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12401 return ret; 12402 } 12403 12404 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12405 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12406 hwaddr *phys_ptr, int *prot, 12407 ARMMMUFaultInfo *fi) 12408 { 12409 int n; 12410 uint32_t mask; 12411 uint32_t base; 12412 bool is_user = regime_is_user(env, mmu_idx); 12413 12414 if (regime_translation_disabled(env, mmu_idx)) { 12415 /* MPU disabled. */ 12416 *phys_ptr = address; 12417 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12418 return false; 12419 } 12420 12421 *phys_ptr = address; 12422 for (n = 7; n >= 0; n--) { 12423 base = env->cp15.c6_region[n]; 12424 if ((base & 1) == 0) { 12425 continue; 12426 } 12427 mask = 1 << ((base >> 1) & 0x1f); 12428 /* Keep this shift separate from the above to avoid an 12429 (undefined) << 32. */ 12430 mask = (mask << 1) - 1; 12431 if (((base ^ address) & ~mask) == 0) { 12432 break; 12433 } 12434 } 12435 if (n < 0) { 12436 fi->type = ARMFault_Background; 12437 return true; 12438 } 12439 12440 if (access_type == MMU_INST_FETCH) { 12441 mask = env->cp15.pmsav5_insn_ap; 12442 } else { 12443 mask = env->cp15.pmsav5_data_ap; 12444 } 12445 mask = (mask >> (n * 4)) & 0xf; 12446 switch (mask) { 12447 case 0: 12448 fi->type = ARMFault_Permission; 12449 fi->level = 1; 12450 return true; 12451 case 1: 12452 if (is_user) { 12453 fi->type = ARMFault_Permission; 12454 fi->level = 1; 12455 return true; 12456 } 12457 *prot = PAGE_READ | PAGE_WRITE; 12458 break; 12459 case 2: 12460 *prot = PAGE_READ; 12461 if (!is_user) { 12462 *prot |= PAGE_WRITE; 12463 } 12464 break; 12465 case 3: 12466 *prot = PAGE_READ | PAGE_WRITE; 12467 break; 12468 case 5: 12469 if (is_user) { 12470 fi->type = ARMFault_Permission; 12471 fi->level = 1; 12472 return true; 12473 } 12474 *prot = PAGE_READ; 12475 break; 12476 case 6: 12477 *prot = PAGE_READ; 12478 break; 12479 default: 12480 /* Bad permission. */ 12481 fi->type = ARMFault_Permission; 12482 fi->level = 1; 12483 return true; 12484 } 12485 *prot |= PAGE_EXEC; 12486 return false; 12487 } 12488 12489 /* Combine either inner or outer cacheability attributes for normal 12490 * memory, according to table D4-42 and pseudocode procedure 12491 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12492 * 12493 * NB: only stage 1 includes allocation hints (RW bits), leading to 12494 * some asymmetry. 12495 */ 12496 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12497 { 12498 if (s1 == 4 || s2 == 4) { 12499 /* non-cacheable has precedence */ 12500 return 4; 12501 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12502 /* stage 1 write-through takes precedence */ 12503 return s1; 12504 } else if (extract32(s2, 2, 2) == 2) { 12505 /* stage 2 write-through takes precedence, but the allocation hint 12506 * is still taken from stage 1 12507 */ 12508 return (2 << 2) | extract32(s1, 0, 2); 12509 } else { /* write-back */ 12510 return s1; 12511 } 12512 } 12513 12514 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12515 * and CombineS1S2Desc() 12516 * 12517 * @s1: Attributes from stage 1 walk 12518 * @s2: Attributes from stage 2 walk 12519 */ 12520 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12521 { 12522 uint8_t s1lo, s2lo, s1hi, s2hi; 12523 ARMCacheAttrs ret; 12524 bool tagged = false; 12525 12526 if (s1.attrs == 0xf0) { 12527 tagged = true; 12528 s1.attrs = 0xff; 12529 } 12530 12531 s1lo = extract32(s1.attrs, 0, 4); 12532 s2lo = extract32(s2.attrs, 0, 4); 12533 s1hi = extract32(s1.attrs, 4, 4); 12534 s2hi = extract32(s2.attrs, 4, 4); 12535 12536 /* Combine shareability attributes (table D4-43) */ 12537 if (s1.shareability == 2 || s2.shareability == 2) { 12538 /* if either are outer-shareable, the result is outer-shareable */ 12539 ret.shareability = 2; 12540 } else if (s1.shareability == 3 || s2.shareability == 3) { 12541 /* if either are inner-shareable, the result is inner-shareable */ 12542 ret.shareability = 3; 12543 } else { 12544 /* both non-shareable */ 12545 ret.shareability = 0; 12546 } 12547 12548 /* Combine memory type and cacheability attributes */ 12549 if (s1hi == 0 || s2hi == 0) { 12550 /* Device has precedence over normal */ 12551 if (s1lo == 0 || s2lo == 0) { 12552 /* nGnRnE has precedence over anything */ 12553 ret.attrs = 0; 12554 } else if (s1lo == 4 || s2lo == 4) { 12555 /* non-Reordering has precedence over Reordering */ 12556 ret.attrs = 4; /* nGnRE */ 12557 } else if (s1lo == 8 || s2lo == 8) { 12558 /* non-Gathering has precedence over Gathering */ 12559 ret.attrs = 8; /* nGRE */ 12560 } else { 12561 ret.attrs = 0xc; /* GRE */ 12562 } 12563 12564 /* Any location for which the resultant memory type is any 12565 * type of Device memory is always treated as Outer Shareable. 12566 */ 12567 ret.shareability = 2; 12568 } else { /* Normal memory */ 12569 /* Outer/inner cacheability combine independently */ 12570 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12571 | combine_cacheattr_nibble(s1lo, s2lo); 12572 12573 if (ret.attrs == 0x44) { 12574 /* Any location for which the resultant memory type is Normal 12575 * Inner Non-cacheable, Outer Non-cacheable is always treated 12576 * as Outer Shareable. 12577 */ 12578 ret.shareability = 2; 12579 } 12580 } 12581 12582 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12583 if (tagged && ret.attrs == 0xff) { 12584 ret.attrs = 0xf0; 12585 } 12586 12587 return ret; 12588 } 12589 12590 12591 /* get_phys_addr - get the physical address for this virtual address 12592 * 12593 * Find the physical address corresponding to the given virtual address, 12594 * by doing a translation table walk on MMU based systems or using the 12595 * MPU state on MPU based systems. 