1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "exec/helper-proto.h" 15 #include "qemu/main-loop.h" 16 #include "qemu/timer.h" 17 #include "qemu/bitops.h" 18 #include "qemu/crc32c.h" 19 #include "qemu/qemu-print.h" 20 #include "exec/exec-all.h" 21 #include <zlib.h> /* For crc32 */ 22 #include "hw/irq.h" 23 #include "sysemu/cpu-timers.h" 24 #include "sysemu/kvm.h" 25 #include "sysemu/tcg.h" 26 #include "qapi/qapi-commands-machine-target.h" 27 #include "qapi/error.h" 28 #include "qemu/guest-random.h" 29 #ifdef CONFIG_TCG 30 #include "semihosting/common-semi.h" 31 #endif 32 #include "cpregs.h" 33 34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 35 36 static void switch_mode(CPUARMState *env, int mode); 37 38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 39 { 40 assert(ri->fieldoffset); 41 if (cpreg_field_is_64bit(ri)) { 42 return CPREG_FIELD64(env, ri); 43 } else { 44 return CPREG_FIELD32(env, ri); 45 } 46 } 47 48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 49 { 50 assert(ri->fieldoffset); 51 if (cpreg_field_is_64bit(ri)) { 52 CPREG_FIELD64(env, ri) = value; 53 } else { 54 CPREG_FIELD32(env, ri) = value; 55 } 56 } 57 58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 return (char *)env + ri->fieldoffset; 61 } 62 63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 64 { 65 /* Raw read of a coprocessor register (as needed for migration, etc). */ 66 if (ri->type & ARM_CP_CONST) { 67 return ri->resetvalue; 68 } else if (ri->raw_readfn) { 69 return ri->raw_readfn(env, ri); 70 } else if (ri->readfn) { 71 return ri->readfn(env, ri); 72 } else { 73 return raw_read(env, ri); 74 } 75 } 76 77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 78 uint64_t v) 79 { 80 /* 81 * Raw write of a coprocessor register (as needed for migration, etc). 82 * Note that constant registers are treated as write-ignored; the 83 * caller should check for success by whether a readback gives the 84 * value written. 85 */ 86 if (ri->type & ARM_CP_CONST) { 87 return; 88 } else if (ri->raw_writefn) { 89 ri->raw_writefn(env, ri, v); 90 } else if (ri->writefn) { 91 ri->writefn(env, ri, v); 92 } else { 93 raw_write(env, ri, v); 94 } 95 } 96 97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 98 { 99 /* 100 * Return true if the regdef would cause an assertion if you called 101 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 102 * program bug for it not to have the NO_RAW flag). 103 * NB that returning false here doesn't necessarily mean that calling 104 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 105 * read/write access functions which are safe for raw use" from "has 106 * read/write access functions which have side effects but has forgotten 107 * to provide raw access functions". 108 * The tests here line up with the conditions in read/write_raw_cp_reg() 109 * and assertions in raw_read()/raw_write(). 110 */ 111 if ((ri->type & ARM_CP_CONST) || 112 ri->fieldoffset || 113 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 114 return false; 115 } 116 return true; 117 } 118 119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 120 { 121 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 122 int i; 123 bool ok = true; 124 125 for (i = 0; i < cpu->cpreg_array_len; i++) { 126 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 127 const ARMCPRegInfo *ri; 128 uint64_t newval; 129 130 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 131 if (!ri) { 132 ok = false; 133 continue; 134 } 135 if (ri->type & ARM_CP_NO_RAW) { 136 continue; 137 } 138 139 newval = read_raw_cp_reg(&cpu->env, ri); 140 if (kvm_sync) { 141 /* 142 * Only sync if the previous list->cpustate sync succeeded. 143 * Rather than tracking the success/failure state for every 144 * item in the list, we just recheck "does the raw write we must 145 * have made in write_list_to_cpustate() read back OK" here. 146 */ 147 uint64_t oldval = cpu->cpreg_values[i]; 148 149 if (oldval == newval) { 150 continue; 151 } 152 153 write_raw_cp_reg(&cpu->env, ri, oldval); 154 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 155 continue; 156 } 157 158 write_raw_cp_reg(&cpu->env, ri, newval); 159 } 160 cpu->cpreg_values[i] = newval; 161 } 162 return ok; 163 } 164 165 bool write_list_to_cpustate(ARMCPU *cpu) 166 { 167 int i; 168 bool ok = true; 169 170 for (i = 0; i < cpu->cpreg_array_len; i++) { 171 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 172 uint64_t v = cpu->cpreg_values[i]; 173 const ARMCPRegInfo *ri; 174 175 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 176 if (!ri) { 177 ok = false; 178 continue; 179 } 180 if (ri->type & ARM_CP_NO_RAW) { 181 continue; 182 } 183 /* 184 * Write value and confirm it reads back as written 185 * (to catch read-only registers and partially read-only 186 * registers where the incoming migration value doesn't match) 187 */ 188 write_raw_cp_reg(&cpu->env, ri, v); 189 if (read_raw_cp_reg(&cpu->env, ri) != v) { 190 ok = false; 191 } 192 } 193 return ok; 194 } 195 196 static void add_cpreg_to_list(gpointer key, gpointer opaque) 197 { 198 ARMCPU *cpu = opaque; 199 uint32_t regidx = (uintptr_t)key; 200 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 201 202 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 203 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 204 /* The value array need not be initialized at this point */ 205 cpu->cpreg_array_len++; 206 } 207 } 208 209 static void count_cpreg(gpointer key, gpointer opaque) 210 { 211 ARMCPU *cpu = opaque; 212 const ARMCPRegInfo *ri; 213 214 ri = g_hash_table_lookup(cpu->cp_regs, key); 215 216 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 217 cpu->cpreg_array_len++; 218 } 219 } 220 221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 222 { 223 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 224 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 225 226 if (aidx > bidx) { 227 return 1; 228 } 229 if (aidx < bidx) { 230 return -1; 231 } 232 return 0; 233 } 234 235 void init_cpreg_list(ARMCPU *cpu) 236 { 237 /* 238 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 239 * Note that we require cpreg_tuples[] to be sorted by key ID. 240 */ 241 GList *keys; 242 int arraylen; 243 244 keys = g_hash_table_get_keys(cpu->cp_regs); 245 keys = g_list_sort(keys, cpreg_key_compare); 246 247 cpu->cpreg_array_len = 0; 248 249 g_list_foreach(keys, count_cpreg, cpu); 250 251 arraylen = cpu->cpreg_array_len; 252 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 253 cpu->cpreg_values = g_new(uint64_t, arraylen); 254 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 257 cpu->cpreg_array_len = 0; 258 259 g_list_foreach(keys, add_cpreg_to_list, cpu); 260 261 assert(cpu->cpreg_array_len == arraylen); 262 263 g_list_free(keys); 264 } 265 266 /* 267 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 268 */ 269 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 270 const ARMCPRegInfo *ri, 271 bool isread) 272 { 273 if (!is_a64(env) && arm_current_el(env) == 3 && 274 arm_is_secure_below_el3(env)) { 275 return CP_ACCESS_TRAP_UNCATEGORIZED; 276 } 277 return CP_ACCESS_OK; 278 } 279 280 /* 281 * Some secure-only AArch32 registers trap to EL3 if used from 282 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 283 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 284 * We assume that the .access field is set to PL1_RW. 285 */ 286 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 287 const ARMCPRegInfo *ri, 288 bool isread) 289 { 290 if (arm_current_el(env) == 3) { 291 return CP_ACCESS_OK; 292 } 293 if (arm_is_secure_below_el3(env)) { 294 if (env->cp15.scr_el3 & SCR_EEL2) { 295 return CP_ACCESS_TRAP_EL2; 296 } 297 return CP_ACCESS_TRAP_EL3; 298 } 299 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 300 return CP_ACCESS_TRAP_UNCATEGORIZED; 301 } 302 303 /* 304 * Check for traps to performance monitor registers, which are controlled 305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 306 */ 307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 308 bool isread) 309 { 310 int el = arm_current_el(env); 311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 312 313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 314 return CP_ACCESS_TRAP_EL2; 315 } 316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 317 return CP_ACCESS_TRAP_EL3; 318 } 319 return CP_ACCESS_OK; 320 } 321 322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 323 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 324 bool isread) 325 { 326 if (arm_current_el(env) == 1) { 327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 328 if (arm_hcr_el2_eff(env) & trap) { 329 return CP_ACCESS_TRAP_EL2; 330 } 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 340 return CP_ACCESS_TRAP_EL2; 341 } 342 return CP_ACCESS_OK; 343 } 344 345 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 347 bool isread) 348 { 349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 350 return CP_ACCESS_TRAP_EL2; 351 } 352 return CP_ACCESS_OK; 353 } 354 355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 357 bool isread) 358 { 359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 360 return CP_ACCESS_TRAP_EL2; 361 } 362 return CP_ACCESS_OK; 363 } 364 365 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 366 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 367 bool isread) 368 { 369 if (arm_current_el(env) == 1 && 370 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 371 return CP_ACCESS_TRAP_EL2; 372 } 373 return CP_ACCESS_OK; 374 } 375 376 #ifdef TARGET_AARCH64 377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 378 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 379 bool isread) 380 { 381 if (arm_current_el(env) == 1 && 382 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 383 return CP_ACCESS_TRAP_EL2; 384 } 385 return CP_ACCESS_OK; 386 } 387 #endif 388 389 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 390 { 391 ARMCPU *cpu = env_archcpu(env); 392 393 raw_write(env, ri, value); 394 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 395 } 396 397 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 398 { 399 ARMCPU *cpu = env_archcpu(env); 400 401 if (raw_read(env, ri) != value) { 402 /* 403 * Unlike real hardware the qemu TLB uses virtual addresses, 404 * not modified virtual addresses, so this causes a TLB flush. 405 */ 406 tlb_flush(CPU(cpu)); 407 raw_write(env, ri, value); 408 } 409 } 410 411 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 412 uint64_t value) 413 { 414 ARMCPU *cpu = env_archcpu(env); 415 416 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 417 && !extended_addresses_enabled(env)) { 418 /* 419 * For VMSA (when not using the LPAE long descriptor page table 420 * format) this register includes the ASID, so do a TLB flush. 421 * For PMSA it is purely a process ID and no action is needed. 422 */ 423 tlb_flush(CPU(cpu)); 424 } 425 raw_write(env, ri, value); 426 } 427 428 static int alle1_tlbmask(CPUARMState *env) 429 { 430 /* 431 * Note that the 'ALL' scope must invalidate both stage 1 and 432 * stage 2 translations, whereas most other scopes only invalidate 433 * stage 1 translations. 434 */ 435 return (ARMMMUIdxBit_E10_1 | 436 ARMMMUIdxBit_E10_1_PAN | 437 ARMMMUIdxBit_E10_0 | 438 ARMMMUIdxBit_Stage2 | 439 ARMMMUIdxBit_Stage2_S); 440 } 441 442 443 /* IS variants of TLB operations must affect all cores */ 444 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 445 uint64_t value) 446 { 447 CPUState *cs = env_cpu(env); 448 449 tlb_flush_all_cpus_synced(cs); 450 } 451 452 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 453 uint64_t value) 454 { 455 CPUState *cs = env_cpu(env); 456 457 tlb_flush_all_cpus_synced(cs); 458 } 459 460 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 461 uint64_t value) 462 { 463 CPUState *cs = env_cpu(env); 464 465 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 466 } 467 468 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 469 uint64_t value) 470 { 471 CPUState *cs = env_cpu(env); 472 473 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 474 } 475 476 /* 477 * Non-IS variants of TLB operations are upgraded to 478 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 479 * force broadcast of these operations. 480 */ 481 static bool tlb_force_broadcast(CPUARMState *env) 482 { 483 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 484 } 485 486 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 487 uint64_t value) 488 { 489 /* Invalidate all (TLBIALL) */ 490 CPUState *cs = env_cpu(env); 491 492 if (tlb_force_broadcast(env)) { 493 tlb_flush_all_cpus_synced(cs); 494 } else { 495 tlb_flush(cs); 496 } 497 } 498 499 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 503 CPUState *cs = env_cpu(env); 504 505 value &= TARGET_PAGE_MASK; 506 if (tlb_force_broadcast(env)) { 507 tlb_flush_page_all_cpus_synced(cs, value); 508 } else { 509 tlb_flush_page(cs, value); 510 } 511 } 512 513 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 514 uint64_t value) 515 { 516 /* Invalidate by ASID (TLBIASID) */ 517 CPUState *cs = env_cpu(env); 518 519 if (tlb_force_broadcast(env)) { 520 tlb_flush_all_cpus_synced(cs); 521 } else { 522 tlb_flush(cs); 523 } 524 } 525 526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 527 uint64_t value) 528 { 529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 530 CPUState *cs = env_cpu(env); 531 532 value &= TARGET_PAGE_MASK; 533 if (tlb_force_broadcast(env)) { 534 tlb_flush_page_all_cpus_synced(cs, value); 535 } else { 536 tlb_flush_page(cs, value); 537 } 538 } 539 540 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 541 uint64_t value) 542 { 543 CPUState *cs = env_cpu(env); 544 545 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 546 } 547 548 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 549 uint64_t value) 550 { 551 CPUState *cs = env_cpu(env); 552 553 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 554 } 555 556 557 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 558 uint64_t value) 559 { 560 CPUState *cs = env_cpu(env); 561 562 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 563 } 564 565 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 566 uint64_t value) 567 { 568 CPUState *cs = env_cpu(env); 569 570 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 571 } 572 573 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 574 uint64_t value) 575 { 576 CPUState *cs = env_cpu(env); 577 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 578 579 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 580 } 581 582 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 583 uint64_t value) 584 { 585 CPUState *cs = env_cpu(env); 586 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 587 588 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 589 ARMMMUIdxBit_E2); 590 } 591 592 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 593 uint64_t value) 594 { 595 CPUState *cs = env_cpu(env); 596 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 597 598 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 599 } 600 601 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 602 uint64_t value) 603 { 604 CPUState *cs = env_cpu(env); 605 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 606 607 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 608 } 609 610 static const ARMCPRegInfo cp_reginfo[] = { 611 /* 612 * Define the secure and non-secure FCSE identifier CP registers 613 * separately because there is no secure bank in V8 (no _EL3). This allows 614 * the secure register to be properly reset and migrated. There is also no 615 * v8 EL1 version of the register so the non-secure instance stands alone. 616 */ 617 { .name = "FCSEIDR", 618 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 619 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 620 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 621 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 622 { .name = "FCSEIDR_S", 623 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 624 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 625 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 626 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 627 /* 628 * Define the secure and non-secure context identifier CP registers 629 * separately because there is no secure bank in V8 (no _EL3). This allows 630 * the secure register to be properly reset and migrated. In the 631 * non-secure case, the 32-bit register will have reset and migration 632 * disabled during registration as it is handled by the 64-bit instance. 633 */ 634 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 635 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 636 .access = PL1_RW, .accessfn = access_tvm_trvm, 637 .fgt = FGT_CONTEXTIDR_EL1, 638 .secure = ARM_CP_SECSTATE_NS, 639 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 640 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 641 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 642 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 643 .access = PL1_RW, .accessfn = access_tvm_trvm, 644 .secure = ARM_CP_SECSTATE_S, 645 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 646 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 647 }; 648 649 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 650 /* 651 * NB: Some of these registers exist in v8 but with more precise 652 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 653 */ 654 /* MMU Domain access control / MPU write buffer control */ 655 { .name = "DACR", 656 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 657 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 658 .writefn = dacr_write, .raw_writefn = raw_write, 659 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 660 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 661 /* 662 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 663 * For v6 and v5, these mappings are overly broad. 664 */ 665 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 666 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 667 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 668 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 669 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 670 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 671 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 672 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 673 /* Cache maintenance ops; some of this space may be overridden later. */ 674 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 675 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 676 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 677 }; 678 679 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 680 /* 681 * Not all pre-v6 cores implemented this WFI, so this is slightly 682 * over-broad. 683 */ 684 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 685 .access = PL1_W, .type = ARM_CP_WFI }, 686 }; 687 688 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 689 /* 690 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 691 * is UNPREDICTABLE; we choose to NOP as most implementations do). 692 */ 693 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 694 .access = PL1_W, .type = ARM_CP_WFI }, 695 /* 696 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 697 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 698 * OMAPCP will override this space. 699 */ 700 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 701 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 702 .resetvalue = 0 }, 703 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 704 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 705 .resetvalue = 0 }, 706 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 707 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 708 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 709 .resetvalue = 0 }, 710 /* 711 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 712 * implementing it as RAZ means the "debug architecture version" bits 713 * will read as a reserved value, which should cause Linux to not try 714 * to use the debug hardware. 715 */ 716 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 717 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 718 /* 719 * MMU TLB control. Note that the wildcarding means we cover not just 720 * the unified TLB ops but also the dside/iside/inner-shareable variants. 721 */ 722 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 723 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 724 .type = ARM_CP_NO_RAW }, 725 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 726 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 727 .type = ARM_CP_NO_RAW }, 728 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 729 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 730 .type = ARM_CP_NO_RAW }, 731 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 732 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 733 .type = ARM_CP_NO_RAW }, 734 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 735 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 736 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 737 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 738 }; 739 740 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 741 uint64_t value) 742 { 743 uint32_t mask = 0; 744 745 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 746 if (!arm_feature(env, ARM_FEATURE_V8)) { 747 /* 748 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 749 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 750 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 751 */ 752 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 753 /* VFP coprocessor: cp10 & cp11 [23:20] */ 754 mask |= R_CPACR_ASEDIS_MASK | 755 R_CPACR_D32DIS_MASK | 756 R_CPACR_CP11_MASK | 757 R_CPACR_CP10_MASK; 758 759 if (!arm_feature(env, ARM_FEATURE_NEON)) { 760 /* ASEDIS [31] bit is RAO/WI */ 761 value |= R_CPACR_ASEDIS_MASK; 762 } 763 764 /* 765 * VFPv3 and upwards with NEON implement 32 double precision 766 * registers (D0-D31). 767 */ 768 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 769 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 770 value |= R_CPACR_D32DIS_MASK; 771 } 772 } 773 value &= mask; 774 } 775 776 /* 777 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 778 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 779 */ 780 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 781 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 782 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 783 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 784 } 785 786 env->cp15.cpacr_el1 = value; 787 } 788 789 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 790 { 791 /* 792 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 793 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 794 */ 795 uint64_t value = env->cp15.cpacr_el1; 796 797 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 798 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 799 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 800 } 801 return value; 802 } 803 804 805 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 806 { 807 /* 808 * Call cpacr_write() so that we reset with the correct RAO bits set 809 * for our CPU features. 810 */ 811 cpacr_write(env, ri, 0); 812 } 813 814 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 815 bool isread) 816 { 817 if (arm_feature(env, ARM_FEATURE_V8)) { 818 /* Check if CPACR accesses are to be trapped to EL2 */ 819 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 820 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 821 return CP_ACCESS_TRAP_EL2; 822 /* Check if CPACR accesses are to be trapped to EL3 */ 823 } else if (arm_current_el(env) < 3 && 824 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 825 return CP_ACCESS_TRAP_EL3; 826 } 827 } 828 829 return CP_ACCESS_OK; 830 } 831 832 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 833 bool isread) 834 { 835 /* Check if CPTR accesses are set to trap to EL3 */ 836 if (arm_current_el(env) == 2 && 837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 838 return CP_ACCESS_TRAP_EL3; 839 } 840 841 return CP_ACCESS_OK; 842 } 843 844 static const ARMCPRegInfo v6_cp_reginfo[] = { 845 /* prefetch by MVA in v6, NOP in v7 */ 846 { .name = "MVA_prefetch", 847 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 848 .access = PL1_W, .type = ARM_CP_NOP }, 849 /* 850 * We need to break the TB after ISB to execute self-modifying code 851 * correctly and also to take any pending interrupts immediately. 852 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 853 */ 854 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 855 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 856 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 857 .access = PL0_W, .type = ARM_CP_NOP }, 858 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 859 .access = PL0_W, .type = ARM_CP_NOP }, 860 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 861 .access = PL1_RW, .accessfn = access_tvm_trvm, 862 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 863 offsetof(CPUARMState, cp15.ifar_ns) }, 864 .resetvalue = 0, }, 865 /* 866 * Watchpoint Fault Address Register : should actually only be present 867 * for 1136, 1176, 11MPCore. 868 */ 869 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 870 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 871 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 872 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 873 .fgt = FGT_CPACR_EL1, 874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 875 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 876 }; 877 878 typedef struct pm_event { 879 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 880 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 881 bool (*supported)(CPUARMState *); 882 /* 883 * Retrieve the current count of the underlying event. The programmed 884 * counters hold a difference from the return value from this function 885 */ 886 uint64_t (*get_count)(CPUARMState *); 887 /* 888 * Return how many nanoseconds it will take (at a minimum) for count events 889 * to occur. A negative value indicates the counter will never overflow, or 890 * that the counter has otherwise arranged for the overflow bit to be set 891 * and the PMU interrupt to be raised on overflow. 892 */ 893 int64_t (*ns_per_count)(uint64_t); 894 } pm_event; 895 896 static bool event_always_supported(CPUARMState *env) 897 { 898 return true; 899 } 900 901 static uint64_t swinc_get_count(CPUARMState *env) 902 { 903 /* 904 * SW_INCR events are written directly to the pmevcntr's by writes to 905 * PMSWINC, so there is no underlying count maintained by the PMU itself 906 */ 907 return 0; 908 } 909 910 static int64_t swinc_ns_per(uint64_t ignored) 911 { 912 return -1; 913 } 914 915 /* 916 * Return the underlying cycle count for the PMU cycle counters. If we're in 917 * usermode, simply return 0. 918 */ 919 static uint64_t cycles_get_count(CPUARMState *env) 920 { 921 #ifndef CONFIG_USER_ONLY 922 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 923 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 924 #else 925 return cpu_get_host_ticks(); 926 #endif 927 } 928 929 #ifndef CONFIG_USER_ONLY 930 static int64_t cycles_ns_per(uint64_t cycles) 931 { 932 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 933 } 934 935 static bool instructions_supported(CPUARMState *env) 936 { 937 return icount_enabled() == 1; /* Precise instruction counting */ 938 } 939 940 static uint64_t instructions_get_count(CPUARMState *env) 941 { 942 return (uint64_t)icount_get_raw(); 943 } 944 945 static int64_t instructions_ns_per(uint64_t icount) 946 { 947 return icount_to_ns((int64_t)icount); 948 } 949 #endif 950 951 static bool pmuv3p1_events_supported(CPUARMState *env) 952 { 953 /* For events which are supported in any v8.1 PMU */ 954 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 955 } 956 957 static bool pmuv3p4_events_supported(CPUARMState *env) 958 { 959 /* For events which are supported in any v8.1 PMU */ 960 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 961 } 962 963 static uint64_t zero_event_get_count(CPUARMState *env) 964 { 965 /* For events which on QEMU never fire, so their count is always zero */ 966 return 0; 967 } 968 969 static int64_t zero_event_ns_per(uint64_t cycles) 970 { 971 /* An event which never fires can never overflow */ 972 return -1; 973 } 974 975 static const pm_event pm_events[] = { 976 { .number = 0x000, /* SW_INCR */ 977 .supported = event_always_supported, 978 .get_count = swinc_get_count, 979 .ns_per_count = swinc_ns_per, 980 }, 981 #ifndef CONFIG_USER_ONLY 982 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 983 .supported = instructions_supported, 984 .get_count = instructions_get_count, 985 .ns_per_count = instructions_ns_per, 986 }, 987 { .number = 0x011, /* CPU_CYCLES, Cycle */ 988 .supported = event_always_supported, 989 .get_count = cycles_get_count, 990 .ns_per_count = cycles_ns_per, 991 }, 992 #endif 993 { .number = 0x023, /* STALL_FRONTEND */ 994 .supported = pmuv3p1_events_supported, 995 .get_count = zero_event_get_count, 996 .ns_per_count = zero_event_ns_per, 997 }, 998 { .number = 0x024, /* STALL_BACKEND */ 999 .supported = pmuv3p1_events_supported, 1000 .get_count = zero_event_get_count, 1001 .ns_per_count = zero_event_ns_per, 1002 }, 1003 { .number = 0x03c, /* STALL */ 1004 .supported = pmuv3p4_events_supported, 1005 .get_count = zero_event_get_count, 1006 .ns_per_count = zero_event_ns_per, 1007 }, 1008 }; 1009 1010 /* 1011 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1012 * events (i.e. the statistical profiling extension), this implementation 1013 * should first be updated to something sparse instead of the current 1014 * supported_event_map[] array. 1015 */ 1016 #define MAX_EVENT_ID 0x3c 1017 #define UNSUPPORTED_EVENT UINT16_MAX 1018 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1019 1020 /* 1021 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1022 * of ARM event numbers to indices in our pm_events array. 1023 * 1024 * Note: Events in the 0x40XX range are not currently supported. 1025 */ 1026 void pmu_init(ARMCPU *cpu) 1027 { 1028 unsigned int i; 1029 1030 /* 1031 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1032 * events to them 1033 */ 1034 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1035 supported_event_map[i] = UNSUPPORTED_EVENT; 1036 } 1037 cpu->pmceid0 = 0; 1038 cpu->pmceid1 = 0; 1039 1040 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1041 const pm_event *cnt = &pm_events[i]; 1042 assert(cnt->number <= MAX_EVENT_ID); 1043 /* We do not currently support events in the 0x40xx range */ 1044 assert(cnt->number <= 0x3f); 1045 1046 if (cnt->supported(&cpu->env)) { 1047 supported_event_map[cnt->number] = i; 1048 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1049 if (cnt->number & 0x20) { 1050 cpu->pmceid1 |= event_mask; 1051 } else { 1052 cpu->pmceid0 |= event_mask; 1053 } 1054 } 1055 } 1056 } 1057 1058 /* 1059 * Check at runtime whether a PMU event is supported for the current machine 1060 */ 1061 static bool event_supported(uint16_t number) 1062 { 1063 if (number > MAX_EVENT_ID) { 1064 return false; 1065 } 1066 return supported_event_map[number] != UNSUPPORTED_EVENT; 1067 } 1068 1069 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1070 bool isread) 1071 { 1072 /* 1073 * Performance monitor registers user accessibility is controlled 1074 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1075 * trapping to EL2 or EL3 for other accesses. 1076 */ 1077 int el = arm_current_el(env); 1078 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1079 1080 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1081 return CP_ACCESS_TRAP; 1082 } 1083 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1084 return CP_ACCESS_TRAP_EL2; 1085 } 1086 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1087 return CP_ACCESS_TRAP_EL3; 1088 } 1089 1090 return CP_ACCESS_OK; 1091 } 1092 1093 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1094 const ARMCPRegInfo *ri, 1095 bool isread) 1096 { 1097 /* ER: event counter read trap control */ 1098 if (arm_feature(env, ARM_FEATURE_V8) 1099 && arm_current_el(env) == 0 1100 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1101 && isread) { 1102 return CP_ACCESS_OK; 1103 } 1104 1105 return pmreg_access(env, ri, isread); 1106 } 1107 1108 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1109 const ARMCPRegInfo *ri, 1110 bool isread) 1111 { 1112 /* SW: software increment write trap control */ 1113 if (arm_feature(env, ARM_FEATURE_V8) 1114 && arm_current_el(env) == 0 1115 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1116 && !isread) { 1117 return CP_ACCESS_OK; 1118 } 1119 1120 return pmreg_access(env, ri, isread); 1121 } 1122 1123 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1124 const ARMCPRegInfo *ri, 1125 bool isread) 1126 { 1127 /* ER: event counter read trap control */ 1128 if (arm_feature(env, ARM_FEATURE_V8) 1129 && arm_current_el(env) == 0 1130 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1131 return CP_ACCESS_OK; 1132 } 1133 1134 return pmreg_access(env, ri, isread); 1135 } 1136 1137 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1138 const ARMCPRegInfo *ri, 1139 bool isread) 1140 { 1141 /* CR: cycle counter read trap control */ 1142 if (arm_feature(env, ARM_FEATURE_V8) 1143 && arm_current_el(env) == 0 1144 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1145 && isread) { 1146 return CP_ACCESS_OK; 1147 } 1148 1149 return pmreg_access(env, ri, isread); 1150 } 1151 1152 /* 1153 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1154 * We use these to decide whether we need to wrap a write to MDCR_EL2 1155 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1156 */ 1157 #define MDCR_EL2_PMU_ENABLE_BITS \ 1158 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1159 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1160 1161 /* 1162 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1163 * the current EL, security state, and register configuration. 1164 */ 1165 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1166 { 1167 uint64_t filter; 1168 bool e, p, u, nsk, nsu, nsh, m; 1169 bool enabled, prohibited = false, filtered; 1170 bool secure = arm_is_secure(env); 1171 int el = arm_current_el(env); 1172 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1173 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1174 1175 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1176 return false; 1177 } 1178 1179 if (!arm_feature(env, ARM_FEATURE_EL2) || 1180 (counter < hpmn || counter == 31)) { 1181 e = env->cp15.c9_pmcr & PMCRE; 1182 } else { 1183 e = mdcr_el2 & MDCR_HPME; 1184 } 1185 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1186 1187 /* Is event counting prohibited? */ 1188 if (el == 2 && (counter < hpmn || counter == 31)) { 1189 prohibited = mdcr_el2 & MDCR_HPMD; 1190 } 1191 if (secure) { 1192 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1193 } 1194 1195 if (counter == 31) { 1196 /* 1197 * The cycle counter defaults to running. PMCR.DP says "disable 1198 * the cycle counter when event counting is prohibited". 1199 * Some MDCR bits disable the cycle counter specifically. 1200 */ 1201 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1202 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1203 if (secure) { 1204 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1205 } 1206 if (el == 2) { 1207 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1208 } 1209 } 1210 } 1211 1212 if (counter == 31) { 1213 filter = env->cp15.pmccfiltr_el0; 1214 } else { 1215 filter = env->cp15.c14_pmevtyper[counter]; 1216 } 1217 1218 p = filter & PMXEVTYPER_P; 1219 u = filter & PMXEVTYPER_U; 1220 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1221 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1222 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1223 m = arm_el_is_aa64(env, 1) && 1224 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1225 1226 if (el == 0) { 1227 filtered = secure ? u : u != nsu; 1228 } else if (el == 1) { 1229 filtered = secure ? p : p != nsk; 1230 } else if (el == 2) { 1231 filtered = !nsh; 1232 } else { /* EL3 */ 1233 filtered = m != p; 1234 } 1235 1236 if (counter != 31) { 1237 /* 1238 * If not checking PMCCNTR, ensure the counter is setup to an event we 1239 * support 1240 */ 1241 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1242 if (!event_supported(event)) { 1243 return false; 1244 } 1245 } 1246 1247 return enabled && !prohibited && !filtered; 1248 } 1249 1250 static void pmu_update_irq(CPUARMState *env) 1251 { 1252 ARMCPU *cpu = env_archcpu(env); 1253 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1254 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1255 } 1256 1257 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1258 { 1259 /* 1260 * Return true if the clock divider is enabled and the cycle counter 1261 * is supposed to tick only once every 64 clock cycles. This is 1262 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1263 * (64-bit) cycle counter PMCR.D has no effect. 1264 */ 1265 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1266 } 1267 1268 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1269 { 1270 /* Return true if the specified event counter is configured to be 64 bit */ 1271 1272 /* This isn't intended to be used with the cycle counter */ 1273 assert(counter < 31); 1274 1275 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1276 return false; 1277 } 1278 1279 if (arm_feature(env, ARM_FEATURE_EL2)) { 1280 /* 1281 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1282 * current security state, so we don't use arm_mdcr_el2_eff() here. 1283 */ 1284 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1285 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1286 1287 if (hpmn != 0 && counter >= hpmn) { 1288 return hlp; 1289 } 1290 } 1291 return env->cp15.c9_pmcr & PMCRLP; 1292 } 1293 1294 /* 1295 * Ensure c15_ccnt is the guest-visible count so that operations such as 1296 * enabling/disabling the counter or filtering, modifying the count itself, 1297 * etc. can be done logically. This is essentially a no-op if the counter is 1298 * not enabled at the time of the call. 1299 */ 1300 static void pmccntr_op_start(CPUARMState *env) 1301 { 1302 uint64_t cycles = cycles_get_count(env); 1303 1304 if (pmu_counter_enabled(env, 31)) { 1305 uint64_t eff_cycles = cycles; 1306 if (pmccntr_clockdiv_enabled(env)) { 1307 eff_cycles /= 64; 1308 } 1309 1310 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1311 1312 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1313 1ull << 63 : 1ull << 31; 1314 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1315 env->cp15.c9_pmovsr |= (1ULL << 31); 1316 pmu_update_irq(env); 1317 } 1318 1319 env->cp15.c15_ccnt = new_pmccntr; 1320 } 1321 env->cp15.c15_ccnt_delta = cycles; 1322 } 1323 1324 /* 1325 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1326 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1327 * pmccntr_op_start. 1328 */ 1329 static void pmccntr_op_finish(CPUARMState *env) 1330 { 1331 if (pmu_counter_enabled(env, 31)) { 1332 #ifndef CONFIG_USER_ONLY 1333 /* Calculate when the counter will next overflow */ 1334 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1335 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1336 remaining_cycles = (uint32_t)remaining_cycles; 1337 } 1338 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1339 1340 if (overflow_in > 0) { 1341 int64_t overflow_at; 1342 1343 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1344 overflow_in, &overflow_at)) { 1345 ARMCPU *cpu = env_archcpu(env); 1346 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1347 } 1348 } 1349 #endif 1350 1351 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1352 if (pmccntr_clockdiv_enabled(env)) { 1353 prev_cycles /= 64; 1354 } 1355 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1356 } 1357 } 1358 1359 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1360 { 1361 1362 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1363 uint64_t count = 0; 1364 if (event_supported(event)) { 1365 uint16_t event_idx = supported_event_map[event]; 1366 count = pm_events[event_idx].get_count(env); 1367 } 1368 1369 if (pmu_counter_enabled(env, counter)) { 1370 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1371 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1372 1ULL << 63 : 1ULL << 31; 1373 1374 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1375 env->cp15.c9_pmovsr |= (1 << counter); 1376 pmu_update_irq(env); 1377 } 1378 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1379 } 1380 env->cp15.c14_pmevcntr_delta[counter] = count; 1381 } 1382 1383 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1384 { 1385 if (pmu_counter_enabled(env, counter)) { 1386 #ifndef CONFIG_USER_ONLY 1387 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1388 uint16_t event_idx = supported_event_map[event]; 1389 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1390 int64_t overflow_in; 1391 1392 if (!pmevcntr_is_64_bit(env, counter)) { 1393 delta = (uint32_t)delta; 1394 } 1395 overflow_in = pm_events[event_idx].ns_per_count(delta); 1396 1397 if (overflow_in > 0) { 1398 int64_t overflow_at; 1399 1400 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1401 overflow_in, &overflow_at)) { 1402 ARMCPU *cpu = env_archcpu(env); 1403 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1404 } 1405 } 1406 #endif 1407 1408 env->cp15.c14_pmevcntr_delta[counter] -= 1409 env->cp15.c14_pmevcntr[counter]; 1410 } 1411 } 1412 1413 void pmu_op_start(CPUARMState *env) 1414 { 1415 unsigned int i; 1416 pmccntr_op_start(env); 1417 for (i = 0; i < pmu_num_counters(env); i++) { 1418 pmevcntr_op_start(env, i); 1419 } 1420 } 1421 1422 void pmu_op_finish(CPUARMState *env) 1423 { 1424 unsigned int i; 1425 pmccntr_op_finish(env); 1426 for (i = 0; i < pmu_num_counters(env); i++) { 1427 pmevcntr_op_finish(env, i); 1428 } 1429 } 1430 1431 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1432 { 1433 pmu_op_start(&cpu->env); 1434 } 1435 1436 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1437 { 1438 pmu_op_finish(&cpu->env); 1439 } 1440 1441 void arm_pmu_timer_cb(void *opaque) 1442 { 1443 ARMCPU *cpu = opaque; 1444 1445 /* 1446 * Update all the counter values based on the current underlying counts, 1447 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1448 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1449 * counter may expire. 1450 */ 1451 pmu_op_start(&cpu->env); 1452 pmu_op_finish(&cpu->env); 1453 } 1454 1455 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1456 uint64_t value) 1457 { 1458 pmu_op_start(env); 1459 1460 if (value & PMCRC) { 1461 /* The counter has been reset */ 1462 env->cp15.c15_ccnt = 0; 1463 } 1464 1465 if (value & PMCRP) { 1466 unsigned int i; 1467 for (i = 0; i < pmu_num_counters(env); i++) { 1468 env->cp15.c14_pmevcntr[i] = 0; 1469 } 1470 } 1471 1472 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1473 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1474 1475 pmu_op_finish(env); 1476 } 1477 1478 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1479 uint64_t value) 1480 { 1481 unsigned int i; 1482 uint64_t overflow_mask, new_pmswinc; 1483 1484 for (i = 0; i < pmu_num_counters(env); i++) { 1485 /* Increment a counter's count iff: */ 1486 if ((value & (1 << i)) && /* counter's bit is set */ 1487 /* counter is enabled and not filtered */ 1488 pmu_counter_enabled(env, i) && 1489 /* counter is SW_INCR */ 1490 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1491 pmevcntr_op_start(env, i); 1492 1493 /* 1494 * Detect if this write causes an overflow since we can't predict 1495 * PMSWINC overflows like we can for other events 1496 */ 1497 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1498 1499 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1500 1ULL << 63 : 1ULL << 31; 1501 1502 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1503 env->cp15.c9_pmovsr |= (1 << i); 1504 pmu_update_irq(env); 1505 } 1506 1507 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1508 1509 pmevcntr_op_finish(env, i); 1510 } 1511 } 1512 } 1513 1514 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1515 { 1516 uint64_t ret; 1517 pmccntr_op_start(env); 1518 ret = env->cp15.c15_ccnt; 1519 pmccntr_op_finish(env); 1520 return ret; 1521 } 1522 1523 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1524 uint64_t value) 1525 { 1526 /* 1527 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1528 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1529 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1530 * accessed. 1531 */ 1532 env->cp15.c9_pmselr = value & 0x1f; 1533 } 1534 1535 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1536 uint64_t value) 1537 { 1538 pmccntr_op_start(env); 1539 env->cp15.c15_ccnt = value; 1540 pmccntr_op_finish(env); 1541 } 1542 1543 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1544 uint64_t value) 1545 { 1546 uint64_t cur_val = pmccntr_read(env, NULL); 1547 1548 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1549 } 1550 1551 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1552 uint64_t value) 1553 { 1554 pmccntr_op_start(env); 1555 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1556 pmccntr_op_finish(env); 1557 } 1558 1559 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1560 uint64_t value) 1561 { 1562 pmccntr_op_start(env); 1563 /* M is not accessible from AArch32 */ 1564 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1565 (value & PMCCFILTR); 1566 pmccntr_op_finish(env); 1567 } 1568 1569 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1570 { 1571 /* M is not visible in AArch32 */ 1572 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1573 } 1574 1575 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1576 uint64_t value) 1577 { 1578 pmu_op_start(env); 1579 value &= pmu_counter_mask(env); 1580 env->cp15.c9_pmcnten |= value; 1581 pmu_op_finish(env); 1582 } 1583 1584 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1585 uint64_t value) 1586 { 1587 pmu_op_start(env); 1588 value &= pmu_counter_mask(env); 1589 env->cp15.c9_pmcnten &= ~value; 1590 pmu_op_finish(env); 1591 } 1592 1593 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1594 uint64_t value) 1595 { 1596 value &= pmu_counter_mask(env); 1597 env->cp15.c9_pmovsr &= ~value; 1598 pmu_update_irq(env); 1599 } 1600 1601 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1602 uint64_t value) 1603 { 1604 value &= pmu_counter_mask(env); 1605 env->cp15.c9_pmovsr |= value; 1606 pmu_update_irq(env); 1607 } 1608 1609 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1610 uint64_t value, const uint8_t counter) 1611 { 1612 if (counter == 31) { 1613 pmccfiltr_write(env, ri, value); 1614 } else if (counter < pmu_num_counters(env)) { 1615 pmevcntr_op_start(env, counter); 1616 1617 /* 1618 * If this counter's event type is changing, store the current 1619 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1620 * pmevcntr_op_finish has the correct baseline when it converts back to 1621 * a delta. 1622 */ 1623 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1624 PMXEVTYPER_EVTCOUNT; 1625 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1626 if (old_event != new_event) { 1627 uint64_t count = 0; 1628 if (event_supported(new_event)) { 1629 uint16_t event_idx = supported_event_map[new_event]; 1630 count = pm_events[event_idx].get_count(env); 1631 } 1632 env->cp15.c14_pmevcntr_delta[counter] = count; 1633 } 1634 1635 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1636 pmevcntr_op_finish(env, counter); 1637 } 1638 /* 1639 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1640 * PMSELR value is equal to or greater than the number of implemented 1641 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1642 */ 1643 } 1644 1645 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1646 const uint8_t counter) 1647 { 1648 if (counter == 31) { 1649 return env->cp15.pmccfiltr_el0; 1650 } else if (counter < pmu_num_counters(env)) { 1651 return env->cp15.c14_pmevtyper[counter]; 1652 } else { 1653 /* 1654 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1655 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1656 */ 1657 return 0; 1658 } 1659 } 1660 1661 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1662 uint64_t value) 1663 { 1664 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1665 pmevtyper_write(env, ri, value, counter); 1666 } 1667 1668 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1669 uint64_t value) 1670 { 1671 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1672 env->cp15.c14_pmevtyper[counter] = value; 1673 1674 /* 1675 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1676 * pmu_op_finish calls when loading saved state for a migration. Because 1677 * we're potentially updating the type of event here, the value written to 1678 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1679 * different counter type. Therefore, we need to set this value to the 1680 * current count for the counter type we're writing so that pmu_op_finish 1681 * has the correct count for its calculation. 1682 */ 1683 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1684 if (event_supported(event)) { 1685 uint16_t event_idx = supported_event_map[event]; 1686 env->cp15.c14_pmevcntr_delta[counter] = 1687 pm_events[event_idx].get_count(env); 1688 } 1689 } 1690 1691 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1692 { 1693 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1694 return pmevtyper_read(env, ri, counter); 1695 } 1696 1697 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1698 uint64_t value) 1699 { 1700 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1701 } 1702 1703 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1704 { 1705 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1706 } 1707 1708 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1709 uint64_t value, uint8_t counter) 1710 { 1711 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1712 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1713 value &= MAKE_64BIT_MASK(0, 32); 1714 } 1715 if (counter < pmu_num_counters(env)) { 1716 pmevcntr_op_start(env, counter); 1717 env->cp15.c14_pmevcntr[counter] = value; 1718 pmevcntr_op_finish(env, counter); 1719 } 1720 /* 1721 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1722 * are CONSTRAINED UNPREDICTABLE. 