1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/kvm.h" 28 #include "sysemu/tcg.h" 29 #include "qemu/range.h" 30 #include "qapi/qapi-commands-machine-target.h" 31 #include "qapi/error.h" 32 #include "qemu/guest-random.h" 33 #ifdef CONFIG_TCG 34 #include "arm_ldst.h" 35 #include "exec/cpu_ldst.h" 36 #endif 37 38 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 39 40 #ifndef CONFIG_USER_ONLY 41 42 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 43 MMUAccessType access_type, ARMMMUIdx mmu_idx, 44 bool s1_is_el0, 45 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 46 target_ulong *page_size_ptr, 47 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 48 __attribute__((nonnull)); 49 #endif 50 51 static void switch_mode(CPUARMState *env, int mode); 52 53 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 54 { 55 ARMCPU *cpu = env_archcpu(env); 56 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 57 58 /* VFP data registers are always little-endian. */ 59 if (reg < nregs) { 60 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); 61 } 62 if (arm_feature(env, ARM_FEATURE_NEON)) { 63 /* Aliases for Q regs. */ 64 nregs += 16; 65 if (reg < nregs) { 66 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 67 return gdb_get_reg128(buf, q[0], q[1]); 68 } 69 } 70 switch (reg - nregs) { 71 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; 72 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; 73 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; 74 } 75 return 0; 76 } 77 78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 79 { 80 ARMCPU *cpu = env_archcpu(env); 81 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 82 83 if (reg < nregs) { 84 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 85 return 8; 86 } 87 if (arm_feature(env, ARM_FEATURE_NEON)) { 88 nregs += 16; 89 if (reg < nregs) { 90 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 91 q[0] = ldq_le_p(buf); 92 q[1] = ldq_le_p(buf + 8); 93 return 16; 94 } 95 } 96 switch (reg - nregs) { 97 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 98 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 99 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 100 } 101 return 0; 102 } 103 104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 105 { 106 switch (reg) { 107 case 0 ... 31: 108 { 109 /* 128 bit FP register - quads are in LE order */ 110 uint64_t *q = aa64_vfp_qreg(env, reg); 111 return gdb_get_reg128(buf, q[1], q[0]); 112 } 113 case 32: 114 /* FPSR */ 115 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 116 case 33: 117 /* FPCR */ 118 return gdb_get_reg32(buf,vfp_get_fpcr(env)); 119 default: 120 return 0; 121 } 122 } 123 124 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 125 { 126 switch (reg) { 127 case 0 ... 31: 128 /* 128 bit FP register */ 129 { 130 uint64_t *q = aa64_vfp_qreg(env, reg); 131 q[0] = ldq_le_p(buf); 132 q[1] = ldq_le_p(buf + 8); 133 return 16; 134 } 135 case 32: 136 /* FPSR */ 137 vfp_set_fpsr(env, ldl_p(buf)); 138 return 4; 139 case 33: 140 /* FPCR */ 141 vfp_set_fpcr(env, ldl_p(buf)); 142 return 4; 143 default: 144 return 0; 145 } 146 } 147 148 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 149 { 150 assert(ri->fieldoffset); 151 if (cpreg_field_is_64bit(ri)) { 152 return CPREG_FIELD64(env, ri); 153 } else { 154 return CPREG_FIELD32(env, ri); 155 } 156 } 157 158 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 159 uint64_t value) 160 { 161 assert(ri->fieldoffset); 162 if (cpreg_field_is_64bit(ri)) { 163 CPREG_FIELD64(env, ri) = value; 164 } else { 165 CPREG_FIELD32(env, ri) = value; 166 } 167 } 168 169 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 170 { 171 return (char *)env + ri->fieldoffset; 172 } 173 174 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 175 { 176 /* Raw read of a coprocessor register (as needed for migration, etc). */ 177 if (ri->type & ARM_CP_CONST) { 178 return ri->resetvalue; 179 } else if (ri->raw_readfn) { 180 return ri->raw_readfn(env, ri); 181 } else if (ri->readfn) { 182 return ri->readfn(env, ri); 183 } else { 184 return raw_read(env, ri); 185 } 186 } 187 188 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 189 uint64_t v) 190 { 191 /* Raw write of a coprocessor register (as needed for migration, etc). 192 * Note that constant registers are treated as write-ignored; the 193 * caller should check for success by whether a readback gives the 194 * value written. 195 */ 196 if (ri->type & ARM_CP_CONST) { 197 return; 198 } else if (ri->raw_writefn) { 199 ri->raw_writefn(env, ri, v); 200 } else if (ri->writefn) { 201 ri->writefn(env, ri, v); 202 } else { 203 raw_write(env, ri, v); 204 } 205 } 206 207 /** 208 * arm_get/set_gdb_*: get/set a gdb register 209 * @env: the CPU state 210 * @buf: a buffer to copy to/from 211 * @reg: register number (offset from start of group) 212 * 213 * We return the number of bytes copied 214 */ 215 216 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) 217 { 218 ARMCPU *cpu = env_archcpu(env); 219 const ARMCPRegInfo *ri; 220 uint32_t key; 221 222 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; 223 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 224 if (ri) { 225 if (cpreg_field_is_64bit(ri)) { 226 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 227 } else { 228 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 229 } 230 } 231 return 0; 232 } 233 234 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 235 { 236 return 0; 237 } 238 239 #ifdef TARGET_AARCH64 240 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) 241 { 242 ARMCPU *cpu = env_archcpu(env); 243 244 switch (reg) { 245 /* The first 32 registers are the zregs */ 246 case 0 ... 31: 247 { 248 int vq, len = 0; 249 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 250 len += gdb_get_reg128(buf, 251 env->vfp.zregs[reg].d[vq * 2 + 1], 252 env->vfp.zregs[reg].d[vq * 2]); 253 } 254 return len; 255 } 256 case 32: 257 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 258 case 33: 259 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 260 /* then 16 predicates and the ffr */ 261 case 34 ... 50: 262 { 263 int preg = reg - 34; 264 int vq, len = 0; 265 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 266 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 267 } 268 return len; 269 } 270 case 51: 271 { 272 /* 273 * We report in Vector Granules (VG) which is 64bit in a Z reg 274 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 275 */ 276 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; 277 return gdb_get_reg32(buf, vq * 2); 278 } 279 default: 280 /* gdbstub asked for something out our range */ 281 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 282 break; 283 } 284 285 return 0; 286 } 287 288 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) 289 { 290 ARMCPU *cpu = env_archcpu(env); 291 292 /* The first 32 registers are the zregs */ 293 switch (reg) { 294 /* The first 32 registers are the zregs */ 295 case 0 ... 