12596 * 12597 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12598 * prot and page_size may not be filled in, and the populated fsr value provides 12599 * information on why the translation aborted, in the format of a 12600 * DFSR/IFSR fault register, with the following caveats: 12601 * * we honour the short vs long DFSR format differences. 12602 * * the WnR bit is never set (the caller must do this). 12603 * * for PSMAv5 based systems we don't bother to return a full FSR format 12604 * value. 12605 * 12606 * @env: CPUARMState 12607 * @address: virtual address to get physical address for 12608 * @access_type: 0 for read, 1 for write, 2 for execute 12609 * @mmu_idx: MMU index indicating required translation regime 12610 * @phys_ptr: set to the physical address corresponding to the virtual address 12611 * @attrs: set to the memory transaction attributes to use 12612 * @prot: set to the permissions for the page containing phys_ptr 12613 * @page_size: set to the size of the page containing phys_ptr 12614 * @fi: set to fault info if the translation fails 12615 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12616 */ 12617 bool get_phys_addr(CPUARMState *env, target_ulong address, 12618 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12619 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12620 target_ulong *page_size, 12621 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12622 { 12623 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12624 12625 if (mmu_idx != s1_mmu_idx) { 12626 /* Call ourselves recursively to do the stage 1 and then stage 2 12627 * translations if mmu_idx is a two-stage regime. 12628 */ 12629 if (arm_feature(env, ARM_FEATURE_EL2)) { 12630 hwaddr ipa; 12631 int s2_prot; 12632 int ret; 12633 bool ipa_secure; 12634 ARMCacheAttrs cacheattrs2 = {}; 12635 ARMMMUIdx s2_mmu_idx; 12636 bool is_el0; 12637 12638 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12639 attrs, prot, page_size, fi, cacheattrs); 12640 12641 /* If S1 fails or S2 is disabled, return early. */ 12642 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12643 *phys_ptr = ipa; 12644 return ret; 12645 } 12646 12647 ipa_secure = attrs->secure; 12648 if (arm_is_secure_below_el3(env)) { 12649 if (ipa_secure) { 12650 attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 12651 } else { 12652 attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 12653 } 12654 } else { 12655 assert(!ipa_secure); 12656 } 12657 12658 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12659 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12660 12661 /* S1 is done. Now do S2 translation. */ 12662 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12663 phys_ptr, attrs, &s2_prot, 12664 page_size, fi, &cacheattrs2); 12665 fi->s2addr = ipa; 12666 /* Combine the S1 and S2 perms. */ 12667 *prot &= s2_prot; 12668 12669 /* If S2 fails, return early. */ 12670 if (ret) { 12671 return ret; 12672 } 12673 12674 /* Combine the S1 and S2 cache attributes. */ 12675 if (arm_hcr_el2_eff(env) & HCR_DC) { 12676 /* 12677 * HCR.DC forces the first stage attributes to 12678 * Normal Non-Shareable, 12679 * Inner Write-Back Read-Allocate Write-Allocate, 12680 * Outer Write-Back Read-Allocate Write-Allocate. 12681 * Do not overwrite Tagged within attrs. 12682 */ 12683 if (cacheattrs->attrs != 0xf0) { 12684 cacheattrs->attrs = 0xff; 12685 } 12686 cacheattrs->shareability = 0; 12687 } 12688 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12689 12690 /* Check if IPA translates to secure or non-secure PA space. */ 12691 if (arm_is_secure_below_el3(env)) { 12692 if (ipa_secure) { 12693 attrs->secure = 12694 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12695 } else { 12696 attrs->secure = 12697 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12698 || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW))); 12699 } 12700 } 12701 return 0; 12702 } else { 12703 /* 12704 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12705 */ 12706 mmu_idx = stage_1_mmu_idx(mmu_idx); 12707 } 12708 } 12709 12710 /* The page table entries may downgrade secure to non-secure, but 12711 * cannot upgrade an non-secure translation regime's attributes 12712 * to secure. 12713 */ 12714 attrs->secure = regime_is_secure(env, mmu_idx); 12715 attrs->user = regime_is_user(env, mmu_idx); 12716 12717 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12718 * In v7 and earlier it affects all stage 1 translations. 12719 */ 12720 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12721 && !arm_feature(env, ARM_FEATURE_V8)) { 12722 if (regime_el(env, mmu_idx) == 3) { 12723 address += env->cp15.fcseidr_s; 12724 } else { 12725 address += env->cp15.fcseidr_ns; 12726 } 12727 } 12728 12729 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12730 bool ret; 12731 *page_size = TARGET_PAGE_SIZE; 12732 12733 if (arm_feature(env, ARM_FEATURE_V8)) { 12734 /* PMSAv8 */ 12735 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12736 phys_ptr, attrs, prot, page_size, fi); 12737 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12738 /* PMSAv7 */ 12739 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12740 phys_ptr, prot, page_size, fi); 12741 } else { 12742 /* Pre-v7 MPU */ 12743 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12744 phys_ptr, prot, fi); 12745 } 12746 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12747 " mmu_idx %u -> %s (prot %c%c%c)\n", 12748 access_type == MMU_DATA_LOAD ? "reading" : 12749 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12750 (uint32_t)address, mmu_idx, 12751 ret ? "Miss" : "Hit", 12752 *prot & PAGE_READ ? 