1723 */ 1724 } 1725 1726 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1727 uint8_t counter) 1728 { 1729 if (counter < pmu_num_counters(env)) { 1730 uint64_t ret; 1731 pmevcntr_op_start(env, counter); 1732 ret = env->cp15.c14_pmevcntr[counter]; 1733 pmevcntr_op_finish(env, counter); 1734 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1735 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1736 ret &= MAKE_64BIT_MASK(0, 32); 1737 } 1738 return ret; 1739 } else { 1740 /* 1741 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1742 * are CONSTRAINED UNPREDICTABLE. 1743 */ 1744 return 0; 1745 } 1746 } 1747 1748 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1749 uint64_t value) 1750 { 1751 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1752 pmevcntr_write(env, ri, value, counter); 1753 } 1754 1755 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1756 { 1757 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1758 return pmevcntr_read(env, ri, counter); 1759 } 1760 1761 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1762 uint64_t value) 1763 { 1764 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1765 assert(counter < pmu_num_counters(env)); 1766 env->cp15.c14_pmevcntr[counter] = value; 1767 pmevcntr_write(env, ri, value, counter); 1768 } 1769 1770 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1771 { 1772 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1773 assert(counter < pmu_num_counters(env)); 1774 return env->cp15.c14_pmevcntr[counter]; 1775 } 1776 1777 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1778 uint64_t value) 1779 { 1780 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1781 } 1782 1783 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1784 { 1785 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1786 } 1787 1788 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1789 uint64_t value) 1790 { 1791 if (arm_feature(env, ARM_FEATURE_V8)) { 1792 env->cp15.c9_pmuserenr = value & 0xf; 1793 } else { 1794 env->cp15.c9_pmuserenr = value & 1; 1795 } 1796 } 1797 1798 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1799 uint64_t value) 1800 { 1801 /* We have no event counters so only the C bit can be changed */ 1802 value &= pmu_counter_mask(env); 1803 env->cp15.c9_pminten |= value; 1804 pmu_update_irq(env); 1805 } 1806 1807 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1808 uint64_t value) 1809 { 1810 value &= pmu_counter_mask(env); 1811 env->cp15.c9_pminten &= ~value; 1812 pmu_update_irq(env); 1813 } 1814 1815 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1816 uint64_t value) 1817 { 1818 /* 1819 * Note that even though the AArch64 view of this register has bits 1820 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1821 * architectural requirements for bits which are RES0 only in some 1822 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1823 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1824 */ 1825 raw_write(env, ri, value & ~0x1FULL); 1826 } 1827 1828 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1829 { 1830 /* Begin with base v8.0 state. */ 1831 uint64_t valid_mask = 0x3fff; 1832 ARMCPU *cpu = env_archcpu(env); 1833 uint64_t changed; 1834 1835 /* 1836 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1837 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1838 * Instead, choose the format based on the mode of EL3. 1839 */ 1840 if (arm_el_is_aa64(env, 3)) { 1841 value |= SCR_FW | SCR_AW; /* RES1 */ 1842 valid_mask &= ~SCR_NET; /* RES0 */ 1843 1844 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1845 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1846 value |= SCR_RW; /* RAO/WI */ 1847 } 1848 if (cpu_isar_feature(aa64_ras, cpu)) { 1849 valid_mask |= SCR_TERR; 1850 } 1851 if (cpu_isar_feature(aa64_lor, cpu)) { 1852 valid_mask |= SCR_TLOR; 1853 } 1854 if (cpu_isar_feature(aa64_pauth, cpu)) { 1855 valid_mask |= SCR_API | SCR_APK; 1856 } 1857 if (cpu_isar_feature(aa64_sel2, cpu)) { 1858 valid_mask |= SCR_EEL2; 1859 } 1860 if (cpu_isar_feature(aa64_mte, cpu)) { 1861 valid_mask |= SCR_ATA; 1862 } 1863 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1864 valid_mask |= SCR_ENSCXT; 1865 } 1866 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1867 valid_mask |= SCR_EASE | SCR_NMEA; 1868 } 1869 if (cpu_isar_feature(aa64_sme, cpu)) { 1870 valid_mask |= SCR_ENTP2; 1871 } 1872 if (cpu_isar_feature(aa64_hcx, cpu)) { 1873 valid_mask |= SCR_HXEN; 1874 } 1875 if (cpu_isar_feature(aa64_fgt, cpu)) { 1876 valid_mask |= SCR_FGTEN; 1877 } 1878 } else { 1879 valid_mask &= ~(SCR_RW | SCR_ST); 1880 if (cpu_isar_feature(aa32_ras, cpu)) { 1881 valid_mask |= SCR_TERR; 1882 } 1883 } 1884 1885 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1886 valid_mask &= ~SCR_HCE; 1887 1888 /* 1889 * On ARMv7, SMD (or SCD as it is called in v7) is only 1890 * supported if EL2 exists. The bit is UNK/SBZP when 1891 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1892 * when EL2 is unavailable. 1893 * On ARMv8, this bit is always available. 1894 */ 1895 if (arm_feature(env, ARM_FEATURE_V7) && 1896 !arm_feature(env, ARM_FEATURE_V8)) { 1897 valid_mask &= ~SCR_SMD; 1898 } 1899 } 1900 1901 /* Clear all-context RES0 bits. */ 1902 value &= valid_mask; 1903 changed = env->cp15.scr_el3 ^ value; 1904 env->cp15.scr_el3 = value; 1905 1906 /* 1907 * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then 1908 * we must invalidate all TLBs below EL3. 1909 */ 1910 if (changed & SCR_NS) { 1911 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1912 ARMMMUIdxBit_E20_0 | 1913 ARMMMUIdxBit_E10_1 | 1914 ARMMMUIdxBit_E20_2 | 1915 ARMMMUIdxBit_E10_1_PAN | 1916 ARMMMUIdxBit_E20_2_PAN | 1917 ARMMMUIdxBit_E2)); 1918 } 1919 } 1920 1921 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1922 { 1923 /* 1924 * scr_write will set the RES1 bits on an AArch64-only CPU. 1925 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1926 */ 1927 scr_write(env, ri, 0); 1928 } 1929 1930 static CPAccessResult access_tid4(CPUARMState *env, 1931 const ARMCPRegInfo *ri, 1932 bool isread) 1933 { 1934 if (arm_current_el(env) == 1 && 1935 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1936 return CP_ACCESS_TRAP_EL2; 1937 } 1938 1939 return CP_ACCESS_OK; 1940 } 1941 1942 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1943 { 1944 ARMCPU *cpu = env_archcpu(env); 1945 1946 /* 1947 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1948 * bank 1949 */ 1950 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1951 ri->secure & ARM_CP_SECSTATE_S); 1952 1953 return cpu->ccsidr[index]; 1954 } 1955 1956 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1957 uint64_t value) 1958 { 1959 raw_write(env, ri, value & 0xf); 1960 } 1961 1962 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1963 { 1964 CPUState *cs = env_cpu(env); 1965 bool el1 = arm_current_el(env) == 1; 1966 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1967 uint64_t ret = 0; 1968 1969 if (hcr_el2 & HCR_IMO) { 1970 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1971 ret |= CPSR_I; 1972 } 1973 } else { 1974 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1975 ret |= CPSR_I; 1976 } 1977 } 1978 1979 if (hcr_el2 & HCR_FMO) { 1980 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1981 ret |= CPSR_F; 1982 } 1983 } else { 1984 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1985 ret |= CPSR_F; 1986 } 1987 } 1988 1989 if (hcr_el2 & HCR_AMO) { 1990 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1991 ret |= CPSR_A; 1992 } 1993 } 1994 1995 return ret; 1996 } 1997 1998 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1999 bool isread) 2000 { 2001 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2002 return CP_ACCESS_TRAP_EL2; 2003 } 2004 2005 return CP_ACCESS_OK; 2006 } 2007 2008 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2009 bool isread) 2010 { 2011 if (arm_feature(env, ARM_FEATURE_V8)) { 2012 return access_aa64_tid1(env, ri, isread); 2013 } 2014 2015 return CP_ACCESS_OK; 2016 } 2017 2018 static const ARMCPRegInfo v7_cp_reginfo[] = { 2019 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2020 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2021 .access = PL1_W, .type = ARM_CP_NOP }, 2022 /* 2023 * Performance monitors are implementation defined in v7, 2024 * but with an ARM recommended set of registers, which we 2025 * follow. 2026 * 2027 * Performance registers fall into three categories: 2028 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2029 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2030 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2031 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2032 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2033 */ 2034 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2035 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2036 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2037 .writefn = pmcntenset_write, 2038 .accessfn = pmreg_access, 2039 .fgt = FGT_PMCNTEN, 2040 .raw_writefn = raw_write }, 2041 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2042 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2043 .access = PL0_RW, .accessfn = pmreg_access, 2044 .fgt = FGT_PMCNTEN, 2045 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2046 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2047 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2048 .access = PL0_RW, 2049 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2050 .accessfn = pmreg_access, 2051 .fgt = FGT_PMCNTEN, 2052 .writefn = pmcntenclr_write, 2053 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2054 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2055 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2056 .access = PL0_RW, .accessfn = pmreg_access, 2057 .fgt = FGT_PMCNTEN, 2058 .type = ARM_CP_ALIAS | ARM_CP_IO, 2059 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2060 .writefn = pmcntenclr_write }, 2061 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2062 .access = PL0_RW, .type = ARM_CP_IO, 2063 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2064 .accessfn = pmreg_access, 2065 .fgt = FGT_PMOVS, 2066 .writefn = pmovsr_write, 2067 .raw_writefn = raw_write }, 2068 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2069 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2070 .access = PL0_RW, .accessfn = pmreg_access, 2071 .fgt = FGT_PMOVS, 2072 .type = ARM_CP_ALIAS | ARM_CP_IO, 2073 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2074 .writefn = pmovsr_write, 2075 .raw_writefn = raw_write }, 2076 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2077 .access = PL0_W, .accessfn = pmreg_access_swinc, 2078 .fgt = FGT_PMSWINC_EL0, 2079 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2080 .writefn = pmswinc_write }, 2081 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2082 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2083 .access = PL0_W, .accessfn = pmreg_access_swinc, 2084 .fgt = FGT_PMSWINC_EL0, 2085 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2086 .writefn = pmswinc_write }, 2087 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2088 .access = PL0_RW, .type = ARM_CP_ALIAS, 2089 .fgt = FGT_PMSELR_EL0, 2090 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2091 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2092 .raw_writefn = raw_write}, 2093 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2094 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2095 .access = PL0_RW, .accessfn = pmreg_access_selr, 2096 .fgt = FGT_PMSELR_EL0, 2097 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2098 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2099 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2100 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2101 .fgt = FGT_PMCCNTR_EL0, 2102 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2103 .accessfn = pmreg_access_ccntr }, 2104 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2105 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2106 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2107 .fgt = FGT_PMCCNTR_EL0, 2108 .type = ARM_CP_IO, 2109 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2110 .readfn = pmccntr_read, .writefn = pmccntr_write, 2111 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2112 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2113 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2114 .access = PL0_RW, .accessfn = pmreg_access, 2115 .fgt = FGT_PMCCFILTR_EL0, 2116 .type = ARM_CP_ALIAS | ARM_CP_IO, 2117 .resetvalue = 0, }, 2118 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2119 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2120 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2121 .access = PL0_RW, .accessfn = pmreg_access, 2122 .fgt = FGT_PMCCFILTR_EL0, 2123 .type = ARM_CP_IO, 2124 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2125 .resetvalue = 0, }, 2126 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2127 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2128 .accessfn = pmreg_access, 2129 .fgt = FGT_PMEVTYPERN_EL0, 2130 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2131 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2132 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2133 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2134 .accessfn = pmreg_access, 2135 .fgt = FGT_PMEVTYPERN_EL0, 2136 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2137 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2138 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2139 .accessfn = pmreg_access_xevcntr, 2140 .fgt = FGT_PMEVCNTRN_EL0, 2141 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2142 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2143 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2144 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2145 .accessfn = pmreg_access_xevcntr, 2146 .fgt = FGT_PMEVCNTRN_EL0, 2147 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2148 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2149 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2150 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2151 .resetvalue = 0, 2152 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2153 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2154 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2155 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2156 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2157 .resetvalue = 0, 2158 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2159 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2160 .access = PL1_RW, .accessfn = access_tpm, 2161 .fgt = FGT_PMINTEN, 2162 .type = ARM_CP_ALIAS | ARM_CP_IO, 2163 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2164 .resetvalue = 0, 2165 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2166 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2167 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2168 .access = PL1_RW, .accessfn = access_tpm, 2169 .fgt = FGT_PMINTEN, 2170 .type = ARM_CP_IO, 2171 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2172 .writefn = pmintenset_write, .raw_writefn = raw_write, 2173 .resetvalue = 0x0 }, 2174 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2175 .access = PL1_RW, .accessfn = access_tpm, 2176 .fgt = FGT_PMINTEN, 2177 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2178 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2179 .writefn = pmintenclr_write, }, 2180 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2181 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2182 .access = PL1_RW, .accessfn = access_tpm, 2183 .fgt = FGT_PMINTEN, 2184 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2185 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2186 .writefn = pmintenclr_write }, 2187 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2188 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2189 .access = PL1_R, 2190 .accessfn = access_tid4, 2191 .fgt = FGT_CCSIDR_EL1, 2192 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2193 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2194 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2195 .access = PL1_RW, 2196 .accessfn = access_tid4, 2197 .fgt = FGT_CSSELR_EL1, 2198 .writefn = csselr_write, .resetvalue = 0, 2199 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2200 offsetof(CPUARMState, cp15.csselr_ns) } }, 2201 /* 2202 * Auxiliary ID register: this actually has an IMPDEF value but for now 2203 * just RAZ for all cores: 2204 */ 2205 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2206 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2207 .access = PL1_R, .type = ARM_CP_CONST, 2208 .accessfn = access_aa64_tid1, 2209 .fgt = FGT_AIDR_EL1, 2210 .resetvalue = 0 }, 2211 /* 2212 * Auxiliary fault status registers: these also are IMPDEF, and we 2213 * choose to RAZ/WI for all cores. 2214 */ 2215 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2216 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2217 .access = PL1_RW, .accessfn = access_tvm_trvm, 2218 .fgt = FGT_AFSR0_EL1, 2219 .type = ARM_CP_CONST, .resetvalue = 0 }, 2220 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2221 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2222 .access = PL1_RW, .accessfn = access_tvm_trvm, 2223 .fgt = FGT_AFSR1_EL1, 2224 .type = ARM_CP_CONST, .resetvalue = 0 }, 2225 /* 2226 * MAIR can just read-as-written because we don't implement caches 2227 * and so don't need to care about memory attributes. 2228 */ 2229 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2230 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2231 .access = PL1_RW, .accessfn = access_tvm_trvm, 2232 .fgt = FGT_MAIR_EL1, 2233 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2234 .resetvalue = 0 }, 2235 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2236 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2237 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2238 .resetvalue = 0 }, 2239 /* 2240 * For non-long-descriptor page tables these are PRRR and NMRR; 2241 * regardless they still act as reads-as-written for QEMU. 2242 */ 2243 /* 2244 * MAIR0/1 are defined separately from their 64-bit counterpart which 2245 * allows them to assign the correct fieldoffset based on the endianness 2246 * handled in the field definitions. 2247 */ 2248 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2249 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2250 .access = PL1_RW, .accessfn = access_tvm_trvm, 2251 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2252 offsetof(CPUARMState, cp15.mair0_ns) }, 2253 .resetfn = arm_cp_reset_ignore }, 2254 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2255 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2256 .access = PL1_RW, .accessfn = access_tvm_trvm, 2257 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2258 offsetof(CPUARMState, cp15.mair1_ns) }, 2259 .resetfn = arm_cp_reset_ignore }, 2260 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2261 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2262 .fgt = FGT_ISR_EL1, 2263 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2264 /* 32 bit ITLB invalidates */ 2265 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2266 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2267 .writefn = tlbiall_write }, 2268 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2269 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2270 .writefn = tlbimva_write }, 2271 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2272 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2273 .writefn = tlbiasid_write }, 2274 /* 32 bit DTLB invalidates */ 2275 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2276 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2277 .writefn = tlbiall_write }, 2278 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2279 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2280 .writefn = tlbimva_write }, 2281 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2282 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2283 .writefn = tlbiasid_write }, 2284 /* 32 bit TLB invalidates */ 2285 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2286 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2287 .writefn = tlbiall_write }, 2288 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2289 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2290 .writefn = tlbimva_write }, 2291 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2292 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2293 .writefn = tlbiasid_write }, 2294 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2295 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2296 .writefn = tlbimvaa_write }, 2297 }; 2298 2299 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2300 /* 32 bit TLB invalidates, Inner Shareable */ 2301 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2302 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2303 .writefn = tlbiall_is_write }, 2304 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2305 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2306 .writefn = tlbimva_is_write }, 2307 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2308 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2309 .writefn = tlbiasid_is_write }, 2310 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2311 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2312 .writefn = tlbimvaa_is_write }, 2313 }; 2314 2315 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2316 /* PMOVSSET is not implemented in v7 before v7ve */ 2317 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2318 .access = PL0_RW, .accessfn = pmreg_access, 2319 .fgt = FGT_PMOVS, 2320 .type = ARM_CP_ALIAS | ARM_CP_IO, 2321 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2322 .writefn = pmovsset_write, 2323 .raw_writefn = raw_write }, 2324 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2325 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2326 .access = PL0_RW, .accessfn = pmreg_access, 2327 .fgt = FGT_PMOVS, 2328 .type = ARM_CP_ALIAS | ARM_CP_IO, 2329 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2330 .writefn = pmovsset_write, 2331 .raw_writefn = raw_write }, 2332 }; 2333 2334 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2335 uint64_t value) 2336 { 2337 value &= 1; 2338 env->teecr = value; 2339 } 2340 2341 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2342 bool isread) 2343 { 2344 /* 2345 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2346 * at all, so we don't need to check whether we're v8A. 2347 */ 2348 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2349 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2350 return CP_ACCESS_TRAP_EL2; 2351 } 2352 return CP_ACCESS_OK; 2353 } 2354 2355 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2356 bool isread) 2357 { 2358 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2359 return CP_ACCESS_TRAP; 2360 } 2361 return teecr_access(env, ri, isread); 2362 } 2363 2364 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2365 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2366 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2367 .resetvalue = 0, 2368 .writefn = teecr_write, .accessfn = teecr_access }, 2369 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2370 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2371 .accessfn = teehbr_access, .resetvalue = 0 }, 2372 }; 2373 2374 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2375 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2376 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2377 .access = PL0_RW, 2378 .fgt = FGT_TPIDR_EL0, 2379 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2380 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2381 .access = PL0_RW, 2382 .fgt = FGT_TPIDR_EL0, 2383 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2384 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2385 .resetfn = arm_cp_reset_ignore }, 2386 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2387 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2388 .access = PL0_R | PL1_W, 2389 .fgt = FGT_TPIDRRO_EL0, 2390 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2391 .resetvalue = 0}, 2392 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2393 .access = PL0_R | PL1_W, 2394 .fgt = FGT_TPIDRRO_EL0, 2395 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2396 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2397 .resetfn = arm_cp_reset_ignore }, 2398 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2399 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2400 .access = PL1_RW, 2401 .fgt = FGT_TPIDR_EL1, 2402 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2403 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2404 .access = PL1_RW, 2405 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2406 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2407 .resetvalue = 0 }, 2408 }; 2409 2410 #ifndef CONFIG_USER_ONLY 2411 2412 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2413 bool isread) 2414 { 2415 /* 2416 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2417 * Writable only at the highest implemented exception level. 2418 */ 2419 int el = arm_current_el(env); 2420 uint64_t hcr; 2421 uint32_t cntkctl; 2422 2423 switch (el) { 2424 case 0: 2425 hcr = arm_hcr_el2_eff(env); 2426 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2427 cntkctl = env->cp15.cnthctl_el2; 2428 } else { 2429 cntkctl = env->cp15.c14_cntkctl; 2430 } 2431 if (!extract32(cntkctl, 0, 2)) { 2432 return CP_ACCESS_TRAP; 2433 } 2434 break; 2435 case 1: 2436 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2437 arm_is_secure_below_el3(env)) { 2438 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2439 return CP_ACCESS_TRAP_UNCATEGORIZED; 2440 } 2441 break; 2442 case 2: 2443 case 3: 2444 break; 2445 } 2446 2447 if (!isread && el < arm_highest_el(env)) { 2448 return CP_ACCESS_TRAP_UNCATEGORIZED; 2449 } 2450 2451 return CP_ACCESS_OK; 2452 } 2453 2454 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2455 bool isread) 2456 { 2457 unsigned int cur_el = arm_current_el(env); 2458 bool has_el2 = arm_is_el2_enabled(env); 2459 uint64_t hcr = arm_hcr_el2_eff(env); 2460 2461 switch (cur_el) { 2462 case 0: 2463 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2464 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2465 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2466 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2467 } 2468 2469 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2470 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2471 return CP_ACCESS_TRAP; 2472 } 2473 2474 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2475 if (hcr & HCR_E2H) { 2476 if (timeridx == GTIMER_PHYS && 2477 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2478 return CP_ACCESS_TRAP_EL2; 2479 } 2480 } else { 2481 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2482 if (has_el2 && timeridx == GTIMER_PHYS && 2483 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2484 return CP_ACCESS_TRAP_EL2; 2485 } 2486 } 2487 break; 2488 2489 case 1: 2490 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2491 if (has_el2 && timeridx == GTIMER_PHYS && 2492 (hcr & HCR_E2H 2493 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2494 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2495 return CP_ACCESS_TRAP_EL2; 2496 } 2497 break; 2498 } 2499 return CP_ACCESS_OK; 2500 } 2501 2502 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2503 bool isread) 2504 { 2505 unsigned int cur_el = arm_current_el(env); 2506 bool has_el2 = arm_is_el2_enabled(env); 2507 uint64_t hcr = arm_hcr_el2_eff(env); 2508 2509 switch (cur_el) { 2510 case 0: 2511 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2512 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2513 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2514 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2515 } 2516 2517 /* 2518 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2519 * EL0 if EL0[PV]TEN is zero. 2520 */ 2521 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2522 return CP_ACCESS_TRAP; 2523 } 2524 /* fall through */ 2525 2526 case 1: 2527 if (has_el2 && timeridx == GTIMER_PHYS) { 2528 if (hcr & HCR_E2H) { 2529 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2530 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2531 return CP_ACCESS_TRAP_EL2; 2532 } 2533 } else { 2534 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2535 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2536 return CP_ACCESS_TRAP_EL2; 2537 } 2538 } 2539 } 2540 break; 2541 } 2542 return CP_ACCESS_OK; 2543 } 2544 2545 static CPAccessResult gt_pct_access(CPUARMState *env, 2546 const ARMCPRegInfo *ri, 2547 bool isread) 2548 { 2549 return gt_counter_access(env, GTIMER_PHYS, isread); 2550 } 2551 2552 static CPAccessResult gt_vct_access(CPUARMState *env, 2553 const ARMCPRegInfo *ri, 2554 bool isread) 2555 { 2556 return gt_counter_access(env, GTIMER_VIRT, isread); 2557 } 2558 2559 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2560 bool isread) 2561 { 2562 return gt_timer_access(env, GTIMER_PHYS, isread); 2563 } 2564 2565 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2566 bool isread) 2567 { 2568 return gt_timer_access(env, GTIMER_VIRT, isread); 2569 } 2570 2571 static CPAccessResult gt_stimer_access(CPUARMState *env, 2572 const ARMCPRegInfo *ri, 2573 bool isread) 2574 { 2575 /* 2576 * The AArch64 register view of the secure physical timer is 2577 * always accessible from EL3, and configurably accessible from 2578 * Secure EL1. 2579 */ 2580 switch (arm_current_el(env)) { 2581 case 1: 2582 if (!arm_is_secure(env)) { 2583 return CP_ACCESS_TRAP; 2584 } 2585 if (!(env->cp15.scr_el3 & SCR_ST)) { 2586 return CP_ACCESS_TRAP_EL3; 2587 } 2588 return CP_ACCESS_OK; 2589 case 0: 2590 case 2: 2591 return CP_ACCESS_TRAP; 2592 case 3: 2593 return CP_ACCESS_OK; 2594 default: 2595 g_assert_not_reached(); 2596 } 2597 } 2598 2599 static uint64_t gt_get_countervalue(CPUARMState *env) 2600 { 2601 ARMCPU *cpu = env_archcpu(env); 2602 2603 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2604 } 2605 2606 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2607 { 2608 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2609 2610 if (gt->ctl & 1) { 2611 /* 2612 * Timer enabled: calculate and set current ISTATUS, irq, and 2613 * reset timer to when ISTATUS next has to change 2614 */ 2615 uint64_t offset = timeridx == GTIMER_VIRT ? 2616 cpu->env.cp15.cntvoff_el2 : 0; 2617 uint64_t count = gt_get_countervalue(&cpu->env); 2618 /* Note that this must be unsigned 64 bit arithmetic: */ 2619 int istatus = count - offset >= gt->cval; 2620 uint64_t nexttick; 2621 int irqstate; 2622 2623 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2624 2625 irqstate = (istatus && !(gt->ctl & 2)); 2626 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2627 2628 if (istatus) { 2629 /* Next transition is when count rolls back over to zero */ 2630 nexttick = UINT64_MAX; 2631 } else { 2632 /* Next transition is when we hit cval */ 2633 nexttick = gt->cval + offset; 2634 } 2635 /* 2636 * Note that the desired next expiry time might be beyond the 2637 * signed-64-bit range of a QEMUTimer -- in this case we just 2638 * set the timer for as far in the future as possible. When the 2639 * timer expires we will reset the timer for any remaining period. 2640 */ 2641 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2642 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2643 } else { 2644 timer_mod(cpu->gt_timer[timeridx], nexttick); 2645 } 2646 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2647 } else { 2648 /* Timer disabled: ISTATUS and timer output always clear */ 2649 gt->ctl &= ~4; 2650 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2651 timer_del(cpu->gt_timer[timeridx]); 2652 trace_arm_gt_recalc_disabled(timeridx); 2653 } 2654 } 2655 2656 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2657 int timeridx) 2658 { 2659 ARMCPU *cpu = env_archcpu(env); 2660 2661 timer_del(cpu->gt_timer[timeridx]); 2662 } 2663 2664 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2665 { 2666 return gt_get_countervalue(env); 2667 } 2668 2669 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2670 { 2671 uint64_t hcr; 2672 2673 switch (arm_current_el(env)) { 2674 case 2: 2675 hcr = arm_hcr_el2_eff(env); 2676 if (hcr & HCR_E2H) { 2677 return 0; 2678 } 2679 break; 2680 case 0: 2681 hcr = arm_hcr_el2_eff(env); 2682 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2683 return 0; 2684 } 2685 break; 2686 } 2687 2688 return env->cp15.cntvoff_el2; 2689 } 2690 2691 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2692 { 2693 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2694 } 2695 2696 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2697 int timeridx, 2698 uint64_t value) 2699 { 2700 trace_arm_gt_cval_write(timeridx, value); 2701 env->cp15.c14_timer[timeridx].cval = value; 2702 gt_recalc_timer(env_archcpu(env), timeridx); 2703 } 2704 2705 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2706 int timeridx) 2707 { 2708 uint64_t offset = 0; 2709 2710 switch (timeridx) { 2711 case GTIMER_VIRT: 2712 case GTIMER_HYPVIRT: 2713 offset = gt_virt_cnt_offset(env); 2714 break; 2715 } 2716 2717 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2718 (gt_get_countervalue(env) - offset)); 2719 } 2720 2721 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2722 int timeridx, 2723 uint64_t value) 2724 { 2725 uint64_t offset = 0; 2726 2727 switch (timeridx) { 2728 case GTIMER_VIRT: 2729 case GTIMER_HYPVIRT: 2730 offset = gt_virt_cnt_offset(env); 2731 break; 2732 } 2733 2734 trace_arm_gt_tval_write(timeridx, value); 2735 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2736 sextract64(value, 0, 32); 2737 gt_recalc_timer(env_archcpu(env), timeridx); 2738 } 2739 2740 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2741 int timeridx, 2742 uint64_t value) 2743 { 2744 ARMCPU *cpu = env_archcpu(env); 2745 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2746 2747 trace_arm_gt_ctl_write(timeridx, value); 2748 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2749 if ((oldval ^ value) & 1) { 2750 /* Enable toggled */ 2751 gt_recalc_timer(cpu, timeridx); 2752 } else if ((oldval ^ value) & 2) { 2753 /* 2754 * IMASK toggled: don't need to recalculate, 2755 * just set the interrupt line based on ISTATUS 2756 */ 2757 int irqstate = (oldval & 4) && !(value & 2); 2758 2759 trace_arm_gt_imask_toggle(timeridx, irqstate); 2760 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2761 } 2762 } 2763 2764 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2765 { 2766 gt_timer_reset(env, ri, GTIMER_PHYS); 2767 } 2768 2769 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2770 uint64_t value) 2771 { 2772 gt_cval_write(env, ri, GTIMER_PHYS, value); 2773 } 2774 2775 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2776 { 2777 return gt_tval_read(env, ri, GTIMER_PHYS); 2778 } 2779 2780 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2781 uint64_t value) 2782 { 2783 gt_tval_write(env, ri, GTIMER_PHYS, value); 2784 } 2785 2786 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2787 uint64_t value) 2788 { 2789 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2790 } 2791 2792 static int gt_phys_redir_timeridx(CPUARMState *env) 2793 { 2794 switch (arm_mmu_idx(env)) { 2795 case ARMMMUIdx_E20_0: 2796 case ARMMMUIdx_E20_2: 2797 case ARMMMUIdx_E20_2_PAN: 2798 return GTIMER_HYP; 2799 default: 2800 return GTIMER_PHYS; 2801 } 2802 } 2803 2804 static int gt_virt_redir_timeridx(CPUARMState *env) 2805 { 2806 switch (arm_mmu_idx(env)) { 2807 case ARMMMUIdx_E20_0: 2808 case ARMMMUIdx_E20_2: 2809 case ARMMMUIdx_E20_2_PAN: 2810 return GTIMER_HYPVIRT; 2811 default: 2812 return GTIMER_VIRT; 2813 } 2814 } 2815 2816 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2817 const ARMCPRegInfo *ri) 2818 { 2819 int timeridx = gt_phys_redir_timeridx(env); 2820 return env->cp15.c14_timer[timeridx].cval; 2821 } 2822 2823 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2824 uint64_t value) 2825 { 2826 int timeridx = gt_phys_redir_timeridx(env); 2827 gt_cval_write(env, ri, timeridx, value); 2828 } 2829 2830 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2831 const ARMCPRegInfo *ri) 2832 { 2833 int timeridx = gt_phys_redir_timeridx(env); 2834 return gt_tval_read(env, ri, timeridx); 2835 } 2836 2837 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2838 uint64_t value) 2839 { 2840 int timeridx = gt_phys_redir_timeridx(env); 2841 gt_tval_write(env, ri, timeridx, value); 2842 } 2843 2844 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2845 const ARMCPRegInfo *ri) 2846 { 2847 int timeridx = gt_phys_redir_timeridx(env); 2848 return env->cp15.c14_timer[timeridx].ctl; 2849 } 2850 2851 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2852 uint64_t value) 2853 { 2854 int timeridx = gt_phys_redir_timeridx(env); 2855 gt_ctl_write(env, ri, timeridx, value); 2856 } 2857 2858 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2859 { 2860 gt_timer_reset(env, ri, GTIMER_VIRT); 2861 } 2862 2863 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2864 uint64_t value) 2865 { 2866 gt_cval_write(env, ri, GTIMER_VIRT, value); 2867 } 2868 2869 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2870 { 2871 return gt_tval_read(env, ri, GTIMER_VIRT); 2872 } 2873 2874 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2875 uint64_t value) 2876 { 2877 gt_tval_write(env, ri, GTIMER_VIRT, value); 2878 } 2879 2880 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2881 uint64_t value) 2882 { 2883 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2884 } 2885 2886 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2887 uint64_t value) 2888 { 2889 ARMCPU *cpu = env_archcpu(env); 2890 2891 trace_arm_gt_cntvoff_write(value); 2892 raw_write(env, ri, value); 2893 gt_recalc_timer(cpu, GTIMER_VIRT); 2894 } 2895 2896 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2897 const ARMCPRegInfo *ri) 2898 { 2899 int timeridx = gt_virt_redir_timeridx(env); 2900 return env->cp15.c14_timer[timeridx].cval; 2901 } 2902 2903 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2904 uint64_t value) 2905 { 2906 int timeridx = gt_virt_redir_timeridx(env); 2907 gt_cval_write(env, ri, timeridx, value); 2908 } 2909 2910 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2911 const ARMCPRegInfo *ri) 2912 { 2913 int timeridx = gt_virt_redir_timeridx(env); 2914 return gt_tval_read(env, ri, timeridx); 2915 } 2916 2917 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2918 uint64_t value) 2919 { 2920 int timeridx = gt_virt_redir_timeridx(env); 2921 gt_tval_write(env, ri, timeridx, value); 2922 } 2923 2924 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2925 const ARMCPRegInfo *ri) 2926 { 2927 int timeridx = gt_virt_redir_timeridx(env); 2928 return env->cp15.c14_timer[timeridx].ctl; 2929 } 2930 2931 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2932 uint64_t value) 2933 { 2934 int timeridx = gt_virt_redir_timeridx(env); 2935 gt_ctl_write(env, ri, timeridx, value); 2936 } 2937 2938 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2939 { 2940 gt_timer_reset(env, ri, GTIMER_HYP); 2941 } 2942 2943 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2944 uint64_t value) 2945 { 2946 gt_cval_write(env, ri, GTIMER_HYP, value); 2947 } 2948 2949 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2950 { 2951 return gt_tval_read(env, ri, GTIMER_HYP); 2952 } 2953 2954 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2955 uint64_t value) 2956 { 2957 gt_tval_write(env, ri, GTIMER_HYP, value); 2958 } 2959 2960 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2961 uint64_t value) 2962 { 2963 gt_ctl_write(env, ri, GTIMER_HYP, value); 2964 } 2965 2966 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2967 { 2968 gt_timer_reset(env, ri, GTIMER_SEC); 2969 } 2970 2971 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2972 uint64_t value) 2973 { 2974 gt_cval_write(env, ri, GTIMER_SEC, value); 2975 } 2976 2977 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2978 { 2979 return gt_tval_read(env, ri, GTIMER_SEC); 2980 } 2981 2982 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2983 uint64_t value) 2984 { 2985 gt_tval_write(env, ri, GTIMER_SEC, value); 2986 } 2987 2988 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2989 uint64_t value) 2990 { 2991 gt_ctl_write(env, ri, GTIMER_SEC, value); 2992 } 2993 2994 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2995 { 2996 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2997 } 2998 2999 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3000 uint64_t value) 3001 { 3002 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3003 } 3004 3005 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3006 { 3007 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3008 } 3009 3010 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3011 uint64_t value) 3012 { 3013 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3014 } 3015 3016 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3017 uint64_t value) 3018 { 3019 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3020 } 3021 3022 void arm_gt_ptimer_cb(void *opaque) 3023 { 3024 ARMCPU *cpu = opaque; 3025 3026 gt_recalc_timer(cpu, GTIMER_PHYS); 3027 } 3028 3029 void arm_gt_vtimer_cb(void *opaque) 3030 { 3031 ARMCPU *cpu = opaque; 3032 3033 gt_recalc_timer(cpu, GTIMER_VIRT); 3034 } 3035 3036 void arm_gt_htimer_cb(void *opaque) 3037 { 3038 ARMCPU *cpu = opaque; 3039 3040 gt_recalc_timer(cpu, GTIMER_HYP); 3041 } 3042 3043 void arm_gt_stimer_cb(void *opaque) 3044 { 3045 ARMCPU *cpu = opaque; 3046 3047 gt_recalc_timer(cpu, GTIMER_SEC); 3048 } 3049 3050 void arm_gt_hvtimer_cb(void *opaque) 3051 { 3052 ARMCPU *cpu = opaque; 3053 3054 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3055 } 3056 3057 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3058 { 3059 ARMCPU *cpu = env_archcpu(env); 3060 3061 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3062 } 3063 3064 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3065 /* 3066 * Note that CNTFRQ is purely reads-as-written for the benefit 3067 * of software; writing it doesn't actually change the timer frequency. 3068 * Our reset value matches the fixed frequency we implement the timer at. 3069 */ 3070 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3071 .type = ARM_CP_ALIAS, 3072 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3073 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3074 }, 3075 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3076 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3077 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3078 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3079 .resetfn = arm_gt_cntfrq_reset, 3080 }, 3081 /* overall control: mostly access permissions */ 3082 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3083 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3084 .access = PL1_RW, 3085 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3086 .resetvalue = 0, 3087 }, 3088 /* per-timer control */ 3089 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3090 .secure = ARM_CP_SECSTATE_NS, 3091 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3092 .accessfn = gt_ptimer_access, 3093 .fieldoffset = offsetoflow32(CPUARMState, 3094 cp15.c14_timer[GTIMER_PHYS].ctl), 3095 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3096 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3097 }, 3098 { .name = "CNTP_CTL_S", 3099 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3100 .secure = ARM_CP_SECSTATE_S, 3101 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3102 .accessfn = gt_ptimer_access, 3103 .fieldoffset = offsetoflow32(CPUARMState, 3104 cp15.c14_timer[GTIMER_SEC].ctl), 3105 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3106 }, 3107 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3108 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3109 .type = ARM_CP_IO, .access = PL0_RW, 3110 .accessfn = gt_ptimer_access, 3111 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3112 .resetvalue = 0, 3113 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3114 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3115 }, 3116 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3117 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3118 .accessfn = gt_vtimer_access, 3119 .fieldoffset = offsetoflow32(CPUARMState, 3120 cp15.c14_timer[GTIMER_VIRT].ctl), 3121 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3122 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3123 }, 3124 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3126 .type = ARM_CP_IO, .access = PL0_RW, 3127 .accessfn = gt_vtimer_access, 3128 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3129 .resetvalue = 0, 3130 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3131 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3132 }, 3133 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3134 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3135 .secure = ARM_CP_SECSTATE_NS, 3136 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3137 .accessfn = gt_ptimer_access, 3138 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3139 }, 3140 { .name = "CNTP_TVAL_S", 3141 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3142 .secure = ARM_CP_SECSTATE_S, 3143 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3144 .accessfn = gt_ptimer_access, 3145 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3146 }, 3147 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3148 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3149 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3150 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3151 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3152 }, 3153 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3154 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3155 .accessfn = gt_vtimer_access, 3156 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3157 }, 3158 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3159 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3160 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3161 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3162 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3163 }, 3164 /* The counter itself */ 3165 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3166 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3167 .accessfn = gt_pct_access, 3168 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3169 }, 3170 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3171 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3172 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3173 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3174 }, 3175 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3176 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3177 .accessfn = gt_vct_access, 3178 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3179 }, 3180 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3181 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3182 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3183 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3184 }, 3185 /* Comparison value, indicating when the timer goes off */ 3186 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3187 .secure = ARM_CP_SECSTATE_NS, 3188 .access = PL0_RW, 3189 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3190 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3191 .accessfn = gt_ptimer_access, 3192 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3193 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3194 }, 3195 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3196 .secure = ARM_CP_SECSTATE_S, 3197 .access = PL0_RW, 3198 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3199 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3200 .accessfn = gt_ptimer_access, 3201 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3202 }, 3203 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3204 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3205 .access = PL0_RW, 3206 .type = ARM_CP_IO, 3207 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3208 .resetvalue = 0, .accessfn = gt_ptimer_access, 3209 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3210 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3211 }, 3212 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3213 .access = PL0_RW, 3214 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3215 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3216 .accessfn = gt_vtimer_access, 3217 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3218 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3219 }, 3220 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3221 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3222 .access = PL0_RW, 3223 .type = ARM_CP_IO, 3224 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3225 .resetvalue = 0, .accessfn = gt_vtimer_access, 3226 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3227 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3228 }, 3229 /* 3230 * Secure timer -- this is actually restricted to only EL3 3231 * and configurably Secure-EL1 via the accessfn. 3232 */ 3233 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3234 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3235 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3236 .accessfn = gt_stimer_access, 3237 .readfn = gt_sec_tval_read, 3238 .writefn = gt_sec_tval_write, 3239 .resetfn = gt_sec_timer_reset, 3240 }, 3241 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3242 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3243 .type = ARM_CP_IO, .access = PL1_RW, 3244 .accessfn = gt_stimer_access, 3245 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3246 .resetvalue = 0, 3247 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3248 }, 3249 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3250 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3251 .type = ARM_CP_IO, .access = PL1_RW, 3252 .accessfn = gt_stimer_access, 3253 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3254 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3255 }, 3256 }; 3257 3258 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3259 bool isread) 3260 { 3261 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3262 return CP_ACCESS_TRAP; 3263 } 3264 return CP_ACCESS_OK; 3265 } 3266 3267 #else 3268 3269 /* 3270 * In user-mode most of the generic timer registers are inaccessible 3271 * however modern kernels (4.12+) allow access to cntvct_el0 3272 */ 3273 3274 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3275 { 3276 ARMCPU *cpu = env_archcpu(env); 3277 3278 /* 3279 * Currently we have no support for QEMUTimer in linux-user so we 3280 * can't call gt_get_countervalue(env), instead we directly 3281 * call the lower level functions. 