31: 296 { 297 int vq, len = 0; 298 uint64_t *p = (uint64_t *) buf; 299 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 300 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 301 env->vfp.zregs[reg].d[vq * 2] = *p++; 302 len += 16; 303 } 304 return len; 305 } 306 case 32: 307 vfp_set_fpsr(env, *(uint32_t *)buf); 308 return 4; 309 case 33: 310 vfp_set_fpcr(env, *(uint32_t *)buf); 311 return 4; 312 case 34 ... 50: 313 { 314 int preg = reg - 34; 315 int vq, len = 0; 316 uint64_t *p = (uint64_t *) buf; 317 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 318 env->vfp.pregs[preg].p[vq / 4] = *p++; 319 len += 8; 320 } 321 return len; 322 } 323 case 51: 324 /* cannot set vg via gdbstub */ 325 return 0; 326 default: 327 /* gdbstub asked for something out our range */ 328 break; 329 } 330 331 return 0; 332 } 333 #endif /* TARGET_AARCH64 */ 334 335 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 336 { 337 /* Return true if the regdef would cause an assertion if you called 338 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 339 * program bug for it not to have the NO_RAW flag). 340 * NB that returning false here doesn't necessarily mean that calling 341 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 342 * read/write access functions which are safe for raw use" from "has 343 * read/write access functions which have side effects but has forgotten 344 * to provide raw access functions". 345 * The tests here line up with the conditions in read/write_raw_cp_reg() 346 * and assertions in raw_read()/raw_write(). 347 */ 348 if ((ri->type & ARM_CP_CONST) || 349 ri->fieldoffset || 350 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 351 return false; 352 } 353 return true; 354 } 355 356 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 357 { 358 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 359 int i; 360 bool ok = true; 361 362 for (i = 0; i < cpu->cpreg_array_len; i++) { 363 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 364 const ARMCPRegInfo *ri; 365 uint64_t newval; 366 367 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 368 if (!ri) { 369 ok = false; 370 continue; 371 } 372 if (ri->type & ARM_CP_NO_RAW) { 373 continue; 374 } 375 376 newval = read_raw_cp_reg(&cpu->env, ri); 377 if (kvm_sync) { 378 /* 379 * Only sync if the previous list->cpustate sync succeeded. 380 * Rather than tracking the success/failure state for every 381 * item in the list, we just recheck "does the raw write we must 382 * have made in write_list_to_cpustate() read back OK" here. 383 */ 384 uint64_t oldval = cpu->cpreg_values[i]; 385 386 if (oldval == newval) { 387 continue; 388 } 389 390 write_raw_cp_reg(&cpu->env, ri, oldval); 391 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 392 continue; 393 } 394 395 write_raw_cp_reg(&cpu->env, ri, newval); 396 } 397 cpu->cpreg_values[i] = newval; 398 } 399 return ok; 400 } 401 402 bool write_list_to_cpustate(ARMCPU *cpu) 403 { 404 int i; 405 bool ok = true; 406 407 for (i = 0; i < cpu->cpreg_array_len; i++) { 408 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 409 uint64_t v = cpu->cpreg_values[i]; 410 const ARMCPRegInfo *ri; 411 412 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 413 if (!ri) { 414 ok = false; 415 continue; 416 } 417 if (ri->type & ARM_CP_NO_RAW) { 418 continue; 419 } 420 /* Write value and confirm it reads back as written 421 * (to catch read-only registers and partially read-only 422 * registers where the incoming migration value doesn't match) 423 */ 424 write_raw_cp_reg(&cpu->env, ri, v); 425 if (read_raw_cp_reg(&cpu->env, ri) != v) { 426 ok = false; 427 } 428 } 429 return ok; 430 } 431 432 static void add_cpreg_to_list(gpointer key, gpointer opaque) 433 { 434 ARMCPU *cpu = opaque; 435 uint64_t regidx; 436 const ARMCPRegInfo *ri; 437 438 regidx = *(uint32_t *)key; 439 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 440 441 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 442 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 443 /* The value array need not be initialized at this point */ 444 cpu->cpreg_array_len++; 445 } 446 } 447 448 static void count_cpreg(gpointer key, gpointer opaque) 449 { 450 ARMCPU *cpu = opaque; 451 uint64_t regidx; 452 const ARMCPRegInfo *ri; 453 454 regidx = *(uint32_t *)key; 455 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 456 457 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 458 cpu->cpreg_array_len++; 459 } 460 } 461 462 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 463 { 464 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 465 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 466 467 if (aidx > bidx) { 468 return 1; 469 } 470 if (aidx < bidx) { 471 return -1; 472 } 473 return 0; 474 } 475 476 void init_cpreg_list(ARMCPU *cpu) 477 { 478 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 479 * Note that we require cpreg_tuples[] to be sorted by key ID. 480 */ 481 GList *keys; 482 int arraylen; 483 484 keys = g_hash_table_get_keys(cpu->cp_regs); 485 keys = g_list_sort(keys, cpreg_key_compare); 486 487 cpu->cpreg_array_len = 0; 488 489 g_list_foreach(keys, count_cpreg, cpu); 490 491 arraylen = cpu->cpreg_array_len; 492 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 493 cpu->cpreg_values = g_new(uint64_t, arraylen); 494 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 495 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 496 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 497 cpu->cpreg_array_len = 0; 498 499 g_list_foreach(keys, add_cpreg_to_list, cpu); 500 501 assert(cpu->cpreg_array_len == arraylen); 502 503 g_list_free(keys); 504 } 505 506 /* 507 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 508 */ 509 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 510 const ARMCPRegInfo *ri, 511 bool isread) 512 { 513 if (!is_a64(env) && arm_current_el(env) == 3 && 514 arm_is_secure_below_el3(env)) { 515 return CP_ACCESS_TRAP_UNCATEGORIZED; 516 } 517 return CP_ACCESS_OK; 518 } 519 520 /* Some secure-only AArch32 registers trap to EL3 if used from 521 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 522 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 