'r' : '-', 12753 *prot & PAGE_WRITE ? 'w' : '-', 12754 *prot & PAGE_EXEC ? 'x' : '-'); 12755 12756 return ret; 12757 } 12758 12759 /* Definitely a real MMU, not an MPU */ 12760 12761 if (regime_translation_disabled(env, mmu_idx)) { 12762 uint64_t hcr; 12763 uint8_t memattr; 12764 12765 /* 12766 * MMU disabled. S1 addresses within aa64 translation regimes are 12767 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12768 */ 12769 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12770 int r_el = regime_el(env, mmu_idx); 12771 if (arm_el_is_aa64(env, r_el)) { 12772 int pamax = arm_pamax(env_archcpu(env)); 12773 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12774 int addrtop, tbi; 12775 12776 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12777 if (access_type == MMU_INST_FETCH) { 12778 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12779 } 12780 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12781 addrtop = (tbi ? 55 : 63); 12782 12783 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12784 fi->type = ARMFault_AddressSize; 12785 fi->level = 0; 12786 fi->stage2 = false; 12787 return 1; 12788 } 12789 12790 /* 12791 * When TBI is disabled, we've just validated that all of the 12792 * bits above PAMax are zero, so logically we only need to 12793 * clear the top byte for TBI. But it's clearer to follow 12794 * the pseudocode set of addrdesc.paddress. 12795 */ 12796 address = extract64(address, 0, 52); 12797 } 12798 } 12799 *phys_ptr = address; 12800 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12801 *page_size = TARGET_PAGE_SIZE; 12802 12803 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12804 hcr = arm_hcr_el2_eff(env); 12805 cacheattrs->shareability = 0; 12806 if (hcr & HCR_DC) { 12807 if (hcr & HCR_DCT) { 12808 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12809 } else { 12810 memattr = 0xff; /* Normal, WB, RWA */ 12811 } 12812 } else if (access_type == MMU_INST_FETCH) { 12813 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12814 memattr = 0xee; /* Normal, WT, RA, NT */ 12815 } else { 12816 memattr = 0x44; /* Normal, NC, No */ 12817 } 12818 cacheattrs->shareability = 2; /* outer sharable */ 12819 } else { 12820 memattr = 0x00; /* Device, nGnRnE */ 12821 } 12822 cacheattrs->attrs = memattr; 12823 return 0; 12824 } 12825 12826 if (regime_using_lpae_format(env, mmu_idx)) { 12827 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12828 phys_ptr, attrs, prot, page_size, 12829 fi, cacheattrs); 12830 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12831 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12832 phys_ptr, attrs, prot, page_size, fi); 12833 } else { 12834 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12835 phys_ptr, prot, page_size, fi); 12836 } 12837 } 12838 12839 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12840 MemTxAttrs *attrs) 12841 { 12842 ARMCPU *cpu = ARM_CPU(cs); 12843 CPUARMState *env = &cpu->env; 12844 hwaddr phys_addr; 12845 target_ulong page_size; 12846 int prot; 12847 bool ret; 12848 ARMMMUFaultInfo fi = {}; 12849 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12850 ARMCacheAttrs cacheattrs = {}; 12851 12852 *attrs = (MemTxAttrs) {}; 12853 12854 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12855 attrs, &prot, &page_size, &fi, &cacheattrs); 12856 12857 if (ret) { 12858 return -1; 12859 } 12860 return phys_addr; 12861 } 12862 12863 #endif 12864 12865 /* Note that signed overflow is undefined in C. The following routines are 12866 careful to use unsigned types where modulo arithmetic is required. 12867 Failure to do so _will_ break on newer gcc. */ 12868 12869 /* Signed saturating arithmetic. */ 12870 12871 /* Perform 16-bit signed saturating addition. */ 12872 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12873 { 12874 uint16_t res; 12875 12876 res = a + b; 12877 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12878 if (a & 0x8000) 12879 res = 0x8000; 12880 else 12881 res = 0x7fff; 12882 } 12883 return res; 12884 } 12885 12886 /* Perform 8-bit signed saturating addition. */ 12887 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12888 { 12889 uint8_t res; 12890 12891 res = a + b; 12892 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12893 if (a & 0x80) 12894 res = 0x80; 12895 else 12896 res = 0x7f; 12897 } 12898 return res; 12899 } 12900 12901 /* Perform 16-bit signed saturating subtraction. */ 12902 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12903 { 12904 uint16_t res; 12905 12906 res = a - b; 12907 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12908 if (a & 0x8000) 12909 res = 0x8000; 12910 else 12911 res = 0x7fff; 12912 } 12913 return res; 12914 } 12915 12916 /* Perform 8-bit signed saturating subtraction. */ 12917 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12918 { 12919 uint8_t res; 12920 12921 res = a - b; 12922 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12923 if (a & 0x80) 12924 res = 0x80; 12925 else 12926 res = 0x7f; 12927 } 12928 return res; 12929 } 12930 12931 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12932 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12933 