3282 */ 3283 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3284 } 3285 3286 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3287 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3288 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3289 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3290 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3291 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3292 }, 3293 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3294 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3295 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3296 .readfn = gt_virt_cnt_read, 3297 }, 3298 }; 3299 3300 #endif 3301 3302 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3303 { 3304 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3305 raw_write(env, ri, value); 3306 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3307 raw_write(env, ri, value & 0xfffff6ff); 3308 } else { 3309 raw_write(env, ri, value & 0xfffff1ff); 3310 } 3311 } 3312 3313 #ifndef CONFIG_USER_ONLY 3314 /* get_phys_addr() isn't present for user-mode-only targets */ 3315 3316 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3317 bool isread) 3318 { 3319 if (ri->opc2 & 4) { 3320 /* 3321 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3322 * Secure EL1 (which can only happen if EL3 is AArch64). 3323 * They are simply UNDEF if executed from NS EL1. 3324 * They function normally from EL2 or EL3. 3325 */ 3326 if (arm_current_el(env) == 1) { 3327 if (arm_is_secure_below_el3(env)) { 3328 if (env->cp15.scr_el3 & SCR_EEL2) { 3329 return CP_ACCESS_TRAP_EL2; 3330 } 3331 return CP_ACCESS_TRAP_EL3; 3332 } 3333 return CP_ACCESS_TRAP_UNCATEGORIZED; 3334 } 3335 } 3336 return CP_ACCESS_OK; 3337 } 3338 3339 #ifdef CONFIG_TCG 3340 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3341 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3342 bool is_secure) 3343 { 3344 bool ret; 3345 uint64_t par64; 3346 bool format64 = false; 3347 ARMMMUFaultInfo fi = {}; 3348 GetPhysAddrResult res = {}; 3349 3350 ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx, 3351 is_secure, &res, &fi); 3352 3353 /* 3354 * ATS operations only do S1 or S1+S2 translations, so we never 3355 * have to deal with the ARMCacheAttrs format for S2 only. 3356 */ 3357 assert(!res.cacheattrs.is_s2_format); 3358 3359 if (ret) { 3360 /* 3361 * Some kinds of translation fault must cause exceptions rather 3362 * than being reported in the PAR. 3363 */ 3364 int current_el = arm_current_el(env); 3365 int target_el; 3366 uint32_t syn, fsr, fsc; 3367 bool take_exc = false; 3368 3369 if (fi.s1ptw && current_el == 1 3370 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3371 /* 3372 * Synchronous stage 2 fault on an access made as part of the 3373 * translation table walk for AT S1E0* or AT S1E1* insn 3374 * executed from NS EL1. If this is a synchronous external abort 3375 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3376 * to EL3. Otherwise the fault is taken as an exception to EL2, 3377 * and HPFAR_EL2 holds the faulting IPA. 3378 */ 3379 if (fi.type == ARMFault_SyncExternalOnWalk && 3380 (env->cp15.scr_el3 & SCR_EA)) { 3381 target_el = 3; 3382 } else { 3383 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3384 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3385 env->cp15.hpfar_el2 |= HPFAR_NS; 3386 } 3387 target_el = 2; 3388 } 3389 take_exc = true; 3390 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3391 /* 3392 * Synchronous external aborts during a translation table walk 3393 * are taken as Data Abort exceptions. 3394 */ 3395 if (fi.stage2) { 3396 if (current_el == 3) { 3397 target_el = 3; 3398 } else { 3399 target_el = 2; 3400 } 3401 } else { 3402 target_el = exception_target_el(env); 3403 } 3404 take_exc = true; 3405 } 3406 3407 if (take_exc) { 3408 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3409 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3410 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3411 fsr = arm_fi_to_lfsc(&fi); 3412 fsc = extract32(fsr, 0, 6); 3413 } else { 3414 fsr = arm_fi_to_sfsc(&fi); 3415 fsc = 0x3f; 3416 } 3417 /* 3418 * Report exception with ESR indicating a fault due to a 3419 * translation table walk for a cache maintenance instruction. 3420 */ 3421 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3422 fi.ea, 1, fi.s1ptw, 1, fsc); 3423 env->exception.vaddress = value; 3424 env->exception.fsr = fsr; 3425 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3426 } 3427 } 3428 3429 if (is_a64(env)) { 3430 format64 = true; 3431 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3432 /* 3433 * ATS1Cxx: 3434 * * TTBCR.EAE determines whether the result is returned using the 3435 * 32-bit or the 64-bit PAR format 3436 * * Instructions executed in Hyp mode always use the 64bit format 3437 * 3438 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3439 * * The Non-secure TTBCR.EAE bit is set to 1 3440 * * The implementation includes EL2, and the value of HCR.VM is 1 3441 * 3442 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3443 * 3444 * ATS1Hx always uses the 64bit format. 3445 */ 3446 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3447 3448 if (arm_feature(env, ARM_FEATURE_EL2)) { 3449 if (mmu_idx == ARMMMUIdx_E10_0 || 3450 mmu_idx == ARMMMUIdx_E10_1 || 3451 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3452 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3453 } else { 3454 format64 |= arm_current_el(env) == 2; 3455 } 3456 } 3457 } 3458 3459 if (format64) { 3460 /* Create a 64-bit PAR */ 3461 par64 = (1 << 11); /* LPAE bit always set */ 3462 if (!ret) { 3463 par64 |= res.f.phys_addr & ~0xfffULL; 3464 if (!res.f.attrs.secure) { 3465 par64 |= (1 << 9); /* NS */ 3466 } 3467 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3468 par64 |= res.cacheattrs.shareability << 7; /* SH */ 3469 } else { 3470 uint32_t fsr = arm_fi_to_lfsc(&fi); 3471 3472 par64 |= 1; /* F */ 3473 par64 |= (fsr & 0x3f) << 1; /* FS */ 3474 if (fi.stage2) { 3475 par64 |= (1 << 9); /* S */ 3476 } 3477 if (fi.s1ptw) { 3478 par64 |= (1 << 8); /* PTW */ 3479 } 3480 } 3481 } else { 3482 /* 3483 * fsr is a DFSR/IFSR value for the short descriptor 3484 * translation table format (with WnR always clear). 3485 * Convert it to a 32-bit PAR. 3486 */ 3487 if (!ret) { 3488 /* We do not set any attribute bits in the PAR */ 3489 if (res.f.lg_page_size == 24 3490 && arm_feature(env, ARM_FEATURE_V7)) { 3491 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3492 } else { 3493 par64 = res.f.phys_addr & 0xfffff000; 3494 } 3495 if (!res.f.attrs.secure) { 3496 par64 |= (1 << 9); /* NS */ 3497 } 3498 } else { 3499 uint32_t fsr = arm_fi_to_sfsc(&fi); 3500 3501 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3502 ((fsr & 0xf) << 1) | 1; 3503 } 3504 } 3505 return par64; 3506 } 3507 #endif /* CONFIG_TCG */ 3508 3509 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3510 { 3511 #ifdef CONFIG_TCG 3512 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3513 uint64_t par64; 3514 ARMMMUIdx mmu_idx; 3515 int el = arm_current_el(env); 3516 bool secure = arm_is_secure_below_el3(env); 3517 3518 switch (ri->opc2 & 6) { 3519 case 0: 3520 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3521 switch (el) { 3522 case 3: 3523 mmu_idx = ARMMMUIdx_E3; 3524 secure = true; 3525 break; 3526 case 2: 3527 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3528 /* fall through */ 3529 case 1: 3530 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3531 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3532 } else { 3533 mmu_idx = ARMMMUIdx_Stage1_E1; 3534 } 3535 break; 3536 default: 3537 g_assert_not_reached(); 3538 } 3539 break; 3540 case 2: 3541 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3542 switch (el) { 3543 case 3: 3544 mmu_idx = ARMMMUIdx_E10_0; 3545 secure = true; 3546 break; 3547 case 2: 3548 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3549 mmu_idx = ARMMMUIdx_Stage1_E0; 3550 break; 3551 case 1: 3552 mmu_idx = ARMMMUIdx_Stage1_E0; 3553 break; 3554 default: 3555 g_assert_not_reached(); 3556 } 3557 break; 3558 case 4: 3559 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3560 mmu_idx = ARMMMUIdx_E10_1; 3561 secure = false; 3562 break; 3563 case 6: 3564 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3565 mmu_idx = ARMMMUIdx_E10_0; 3566 secure = false; 3567 break; 3568 default: 3569 g_assert_not_reached(); 3570 } 3571 3572 par64 = do_ats_write(env, value, access_type, mmu_idx, secure); 3573 3574 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3575 #else 3576 /* Handled by hardware accelerator. */ 3577 g_assert_not_reached(); 3578 #endif /* CONFIG_TCG */ 3579 } 3580 3581 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3582 uint64_t value) 3583 { 3584 #ifdef CONFIG_TCG 3585 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3586 uint64_t par64; 3587 3588 /* There is no SecureEL2 for AArch32. */ 3589 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false); 3590 3591 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3592 #else 3593 /* Handled by hardware accelerator. */ 3594 g_assert_not_reached(); 3595 #endif /* CONFIG_TCG */ 3596 } 3597 3598 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3599 bool isread) 3600 { 3601 if (arm_current_el(env) == 3 && 3602 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3603 return CP_ACCESS_TRAP; 3604 } 3605 return CP_ACCESS_OK; 3606 } 3607 3608 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3609 uint64_t value) 3610 { 3611 #ifdef CONFIG_TCG 3612 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3613 ARMMMUIdx mmu_idx; 3614 int secure = arm_is_secure_below_el3(env); 3615 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3616 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3617 3618 switch (ri->opc2 & 6) { 3619 case 0: 3620 switch (ri->opc1) { 3621 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3622 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3623 mmu_idx = regime_e20 ? 3624 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3625 } else { 3626 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3627 } 3628 break; 3629 case 4: /* AT S1E2R, AT S1E2W */ 3630 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3631 break; 3632 case 6: /* AT S1E3R, AT S1E3W */ 3633 mmu_idx = ARMMMUIdx_E3; 3634 secure = true; 3635 break; 3636 default: 3637 g_assert_not_reached(); 3638 } 3639 break; 3640 case 2: /* AT S1E0R, AT S1E0W */ 3641 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3642 break; 3643 case 4: /* AT S12E1R, AT S12E1W */ 3644 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3645 break; 3646 case 6: /* AT S12E0R, AT S12E0W */ 3647 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3648 break; 3649 default: 3650 g_assert_not_reached(); 3651 } 3652 3653 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3654 mmu_idx, secure); 3655 #else 3656 /* Handled by hardware accelerator. */ 3657 g_assert_not_reached(); 3658 #endif /* CONFIG_TCG */ 3659 } 3660 #endif 3661 3662 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3663 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3664 .access = PL1_RW, .resetvalue = 0, 3665 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3666 offsetoflow32(CPUARMState, cp15.par_ns) }, 3667 .writefn = par_write }, 3668 #ifndef CONFIG_USER_ONLY 3669 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3670 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3671 .access = PL1_W, .accessfn = ats_access, 3672 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3673 #endif 3674 }; 3675 3676 /* Return basic MPU access permission bits. */ 3677 static uint32_t simple_mpu_ap_bits(uint32_t val) 3678 { 3679 uint32_t ret; 3680 uint32_t mask; 3681 int i; 3682 ret = 0; 3683 mask = 3; 3684 for (i = 0; i < 16; i += 2) { 3685 ret |= (val >> i) & mask; 3686 mask <<= 2; 3687 } 3688 return ret; 3689 } 3690 3691 /* Pad basic MPU access permission bits to extended format. */ 3692 static uint32_t extended_mpu_ap_bits(uint32_t val) 3693 { 3694 uint32_t ret; 3695 uint32_t mask; 3696 int i; 3697 ret = 0; 3698 mask = 3; 3699 for (i = 0; i < 16; i += 2) { 3700 ret |= (val & mask) << i; 3701 mask <<= 2; 3702 } 3703 return ret; 3704 } 3705 3706 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3707 uint64_t value) 3708 { 3709 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3710 } 3711 3712 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3713 { 3714 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3715 } 3716 3717 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3718 uint64_t value) 3719 { 3720 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3721 } 3722 3723 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3724 { 3725 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3726 } 3727 3728 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3729 { 3730 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3731 3732 if (!u32p) { 3733 return 0; 3734 } 3735 3736 u32p += env->pmsav7.rnr[M_REG_NS]; 3737 return *u32p; 3738 } 3739 3740 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3741 uint64_t value) 3742 { 3743 ARMCPU *cpu = env_archcpu(env); 3744 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3745 3746 if (!u32p) { 3747 return; 3748 } 3749 3750 u32p += env->pmsav7.rnr[M_REG_NS]; 3751 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3752 *u32p = value; 3753 } 3754 3755 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3756 uint64_t value) 3757 { 3758 ARMCPU *cpu = env_archcpu(env); 3759 uint32_t nrgs = cpu->pmsav7_dregion; 3760 3761 if (value >= nrgs) { 3762 qemu_log_mask(LOG_GUEST_ERROR, 3763 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3764 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3765 return; 3766 } 3767 3768 raw_write(env, ri, value); 3769 } 3770 3771 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3772 uint64_t value) 3773 { 3774 ARMCPU *cpu = env_archcpu(env); 3775 3776 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3777 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3778 } 3779 3780 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3781 { 3782 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3783 } 3784 3785 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3786 uint64_t value) 3787 { 3788 ARMCPU *cpu = env_archcpu(env); 3789 3790 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3791 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3792 } 3793 3794 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3795 { 3796 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3797 } 3798 3799 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3800 uint64_t value) 3801 { 3802 ARMCPU *cpu = env_archcpu(env); 3803 3804 /* 3805 * Ignore writes that would select not implemented region. 3806 * This is architecturally UNPREDICTABLE. 3807 */ 3808 if (value >= cpu->pmsav7_dregion) { 3809 return; 3810 } 3811 3812 env->pmsav7.rnr[M_REG_NS] = value; 3813 } 3814 3815 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3816 uint64_t value) 3817 { 3818 ARMCPU *cpu = env_archcpu(env); 3819 3820 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3821 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3822 } 3823 3824 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3825 { 3826 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3827 } 3828 3829 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3830 uint64_t value) 3831 { 3832 ARMCPU *cpu = env_archcpu(env); 3833 3834 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3835 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3836 } 3837 3838 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3839 { 3840 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3841 } 3842 3843 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3844 uint64_t value) 3845 { 3846 uint32_t n; 3847 uint32_t bit; 3848 ARMCPU *cpu = env_archcpu(env); 3849 3850 /* Ignore writes to unimplemented regions */ 3851 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3852 value &= MAKE_64BIT_MASK(0, rmax); 3853 3854 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3855 3856 /* Register alias is only valid for first 32 indexes */ 3857 for (n = 0; n < rmax; ++n) { 3858 bit = extract32(value, n, 1); 3859 env->pmsav8.hprlar[n] = deposit32( 3860 env->pmsav8.hprlar[n], 0, 1, bit); 3861 } 3862 } 3863 3864 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3865 { 3866 uint32_t n; 3867 uint32_t result = 0x0; 3868 ARMCPU *cpu = env_archcpu(env); 3869 3870 /* Register alias is only valid for first 32 indexes */ 3871 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3872 if (env->pmsav8.hprlar[n] & 0x1) { 3873 result |= (0x1 << n); 3874 } 3875 } 3876 return result; 3877 } 3878 3879 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3880 uint64_t value) 3881 { 3882 ARMCPU *cpu = env_archcpu(env); 3883 3884 /* 3885 * Ignore writes that would select not implemented region. 3886 * This is architecturally UNPREDICTABLE. 3887 */ 3888 if (value >= cpu->pmsav8r_hdregion) { 3889 return; 3890 } 3891 3892 env->pmsav8.hprselr = value; 3893 } 3894 3895 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 3896 uint64_t value) 3897 { 3898 ARMCPU *cpu = env_archcpu(env); 3899 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3900 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3901 3902 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3903 3904 if (ri->opc1 & 4) { 3905 if (index >= cpu->pmsav8r_hdregion) { 3906 return; 3907 } 3908 if (ri->opc2 & 0x1) { 3909 env->pmsav8.hprlar[index] = value; 3910 } else { 3911 env->pmsav8.hprbar[index] = value; 3912 } 3913 } else { 3914 if (index >= cpu->pmsav7_dregion) { 3915 return; 3916 } 3917 if (ri->opc2 & 0x1) { 3918 env->pmsav8.rlar[M_REG_NS][index] = value; 3919 } else { 3920 env->pmsav8.rbar[M_REG_NS][index] = value; 3921 } 3922 } 3923 } 3924 3925 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 3926 { 3927 ARMCPU *cpu = env_archcpu(env); 3928 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3929 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3930 3931 if (ri->opc1 & 4) { 3932 if (index >= cpu->pmsav8r_hdregion) { 3933 return 0x0; 3934 } 3935 if (ri->opc2 & 0x1) { 3936 return env->pmsav8.hprlar[index]; 3937 } else { 3938 return env->pmsav8.hprbar[index]; 3939 } 3940 } else { 3941 if (index >= cpu->pmsav7_dregion) { 3942 return 0x0; 3943 } 3944 if (ri->opc2 & 0x1) { 3945 return env->pmsav8.rlar[M_REG_NS][index]; 3946 } else { 3947 return env->pmsav8.rbar[M_REG_NS][index]; 3948 } 3949 } 3950 } 3951 3952 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 3953 { .name = "PRBAR", 3954 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 3955 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3956 .accessfn = access_tvm_trvm, 3957 .readfn = prbar_read, .writefn = prbar_write }, 3958 { .name = "PRLAR", 3959 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 3960 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3961 .accessfn = access_tvm_trvm, 3962 .readfn = prlar_read, .writefn = prlar_write }, 3963 { .name = "PRSELR", .resetvalue = 0, 3964 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 3965 .access = PL1_RW, .accessfn = access_tvm_trvm, 3966 .writefn = prselr_write, 3967 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 3968 { .name = "HPRBAR", .resetvalue = 0, 3969 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 3970 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3971 .readfn = hprbar_read, .writefn = hprbar_write }, 3972 { .name = "HPRLAR", 3973 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 3974 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3975 .readfn = hprlar_read, .writefn = hprlar_write }, 3976 { .name = "HPRSELR", .resetvalue = 0, 3977 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 3978 .access = PL2_RW, 3979 .writefn = hprselr_write, 3980 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 3981 { .name = "HPRENR", 3982 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 3983 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3984 .readfn = hprenr_read, .writefn = hprenr_write }, 3985 }; 3986 3987 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3988 /* 3989 * Reset for all these registers is handled in arm_cpu_reset(), 3990 * because the PMSAv7 is also used by M-profile CPUs, which do 3991 * not register cpregs but still need the state to be reset. 3992 */ 3993 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3994 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3995 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3996 .readfn = pmsav7_read, .writefn = pmsav7_write, 3997 .resetfn = arm_cp_reset_ignore }, 3998 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3999 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4000 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4001 .readfn = pmsav7_read, .writefn = pmsav7_write, 4002 .resetfn = arm_cp_reset_ignore }, 4003 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4004 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4005 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4006 .readfn = pmsav7_read, .writefn = pmsav7_write, 4007 .resetfn = arm_cp_reset_ignore }, 4008 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4009 .access = PL1_RW, 4010 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4011 .writefn = pmsav7_rgnr_write, 4012 .resetfn = arm_cp_reset_ignore }, 4013 }; 4014 4015 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4016 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4017 .access = PL1_RW, .type = ARM_CP_ALIAS, 4018 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4019 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4020 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4021 .access = PL1_RW, .type = ARM_CP_ALIAS, 4022 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4023 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4024 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4025 .access = PL1_RW, 4026 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4027 .resetvalue = 0, }, 4028 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4029 .access = PL1_RW, 4030 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4031 .resetvalue = 0, }, 4032 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4033 .access = PL1_RW, 4034 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4035 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4036 .access = PL1_RW, 4037 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4038 /* Protection region base and size registers */ 4039 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4040 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4041 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4042 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4043 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4044 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4045 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4046 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4047 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4048 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4049 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4050 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4051 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4052 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4053 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4054 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4055 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4056 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4057 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4058 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4059 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4060 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4061 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4062 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4063 }; 4064 4065 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4066 uint64_t value) 4067 { 4068 ARMCPU *cpu = env_archcpu(env); 4069 4070 if (!arm_feature(env, ARM_FEATURE_V8)) { 4071 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4072 /* 4073 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4074 * using Long-descriptor translation table format 4075 */ 4076 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4077 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4078 /* 4079 * In an implementation that includes the Security Extensions 4080 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4081 * Short-descriptor translation table format. 4082 */ 4083 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4084 } else { 4085 value &= TTBCR_N; 4086 } 4087 } 4088 4089 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4090 /* 4091 * With LPAE the TTBCR could result in a change of ASID 4092 * via the TTBCR.A1 bit, so do a TLB flush. 4093 */ 4094 tlb_flush(CPU(cpu)); 4095 } 4096 raw_write(env, ri, value); 4097 } 4098 4099 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4100 uint64_t value) 4101 { 4102 ARMCPU *cpu = env_archcpu(env); 4103 4104 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4105 tlb_flush(CPU(cpu)); 4106 raw_write(env, ri, value); 4107 } 4108 4109 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4110 uint64_t value) 4111 { 4112 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4113 if (cpreg_field_is_64bit(ri) && 4114 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4115 ARMCPU *cpu = env_archcpu(env); 4116 tlb_flush(CPU(cpu)); 4117 } 4118 raw_write(env, ri, value); 4119 } 4120 4121 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4122 uint64_t value) 4123 { 4124 /* 4125 * If we are running with E2&0 regime, then an ASID is active. 4126 * Flush if that might be changing. Note we're not checking 4127 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4128 * holds the active ASID, only checking the field that might. 4129 */ 4130 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4131 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4132 uint16_t mask = ARMMMUIdxBit_E20_2 | 4133 ARMMMUIdxBit_E20_2_PAN | 4134 ARMMMUIdxBit_E20_0; 4135 tlb_flush_by_mmuidx(env_cpu(env), mask); 4136 } 4137 raw_write(env, ri, value); 4138 } 4139 4140 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4141 uint64_t value) 4142 { 4143 ARMCPU *cpu = env_archcpu(env); 4144 CPUState *cs = CPU(cpu); 4145 4146 /* 4147 * A change in VMID to the stage2 page table (Stage2) invalidates 4148 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4149 */ 4150 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4151 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4152 } 4153 raw_write(env, ri, value); 4154 } 4155 4156 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4157 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4158 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4159 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4160 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4161 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4162 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4163 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4164 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4165 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4166 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4167 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4168 offsetof(CPUARMState, cp15.dfar_ns) } }, 4169 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4170 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4171 .access = PL1_RW, .accessfn = access_tvm_trvm, 4172 .fgt = FGT_FAR_EL1, 4173 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4174 .resetvalue = 0, }, 4175 }; 4176 4177 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4178 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4179 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4180 .access = PL1_RW, .accessfn = access_tvm_trvm, 4181 .fgt = FGT_ESR_EL1, 4182 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4183 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4184 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4185 .access = PL1_RW, .accessfn = access_tvm_trvm, 4186 .fgt = FGT_TTBR0_EL1, 4187 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4188 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4189 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4190 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4191 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4192 .access = PL1_RW, .accessfn = access_tvm_trvm, 4193 .fgt = FGT_TTBR1_EL1, 4194 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4195 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4196 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4197 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4198 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4199 .access = PL1_RW, .accessfn = access_tvm_trvm, 4200 .fgt = FGT_TCR_EL1, 4201 .writefn = vmsa_tcr_el12_write, 4202 .raw_writefn = raw_write, 4203 .resetvalue = 0, 4204 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4205 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4206 .access = PL1_RW, .accessfn = access_tvm_trvm, 4207 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4208 .raw_writefn = raw_write, 4209 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4210 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4211 }; 4212 4213 /* 4214 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4215 * qemu tlbs nor adjusting cached masks. 4216 */ 4217 static const ARMCPRegInfo ttbcr2_reginfo = { 4218 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4219 .access = PL1_RW, .accessfn = access_tvm_trvm, 4220 .type = ARM_CP_ALIAS, 4221 .bank_fieldoffsets = { 4222 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4223 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4224 }, 4225 }; 4226 4227 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4228 uint64_t value) 4229 { 4230 env->cp15.c15_ticonfig = value & 0xe7; 4231 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4232 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4233 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4234 } 4235 4236 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4237 uint64_t value) 4238 { 4239 env->cp15.c15_threadid = value & 0xffff; 4240 } 4241 4242 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4243 uint64_t value) 4244 { 4245 /* Wait-for-interrupt (deprecated) */ 4246 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4247 } 4248 4249 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4250 uint64_t value) 4251 { 4252 /* 4253 * On OMAP there are registers indicating the max/min index of dcache lines 4254 * containing a dirty line; cache flush operations have to reset these. 4255 */ 4256 env->cp15.c15_i_max = 0x000; 4257 env->cp15.c15_i_min = 0xff0; 4258 } 4259 4260 static const ARMCPRegInfo omap_cp_reginfo[] = { 4261 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4262 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4263 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4264 .resetvalue = 0, }, 4265 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4266 .access = PL1_RW, .type = ARM_CP_NOP }, 4267 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4268 .access = PL1_RW, 4269 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4270 .writefn = omap_ticonfig_write }, 4271 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4272 .access = PL1_RW, 4273 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4274 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4275 .access = PL1_RW, .resetvalue = 0xff0, 4276 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4277 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4278 .access = PL1_RW, 4279 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4280 .writefn = omap_threadid_write }, 4281 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4282 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4283 .type = ARM_CP_NO_RAW, 4284 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4285 /* 4286 * TODO: Peripheral port remap register: 4287 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4288 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4289 * when MMU is off. 4290 */ 4291 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4292 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4293 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4294 .writefn = omap_cachemaint_write }, 4295 { .name = "C9", .cp = 15, .crn = 9, 4296 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4297 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4298 }; 4299 4300 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4301 uint64_t value) 4302 { 4303 env->cp15.c15_cpar = value & 0x3fff; 4304 } 4305 4306 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4307 { .name = "XSCALE_CPAR", 4308 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4309 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4310 .writefn = xscale_cpar_write, }, 4311 { .name = "XSCALE_AUXCR", 4312 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4313 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4314 .resetvalue = 0, }, 4315 /* 4316 * XScale specific cache-lockdown: since we have no cache we NOP these 4317 * and hope the guest does not really rely on cache behaviour. 4318 */ 4319 { .name = "XSCALE_LOCK_ICACHE_LINE", 4320 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4321 .access = PL1_W, .type = ARM_CP_NOP }, 4322 { .name = "XSCALE_UNLOCK_ICACHE", 4323 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4324 .access = PL1_W, .type = ARM_CP_NOP }, 4325 { .name = "XSCALE_DCACHE_LOCK", 4326 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4327 .access = PL1_RW, .type = ARM_CP_NOP }, 4328 { .name = "XSCALE_UNLOCK_DCACHE", 4329 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4330 .access = PL1_W, .type = ARM_CP_NOP }, 4331 }; 4332 4333 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4334 /* 4335 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4336 * implementation of this implementation-defined space. 4337 * Ideally this should eventually disappear in favour of actually 4338 * implementing the correct behaviour for all cores. 4339 */ 4340 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4341 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4342 .access = PL1_RW, 4343 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4344 .resetvalue = 0 }, 4345 }; 4346 4347 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4348 /* Cache status: RAZ because we have no cache so it's always clean */ 4349 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4350 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4351 .resetvalue = 0 }, 4352 }; 4353 4354 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4355 /* We never have a block transfer operation in progress */ 4356 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4357 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4358 .resetvalue = 0 }, 4359 /* The cache ops themselves: these all NOP for QEMU */ 4360 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4361 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4362 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4363 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4364 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4365 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4366 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4367 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4368 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4369 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4370 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4371 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4372 }; 4373 4374 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4375 /* 4376 * The cache test-and-clean instructions always return (1 << 30) 4377 * to indicate that there are no dirty cache lines. 4378 */ 4379 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4380 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4381 .resetvalue = (1 << 30) }, 4382 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4383 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4384 .resetvalue = (1 << 30) }, 4385 }; 4386 4387 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4388 /* Ignore ReadBuffer accesses */ 4389 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4390 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4391 .access = PL1_RW, .resetvalue = 0, 4392 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4393 }; 4394 4395 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4396 { 4397 unsigned int cur_el = arm_current_el(env); 4398 4399 if (arm_is_el2_enabled(env) && cur_el == 1) { 4400 return env->cp15.vpidr_el2; 4401 } 4402 return raw_read(env, ri); 4403 } 4404 4405 static uint64_t mpidr_read_val(CPUARMState *env) 4406 { 4407 ARMCPU *cpu = env_archcpu(env); 4408 uint64_t mpidr = cpu->mp_affinity; 4409 4410 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4411 mpidr |= (1U << 31); 4412 /* 4413 * Cores which are uniprocessor (non-coherent) 4414 * but still implement the MP extensions set 4415 * bit 30. (For instance, Cortex-R5). 4416 */ 4417 if (cpu->mp_is_up) { 4418 mpidr |= (1u << 30); 4419 } 4420 } 4421 return mpidr; 4422 } 4423 4424 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4425 { 4426 unsigned int cur_el = arm_current_el(env); 4427 4428 if (arm_is_el2_enabled(env) && cur_el == 1) { 4429 return env->cp15.vmpidr_el2; 4430 } 4431 return mpidr_read_val(env); 4432 } 4433 4434 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4435 /* NOP AMAIR0/1 */ 4436 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4437 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4438 .access = PL1_RW, .accessfn = access_tvm_trvm, 4439 .fgt = FGT_AMAIR_EL1, 4440 .type = ARM_CP_CONST, .resetvalue = 0 }, 4441 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4442 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4443 .access = PL1_RW, .accessfn = access_tvm_trvm, 4444 .type = ARM_CP_CONST, .resetvalue = 0 }, 4445 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4446 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4447 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4448 offsetof(CPUARMState, cp15.par_ns)} }, 4449 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4450 .access = PL1_RW, .accessfn = access_tvm_trvm, 4451 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4452 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4453 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4454 .writefn = vmsa_ttbr_write, }, 4455 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4456 .access = PL1_RW, .accessfn = access_tvm_trvm, 4457 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4458 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4459 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4460 .writefn = vmsa_ttbr_write, }, 4461 }; 4462 4463 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4464 { 4465 return vfp_get_fpcr(env); 4466 } 4467 4468 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4469 uint64_t value) 4470 { 4471 vfp_set_fpcr(env, value); 4472 } 4473 4474 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4475 { 4476 return vfp_get_fpsr(env); 4477 } 4478 4479 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4480 uint64_t value) 4481 { 4482 vfp_set_fpsr(env, value); 4483 } 4484 4485 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4486 bool isread) 4487 { 4488 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4489 return CP_ACCESS_TRAP; 4490 } 4491 return CP_ACCESS_OK; 4492 } 4493 4494 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4495 uint64_t value) 4496 { 4497 env->daif = value & PSTATE_DAIF; 4498 } 4499 4500 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4501 { 4502 return env->pstate & PSTATE_PAN; 4503 } 4504 4505 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4506 uint64_t value) 4507 { 4508 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4509 } 4510 4511 static const ARMCPRegInfo pan_reginfo = { 4512 .name = "PAN", .state = ARM_CP_STATE_AA64, 4513 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4514 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4515 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4516 }; 4517 4518 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4519 { 4520 return env->pstate & PSTATE_UAO; 4521 } 4522 4523 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4524 uint64_t value) 4525 { 4526 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4527 } 4528 4529 static const ARMCPRegInfo uao_reginfo = { 4530 .name = "UAO", .state = ARM_CP_STATE_AA64, 4531 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4532 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4533 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4534 }; 4535 4536 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4537 { 4538 return env->pstate & PSTATE_DIT; 4539 } 4540 4541 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4542 uint64_t value) 4543 { 4544 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4545 } 4546 4547 static const ARMCPRegInfo dit_reginfo = { 4548 .name = "DIT", .state = ARM_CP_STATE_AA64, 4549 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4550 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4551 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4552 }; 4553 4554 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4555 { 4556 return env->pstate & PSTATE_SSBS; 4557 } 4558 4559 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4560 uint64_t value) 4561 { 4562 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4563 } 4564 4565 static const ARMCPRegInfo ssbs_reginfo = { 4566 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4567 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4568 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4569 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4570 }; 4571 4572 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4573 const ARMCPRegInfo *ri, 4574 bool isread) 4575 { 4576 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4577 switch (arm_current_el(env)) { 4578 case 0: 4579 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4580 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4581 return CP_ACCESS_TRAP; 4582 } 4583 /* fall through */ 4584 case 1: 4585 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4586 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4587 return CP_ACCESS_TRAP_EL2; 4588 } 4589 break; 4590 } 4591 return CP_ACCESS_OK; 4592 } 4593 4594 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4595 { 4596 /* Cache invalidate/clean to Point of Unification... */ 4597 switch (arm_current_el(env)) { 4598 case 0: 4599 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4600 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4601 return CP_ACCESS_TRAP; 4602 } 4603 /* fall through */ 4604 case 1: 4605 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4606 if (arm_hcr_el2_eff(env) & hcrflags) { 4607 return CP_ACCESS_TRAP_EL2; 4608 } 4609 break; 4610 } 4611 return CP_ACCESS_OK; 4612 } 4613 4614 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4615 bool isread) 4616 { 4617 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4618 } 4619 4620 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4621 bool isread) 4622 { 4623 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4624 } 4625 4626 /* 4627 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4628 * Page D4-1736 (DDI0487A.b) 4629 */ 4630 4631 static int vae1_tlbmask(CPUARMState *env) 4632 { 4633 uint64_t hcr = arm_hcr_el2_eff(env); 4634 uint16_t mask; 4635 4636 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4637 mask = ARMMMUIdxBit_E20_2 | 4638 ARMMMUIdxBit_E20_2_PAN | 4639 ARMMMUIdxBit_E20_0; 4640 } else { 4641 mask = ARMMMUIdxBit_E10_1 | 4642 ARMMMUIdxBit_E10_1_PAN | 4643 ARMMMUIdxBit_E10_0; 4644 } 4645 return mask; 4646 } 4647 4648 /* Return 56 if TBI is enabled, 64 otherwise. */ 4649 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4650 uint64_t addr) 4651 { 4652 uint64_t tcr = regime_tcr(env, mmu_idx); 4653 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4654 int select = extract64(addr, 55, 1); 4655 4656 return (tbi >> select) & 1 ? 56 : 64; 4657 } 4658 4659 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4660 { 4661 uint64_t hcr = arm_hcr_el2_eff(env); 4662 ARMMMUIdx mmu_idx; 4663 4664 /* Only the regime of the mmu_idx below is significant. */ 4665 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4666 mmu_idx = ARMMMUIdx_E20_0; 4667 } else { 4668 mmu_idx = ARMMMUIdx_E10_0; 4669 } 4670 4671 return tlbbits_for_regime(env, mmu_idx, addr); 4672 } 4673 4674 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4675 uint64_t value) 4676 { 4677 CPUState *cs = env_cpu(env); 4678 int mask = vae1_tlbmask(env); 4679 4680 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4681 } 4682 4683 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4684 uint64_t value) 4685 { 4686 CPUState *cs = env_cpu(env); 4687 int mask = vae1_tlbmask(env); 4688 4689 if (tlb_force_broadcast(env)) { 4690 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4691 } else { 4692 tlb_flush_by_mmuidx(cs, mask); 4693 } 4694 } 4695 4696 static int e2_tlbmask(CPUARMState *env) 4697 { 4698 return (ARMMMUIdxBit_E20_0 | 4699 ARMMMUIdxBit_E20_2 | 4700 ARMMMUIdxBit_E20_2_PAN | 4701 ARMMMUIdxBit_E2); 4702 } 4703 4704 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4705 uint64_t value) 4706 { 4707 CPUState *cs = env_cpu(env); 4708 int mask = alle1_tlbmask(env); 4709 4710 tlb_flush_by_mmuidx(cs, mask); 4711 } 4712 4713 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4714 uint64_t value) 4715 { 4716 CPUState *cs = env_cpu(env); 4717 int mask = e2_tlbmask(env); 4718 4719 tlb_flush_by_mmuidx(cs, mask); 4720 } 4721 4722 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4723 uint64_t value) 4724 { 4725 ARMCPU *cpu = env_archcpu(env); 4726 CPUState *cs = CPU(cpu); 4727 4728 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4729 } 4730 4731 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4732 uint64_t value) 4733 { 4734 CPUState *cs = env_cpu(env); 4735 int mask = alle1_tlbmask(env); 4736 4737 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4738 } 4739 4740 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4741 uint64_t value) 4742 { 4743 CPUState *cs = env_cpu(env); 4744 int mask = e2_tlbmask(env); 4745 4746 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4747 } 4748 4749 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4750 uint64_t value) 4751 { 4752 CPUState *cs = env_cpu(env); 4753 4754 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4755 } 4756 4757 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4758 uint64_t value) 4759 { 4760 /* 4761 * Invalidate by VA, EL2 4762 * Currently handles both VAE2 and VALE2, since we don't support 4763 * flush-last-level-only. 4764 */ 4765 CPUState *cs = env_cpu(env); 4766 int mask = e2_tlbmask(env); 4767 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4768 4769 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4770 } 4771 4772 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4773 uint64_t value) 4774 { 4775 /* 4776 * Invalidate by VA, EL3 4777 * Currently handles both VAE3 and VALE3, since we don't support 4778 * flush-last-level-only. 4779 */ 4780 ARMCPU *cpu = env_archcpu(env); 4781 CPUState *cs = CPU(cpu); 4782 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4783 4784 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4785 } 4786 4787 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4788 uint64_t value) 4789 { 4790 CPUState *cs = env_cpu(env); 4791 int mask = vae1_tlbmask(env); 4792 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4793 int bits = vae1_tlbbits(env, pageaddr); 4794 4795 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4796 } 4797 4798 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4799 uint64_t value) 4800 { 4801 /* 4802 * Invalidate by VA, EL1&0 (AArch64 version). 4803 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4804 * since we don't support flush-for-specific-ASID-only or 4805 * flush-last-level-only. 4806 */ 4807 CPUState *cs = env_cpu(env); 4808 int mask = vae1_tlbmask(env); 4809 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4810 int bits = vae1_tlbbits(env, pageaddr); 4811 4812 if (tlb_force_broadcast(env)) { 4813 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4814 } else { 4815 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4816 } 4817 } 4818 4819 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4820 uint64_t value) 4821 { 4822 CPUState *cs = env_cpu(env); 4823 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4824 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr); 4825 4826 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4827 ARMMMUIdxBit_E2, bits); 4828 } 4829 4830 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4831 uint64_t value) 4832 { 4833 CPUState *cs = env_cpu(env); 4834 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4835 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4836 4837 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4838 ARMMMUIdxBit_E3, bits); 4839 } 4840 4841 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4842 { 4843 /* 4844 * The MSB of value is the NS field, which only applies if SEL2 4845 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4846 */ 4847 return (value >= 0 4848 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4849 && arm_is_secure_below_el3(env) 4850 ? ARMMMUIdxBit_Stage2_S 4851 : ARMMMUIdxBit_Stage2); 4852 } 4853 4854 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4855 uint64_t value) 4856 { 4857 CPUState *cs = env_cpu(env); 4858 int mask = ipas2e1_tlbmask(env, value); 4859 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4860 4861 if (tlb_force_broadcast(env)) { 4862 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4863 } else { 4864 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4865 } 4866 } 4867 4868 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4869 uint64_t value) 4870 { 4871 CPUState *cs = env_cpu(env); 4872 int mask = ipas2e1_tlbmask(env, value); 4873 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4874 4875 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4876 } 4877 4878 #ifdef TARGET_AARCH64 4879 typedef struct { 4880 uint64_t base; 4881 uint64_t length; 4882 } TLBIRange; 4883 4884 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4885 { 4886 /* 4887 * Note that the TLBI range TG field encoding differs from both 4888 * TG0 and TG1 encodings. 