523 * We assume that the .access field is set to PL1_RW. 524 */ 525 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 526 const ARMCPRegInfo *ri, 527 bool isread) 528 { 529 if (arm_current_el(env) == 3) { 530 return CP_ACCESS_OK; 531 } 532 if (arm_is_secure_below_el3(env)) { 533 return CP_ACCESS_TRAP_EL3; 534 } 535 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 536 return CP_ACCESS_TRAP_UNCATEGORIZED; 537 } 538 539 /* Check for traps to "powerdown debug" registers, which are controlled 540 * by MDCR.TDOSA 541 */ 542 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 543 bool isread) 544 { 545 int el = arm_current_el(env); 546 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 547 (env->cp15.mdcr_el2 & MDCR_TDE) || 548 (arm_hcr_el2_eff(env) & HCR_TGE); 549 550 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 551 return CP_ACCESS_TRAP_EL2; 552 } 553 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 554 return CP_ACCESS_TRAP_EL3; 555 } 556 return CP_ACCESS_OK; 557 } 558 559 /* Check for traps to "debug ROM" registers, which are controlled 560 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 561 */ 562 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 563 bool isread) 564 { 565 int el = arm_current_el(env); 566 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 567 (env->cp15.mdcr_el2 & MDCR_TDE) || 568 (arm_hcr_el2_eff(env) & HCR_TGE); 569 570 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 571 return CP_ACCESS_TRAP_EL2; 572 } 573 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 574 return CP_ACCESS_TRAP_EL3; 575 } 576 return CP_ACCESS_OK; 577 } 578 579 /* Check for traps to general debug registers, which are controlled 580 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 581 */ 582 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 583 bool isread) 584 { 585 int el = arm_current_el(env); 586 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 587 (env->cp15.mdcr_el2 & MDCR_TDE) || 588 (arm_hcr_el2_eff(env) & HCR_TGE); 589 590 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 591 return CP_ACCESS_TRAP_EL2; 592 } 593 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 594 return CP_ACCESS_TRAP_EL3; 595 } 596 return CP_ACCESS_OK; 597 } 598 599 /* Check for traps to performance monitor registers, which are controlled 600 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 601 */ 602 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 603 bool isread) 604 { 605 int el = arm_current_el(env); 606 607 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 608 && !arm_is_secure_below_el3(env)) { 609 return CP_ACCESS_TRAP_EL2; 610 } 611 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 612 return CP_ACCESS_TRAP_EL3; 613 } 614 return CP_ACCESS_OK; 615 } 616 617 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 618 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 619 bool isread) 620 { 621 if (arm_current_el(env) == 1) { 622 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 623 if (arm_hcr_el2_eff(env) & trap) { 624 return CP_ACCESS_TRAP_EL2; 625 } 626 } 627 return CP_ACCESS_OK; 628 } 629 630 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 631 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 632 bool isread) 633 { 634 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 635 return CP_ACCESS_TRAP_EL2; 636 } 637 return CP_ACCESS_OK; 638 } 639 640 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 641 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 642 bool isread) 643 { 644 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 645 return CP_ACCESS_TRAP_EL2; 646 } 647 return CP_ACCESS_OK; 648 } 649 650 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 651 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 652 bool isread) 653 { 654 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 655 return CP_ACCESS_TRAP_EL2; 656 } 657 return CP_ACCESS_OK; 658 } 659 660 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 661 { 662 ARMCPU *cpu = env_archcpu(env); 663 664 raw_write(env, ri, value); 665 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 666 } 667 668 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 669 { 670 ARMCPU *cpu = env_archcpu(env); 671 672 if (raw_read(env, ri) != value) { 673 /* Unlike real hardware the qemu TLB uses virtual addresses, 674 * not modified virtual addresses, so this causes a TLB flush. 675 */ 676 tlb_flush(CPU(cpu)); 677 raw_write(env, ri, value); 678 } 679 } 680 681 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 682 uint64_t value) 683 { 684 ARMCPU *cpu = env_archcpu(env); 685 686 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 687 && !extended_addresses_enabled(env)) { 688 /* For VMSA (when not using the LPAE long descriptor page table 689 * format) this register includes the ASID, so do a TLB flush. 690 * For PMSA it is purely a process ID and no action is needed. 691 */ 692 tlb_flush(CPU(cpu)); 693 } 694 raw_write(env, ri, value); 695 } 696 697 /* IS variants of TLB operations must affect all cores */ 698 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 699 uint64_t value) 700 { 701 CPUState *cs = env_cpu(env); 702 703 tlb_flush_all_cpus_synced(cs); 704 } 705 706 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 707 uint64_t value) 708 { 709 CPUState *cs = env_cpu(env); 710 711 tlb_flush_all_cpus_synced(cs); 712 } 713 714 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 715 uint64_t value) 716 { 717 CPUState *cs = env_cpu(env); 718 719 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 720 } 721 722 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 723 uint64_t value) 724 { 725 CPUState *cs = env_cpu(env); 726 727 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 728 } 729 730 /* 731 * Non-IS variants of TLB operations are upgraded to 732 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 733 * force broadcast of these operations. 