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12934 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12935 #define PFX q 12936 12937 #include "op_addsub.h" 12938 12939 /* Unsigned saturating arithmetic. */ 12940 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12941 { 12942 uint16_t res; 12943 res = a + b; 12944 if (res < a) 12945 res = 0xffff; 12946 return res; 12947 } 12948 12949 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12950 { 12951 if (a > b) 12952 return a - b; 12953 else 12954 return 0; 12955 } 12956 12957 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12958 { 12959 uint8_t res; 12960 res = a + b; 12961 if (res < a) 12962 res = 0xff; 12963 return res; 12964 } 12965 12966 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12967 { 12968 if (a > b) 12969 return a - b; 12970 else 12971 return 0; 12972 } 12973 12974 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12975 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12976 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12977 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12978 #define PFX uq 12979 12980 #include "op_addsub.h" 12981 12982 /* Signed modulo arithmetic. */ 12983 #define SARITH16(a, b, n, op) do { \ 12984 int32_t sum; \ 12985 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12986 RESULT(sum, n, 16); \ 12987 if (sum >= 0) \ 12988 ge |= 3 << (n * 2); \ 12989 } while(0) 12990 12991 #define SARITH8(a, b, n, op) do { \ 12992 int32_t sum; \ 12993 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12994 RESULT(sum, n, 8); \ 12995 if (sum >= 0) \ 12996 ge |= 1 << n; \ 12997 } while(0) 12998 12999 13000 #define ADD16(a, b, n) SARITH16(a, b, n, +) 13001 #define SUB16(a, b, n) SARITH16(a, b, n, -) 13002 #define ADD8(a, b, n) SARITH8(a, b, n, +) 13003 #define SUB8(a, b, n) SARITH8(a, b, n, -) 13004 #define PFX s 13005 #define ARITH_GE 13006 13007 #include "op_addsub.h" 13008 13009 /* Unsigned modulo arithmetic. */ 13010 #define ADD16(a, b, n) do { \ 13011 uint32_t sum; \ 13012 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 13013 RESULT(sum, n, 16); \ 13014 if ((sum >> 16) == 1) \ 13015 ge |= 3 << (n * 2); \ 13016 } while(0) 13017 13018 #define ADD8(a, b, n) do { \ 13019 uint32_t sum; \ 13020 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 13021 RESULT(sum, n, 8); \ 13022 if ((sum >> 8) == 1) \ 13023 ge |= 1 << n; \ 13024 } while(0) 13025 13026 #define SUB16(a, b, n) do { \ 13027 uint32_t sum; \ 13028 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 13029 RESULT(sum, n, 16); \ 13030 if ((sum >> 16) == 0) \ 13031 ge |= 3 << (n * 2); \ 13032 } while(0) 13033 13034 #define SUB8(a, b, n) do { \ 13035 uint32_t sum; \ 13036 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 13037 RESULT(sum, n, 8); \ 13038 if ((sum >> 8) == 0) \ 13039 ge |= 1 << n; \ 13040 } while(0) 13041 13042 #define PFX u 13043 #define ARITH_GE 13044 13045 #include "op_addsub.h" 13046 13047 /* Halved signed arithmetic. */ 13048 #define ADD16(a, b, n) \ 13049 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 13050 #define SUB16(a, b, n) \ 13051 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 13052 #define ADD8(a, b, n) \ 13053 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 13054 #define SUB8(a, b, n) \ 13055 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 13056 #define PFX sh 13057 13058 #include "op_addsub.h" 13059 13060 /* Halved unsigned arithmetic. */ 13061 #define ADD16(a, b, n) \ 13062 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13063 #define SUB16(a, b, n) \ 13064 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13065 #define ADD8(a, b, n) \ 13066 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13067 #define SUB8(a, b, n) \ 13068 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13069 #define PFX uh 13070 13071 #include "op_addsub.h" 13072 13073 static inline uint8_t do_usad(uint8_t a, uint8_t b) 13074 { 13075 if (a > b) 13076 return a - b; 13077 else 13078 return b - a; 13079 } 13080 13081 /* Unsigned sum of absolute byte differences. */ 13082 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 13083 { 13084 uint32_t sum; 13085 sum = do_usad(a, b); 13086 sum += do_usad(a >> 8, b >> 8); 13087 sum += do_usad(a >> 16, b >> 16); 13088 sum += do_usad(a >> 24, b >> 24); 13089 return sum; 13090 } 13091 13092 /* For ARMv6 SEL instruction. */ 13093 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13094 { 13095 uint32_t mask; 13096 13097 mask = 0; 13098 if (flags & 1) 13099 mask |= 0xff; 13100 if (flags & 2) 13101 mask |= 0xff00; 13102 if (flags & 4) 13103 mask |= 0xff0000; 13104 if (flags & 8) 13105 mask |= 0xff000000; 13106 return (a & mask) | (b & ~mask); 13107 } 13108 13109 /* CRC helpers. 13110 * The upper bytes of val (above the number specified by 'bytes') must have 13111 * been zeroed out by the caller. 13112 */ 13113 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13114 { 13115 uint8_t buf[4]; 13116 13117 stl_le_p(buf, val); 13118 13119 /* zlib crc32 converts the accumulator and output to one's complement. */ 13120 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13121 } 13122 13123 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13124 { 13125 uint8_t buf[4]; 13126 13127 stl_le_p(buf, val); 13128 13129 /* Linux crc32c converts the output to one's complement. */ 13130 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13131 } 13132 13133 /* Return the exception level to which FP-disabled exceptions should 13134 * be taken, or 0 if FP is enabled. 