4889 */ 4890 switch (tg) { 4891 case 1: 4892 return Gran4K; 4893 case 2: 4894 return Gran16K; 4895 case 3: 4896 return Gran64K; 4897 default: 4898 return GranInvalid; 4899 } 4900 } 4901 4902 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4903 uint64_t value) 4904 { 4905 unsigned int page_size_granule, page_shift, num, scale, exponent; 4906 /* Extract one bit to represent the va selector in use. */ 4907 uint64_t select = sextract64(value, 36, 1); 4908 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4909 TLBIRange ret = { }; 4910 ARMGranuleSize gran; 4911 4912 page_size_granule = extract64(value, 46, 2); 4913 gran = tlbi_range_tg_to_gran_size(page_size_granule); 4914 4915 /* The granule encoded in value must match the granule in use. */ 4916 if (gran != param.gran) { 4917 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4918 page_size_granule); 4919 return ret; 4920 } 4921 4922 page_shift = arm_granule_bits(gran); 4923 num = extract64(value, 39, 5); 4924 scale = extract64(value, 44, 2); 4925 exponent = (5 * scale) + 1; 4926 4927 ret.length = (num + 1) << (exponent + page_shift); 4928 4929 if (param.select) { 4930 ret.base = sextract64(value, 0, 37); 4931 } else { 4932 ret.base = extract64(value, 0, 37); 4933 } 4934 if (param.ds) { 4935 /* 4936 * With DS=1, BaseADDR is always shifted 16 so that it is able 4937 * to address all 52 va bits. The input address is perforce 4938 * aligned on a 64k boundary regardless of translation granule. 4939 */ 4940 page_shift = 16; 4941 } 4942 ret.base <<= page_shift; 4943 4944 return ret; 4945 } 4946 4947 static void do_rvae_write(CPUARMState *env, uint64_t value, 4948 int idxmap, bool synced) 4949 { 4950 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4951 TLBIRange range; 4952 int bits; 4953 4954 range = tlbi_aa64_get_range(env, one_idx, value); 4955 bits = tlbbits_for_regime(env, one_idx, range.base); 4956 4957 if (synced) { 4958 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4959 range.base, 4960 range.length, 4961 idxmap, 4962 bits); 4963 } else { 4964 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4965 range.length, idxmap, bits); 4966 } 4967 } 4968 4969 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4970 const ARMCPRegInfo *ri, 4971 uint64_t value) 4972 { 4973 /* 4974 * Invalidate by VA range, EL1&0. 4975 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4976 * since we don't support flush-for-specific-ASID-only or 4977 * flush-last-level-only. 4978 */ 4979 4980 do_rvae_write(env, value, vae1_tlbmask(env), 4981 tlb_force_broadcast(env)); 4982 } 4983 4984 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4985 const ARMCPRegInfo *ri, 4986 uint64_t value) 4987 { 4988 /* 4989 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4990 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4991 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4992 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4993 * shareable specific flushes. 4994 */ 4995 4996 do_rvae_write(env, value, vae1_tlbmask(env), true); 4997 } 4998 4999 static int vae2_tlbmask(CPUARMState *env) 5000 { 5001 return ARMMMUIdxBit_E2; 5002 } 5003 5004 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5005 const ARMCPRegInfo *ri, 5006 uint64_t value) 5007 { 5008 /* 5009 * Invalidate by VA range, EL2. 5010 * Currently handles all of RVAE2 and RVALE2, 5011 * since we don't support flush-for-specific-ASID-only or 5012 * flush-last-level-only. 5013 */ 5014 5015 do_rvae_write(env, value, vae2_tlbmask(env), 5016 tlb_force_broadcast(env)); 5017 5018 5019 } 5020 5021 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5022 const ARMCPRegInfo *ri, 5023 uint64_t value) 5024 { 5025 /* 5026 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5027 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5028 * since we don't support flush-for-specific-ASID-only, 5029 * flush-last-level-only or inner/outer shareable specific flushes. 5030 */ 5031 5032 do_rvae_write(env, value, vae2_tlbmask(env), true); 5033 5034 } 5035 5036 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5037 const ARMCPRegInfo *ri, 5038 uint64_t value) 5039 { 5040 /* 5041 * Invalidate by VA range, EL3. 5042 * Currently handles all of RVAE3 and RVALE3, 5043 * since we don't support flush-for-specific-ASID-only or 5044 * flush-last-level-only. 5045 */ 5046 5047 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5048 } 5049 5050 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5051 const ARMCPRegInfo *ri, 5052 uint64_t value) 5053 { 5054 /* 5055 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5056 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5057 * since we don't support flush-for-specific-ASID-only, 5058 * flush-last-level-only or inner/outer specific flushes. 5059 */ 5060 5061 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5062 } 5063 5064 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5065 uint64_t value) 5066 { 5067 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5068 tlb_force_broadcast(env)); 5069 } 5070 5071 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5072 const ARMCPRegInfo *ri, 5073 uint64_t value) 5074 { 5075 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5076 } 5077 #endif 5078 5079 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5080 bool isread) 5081 { 5082 int cur_el = arm_current_el(env); 5083 5084 if (cur_el < 2) { 5085 uint64_t hcr = arm_hcr_el2_eff(env); 5086 5087 if (cur_el == 0) { 5088 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5089 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5090 return CP_ACCESS_TRAP_EL2; 5091 } 5092 } else { 5093 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5094 return CP_ACCESS_TRAP; 5095 } 5096 if (hcr & HCR_TDZ) { 5097 return CP_ACCESS_TRAP_EL2; 5098 } 5099 } 5100 } else if (hcr & HCR_TDZ) { 5101 return CP_ACCESS_TRAP_EL2; 5102 } 5103 } 5104 return CP_ACCESS_OK; 5105 } 5106 5107 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5108 { 5109 ARMCPU *cpu = env_archcpu(env); 5110 int dzp_bit = 1 << 4; 5111 5112 /* DZP indicates whether DC ZVA access is allowed */ 5113 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5114 dzp_bit = 0; 5115 } 5116 return cpu->dcz_blocksize | dzp_bit; 5117 } 5118 5119 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5120 bool isread) 5121 { 5122 if (!(env->pstate & PSTATE_SP)) { 5123 /* 5124 * Access to SP_EL0 is undefined if it's being used as 5125 * the stack pointer. 5126 */ 5127 return CP_ACCESS_TRAP_UNCATEGORIZED; 5128 } 5129 return CP_ACCESS_OK; 5130 } 5131 5132 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5133 { 5134 return env->pstate & PSTATE_SP; 5135 } 5136 5137 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5138 { 5139 update_spsel(env, val); 5140 } 5141 5142 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5143 uint64_t value) 5144 { 5145 ARMCPU *cpu = env_archcpu(env); 5146 5147 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5148 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5149 value &= ~SCTLR_M; 5150 } 5151 5152 /* ??? Lots of these bits are not implemented. */ 5153 5154 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5155 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5156 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5157 } else { 5158 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5159 SCTLR_ATA0 | SCTLR_ATA); 5160 } 5161 } 5162 5163 if (raw_read(env, ri) == value) { 5164 /* 5165 * Skip the TLB flush if nothing actually changed; Linux likes 5166 * to do a lot of pointless SCTLR writes. 5167 */ 5168 return; 5169 } 5170 5171 raw_write(env, ri, value); 5172 5173 /* This may enable/disable the MMU, so do a TLB flush. */ 5174 tlb_flush(CPU(cpu)); 5175 5176 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5177 /* 5178 * Normally we would always end the TB on an SCTLR write; see the 5179 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5180 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5181 * of hflags from the translator, so do it here. 5182 */ 5183 arm_rebuild_hflags(env); 5184 } 5185 } 5186 5187 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5188 uint64_t value) 5189 { 5190 /* 5191 * Some MDCR_EL3 bits affect whether PMU counters are running: 5192 * if we are trying to change any of those then we must 5193 * bracket this update with PMU start/finish calls. 5194 */ 5195 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5196 5197 if (pmu_op) { 5198 pmu_op_start(env); 5199 } 5200 env->cp15.mdcr_el3 = value; 5201 if (pmu_op) { 5202 pmu_op_finish(env); 5203 } 5204 } 5205 5206 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5207 uint64_t value) 5208 { 5209 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5210 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5211 } 5212 5213 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5214 uint64_t value) 5215 { 5216 /* 5217 * Some MDCR_EL2 bits affect whether PMU counters are running: 5218 * if we are trying to change any of those then we must 5219 * bracket this update with PMU start/finish calls. 5220 */ 5221 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5222 5223 if (pmu_op) { 5224 pmu_op_start(env); 5225 } 5226 env->cp15.mdcr_el2 = value; 5227 if (pmu_op) { 5228 pmu_op_finish(env); 5229 } 5230 } 5231 5232 static const ARMCPRegInfo v8_cp_reginfo[] = { 5233 /* 5234 * Minimal set of EL0-visible registers. This will need to be expanded 5235 * significantly for system emulation of AArch64 CPUs. 5236 */ 5237 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5238 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5239 .access = PL0_RW, .type = ARM_CP_NZCV }, 5240 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5241 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5242 .type = ARM_CP_NO_RAW, 5243 .access = PL0_RW, .accessfn = aa64_daif_access, 5244 .fieldoffset = offsetof(CPUARMState, daif), 5245 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5246 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5247 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5248 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5249 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5250 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5251 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5252 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5253 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5254 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5255 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5256 .access = PL0_R, .type = ARM_CP_NO_RAW, 5257 .fgt = FGT_DCZID_EL0, 5258 .readfn = aa64_dczid_read }, 5259 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5260 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5261 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5262 #ifndef CONFIG_USER_ONLY 5263 /* Avoid overhead of an access check that always passes in user-mode */ 5264 .accessfn = aa64_zva_access, 5265 .fgt = FGT_DCZVA, 5266 #endif 5267 }, 5268 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5269 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5270 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5271 /* Cache ops: all NOPs since we don't emulate caches */ 5272 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5273 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5274 .access = PL1_W, .type = ARM_CP_NOP, 5275 .fgt = FGT_ICIALLUIS, 5276 .accessfn = access_ticab }, 5277 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5278 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5279 .access = PL1_W, .type = ARM_CP_NOP, 5280 .fgt = FGT_ICIALLU, 5281 .accessfn = access_tocu }, 5282 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5283 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5284 .access = PL0_W, .type = ARM_CP_NOP, 5285 .fgt = FGT_ICIVAU, 5286 .accessfn = access_tocu }, 5287 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5288 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5289 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5290 .fgt = FGT_DCIVAC, 5291 .type = ARM_CP_NOP }, 5292 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5293 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5294 .fgt = FGT_DCISW, 5295 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5296 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5297 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5298 .access = PL0_W, .type = ARM_CP_NOP, 5299 .fgt = FGT_DCCVAC, 5300 .accessfn = aa64_cacheop_poc_access }, 5301 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5302 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5303 .fgt = FGT_DCCSW, 5304 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5305 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5306 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5307 .access = PL0_W, .type = ARM_CP_NOP, 5308 .fgt = FGT_DCCVAU, 5309 .accessfn = access_tocu }, 5310 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5311 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5312 .access = PL0_W, .type = ARM_CP_NOP, 5313 .fgt = FGT_DCCIVAC, 5314 .accessfn = aa64_cacheop_poc_access }, 5315 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5316 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5317 .fgt = FGT_DCCISW, 5318 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5319 /* TLBI operations */ 5320 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5321 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5322 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5323 .fgt = FGT_TLBIVMALLE1IS, 5324 .writefn = tlbi_aa64_vmalle1is_write }, 5325 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5326 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5327 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5328 .fgt = FGT_TLBIVAE1IS, 5329 .writefn = tlbi_aa64_vae1is_write }, 5330 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5331 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5332 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5333 .fgt = FGT_TLBIASIDE1IS, 5334 .writefn = tlbi_aa64_vmalle1is_write }, 5335 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5336 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5337 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5338 .fgt = FGT_TLBIVAAE1IS, 5339 .writefn = tlbi_aa64_vae1is_write }, 5340 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5341 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5342 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5343 .fgt = FGT_TLBIVALE1IS, 5344 .writefn = tlbi_aa64_vae1is_write }, 5345 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5346 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5347 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5348 .fgt = FGT_TLBIVAALE1IS, 5349 .writefn = tlbi_aa64_vae1is_write }, 5350 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5351 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5352 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5353 .fgt = FGT_TLBIVMALLE1, 5354 .writefn = tlbi_aa64_vmalle1_write }, 5355 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5356 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5357 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5358 .fgt = FGT_TLBIVAE1, 5359 .writefn = tlbi_aa64_vae1_write }, 5360 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5361 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5362 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5363 .fgt = FGT_TLBIASIDE1, 5364 .writefn = tlbi_aa64_vmalle1_write }, 5365 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5366 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5367 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5368 .fgt = FGT_TLBIVAAE1, 5369 .writefn = tlbi_aa64_vae1_write }, 5370 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5371 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5372 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5373 .fgt = FGT_TLBIVALE1, 5374 .writefn = tlbi_aa64_vae1_write }, 5375 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5376 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5377 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5378 .fgt = FGT_TLBIVAALE1, 5379 .writefn = tlbi_aa64_vae1_write }, 5380 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5381 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5382 .access = PL2_W, .type = ARM_CP_NO_RAW, 5383 .writefn = tlbi_aa64_ipas2e1is_write }, 5384 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5385 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5386 .access = PL2_W, .type = ARM_CP_NO_RAW, 5387 .writefn = tlbi_aa64_ipas2e1is_write }, 5388 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5389 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5390 .access = PL2_W, .type = ARM_CP_NO_RAW, 5391 .writefn = tlbi_aa64_alle1is_write }, 5392 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5393 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5394 .access = PL2_W, .type = ARM_CP_NO_RAW, 5395 .writefn = tlbi_aa64_alle1is_write }, 5396 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5397 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5398 .access = PL2_W, .type = ARM_CP_NO_RAW, 5399 .writefn = tlbi_aa64_ipas2e1_write }, 5400 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5401 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5402 .access = PL2_W, .type = ARM_CP_NO_RAW, 5403 .writefn = tlbi_aa64_ipas2e1_write }, 5404 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5405 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5406 .access = PL2_W, .type = ARM_CP_NO_RAW, 5407 .writefn = tlbi_aa64_alle1_write }, 5408 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5409 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5410 .access = PL2_W, .type = ARM_CP_NO_RAW, 5411 .writefn = tlbi_aa64_alle1is_write }, 5412 #ifndef CONFIG_USER_ONLY 5413 /* 64 bit address translation operations */ 5414 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5415 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5416 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5417 .fgt = FGT_ATS1E1R, 5418 .writefn = ats_write64 }, 5419 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5420 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5421 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5422 .fgt = FGT_ATS1E1W, 5423 .writefn = ats_write64 }, 5424 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5425 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5426 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5427 .fgt = FGT_ATS1E0R, 5428 .writefn = ats_write64 }, 5429 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5430 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5431 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5432 .fgt = FGT_ATS1E0W, 5433 .writefn = ats_write64 }, 5434 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5435 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5436 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5437 .writefn = ats_write64 }, 5438 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5439 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5440 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5441 .writefn = ats_write64 }, 5442 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5443 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5444 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5445 .writefn = ats_write64 }, 5446 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5447 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5448 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5449 .writefn = ats_write64 }, 5450 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5451 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5452 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5453 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5454 .writefn = ats_write64 }, 5455 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5456 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5457 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5458 .writefn = ats_write64 }, 5459 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5460 .type = ARM_CP_ALIAS, 5461 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5462 .access = PL1_RW, .resetvalue = 0, 5463 .fgt = FGT_PAR_EL1, 5464 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5465 .writefn = par_write }, 5466 #endif 5467 /* TLB invalidate last level of translation table walk */ 5468 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5469 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5470 .writefn = tlbimva_is_write }, 5471 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5472 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5473 .writefn = tlbimvaa_is_write }, 5474 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5475 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5476 .writefn = tlbimva_write }, 5477 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5478 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5479 .writefn = tlbimvaa_write }, 5480 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5481 .type = ARM_CP_NO_RAW, .access = PL2_W, 5482 .writefn = tlbimva_hyp_write }, 5483 { .name = "TLBIMVALHIS", 5484 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5485 .type = ARM_CP_NO_RAW, .access = PL2_W, 5486 .writefn = tlbimva_hyp_is_write }, 5487 { .name = "TLBIIPAS2", 5488 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5489 .type = ARM_CP_NO_RAW, .access = PL2_W, 5490 .writefn = tlbiipas2_hyp_write }, 5491 { .name = "TLBIIPAS2IS", 5492 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5493 .type = ARM_CP_NO_RAW, .access = PL2_W, 5494 .writefn = tlbiipas2is_hyp_write }, 5495 { .name = "TLBIIPAS2L", 5496 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5497 .type = ARM_CP_NO_RAW, .access = PL2_W, 5498 .writefn = tlbiipas2_hyp_write }, 5499 { .name = "TLBIIPAS2LIS", 5500 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5501 .type = ARM_CP_NO_RAW, .access = PL2_W, 5502 .writefn = tlbiipas2is_hyp_write }, 5503 /* 32 bit cache operations */ 5504 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5505 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5506 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5507 .type = ARM_CP_NOP, .access = PL1_W }, 5508 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5509 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5510 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5511 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5512 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5513 .type = ARM_CP_NOP, .access = PL1_W }, 5514 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5515 .type = ARM_CP_NOP, .access = PL1_W }, 5516 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5517 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5518 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5519 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5520 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5521 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5522 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5523 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5524 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5525 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5526 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5527 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5528 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5529 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5530 /* MMU Domain access control / MPU write buffer control */ 5531 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5532 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5533 .writefn = dacr_write, .raw_writefn = raw_write, 5534 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5535 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5536 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5537 .type = ARM_CP_ALIAS, 5538 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5539 .access = PL1_RW, 5540 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5541 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5542 .type = ARM_CP_ALIAS, 5543 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5544 .access = PL1_RW, 5545 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5546 /* 5547 * We rely on the access checks not allowing the guest to write to the 5548 * state field when SPSel indicates that it's being used as the stack 5549 * pointer. 5550 */ 5551 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5552 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5553 .access = PL1_RW, .accessfn = sp_el0_access, 5554 .type = ARM_CP_ALIAS, 5555 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5556 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5557 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5558 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5559 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5560 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5561 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5562 .type = ARM_CP_NO_RAW, 5563 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5564 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5565 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5566 .access = PL2_RW, 5567 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5568 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5569 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5570 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5571 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5572 .writefn = dacr_write, .raw_writefn = raw_write, 5573 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5574 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5575 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5576 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5577 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5578 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5579 .type = ARM_CP_ALIAS, 5580 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5581 .access = PL2_RW, 5582 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5583 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5584 .type = ARM_CP_ALIAS, 5585 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5586 .access = PL2_RW, 5587 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5588 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5589 .type = ARM_CP_ALIAS, 5590 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5591 .access = PL2_RW, 5592 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5593 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5594 .type = ARM_CP_ALIAS, 5595 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5596 .access = PL2_RW, 5597 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5598 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5599 .type = ARM_CP_IO, 5600 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5601 .resetvalue = 0, 5602 .access = PL3_RW, 5603 .writefn = mdcr_el3_write, 5604 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5605 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5606 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5607 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5608 .writefn = sdcr_write, 5609 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5610 }; 5611 5612 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5613 { 5614 ARMCPU *cpu = env_archcpu(env); 5615 5616 if (arm_feature(env, ARM_FEATURE_V8)) { 5617 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5618 } else { 5619 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5620 } 5621 5622 if (arm_feature(env, ARM_FEATURE_EL3)) { 5623 valid_mask &= ~HCR_HCD; 5624 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5625 /* 5626 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5627 * However, if we're using the SMC PSCI conduit then QEMU is 5628 * effectively acting like EL3 firmware and so the guest at 5629 * EL2 should retain the ability to prevent EL1 from being 5630 * able to make SMC calls into the ersatz firmware, so in 5631 * that case HCR.TSC should be read/write. 5632 */ 5633 valid_mask &= ~HCR_TSC; 5634 } 5635 5636 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5637 if (cpu_isar_feature(aa64_vh, cpu)) { 5638 valid_mask |= HCR_E2H; 5639 } 5640 if (cpu_isar_feature(aa64_ras, cpu)) { 5641 valid_mask |= HCR_TERR | HCR_TEA; 5642 } 5643 if (cpu_isar_feature(aa64_lor, cpu)) { 5644 valid_mask |= HCR_TLOR; 5645 } 5646 if (cpu_isar_feature(aa64_pauth, cpu)) { 5647 valid_mask |= HCR_API | HCR_APK; 5648 } 5649 if (cpu_isar_feature(aa64_mte, cpu)) { 5650 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5651 } 5652 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5653 valid_mask |= HCR_ENSCXT; 5654 } 5655 if (cpu_isar_feature(aa64_fwb, cpu)) { 5656 valid_mask |= HCR_FWB; 5657 } 5658 } 5659 5660 if (cpu_isar_feature(any_evt, cpu)) { 5661 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5662 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5663 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5664 } 5665 5666 /* Clear RES0 bits. */ 5667 value &= valid_mask; 5668 5669 /* 5670 * These bits change the MMU setup: 5671 * HCR_VM enables stage 2 translation 5672 * HCR_PTW forbids certain page-table setups 5673 * HCR_DC disables stage1 and enables stage2 translation 5674 * HCR_DCT enables tagging on (disabled) stage1 translation 5675 * HCR_FWB changes the interpretation of stage2 descriptor bits 5676 */ 5677 if ((env->cp15.hcr_el2 ^ value) & 5678 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5679 tlb_flush(CPU(cpu)); 5680 } 5681 env->cp15.hcr_el2 = value; 5682 5683 /* 5684 * Updates to VI and VF require us to update the status of 5685 * virtual interrupts, which are the logical OR of these bits 5686 * and the state of the input lines from the GIC. (This requires 5687 * that we have the iothread lock, which is done by marking the 5688 * reginfo structs as ARM_CP_IO.) 5689 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5690 * possible for it to be taken immediately, because VIRQ and 5691 * VFIQ are masked unless running at EL0 or EL1, and HCR 5692 * can only be written at EL2. 5693 */ 5694 g_assert(qemu_mutex_iothread_locked()); 5695 arm_cpu_update_virq(cpu); 5696 arm_cpu_update_vfiq(cpu); 5697 arm_cpu_update_vserr(cpu); 5698 } 5699 5700 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5701 { 5702 do_hcr_write(env, value, 0); 5703 } 5704 5705 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5706 uint64_t value) 5707 { 5708 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5709 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5710 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5711 } 5712 5713 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5714 uint64_t value) 5715 { 5716 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5717 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5718 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5719 } 5720 5721 /* 5722 * Return the effective value of HCR_EL2, at the given security state. 5723 * Bits that are not included here: 5724 * RW (read from SCR_EL3.RW as needed) 5725 */ 5726 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure) 5727 { 5728 uint64_t ret = env->cp15.hcr_el2; 5729 5730 if (!arm_is_el2_enabled_secstate(env, secure)) { 5731 /* 5732 * "This register has no effect if EL2 is not enabled in the 5733 * current Security state". This is ARMv8.4-SecEL2 speak for 5734 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5735 * 5736 * Prior to that, the language was "In an implementation that 5737 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5738 * as if this field is 0 for all purposes other than a direct 5739 * read or write access of HCR_EL2". With lots of enumeration 5740 * on a per-field basis. In current QEMU, this is condition 5741 * is arm_is_secure_below_el3. 5742 * 5743 * Since the v8.4 language applies to the entire register, and 5744 * appears to be backward compatible, use that. 5745 */ 5746 return 0; 5747 } 5748 5749 /* 5750 * For a cpu that supports both aarch64 and aarch32, we can set bits 5751 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5752 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5753 */ 5754 if (!arm_el_is_aa64(env, 2)) { 5755 uint64_t aa32_valid; 5756 5757 /* 5758 * These bits are up-to-date as of ARMv8.6. 5759 * For HCR, it's easiest to list just the 2 bits that are invalid. 5760 * For HCR2, list those that are valid. 5761 */ 5762 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5763 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5764 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5765 ret &= aa32_valid; 5766 } 5767 5768 if (ret & HCR_TGE) { 5769 /* These bits are up-to-date as of ARMv8.6. */ 5770 if (ret & HCR_E2H) { 5771 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5772 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5773 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5774 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5775 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5776 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5777 } else { 5778 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5779 } 5780 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5781 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5782 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5783 HCR_TLOR); 5784 } 5785 5786 return ret; 5787 } 5788 5789 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5790 { 5791 return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env)); 5792 } 5793 5794 /* 5795 * Corresponds to ARM pseudocode function ELIsInHost(). 5796 */ 5797 bool el_is_in_host(CPUARMState *env, int el) 5798 { 5799 uint64_t mask; 5800 5801 /* 5802 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5803 * Perform the simplest bit tests first, and validate EL2 afterward. 5804 */ 5805 if (el & 1) { 5806 return false; /* EL1 or EL3 */ 5807 } 5808 5809 /* 5810 * Note that hcr_write() checks isar_feature_aa64_vh(), 5811 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5812 */ 5813 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5814 if ((env->cp15.hcr_el2 & mask) != mask) { 5815 return false; 5816 } 5817 5818 /* TGE and/or E2H set: double check those bits are currently legal. */ 5819 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5820 } 5821 5822 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5823 uint64_t value) 5824 { 5825 uint64_t valid_mask = 0; 5826 5827 /* No features adding bits to HCRX are implemented. */ 5828 5829 /* Clear RES0 bits. */ 5830 env->cp15.hcrx_el2 = value & valid_mask; 5831 } 5832 5833 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5834 bool isread) 5835 { 5836 if (arm_current_el(env) < 3 5837 && arm_feature(env, ARM_FEATURE_EL3) 5838 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5839 return CP_ACCESS_TRAP_EL3; 5840 } 5841 return CP_ACCESS_OK; 5842 } 5843 5844 static const ARMCPRegInfo hcrx_el2_reginfo = { 5845 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5846 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5847 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5848 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5849 }; 5850 5851 /* Return the effective value of HCRX_EL2. */ 5852 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5853 { 5854 /* 5855 * The bits in this register behave as 0 for all purposes other than 5856 * direct reads of the register if: 5857 * - EL2 is not enabled in the current security state, 5858 * - SCR_EL3.HXEn is 0. 5859 */ 5860 if (!arm_is_el2_enabled(env) 5861 || (arm_feature(env, ARM_FEATURE_EL3) 5862 && !(env->cp15.scr_el3 & SCR_HXEN))) { 5863 return 0; 5864 } 5865 return env->cp15.hcrx_el2; 5866 } 5867 5868 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5869 uint64_t value) 5870 { 5871 /* 5872 * For A-profile AArch32 EL3, if NSACR.CP10 5873 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5874 */ 5875 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5876 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5877 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5878 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5879 } 5880 env->cp15.cptr_el[2] = value; 5881 } 5882 5883 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5884 { 5885 /* 5886 * For A-profile AArch32 EL3, if NSACR.CP10 5887 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5888 */ 5889 uint64_t value = env->cp15.cptr_el[2]; 5890 5891 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5892 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5893 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5894 } 5895 return value; 5896 } 5897 5898 static const ARMCPRegInfo el2_cp_reginfo[] = { 5899 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5900 .type = ARM_CP_IO, 5901 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5902 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5903 .writefn = hcr_write }, 5904 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5905 .type = ARM_CP_ALIAS | ARM_CP_IO, 5906 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5907 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5908 .writefn = hcr_writelow }, 5909 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5910 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5911 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5912 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5913 .type = ARM_CP_ALIAS, 5914 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5915 .access = PL2_RW, 5916 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5917 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5918 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5919 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5920 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5921 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5922 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5923 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5924 .type = ARM_CP_ALIAS, 5925 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5926 .access = PL2_RW, 5927 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5928 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5929 .type = ARM_CP_ALIAS, 5930 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5931 .access = PL2_RW, 5932 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5933 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5934 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5935 .access = PL2_RW, .writefn = vbar_write, 5936 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5937 .resetvalue = 0 }, 5938 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5939 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5940 .access = PL3_RW, .type = ARM_CP_ALIAS, 5941 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5942 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5943 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5944 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5945 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5946 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5947 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5948 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5949 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5950 .resetvalue = 0 }, 5951 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5952 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5953 .access = PL2_RW, .type = ARM_CP_ALIAS, 5954 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5955 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5956 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5957 .access = PL2_RW, .type = ARM_CP_CONST, 5958 .resetvalue = 0 }, 5959 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5960 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5961 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5962 .access = PL2_RW, .type = ARM_CP_CONST, 5963 .resetvalue = 0 }, 5964 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5965 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5966 .access = PL2_RW, .type = ARM_CP_CONST, 5967 .resetvalue = 0 }, 5968 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5969 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5970 .access = PL2_RW, .type = ARM_CP_CONST, 5971 .resetvalue = 0 }, 5972 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5973 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5974 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5975 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5976 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5977 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5978 .type = ARM_CP_ALIAS, 5979 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5980 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5981 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5982 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5983 .access = PL2_RW, 5984 /* no .writefn needed as this can't cause an ASID change */ 5985 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5986 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5987 .cp = 15, .opc1 = 6, .crm = 2, 5988 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5989 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5990 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5991 .writefn = vttbr_write }, 5992 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5993 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5994 .access = PL2_RW, .writefn = vttbr_write, 5995 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5996 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5997 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5998 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5999 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6000 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6001 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6002 .access = PL2_RW, .resetvalue = 0, 6003 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6004 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6005 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6006 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 6007 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6008 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6009 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6010 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6011 { .name = "TLBIALLNSNH", 6012 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6013 .type = ARM_CP_NO_RAW, .access = PL2_W, 6014 .writefn = tlbiall_nsnh_write }, 6015 { .name = "TLBIALLNSNHIS", 6016 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6017 .type = ARM_CP_NO_RAW, .access = PL2_W, 6018 .writefn = tlbiall_nsnh_is_write }, 6019 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6020 .type = ARM_CP_NO_RAW, .access = PL2_W, 6021 .writefn = tlbiall_hyp_write }, 6022 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6023 .type = ARM_CP_NO_RAW, .access = PL2_W, 6024 .writefn = tlbiall_hyp_is_write }, 6025 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6026 .type = ARM_CP_NO_RAW, .access = PL2_W, 6027 .writefn = tlbimva_hyp_write }, 6028 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6029 .type = ARM_CP_NO_RAW, .access = PL2_W, 6030 .writefn = tlbimva_hyp_is_write }, 6031 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6032 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6033 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6034 .writefn = tlbi_aa64_alle2_write }, 6035 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6036 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6037 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6038 .writefn = tlbi_aa64_vae2_write }, 6039 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6040 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6041 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6042 .writefn = tlbi_aa64_vae2_write }, 6043 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6044 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6045 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6046 .writefn = tlbi_aa64_alle2is_write }, 6047 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6048 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6049 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6050 .writefn = tlbi_aa64_vae2is_write }, 6051 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6052 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6053 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6054 .writefn = tlbi_aa64_vae2is_write }, 6055 #ifndef CONFIG_USER_ONLY 6056 /* 6057 * Unlike the other EL2-related AT operations, these must 6058 * UNDEF from EL3 if EL2 is not implemented, which is why we 6059 * define them here rather than with the rest of the AT ops. 6060 */ 6061 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6062 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6063 .access = PL2_W, .accessfn = at_s1e2_access, 6064 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6065 .writefn = ats_write64 }, 6066 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6067 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6068 .access = PL2_W, .accessfn = at_s1e2_access, 6069 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6070 .writefn = ats_write64 }, 6071 /* 6072 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6073 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6074 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6075 * to behave as if SCR.NS was 1. 6076 */ 6077 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6078 .access = PL2_W, 6079 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6080 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6081 .access = PL2_W, 6082 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6083 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6084 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6085 /* 6086 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6087 * reset values as IMPDEF. We choose to reset to 3 to comply with 6088 * both ARMv7 and ARMv8. 6089 */ 6090 .access = PL2_RW, .resetvalue = 3, 6091 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6092 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6093 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6094 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6095 .writefn = gt_cntvoff_write, 6096 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6097 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6098 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6099 .writefn = gt_cntvoff_write, 6100 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6101 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6102 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6103 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6104 .type = ARM_CP_IO, .access = PL2_RW, 6105 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6106 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6107 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6108 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6109 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6110 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6111 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6112 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6113 .resetfn = gt_hyp_timer_reset, 6114 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6115 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6116 .type = ARM_CP_IO, 6117 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6118 .access = PL2_RW, 6119 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6120 .resetvalue = 0, 6121 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6122 #endif 6123 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6124 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6125 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6126 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6127 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6128 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6129 .access = PL2_RW, 6130 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6131 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6132 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6133 .access = PL2_RW, 6134 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6135 }; 6136 6137 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6138 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6139 .type = ARM_CP_ALIAS | ARM_CP_IO, 6140 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6141 .access = PL2_RW, 6142 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6143 .writefn = hcr_writehigh }, 6144 }; 6145 6146 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6147 bool isread) 6148 { 6149 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6150 return CP_ACCESS_OK; 6151 } 6152 return CP_ACCESS_TRAP_UNCATEGORIZED; 6153 } 6154 6155 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6156 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6157 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6158 .access = PL2_RW, .accessfn = sel2_access, 6159 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6160 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6161 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6162 .access = PL2_RW, .accessfn = sel2_access, 6163 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6164 }; 6165 6166 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6167 bool isread) 6168 { 6169 /* 6170 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6171 * At Secure EL1 it traps to EL3 or EL2. 