734 */ 735 static bool tlb_force_broadcast(CPUARMState *env) 736 { 737 return (env->cp15.hcr_el2 & HCR_FB) && 738 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 739 } 740 741 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 742 uint64_t value) 743 { 744 /* Invalidate all (TLBIALL) */ 745 CPUState *cs = env_cpu(env); 746 747 if (tlb_force_broadcast(env)) { 748 tlb_flush_all_cpus_synced(cs); 749 } else { 750 tlb_flush(cs); 751 } 752 } 753 754 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 755 uint64_t value) 756 { 757 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 758 CPUState *cs = env_cpu(env); 759 760 value &= TARGET_PAGE_MASK; 761 if (tlb_force_broadcast(env)) { 762 tlb_flush_page_all_cpus_synced(cs, value); 763 } else { 764 tlb_flush_page(cs, value); 765 } 766 } 767 768 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 769 uint64_t value) 770 { 771 /* Invalidate by ASID (TLBIASID) */ 772 CPUState *cs = env_cpu(env); 773 774 if (tlb_force_broadcast(env)) { 775 tlb_flush_all_cpus_synced(cs); 776 } else { 777 tlb_flush(cs); 778 } 779 } 780 781 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 782 uint64_t value) 783 { 784 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 785 CPUState *cs = env_cpu(env); 786 787 value &= TARGET_PAGE_MASK; 788 if (tlb_force_broadcast(env)) { 789 tlb_flush_page_all_cpus_synced(cs, value); 790 } else { 791 tlb_flush_page(cs, value); 792 } 793 } 794 795 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 796 uint64_t value) 797 { 798 CPUState *cs = env_cpu(env); 799 800 tlb_flush_by_mmuidx(cs, 801 ARMMMUIdxBit_E10_1 | 802 ARMMMUIdxBit_E10_1_PAN | 803 ARMMMUIdxBit_E10_0); 804 } 805 806 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 807 uint64_t value) 808 { 809 CPUState *cs = env_cpu(env); 810 811 tlb_flush_by_mmuidx_all_cpus_synced(cs, 812 ARMMMUIdxBit_E10_1 | 813 ARMMMUIdxBit_E10_1_PAN | 814 ARMMMUIdxBit_E10_0); 815 } 816 817 818 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 819 uint64_t value) 820 { 821 CPUState *cs = env_cpu(env); 822 823 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 824 } 825 826 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 827 uint64_t value) 828 { 829 CPUState *cs = env_cpu(env); 830 831 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 832 } 833 834 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 835 uint64_t value) 836 { 837 CPUState *cs = env_cpu(env); 838 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 839 840 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 841 } 842 843 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 844 uint64_t value) 845 { 846 CPUState *cs = env_cpu(env); 847 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 848 849 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 850 ARMMMUIdxBit_E2); 851 } 852 853 static const ARMCPRegInfo cp_reginfo[] = { 854 /* Define the secure and non-secure FCSE identifier CP registers 855 * separately because there is no secure bank in V8 (no _EL3). This allows 856 * the secure register to be properly reset and migrated. There is also no 857 * v8 EL1 version of the register so the non-secure instance stands alone. 858 */ 859 { .name = "FCSEIDR", 860 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 861 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 862 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 863 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 864 { .name = "FCSEIDR_S", 865 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 866 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 867 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 868 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 869 /* Define the secure and non-secure context identifier CP registers 870 * separately because there is no secure bank in V8 (no _EL3). This allows 871 * the secure register to be properly reset and migrated. In the 872 * non-secure case, the 32-bit register will have reset and migration 873 * disabled during registration as it is handled by the 64-bit instance. 874 */ 875 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 876 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 877 .access = PL1_RW, .accessfn = access_tvm_trvm, 878 .secure = ARM_CP_SECSTATE_NS, 879 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 880 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 881 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 882 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 883 .access = PL1_RW, .accessfn = access_tvm_trvm, 884 .secure = ARM_CP_SECSTATE_S, 885 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 886 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 887 REGINFO_SENTINEL 888 }; 889 890 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 891 /* NB: Some of these registers exist in v8 but with more precise 892 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 893 */ 894 /* MMU Domain access control / MPU write buffer control */ 895 { .name = "DACR", 896 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 897 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 898 .writefn = dacr_write, .raw_writefn = raw_write, 899 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 900 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 901 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 902 * For v6 and v5, these mappings are overly broad. 903 */ 904 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 905 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 906 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 907 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 908 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 909 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 910 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 911 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 912 /* Cache maintenance ops; some of this space may be overridden later. */ 913 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 914 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 915 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 916 REGINFO_SENTINEL 917 }; 918 919 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 920 /* Not all pre-v6 cores implemented this WFI, so this is slightly 921 * over-broad. 922 */ 923 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 924 .access = PL1_W, .type = ARM_CP_WFI }, 925 REGINFO_SENTINEL 926 }; 927 928 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 929 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 930 * is UNPREDICTABLE; we choose to NOP as most implementations do). 931 */ 932 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 933 .access = PL1_W, .type = ARM_CP_WFI }, 934 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 935 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 936 * OMAPCP will override this space. 