13135 */ 13136 int fp_exception_el(CPUARMState *env, int cur_el) 13137 { 13138 #ifndef CONFIG_USER_ONLY 13139 uint64_t hcr_el2; 13140 13141 /* CPACR and the CPTR registers don't exist before v6, so FP is 13142 * always accessible 13143 */ 13144 if (!arm_feature(env, ARM_FEATURE_V6)) { 13145 return 0; 13146 } 13147 13148 if (arm_feature(env, ARM_FEATURE_M)) { 13149 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13150 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13151 return 1; 13152 } 13153 13154 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13155 if (!extract32(env->v7m.nsacr, 10, 1)) { 13156 /* FP insns cause a NOCP UsageFault taken to Secure */ 13157 return 3; 13158 } 13159 } 13160 13161 return 0; 13162 } 13163 13164 hcr_el2 = arm_hcr_el2_eff(env); 13165 13166 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13167 * 0, 2 : trap EL0 and EL1/PL1 accesses 13168 * 1 : trap only EL0 accesses 13169 * 3 : trap no accesses 13170 * This register is ignored if E2H+TGE are both set. 13171 */ 13172 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13173 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13174 13175 switch (fpen) { 13176 case 0: 13177 case 2: 13178 if (cur_el == 0 || cur_el == 1) { 13179 /* Trap to PL1, which might be EL1 or EL3 */ 13180 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13181 return 3; 13182 } 13183 return 1; 13184 } 13185 if (cur_el == 3 && !is_a64(env)) { 13186 /* Secure PL1 running at EL3 */ 13187 return 3; 13188 } 13189 break; 13190 case 1: 13191 if (cur_el == 0) { 13192 return 1; 13193 } 13194 break; 13195 case 3: 13196 break; 13197 } 13198 } 13199 13200 /* 13201 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13202 * to control non-secure access to the FPU. It doesn't have any 13203 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13204 */ 13205 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13206 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13207 if (!extract32(env->cp15.nsacr, 10, 1)) { 13208 /* FP insns act as UNDEF */ 13209 return cur_el == 2 ? 2 : 1; 13210 } 13211 } 13212 13213 /* 13214 * CPTR_EL2 is present in v7VE or v8, and changes format 13215 * with HCR_EL2.E2H (regardless of TGE). 13216 */ 13217 if (cur_el <= 2) { 13218 if (hcr_el2 & HCR_E2H) { 13219 /* Check CPTR_EL2.FPEN. */ 13220 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 13221 case 1: 13222 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 13223 break; 13224 } 13225 /* fall through */ 13226 case 0: 13227 case 2: 13228 return 2; 13229 } 13230 } else if (arm_is_el2_enabled(env)) { 13231 if (env->cp15.cptr_el[2] & CPTR_TFP) { 13232 return 2; 13233 } 13234 } 13235 } 13236 13237 /* CPTR_EL3 : present in v8 */ 13238 if (env->cp15.cptr_el[3] & CPTR_TFP) { 13239 /* Trap all FP ops to EL3 */ 13240 return 3; 13241 } 13242 #endif 13243 return 0; 13244 } 13245 13246 /* Return the exception level we're running at if this is our mmu_idx */ 13247 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13248 { 13249 if (mmu_idx & ARM_MMU_IDX_M) { 13250 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13251 } 13252 13253 switch (mmu_idx) { 13254 case ARMMMUIdx_E10_0: 13255 case ARMMMUIdx_E20_0: 13256 case ARMMMUIdx_SE10_0: 13257 case ARMMMUIdx_SE20_0: 13258 return 0; 13259 case ARMMMUIdx_E10_1: 13260 case ARMMMUIdx_E10_1_PAN: 13261 case ARMMMUIdx_SE10_1: 13262 case ARMMMUIdx_SE10_1_PAN: 13263 return 1; 13264 case ARMMMUIdx_E2: 13265 case ARMMMUIdx_E20_2: 13266 case ARMMMUIdx_E20_2_PAN: 13267 case ARMMMUIdx_SE2: 13268 case ARMMMUIdx_SE20_2: 13269 case ARMMMUIdx_SE20_2_PAN: 13270 return 2; 13271 case ARMMMUIdx_SE3: 13272 return 3; 13273 default: 13274 g_assert_not_reached(); 13275 } 13276 } 13277 13278 #ifndef CONFIG_TCG 13279 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13280 { 13281 g_assert_not_reached(); 13282 } 13283 #endif 13284 13285 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13286 { 13287 ARMMMUIdx idx; 13288 uint64_t hcr; 13289 13290 if (arm_feature(env, ARM_FEATURE_M)) { 13291 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13292 } 13293 13294 /* See ARM pseudo-function ELIsInHost. */ 13295 switch (el) { 13296 case 0: 13297 hcr = arm_hcr_el2_eff(env); 13298 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13299 idx = ARMMMUIdx_E20_0; 13300 } else { 13301 idx = ARMMMUIdx_E10_0; 13302 } 13303 break; 13304 case 1: 13305 if (env->pstate & PSTATE_PAN) { 13306 idx = ARMMMUIdx_E10_1_PAN; 13307 } else { 13308 idx = ARMMMUIdx_E10_1; 13309 } 13310 break; 13311 case 2: 13312 /* Note that TGE does not apply at EL2. */ 13313 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13314 if (env->pstate & PSTATE_PAN) { 13315 idx = ARMMMUIdx_E20_2_PAN; 13316 } else { 13317 idx = ARMMMUIdx_E20_2; 13318 } 13319 } else { 13320 idx = ARMMMUIdx_E2; 13321 } 13322 break; 13323 case 3: 13324 return ARMMMUIdx_SE3; 13325 default: 13326 g_assert_not_reached(); 13327 } 13328 13329 if (arm_is_secure_below_el3(env)) { 13330 idx &= ~ARM_MMU_IDX_A_NS; 13331 } 13332 13333 return idx; 13334 } 13335 13336 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13337 { 13338 return arm_mmu_idx_el(env, arm_current_el(env)); 13339 } 13340 13341 #ifndef CONFIG_USER_ONLY 13342 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13343 { 13344 return stage_1_mmu_idx(arm_mmu_idx(env)); 13345 } 13346 #endif 13347 13348 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13349 