6172 */ 6173 if (arm_current_el(env) == 3) { 6174 return CP_ACCESS_OK; 6175 } 6176 if (arm_is_secure_below_el3(env)) { 6177 if (env->cp15.scr_el3 & SCR_EEL2) { 6178 return CP_ACCESS_TRAP_EL2; 6179 } 6180 return CP_ACCESS_TRAP_EL3; 6181 } 6182 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6183 if (isread) { 6184 return CP_ACCESS_OK; 6185 } 6186 return CP_ACCESS_TRAP_UNCATEGORIZED; 6187 } 6188 6189 static const ARMCPRegInfo el3_cp_reginfo[] = { 6190 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6191 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6192 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6193 .resetfn = scr_reset, .writefn = scr_write }, 6194 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6195 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6196 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6197 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6198 .writefn = scr_write }, 6199 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6200 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6201 .access = PL3_RW, .resetvalue = 0, 6202 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6203 { .name = "SDER", 6204 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6205 .access = PL3_RW, .resetvalue = 0, 6206 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6207 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6208 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6209 .writefn = vbar_write, .resetvalue = 0, 6210 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6211 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6212 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6213 .access = PL3_RW, .resetvalue = 0, 6214 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6215 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6216 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6217 .access = PL3_RW, 6218 /* no .writefn needed as this can't cause an ASID change */ 6219 .resetvalue = 0, 6220 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6221 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6222 .type = ARM_CP_ALIAS, 6223 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6224 .access = PL3_RW, 6225 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6226 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6227 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6228 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6229 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6230 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6231 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6232 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6233 .type = ARM_CP_ALIAS, 6234 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6235 .access = PL3_RW, 6236 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6237 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6238 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6239 .access = PL3_RW, .writefn = vbar_write, 6240 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6241 .resetvalue = 0 }, 6242 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6243 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6244 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6245 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6246 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6247 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6248 .access = PL3_RW, .resetvalue = 0, 6249 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6250 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6251 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6252 .access = PL3_RW, .type = ARM_CP_CONST, 6253 .resetvalue = 0 }, 6254 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6255 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6256 .access = PL3_RW, .type = ARM_CP_CONST, 6257 .resetvalue = 0 }, 6258 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6259 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6260 .access = PL3_RW, .type = ARM_CP_CONST, 6261 .resetvalue = 0 }, 6262 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6263 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6264 .access = PL3_W, .type = ARM_CP_NO_RAW, 6265 .writefn = tlbi_aa64_alle3is_write }, 6266 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6267 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6268 .access = PL3_W, .type = ARM_CP_NO_RAW, 6269 .writefn = tlbi_aa64_vae3is_write }, 6270 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6271 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6272 .access = PL3_W, .type = ARM_CP_NO_RAW, 6273 .writefn = tlbi_aa64_vae3is_write }, 6274 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6275 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6276 .access = PL3_W, .type = ARM_CP_NO_RAW, 6277 .writefn = tlbi_aa64_alle3_write }, 6278 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6279 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6280 .access = PL3_W, .type = ARM_CP_NO_RAW, 6281 .writefn = tlbi_aa64_vae3_write }, 6282 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6283 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6284 .access = PL3_W, .type = ARM_CP_NO_RAW, 6285 .writefn = tlbi_aa64_vae3_write }, 6286 }; 6287 6288 #ifndef CONFIG_USER_ONLY 6289 /* Test if system register redirection is to occur in the current state. */ 6290 static bool redirect_for_e2h(CPUARMState *env) 6291 { 6292 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6293 } 6294 6295 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6296 { 6297 CPReadFn *readfn; 6298 6299 if (redirect_for_e2h(env)) { 6300 /* Switch to the saved EL2 version of the register. */ 6301 ri = ri->opaque; 6302 readfn = ri->readfn; 6303 } else { 6304 readfn = ri->orig_readfn; 6305 } 6306 if (readfn == NULL) { 6307 readfn = raw_read; 6308 } 6309 return readfn(env, ri); 6310 } 6311 6312 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6313 uint64_t value) 6314 { 6315 CPWriteFn *writefn; 6316 6317 if (redirect_for_e2h(env)) { 6318 /* Switch to the saved EL2 version of the register. */ 6319 ri = ri->opaque; 6320 writefn = ri->writefn; 6321 } else { 6322 writefn = ri->orig_writefn; 6323 } 6324 if (writefn == NULL) { 6325 writefn = raw_write; 6326 } 6327 writefn(env, ri, value); 6328 } 6329 6330 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6331 { 6332 struct E2HAlias { 6333 uint32_t src_key, dst_key, new_key; 6334 const char *src_name, *dst_name, *new_name; 6335 bool (*feature)(const ARMISARegisters *id); 6336 }; 6337 6338 #define K(op0, op1, crn, crm, op2) \ 6339 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6340 6341 static const struct E2HAlias aliases[] = { 6342 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6343 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6344 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6345 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6346 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6347 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6348 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6349 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6350 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6351 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6352 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6353 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6354 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6355 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6356 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6357 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6358 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6359 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6360 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6361 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6362 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6363 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6364 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6365 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6366 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6367 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6368 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6369 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6370 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6371 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6372 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6373 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6374 6375 /* 6376 * Note that redirection of ZCR is mentioned in the description 6377 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6378 * not in the summary table. 6379 */ 6380 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6381 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6382 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6383 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6384 6385 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6386 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6387 6388 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6389 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6390 isar_feature_aa64_scxtnum }, 6391 6392 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6393 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6394 }; 6395 #undef K 6396 6397 size_t i; 6398 6399 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6400 const struct E2HAlias *a = &aliases[i]; 6401 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6402 bool ok; 6403 6404 if (a->feature && !a->feature(&cpu->isar)) { 6405 continue; 6406 } 6407 6408 src_reg = g_hash_table_lookup(cpu->cp_regs, 6409 (gpointer)(uintptr_t)a->src_key); 6410 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6411 (gpointer)(uintptr_t)a->dst_key); 6412 g_assert(src_reg != NULL); 6413 g_assert(dst_reg != NULL); 6414 6415 /* Cross-compare names to detect typos in the keys. */ 6416 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6417 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6418 6419 /* None of the core system registers use opaque; we will. */ 6420 g_assert(src_reg->opaque == NULL); 6421 6422 /* Create alias before redirection so we dup the right data. */ 6423 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6424 6425 new_reg->name = a->new_name; 6426 new_reg->type |= ARM_CP_ALIAS; 6427 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6428 new_reg->access &= PL2_RW | PL3_RW; 6429 6430 ok = g_hash_table_insert(cpu->cp_regs, 6431 (gpointer)(uintptr_t)a->new_key, new_reg); 6432 g_assert(ok); 6433 6434 src_reg->opaque = dst_reg; 6435 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6436 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6437 if (!src_reg->raw_readfn) { 6438 src_reg->raw_readfn = raw_read; 6439 } 6440 if (!src_reg->raw_writefn) { 6441 src_reg->raw_writefn = raw_write; 6442 } 6443 src_reg->readfn = el2_e2h_read; 6444 src_reg->writefn = el2_e2h_write; 6445 } 6446 } 6447 #endif 6448 6449 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6450 bool isread) 6451 { 6452 int cur_el = arm_current_el(env); 6453 6454 if (cur_el < 2) { 6455 uint64_t hcr = arm_hcr_el2_eff(env); 6456 6457 if (cur_el == 0) { 6458 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6459 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6460 return CP_ACCESS_TRAP_EL2; 6461 } 6462 } else { 6463 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6464 return CP_ACCESS_TRAP; 6465 } 6466 if (hcr & HCR_TID2) { 6467 return CP_ACCESS_TRAP_EL2; 6468 } 6469 } 6470 } else if (hcr & HCR_TID2) { 6471 return CP_ACCESS_TRAP_EL2; 6472 } 6473 } 6474 6475 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6476 return CP_ACCESS_TRAP_EL2; 6477 } 6478 6479 return CP_ACCESS_OK; 6480 } 6481 6482 /* 6483 * Check for traps to RAS registers, which are controlled 6484 * by HCR_EL2.TERR and SCR_EL3.TERR. 6485 */ 6486 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6487 bool isread) 6488 { 6489 int el = arm_current_el(env); 6490 6491 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6492 return CP_ACCESS_TRAP_EL2; 6493 } 6494 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6495 return CP_ACCESS_TRAP_EL3; 6496 } 6497 return CP_ACCESS_OK; 6498 } 6499 6500 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6501 { 6502 int el = arm_current_el(env); 6503 6504 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6505 return env->cp15.vdisr_el2; 6506 } 6507 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6508 return 0; /* RAZ/WI */ 6509 } 6510 return env->cp15.disr_el1; 6511 } 6512 6513 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6514 { 6515 int el = arm_current_el(env); 6516 6517 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6518 env->cp15.vdisr_el2 = val; 6519 return; 6520 } 6521 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6522 return; /* RAZ/WI */ 6523 } 6524 env->cp15.disr_el1 = val; 6525 } 6526 6527 /* 6528 * Minimal RAS implementation with no Error Records. 6529 * Which means that all of the Error Record registers: 6530 * ERXADDR_EL1 6531 * ERXCTLR_EL1 6532 * ERXFR_EL1 6533 * ERXMISC0_EL1 6534 * ERXMISC1_EL1 6535 * ERXMISC2_EL1 6536 * ERXMISC3_EL1 6537 * ERXPFGCDN_EL1 (RASv1p1) 6538 * ERXPFGCTL_EL1 (RASv1p1) 6539 * ERXPFGF_EL1 (RASv1p1) 6540 * ERXSTATUS_EL1 6541 * and 6542 * ERRSELR_EL1 6543 * may generate UNDEFINED, which is the effect we get by not 6544 * listing them at all. 6545 * 6546 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6547 * is higher priority than FGT-to-EL2 so we do not need to list them 6548 * in order to check for an FGT. 6549 */ 6550 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6551 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6552 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6553 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6554 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6555 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6556 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6557 .access = PL1_R, .accessfn = access_terr, 6558 .fgt = FGT_ERRIDR_EL1, 6559 .type = ARM_CP_CONST, .resetvalue = 0 }, 6560 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6561 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6562 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6563 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6564 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6565 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6566 }; 6567 6568 /* 6569 * Return the exception level to which exceptions should be taken 6570 * via SVEAccessTrap. This excludes the check for whether the exception 6571 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6572 * be found by testing 0 < fp_exception_el < sve_exception_el. 6573 * 6574 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6575 * pseudocode does *not* separate out the FP trap checks, but has them 6576 * all in one function. 6577 */ 6578 int sve_exception_el(CPUARMState *env, int el) 6579 { 6580 #ifndef CONFIG_USER_ONLY 6581 if (el <= 1 && !el_is_in_host(env, el)) { 6582 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6583 case 1: 6584 if (el != 0) { 6585 break; 6586 } 6587 /* fall through */ 6588 case 0: 6589 case 2: 6590 return 1; 6591 } 6592 } 6593 6594 if (el <= 2 && arm_is_el2_enabled(env)) { 6595 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6596 if (env->cp15.hcr_el2 & HCR_E2H) { 6597 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6598 case 1: 6599 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6600 break; 6601 } 6602 /* fall through */ 6603 case 0: 6604 case 2: 6605 return 2; 6606 } 6607 } else { 6608 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6609 return 2; 6610 } 6611 } 6612 } 6613 6614 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6615 if (arm_feature(env, ARM_FEATURE_EL3) 6616 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6617 return 3; 6618 } 6619 #endif 6620 return 0; 6621 } 6622 6623 /* 6624 * Return the exception level to which exceptions should be taken for SME. 6625 * C.f. the ARM pseudocode function CheckSMEAccess. 6626 */ 6627 int sme_exception_el(CPUARMState *env, int el) 6628 { 6629 #ifndef CONFIG_USER_ONLY 6630 if (el <= 1 && !el_is_in_host(env, el)) { 6631 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6632 case 1: 6633 if (el != 0) { 6634 break; 6635 } 6636 /* fall through */ 6637 case 0: 6638 case 2: 6639 return 1; 6640 } 6641 } 6642 6643 if (el <= 2 && arm_is_el2_enabled(env)) { 6644 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6645 if (env->cp15.hcr_el2 & HCR_E2H) { 6646 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6647 case 1: 6648 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6649 break; 6650 } 6651 /* fall through */ 6652 case 0: 6653 case 2: 6654 return 2; 6655 } 6656 } else { 6657 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6658 return 2; 6659 } 6660 } 6661 } 6662 6663 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6664 if (arm_feature(env, ARM_FEATURE_EL3) 6665 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6666 return 3; 6667 } 6668 #endif 6669 return 0; 6670 } 6671 6672 /* 6673 * Given that SVE is enabled, return the vector length for EL. 6674 */ 6675 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6676 { 6677 ARMCPU *cpu = env_archcpu(env); 6678 uint64_t *cr = env->vfp.zcr_el; 6679 uint32_t map = cpu->sve_vq.map; 6680 uint32_t len = ARM_MAX_VQ - 1; 6681 6682 if (sm) { 6683 cr = env->vfp.smcr_el; 6684 map = cpu->sme_vq.map; 6685 } 6686 6687 if (el <= 1 && !el_is_in_host(env, el)) { 6688 len = MIN(len, 0xf & (uint32_t)cr[1]); 6689 } 6690 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6691 len = MIN(len, 0xf & (uint32_t)cr[2]); 6692 } 6693 if (arm_feature(env, ARM_FEATURE_EL3)) { 6694 len = MIN(len, 0xf & (uint32_t)cr[3]); 6695 } 6696 6697 map &= MAKE_64BIT_MASK(0, len + 1); 6698 if (map != 0) { 6699 return 31 - clz32(map); 6700 } 6701 6702 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6703 assert(sm); 6704 return ctz32(cpu->sme_vq.map); 6705 } 6706 6707 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6708 { 6709 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6710 } 6711 6712 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6713 uint64_t value) 6714 { 6715 int cur_el = arm_current_el(env); 6716 int old_len = sve_vqm1_for_el(env, cur_el); 6717 int new_len; 6718 6719 /* Bits other than [3:0] are RAZ/WI. */ 6720 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6721 raw_write(env, ri, value & 0xf); 6722 6723 /* 6724 * Because we arrived here, we know both FP and SVE are enabled; 6725 * otherwise we would have trapped access to the ZCR_ELn register. 6726 */ 6727 new_len = sve_vqm1_for_el(env, cur_el); 6728 if (new_len < old_len) { 6729 aarch64_sve_narrow_vq(env, new_len + 1); 6730 } 6731 } 6732 6733 static const ARMCPRegInfo zcr_reginfo[] = { 6734 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6735 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6736 .access = PL1_RW, .type = ARM_CP_SVE, 6737 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6738 .writefn = zcr_write, .raw_writefn = raw_write }, 6739 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6740 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6741 .access = PL2_RW, .type = ARM_CP_SVE, 6742 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6743 .writefn = zcr_write, .raw_writefn = raw_write }, 6744 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6745 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6746 .access = PL3_RW, .type = ARM_CP_SVE, 6747 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6748 .writefn = zcr_write, .raw_writefn = raw_write }, 6749 }; 6750 6751 #ifdef TARGET_AARCH64 6752 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6753 bool isread) 6754 { 6755 int el = arm_current_el(env); 6756 6757 if (el == 0) { 6758 uint64_t sctlr = arm_sctlr(env, el); 6759 if (!(sctlr & SCTLR_EnTP2)) { 6760 return CP_ACCESS_TRAP; 6761 } 6762 } 6763 /* TODO: FEAT_FGT */ 6764 if (el < 3 6765 && arm_feature(env, ARM_FEATURE_EL3) 6766 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6767 return CP_ACCESS_TRAP_EL3; 6768 } 6769 return CP_ACCESS_OK; 6770 } 6771 6772 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6773 bool isread) 6774 { 6775 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6776 if (arm_current_el(env) < 3 6777 && arm_feature(env, ARM_FEATURE_EL3) 6778 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6779 return CP_ACCESS_TRAP_EL3; 6780 } 6781 return CP_ACCESS_OK; 6782 } 6783 6784 /* ResetSVEState */ 6785 static void arm_reset_sve_state(CPUARMState *env) 6786 { 6787 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6788 /* Recall that FFR is stored as pregs[16]. */ 6789 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6790 vfp_set_fpcr(env, 0x0800009f); 6791 } 6792 6793 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6794 { 6795 uint64_t change = (env->svcr ^ new) & mask; 6796 6797 if (change == 0) { 6798 return; 6799 } 6800 env->svcr ^= change; 6801 6802 if (change & R_SVCR_SM_MASK) { 6803 arm_reset_sve_state(env); 6804 } 6805 6806 /* 6807 * ResetSMEState. 6808 * 6809 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6810 * on enable: while disabled, the storage is inaccessible and the 6811 * value does not matter. We're not saving the storage in vmstate 6812 * when disabled either. 6813 */ 6814 if (change & new & R_SVCR_ZA_MASK) { 6815 memset(env->zarray, 0, sizeof(env->zarray)); 6816 } 6817 6818 if (tcg_enabled()) { 6819 arm_rebuild_hflags(env); 6820 } 6821 } 6822 6823 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6824 uint64_t value) 6825 { 6826 aarch64_set_svcr(env, value, -1); 6827 } 6828 6829 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6830 uint64_t value) 6831 { 6832 int cur_el = arm_current_el(env); 6833 int old_len = sve_vqm1_for_el(env, cur_el); 6834 int new_len; 6835 6836 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6837 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6838 raw_write(env, ri, value); 6839 6840 /* 6841 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6842 * when SVL is widened (old values kept, or zeros). Choose to keep the 6843 * current values for simplicity. But for QEMU internals, we must still 6844 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6845 * above aarch64_sve_narrow_vq. 6846 */ 6847 new_len = sve_vqm1_for_el(env, cur_el); 6848 if (new_len < old_len) { 6849 aarch64_sve_narrow_vq(env, new_len + 1); 6850 } 6851 } 6852 6853 static const ARMCPRegInfo sme_reginfo[] = { 6854 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6855 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6856 .access = PL0_RW, .accessfn = access_tpidr2, 6857 .fgt = FGT_NTPIDR2_EL0, 6858 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6859 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6860 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6861 .access = PL0_RW, .type = ARM_CP_SME, 6862 .fieldoffset = offsetof(CPUARMState, svcr), 6863 .writefn = svcr_write, .raw_writefn = raw_write }, 6864 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6865 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6866 .access = PL1_RW, .type = ARM_CP_SME, 6867 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6868 .writefn = smcr_write, .raw_writefn = raw_write }, 6869 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6870 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6871 .access = PL2_RW, .type = ARM_CP_SME, 6872 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6873 .writefn = smcr_write, .raw_writefn = raw_write }, 6874 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6875 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6876 .access = PL3_RW, .type = ARM_CP_SME, 6877 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6878 .writefn = smcr_write, .raw_writefn = raw_write }, 6879 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6880 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6881 .access = PL1_R, .accessfn = access_aa64_tid1, 6882 /* 6883 * IMPLEMENTOR = 0 (software) 6884 * REVISION = 0 (implementation defined) 6885 * SMPS = 0 (no streaming execution priority in QEMU) 6886 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6887 */ 6888 .type = ARM_CP_CONST, .resetvalue = 0, }, 6889 /* 6890 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6891 */ 6892 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6893 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6894 .access = PL1_RW, .accessfn = access_esm, 6895 .fgt = FGT_NSMPRI_EL1, 6896 .type = ARM_CP_CONST, .resetvalue = 0 }, 6897 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6898 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6899 .access = PL2_RW, .accessfn = access_esm, 6900 .type = ARM_CP_CONST, .resetvalue = 0 }, 6901 }; 6902 #endif /* TARGET_AARCH64 */ 6903 6904 static void define_pmu_regs(ARMCPU *cpu) 6905 { 6906 /* 6907 * v7 performance monitor control register: same implementor 6908 * field as main ID register, and we implement four counters in 6909 * addition to the cycle count register. 6910 */ 6911 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6912 ARMCPRegInfo pmcr = { 6913 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6914 .access = PL0_RW, 6915 .fgt = FGT_PMCR_EL0, 6916 .type = ARM_CP_IO | ARM_CP_ALIAS, 6917 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6918 .accessfn = pmreg_access, .writefn = pmcr_write, 6919 .raw_writefn = raw_write, 6920 }; 6921 ARMCPRegInfo pmcr64 = { 6922 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6923 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6924 .access = PL0_RW, .accessfn = pmreg_access, 6925 .fgt = FGT_PMCR_EL0, 6926 .type = ARM_CP_IO, 6927 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6928 .resetvalue = cpu->isar.reset_pmcr_el0, 6929 .writefn = pmcr_write, .raw_writefn = raw_write, 6930 }; 6931 6932 define_one_arm_cp_reg(cpu, &pmcr); 6933 define_one_arm_cp_reg(cpu, &pmcr64); 6934 for (i = 0; i < pmcrn; i++) { 6935 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6936 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6937 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6938 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6939 ARMCPRegInfo pmev_regs[] = { 6940 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6941 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6942 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6943 .fgt = FGT_PMEVCNTRN_EL0, 6944 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6945 .accessfn = pmreg_access_xevcntr }, 6946 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6947 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6948 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6949 .type = ARM_CP_IO, 6950 .fgt = FGT_PMEVCNTRN_EL0, 6951 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6952 .raw_readfn = pmevcntr_rawread, 6953 .raw_writefn = pmevcntr_rawwrite }, 6954 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6955 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6956 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6957 .fgt = FGT_PMEVTYPERN_EL0, 6958 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6959 .accessfn = pmreg_access }, 6960 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6961 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6962 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6963 .fgt = FGT_PMEVTYPERN_EL0, 6964 .type = ARM_CP_IO, 6965 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6966 .raw_writefn = pmevtyper_rawwrite }, 6967 }; 6968 define_arm_cp_regs(cpu, pmev_regs); 6969 g_free(pmevcntr_name); 6970 g_free(pmevcntr_el0_name); 6971 g_free(pmevtyper_name); 6972 g_free(pmevtyper_el0_name); 6973 } 6974 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 6975 ARMCPRegInfo v81_pmu_regs[] = { 6976 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6977 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6978 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6979 .fgt = FGT_PMCEIDN_EL0, 6980 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6981 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6982 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6983 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6984 .fgt = FGT_PMCEIDN_EL0, 6985 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6986 }; 6987 define_arm_cp_regs(cpu, v81_pmu_regs); 6988 } 6989 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 6990 static const ARMCPRegInfo v84_pmmir = { 6991 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6992 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6993 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6994 .fgt = FGT_PMMIR_EL1, 6995 .resetvalue = 0 6996 }; 6997 define_one_arm_cp_reg(cpu, &v84_pmmir); 6998 } 6999 } 7000 7001 #ifndef CONFIG_USER_ONLY 7002 /* 7003 * We don't know until after realize whether there's a GICv3 7004 * attached, and that is what registers the gicv3 sysregs. 7005 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7006 * at runtime. 7007 */ 7008 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7009 { 7010 ARMCPU *cpu = env_archcpu(env); 7011 uint64_t pfr1 = cpu->isar.id_pfr1; 7012 7013 if (env->gicv3state) { 7014 pfr1 |= 1 << 28; 7015 } 7016 return pfr1; 7017 } 7018 7019 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7020 { 7021 ARMCPU *cpu = env_archcpu(env); 7022 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7023 7024 if (env->gicv3state) { 7025 pfr0 |= 1 << 24; 7026 } 7027 return pfr0; 7028 } 7029 #endif 7030 7031 /* 7032 * Shared logic between LORID and the rest of the LOR* registers. 7033 * Secure state exclusion has already been dealt with. 7034 */ 7035 static CPAccessResult access_lor_ns(CPUARMState *env, 7036 const ARMCPRegInfo *ri, bool isread) 7037 { 7038 int el = arm_current_el(env); 7039 7040 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7041 return CP_ACCESS_TRAP_EL2; 7042 } 7043 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7044 return CP_ACCESS_TRAP_EL3; 7045 } 7046 return CP_ACCESS_OK; 7047 } 7048 7049 static CPAccessResult access_lor_other(CPUARMState *env, 7050 const ARMCPRegInfo *ri, bool isread) 7051 { 7052 if (arm_is_secure_below_el3(env)) { 7053 /* Access denied in secure mode. */ 7054 return CP_ACCESS_TRAP; 7055 } 7056 return access_lor_ns(env, ri, isread); 7057 } 7058 7059 /* 7060 * A trivial implementation of ARMv8.1-LOR leaves all of these 7061 * registers fixed at 0, which indicates that there are zero 7062 * supported Limited Ordering regions. 7063 */ 7064 static const ARMCPRegInfo lor_reginfo[] = { 7065 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7066 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7067 .access = PL1_RW, .accessfn = access_lor_other, 7068 .fgt = FGT_LORSA_EL1, 7069 .type = ARM_CP_CONST, .resetvalue = 0 }, 7070 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7071 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7072 .access = PL1_RW, .accessfn = access_lor_other, 7073 .fgt = FGT_LOREA_EL1, 7074 .type = ARM_CP_CONST, .resetvalue = 0 }, 7075 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7076 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7077 .access = PL1_RW, .accessfn = access_lor_other, 7078 .fgt = FGT_LORN_EL1, 7079 .type = ARM_CP_CONST, .resetvalue = 0 }, 7080 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7081 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7082 .access = PL1_RW, .accessfn = access_lor_other, 7083 .fgt = FGT_LORC_EL1, 7084 .type = ARM_CP_CONST, .resetvalue = 0 }, 7085 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7086 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7087 .access = PL1_R, .accessfn = access_lor_ns, 7088 .fgt = FGT_LORID_EL1, 7089 .type = ARM_CP_CONST, .resetvalue = 0 }, 7090 }; 7091 7092 #ifdef TARGET_AARCH64 7093 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7094 bool isread) 7095 { 7096 int el = arm_current_el(env); 7097 7098 if (el < 2 && 7099 arm_is_el2_enabled(env) && 7100 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7101 return CP_ACCESS_TRAP_EL2; 7102 } 7103 if (el < 3 && 7104 arm_feature(env, ARM_FEATURE_EL3) && 7105 !(env->cp15.scr_el3 & SCR_APK)) { 7106 return CP_ACCESS_TRAP_EL3; 7107 } 7108 return CP_ACCESS_OK; 7109 } 7110 7111 static const ARMCPRegInfo pauth_reginfo[] = { 7112 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7113 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7114 .access = PL1_RW, .accessfn = access_pauth, 7115 .fgt = FGT_APDAKEY, 7116 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7117 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7118 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7119 .access = PL1_RW, .accessfn = access_pauth, 7120 .fgt = FGT_APDAKEY, 7121 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7122 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7123 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7124 .access = PL1_RW, .accessfn = access_pauth, 7125 .fgt = FGT_APDBKEY, 7126 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7127 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7128 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7129 .access = PL1_RW, .accessfn = access_pauth, 7130 .fgt = FGT_APDBKEY, 7131 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7132 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7133 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7134 .access = PL1_RW, .accessfn = access_pauth, 7135 .fgt = FGT_APGAKEY, 7136 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7137 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7138 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7139 .access = PL1_RW, .accessfn = access_pauth, 7140 .fgt = FGT_APGAKEY, 7141 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7142 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7143 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7144 .access = PL1_RW, .accessfn = access_pauth, 7145 .fgt = FGT_APIAKEY, 7146 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7147 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7148 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7149 .access = PL1_RW, .accessfn = access_pauth, 7150 .fgt = FGT_APIAKEY, 7151 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7152 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7153 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7154 .access = PL1_RW, .accessfn = access_pauth, 7155 .fgt = FGT_APIBKEY, 7156 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7157 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7158 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7159 .access = PL1_RW, .accessfn = access_pauth, 7160 .fgt = FGT_APIBKEY, 7161 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7162 }; 7163 7164 static const ARMCPRegInfo tlbirange_reginfo[] = { 7165 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7166 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7167 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7168 .fgt = FGT_TLBIRVAE1IS, 7169 .writefn = tlbi_aa64_rvae1is_write }, 7170 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7171 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7172 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7173 .fgt = FGT_TLBIRVAAE1IS, 7174 .writefn = tlbi_aa64_rvae1is_write }, 7175 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7176 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7177 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7178 .fgt = FGT_TLBIRVALE1IS, 7179 .writefn = tlbi_aa64_rvae1is_write }, 7180 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7181 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7182 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7183 .fgt = FGT_TLBIRVAALE1IS, 7184 .writefn = tlbi_aa64_rvae1is_write }, 7185 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7186 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7187 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7188 .fgt = FGT_TLBIRVAE1OS, 7189 .writefn = tlbi_aa64_rvae1is_write }, 7190 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7191 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7192 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7193 .fgt = FGT_TLBIRVAAE1OS, 7194 .writefn = tlbi_aa64_rvae1is_write }, 7195 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7196 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7197 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7198 .fgt = FGT_TLBIRVALE1OS, 7199 .writefn = tlbi_aa64_rvae1is_write }, 7200 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7201 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7202 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7203 .fgt = FGT_TLBIRVAALE1OS, 7204 .writefn = tlbi_aa64_rvae1is_write }, 7205 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7206 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7207 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7208 .fgt = FGT_TLBIRVAE1, 7209 .writefn = tlbi_aa64_rvae1_write }, 7210 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7211 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7212 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7213 .fgt = FGT_TLBIRVAAE1, 7214 .writefn = tlbi_aa64_rvae1_write }, 7215 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7216 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7217 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7218 .fgt = FGT_TLBIRVALE1, 7219 .writefn = tlbi_aa64_rvae1_write }, 7220 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7221 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7222 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7223 .fgt = FGT_TLBIRVAALE1, 7224 .writefn = tlbi_aa64_rvae1_write }, 7225 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7226 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7227 .access = PL2_W, .type = ARM_CP_NO_RAW, 7228 .writefn = tlbi_aa64_ripas2e1is_write }, 7229 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7230 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7231 .access = PL2_W, .type = ARM_CP_NO_RAW, 7232 .writefn = tlbi_aa64_ripas2e1is_write }, 7233 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7234 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7235 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7236 .writefn = tlbi_aa64_rvae2is_write }, 7237 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7238 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7239 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7240 .writefn = tlbi_aa64_rvae2is_write }, 7241 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7242 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7243 .access = PL2_W, .type = ARM_CP_NO_RAW, 7244 .writefn = tlbi_aa64_ripas2e1_write }, 7245 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7246 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7247 .access = PL2_W, .type = ARM_CP_NO_RAW, 7248 .writefn = tlbi_aa64_ripas2e1_write }, 7249 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7250 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7251 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7252 .writefn = tlbi_aa64_rvae2is_write }, 7253 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7254 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7255 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7256 .writefn = tlbi_aa64_rvae2is_write }, 7257 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7258 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7259 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7260 .writefn = tlbi_aa64_rvae2_write }, 7261 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7262 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7263 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7264 .writefn = tlbi_aa64_rvae2_write }, 7265 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7266 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7267 .access = PL3_W, .type = ARM_CP_NO_RAW, 7268 .writefn = tlbi_aa64_rvae3is_write }, 7269 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7270 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7271 .access = PL3_W, .type = ARM_CP_NO_RAW, 7272 .writefn = tlbi_aa64_rvae3is_write }, 7273 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7274 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7275 .access = PL3_W, .type = ARM_CP_NO_RAW, 7276 .writefn = tlbi_aa64_rvae3is_write }, 7277 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7278 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7279 .access = PL3_W, .type = ARM_CP_NO_RAW, 7280 .writefn = tlbi_aa64_rvae3is_write }, 7281 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7282 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7283 .access = PL3_W, .type = ARM_CP_NO_RAW, 7284 .writefn = tlbi_aa64_rvae3_write }, 7285 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7286 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7287 .access = PL3_W, .type = ARM_CP_NO_RAW, 7288 .writefn = tlbi_aa64_rvae3_write }, 7289 }; 7290 7291 static const ARMCPRegInfo tlbios_reginfo[] = { 7292 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7293 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7294 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7295 .fgt = FGT_TLBIVMALLE1OS, 7296 .writefn = tlbi_aa64_vmalle1is_write }, 7297 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7298 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7299 .fgt = FGT_TLBIVAE1OS, 7300 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7301 .writefn = tlbi_aa64_vae1is_write }, 7302 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7303 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7304 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7305 .fgt = FGT_TLBIASIDE1OS, 7306 .writefn = tlbi_aa64_vmalle1is_write }, 7307 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7308 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7309 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7310 .fgt = FGT_TLBIVAAE1OS, 7311 .writefn = tlbi_aa64_vae1is_write }, 7312 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7313 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7314 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7315 .fgt = FGT_TLBIVALE1OS, 7316 .writefn = tlbi_aa64_vae1is_write }, 7317 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7318 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7319 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7320 .fgt = FGT_TLBIVAALE1OS, 7321 .writefn = tlbi_aa64_vae1is_write }, 7322 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7323 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7324 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7325 .writefn = tlbi_aa64_alle2is_write }, 7326 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7327 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7328 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7329 .writefn = tlbi_aa64_vae2is_write }, 7330 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7331 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7332 .access = PL2_W, .type = ARM_CP_NO_RAW, 7333 .writefn = tlbi_aa64_alle1is_write }, 7334 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7335 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7336 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7337 .writefn = tlbi_aa64_vae2is_write }, 7338 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7339 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7340 .access = PL2_W, .type = ARM_CP_NO_RAW, 7341 .writefn = tlbi_aa64_alle1is_write }, 7342 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7343 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7344 .access = PL2_W, .type = ARM_CP_NOP }, 7345 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7346 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7347 .access = PL2_W, .type = ARM_CP_NOP }, 7348 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7349 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7350 .access = PL2_W, .type = ARM_CP_NOP }, 7351 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7352 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7353 .access = PL2_W, .type = ARM_CP_NOP }, 7354 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7355 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7356 .access = PL3_W, .type = ARM_CP_NO_RAW, 7357 .writefn = tlbi_aa64_alle3is_write }, 7358 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7359 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7360 .access = PL3_W, .type = ARM_CP_NO_RAW, 7361 .writefn = tlbi_aa64_vae3is_write }, 7362 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7363 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7364 .access = PL3_W, .type = ARM_CP_NO_RAW, 7365 .writefn = tlbi_aa64_vae3is_write }, 7366 }; 7367 7368 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7369 { 7370 Error *err = NULL; 7371 uint64_t ret; 7372 7373 /* Success sets NZCV = 0000. */ 7374 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7375 7376 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7377 /* 7378 * ??? Failed, for unknown reasons in the crypto subsystem. 7379 * The best we can do is log the reason and return the 7380 * timed-out indication to the guest. There is no reason 7381 * we know to expect this failure to be transitory, so the 7382 * guest may well hang retrying the operation. 7383 */ 7384 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7385 ri->name, error_get_pretty(err)); 7386 error_free(err); 7387 7388 env->ZF = 0; /* NZCF = 0100 */ 7389 return 0; 7390 } 7391 return ret; 7392 } 7393 7394 /* We do not support re-seeding, so the two registers operate the same. */ 7395 static const ARMCPRegInfo rndr_reginfo[] = { 7396 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7397 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7398 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7399 .access = PL0_R, .readfn = rndr_readfn }, 7400 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7401 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7402 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7403 .access = PL0_R, .readfn = rndr_readfn }, 7404 }; 7405 7406 #ifndef CONFIG_USER_ONLY 7407 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7408 uint64_t value) 7409 { 7410 ARMCPU *cpu = env_archcpu(env); 7411 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7412 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7413 uint64_t vaddr_in = (uint64_t) value; 7414 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7415 void *haddr; 7416 int mem_idx = cpu_mmu_index(env, false); 7417 7418 /* This won't be crossing page boundaries */ 7419 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7420 if (haddr) { 7421 7422 ram_addr_t offset; 7423 MemoryRegion *mr; 7424 7425 /* RCU lock is already being held */ 7426 mr = memory_region_from_host(haddr, &offset); 7427 7428 if (mr) { 7429 memory_region_writeback(mr, offset, dline_size); 7430 } 7431 } 7432 } 7433 7434 static const ARMCPRegInfo dcpop_reg[] = { 7435 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7436 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7437 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7438 .fgt = FGT_DCCVAP, 7439 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7440 }; 7441 7442 static const ARMCPRegInfo dcpodp_reg[] = { 7443 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7444 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7445 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7446 .fgt = FGT_DCCVADP, 7447 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7448 }; 7449 #endif /*CONFIG_USER_ONLY*/ 7450 7451 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7452 bool isread) 7453 { 7454 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7455 return CP_ACCESS_TRAP_EL2; 7456 } 7457 7458 return CP_ACCESS_OK; 7459 } 7460 7461 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7462 bool isread) 7463 { 7464 int el = arm_current_el(env); 7465 7466 if (el < 2 && arm_is_el2_enabled(env)) { 7467 uint64_t hcr = arm_hcr_el2_eff(env); 7468 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7469 return CP_ACCESS_TRAP_EL2; 7470 } 7471 } 7472 if (el < 3 && 7473 arm_feature(env, ARM_FEATURE_EL3) && 7474 !