937 */ 938 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 939 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 940 .resetvalue = 0 }, 941 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 942 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 943 .resetvalue = 0 }, 944 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 945 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 946 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 947 .resetvalue = 0 }, 948 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 949 * implementing it as RAZ means the "debug architecture version" bits 950 * will read as a reserved value, which should cause Linux to not try 951 * to use the debug hardware. 952 */ 953 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 954 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 955 /* MMU TLB control. Note that the wildcarding means we cover not just 956 * the unified TLB ops but also the dside/iside/inner-shareable variants. 957 */ 958 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 959 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 960 .type = ARM_CP_NO_RAW }, 961 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 962 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 963 .type = ARM_CP_NO_RAW }, 964 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 965 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 966 .type = ARM_CP_NO_RAW }, 967 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 968 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 969 .type = ARM_CP_NO_RAW }, 970 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 971 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 972 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 973 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 974 REGINFO_SENTINEL 975 }; 976 977 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 978 uint64_t value) 979 { 980 uint32_t mask = 0; 981 982 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 983 if (!arm_feature(env, ARM_FEATURE_V8)) { 984 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 985 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 986 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 987 */ 988 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 989 /* VFP coprocessor: cp10 & cp11 [23:20] */ 990 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 991 992 if (!arm_feature(env, ARM_FEATURE_NEON)) { 993 /* ASEDIS [31] bit is RAO/WI */ 994 value |= (1 << 31); 995 } 996 997 /* VFPv3 and upwards with NEON implement 32 double precision 998 * registers (D0-D31). 999 */ 1000 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 1001 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 1002 value |= (1 << 30); 1003 } 1004 } 1005 value &= mask; 1006 } 1007 1008 /* 1009 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1010 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1011 */ 1012 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1013 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1014 value &= ~(0xf << 20); 1015 value |= env->cp15.cpacr_el1 & (0xf << 20); 1016 } 1017 1018 env->cp15.cpacr_el1 = value; 1019 } 1020 1021 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1022 { 1023 /* 1024 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1025 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1026 */ 1027 uint64_t value = env->cp15.cpacr_el1; 1028 1029 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1030 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1031 value &= ~(0xf << 20); 1032 } 1033 return value; 1034 } 1035 1036 1037 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1038 { 1039 /* Call cpacr_write() so that we reset with the correct RAO bits set 1040 * for our CPU features. 1041 */ 1042 cpacr_write(env, ri, 0); 1043 } 1044 1045 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1046 bool isread) 1047 { 1048 if (arm_feature(env, ARM_FEATURE_V8)) { 1049 /* Check if CPACR accesses are to be trapped to EL2 */ 1050 if (arm_current_el(env) == 1 && 1051 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 1052 return CP_ACCESS_TRAP_EL2; 1053 /* Check if CPACR accesses are to be trapped to EL3 */ 1054 } else if (arm_current_el(env) < 3 && 1055 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1056 return CP_ACCESS_TRAP_EL3; 1057 } 1058 } 1059 1060 return CP_ACCESS_OK; 1061 } 1062 1063 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1064 bool isread) 1065 { 1066 /* Check if CPTR accesses are set to trap to EL3 */ 1067 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1068 return CP_ACCESS_TRAP_EL3; 1069 } 1070 1071 return CP_ACCESS_OK; 1072 } 1073 1074 static const ARMCPRegInfo v6_cp_reginfo[] = { 1075 /* prefetch by MVA in v6, NOP in v7 */ 1076 { .name = "MVA_prefetch", 1077 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1078 .access = PL1_W, .type = ARM_CP_NOP }, 1079 /* We need to break the TB after ISB to execute self-modifying code 1080 * correctly and also to take any pending interrupts immediately. 1081 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1082 */ 1083 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1084 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1085 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1086 .access = PL0_W, .type = ARM_CP_NOP }, 1087 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1088 .access = PL0_W, .type = ARM_CP_NOP }, 1089 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1090 .access = PL1_RW, .accessfn = access_tvm_trvm, 1091 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1092 offsetof(CPUARMState, cp15.ifar_ns) }, 1093 .resetvalue = 0, }, 1094 /* Watchpoint Fault Address Register : should actually only be present 1095 * for 1136, 1176, 11MPCore. 1096 */ 1097 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1098 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1099 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1100 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1101 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1102 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1103 REGINFO_SENTINEL 1104 }; 1105 1106 /* Definitions for the PMU registers */ 1107 #define PMCRN_MASK 0xf800 1108 #define PMCRN_SHIFT 11 1109 #define PMCRLC 0x40 1110 #define PMCRDP 0x20 1111 #define PMCRX 0x10 1112 #define PMCRD 0x8 1113 #define PMCRC 0x4 1114 #define PMCRP 0x2 1115 #define PMCRE 0x1 1116 /* 1117 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1118 * which can be written as 1 to trigger behaviour but which stay RAZ). 