ARMMMUIdx mmu_idx, 13350 CPUARMTBFlags flags) 13351 { 13352 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13353 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13354 13355 if (arm_singlestep_active(env)) { 13356 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13357 } 13358 return flags; 13359 } 13360 13361 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13362 ARMMMUIdx mmu_idx, 13363 CPUARMTBFlags flags) 13364 { 13365 bool sctlr_b = arm_sctlr_b(env); 13366 13367 if (sctlr_b) { 13368 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13369 } 13370 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13371 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13372 } 13373 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13374 13375 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13376 } 13377 13378 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13379 ARMMMUIdx mmu_idx) 13380 { 13381 CPUARMTBFlags flags = {}; 13382 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13383 13384 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13385 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13386 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13387 } 13388 13389 if (arm_v7m_is_handler_mode(env)) { 13390 DP_TBFLAG_M32(flags, HANDLER, 1); 13391 } 13392 13393 /* 13394 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13395 * is suppressing them because the requested execution priority 13396 * is less than 0. 13397 */ 13398 if (arm_feature(env, ARM_FEATURE_V8) && 13399 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13400 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13401 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13402 } 13403 13404 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13405 } 13406 13407 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13408 { 13409 CPUARMTBFlags flags = {}; 13410 13411 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13412 return flags; 13413 } 13414 13415 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13416 ARMMMUIdx mmu_idx) 13417 { 13418 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13419 int el = arm_current_el(env); 13420 13421 if (arm_sctlr(env, el) & SCTLR_A) { 13422 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13423 } 13424 13425 if (arm_el_is_aa64(env, 1)) { 13426 DP_TBFLAG_A32(flags, VFPEN, 1); 13427 } 13428 13429 if (el < 2 && env->cp15.hstr_el2 && 13430 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13431 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13432 } 13433 13434 if (env->uncached_cpsr & CPSR_IL) { 13435 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13436 } 13437 13438 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13439 } 13440 13441 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13442 ARMMMUIdx mmu_idx) 13443 { 13444 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13445 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13446 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13447 uint64_t sctlr; 13448 int tbii, tbid; 13449 13450 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13451 13452 /* Get control bits for tagged addresses. */ 13453 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13454 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13455 13456 DP_TBFLAG_A64(flags, TBII, tbii); 13457 DP_TBFLAG_A64(flags, TBID, tbid); 13458 13459 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13460 int sve_el = sve_exception_el(env, el); 13461 uint32_t zcr_len; 13462 13463 /* 13464 * If SVE is disabled, but FP is enabled, 13465 * then the effective len is 0. 13466 */ 13467 if (sve_el != 0 && fp_el == 0) { 13468 zcr_len = 0; 13469 } else { 13470 zcr_len = sve_zcr_len_for_el(env, el); 13471 } 13472 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13473 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13474 } 13475 13476 sctlr = regime_sctlr(env, stage1); 13477 13478 if (sctlr & SCTLR_A) { 13479 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13480 } 13481 13482 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13483 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13484 } 13485 13486 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13487 /* 13488 * In order to save space in flags, we record only whether 13489 * pauth is "inactive", meaning all insns are implemented as 13490 * a nop, or "active" when some action must be performed. 13491 * The decision of which action to take is left to a helper. 13492 */ 13493 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13494 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13495 } 13496 } 13497 13498 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13499 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13500 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13501 DP_TBFLAG_A64(flags, BT, 1); 13502 } 13503 } 13504 13505 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13506 if (!