(env->cp15.scr_el3 & SCR_ATA)) { 7475 return CP_ACCESS_TRAP_EL3; 7476 } 7477 return CP_ACCESS_OK; 7478 } 7479 7480 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7481 { 7482 return env->pstate & PSTATE_TCO; 7483 } 7484 7485 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7486 { 7487 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7488 } 7489 7490 static const ARMCPRegInfo mte_reginfo[] = { 7491 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7492 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7493 .access = PL1_RW, .accessfn = access_mte, 7494 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7495 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7496 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7497 .access = PL1_RW, .accessfn = access_mte, 7498 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7499 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7500 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7501 .access = PL2_RW, .accessfn = access_mte, 7502 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7503 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7504 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7505 .access = PL3_RW, 7506 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7507 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7508 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7509 .access = PL1_RW, .accessfn = access_mte, 7510 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7511 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7512 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7513 .access = PL1_RW, .accessfn = access_mte, 7514 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7515 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7516 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7517 .access = PL1_R, .accessfn = access_aa64_tid5, 7518 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7519 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7520 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7521 .type = ARM_CP_NO_RAW, 7522 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7523 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7524 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7525 .type = ARM_CP_NOP, .access = PL1_W, 7526 .fgt = FGT_DCIVAC, 7527 .accessfn = aa64_cacheop_poc_access }, 7528 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7529 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7530 .fgt = FGT_DCISW, 7531 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7532 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7533 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7534 .type = ARM_CP_NOP, .access = PL1_W, 7535 .fgt = FGT_DCIVAC, 7536 .accessfn = aa64_cacheop_poc_access }, 7537 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7538 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7539 .fgt = FGT_DCISW, 7540 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7541 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7542 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7543 .fgt = FGT_DCCSW, 7544 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7545 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7546 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7547 .fgt = FGT_DCCSW, 7548 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7549 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7550 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7551 .fgt = FGT_DCCISW, 7552 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7553 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7554 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7555 .fgt = FGT_DCCISW, 7556 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7557 }; 7558 7559 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7560 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7561 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7562 .type = ARM_CP_CONST, .access = PL0_RW, }, 7563 }; 7564 7565 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7566 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7567 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7568 .type = ARM_CP_NOP, .access = PL0_W, 7569 .fgt = FGT_DCCVAC, 7570 .accessfn = aa64_cacheop_poc_access }, 7571 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7572 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7573 .type = ARM_CP_NOP, .access = PL0_W, 7574 .fgt = FGT_DCCVAC, 7575 .accessfn = aa64_cacheop_poc_access }, 7576 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7577 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7578 .type = ARM_CP_NOP, .access = PL0_W, 7579 .fgt = FGT_DCCVAP, 7580 .accessfn = aa64_cacheop_poc_access }, 7581 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7582 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7583 .type = ARM_CP_NOP, .access = PL0_W, 7584 .fgt = FGT_DCCVAP, 7585 .accessfn = aa64_cacheop_poc_access }, 7586 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7587 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7588 .type = ARM_CP_NOP, .access = PL0_W, 7589 .fgt = FGT_DCCVADP, 7590 .accessfn = aa64_cacheop_poc_access }, 7591 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7592 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7593 .type = ARM_CP_NOP, .access = PL0_W, 7594 .fgt = FGT_DCCVADP, 7595 .accessfn = aa64_cacheop_poc_access }, 7596 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7597 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7598 .type = ARM_CP_NOP, .access = PL0_W, 7599 .fgt = FGT_DCCIVAC, 7600 .accessfn = aa64_cacheop_poc_access }, 7601 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7602 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7603 .type = ARM_CP_NOP, .access = PL0_W, 7604 .fgt = FGT_DCCIVAC, 7605 .accessfn = aa64_cacheop_poc_access }, 7606 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7607 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7608 .access = PL0_W, .type = ARM_CP_DC_GVA, 7609 #ifndef CONFIG_USER_ONLY 7610 /* Avoid overhead of an access check that always passes in user-mode */ 7611 .accessfn = aa64_zva_access, 7612 .fgt = FGT_DCZVA, 7613 #endif 7614 }, 7615 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7616 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7617 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7618 #ifndef CONFIG_USER_ONLY 7619 /* Avoid overhead of an access check that always passes in user-mode */ 7620 .accessfn = aa64_zva_access, 7621 .fgt = FGT_DCZVA, 7622 #endif 7623 }, 7624 }; 7625 7626 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7627 bool isread) 7628 { 7629 uint64_t hcr = arm_hcr_el2_eff(env); 7630 int el = arm_current_el(env); 7631 7632 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7633 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7634 if (hcr & HCR_TGE) { 7635 return CP_ACCESS_TRAP_EL2; 7636 } 7637 return CP_ACCESS_TRAP; 7638 } 7639 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7640 return CP_ACCESS_TRAP_EL2; 7641 } 7642 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7643 return CP_ACCESS_TRAP_EL2; 7644 } 7645 if (el < 3 7646 && arm_feature(env, ARM_FEATURE_EL3) 7647 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7648 return CP_ACCESS_TRAP_EL3; 7649 } 7650 return CP_ACCESS_OK; 7651 } 7652 7653 static const ARMCPRegInfo scxtnum_reginfo[] = { 7654 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7655 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7656 .access = PL0_RW, .accessfn = access_scxtnum, 7657 .fgt = FGT_SCXTNUM_EL0, 7658 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7659 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7660 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7661 .access = PL1_RW, .accessfn = access_scxtnum, 7662 .fgt = FGT_SCXTNUM_EL1, 7663 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7664 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7665 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7666 .access = PL2_RW, .accessfn = access_scxtnum, 7667 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7668 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7669 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7670 .access = PL3_RW, 7671 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7672 }; 7673 7674 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7675 bool isread) 7676 { 7677 if (arm_current_el(env) == 2 && 7678 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7679 return CP_ACCESS_TRAP_EL3; 7680 } 7681 return CP_ACCESS_OK; 7682 } 7683 7684 static const ARMCPRegInfo fgt_reginfo[] = { 7685 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7686 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7687 .access = PL2_RW, .accessfn = access_fgt, 7688 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7689 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7690 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7691 .access = PL2_RW, .accessfn = access_fgt, 7692 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7693 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7694 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7695 .access = PL2_RW, .accessfn = access_fgt, 7696 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7697 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7698 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7699 .access = PL2_RW, .accessfn = access_fgt, 7700 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7701 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7702 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7703 .access = PL2_RW, .accessfn = access_fgt, 7704 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7705 }; 7706 #endif /* TARGET_AARCH64 */ 7707 7708 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7709 bool isread) 7710 { 7711 int el = arm_current_el(env); 7712 7713 if (el == 0) { 7714 uint64_t sctlr = arm_sctlr(env, el); 7715 if (!(sctlr & SCTLR_EnRCTX)) { 7716 return CP_ACCESS_TRAP; 7717 } 7718 } else if (el == 1) { 7719 uint64_t hcr = arm_hcr_el2_eff(env); 7720 if (hcr & HCR_NV) { 7721 return CP_ACCESS_TRAP_EL2; 7722 } 7723 } 7724 return CP_ACCESS_OK; 7725 } 7726 7727 static const ARMCPRegInfo predinv_reginfo[] = { 7728 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7729 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7730 .fgt = FGT_CFPRCTX, 7731 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7732 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7733 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7734 .fgt = FGT_DVPRCTX, 7735 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7736 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7737 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7738 .fgt = FGT_CPPRCTX, 7739 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7740 /* 7741 * Note the AArch32 opcodes have a different OPC1. 7742 */ 7743 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7744 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7745 .fgt = FGT_CFPRCTX, 7746 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7747 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7748 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7749 .fgt = FGT_DVPRCTX, 7750 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7751 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7752 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7753 .fgt = FGT_CPPRCTX, 7754 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7755 }; 7756 7757 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7758 { 7759 /* Read the high 32 bits of the current CCSIDR */ 7760 return extract64(ccsidr_read(env, ri), 32, 32); 7761 } 7762 7763 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7764 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7765 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7766 .access = PL1_R, 7767 .accessfn = access_tid4, 7768 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7769 }; 7770 7771 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7772 bool isread) 7773 { 7774 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7775 return CP_ACCESS_TRAP_EL2; 7776 } 7777 7778 return CP_ACCESS_OK; 7779 } 7780 7781 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7782 bool isread) 7783 { 7784 if (arm_feature(env, ARM_FEATURE_V8)) { 7785 return access_aa64_tid3(env, ri, isread); 7786 } 7787 7788 return CP_ACCESS_OK; 7789 } 7790 7791 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7792 bool isread) 7793 { 7794 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7795 return CP_ACCESS_TRAP_EL2; 7796 } 7797 7798 return CP_ACCESS_OK; 7799 } 7800 7801 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7802 const ARMCPRegInfo *ri, bool isread) 7803 { 7804 /* 7805 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7806 * in v7A, not in v8A. 7807 */ 7808 if (!arm_feature(env, ARM_FEATURE_V8) && 7809 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7810 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7811 return CP_ACCESS_TRAP_EL2; 7812 } 7813 return CP_ACCESS_OK; 7814 } 7815 7816 static const ARMCPRegInfo jazelle_regs[] = { 7817 { .name = "JIDR", 7818 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7819 .access = PL1_R, .accessfn = access_jazelle, 7820 .type = ARM_CP_CONST, .resetvalue = 0 }, 7821 { .name = "JOSCR", 7822 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7823 .accessfn = access_joscr_jmcr, 7824 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7825 { .name = "JMCR", 7826 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7827 .accessfn = access_joscr_jmcr, 7828 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7829 }; 7830 7831 static const ARMCPRegInfo contextidr_el2 = { 7832 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7833 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7834 .access = PL2_RW, 7835 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7836 }; 7837 7838 static const ARMCPRegInfo vhe_reginfo[] = { 7839 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7840 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7841 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7842 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7843 #ifndef CONFIG_USER_ONLY 7844 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7845 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7846 .fieldoffset = 7847 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7848 .type = ARM_CP_IO, .access = PL2_RW, 7849 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7850 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7851 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7852 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7853 .resetfn = gt_hv_timer_reset, 7854 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7855 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7856 .type = ARM_CP_IO, 7857 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7858 .access = PL2_RW, 7859 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7860 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7861 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7862 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7863 .type = ARM_CP_IO | ARM_CP_ALIAS, 7864 .access = PL2_RW, .accessfn = e2h_access, 7865 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7866 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7867 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7868 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7869 .type = ARM_CP_IO | ARM_CP_ALIAS, 7870 .access = PL2_RW, .accessfn = e2h_access, 7871 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7872 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7873 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7874 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7875 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7876 .access = PL2_RW, .accessfn = e2h_access, 7877 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7878 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7879 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7880 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7881 .access = PL2_RW, .accessfn = e2h_access, 7882 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7883 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7884 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7885 .type = ARM_CP_IO | ARM_CP_ALIAS, 7886 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7887 .access = PL2_RW, .accessfn = e2h_access, 7888 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7889 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7890 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7891 .type = ARM_CP_IO | ARM_CP_ALIAS, 7892 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7893 .access = PL2_RW, .accessfn = e2h_access, 7894 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7895 #endif 7896 }; 7897 7898 #ifndef CONFIG_USER_ONLY 7899 static const ARMCPRegInfo ats1e1_reginfo[] = { 7900 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 7901 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7902 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7903 .fgt = FGT_ATS1E1RP, 7904 .writefn = ats_write64 }, 7905 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 7906 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7907 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7908 .fgt = FGT_ATS1E1WP, 7909 .writefn = ats_write64 }, 7910 }; 7911 7912 static const ARMCPRegInfo ats1cp_reginfo[] = { 7913 { .name = "ATS1CPRP", 7914 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7915 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7916 .writefn = ats_write }, 7917 { .name = "ATS1CPWP", 7918 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7919 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7920 .writefn = ats_write }, 7921 }; 7922 #endif 7923 7924 /* 7925 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7926 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7927 * is non-zero, which is never for ARMv7, optionally in ARMv8 7928 * and mandatorily for ARMv8.2 and up. 7929 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7930 * implementation is RAZ/WI we can ignore this detail, as we 7931 * do for ACTLR. 7932 */ 7933 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7934 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7935 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7936 .access = PL1_RW, .accessfn = access_tacr, 7937 .type = ARM_CP_CONST, .resetvalue = 0 }, 7938 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7939 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7940 .access = PL2_RW, .type = ARM_CP_CONST, 7941 .resetvalue = 0 }, 7942 }; 7943 7944 void register_cp_regs_for_features(ARMCPU *cpu) 7945 { 7946 /* Register all the coprocessor registers based on feature bits */ 7947 CPUARMState *env = &cpu->env; 7948 if (arm_feature(env, ARM_FEATURE_M)) { 7949 /* M profile has no coprocessor registers */ 7950 return; 7951 } 7952 7953 define_arm_cp_regs(cpu, cp_reginfo); 7954 if (!arm_feature(env, ARM_FEATURE_V8)) { 7955 /* 7956 * Must go early as it is full of wildcards that may be 7957 * overridden by later definitions. 7958 */ 7959 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7960 } 7961 7962 if (arm_feature(env, ARM_FEATURE_V6)) { 7963 /* The ID registers all have impdef reset values */ 7964 ARMCPRegInfo v6_idregs[] = { 7965 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7967 .access = PL1_R, .type = ARM_CP_CONST, 7968 .accessfn = access_aa32_tid3, 7969 .resetvalue = cpu->isar.id_pfr0 }, 7970 /* 7971 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7972 * the value of the GIC field until after we define these regs. 7973 */ 7974 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7975 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7976 .access = PL1_R, .type = ARM_CP_NO_RAW, 7977 .accessfn = access_aa32_tid3, 7978 #ifdef CONFIG_USER_ONLY 7979 .type = ARM_CP_CONST, 7980 .resetvalue = cpu->isar.id_pfr1, 7981 #else 7982 .type = ARM_CP_NO_RAW, 7983 .accessfn = access_aa32_tid3, 7984 .readfn = id_pfr1_read, 7985 .writefn = arm_cp_write_ignore 7986 #endif 7987 }, 7988 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7989 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7990 .access = PL1_R, .type = ARM_CP_CONST, 7991 .accessfn = access_aa32_tid3, 7992 .resetvalue = cpu->isar.id_dfr0 }, 7993 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7994 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7995 .access = PL1_R, .type = ARM_CP_CONST, 7996 .accessfn = access_aa32_tid3, 7997 .resetvalue = cpu->id_afr0 }, 7998 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7999 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8000 .access = PL1_R, .type = ARM_CP_CONST, 8001 .accessfn = access_aa32_tid3, 8002 .resetvalue = cpu->isar.id_mmfr0 }, 8003 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8004 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8005 .access = PL1_R, .type = ARM_CP_CONST, 8006 .accessfn = access_aa32_tid3, 8007 .resetvalue = cpu->isar.id_mmfr1 }, 8008 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8009 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8010 .access = PL1_R, .type = ARM_CP_CONST, 8011 .accessfn = access_aa32_tid3, 8012 .resetvalue = cpu->isar.id_mmfr2 }, 8013 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8015 .access = PL1_R, .type = ARM_CP_CONST, 8016 .accessfn = access_aa32_tid3, 8017 .resetvalue = cpu->isar.id_mmfr3 }, 8018 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8019 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8020 .access = PL1_R, .type = ARM_CP_CONST, 8021 .accessfn = access_aa32_tid3, 8022 .resetvalue = cpu->isar.id_isar0 }, 8023 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8024 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8025 .access = PL1_R, .type = ARM_CP_CONST, 8026 .accessfn = access_aa32_tid3, 8027 .resetvalue = cpu->isar.id_isar1 }, 8028 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8029 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8030 .access = PL1_R, .type = ARM_CP_CONST, 8031 .accessfn = access_aa32_tid3, 8032 .resetvalue = cpu->isar.id_isar2 }, 8033 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8035 .access = PL1_R, .type = ARM_CP_CONST, 8036 .accessfn = access_aa32_tid3, 8037 .resetvalue = cpu->isar.id_isar3 }, 8038 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8039 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8040 .access = PL1_R, .type = ARM_CP_CONST, 8041 .accessfn = access_aa32_tid3, 8042 .resetvalue = cpu->isar.id_isar4 }, 8043 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8044 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8045 .access = PL1_R, .type = ARM_CP_CONST, 8046 .accessfn = access_aa32_tid3, 8047 .resetvalue = cpu->isar.id_isar5 }, 8048 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8049 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8050 .access = PL1_R, .type = ARM_CP_CONST, 8051 .accessfn = access_aa32_tid3, 8052 .resetvalue = cpu->isar.id_mmfr4 }, 8053 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8055 .access = PL1_R, .type = ARM_CP_CONST, 8056 .accessfn = access_aa32_tid3, 8057 .resetvalue = cpu->isar.id_isar6 }, 8058 }; 8059 define_arm_cp_regs(cpu, v6_idregs); 8060 define_arm_cp_regs(cpu, v6_cp_reginfo); 8061 } else { 8062 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8063 } 8064 if (arm_feature(env, ARM_FEATURE_V6K)) { 8065 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8066 } 8067 if (arm_feature(env, ARM_FEATURE_V7MP) && 8068 !arm_feature(env, ARM_FEATURE_PMSA)) { 8069 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8070 } 8071 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8072 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8073 } 8074 if (arm_feature(env, ARM_FEATURE_V7)) { 8075 ARMCPRegInfo clidr = { 8076 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8077 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8078 .access = PL1_R, .type = ARM_CP_CONST, 8079 .accessfn = access_tid4, 8080 .fgt = FGT_CLIDR_EL1, 8081 .resetvalue = cpu->clidr 8082 }; 8083 define_one_arm_cp_reg(cpu, &clidr); 8084 define_arm_cp_regs(cpu, v7_cp_reginfo); 8085 define_debug_regs(cpu); 8086 define_pmu_regs(cpu); 8087 } else { 8088 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8089 } 8090 if (arm_feature(env, ARM_FEATURE_V8)) { 8091 /* 8092 * v8 ID registers, which all have impdef reset values. 8093 * Note that within the ID register ranges the unused slots 8094 * must all RAZ, not UNDEF; future architecture versions may 8095 * define new registers here. 8096 * ID registers which are AArch64 views of the AArch32 ID registers 8097 * which already existed in v6 and v7 are handled elsewhere, 8098 * in v6_idregs[]. 8099 */ 8100 int i; 8101 ARMCPRegInfo v8_idregs[] = { 8102 /* 8103 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8104 * emulation because we don't know the right value for the 8105 * GIC field until after we define these regs. 8106 */ 8107 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8108 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8109 .access = PL1_R, 8110 #ifdef CONFIG_USER_ONLY 8111 .type = ARM_CP_CONST, 8112 .resetvalue = cpu->isar.id_aa64pfr0 8113 #else 8114 .type = ARM_CP_NO_RAW, 8115 .accessfn = access_aa64_tid3, 8116 .readfn = id_aa64pfr0_read, 8117 .writefn = arm_cp_write_ignore 8118 #endif 8119 }, 8120 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8121 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8122 .access = PL1_R, .type = ARM_CP_CONST, 8123 .accessfn = access_aa64_tid3, 8124 .resetvalue = cpu->isar.id_aa64pfr1}, 8125 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8126 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8127 .access = PL1_R, .type = ARM_CP_CONST, 8128 .accessfn = access_aa64_tid3, 8129 .resetvalue = 0 }, 8130 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8131 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8132 .access = PL1_R, .type = ARM_CP_CONST, 8133 .accessfn = access_aa64_tid3, 8134 .resetvalue = 0 }, 8135 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8136 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8137 .access = PL1_R, .type = ARM_CP_CONST, 8138 .accessfn = access_aa64_tid3, 8139 .resetvalue = cpu->isar.id_aa64zfr0 }, 8140 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8141 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8142 .access = PL1_R, .type = ARM_CP_CONST, 8143 .accessfn = access_aa64_tid3, 8144 .resetvalue = cpu->isar.id_aa64smfr0 }, 8145 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8146 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8147 .access = PL1_R, .type = ARM_CP_CONST, 8148 .accessfn = access_aa64_tid3, 8149 .resetvalue = 0 }, 8150 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8151 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8152 .access = PL1_R, .type = ARM_CP_CONST, 8153 .accessfn = access_aa64_tid3, 8154 .resetvalue = 0 }, 8155 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8156 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8157 .access = PL1_R, .type = ARM_CP_CONST, 8158 .accessfn = access_aa64_tid3, 8159 .resetvalue = cpu->isar.id_aa64dfr0 }, 8160 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8161 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8162 .access = PL1_R, .type = ARM_CP_CONST, 8163 .accessfn = access_aa64_tid3, 8164 .resetvalue = cpu->isar.id_aa64dfr1 }, 8165 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8166 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8167 .access = PL1_R, .type = ARM_CP_CONST, 8168 .accessfn = access_aa64_tid3, 8169 .resetvalue = 0 }, 8170 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8171 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8172 .access = PL1_R, .type = ARM_CP_CONST, 8173 .accessfn = access_aa64_tid3, 8174 .resetvalue = 0 }, 8175 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8176 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8177 .access = PL1_R, .type = ARM_CP_CONST, 8178 .accessfn = access_aa64_tid3, 8179 .resetvalue = cpu->id_aa64afr0 }, 8180 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8181 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8182 .access = PL1_R, .type = ARM_CP_CONST, 8183 .accessfn = access_aa64_tid3, 8184 .resetvalue = cpu->id_aa64afr1 }, 8185 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8186 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8187 .access = PL1_R, .type = ARM_CP_CONST, 8188 .accessfn = access_aa64_tid3, 8189 .resetvalue = 0 }, 8190 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8191 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8192 .access = PL1_R, .type = ARM_CP_CONST, 8193 .accessfn = access_aa64_tid3, 8194 .resetvalue = 0 }, 8195 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8196 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8197 .access = PL1_R, .type = ARM_CP_CONST, 8198 .accessfn = access_aa64_tid3, 8199 .resetvalue = cpu->isar.id_aa64isar0 }, 8200 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8201 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8202 .access = PL1_R, .type = ARM_CP_CONST, 8203 .accessfn = access_aa64_tid3, 8204 .resetvalue = cpu->isar.id_aa64isar1 }, 8205 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8206 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8207 .access = PL1_R, .type = ARM_CP_CONST, 8208 .accessfn = access_aa64_tid3, 8209 .resetvalue = 0 }, 8210 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8211 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8212 .access = PL1_R, .type = ARM_CP_CONST, 8213 .accessfn = access_aa64_tid3, 8214 .resetvalue = 0 }, 8215 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8216 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8217 .access = PL1_R, .type = ARM_CP_CONST, 8218 .accessfn = access_aa64_tid3, 8219 .resetvalue = 0 }, 8220 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8221 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8222 .access = PL1_R, .type = ARM_CP_CONST, 8223 .accessfn = access_aa64_tid3, 8224 .resetvalue = 0 }, 8225 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8226 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8227 .access = PL1_R, .type = ARM_CP_CONST, 8228 .accessfn = access_aa64_tid3, 8229 .resetvalue = 0 }, 8230 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8231 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8232 .access = PL1_R, .type = ARM_CP_CONST, 8233 .accessfn = access_aa64_tid3, 8234 .resetvalue = 0 }, 8235 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8236 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8237 .access = PL1_R, .type = ARM_CP_CONST, 8238 .accessfn = access_aa64_tid3, 8239 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8240 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8241 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8242 .access = PL1_R, .type = ARM_CP_CONST, 8243 .accessfn = access_aa64_tid3, 8244 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8245 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8246 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8247 .access = PL1_R, .type = ARM_CP_CONST, 8248 .accessfn = access_aa64_tid3, 8249 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8250 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8251 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8252 .access = PL1_R, .type = ARM_CP_CONST, 8253 .accessfn = access_aa64_tid3, 8254 .resetvalue = 0 }, 8255 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8256 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8257 .access = PL1_R, .type = ARM_CP_CONST, 8258 .accessfn = access_aa64_tid3, 8259 .resetvalue = 0 }, 8260 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8261 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8262 .access = PL1_R, .type = ARM_CP_CONST, 8263 .accessfn = access_aa64_tid3, 8264 .resetvalue = 0 }, 8265 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8266 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8267 .access = PL1_R, .type = ARM_CP_CONST, 8268 .accessfn = access_aa64_tid3, 8269 .resetvalue = 0 }, 8270 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8271 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8272 .access = PL1_R, .type = ARM_CP_CONST, 8273 .accessfn = access_aa64_tid3, 8274 .resetvalue = 0 }, 8275 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8276 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8277 .access = PL1_R, .type = ARM_CP_CONST, 8278 .accessfn = access_aa64_tid3, 8279 .resetvalue = cpu->isar.mvfr0 }, 8280 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8281 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8282 .access = PL1_R, .type = ARM_CP_CONST, 8283 .accessfn = access_aa64_tid3, 8284 .resetvalue = cpu->isar.mvfr1 }, 8285 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8286 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8287 .access = PL1_R, .type = ARM_CP_CONST, 8288 .accessfn = access_aa64_tid3, 8289 .resetvalue = cpu->isar.mvfr2 }, 8290 /* 8291 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8292 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8293 * as RAZ, since it is in the "reserved for future ID 8294 * registers, RAZ" part of the AArch32 encoding space. 8295 */ 8296 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8297 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8298 .access = PL1_R, .type = ARM_CP_CONST, 8299 .accessfn = access_aa64_tid3, 8300 .resetvalue = 0 }, 8301 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8302 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8303 .access = PL1_R, .type = ARM_CP_CONST, 8304 .accessfn = access_aa64_tid3, 8305 .resetvalue = 0 }, 8306 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8307 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8308 .access = PL1_R, .type = ARM_CP_CONST, 8309 .accessfn = access_aa64_tid3, 8310 .resetvalue = 0 }, 8311 /* 8312 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8313 * they're also RAZ for AArch64, and in v8 are gradually 8314 * being filled with AArch64-view-of-AArch32-ID-register 8315 * for new ID registers. 8316 */ 8317 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8318 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8319 .access = PL1_R, .type = ARM_CP_CONST, 8320 .accessfn = access_aa64_tid3, 8321 .resetvalue = 0 }, 8322 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8323 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8324 .access = PL1_R, .type = ARM_CP_CONST, 8325 .accessfn = access_aa64_tid3, 8326 .resetvalue = cpu->isar.id_pfr2 }, 8327 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8328 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8329 .access = PL1_R, .type = ARM_CP_CONST, 8330 .accessfn = access_aa64_tid3, 8331 .resetvalue = cpu->isar.id_dfr1 }, 8332 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8333 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8334 .access = PL1_R, .type = ARM_CP_CONST, 8335 .accessfn = access_aa64_tid3, 8336 .resetvalue = cpu->isar.id_mmfr5 }, 8337 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8338 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8339 .access = PL1_R, .type = ARM_CP_CONST, 8340 .accessfn = access_aa64_tid3, 8341 .resetvalue = 0 }, 8342 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8343 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8344 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8345 .fgt = FGT_PMCEIDN_EL0, 8346 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8347 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8348 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8349 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8350 .fgt = FGT_PMCEIDN_EL0, 8351 .resetvalue = cpu->pmceid0 }, 8352 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8353 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8354 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8355 .fgt = FGT_PMCEIDN_EL0, 8356 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8357 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8358 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8359 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8360 .fgt = FGT_PMCEIDN_EL0, 8361 .resetvalue = cpu->pmceid1 }, 8362 }; 8363 #ifdef CONFIG_USER_ONLY 8364 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8365 { .name = "ID_AA64PFR0_EL1", 8366 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8367 R_ID_AA64PFR0_ADVSIMD_MASK | 8368 R_ID_AA64PFR0_SVE_MASK | 8369 R_ID_AA64PFR0_DIT_MASK, 8370 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8371 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8372 { .name = "ID_AA64PFR1_EL1", 8373 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8374 R_ID_AA64PFR1_SSBS_MASK | 8375 R_ID_AA64PFR1_MTE_MASK | 8376 R_ID_AA64PFR1_SME_MASK }, 8377 { .name = "ID_AA64PFR*_EL1_RESERVED", 8378 .is_glob = true }, 8379 { .name = "ID_AA64ZFR0_EL1", 8380 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8381 R_ID_AA64ZFR0_AES_MASK | 8382 R_ID_AA64ZFR0_BITPERM_MASK | 8383 R_ID_AA64ZFR0_BFLOAT16_MASK | 8384 R_ID_AA64ZFR0_SHA3_MASK | 8385 R_ID_AA64ZFR0_SM4_MASK | 8386 R_ID_AA64ZFR0_I8MM_MASK | 8387 R_ID_AA64ZFR0_F32MM_MASK | 8388 R_ID_AA64ZFR0_F64MM_MASK }, 8389 { .name = "ID_AA64SMFR0_EL1", 8390 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8391 R_ID_AA64SMFR0_B16F32_MASK | 8392 R_ID_AA64SMFR0_F16F32_MASK | 8393 R_ID_AA64SMFR0_I8I32_MASK | 8394 R_ID_AA64SMFR0_F64F64_MASK | 8395 R_ID_AA64SMFR0_I16I64_MASK | 8396 R_ID_AA64SMFR0_FA64_MASK }, 8397 { .name = "ID_AA64MMFR0_EL1", 8398 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8399 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8400 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8401 { .name = "ID_AA64MMFR1_EL1", 8402 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8403 { .name = "ID_AA64MMFR2_EL1", 8404 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8405 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8406 .is_glob = true }, 8407 { .name = "ID_AA64DFR0_EL1", 8408 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8409 { .name = "ID_AA64DFR1_EL1" }, 8410 { .name = "ID_AA64DFR*_EL1_RESERVED", 8411 .is_glob = true }, 8412 { .name = "ID_AA64AFR*", 8413 .is_glob = true }, 8414 { .name = "ID_AA64ISAR0_EL1", 8415 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8416 R_ID_AA64ISAR0_SHA1_MASK | 8417 R_ID_AA64ISAR0_SHA2_MASK | 8418 R_ID_AA64ISAR0_CRC32_MASK | 8419 R_ID_AA64ISAR0_ATOMIC_MASK | 8420 R_ID_AA64ISAR0_RDM_MASK | 8421 R_ID_AA64ISAR0_SHA3_MASK | 8422 R_ID_AA64ISAR0_SM3_MASK | 8423 R_ID_AA64ISAR0_SM4_MASK | 8424 R_ID_AA64ISAR0_DP_MASK | 8425 R_ID_AA64ISAR0_FHM_MASK | 8426 R_ID_AA64ISAR0_TS_MASK | 8427 R_ID_AA64ISAR0_RNDR_MASK }, 8428 { .name = "ID_AA64ISAR1_EL1", 8429 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8430 R_ID_AA64ISAR1_APA_MASK | 8431 R_ID_AA64ISAR1_API_MASK | 8432 R_ID_AA64ISAR1_JSCVT_MASK | 8433 R_ID_AA64ISAR1_FCMA_MASK | 8434 R_ID_AA64ISAR1_LRCPC_MASK | 8435 R_ID_AA64ISAR1_GPA_MASK | 8436 R_ID_AA64ISAR1_GPI_MASK | 8437 R_ID_AA64ISAR1_FRINTTS_MASK | 8438 R_ID_AA64ISAR1_SB_MASK | 8439 R_ID_AA64ISAR1_BF16_MASK | 8440 R_ID_AA64ISAR1_DGH_MASK | 8441 R_ID_AA64ISAR1_I8MM_MASK }, 8442 { .name = "ID_AA64ISAR2_EL1", 8443 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8444 R_ID_AA64ISAR2_RPRES_MASK | 8445 R_ID_AA64ISAR2_GPA3_MASK | 8446 R_ID_AA64ISAR2_APA3_MASK }, 8447 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8448 .is_glob = true }, 8449 }; 8450 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8451 #endif 8452 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 8453 if (!arm_feature(env, ARM_FEATURE_EL3) && 8454 !arm_feature(env, ARM_FEATURE_EL2)) { 8455 ARMCPRegInfo rvbar = { 8456 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8457 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8458 .access = PL1_R, 8459 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8460 }; 8461 define_one_arm_cp_reg(cpu, &rvbar); 8462 } 8463 define_arm_cp_regs(cpu, v8_idregs); 8464 define_arm_cp_regs(cpu, v8_cp_reginfo); 8465 8466 for (i = 4; i < 16; i++) { 8467 /* 8468 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8469 * For pre-v8 cores there are RAZ patterns for these in 8470 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8471 * v8 extends the "must RAZ" part of the ID register space 8472 * to also cover c0, 0, c{8-15}, {0-7}. 8473 * These are STATE_AA32 because in the AArch64 sysreg space 8474 * c4-c7 is where the AArch64 ID registers live (and we've 8475 * already defined those in v8_idregs[]), and c8-c15 are not 8476 * "must RAZ" for AArch64. 8477 */ 8478 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8479 ARMCPRegInfo v8_aa32_raz_idregs = { 8480 .name = name, 8481 .state = ARM_CP_STATE_AA32, 8482 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8483 .access = PL1_R, .type = ARM_CP_CONST, 8484 .accessfn = access_aa64_tid3, 8485 .resetvalue = 0 }; 8486 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8487 } 8488 } 8489 8490 /* 8491 * Register the base EL2 cpregs. 8492 * Pre v8, these registers are implemented only as part of the 8493 * Virtualization Extensions (EL2 present). Beginning with v8, 8494 * if EL2 is missing but EL3 is enabled, mostly these become 8495 * RES0 from EL3, with some specific exceptions. 8496 */ 8497 if (arm_feature(env, ARM_FEATURE_EL2) 8498 || (arm_feature(env, ARM_FEATURE_EL3) 8499 && arm_feature(env, ARM_FEATURE_V8))) { 8500 uint64_t vmpidr_def = mpidr_read_val(env); 8501 ARMCPRegInfo vpidr_regs[] = { 8502 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8503 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8504 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8505 .resetvalue = cpu->midr, 8506 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8507 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8508 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8509 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8510 .access = PL2_RW, .resetvalue = cpu->midr, 8511 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8512 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8513 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8514 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8515 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8516 .resetvalue = vmpidr_def, 8517 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8518 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8519 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8520 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8521 .access = PL2_RW, .resetvalue = vmpidr_def, 8522 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8523 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8524 }; 8525 /* 8526 * The only field of MDCR_EL2 that has a defined architectural reset 8527 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8528 */ 8529 ARMCPRegInfo mdcr_el2 = { 8530 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8531 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8532 .writefn = mdcr_el2_write, 8533 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8534 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8535 }; 8536 define_one_arm_cp_reg(cpu, &mdcr_el2); 8537 define_arm_cp_regs(cpu, vpidr_regs); 8538 define_arm_cp_regs(cpu, el2_cp_reginfo); 8539 if (arm_feature(env, ARM_FEATURE_V8)) { 8540 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8541 } 8542 if (cpu_isar_feature(aa64_sel2, cpu)) { 8543 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8544 } 8545 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8546 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8547 ARMCPRegInfo rvbar[] = { 8548 { 8549 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8550 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8551 .access = PL2_R, 8552 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8553 }, 8554 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8555 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8556 .access = PL2_R, 8557 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8558 }, 8559 }; 8560 define_arm_cp_regs(cpu, rvbar); 8561 } 8562 } 8563 8564 /* Register the base EL3 cpregs. */ 8565 if (arm_feature(env, ARM_FEATURE_EL3)) { 8566 define_arm_cp_regs(cpu, el3_cp_reginfo); 8567 ARMCPRegInfo el3_regs[] = { 8568 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8569 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8570 .access = PL3_R, 8571 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8572 }, 8573 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8574 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8575 .access = PL3_RW, 8576 .raw_writefn = raw_write, .writefn = sctlr_write, 8577 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8578 .resetvalue = cpu->reset_sctlr }, 8579 }; 8580 8581 define_arm_cp_regs(cpu, el3_regs); 8582 } 8583 /* 8584 * The behaviour of NSACR is sufficiently various that we don't 8585 * try to describe it in a single reginfo: 8586 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8587 * reads as constant 0xc00 from NS EL1 and NS EL2 8588 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8589 * if v7 without EL3, register doesn't exist 8590 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8591 */ 8592 if (arm_feature(env, ARM_FEATURE_EL3)) { 8593 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8594 static const ARMCPRegInfo nsacr = { 8595 .name = "NSACR", .type = ARM_CP_CONST, 8596 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8597 .access = PL1_RW, .accessfn = nsacr_access, 8598 .resetvalue = 0xc00 8599 }; 8600 define_one_arm_cp_reg(cpu, &nsacr); 8601 } else { 8602 static const ARMCPRegInfo nsacr = { 8603 .name = "NSACR", 8604 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8605 .access = PL3_RW | PL1_R, 8606 .resetvalue = 0, 8607 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8608 }; 8609 define_one_arm_cp_reg(cpu, &nsacr); 8610 } 8611 } else { 8612 if (arm_feature(env, ARM_FEATURE_V8)) { 8613 static const ARMCPRegInfo nsacr = { 8614 .name = "NSACR", .type = ARM_CP_CONST, 8615 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8616 .access = PL1_R, 8617 .resetvalue = 0xc00 8618 }; 8619 define_one_arm_cp_reg(cpu, &nsacr); 8620 } 8621 } 8622 8623 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8624 if (arm_feature(env, ARM_FEATURE_V6)) { 8625 /* PMSAv6 not implemented */ 8626 assert(arm_feature(env, ARM_FEATURE_V7)); 8627 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8628 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8629 } else { 8630 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8631 } 8632 } else { 8633 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8634 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8635 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8636 if (cpu_isar_feature(aa32_hpd, cpu)) { 8637 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8638 } 8639 } 8640 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8641 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8642 } 8643 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8644 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8645 } 8646 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8647 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8648 } 8649 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8650 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8651 } 8652 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8653 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8654 } 8655 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8656 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8657 } 8658 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8659 define_arm_cp_regs(cpu, omap_cp_reginfo); 8660 } 8661 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8662 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8663 } 8664 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8665 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8666 } 8667 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8668 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8669 } 8670 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8671 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8672 } 8673 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8674 define_arm_cp_regs(cpu, jazelle_regs); 8675 } 8676 /* 8677 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8678 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8679 * be read-only (ie write causes UNDEF exception). 8680 */ 8681 { 8682 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8683 /* 8684 * Pre-v8 MIDR space. 8685 * Note that the MIDR isn't a simple constant register because 8686 * of the TI925 behaviour where writes to another register can 8687 * cause the MIDR value to change. 8688 * 8689 * Unimplemented registers in the c15 0 0 0 space default to 8690 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8691 * and friends override accordingly. 8692 */ 8693 { .name = "MIDR", 8694 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8695 .access = PL1_R, .resetvalue = cpu->midr, 8696 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8697 .readfn = midr_read, 8698 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8699 .type = ARM_CP_OVERRIDE }, 8700 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8701 { .name = "DUMMY", 8702 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8703 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8704 { .name = "DUMMY", 8705 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8706 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8707 { .name = "DUMMY", 8708 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8709 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8710 { .name = "DUMMY", 8711 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8712 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8713 { .name = "DUMMY", 8714 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8715 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8716 }; 8717 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8718 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8719 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8720 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8721 .fgt = FGT_MIDR_EL1, 8722 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8723 .readfn = midr_read }, 8724 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8725 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8726 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8727 .access = PL1_R, .resetvalue = cpu->midr }, 8728 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8729 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8730 .access = PL1_R, 8731 .accessfn = access_aa64_tid1, 8732 .fgt = FGT_REVIDR_EL1, 8733 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8734 }; 8735 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 8736 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8737 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8738 .access = PL1_R, .resetvalue = cpu->midr 8739 }; 8740 ARMCPRegInfo id_cp_reginfo[] = { 8741 /* These are common to v8 and pre-v8 */ 8742 { .name = "CTR", 8743 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8744 .access = PL1_R, .accessfn = ctr_el0_access, 8745 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8746 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8747 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8748 .access = PL0_R, .accessfn = ctr_el0_access, 8749 .fgt = FGT_CTR_EL0, 8750 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8751 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8752 { .name = "TCMTR", 8753 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8754 .access = PL1_R, 8755 .accessfn = access_aa32_tid1, 8756 .type = ARM_CP_CONST, .resetvalue = 0 }, 8757 }; 8758 /* TLBTR is specific to VMSA */ 8759 ARMCPRegInfo id_tlbtr_reginfo = { 8760 .name = "TLBTR", 8761 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8762 .access = PL1_R, 8763 .accessfn = access_aa32_tid1, 8764 .type = ARM_CP_CONST, .resetvalue = 0, 8765 }; 8766 /* MPUIR is specific to PMSA V6+ */ 8767 ARMCPRegInfo id_mpuir_reginfo = { 8768 .name = "MPUIR", 8769 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8770 .access = PL1_R, .type = ARM_CP_CONST, 8771 .resetvalue = cpu->pmsav7_dregion << 8 8772 }; 8773 /* HMPUIR is specific to PMSA V8 */ 8774 ARMCPRegInfo id_hmpuir_reginfo = { 8775 .name = "HMPUIR", 8776 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 8777 .access = PL2_R, .type = ARM_CP_CONST, 8778 .resetvalue = cpu->pmsav8r_hdregion 8779 }; 8780 static const ARMCPRegInfo crn0_wi_reginfo = { 8781 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8782 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8783 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8784 }; 8785 #ifdef CONFIG_USER_ONLY 8786 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8787 { .name = "MIDR_EL1", 8788 .exported_bits = R_MIDR_EL1_REVISION_MASK | 8789 R_MIDR_EL1_PARTNUM_MASK | 8790 R_MIDR_EL1_ARCHITECTURE_MASK | 8791 R_MIDR_EL1_VARIANT_MASK | 8792 R_MIDR_EL1_IMPLEMENTER_MASK }, 8793 { .name = "REVIDR_EL1" }, 8794 }; 8795 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8796 #endif 8797 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8798 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8799 size_t i; 8800 /* 8801 * Register the blanket "writes ignored" value first to cover the 8802 * whole space. Then update the specific ID registers to allow write 8803 * access, so that they ignore writes rather than causing them to 8804 * UNDEF. 