1119 */ 1120 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1121 1122 #define PMXEVTYPER_P 0x80000000 1123 #define PMXEVTYPER_U 0x40000000 1124 #define PMXEVTYPER_NSK 0x20000000 1125 #define PMXEVTYPER_NSU 0x10000000 1126 #define PMXEVTYPER_NSH 0x08000000 1127 #define PMXEVTYPER_M 0x04000000 1128 #define PMXEVTYPER_MT 0x02000000 1129 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1130 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1131 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1132 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1133 PMXEVTYPER_EVTCOUNT) 1134 1135 #define PMCCFILTR 0xf8000000 1136 #define PMCCFILTR_M PMXEVTYPER_M 1137 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1138 1139 static inline uint32_t pmu_num_counters(CPUARMState *env) 1140 { 1141 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1142 } 1143 1144 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1145 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1146 { 1147 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1148 } 1149 1150 typedef struct pm_event { 1151 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1152 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1153 bool (*supported)(CPUARMState *); 1154 /* 1155 * Retrieve the current count of the underlying event. The programmed 1156 * counters hold a difference from the return value from this function 1157 */ 1158 uint64_t (*get_count)(CPUARMState *); 1159 /* 1160 * Return how many nanoseconds it will take (at a minimum) for count events 1161 * to occur. A negative value indicates the counter will never overflow, or 1162 * that the counter has otherwise arranged for the overflow bit to be set 1163 * and the PMU interrupt to be raised on overflow. 1164 */ 1165 int64_t (*ns_per_count)(uint64_t); 1166 } pm_event; 1167 1168 static bool event_always_supported(CPUARMState *env) 1169 { 1170 return true; 1171 } 1172 1173 static uint64_t swinc_get_count(CPUARMState *env) 1174 { 1175 /* 1176 * SW_INCR events are written directly to the pmevcntr's by writes to 1177 * PMSWINC, so there is no underlying count maintained by the PMU itself 1178 */ 1179 return 0; 1180 } 1181 1182 static int64_t swinc_ns_per(uint64_t ignored) 1183 { 1184 return -1; 1185 } 1186 1187 /* 1188 * Return the underlying cycle count for the PMU cycle counters. If we're in 1189 * usermode, simply return 0. 1190 */ 1191 static uint64_t cycles_get_count(CPUARMState *env) 1192 { 1193 #ifndef CONFIG_USER_ONLY 1194 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1195 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1196 #else 1197 return cpu_get_host_ticks(); 1198 #endif 1199 } 1200 1201 #ifndef CONFIG_USER_ONLY 1202 static int64_t cycles_ns_per(uint64_t cycles) 1203 { 1204 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1205 } 1206 1207 static bool instructions_supported(CPUARMState *env) 1208 { 1209 return use_icount == 1 /* Precise instruction counting */; 1210 } 1211 1212 static uint64_t instructions_get_count(CPUARMState *env) 1213 { 1214 return (uint64_t)cpu_get_icount_raw(); 1215 } 1216 1217 static int64_t instructions_ns_per(uint64_t icount) 1218 { 1219 return cpu_icount_to_ns((int64_t)icount); 1220 } 1221 #endif 1222 1223 static bool pmu_8_1_events_supported(CPUARMState *env) 1224 { 1225 /* For events which are supported in any v8.1 PMU */ 1226 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1227 } 1228 1229 static bool pmu_8_4_events_supported(CPUARMState *env) 1230 { 1231 /* For events which are supported in any v8.1 PMU */ 1232 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1233 } 1234 1235 static uint64_t zero_event_get_count(CPUARMState *env) 1236 { 1237 /* For events which on QEMU never fire, so their count is always zero */ 1238 return 0; 1239 } 1240 1241 static int64_t zero_event_ns_per(uint64_t cycles) 1242 { 1243 /* An event which never fires can never overflow */ 1244 return -1; 1245 } 1246 1247 static const pm_event pm_events[] = { 1248 { .number = 0x000, /* SW_INCR */ 1249 .supported = event_always_supported, 1250 .get_count = swinc_get_count, 1251 .ns_per_count = swinc_ns_per, 1252 }, 1253 #ifndef CONFIG_USER_ONLY 1254 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1255 .supported = instructions_supported, 1256 .get_count = instructions_get_count, 1257 .ns_per_count = instructions_ns_per, 1258 }, 1259 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1260 .supported = event_always_supported, 1261 .get_count = cycles_get_count, 1262 .ns_per_count = cycles_ns_per, 1263 }, 1264 #endif 1265 { .number = 0x023, /* STALL_FRONTEND */ 1266 .supported = pmu_8_1_events_supported, 1267 .get_count = zero_event_get_count, 1268 .ns_per_count = zero_event_ns_per, 1269 }, 1270 { .number = 0x024, /* STALL_BACKEND */ 1271 .supported = pmu_8_1_events_supported, 1272 .get_count = zero_event_get_count, 1273 .ns_per_count = zero_event_ns_per, 1274 }, 1275 { .number = 0x03c, /* STALL */ 1276 .supported = pmu_8_4_events_supported, 1277 .get_count = zero_event_get_count, 1278 .ns_per_count = zero_event_ns_per, 1279 }, 1280 }; 1281 1282 /* 1283 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1284 * events (i.e. the statistical profiling extension), this implementation 1285 * should first be updated to something sparse instead of the current 1286 * supported_event_map[] array. 1287 */ 1288 #define MAX_EVENT_ID 0x3c 1289 #define UNSUPPORTED_EVENT UINT16_MAX 1290 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1291 1292 /* 1293 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1294 * of ARM event numbers to indices in our pm_events array. 1295 * 1296 * Note: Events in the 0x40XX range are not currently supported. 1297 */ 1298 void pmu_init(ARMCPU *cpu) 1299 { 1300 unsigned int i; 1301 1302 /* 1303 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1304 * events to them 1305 */ 1306 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1307 supported_event_map[i] = UNSUPPORTED_EVENT; 1308 } 1309 cpu->pmceid0 = 0; 1310 cpu->pmceid1 = 0; 1311 1312 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1313 const pm_event *cnt = &pm_events[i]; 1314 assert(cnt->number <= MAX_EVENT_ID); 1315 /* We do not currently support events in the 0x40xx range */ 1316 assert(cnt->number <= 0x3f); 1317 1318 if (cnt->supported(&cpu->env)) { 1319 supported_event_map[cnt->number] = i; 1320 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1321 if (cnt->number & 0x20) { 1322 cpu->pmceid1 |= event_mask; 1323 } else { 1324 cpu->pmceid0 |= event_mask; 1325 } 1326 } 1327 } 1328 } 1329 1330 /* 1331 * Check at runtime whether a PMU event is supported for the current machine 1332 */ 1333 static bool event_supported(uint16_t number) 1334 { 1335 if (number > MAX_EVENT_ID) { 1336 return false; 1337 } 1338 return supported_event_map[number] != UNSUPPORTED_EVENT; 1339 } 1340 1341 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1342 bool isread) 1343 { 1344 /* Performance monitor registers user accessibility is controlled 1345 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1346 * trapping to EL2 or EL3 for other accesses. 