(env->pstate & PSTATE_UAO)) { 13507 switch (mmu_idx) { 13508 case ARMMMUIdx_E10_1: 13509 case ARMMMUIdx_E10_1_PAN: 13510 case ARMMMUIdx_SE10_1: 13511 case ARMMMUIdx_SE10_1_PAN: 13512 /* TODO: ARMv8.3-NV */ 13513 DP_TBFLAG_A64(flags, UNPRIV, 1); 13514 break; 13515 case ARMMMUIdx_E20_2: 13516 case ARMMMUIdx_E20_2_PAN: 13517 case ARMMMUIdx_SE20_2: 13518 case ARMMMUIdx_SE20_2_PAN: 13519 /* 13520 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13521 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13522 */ 13523 if (env->cp15.hcr_el2 & HCR_TGE) { 13524 DP_TBFLAG_A64(flags, UNPRIV, 1); 13525 } 13526 break; 13527 default: 13528 break; 13529 } 13530 } 13531 13532 if (env->pstate & PSTATE_IL) { 13533 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13534 } 13535 13536 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13537 /* 13538 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13539 * if all accesses must be Unchecked: 13540 * 1) If no TBI, then there are no tags in the address to check, 13541 * 2) If Tag Check Override, then all accesses are Unchecked, 13542 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13543 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13544 */ 13545 if (allocation_tag_access_enabled(env, el, sctlr)) { 13546 DP_TBFLAG_A64(flags, ATA, 1); 13547 if (tbid 13548 && !(env->pstate & PSTATE_TCO) 13549 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13550 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13551 } 13552 } 13553 /* And again for unprivileged accesses, if required. */ 13554 if (EX_TBFLAG_A64(flags, UNPRIV) 13555 && tbid 13556 && !(env->pstate & PSTATE_TCO) 13557 && (sctlr & SCTLR_TCF0) 13558 && allocation_tag_access_enabled(env, 0, sctlr)) { 13559 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13560 } 13561 /* Cache TCMA as well as TBI. */ 13562 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13563 } 13564 13565 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13566 } 13567 13568 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13569 { 13570 int el = arm_current_el(env); 13571 int fp_el = fp_exception_el(env, el); 13572 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13573 13574 if (is_a64(env)) { 13575 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13576 } else if (arm_feature(env, ARM_FEATURE_M)) { 13577 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13578 } else { 13579 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13580 } 13581 } 13582 13583 void arm_rebuild_hflags(CPUARMState *env) 13584 { 13585 env->hflags = rebuild_hflags_internal(env); 13586 } 13587 13588 /* 13589 * If we have triggered a EL state change we can't rely on the 13590 * translator having passed it to us, we need to recompute. 13591 */ 13592 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13593 { 13594 int el = arm_current_el(env); 13595 int fp_el = fp_exception_el(env, el); 13596 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13597 13598 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13599 } 13600 13601 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13602 { 13603 int fp_el = fp_exception_el(env, el); 13604 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13605 13606 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13607 } 13608 13609 /* 13610 * If we have triggered a EL state change we can't rely on the 13611 * translator having passed it to us, we need to recompute. 13612 */ 13613 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13614 { 13615 int el = arm_current_el(env); 13616 int fp_el = fp_exception_el(env, el); 13617 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13618 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13619 } 13620 13621 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13622 { 13623 int fp_el = fp_exception_el(env, el); 13624 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13625 13626 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13627 } 13628 13629 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13630 { 13631 int fp_el = fp_exception_el(env, el); 13632 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13633 13634 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13635 } 13636 13637 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13638 { 13639 #ifdef CONFIG_DEBUG_TCG 13640 CPUARMTBFlags c = env->hflags; 13641 CPUARMTBFlags r = rebuild_hflags_internal(env); 13642 13643 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13644 fprintf(stderr, "TCG hflags mismatch " 13645 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13646 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13647 c.flags, c.flags2, r.flags, r.flags2); 13648 abort(); 13649 } 13650 #endif 13651 } 13652 13653 static bool mve_no_pred(CPUARMState *env) 13654 { 13655 /* 13656 * Return true if there is definitely no predication of MVE 13657 * instructions by VPR or LTPSIZE. (Returning false even if there 13658 * isn't any predication is OK; generated code will just be 13659 * a little worse.) 13660 * If the CPU does not implement MVE then this TB flag is always 0. 13661 * 13662 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13663 * logic in gen_update_fp_context() needs to be updated to match. 13664 * 13665 * We do not include the effect of the ECI bits here -- they are 13666 * tracked in other TB flags. This simplifies the logic for 13667 * "when did we emit code that changes the MVE_NO_PRED TB flag 13668 * and thus need to end the TB?". 