8805 */ 8806 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8807 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8808 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8809 } 8810 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8811 id_cp_reginfo[i].access = PL1_RW; 8812 } 8813 id_mpuir_reginfo.access = PL1_RW; 8814 id_tlbtr_reginfo.access = PL1_RW; 8815 } 8816 if (arm_feature(env, ARM_FEATURE_V8)) { 8817 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8818 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8819 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 8820 } 8821 } else { 8822 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8823 } 8824 define_arm_cp_regs(cpu, id_cp_reginfo); 8825 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8826 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8827 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 8828 arm_feature(env, ARM_FEATURE_V8)) { 8829 uint32_t i = 0; 8830 char *tmp_string; 8831 8832 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8833 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 8834 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 8835 8836 /* Register alias is only valid for first 32 indexes */ 8837 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 8838 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8839 uint8_t opc1 = extract32(i, 4, 1); 8840 uint8_t opc2 = extract32(i, 0, 1) << 2; 8841 8842 tmp_string = g_strdup_printf("PRBAR%u", i); 8843 ARMCPRegInfo tmp_prbarn_reginfo = { 8844 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8845 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8846 .access = PL1_RW, .resetvalue = 0, 8847 .accessfn = access_tvm_trvm, 8848 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8849 }; 8850 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 8851 g_free(tmp_string); 8852 8853 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8854 tmp_string = g_strdup_printf("PRLAR%u", i); 8855 ARMCPRegInfo tmp_prlarn_reginfo = { 8856 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8857 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8858 .access = PL1_RW, .resetvalue = 0, 8859 .accessfn = access_tvm_trvm, 8860 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8861 }; 8862 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 8863 g_free(tmp_string); 8864 } 8865 8866 /* Register alias is only valid for first 32 indexes */ 8867 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 8868 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8869 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 8870 uint8_t opc2 = extract32(i, 0, 1) << 2; 8871 8872 tmp_string = g_strdup_printf("HPRBAR%u", i); 8873 ARMCPRegInfo tmp_hprbarn_reginfo = { 8874 .name = tmp_string, 8875 .type = ARM_CP_NO_RAW, 8876 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8877 .access = PL2_RW, .resetvalue = 0, 8878 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8879 }; 8880 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 8881 g_free(tmp_string); 8882 8883 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8884 tmp_string = g_strdup_printf("HPRLAR%u", i); 8885 ARMCPRegInfo tmp_hprlarn_reginfo = { 8886 .name = tmp_string, 8887 .type = ARM_CP_NO_RAW, 8888 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8889 .access = PL2_RW, .resetvalue = 0, 8890 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8891 }; 8892 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 8893 g_free(tmp_string); 8894 } 8895 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8896 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8897 } 8898 } 8899 8900 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8901 ARMCPRegInfo mpidr_cp_reginfo[] = { 8902 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8903 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8904 .fgt = FGT_MPIDR_EL1, 8905 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8906 }; 8907 #ifdef CONFIG_USER_ONLY 8908 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8909 { .name = "MPIDR_EL1", 8910 .fixed_bits = 0x0000000080000000 }, 8911 }; 8912 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8913 #endif 8914 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8915 } 8916 8917 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8918 ARMCPRegInfo auxcr_reginfo[] = { 8919 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8920 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8921 .access = PL1_RW, .accessfn = access_tacr, 8922 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8923 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8924 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8925 .access = PL2_RW, .type = ARM_CP_CONST, 8926 .resetvalue = 0 }, 8927 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8928 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8929 .access = PL3_RW, .type = ARM_CP_CONST, 8930 .resetvalue = 0 }, 8931 }; 8932 define_arm_cp_regs(cpu, auxcr_reginfo); 8933 if (cpu_isar_feature(aa32_ac2, cpu)) { 8934 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8935 } 8936 } 8937 8938 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8939 /* 8940 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8941 * There are two flavours: 8942 * (1) older 32-bit only cores have a simple 32-bit CBAR 8943 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8944 * 32-bit register visible to AArch32 at a different encoding 8945 * to the "flavour 1" register and with the bits rearranged to 8946 * be able to squash a 64-bit address into the 32-bit view. 8947 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8948 * in future if we support AArch32-only configs of some of the 8949 * AArch64 cores we might need to add a specific feature flag 8950 * to indicate cores with "flavour 2" CBAR. 8951 */ 8952 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8953 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8954 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8955 | extract64(cpu->reset_cbar, 32, 12); 8956 ARMCPRegInfo cbar_reginfo[] = { 8957 { .name = "CBAR", 8958 .type = ARM_CP_CONST, 8959 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8960 .access = PL1_R, .resetvalue = cbar32 }, 8961 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8962 .type = ARM_CP_CONST, 8963 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8964 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8965 }; 8966 /* We don't implement a r/w 64 bit CBAR currently */ 8967 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8968 define_arm_cp_regs(cpu, cbar_reginfo); 8969 } else { 8970 ARMCPRegInfo cbar = { 8971 .name = "CBAR", 8972 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8973 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 8974 .fieldoffset = offsetof(CPUARMState, 8975 cp15.c15_config_base_address) 8976 }; 8977 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8978 cbar.access = PL1_R; 8979 cbar.fieldoffset = 0; 8980 cbar.type = ARM_CP_CONST; 8981 } 8982 define_one_arm_cp_reg(cpu, &cbar); 8983 } 8984 } 8985 8986 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8987 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8988 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8989 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8990 .access = PL1_RW, .writefn = vbar_write, 8991 .fgt = FGT_VBAR_EL1, 8992 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8993 offsetof(CPUARMState, cp15.vbar_ns) }, 8994 .resetvalue = 0 }, 8995 }; 8996 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8997 } 8998 8999 /* Generic registers whose values depend on the implementation */ 9000 { 9001 ARMCPRegInfo sctlr = { 9002 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9003 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9004 .access = PL1_RW, .accessfn = access_tvm_trvm, 9005 .fgt = FGT_SCTLR_EL1, 9006 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9007 offsetof(CPUARMState, cp15.sctlr_ns) }, 9008 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9009 .raw_writefn = raw_write, 9010 }; 9011 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9012 /* 9013 * Normally we would always end the TB on an SCTLR write, but Linux 9014 * arch/arm/mach-pxa/sleep.S expects two instructions following 9015 * an MMU enable to execute from cache. Imitate this behaviour. 9016 */ 9017 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9018 } 9019 define_one_arm_cp_reg(cpu, &sctlr); 9020 9021 if (arm_feature(env, ARM_FEATURE_PMSA) && 9022 arm_feature(env, ARM_FEATURE_V8)) { 9023 ARMCPRegInfo vsctlr = { 9024 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9025 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9026 .access = PL2_RW, .resetvalue = 0x0, 9027 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9028 }; 9029 define_one_arm_cp_reg(cpu, &vsctlr); 9030 } 9031 } 9032 9033 if (cpu_isar_feature(aa64_lor, cpu)) { 9034 define_arm_cp_regs(cpu, lor_reginfo); 9035 } 9036 if (cpu_isar_feature(aa64_pan, cpu)) { 9037 define_one_arm_cp_reg(cpu, &pan_reginfo); 9038 } 9039 #ifndef CONFIG_USER_ONLY 9040 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9041 define_arm_cp_regs(cpu, ats1e1_reginfo); 9042 } 9043 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9044 define_arm_cp_regs(cpu, ats1cp_reginfo); 9045 } 9046 #endif 9047 if (cpu_isar_feature(aa64_uao, cpu)) { 9048 define_one_arm_cp_reg(cpu, &uao_reginfo); 9049 } 9050 9051 if (cpu_isar_feature(aa64_dit, cpu)) { 9052 define_one_arm_cp_reg(cpu, &dit_reginfo); 9053 } 9054 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9055 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9056 } 9057 if (cpu_isar_feature(any_ras, cpu)) { 9058 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9059 } 9060 9061 if (cpu_isar_feature(aa64_vh, cpu) || 9062 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9063 define_one_arm_cp_reg(cpu, &contextidr_el2); 9064 } 9065 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9066 define_arm_cp_regs(cpu, vhe_reginfo); 9067 } 9068 9069 if (cpu_isar_feature(aa64_sve, cpu)) { 9070 define_arm_cp_regs(cpu, zcr_reginfo); 9071 } 9072 9073 if (cpu_isar_feature(aa64_hcx, cpu)) { 9074 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9075 } 9076 9077 #ifdef TARGET_AARCH64 9078 if (cpu_isar_feature(aa64_sme, cpu)) { 9079 define_arm_cp_regs(cpu, sme_reginfo); 9080 } 9081 if (cpu_isar_feature(aa64_pauth, cpu)) { 9082 define_arm_cp_regs(cpu, pauth_reginfo); 9083 } 9084 if (cpu_isar_feature(aa64_rndr, cpu)) { 9085 define_arm_cp_regs(cpu, rndr_reginfo); 9086 } 9087 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9088 define_arm_cp_regs(cpu, tlbirange_reginfo); 9089 } 9090 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9091 define_arm_cp_regs(cpu, tlbios_reginfo); 9092 } 9093 #ifndef CONFIG_USER_ONLY 9094 /* Data Cache clean instructions up to PoP */ 9095 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9096 define_one_arm_cp_reg(cpu, dcpop_reg); 9097 9098 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9099 define_one_arm_cp_reg(cpu, dcpodp_reg); 9100 } 9101 } 9102 #endif /*CONFIG_USER_ONLY*/ 9103 9104 /* 9105 * If full MTE is enabled, add all of the system registers. 9106 * If only "instructions available at EL0" are enabled, 9107 * then define only a RAZ/WI version of PSTATE.TCO. 9108 */ 9109 if (cpu_isar_feature(aa64_mte, cpu)) { 9110 define_arm_cp_regs(cpu, mte_reginfo); 9111 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9112 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9113 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9114 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9115 } 9116 9117 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9118 define_arm_cp_regs(cpu, scxtnum_reginfo); 9119 } 9120 9121 if (cpu_isar_feature(aa64_fgt, cpu)) { 9122 define_arm_cp_regs(cpu, fgt_reginfo); 9123 } 9124 #endif 9125 9126 if (cpu_isar_feature(any_predinv, cpu)) { 9127 define_arm_cp_regs(cpu, predinv_reginfo); 9128 } 9129 9130 if (cpu_isar_feature(any_ccidx, cpu)) { 9131 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9132 } 9133 9134 #ifndef CONFIG_USER_ONLY 9135 /* 9136 * Register redirections and aliases must be done last, 9137 * after the registers from the other extensions have been defined. 9138 */ 9139 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9140 define_arm_vh_e2h_redirects_aliases(cpu); 9141 } 9142 #endif 9143 } 9144 9145 /* Sort alphabetically by type name, except for "any". */ 9146 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 9147 { 9148 ObjectClass *class_a = (ObjectClass *)a; 9149 ObjectClass *class_b = (ObjectClass *)b; 9150 const char *name_a, *name_b; 9151 9152 name_a = object_class_get_name(class_a); 9153 name_b = object_class_get_name(class_b); 9154 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 9155 return 1; 9156 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 9157 return -1; 9158 } else { 9159 return strcmp(name_a, name_b); 9160 } 9161 } 9162 9163 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 9164 { 9165 ObjectClass *oc = data; 9166 CPUClass *cc = CPU_CLASS(oc); 9167 const char *typename; 9168 char *name; 9169 9170 typename = object_class_get_name(oc); 9171 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9172 if (cc->deprecation_note) { 9173 qemu_printf(" %s (deprecated)\n", name); 9174 } else { 9175 qemu_printf(" %s\n", name); 9176 } 9177 g_free(name); 9178 } 9179 9180 void arm_cpu_list(void) 9181 { 9182 GSList *list; 9183 9184 list = object_class_get_list(TYPE_ARM_CPU, false); 9185 list = g_slist_sort(list, arm_cpu_list_compare); 9186 qemu_printf("Available CPUs:\n"); 9187 g_slist_foreach(list, arm_cpu_list_entry, NULL); 9188 g_slist_free(list); 9189 } 9190 9191 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 9192 { 9193 ObjectClass *oc = data; 9194 CpuDefinitionInfoList **cpu_list = user_data; 9195 CpuDefinitionInfo *info; 9196 const char *typename; 9197 9198 typename = object_class_get_name(oc); 9199 info = g_malloc0(sizeof(*info)); 9200 info->name = g_strndup(typename, 9201 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9202 info->q_typename = g_strdup(typename); 9203 9204 QAPI_LIST_PREPEND(*cpu_list, info); 9205 } 9206 9207 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 9208 { 9209 CpuDefinitionInfoList *cpu_list = NULL; 9210 GSList *list; 9211 9212 list = object_class_get_list(TYPE_ARM_CPU, false); 9213 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 9214 g_slist_free(list); 9215 9216 return cpu_list; 9217 } 9218 9219 /* 9220 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9221 * add a single reginfo struct to the hash table. 9222 */ 9223 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9224 void *opaque, CPState state, 9225 CPSecureState secstate, 9226 int crm, int opc1, int opc2, 9227 const char *name) 9228 { 9229 CPUARMState *env = &cpu->env; 9230 uint32_t key; 9231 ARMCPRegInfo *r2; 9232 bool is64 = r->type & ARM_CP_64BIT; 9233 bool ns = secstate & ARM_CP_SECSTATE_NS; 9234 int cp = r->cp; 9235 size_t name_len; 9236 bool make_const; 9237 9238 switch (state) { 9239 case ARM_CP_STATE_AA32: 9240 /* We assume it is a cp15 register if the .cp field is left unset. */ 9241 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9242 cp = 15; 9243 } 9244 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9245 break; 9246 case ARM_CP_STATE_AA64: 9247 /* 9248 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9249 * cp == 0 as equivalent to the value for "standard guest-visible 9250 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9251 * in their AArch64 view (the .cp value may be non-zero for the 9252 * benefit of the AArch32 view). 9253 */ 9254 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9255 cp = CP_REG_ARM64_SYSREG_CP; 9256 } 9257 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9258 break; 9259 default: 9260 g_assert_not_reached(); 9261 } 9262 9263 /* Overriding of an existing definition must be explicitly requested. */ 9264 if (!(r->type & ARM_CP_OVERRIDE)) { 9265 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9266 if (oldreg) { 9267 assert(oldreg->type & ARM_CP_OVERRIDE); 9268 } 9269 } 9270 9271 /* 9272 * Eliminate registers that are not present because the EL is missing. 9273 * Doing this here makes it easier to put all registers for a given 9274 * feature into the same ARMCPRegInfo array and define them all at once. 9275 */ 9276 make_const = false; 9277 if (arm_feature(env, ARM_FEATURE_EL3)) { 9278 /* 9279 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9280 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9281 */ 9282 int min_el = ctz32(r->access) / 2; 9283 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9284 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9285 return; 9286 } 9287 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9288 } 9289 } else { 9290 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9291 ? PL2_RW : PL1_RW); 9292 if ((r->access & max_el) == 0) { 9293 return; 9294 } 9295 } 9296 9297 /* Combine cpreg and name into one allocation. */ 9298 name_len = strlen(name) + 1; 9299 r2 = g_malloc(sizeof(*r2) + name_len); 9300 *r2 = *r; 9301 r2->name = memcpy(r2 + 1, name, name_len); 9302 9303 /* 9304 * Update fields to match the instantiation, overwiting wildcards 9305 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9306 */ 9307 r2->cp = cp; 9308 r2->crm = crm; 9309 r2->opc1 = opc1; 9310 r2->opc2 = opc2; 9311 r2->state = state; 9312 r2->secure = secstate; 9313 if (opaque) { 9314 r2->opaque = opaque; 9315 } 9316 9317 if (make_const) { 9318 /* This should not have been a very special register to begin. */ 9319 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9320 assert(old_special == 0 || old_special == ARM_CP_NOP); 9321 /* 9322 * Set the special function to CONST, retaining the other flags. 9323 * This is important for e.g. ARM_CP_SVE so that we still 9324 * take the SVE trap if CPTR_EL3.EZ == 0. 9325 */ 9326 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9327 /* 9328 * Usually, these registers become RES0, but there are a few 9329 * special cases like VPIDR_EL2 which have a constant non-zero 9330 * value with writes ignored. 9331 */ 9332 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9333 r2->resetvalue = 0; 9334 } 9335 /* 9336 * ARM_CP_CONST has precedence, so removing the callbacks and 9337 * offsets are not strictly necessary, but it is potentially 9338 * less confusing to debug later. 9339 */ 9340 r2->readfn = NULL; 9341 r2->writefn = NULL; 9342 r2->raw_readfn = NULL; 9343 r2->raw_writefn = NULL; 9344 r2->resetfn = NULL; 9345 r2->fieldoffset = 0; 9346 r2->bank_fieldoffsets[0] = 0; 9347 r2->bank_fieldoffsets[1] = 0; 9348 } else { 9349 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9350 9351 if (isbanked) { 9352 /* 9353 * Register is banked (using both entries in array). 9354 * Overwriting fieldoffset as the array is only used to define 9355 * banked registers but later only fieldoffset is used. 9356 */ 9357 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9358 } 9359 if (state == ARM_CP_STATE_AA32) { 9360 if (isbanked) { 9361 /* 9362 * If the register is banked then we don't need to migrate or 9363 * reset the 32-bit instance in certain cases: 9364 * 9365 * 1) If the register has both 32-bit and 64-bit instances 9366 * then we can count on the 64-bit instance taking care 9367 * of the non-secure bank. 9368 * 2) If ARMv8 is enabled then we can count on a 64-bit 9369 * version taking care of the secure bank. This requires 9370 * that separate 32 and 64-bit definitions are provided. 9371 */ 9372 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9373 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9374 r2->type |= ARM_CP_ALIAS; 9375 } 9376 } else if ((secstate != r->secure) && !ns) { 9377 /* 9378 * The register is not banked so we only want to allow 9379 * migration of the non-secure instance. 9380 */ 9381 r2->type |= ARM_CP_ALIAS; 9382 } 9383 9384 if (HOST_BIG_ENDIAN && 9385 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9386 r2->fieldoffset += sizeof(uint32_t); 9387 } 9388 } 9389 } 9390 9391 /* 9392 * By convention, for wildcarded registers only the first 9393 * entry is used for migration; the others are marked as 9394 * ALIAS so we don't try to transfer the register 9395 * multiple times. Special registers (ie NOP/WFI) are 9396 * never migratable and not even raw-accessible. 9397 */ 9398 if (r2->type & ARM_CP_SPECIAL_MASK) { 9399 r2->type |= ARM_CP_NO_RAW; 9400 } 9401 if (((r->crm == CP_ANY) && crm != 0) || 9402 ((r->opc1 == CP_ANY) && opc1 != 0) || 9403 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9404 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9405 } 9406 9407 /* 9408 * Check that raw accesses are either forbidden or handled. Note that 9409 * we can't assert this earlier because the setup of fieldoffset for 9410 * banked registers has to be done first. 9411 */ 9412 if (!(r2->type & ARM_CP_NO_RAW)) { 9413 assert(!raw_accessors_invalid(r2)); 9414 } 9415 9416 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9417 } 9418 9419 9420 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9421 const ARMCPRegInfo *r, void *opaque) 9422 { 9423 /* 9424 * Define implementations of coprocessor registers. 9425 * We store these in a hashtable because typically 9426 * there are less than 150 registers in a space which 9427 * is 16*16*16*8*8 = 262144 in size. 9428 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9429 * If a register is defined twice then the second definition is 9430 * used, so this can be used to define some generic registers and 9431 * then override them with implementation specific variations. 9432 * At least one of the original and the second definition should 9433 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9434 * against accidental use. 9435 * 9436 * The state field defines whether the register is to be 9437 * visible in the AArch32 or AArch64 execution state. If the 9438 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9439 * reginfo structure for the AArch32 view, which sees the lower 9440 * 32 bits of the 64 bit register. 9441 * 9442 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9443 * be wildcarded. AArch64 registers are always considered to be 64 9444 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9445 * the register, if any. 9446 */ 9447 int crm, opc1, opc2; 9448 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9449 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9450 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9451 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9452 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9453 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9454 CPState state; 9455 9456 /* 64 bit registers have only CRm and Opc1 fields */ 9457 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9458 /* op0 only exists in the AArch64 encodings */ 9459 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9460 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9461 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9462 /* 9463 * This API is only for Arm's system coprocessors (14 and 15) or 9464 * (M-profile or v7A-and-earlier only) for implementation defined 9465 * coprocessors in the range 0..7. Our decode assumes this, since 9466 * 8..13 can be used for other insns including VFP and Neon. See 9467 * valid_cp() in translate.c. Assert here that we haven't tried 9468 * to use an invalid coprocessor number. 9469 */ 9470 switch (r->state) { 9471 case ARM_CP_STATE_BOTH: 9472 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9473 if (r->cp == 0) { 9474 break; 9475 } 9476 /* fall through */ 9477 case ARM_CP_STATE_AA32: 9478 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9479 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9480 assert(r->cp >= 14 && r->cp <= 15); 9481 } else { 9482 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9483 } 9484 break; 9485 case ARM_CP_STATE_AA64: 9486 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9487 break; 9488 default: 9489 g_assert_not_reached(); 9490 } 9491 /* 9492 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9493 * encodes a minimum access level for the register. We roll this 9494 * runtime check into our general permission check code, so check 9495 * here that the reginfo's specified permissions are strict enough 9496 * to encompass the generic architectural permission check. 9497 */ 9498 if (r->state != ARM_CP_STATE_AA32) { 9499 CPAccessRights mask; 9500 switch (r->opc1) { 9501 case 0: 9502 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9503 mask = PL0U_R | PL1_RW; 9504 break; 9505 case 1: case 2: 9506 /* min_EL EL1 */ 9507 mask = PL1_RW; 9508 break; 9509 case 3: 9510 /* min_EL EL0 */ 9511 mask = PL0_RW; 9512 break; 9513 case 4: 9514 case 5: 9515 /* min_EL EL2 */ 9516 mask = PL2_RW; 9517 break; 9518 case 6: 9519 /* min_EL EL3 */ 9520 mask = PL3_RW; 9521 break; 9522 case 7: 9523 /* min_EL EL1, secure mode only (we don't check the latter) */ 9524 mask = PL1_RW; 9525 break; 9526 default: 9527 /* broken reginfo with out-of-range opc1 */ 9528 g_assert_not_reached(); 9529 } 9530 /* assert our permissions are not too lax (stricter is fine) */ 9531 assert((r->access & ~mask) == 0); 9532 } 9533 9534 /* 9535 * Check that the register definition has enough info to handle 9536 * reads and writes if they are permitted. 9537 */ 9538 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9539 if (r->access & PL3_R) { 9540 assert((r->fieldoffset || 9541 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9542 r->readfn); 9543 } 9544 if (r->access & PL3_W) { 9545 assert((r->fieldoffset || 9546 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9547 r->writefn); 9548 } 9549 } 9550 9551 for (crm = crmmin; crm <= crmmax; crm++) { 9552 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9553 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9554 for (state = ARM_CP_STATE_AA32; 9555 state <= ARM_CP_STATE_AA64; state++) { 9556 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9557 continue; 9558 } 9559 if (state == ARM_CP_STATE_AA32) { 9560 /* 9561 * Under AArch32 CP registers can be common 9562 * (same for secure and non-secure world) or banked. 9563 */ 9564 char *name; 9565 9566 switch (r->secure) { 9567 case ARM_CP_SECSTATE_S: 9568 case ARM_CP_SECSTATE_NS: 9569 add_cpreg_to_hashtable(cpu, r, opaque, state, 9570 r->secure, crm, opc1, opc2, 9571 r->name); 9572 break; 9573 case ARM_CP_SECSTATE_BOTH: 9574 name = g_strdup_printf("%s_S", r->name); 9575 add_cpreg_to_hashtable(cpu, r, opaque, state, 9576 ARM_CP_SECSTATE_S, 9577 crm, opc1, opc2, name); 9578 g_free(name); 9579 add_cpreg_to_hashtable(cpu, r, opaque, state, 9580 ARM_CP_SECSTATE_NS, 9581 crm, opc1, opc2, r->name); 9582 break; 9583 default: 9584 g_assert_not_reached(); 9585 } 9586 } else { 9587 /* 9588 * AArch64 registers get mapped to non-secure instance 9589 * of AArch32 9590 */ 9591 add_cpreg_to_hashtable(cpu, r, opaque, state, 9592 ARM_CP_SECSTATE_NS, 9593 crm, opc1, opc2, r->name); 9594 } 9595 } 9596 } 9597 } 9598 } 9599 } 9600 9601 /* Define a whole list of registers */ 9602 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9603 void *opaque, size_t len) 9604 { 9605 size_t i; 9606 for (i = 0; i < len; ++i) { 9607 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9608 } 9609 } 9610 9611 /* 9612 * Modify ARMCPRegInfo for access from userspace. 9613 * 9614 * This is a data driven modification directed by 9615 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9616 * user-space cannot alter any values and dynamic values pertaining to 9617 * execution state are hidden from user space view anyway. 9618 */ 9619 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9620 const ARMCPRegUserSpaceInfo *mods, 9621 size_t mods_len) 9622 { 9623 for (size_t mi = 0; mi < mods_len; ++mi) { 9624 const ARMCPRegUserSpaceInfo *m = mods + mi; 9625 GPatternSpec *pat = NULL; 9626 9627 if (m->is_glob) { 9628 pat = g_pattern_spec_new(m->name); 9629 } 9630 for (size_t ri = 0; ri < regs_len; ++ri) { 9631 ARMCPRegInfo *r = regs + ri; 9632 9633 if (pat && g_pattern_match_string(pat, r->name)) { 9634 r->type = ARM_CP_CONST; 9635 r->access = PL0U_R; 9636 r->resetvalue = 0; 9637 /* continue */ 9638 } else if (strcmp(r->name, m->name) == 0) { 9639 r->type = ARM_CP_CONST; 9640 r->access = PL0U_R; 9641 r->resetvalue &= m->exported_bits; 9642 r->resetvalue |= m->fixed_bits; 9643 break; 9644 } 9645 } 9646 if (pat) { 9647 g_pattern_spec_free(pat); 9648 } 9649 } 9650 } 9651 9652 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9653 { 9654 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9655 } 9656 9657 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9658 uint64_t value) 9659 { 9660 /* Helper coprocessor write function for write-ignore registers */ 9661 } 9662 9663 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9664 { 9665 /* Helper coprocessor write function for read-as-zero registers */ 9666 return 0; 9667 } 9668 9669 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9670 { 9671 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9672 } 9673 9674 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9675 { 9676 /* 9677 * Return true if it is not valid for us to switch to 9678 * this CPU mode (ie all the UNPREDICTABLE cases in 9679 * the ARM ARM CPSRWriteByInstr pseudocode). 9680 */ 9681 9682 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9683 if (write_type == CPSRWriteByInstr && 9684 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9685 mode == ARM_CPU_MODE_HYP)) { 9686 return 1; 9687 } 9688 9689 switch (mode) { 9690 case ARM_CPU_MODE_USR: 9691 return 0; 9692 case ARM_CPU_MODE_SYS: 9693 case ARM_CPU_MODE_SVC: 9694 case ARM_CPU_MODE_ABT: 9695 case ARM_CPU_MODE_UND: 9696 case ARM_CPU_MODE_IRQ: 9697 case ARM_CPU_MODE_FIQ: 9698 /* 9699 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9700 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9701 */ 9702 /* 9703 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9704 * and CPS are treated as illegal mode changes. 9705 */ 9706 if (write_type == CPSRWriteByInstr && 9707 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9708 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9709 return 1; 9710 } 9711 return 0; 9712 case ARM_CPU_MODE_HYP: 9713 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9714 case ARM_CPU_MODE_MON: 9715 return arm_current_el(env) < 3; 9716 default: 9717 return 1; 9718 } 9719 } 9720 9721 uint32_t cpsr_read(CPUARMState *env) 9722 { 9723 int ZF; 9724 ZF = (env->ZF == 0); 9725 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9726 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9727 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9728 | ((env->condexec_bits & 0xfc) << 8) 9729 | (env->GE << 16) | (env->daif & CPSR_AIF); 9730 } 9731 9732 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9733 CPSRWriteType write_type) 9734 { 9735 uint32_t changed_daif; 9736 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9737 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9738 9739 if (mask & CPSR_NZCV) { 9740 env->ZF = (~val) & CPSR_Z; 9741 env->NF = val; 9742 env->CF = (val >> 29) & 1; 9743 env->VF = (val << 3) & 0x80000000; 9744 } 9745 if (mask & CPSR_Q) { 9746 env->QF = ((val & CPSR_Q) != 0); 9747 } 9748 if (mask & CPSR_T) { 9749 env->thumb = ((val & CPSR_T) != 0); 9750 } 9751 if (mask & CPSR_IT_0_1) { 9752 env->condexec_bits &= ~3; 9753 env->condexec_bits |= (val >> 25) & 3; 9754 } 9755 if (mask & CPSR_IT_2_7) { 9756 env->condexec_bits &= 3; 9757 env->condexec_bits |= (val >> 8) & 0xfc; 9758 } 9759 if (mask & CPSR_GE) { 9760 env->GE = (val >> 16) & 0xf; 9761 } 9762 9763 /* 9764 * In a V7 implementation that includes the security extensions but does 9765 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9766 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9767 * bits respectively. 9768 * 9769 * In a V8 implementation, it is permitted for privileged software to 9770 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9771 */ 9772 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9773 arm_feature(env, ARM_FEATURE_EL3) && 9774 !arm_feature(env, ARM_FEATURE_EL2) && 9775 !arm_is_secure(env)) { 9776 9777 changed_daif = (env->daif ^ val) & mask; 9778 9779 if (changed_daif & CPSR_A) { 9780 /* 9781 * Check to see if we are allowed to change the masking of async 9782 * abort exceptions from a non-secure state. 9783 */ 9784 if (!(env->cp15.scr_el3 & SCR_AW)) { 9785 qemu_log_mask(LOG_GUEST_ERROR, 9786 "Ignoring attempt to switch CPSR_A flag from " 9787 "non-secure world with SCR.AW bit clear\n"); 9788 mask &= ~CPSR_A; 9789 } 9790 } 9791 9792 if (changed_daif & CPSR_F) { 9793 /* 9794 * Check to see if we are allowed to change the masking of FIQ 9795 * exceptions from a non-secure state. 9796 */ 9797 if (!(env->cp15.scr_el3 & SCR_FW)) { 9798 qemu_log_mask(LOG_GUEST_ERROR, 9799 "Ignoring attempt to switch CPSR_F flag from " 9800 "non-secure world with SCR.FW bit clear\n"); 9801 mask &= ~CPSR_F; 9802 } 9803 9804 /* 9805 * Check whether non-maskable FIQ (NMFI) support is enabled. 9806 * If this bit is set software is not allowed to mask 9807 * FIQs, but is allowed to set CPSR_F to 0. 9808 */ 9809 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9810 (val & CPSR_F)) { 9811 qemu_log_mask(LOG_GUEST_ERROR, 9812 "Ignoring attempt to enable CPSR_F flag " 9813 "(non-maskable FIQ [NMFI] support enabled)\n"); 9814 mask &= ~CPSR_F; 9815 } 9816 } 9817 } 9818 9819 env->daif &= ~(CPSR_AIF & mask); 9820 env->daif |= val & CPSR_AIF & mask; 9821 9822 if (write_type != CPSRWriteRaw && 9823 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9824 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9825 /* 9826 * Note that we can only get here in USR mode if this is a 9827 * gdb stub write; for this case we follow the architectural 9828 * behaviour for guest writes in USR mode of ignoring an attempt 9829 * to switch mode. (Those are caught by translate.c for writes 9830 * triggered by guest instructions.) 9831 */ 9832 mask &= ~CPSR_M; 9833 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9834 /* 9835 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9836 * v7, and has defined behaviour in v8: 9837 * + leave CPSR.M untouched 9838 * + allow changes to the other CPSR fields 9839 * + set PSTATE.IL 9840 * For user changes via the GDB stub, we don't set PSTATE.IL, 9841 * as this would be unnecessarily harsh for a user error. 9842 */ 9843 mask &= ~CPSR_M; 9844 if (write_type != CPSRWriteByGDBStub && 9845 arm_feature(env, ARM_FEATURE_V8)) { 9846 mask |= CPSR_IL; 9847 val |= CPSR_IL; 9848 } 9849 qemu_log_mask(LOG_GUEST_ERROR, 9850 "Illegal AArch32 mode switch attempt from %s to %s\n", 9851 aarch32_mode_name(env->uncached_cpsr), 9852 aarch32_mode_name(val)); 9853 } else { 9854 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9855 write_type == CPSRWriteExceptionReturn ? 9856 "Exception return from AArch32" : 9857 "AArch32 mode switch from", 9858 aarch32_mode_name(env->uncached_cpsr), 9859 aarch32_mode_name(val), env->regs[15]); 9860 switch_mode(env, val & CPSR_M); 9861 } 9862 } 9863 mask &= ~CACHED_CPSR_BITS; 9864 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9865 if (tcg_enabled() && rebuild_hflags) { 9866 arm_rebuild_hflags(env); 9867 } 9868 } 9869 9870 /* Sign/zero extend */ 9871 uint32_t HELPER(sxtb16)(uint32_t x) 9872 { 9873 uint32_t res; 9874 res = (uint16_t)(int8_t)x; 9875 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9876 return res; 9877 } 9878 9879 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9880 { 9881 /* 9882 * Take a division-by-zero exception if necessary; otherwise return 9883 * to get the usual non-trapping division behaviour (result of 0) 9884 */ 9885 if (arm_feature(env, ARM_FEATURE_M) 9886 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9887 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9888 } 9889 } 9890 9891 uint32_t HELPER(uxtb16)(uint32_t x) 9892 { 9893 uint32_t res; 9894 res = (uint16_t)(uint8_t)x; 9895 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9896 return res; 9897 } 9898 9899 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9900 { 9901 if (den == 0) { 9902 handle_possible_div0_trap(env, GETPC()); 9903 return 0; 9904 } 9905 if (num == INT_MIN && den == -1) { 9906 return INT_MIN; 9907 } 9908 return num / den; 9909 } 9910 9911 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9912 { 9913 if (den == 0) { 9914 handle_possible_div0_trap(env, GETPC()); 9915 return 0; 9916 } 9917 return num / den; 9918 } 9919 9920 uint32_t HELPER(rbit)(uint32_t x) 9921 { 9922 return revbit32(x); 9923 } 9924 9925 #ifdef CONFIG_USER_ONLY 9926 9927 static void switch_mode(CPUARMState *env, int mode) 9928 { 9929 ARMCPU *cpu = env_archcpu(env); 9930 9931 if (mode != ARM_CPU_MODE_USR) { 9932 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9933 } 9934 } 9935 9936 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9937 uint32_t cur_el, bool secure) 9938 { 9939 return 1; 9940 } 9941 9942 void aarch64_sync_64_to_32(CPUARMState *env) 9943 { 9944 g_assert_not_reached(); 9945 } 9946 9947 #else 9948 9949 static void switch_mode(CPUARMState *env, int mode) 9950 { 9951 int old_mode; 9952 int i; 9953 9954 old_mode = env->uncached_cpsr & CPSR_M; 9955 if (mode == old_mode) { 9956 return; 9957 } 9958 9959 if (old_mode == ARM_CPU_MODE_FIQ) { 9960 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9961 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9962 } else if (mode == ARM_CPU_MODE_FIQ) { 9963 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9964 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9965 } 9966 9967 i = bank_number(old_mode); 9968 env->banked_r13[i] = env->regs[13]; 9969 env->banked_spsr[i] = env->spsr; 9970 9971 i = bank_number(mode); 9972 env->regs[13] = env->banked_r13[i]; 9973 env->spsr = env->banked_spsr[i]; 9974 9975 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9976 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9977 } 9978 9979 /* 9980 * Physical Interrupt Target EL Lookup Table 9981 * 9982 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9983 * 9984 * The below multi-dimensional table is used for looking up the target 9985 * exception level given numerous condition criteria. Specifically, the 9986 * target EL is based on SCR and HCR routing controls as well as the 9987 * currently executing EL and secure state. 9988 * 9989 * Dimensions: 9990 * target_el_table[2][2][2][2][2][4] 9991 * | | | | | +--- Current EL 9992 * | | | | +------ Non-secure(0)/Secure(1) 9993 * | | | +--------- HCR mask override 9994 * | | +------------ SCR exec state control 9995 * | +--------------- SCR mask override 9996 * +------------------ 32-bit(0)/64-bit(1) EL3 9997 * 9998 * The table values are as such: 9999 * 0-3 = EL0-EL3 10000 * -1 = Cannot occur 10001 * 10002 * The ARM ARM target EL table includes entries indicating that an "exception 10003 * is not taken". The two cases where this is applicable are: 10004 * 1) An exception is taken from EL3 but the SCR does not have the exception 10005 * routed to EL3. 10006 * 2) An exception is taken from EL2 but the HCR does not have the exception 10007 * routed to EL2. 10008 * In these two cases, the below table contain a target of EL1. This value is 10009 * returned as it is expected that the consumer of the table data will check 10010 * for "target EL >= current EL" to ensure the exception is not taken. 10011 * 10012 * SCR HCR 10013 * 64 EA AMO From 10014 * BIT IRQ IMO Non-secure Secure 10015 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10016 */ 10017 static const int8_t target_el_table[2][2][2][2][2][4] = { 10018 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10019 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10020 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10021 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10022 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10023 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10024 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10025 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10026 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10027 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10028 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10029 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10030 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10031 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10032 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10033 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10034 }; 10035 10036 /* 10037 * Determine the target EL for physical exceptions 10038 */ 10039 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10040 uint32_t cur_el, bool secure) 10041 { 10042 CPUARMState *env = cs->env_ptr; 10043 bool rw; 10044 bool scr; 10045 bool hcr; 10046 int target_el; 10047 /* Is the highest EL AArch64? */ 10048 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10049 uint64_t hcr_el2; 10050 10051 if (arm_feature(env, ARM_FEATURE_EL3)) { 10052 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10053 } else { 10054 /* 10055 * Either EL2 is the highest EL (and so the EL2 register width 10056 * is given by is64); or there is no EL2 or EL3, in which case 10057 * the value of 'rw' does not affect the table lookup anyway. 10058 */ 10059 rw = is64; 10060 } 10061 10062 hcr_el2 = arm_hcr_el2_eff(env); 10063 switch (excp_idx) { 10064 case EXCP_IRQ: 10065 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10066 hcr = hcr_el2 & HCR_IMO; 10067 break; 10068 case EXCP_FIQ: 10069 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10070 hcr = hcr_el2 & HCR_FMO; 10071 break; 10072 default: 10073 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10074 hcr = hcr_el2 & HCR_AMO; 10075 break; 10076 }; 10077 10078 /* 10079 * For these purposes, TGE and AMO/IMO/FMO both force the 10080 * interrupt to EL2. Fold TGE into the bit extracted above. 10081 */ 10082 hcr |= (hcr_el2 & HCR_TGE) != 0; 10083 10084 /* Perform a table-lookup for the target EL given the current state */ 10085 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10086 10087 assert(target_el > 0); 10088 10089 return target_el; 10090 } 10091 10092 void arm_log_exception(CPUState *cs) 10093 { 10094 int idx = cs->exception_index; 10095 10096 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10097 const char *exc = NULL; 10098 static const char * const excnames[] = { 10099 [EXCP_UDEF] = "Undefined Instruction", 10100 [EXCP_SWI] = "SVC", 10101 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10102 [EXCP_DATA_ABORT] = "Data Abort", 10103 [EXCP_IRQ] = "IRQ", 10104 [EXCP_FIQ] = "FIQ", 10105 [EXCP_BKPT] = "Breakpoint", 10106 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10107 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10108 [EXCP_HVC] = "Hypervisor Call", 10109 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10110 [EXCP_SMC] = "Secure Monitor Call", 10111 [EXCP_VIRQ] = "Virtual IRQ", 10112 [EXCP_VFIQ] = "Virtual FIQ", 10113 [EXCP_SEMIHOST] = "Semihosting call", 10114 [EXCP_NOCP] = "v7M NOCP UsageFault", 10115 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10116 [EXCP_STKOF] = "v8M STKOF UsageFault", 10117 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10118 [EXCP_LSERR] = "v8M LSERR UsageFault", 10119 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10120 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10121 [EXCP_VSERR] = "Virtual SERR", 10122 }; 10123 10124 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10125 exc = excnames[idx]; 10126 } 10127 if (!exc) { 10128 exc = "unknown"; 10129 } 10130 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10131 idx, exc, cs->cpu_index); 10132 } 10133 } 10134 10135 /* 10136 * Function used to synchronize QEMU's AArch64 register set with AArch32 10137 * register set. This is necessary when switching between AArch32 and AArch64 10138 * execution state. 10139 */ 10140 void aarch64_sync_32_to_64(CPUARMState *env) 10141 { 10142 int i; 10143 uint32_t mode = env->uncached_cpsr & CPSR_M; 10144 10145 /* We can blanket copy R[0:7] to X[0:7] */ 10146 for (i = 0; i < 8; i++) { 10147 env->xregs[i] = env->regs[i]; 10148 } 10149 10150 /* 10151 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10152 * Otherwise, they come from the banked user regs. 10153 */ 10154 if (mode == ARM_CPU_MODE_FIQ) { 10155 for (i = 8; i < 13; i++) { 10156 env->xregs[i] = env->usr_regs[i - 8]; 10157 } 10158 } else { 10159 for (i = 8; i < 13; i++) { 10160 env->xregs[i] = env->regs[i]; 10161 } 10162 } 10163 10164 /* 10165 * Registers x13-x23 are the various mode SP and FP registers. Registers 10166 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10167 * from the mode banked register. 10168 */ 10169 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10170 env->xregs[13] = env->regs[13]; 10171 env->xregs[14] = env->regs[14]; 10172 } else { 10173 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10174 /* HYP is an exception in that it is copied from r14 */ 10175 if (mode == ARM_CPU_MODE_HYP) { 10176 env->xregs[14] = env->regs[14]; 10177 } else { 10178 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10179 } 10180 } 10181 10182 if (mode == ARM_CPU_MODE_HYP) { 10183 env->xregs[15] = env->regs[13]; 10184 } else { 10185 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10186 } 10187 10188 if (mode == ARM_CPU_MODE_IRQ) { 10189 env->xregs[16] = env->regs[14]; 10190 env->xregs[17] = env->regs[13]; 10191 } else { 10192 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10193 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10194 } 10195 10196 if (mode == ARM_CPU_MODE_SVC) { 10197 env->xregs[18] = env->regs[14]; 10198 env->xregs[19] = env->regs[13]; 10199 } else { 10200 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10201 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10202 } 10203 10204 if (mode == ARM_CPU_MODE_ABT) { 10205 env->xregs[20] = env->regs[14]; 10206 env->xregs[21] = env->regs[13]; 10207 } else { 10208 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10209 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10210 } 10211 10212 if (mode == ARM_CPU_MODE_UND) { 10213 env->xregs[22] = env->regs[14]; 10214 env->xregs[23] = env->regs[13]; 10215 } else { 10216 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10217 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10218 } 10219 10220 /* 10221 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10222 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10223 * FIQ bank for r8-r14. 10224 */ 10225 if (mode == ARM_CPU_MODE_FIQ) { 10226 for (i = 24; i < 31; i++) { 10227 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10228 } 10229 } else { 10230 for (i = 24; i < 29; i++) { 10231 env->xregs[i] = env->fiq_regs[i - 24]; 10232 } 10233 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10234 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10235 } 10236 10237 env->pc = env->regs[15]; 10238 } 10239 10240 /* 10241 * Function used to synchronize QEMU's AArch32 register set with AArch64 10242 * register set. This is necessary when switching between AArch32 and AArch64 10243 * execution state. 