1347 */ 1348 int el = arm_current_el(env); 1349 1350 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1351 return CP_ACCESS_TRAP; 1352 } 1353 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1354 && !arm_is_secure_below_el3(env)) { 1355 return CP_ACCESS_TRAP_EL2; 1356 } 1357 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1358 return CP_ACCESS_TRAP_EL3; 1359 } 1360 1361 return CP_ACCESS_OK; 1362 } 1363 1364 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1365 const ARMCPRegInfo *ri, 1366 bool isread) 1367 { 1368 /* ER: event counter read trap control */ 1369 if (arm_feature(env, ARM_FEATURE_V8) 1370 && arm_current_el(env) == 0 1371 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1372 && isread) { 1373 return CP_ACCESS_OK; 1374 } 1375 1376 return pmreg_access(env, ri, isread); 1377 } 1378 1379 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1380 const ARMCPRegInfo *ri, 1381 bool isread) 1382 { 1383 /* SW: software increment write trap control */ 1384 if (arm_feature(env, ARM_FEATURE_V8) 1385 && arm_current_el(env) == 0 1386 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1387 && !isread) { 1388 return CP_ACCESS_OK; 1389 } 1390 1391 return pmreg_access(env, ri, isread); 1392 } 1393 1394 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1395 const ARMCPRegInfo *ri, 1396 bool isread) 1397 { 1398 /* ER: event counter read trap control */ 1399 if (arm_feature(env, ARM_FEATURE_V8) 1400 && arm_current_el(env) == 0 1401 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1402 return CP_ACCESS_OK; 1403 } 1404 1405 return pmreg_access(env, ri, isread); 1406 } 1407 1408 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1409 const ARMCPRegInfo *ri, 1410 bool isread) 1411 { 1412 /* CR: cycle counter read trap control */ 1413 if (arm_feature(env, ARM_FEATURE_V8) 1414 && arm_current_el(env) == 0 1415 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1416 && isread) { 1417 return CP_ACCESS_OK; 1418 } 1419 1420 return pmreg_access(env, ri, isread); 1421 } 1422 1423 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1424 * the current EL, security state, and register configuration. 1425 */ 1426 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1427 { 1428 uint64_t filter; 1429 bool e, p, u, nsk, nsu, nsh, m; 1430 bool enabled, prohibited, filtered; 1431 bool secure = arm_is_secure(env); 1432 int el = arm_current_el(env); 1433 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1434 1435 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1436 return false; 1437 } 1438 1439 if (!arm_feature(env, ARM_FEATURE_EL2) || 1440 (counter < hpmn || counter == 31)) { 1441 e = env->cp15.c9_pmcr & PMCRE; 1442 } else { 1443 e = env->cp15.mdcr_el2 & MDCR_HPME; 1444 } 1445 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1446 1447 if (!secure) { 1448 if (el == 2 && (counter < hpmn || counter == 31)) { 1449 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1450 } else { 1451 prohibited = false; 1452 } 1453 } else { 1454 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1455 (env->cp15.mdcr_el3 & MDCR_SPME); 1456 } 1457 1458 if (prohibited && counter == 31) { 1459 prohibited = env->cp15.c9_pmcr & PMCRDP; 1460 } 1461 1462 if (counter == 31) { 1463 filter = env->cp15.pmccfiltr_el0; 1464 } else { 1465 filter = env->cp15.c14_pmevtyper[counter]; 1466 } 1467 1468 p = filter & PMXEVTYPER_P; 1469 u = filter & PMXEVTYPER_U; 1470 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1471 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1472 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1473 m = arm_el_is_aa64(env, 1) && 1474 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1475 1476 if (el == 0) { 1477 filtered = secure ? u : u != nsu; 1478 } else if (el == 1) { 1479 filtered = secure ? p : p != nsk; 1480 } else if (el == 2) { 1481 filtered = !nsh; 1482 } else { /* EL3 */ 1483 filtered = m != p; 1484 } 1485 1486 if (counter != 31) { 1487 /* 1488 * If not checking PMCCNTR, ensure the counter is setup to an event we 1489 * support 1490 */ 1491 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1492 if (!event_supported(event)) { 1493 return false; 1494 } 1495 } 1496 1497 return enabled && !prohibited && !filtered; 1498 } 1499 1500 static void pmu_update_irq(CPUARMState *env) 1501 { 1502 ARMCPU *cpu = env_archcpu(env); 1503 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1504 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1505 } 1506 1507 /* 1508 * Ensure c15_ccnt is the guest-visible count so that operations such as 1509 * enabling/disabling the counter or filtering, modifying the count itself, 1510 * etc. can be done logically. This is essentially a no-op if the counter is 1511 * not enabled at the time of the call. 1512 */ 1513 static void pmccntr_op_start(CPUARMState *env) 1514 { 1515 uint64_t cycles = cycles_get_count(env); 1516 1517 if (pmu_counter_enabled(env, 31)) { 1518 uint64_t eff_cycles = cycles; 1519 if (env->cp15.c9_pmcr & PMCRD) { 1520 /* Increment once every 64 processor clock cycles */ 1521 eff_cycles /= 64; 1522 } 1523 1524 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1525 1526 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1527 1ull << 63 : 1ull << 31; 1528 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1529 env->cp15.c9_pmovsr |= (1 << 31); 1530 pmu_update_irq(env); 1531 } 1532 1533 env->cp15.c15_ccnt = new_pmccntr; 1534 } 1535 env->cp15.c15_ccnt_delta = cycles; 1536 } 1537 1538 /* 1539 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1540 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1541 * pmccntr_op_start. 