13669 */ 13670 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13671 return false; 13672 } 13673 if (env->v7m.vpr) { 13674 return false; 13675 } 13676 if (env->v7m.ltpsize < 4) { 13677 return false; 13678 } 13679 return true; 13680 } 13681 13682 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13683 target_ulong *cs_base, uint32_t *pflags) 13684 { 13685 CPUARMTBFlags flags; 13686 13687 assert_hflags_rebuild_correctly(env); 13688 flags = env->hflags; 13689 13690 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13691 *pc = env->pc; 13692 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13693 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13694 } 13695 } else { 13696 *pc = env->regs[15]; 13697 13698 if (arm_feature(env, ARM_FEATURE_M)) { 13699 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13700 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13701 != env->v7m.secure) { 13702 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13703 } 13704 13705 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13706 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13707 (env->v7m.secure && 13708 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13709 /* 13710 * ASPEN is set, but FPCA/SFPA indicate that there is no 13711 * active FP context; we must create a new FP context before 13712 * executing any FP insn. 13713 */ 13714 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13715 } 13716 13717 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13718 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13719 DP_TBFLAG_M32(flags, LSPACT, 1); 13720 } 13721 13722 if (mve_no_pred(env)) { 13723 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13724 } 13725 } else { 13726 /* 13727 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13728 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13729 */ 13730 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13731 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13732 } else { 13733 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13734 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13735 } 13736 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13737 DP_TBFLAG_A32(flags, VFPEN, 1); 13738 } 13739 } 13740 13741 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13742 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13743 } 13744 13745 /* 13746 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13747 * states defined in the ARM ARM for software singlestep: 13748 * SS_ACTIVE PSTATE.SS State 13749 * 0 x Inactive (the TB flag for SS is always 0) 13750 * 1 0 Active-pending 13751 * 1 1 Active-not-pending 13752 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13753 */ 13754 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13755 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13756 } 13757 13758 *pflags = flags.flags; 13759 *cs_base = flags.flags2; 13760 } 13761 13762 #ifdef TARGET_AARCH64 13763 /* 13764 * The manual says that when SVE is enabled and VQ is widened the 13765 * implementation is allowed to zero the previously inaccessible 13766 * portion of the registers. The corollary to that is that when 13767 * SVE is enabled and VQ is narrowed we are also allowed to zero 13768 * the now inaccessible portion of the registers. 13769 * 13770 * The intent of this is that no predicate bit beyond VQ is ever set. 13771 * Which means that some operations on predicate registers themselves 13772 * may operate on full uint64_t or even unrolled across the maximum 13773 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13774 * may well be cheaper than conditionals to restrict the operation 13775 * to the relevant portion of a uint16_t[16]. 13776 */ 13777 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13778 { 13779 int i, j; 13780 uint64_t pmask; 13781 13782 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13783 assert(vq <= env_archcpu(env)->sve_max_vq); 13784 13785 /* Zap the high bits of the zregs. */ 13786 for (i = 0; i < 32; i++) { 13787 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13788 } 13789 13790 /* Zap the high bits of the pregs and ffr. */ 13791 pmask = 0; 13792 if (vq & 3) { 13793 pmask = ~(-1ULL << (16 * (vq & 3))); 13794 } 13795 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13796 for (i = 0; i < 17; ++i) { 13797 env->vfp.pregs[i].p[j] &= pmask; 13798 } 13799 pmask = 0; 13800 } 13801 } 13802 13803 /* 13804 * Notice a change in SVE vector size when changing EL. 13805 */ 13806 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13807 int new_el, bool el0_a64) 13808 { 13809 ARMCPU *cpu = env_archcpu(env); 13810 int old_len, new_len; 13811 bool old_a64, new_a64; 13812 13813 /* Nothing to do if no SVE. */ 13814 if (!cpu_isar_feature(aa64_sve, cpu)) { 13815 return; 13816 } 13817 13818 /* Nothing to do if FP is disabled in either EL. */ 13819 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13820 return; 13821 } 13822 13823 /* 13824 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13825 * at ELx, or not available because the EL is in AArch32 state, then 13826 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13827 * has an effective value of 0". 13828 * 13829 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13830 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13831 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13832 * we already have the correct register contents when encountering the 13833 * vq0->vq0 transition between EL0->EL1. 13834 */ 13835 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13836 old_len = (old_a64 && !sve_exception_el(env, old_el) 13837 ? sve_zcr_len_for_el(env, old_el) : 0); 13838 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13839 new_len = (new_a64 && !sve_exception_el(env, new_el) 13840 ? sve_zcr_len_for_el(env, new_el) : 0); 13841 13842 /* When changing vector length, clear inaccessible state. */ 13843 if (new_len < old_len) { 13844 aarch64_sve_narrow_vq(env, new_len + 1); 13845 } 13846 } 13847 #endif 13848