10244 */ 10245 void aarch64_sync_64_to_32(CPUARMState *env) 10246 { 10247 int i; 10248 uint32_t mode = env->uncached_cpsr & CPSR_M; 10249 10250 /* We can blanket copy X[0:7] to R[0:7] */ 10251 for (i = 0; i < 8; i++) { 10252 env->regs[i] = env->xregs[i]; 10253 } 10254 10255 /* 10256 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10257 * Otherwise, we copy x8-x12 into the banked user regs. 10258 */ 10259 if (mode == ARM_CPU_MODE_FIQ) { 10260 for (i = 8; i < 13; i++) { 10261 env->usr_regs[i - 8] = env->xregs[i]; 10262 } 10263 } else { 10264 for (i = 8; i < 13; i++) { 10265 env->regs[i] = env->xregs[i]; 10266 } 10267 } 10268 10269 /* 10270 * Registers r13 & r14 depend on the current mode. 10271 * If we are in a given mode, we copy the corresponding x registers to r13 10272 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10273 * for the mode. 10274 */ 10275 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10276 env->regs[13] = env->xregs[13]; 10277 env->regs[14] = env->xregs[14]; 10278 } else { 10279 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10280 10281 /* 10282 * HYP is an exception in that it does not have its own banked r14 but 10283 * shares the USR r14 10284 */ 10285 if (mode == ARM_CPU_MODE_HYP) { 10286 env->regs[14] = env->xregs[14]; 10287 } else { 10288 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10289 } 10290 } 10291 10292 if (mode == ARM_CPU_MODE_HYP) { 10293 env->regs[13] = env->xregs[15]; 10294 } else { 10295 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10296 } 10297 10298 if (mode == ARM_CPU_MODE_IRQ) { 10299 env->regs[14] = env->xregs[16]; 10300 env->regs[13] = env->xregs[17]; 10301 } else { 10302 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10303 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10304 } 10305 10306 if (mode == ARM_CPU_MODE_SVC) { 10307 env->regs[14] = env->xregs[18]; 10308 env->regs[13] = env->xregs[19]; 10309 } else { 10310 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10311 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10312 } 10313 10314 if (mode == ARM_CPU_MODE_ABT) { 10315 env->regs[14] = env->xregs[20]; 10316 env->regs[13] = env->xregs[21]; 10317 } else { 10318 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10319 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10320 } 10321 10322 if (mode == ARM_CPU_MODE_UND) { 10323 env->regs[14] = env->xregs[22]; 10324 env->regs[13] = env->xregs[23]; 10325 } else { 10326 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10327 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10328 } 10329 10330 /* 10331 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10332 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10333 * FIQ bank for r8-r14. 10334 */ 10335 if (mode == ARM_CPU_MODE_FIQ) { 10336 for (i = 24; i < 31; i++) { 10337 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10338 } 10339 } else { 10340 for (i = 24; i < 29; i++) { 10341 env->fiq_regs[i - 24] = env->xregs[i]; 10342 } 10343 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10344 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10345 } 10346 10347 env->regs[15] = env->pc; 10348 } 10349 10350 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10351 uint32_t mask, uint32_t offset, 10352 uint32_t newpc) 10353 { 10354 int new_el; 10355 10356 /* Change the CPU state so as to actually take the exception. */ 10357 switch_mode(env, new_mode); 10358 10359 /* 10360 * For exceptions taken to AArch32 we must clear the SS bit in both 10361 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10362 */ 10363 env->pstate &= ~PSTATE_SS; 10364 env->spsr = cpsr_read(env); 10365 /* Clear IT bits. */ 10366 env->condexec_bits = 0; 10367 /* Switch to the new mode, and to the correct instruction set. */ 10368 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10369 10370 /* This must be after mode switching. */ 10371 new_el = arm_current_el(env); 10372 10373 /* Set new mode endianness */ 10374 env->uncached_cpsr &= ~CPSR_E; 10375 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10376 env->uncached_cpsr |= CPSR_E; 10377 } 10378 /* J and IL must always be cleared for exception entry */ 10379 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10380 env->daif |= mask; 10381 10382 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10383 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10384 env->uncached_cpsr |= CPSR_SSBS; 10385 } else { 10386 env->uncached_cpsr &= ~CPSR_SSBS; 10387 } 10388 } 10389 10390 if (new_mode == ARM_CPU_MODE_HYP) { 10391 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10392 env->elr_el[2] = env->regs[15]; 10393 } else { 10394 /* CPSR.PAN is normally preserved preserved unless... */ 10395 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10396 switch (new_el) { 10397 case 3: 10398 if (!arm_is_secure_below_el3(env)) { 10399 /* ... the target is EL3, from non-secure state. */ 10400 env->uncached_cpsr &= ~CPSR_PAN; 10401 break; 10402 } 10403 /* ... the target is EL3, from secure state ... */ 10404 /* fall through */ 10405 case 1: 10406 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10407 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10408 env->uncached_cpsr |= CPSR_PAN; 10409 } 10410 break; 10411 } 10412 } 10413 /* 10414 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10415 * and we should just guard the thumb mode on V4 10416 */ 10417 if (arm_feature(env, ARM_FEATURE_V4T)) { 10418 env->thumb = 10419 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10420 } 10421 env->regs[14] = env->regs[15] + offset; 10422 } 10423 env->regs[15] = newpc; 10424 10425 if (tcg_enabled()) { 10426 arm_rebuild_hflags(env); 10427 } 10428 } 10429 10430 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10431 { 10432 /* 10433 * Handle exception entry to Hyp mode; this is sufficiently 10434 * different to entry to other AArch32 modes that we handle it 10435 * separately here. 10436 * 10437 * The vector table entry used is always the 0x14 Hyp mode entry point, 10438 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10439 * The offset applied to the preferred return address is always zero 10440 * (see DDI0487C.a section G1.12.3). 10441 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10442 */ 10443 uint32_t addr, mask; 10444 ARMCPU *cpu = ARM_CPU(cs); 10445 CPUARMState *env = &cpu->env; 10446 10447 switch (cs->exception_index) { 10448 case EXCP_UDEF: 10449 addr = 0x04; 10450 break; 10451 case EXCP_SWI: 10452 addr = 0x08; 10453 break; 10454 case EXCP_BKPT: 10455 /* Fall through to prefetch abort. */ 10456 case EXCP_PREFETCH_ABORT: 10457 env->cp15.ifar_s = env->exception.vaddress; 10458 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10459 (uint32_t)env->exception.vaddress); 10460 addr = 0x0c; 10461 break; 10462 case EXCP_DATA_ABORT: 10463 env->cp15.dfar_s = env->exception.vaddress; 10464 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10465 (uint32_t)env->exception.vaddress); 10466 addr = 0x10; 10467 break; 10468 case EXCP_IRQ: 10469 addr = 0x18; 10470 break; 10471 case EXCP_FIQ: 10472 addr = 0x1c; 10473 break; 10474 case EXCP_HVC: 10475 addr = 0x08; 10476 break; 10477 case EXCP_HYP_TRAP: 10478 addr = 0x14; 10479 break; 10480 default: 10481 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10482 } 10483 10484 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10485 if (!arm_feature(env, ARM_FEATURE_V8)) { 10486 /* 10487 * QEMU syndrome values are v8-style. v7 has the IL bit 10488 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10489 * If this is a v7 CPU, squash the IL bit in those cases. 10490 */ 10491 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10492 (cs->exception_index == EXCP_DATA_ABORT && 10493 !(env->exception.syndrome & ARM_EL_ISV)) || 10494 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10495 env->exception.syndrome &= ~ARM_EL_IL; 10496 } 10497 } 10498 env->cp15.esr_el[2] = env->exception.syndrome; 10499 } 10500 10501 if (arm_current_el(env) != 2 && addr < 0x14) { 10502 addr = 0x14; 10503 } 10504 10505 mask = 0; 10506 if (!(env->cp15.scr_el3 & SCR_EA)) { 10507 mask |= CPSR_A; 10508 } 10509 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10510 mask |= CPSR_I; 10511 } 10512 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10513 mask |= CPSR_F; 10514 } 10515 10516 addr += env->cp15.hvbar; 10517 10518 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10519 } 10520 10521 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10522 { 10523 ARMCPU *cpu = ARM_CPU(cs); 10524 CPUARMState *env = &cpu->env; 10525 uint32_t addr; 10526 uint32_t mask; 10527 int new_mode; 10528 uint32_t offset; 10529 uint32_t moe; 10530 10531 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10532 switch (syn_get_ec(env->exception.syndrome)) { 10533 case EC_BREAKPOINT: 10534 case EC_BREAKPOINT_SAME_EL: 10535 moe = 1; 10536 break; 10537 case EC_WATCHPOINT: 10538 case EC_WATCHPOINT_SAME_EL: 10539 moe = 10; 10540 break; 10541 case EC_AA32_BKPT: 10542 moe = 3; 10543 break; 10544 case EC_VECTORCATCH: 10545 moe = 5; 10546 break; 10547 default: 10548 moe = 0; 10549 break; 10550 } 10551 10552 if (moe) { 10553 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10554 } 10555 10556 if (env->exception.target_el == 2) { 10557 arm_cpu_do_interrupt_aarch32_hyp(cs); 10558 return; 10559 } 10560 10561 switch (cs->exception_index) { 10562 case EXCP_UDEF: 10563 new_mode = ARM_CPU_MODE_UND; 10564 addr = 0x04; 10565 mask = CPSR_I; 10566 if (env->thumb) { 10567 offset = 2; 10568 } else { 10569 offset = 4; 10570 } 10571 break; 10572 case EXCP_SWI: 10573 new_mode = ARM_CPU_MODE_SVC; 10574 addr = 0x08; 10575 mask = CPSR_I; 10576 /* The PC already points to the next instruction. */ 10577 offset = 0; 10578 break; 10579 case EXCP_BKPT: 10580 /* Fall through to prefetch abort. */ 10581 case EXCP_PREFETCH_ABORT: 10582 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10583 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10584 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10585 env->exception.fsr, (uint32_t)env->exception.vaddress); 10586 new_mode = ARM_CPU_MODE_ABT; 10587 addr = 0x0c; 10588 mask = CPSR_A | CPSR_I; 10589 offset = 4; 10590 break; 10591 case EXCP_DATA_ABORT: 10592 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10593 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10594 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10595 env->exception.fsr, 10596 (uint32_t)env->exception.vaddress); 10597 new_mode = ARM_CPU_MODE_ABT; 10598 addr = 0x10; 10599 mask = CPSR_A | CPSR_I; 10600 offset = 8; 10601 break; 10602 case EXCP_IRQ: 10603 new_mode = ARM_CPU_MODE_IRQ; 10604 addr = 0x18; 10605 /* Disable IRQ and imprecise data aborts. */ 10606 mask = CPSR_A | CPSR_I; 10607 offset = 4; 10608 if (env->cp15.scr_el3 & SCR_IRQ) { 10609 /* IRQ routed to monitor mode */ 10610 new_mode = ARM_CPU_MODE_MON; 10611 mask |= CPSR_F; 10612 } 10613 break; 10614 case EXCP_FIQ: 10615 new_mode = ARM_CPU_MODE_FIQ; 10616 addr = 0x1c; 10617 /* Disable FIQ, IRQ and imprecise data aborts. */ 10618 mask = CPSR_A | CPSR_I | CPSR_F; 10619 if (env->cp15.scr_el3 & SCR_FIQ) { 10620 /* FIQ routed to monitor mode */ 10621 new_mode = ARM_CPU_MODE_MON; 10622 } 10623 offset = 4; 10624 break; 10625 case EXCP_VIRQ: 10626 new_mode = ARM_CPU_MODE_IRQ; 10627 addr = 0x18; 10628 /* Disable IRQ and imprecise data aborts. */ 10629 mask = CPSR_A | CPSR_I; 10630 offset = 4; 10631 break; 10632 case EXCP_VFIQ: 10633 new_mode = ARM_CPU_MODE_FIQ; 10634 addr = 0x1c; 10635 /* Disable FIQ, IRQ and imprecise data aborts. */ 10636 mask = CPSR_A | CPSR_I | CPSR_F; 10637 offset = 4; 10638 break; 10639 case EXCP_VSERR: 10640 { 10641 /* 10642 * Note that this is reported as a data abort, but the DFAR 10643 * has an UNKNOWN value. Construct the SError syndrome from 10644 * AET and ExT fields. 10645 */ 10646 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10647 10648 if (extended_addresses_enabled(env)) { 10649 env->exception.fsr = arm_fi_to_lfsc(&fi); 10650 } else { 10651 env->exception.fsr = arm_fi_to_sfsc(&fi); 10652 } 10653 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10654 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10655 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10656 env->exception.fsr); 10657 10658 new_mode = ARM_CPU_MODE_ABT; 10659 addr = 0x10; 10660 mask = CPSR_A | CPSR_I; 10661 offset = 8; 10662 } 10663 break; 10664 case EXCP_SMC: 10665 new_mode = ARM_CPU_MODE_MON; 10666 addr = 0x08; 10667 mask = CPSR_A | CPSR_I | CPSR_F; 10668 offset = 0; 10669 break; 10670 default: 10671 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10672 return; /* Never happens. Keep compiler happy. */ 10673 } 10674 10675 if (new_mode == ARM_CPU_MODE_MON) { 10676 addr += env->cp15.mvbar; 10677 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10678 /* High vectors. When enabled, base address cannot be remapped. */ 10679 addr += 0xffff0000; 10680 } else { 10681 /* 10682 * ARM v7 architectures provide a vector base address register to remap 10683 * the interrupt vector table. 10684 * This register is only followed in non-monitor mode, and is banked. 10685 * Note: only bits 31:5 are valid. 10686 */ 10687 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10688 } 10689 10690 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10691 env->cp15.scr_el3 &= ~SCR_NS; 10692 } 10693 10694 take_aarch32_exception(env, new_mode, mask, offset, addr); 10695 } 10696 10697 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10698 { 10699 /* 10700 * Return the register number of the AArch64 view of the AArch32 10701 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10702 * be that of the AArch32 mode the exception came from. 10703 */ 10704 int mode = env->uncached_cpsr & CPSR_M; 10705 10706 switch (aarch32_reg) { 10707 case 0 ... 7: 10708 return aarch32_reg; 10709 case 8 ... 12: 10710 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10711 case 13: 10712 switch (mode) { 10713 case ARM_CPU_MODE_USR: 10714 case ARM_CPU_MODE_SYS: 10715 return 13; 10716 case ARM_CPU_MODE_HYP: 10717 return 15; 10718 case ARM_CPU_MODE_IRQ: 10719 return 17; 10720 case ARM_CPU_MODE_SVC: 10721 return 19; 10722 case ARM_CPU_MODE_ABT: 10723 return 21; 10724 case ARM_CPU_MODE_UND: 10725 return 23; 10726 case ARM_CPU_MODE_FIQ: 10727 return 29; 10728 default: 10729 g_assert_not_reached(); 10730 } 10731 case 14: 10732 switch (mode) { 10733 case ARM_CPU_MODE_USR: 10734 case ARM_CPU_MODE_SYS: 10735 case ARM_CPU_MODE_HYP: 10736 return 14; 10737 case ARM_CPU_MODE_IRQ: 10738 return 16; 10739 case ARM_CPU_MODE_SVC: 10740 return 18; 10741 case ARM_CPU_MODE_ABT: 10742 return 20; 10743 case ARM_CPU_MODE_UND: 10744 return 22; 10745 case ARM_CPU_MODE_FIQ: 10746 return 30; 10747 default: 10748 g_assert_not_reached(); 10749 } 10750 case 15: 10751 return 31; 10752 default: 10753 g_assert_not_reached(); 10754 } 10755 } 10756 10757 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10758 { 10759 uint32_t ret = cpsr_read(env); 10760 10761 /* Move DIT to the correct location for SPSR_ELx */ 10762 if (ret & CPSR_DIT) { 10763 ret &= ~CPSR_DIT; 10764 ret |= PSTATE_DIT; 10765 } 10766 /* Merge PSTATE.SS into SPSR_ELx */ 10767 ret |= env->pstate & PSTATE_SS; 10768 10769 return ret; 10770 } 10771 10772 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10773 { 10774 /* Return true if this syndrome value is a synchronous external abort */ 10775 switch (syn_get_ec(syndrome)) { 10776 case EC_INSNABORT: 10777 case EC_INSNABORT_SAME_EL: 10778 case EC_DATAABORT: 10779 case EC_DATAABORT_SAME_EL: 10780 /* Look at fault status code for all the synchronous ext abort cases */ 10781 switch (syndrome & 0x3f) { 10782 case 0x10: 10783 case 0x13: 10784 case 0x14: 10785 case 0x15: 10786 case 0x16: 10787 case 0x17: 10788 return true; 10789 default: 10790 return false; 10791 } 10792 default: 10793 return false; 10794 } 10795 } 10796 10797 /* Handle exception entry to a target EL which is using AArch64 */ 10798 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10799 { 10800 ARMCPU *cpu = ARM_CPU(cs); 10801 CPUARMState *env = &cpu->env; 10802 unsigned int new_el = env->exception.target_el; 10803 target_ulong addr = env->cp15.vbar_el[new_el]; 10804 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10805 unsigned int old_mode; 10806 unsigned int cur_el = arm_current_el(env); 10807 int rt; 10808 10809 if (tcg_enabled()) { 10810 /* 10811 * Note that new_el can never be 0. If cur_el is 0, then 10812 * el0_a64 is is_a64(), else el0_a64 is ignored. 10813 */ 10814 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10815 } 10816 10817 if (cur_el < new_el) { 10818 /* 10819 * Entry vector offset depends on whether the implemented EL 10820 * immediately lower than the target level is using AArch32 or AArch64 10821 */ 10822 bool is_aa64; 10823 uint64_t hcr; 10824 10825 switch (new_el) { 10826 case 3: 10827 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10828 break; 10829 case 2: 10830 hcr = arm_hcr_el2_eff(env); 10831 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10832 is_aa64 = (hcr & HCR_RW) != 0; 10833 break; 10834 } 10835 /* fall through */ 10836 case 1: 10837 is_aa64 = is_a64(env); 10838 break; 10839 default: 10840 g_assert_not_reached(); 10841 } 10842 10843 if (is_aa64) { 10844 addr += 0x400; 10845 } else { 10846 addr += 0x600; 10847 } 10848 } else if (pstate_read(env) & PSTATE_SP) { 10849 addr += 0x200; 10850 } 10851 10852 switch (cs->exception_index) { 10853 case EXCP_PREFETCH_ABORT: 10854 case EXCP_DATA_ABORT: 10855 /* 10856 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10857 * to be taken to the SError vector entrypoint. 10858 */ 10859 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10860 syndrome_is_sync_extabt(env->exception.syndrome)) { 10861 addr += 0x180; 10862 } 10863 env->cp15.far_el[new_el] = env->exception.vaddress; 10864 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10865 env->cp15.far_el[new_el]); 10866 /* fall through */ 10867 case EXCP_BKPT: 10868 case EXCP_UDEF: 10869 case EXCP_SWI: 10870 case EXCP_HVC: 10871 case EXCP_HYP_TRAP: 10872 case EXCP_SMC: 10873 switch (syn_get_ec(env->exception.syndrome)) { 10874 case EC_ADVSIMDFPACCESSTRAP: 10875 /* 10876 * QEMU internal FP/SIMD syndromes from AArch32 include the 10877 * TA and coproc fields which are only exposed if the exception 10878 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10879 * AArch64 format syndrome. 10880 */ 10881 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10882 break; 10883 case EC_CP14RTTRAP: 10884 case EC_CP15RTTRAP: 10885 case EC_CP14DTTRAP: 10886 /* 10887 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10888 * the raw register field from the insn; when taking this to 10889 * AArch64 we must convert it to the AArch64 view of the register 10890 * number. Notice that we read a 4-bit AArch32 register number and 10891 * write back a 5-bit AArch64 one. 10892 */ 10893 rt = extract32(env->exception.syndrome, 5, 4); 10894 rt = aarch64_regnum(env, rt); 10895 env->exception.syndrome = deposit32(env->exception.syndrome, 10896 5, 5, rt); 10897 break; 10898 case EC_CP15RRTTRAP: 10899 case EC_CP14RRTTRAP: 10900 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10901 rt = extract32(env->exception.syndrome, 5, 4); 10902 rt = aarch64_regnum(env, rt); 10903 env->exception.syndrome = deposit32(env->exception.syndrome, 10904 5, 5, rt); 10905 rt = extract32(env->exception.syndrome, 10, 4); 10906 rt = aarch64_regnum(env, rt); 10907 env->exception.syndrome = deposit32(env->exception.syndrome, 10908 10, 5, rt); 10909 break; 10910 } 10911 env->cp15.esr_el[new_el] = env->exception.syndrome; 10912 break; 10913 case EXCP_IRQ: 10914 case EXCP_VIRQ: 10915 addr += 0x80; 10916 break; 10917 case EXCP_FIQ: 10918 case EXCP_VFIQ: 10919 addr += 0x100; 10920 break; 10921 case EXCP_VSERR: 10922 addr += 0x180; 10923 /* Construct the SError syndrome from IDS and ISS fields. */ 10924 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10925 env->cp15.esr_el[new_el] = env->exception.syndrome; 10926 break; 10927 default: 10928 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10929 } 10930 10931 if (is_a64(env)) { 10932 old_mode = pstate_read(env); 10933 aarch64_save_sp(env, arm_current_el(env)); 10934 env->elr_el[new_el] = env->pc; 10935 } else { 10936 old_mode = cpsr_read_for_spsr_elx(env); 10937 env->elr_el[new_el] = env->regs[15]; 10938 10939 aarch64_sync_32_to_64(env); 10940 10941 env->condexec_bits = 0; 10942 } 10943 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10944 10945 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10946 env->elr_el[new_el]); 10947 10948 if (cpu_isar_feature(aa64_pan, cpu)) { 10949 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10950 new_mode |= old_mode & PSTATE_PAN; 10951 switch (new_el) { 10952 case 2: 10953 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10954 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10955 != (HCR_E2H | HCR_TGE)) { 10956 break; 10957 } 10958 /* fall through */ 10959 case 1: 10960 /* ... the target is EL1 ... */ 10961 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10962 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10963 new_mode |= PSTATE_PAN; 10964 } 10965 break; 10966 } 10967 } 10968 if (cpu_isar_feature(aa64_mte, cpu)) { 10969 new_mode |= PSTATE_TCO; 10970 } 10971 10972 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10973 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10974 new_mode |= PSTATE_SSBS; 10975 } else { 10976 new_mode &= ~PSTATE_SSBS; 10977 } 10978 } 10979 10980 pstate_write(env, PSTATE_DAIF | new_mode); 10981 env->aarch64 = true; 10982 aarch64_restore_sp(env, new_el); 10983 10984 if (tcg_enabled()) { 10985 helper_rebuild_hflags_a64(env, new_el); 10986 } 10987 10988 env->pc = addr; 10989 10990 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10991 new_el, env->pc, pstate_read(env)); 10992 } 10993 10994 /* 10995 * Do semihosting call and set the appropriate return value. All the 10996 * permission and validity checks have been done at translate time. 10997 * 10998 * We only see semihosting exceptions in TCG only as they are not 10999 * trapped to the hypervisor in KVM. 11000 */ 11001 #ifdef CONFIG_TCG 11002 static void tcg_handle_semihosting(CPUState *cs) 11003 { 11004 ARMCPU *cpu = ARM_CPU(cs); 11005 CPUARMState *env = &cpu->env; 11006 11007 if (is_a64(env)) { 11008 qemu_log_mask(CPU_LOG_INT, 11009 "...handling as semihosting call 0x%" PRIx64 "\n", 11010 env->xregs[0]); 11011 do_common_semihosting(cs); 11012 env->pc += 4; 11013 } else { 11014 qemu_log_mask(CPU_LOG_INT, 11015 "...handling as semihosting call 0x%x\n", 11016 env->regs[0]); 11017 do_common_semihosting(cs); 11018 env->regs[15] += env->thumb ? 2 : 4; 11019 } 11020 } 11021 #endif 11022 11023 /* 11024 * Handle a CPU exception for A and R profile CPUs. 11025 * Do any appropriate logging, handle PSCI calls, and then hand off 11026 * to the AArch64-entry or AArch32-entry function depending on the 11027 * target exception level's register width. 11028 * 11029 * Note: this is used for both TCG (as the do_interrupt tcg op), 11030 * and KVM to re-inject guest debug exceptions, and to 11031 * inject a Synchronous-External-Abort. 11032 */ 11033 void arm_cpu_do_interrupt(CPUState *cs) 11034 { 11035 ARMCPU *cpu = ARM_CPU(cs); 11036 CPUARMState *env = &cpu->env; 11037 unsigned int new_el = env->exception.target_el; 11038 11039 assert(!arm_feature(env, ARM_FEATURE_M)); 11040 11041 arm_log_exception(cs); 11042 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11043 new_el); 11044 if (qemu_loglevel_mask(CPU_LOG_INT) 11045 && !excp_is_internal(cs->exception_index)) { 11046 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11047 syn_get_ec(env->exception.syndrome), 11048 env->exception.syndrome); 11049 } 11050 11051 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11052 arm_handle_psci_call(cpu); 11053 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11054 return; 11055 } 11056 11057 /* 11058 * Semihosting semantics depend on the register width of the code 11059 * that caused the exception, not the target exception level, so 11060 * must be handled here. 11061 */ 11062 #ifdef CONFIG_TCG 11063 if (cs->exception_index == EXCP_SEMIHOST) { 11064 tcg_handle_semihosting(cs); 11065 return; 11066 } 11067 #endif 11068 11069 /* 11070 * Hooks may change global state so BQL should be held, also the 11071 * BQL needs to be held for any modification of 11072 * cs->interrupt_request. 11073 */ 11074 g_assert(qemu_mutex_iothread_locked()); 11075 11076 arm_call_pre_el_change_hook(cpu); 11077 11078 assert(!excp_is_internal(cs->exception_index)); 11079 if (arm_el_is_aa64(env, new_el)) { 11080 arm_cpu_do_interrupt_aarch64(cs); 11081 } else { 11082 arm_cpu_do_interrupt_aarch32(cs); 11083 } 11084 11085 arm_call_el_change_hook(cpu); 11086 11087 if (!kvm_enabled()) { 11088 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11089 } 11090 } 11091 #endif /* !CONFIG_USER_ONLY */ 11092 11093 uint64_t arm_sctlr(CPUARMState *env, int el) 11094 { 11095 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11096 if (el == 0) { 11097 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11098 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11099 } 11100 return env->cp15.sctlr_el[el]; 11101 } 11102 11103 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11104 { 11105 if (regime_has_2_ranges(mmu_idx)) { 11106 return extract64(tcr, 37, 2); 11107 } else if (regime_is_stage2(mmu_idx)) { 11108 return 0; /* VTCR_EL2 */ 11109 } else { 11110 /* Replicate the single TBI bit so we always have 2 bits. */ 11111 return extract32(tcr, 20, 1) * 3; 11112 } 11113 } 11114 11115 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11116 { 11117 if (regime_has_2_ranges(mmu_idx)) { 11118 return extract64(tcr, 51, 2); 11119 } else if (regime_is_stage2(mmu_idx)) { 11120 return 0; /* VTCR_EL2 */ 11121 } else { 11122 /* Replicate the single TBID bit so we always have 2 bits. */ 11123 return extract32(tcr, 29, 1) * 3; 11124 } 11125 } 11126 11127 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11128 { 11129 if (regime_has_2_ranges(mmu_idx)) { 11130 return extract64(tcr, 57, 2); 11131 } else { 11132 /* Replicate the single TCMA bit so we always have 2 bits. */ 11133 return extract32(tcr, 30, 1) * 3; 11134 } 11135 } 11136 11137 static ARMGranuleSize tg0_to_gran_size(int tg) 11138 { 11139 switch (tg) { 11140 case 0: 11141 return Gran4K; 11142 case 1: 11143 return Gran64K; 11144 case 2: 11145 return Gran16K; 11146 default: 11147 return GranInvalid; 11148 } 11149 } 11150 11151 static ARMGranuleSize tg1_to_gran_size(int tg) 11152 { 11153 switch (tg) { 11154 case 1: 11155 return Gran16K; 11156 case 2: 11157 return Gran4K; 11158 case 3: 11159 return Gran64K; 11160 default: 11161 return GranInvalid; 11162 } 11163 } 11164 11165 static inline bool have4k(ARMCPU *cpu, bool stage2) 11166 { 11167 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11168 : cpu_isar_feature(aa64_tgran4, cpu); 11169 } 11170 11171 static inline bool have16k(ARMCPU *cpu, bool stage2) 11172 { 11173 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11174 : cpu_isar_feature(aa64_tgran16, cpu); 11175 } 11176 11177 static inline bool have64k(ARMCPU *cpu, bool stage2) 11178 { 11179 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11180 : cpu_isar_feature(aa64_tgran64, cpu); 11181 } 11182 11183 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11184 bool stage2) 11185 { 11186 switch (gran) { 11187 case Gran4K: 11188 if (have4k(cpu, stage2)) { 11189 return gran; 11190 } 11191 break; 11192 case Gran16K: 11193 if (have16k(cpu, stage2)) { 11194 return gran; 11195 } 11196 break; 11197 case Gran64K: 11198 if (have64k(cpu, stage2)) { 11199 return gran; 11200 } 11201 break; 11202 case GranInvalid: 11203 break; 11204 } 11205 /* 11206 * If the guest selects a granule size that isn't implemented, 11207 * the architecture requires that we behave as if it selected one 11208 * that is (with an IMPDEF choice of which one to pick). We choose 11209 * to implement the smallest supported granule size. 11210 */ 11211 if (have4k(cpu, stage2)) { 11212 return Gran4K; 11213 } 11214 if (have16k(cpu, stage2)) { 11215 return Gran16K; 11216 } 11217 assert(have64k(cpu, stage2)); 11218 return Gran64K; 11219 } 11220 11221 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11222 ARMMMUIdx mmu_idx, bool data) 11223 { 11224 uint64_t tcr = regime_tcr(env, mmu_idx); 11225 bool epd, hpd, tsz_oob, ds, ha, hd; 11226 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11227 ARMGranuleSize gran; 11228 ARMCPU *cpu = env_archcpu(env); 11229 bool stage2 = regime_is_stage2(mmu_idx); 11230 11231 if (!regime_has_2_ranges(mmu_idx)) { 11232 select = 0; 11233 tsz = extract32(tcr, 0, 6); 11234 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11235 if (stage2) { 11236 /* VTCR_EL2 */ 11237 hpd = false; 11238 } else { 11239 hpd = extract32(tcr, 24, 1); 11240 } 11241 epd = false; 11242 sh = extract32(tcr, 12, 2); 11243 ps = extract32(tcr, 16, 3); 11244 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11245 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11246 ds = extract64(tcr, 32, 1); 11247 } else { 11248 bool e0pd; 11249 11250 /* 11251 * Bit 55 is always between the two regions, and is canonical for 11252 * determining if address tagging is enabled. 11253 */ 11254 select = extract64(va, 55, 1); 11255 if (!select) { 11256 tsz = extract32(tcr, 0, 6); 11257 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11258 epd = extract32(tcr, 7, 1); 11259 sh = extract32(tcr, 12, 2); 11260 hpd = extract64(tcr, 41, 1); 11261 e0pd = extract64(tcr, 55, 1); 11262 } else { 11263 tsz = extract32(tcr, 16, 6); 11264 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11265 epd = extract32(tcr, 23, 1); 11266 sh = extract32(tcr, 28, 2); 11267 hpd = extract64(tcr, 42, 1); 11268 e0pd = extract64(tcr, 56, 1); 11269 } 11270 ps = extract64(tcr, 32, 3); 11271 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11272 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11273 ds = extract64(tcr, 59, 1); 11274 11275 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11276 regime_is_user(env, mmu_idx)) { 11277 epd = true; 11278 } 11279 } 11280 11281 gran = sanitize_gran_size(cpu, gran, stage2); 11282 11283 if (cpu_isar_feature(aa64_st, cpu)) { 11284 max_tsz = 48 - (gran == Gran64K); 11285 } else { 11286 max_tsz = 39; 11287 } 11288 11289 /* 11290 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11291 * adjust the effective value of DS, as documented. 11292 */ 11293 min_tsz = 16; 11294 if (gran == Gran64K) { 11295 if (cpu_isar_feature(aa64_lva, cpu)) { 11296 min_tsz = 12; 11297 } 11298 ds = false; 11299 } else if (ds) { 11300 if (regime_is_stage2(mmu_idx)) { 11301 if (gran == Gran16K) { 11302 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11303 } else { 11304 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11305 } 11306 } else { 11307 if (gran == Gran16K) { 11308 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11309 } else { 11310 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11311 } 11312 } 11313 if (ds) { 11314 min_tsz = 12; 11315 } 11316 } 11317 11318 if (tsz > max_tsz) { 11319 tsz = max_tsz; 11320 tsz_oob = true; 11321 } else if (tsz < min_tsz) { 11322 tsz = min_tsz; 11323 tsz_oob = true; 11324 } else { 11325 tsz_oob = false; 11326 } 11327 11328 /* Present TBI as a composite with TBID. */ 11329 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11330 if (!data) { 11331 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11332 } 11333 tbi = (tbi >> select) & 1; 11334 11335 return (ARMVAParameters) { 11336 .tsz = tsz, 11337 .ps = ps, 11338 .sh = sh, 11339 .select = select, 11340 .tbi = tbi, 11341 .epd = epd, 11342 .hpd = hpd, 11343 .tsz_oob = tsz_oob, 11344 .ds = ds, 11345 .ha = ha, 11346 .hd = ha && hd, 11347 .gran = gran, 11348 }; 11349 } 11350 11351 /* 11352 * Note that signed overflow is undefined in C. The following routines are 11353 * careful to use unsigned types where modulo arithmetic is required. 11354 * Failure to do so _will_ break on newer gcc. 11355 */ 11356 11357 /* Signed saturating arithmetic. */ 11358 11359 /* Perform 16-bit signed saturating addition. */ 11360 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11361 { 11362 uint16_t res; 11363 11364 res = a + b; 11365 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11366 if (a & 0x8000) { 11367 res = 0x8000; 11368 } else { 11369 res = 0x7fff; 11370 } 11371 } 11372 return res; 11373 } 11374 11375 /* Perform 8-bit signed saturating addition. */ 11376 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11377 { 11378 uint8_t res; 11379 11380 res = a + b; 11381 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11382 if (a & 0x80) { 11383 res = 0x80; 11384 } else { 11385 res = 0x7f; 11386 } 11387 } 11388 return res; 11389 } 11390 11391 /* Perform 16-bit signed saturating subtraction. */ 11392 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11393 { 11394 uint16_t res; 11395 11396 res = a - b; 11397 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11398 if (a & 0x8000) { 11399 res = 0x8000; 11400 } else { 11401 res = 0x7fff; 11402 } 11403 } 11404 return res; 11405 } 11406 11407 /* Perform 8-bit signed saturating subtraction. */ 11408 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11409 { 11410 uint8_t res; 11411 11412 res = a - b; 11413 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11414 if (a & 0x80) { 11415 res = 0x80; 11416 } else { 11417 res = 0x7f; 11418 } 11419 } 11420 return res; 11421 } 11422 11423 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11424 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11425 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11426 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11427 #define PFX q 11428 11429 #include "op_addsub.h" 11430 11431 /* Unsigned saturating arithmetic. */ 11432 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11433 { 11434 uint16_t res; 11435 res = a + b; 11436 if (res < a) { 11437 res = 0xffff; 11438 } 11439 return res; 11440 } 11441 11442 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11443 { 11444 if (a > b) { 11445 return a - b; 11446 } else { 11447 return 0; 11448 } 11449 } 11450 11451 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11452 { 11453 uint8_t res; 11454 res = a + b; 11455 if (res < a) { 11456 res = 0xff; 11457 } 11458 return res; 11459 } 11460 11461 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11462 { 11463 if (a > b) { 11464 return a - b; 11465 } else { 11466 return 0; 11467 } 11468 } 11469 11470 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11471 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11472 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11473 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11474 #define PFX uq 11475 11476 #include "op_addsub.h" 11477 11478 /* Signed modulo arithmetic. */ 11479 #define SARITH16(a, b, n, op) do { \ 11480 int32_t sum; \ 11481 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11482 RESULT(sum, n, 16); \ 11483 if (sum >= 0) \ 11484 ge |= 3 << (n * 2); \ 11485 } while (0) 11486 11487 #define SARITH8(a, b, n, op) do { \ 11488 int32_t sum; \ 11489 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11490 RESULT(sum, n, 8); \ 11491 if (sum >= 0) \ 11492 ge |= 1 << n; \ 11493 } while (0) 11494 11495 11496 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11497 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11498 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11499 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11500 #define PFX s 11501 #define ARITH_GE 11502 11503 #include "op_addsub.h" 11504 11505 /* Unsigned modulo arithmetic. */ 11506 #define ADD16(a, b, n) do { \ 11507 uint32_t sum; \ 11508 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11509 RESULT(sum, n, 16); \ 11510 if ((sum >> 16) == 1) \ 11511 ge |= 3 << (n * 2); \ 11512 } while (0) 11513 11514 #define ADD8(a, b, n) do { \ 11515 uint32_t sum; \ 11516 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11517 RESULT(sum, n, 8); \ 11518 if ((sum >> 8) == 1) \ 11519 ge |= 1 << n; \ 11520 } while (0) 11521 11522 #define SUB16(a, b, n) do { \ 11523 uint32_t sum; \ 11524 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11525 RESULT(sum, n, 16); \ 11526 if ((sum >> 16) == 0) \ 11527 ge |= 3 << (n * 2); \ 11528 } while (0) 11529 11530 #define SUB8(a, b, n) do { \ 11531 uint32_t sum; \ 11532 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11533 RESULT(sum, n, 8); \ 11534 if ((sum >> 8) == 0) \ 11535 ge |= 1 << n; \ 11536 } while (0) 11537 11538 #define PFX u 11539 #define ARITH_GE 11540 11541 #include "op_addsub.h" 11542 11543 /* Halved signed arithmetic. */ 11544 #define ADD16(a, b, n) \ 11545 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11546 #define SUB16(a, b, n) \ 11547 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11548 #define ADD8(a, b, n) \ 11549 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11550 #define SUB8(a, b, n) \ 11551 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11552 #define PFX sh 11553 11554 #include "op_addsub.h" 11555 11556 /* Halved unsigned arithmetic. */ 11557 #define ADD16(a, b, n) \ 11558 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11559 #define SUB16(a, b, n) \ 11560 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11561 #define ADD8(a, b, n) \ 11562 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11563 #define SUB8(a, b, n) \ 11564 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11565 #define PFX uh 11566 11567 #include "op_addsub.h" 11568 11569 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11570 { 11571 if (a > b) { 11572 return a - b; 11573 } else { 11574 return b - a; 11575 } 11576 } 11577 11578 /* Unsigned sum of absolute byte differences. */ 11579 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11580 { 11581 uint32_t sum; 11582 sum = do_usad(a, b); 11583 sum += do_usad(a >> 8, b >> 8); 11584 sum += do_usad(a >> 16, b >> 16); 11585 sum += do_usad(a >> 24, b >> 24); 11586 return sum; 11587 } 11588 11589 /* For ARMv6 SEL instruction. */ 11590 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11591 { 11592 uint32_t mask; 11593 11594 mask = 0; 11595 if (flags & 1) { 11596 mask |= 0xff; 11597 } 11598 if (flags & 2) { 11599 mask |= 0xff00; 11600 } 11601 if (flags & 4) { 11602 mask |= 0xff0000; 11603 } 11604 if (flags & 8) { 11605 mask |= 0xff000000; 11606 } 11607 return (a & mask) | (b & ~mask); 11608 } 11609 11610 /* 11611 * CRC helpers. 11612 * The upper bytes of val (above the number specified by 'bytes') must have 11613 * been zeroed out by the caller. 11614 */ 11615 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11616 { 11617 uint8_t buf[4]; 11618 11619 stl_le_p(buf, val); 11620 11621 /* zlib crc32 converts the accumulator and output to one's complement. */ 11622 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11623 } 11624 11625 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11626 { 11627 uint8_t buf[4]; 11628 11629 stl_le_p(buf, val); 11630 11631 /* Linux crc32c converts the output to one's complement. */ 11632 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11633 } 11634 11635 /* 11636 * Return the exception level to which FP-disabled exceptions should 11637 * be taken, or 0 if FP is enabled. 11638 */ 11639 int fp_exception_el(CPUARMState *env, int cur_el) 11640 { 11641 #ifndef CONFIG_USER_ONLY 11642 uint64_t hcr_el2; 11643 11644 /* 11645 * CPACR and the CPTR registers don't exist before v6, so FP is 11646 * always accessible 11647 */ 11648 if (!arm_feature(env, ARM_FEATURE_V6)) { 11649 return 0; 11650 } 11651 11652 if (arm_feature(env, ARM_FEATURE_M)) { 11653 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11654 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11655 return 1; 11656 } 11657 11658 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11659 if (!extract32(env->v7m.nsacr, 10, 1)) { 11660 /* FP insns cause a NOCP UsageFault taken to Secure */ 11661 return 3; 11662 } 11663 } 11664 11665 return 0; 11666 } 11667 11668 hcr_el2 = arm_hcr_el2_eff(env); 11669 11670 /* 11671 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11672 * 0, 2 : trap EL0 and EL1/PL1 accesses 11673 * 1 : trap only EL0 accesses 11674 * 3 : trap no accesses 11675 * This register is ignored if E2H+TGE are both set. 11676 */ 11677 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11678 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11679 11680 switch (fpen) { 11681 case 1: 11682 if (cur_el != 0) { 11683 break; 11684 } 11685 /* fall through */ 11686 case 0: 11687 case 2: 11688 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11689 if (!arm_el_is_aa64(env, 3) 11690 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11691 return 3; 11692 } 11693 if (cur_el <= 1) { 11694 return 1; 11695 } 11696 break; 11697 } 11698 } 11699 11700 /* 11701 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11702 * to control non-secure access to the FPU. It doesn't have any 11703 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11704 */ 11705 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11706 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11707 if (!extract32(env->cp15.nsacr, 10, 1)) { 11708 /* FP insns act as UNDEF */ 11709 return cur_el == 2 ? 2 : 1; 11710 } 11711 } 11712 11713 /* 11714 * CPTR_EL2 is present in v7VE or v8, and changes format 11715 * with HCR_EL2.E2H (regardless of TGE). 11716 */ 11717 if (cur_el <= 2) { 11718 if (hcr_el2 & HCR_E2H) { 11719 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11720 case 1: 11721 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11722 break; 11723 } 11724 /* fall through */ 11725 case 0: 11726 case 2: 11727 return 2; 11728 } 11729 } else if (arm_is_el2_enabled(env)) { 11730 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11731 return 2; 11732 } 11733 } 11734 } 11735 11736 /* CPTR_EL3 : present in v8 */ 11737 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11738 /* Trap all FP ops to EL3 */ 11739 return 3; 11740 } 11741 #endif 11742 return 0; 11743 } 11744 11745 /* Return the exception level we're running at if this is our mmu_idx */ 11746 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 11747 { 11748 if (mmu_idx & ARM_MMU_IDX_M) { 11749 return mmu_idx & ARM_MMU_IDX_M_PRIV; 11750 } 11751 11752 switch (mmu_idx) { 11753 case ARMMMUIdx_E10_0: 11754 case ARMMMUIdx_E20_0: 11755 return 0; 11756 case ARMMMUIdx_E10_1: 11757 case ARMMMUIdx_E10_1_PAN: 11758 return 1; 11759 case ARMMMUIdx_E2: 11760 case ARMMMUIdx_E20_2: 11761 case ARMMMUIdx_E20_2_PAN: 11762 return 2; 11763 case ARMMMUIdx_E3: 11764 return 3; 11765 default: 11766 g_assert_not_reached(); 11767 } 11768 } 11769 11770 #ifndef CONFIG_TCG 11771 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11772 { 11773 g_assert_not_reached(); 11774 } 11775 #endif 11776 11777 static bool arm_pan_enabled(CPUARMState *env) 11778 { 11779 if (is_a64(env)) { 11780 return env->pstate & PSTATE_PAN; 11781 } else { 11782 return env->uncached_cpsr & CPSR_PAN; 11783 } 11784 } 11785 11786 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11787 { 11788 ARMMMUIdx idx; 11789 uint64_t hcr; 11790 11791 if (arm_feature(env, ARM_FEATURE_M)) { 11792 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11793 } 11794 11795 /* See ARM pseudo-function ELIsInHost. */ 11796 switch (el) { 11797 case 0: 11798 hcr = arm_hcr_el2_eff(env); 11799 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11800 idx = ARMMMUIdx_E20_0; 11801 } else { 11802 idx = ARMMMUIdx_E10_0; 11803 } 11804 break; 11805 case 1: 11806 if (arm_pan_enabled(env)) { 11807 idx = ARMMMUIdx_E10_1_PAN; 11808 } else { 11809 idx = ARMMMUIdx_E10_1; 11810 } 11811 break; 11812 case 2: 11813 /* Note that TGE does not apply at EL2. */ 11814 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11815 if (arm_pan_enabled(env)) { 11816 idx = ARMMMUIdx_E20_2_PAN; 11817 } else { 11818 idx = ARMMMUIdx_E20_2; 11819 } 11820 } else { 11821 idx = ARMMMUIdx_E2; 11822 } 11823 break; 11824 case 3: 11825 return ARMMMUIdx_E3; 11826 default: 11827 g_assert_not_reached(); 11828 } 11829 11830 return idx; 11831 } 11832 11833 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11834 { 11835 return arm_mmu_idx_el(env, arm_current_el(env)); 11836 } 11837 11838 static bool mve_no_pred(CPUARMState *env) 11839 { 11840 /* 11841 * Return true if there is definitely no predication of MVE 11842 * instructions by VPR or LTPSIZE. (Returning false even if there 11843 * isn't any predication is OK; generated code will just be 11844 * a little worse.) 11845 * If the CPU does not implement MVE then this TB flag is always 0. 11846 * 11847 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11848 * logic in gen_update_fp_context() needs to be updated to match. 11849 * 11850 * We do not include the effect of the ECI bits here -- they are 11851 * tracked in other TB flags. This simplifies the logic for 11852 * "when did we emit code that changes the MVE_NO_PRED TB flag 11853 * and thus need to end the TB?". 11854 */ 11855 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11856 return false; 11857 } 11858 if (env->v7m.vpr) { 11859 return false; 11860 } 11861 if (env->v7m.ltpsize < 4) { 11862 return false; 11863 } 11864 return true; 11865 } 11866 11867 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11868 target_ulong *cs_base, uint32_t *pflags) 11869 { 11870 CPUARMTBFlags flags; 11871 11872 assert_hflags_rebuild_correctly(env); 11873 flags = env->hflags; 11874 11875 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11876 *pc = env->pc; 11877 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11878 DP_TBFLAG_A64(flags, BTYPE, env->btype); 11879 } 11880 } else { 11881 *pc = env->regs[15]; 11882 11883 if (arm_feature(env, ARM_FEATURE_M)) { 11884 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11885 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11886 != env->v7m.secure) { 11887 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 11888 } 11889 11890 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11891 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11892 (env->v7m.secure && 11893 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11894 /* 11895 * ASPEN is set, but FPCA/SFPA indicate that there is no 11896 * active FP context; we must create a new FP context before 11897 * executing any FP insn. 11898 */ 11899 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 11900 } 11901 11902 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11903 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11904 DP_TBFLAG_M32(flags, LSPACT, 1); 11905 } 11906 11907 if (mve_no_pred(env)) { 11908 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 11909 } 11910 } else { 11911 /* 11912 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11913 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11914 */ 11915 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11916 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 11917 } else { 11918 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 11919 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 11920 } 11921 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11922 DP_TBFLAG_A32(flags, VFPEN, 1); 11923 } 11924 } 11925 11926 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 11927 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 11928 } 11929 11930 /* 11931 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11932 * states defined in the ARM ARM for software singlestep: 11933 * SS_ACTIVE PSTATE.SS State 11934 * 0 x Inactive (the TB flag for SS is always 0) 11935 * 1 0 Active-pending 11936 * 1 1 Active-not-pending 11937 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 11938 */ 11939 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 11940 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 11941 } 11942 11943 *pflags = flags.flags; 11944 *cs_base = flags.flags2; 11945 } 11946 11947 #ifdef TARGET_AARCH64 11948 /* 11949 * The manual says that when SVE is enabled and VQ is widened the 11950 * implementation is allowed to zero the previously inaccessible 11951 * portion of the registers. The corollary to that is that when 11952 * SVE is enabled and VQ is narrowed we are also allowed to zero 11953 * the now inaccessible portion of the registers. 11954 * 11955 * The intent of this is that no predicate bit beyond VQ is ever set. 11956 * Which means that some operations on predicate registers themselves 11957 * may operate on full uint64_t or even unrolled across the maximum 11958 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11959 * may well be cheaper than conditionals to restrict the operation 11960 * to the relevant portion of a uint16_t[16]. 11961 */ 11962 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11963 { 11964 int i, j; 11965 uint64_t pmask; 11966 11967 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11968 assert(vq <= env_archcpu(env)->sve_max_vq); 11969 11970 /* Zap the high bits of the zregs. */ 11971 for (i = 0; i < 32; i++) { 11972 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11973 } 11974 11975 /* Zap the high bits of the pregs and ffr. */ 11976 pmask = 0; 11977 if (vq & 3) { 11978 pmask = ~(-1ULL << (16 * (vq & 3))); 11979 } 11980 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11981 for (i = 0; i < 17; ++i) { 11982 env->vfp.pregs[i].p[j] &= pmask; 11983 } 11984 pmask = 0; 11985 } 11986 } 11987 11988 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 11989 { 11990 int exc_el; 11991 11992 if (sm) { 11993 exc_el = sme_exception_el(env, el); 11994 } else { 11995 exc_el = sve_exception_el(env, el); 11996 } 11997 if (exc_el) { 11998 return 0; /* disabled */ 11999 } 12000 return sve_vqm1_for_el_sm(env, el, sm); 12001 } 12002 12003 /* 12004 * Notice a change in SVE vector size when changing EL. 12005 */ 12006 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12007 int new_el, bool el0_a64) 12008 { 12009 ARMCPU *cpu = env_archcpu(env); 12010 int old_len, new_len; 12011 bool old_a64, new_a64, sm; 12012 12013 /* Nothing to do if no SVE. */ 12014 if (!cpu_isar_feature(aa64_sve, cpu)) { 12015 return; 12016 } 12017 12018 /* Nothing to do if FP is disabled in either EL. */ 12019 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12020 return; 12021 } 12022 12023 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12024 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12025 12026 /* 12027 * Both AArch64.TakeException and AArch64.ExceptionReturn 12028 * invoke ResetSVEState when taking an exception from, or 12029 * returning to, AArch32 state when PSTATE.SM is enabled. 12030 */ 12031 sm = FIELD_EX64(env->svcr, SVCR, SM); 12032 if (old_a64 != new_a64 && sm) { 12033 arm_reset_sve_state(env); 12034 return; 12035 } 12036 12037 /* 12038 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12039 * at ELx, or not available because the EL is in AArch32 state, then 12040 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12041 * has an effective value of 0". 12042 * 12043 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12044 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12045 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12046 * we already have the correct register contents when encountering the 12047 * vq0->vq0 transition between EL0->EL1. 12048 */ 12049 old_len = new_len = 0; 12050 if (old_a64) { 12051 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12052 } 12053 if (new_a64) { 12054 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12055 } 12056 12057 /* When changing vector length, clear inaccessible state. */ 12058 if (new_len < old_len) { 12059 aarch64_sve_narrow_vq(env, new_len + 1); 12060 } 12061 } 12062 #endif 12063