1542 */ 1543 static void pmccntr_op_finish(CPUARMState *env) 1544 { 1545 if (pmu_counter_enabled(env, 31)) { 1546 #ifndef CONFIG_USER_ONLY 1547 /* Calculate when the counter will next overflow */ 1548 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1549 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1550 remaining_cycles = (uint32_t)remaining_cycles; 1551 } 1552 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1553 1554 if (overflow_in > 0) { 1555 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1556 overflow_in; 1557 ARMCPU *cpu = env_archcpu(env); 1558 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1559 } 1560 #endif 1561 1562 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1563 if (env->cp15.c9_pmcr & PMCRD) { 1564 /* Increment once every 64 processor clock cycles */ 1565 prev_cycles /= 64; 1566 } 1567 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1568 } 1569 } 1570 1571 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1572 { 1573 1574 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1575 uint64_t count = 0; 1576 if (event_supported(event)) { 1577 uint16_t event_idx = supported_event_map[event]; 1578 count = pm_events[event_idx].get_count(env); 1579 } 1580 1581 if (pmu_counter_enabled(env, counter)) { 1582 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1583 1584 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1585 env->cp15.c9_pmovsr |= (1 << counter); 1586 pmu_update_irq(env); 1587 } 1588 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1589 } 1590 env->cp15.c14_pmevcntr_delta[counter] = count; 1591 } 1592 1593 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1594 { 1595 if (pmu_counter_enabled(env, counter)) { 1596 #ifndef CONFIG_USER_ONLY 1597 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1598 uint16_t event_idx = supported_event_map[event]; 1599 uint64_t delta = UINT32_MAX - 1600 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1601 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1602 1603 if (overflow_in > 0) { 1604 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1605 overflow_in; 1606 ARMCPU *cpu = env_archcpu(env); 1607 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1608 } 1609 #endif 1610 1611 env->cp15.c14_pmevcntr_delta[counter] -= 1612 env->cp15.c14_pmevcntr[counter]; 1613 } 1614 } 1615 1616 void pmu_op_start(CPUARMState *env) 1617 { 1618 unsigned int i; 1619 pmccntr_op_start(env); 1620 for (i = 0; i < pmu_num_counters(env); i++) { 1621 pmevcntr_op_start(env, i); 1622 } 1623 } 1624 1625 void pmu_op_finish(CPUARMState *env) 1626 { 1627 unsigned int i; 1628 pmccntr_op_finish(env); 1629 for (i = 0; i < pmu_num_counters(env); i++) { 1630 pmevcntr_op_finish(env, i); 1631 } 1632 } 1633 1634 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1635 { 1636 pmu_op_start(&cpu->env); 1637 } 1638 1639 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1640 { 1641 pmu_op_finish(&cpu->env); 1642 } 1643 1644 void arm_pmu_timer_cb(void *opaque) 1645 { 1646 ARMCPU *cpu = opaque; 1647 1648 /* 1649 * Update all the counter values based on the current underlying counts, 1650 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1651 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1652 * counter may expire. 1653 */ 1654 pmu_op_start(&cpu->env); 1655 pmu_op_finish(&cpu->env); 1656 } 1657 1658 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1659 uint64_t value) 1660 { 1661 pmu_op_start(env); 1662 1663 if (value & PMCRC) { 1664 /* The counter has been reset */ 1665 env->cp15.c15_ccnt = 0; 1666 } 1667 1668 if (value & PMCRP) { 1669 unsigned int i; 1670 for (i = 0; i < pmu_num_counters(env); i++) { 1671 env->cp15.c14_pmevcntr[i] = 0; 1672 } 1673 } 1674 1675 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1676 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1677 1678 pmu_op_finish(env); 1679 } 1680 1681 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1682 uint64_t value) 1683 { 1684 unsigned int i; 1685 for (i = 0; i < pmu_num_counters(env); i++) { 1686 /* Increment a counter's count iff: */ 1687 if ((value & (1 << i)) && /* counter's bit is set */ 1688 /* counter is enabled and not filtered */ 1689 pmu_counter_enabled(env, i) && 1690 /* counter is SW_INCR */ 1691 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1692 pmevcntr_op_start(env, i); 1693 1694 /* 1695 * Detect if this write causes an overflow since we can't predict 1696 * PMSWINC overflows like we can for other events 1697 */ 1698 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1699 1700 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1701 env->cp15.c9_pmovsr |= (1 << i); 1702 pmu_update_irq(env); 1703 } 1704 1705 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1706 1707 pmevcntr_op_finish(env, i); 1708 } 1709 } 1710 } 1711 1712 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1713 { 1714 uint64_t ret; 1715 pmccntr_op_start(env); 1716 ret = env->cp15.c15_ccnt; 1717 pmccntr_op_finish(env); 1718 return ret; 1719 } 1720 1721 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1722 uint64_t value) 1723 { 1724 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1725 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1726 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1727 * accessed. 1728 */ 1729 env->cp15.c9_pmselr = value & 0x1f; 1730 } 1731 1732 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1733 uint64_t value) 1734 { 1735 pmccntr_op_start(env); 1736 env->cp15.c15_ccnt = value; 1737 pmccntr_op_finish(env); 1738 } 1739 1740 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1741 uint64_t value) 1742 { 1743 uint64_t cur_val = pmccntr_read(env, NULL); 1744 1745 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1746 } 1747 1748 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1749 uint64_t value) 1750 { 1751 pmccntr_op_start(env); 1752 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1753 pmccntr_op_finish(env); 1754 } 1755 1756 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1757 uint64_t value) 1758 { 1759 pmccntr_op_start(env); 1760 /* M is not accessible from AArch32 */ 1761 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1762 (value & PMCCFILTR); 1763 pmccntr_op_finish(env); 1764 } 1765 1766 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1767 { 1768 /* M is not visible in AArch32 */ 1769 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1770 } 1771 1772 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1773 uint64_t value) 1774 { 1775 value &= pmu_counter_mask(env); 1776 env->cp15.c9_pmcnten |= value; 1777 } 1778 1779 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1780 uint64_t value) 1781 { 1782 value &= pmu_counter_mask(env); 1783 env->cp15.c9_pmcnten &= ~value; 1784 } 1785 1786 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1787 uint64_t value) 1788 { 1789 value &= pmu_counter_mask(env); 1790 env->cp15.c9_pmovsr &= ~value; 1791 pmu_update_irq(env); 1792 } 1793 1794 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1795 uint64_t value) 1796 { 1797 value &= pmu_counter_mask(env); 1798 env->cp15.c9_pmovsr |= value; 1799 pmu_update_irq(env); 1800 } 1801 1802 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1803 uint64_t value, const uint8_t counter) 1804 { 1805 if (counter == 31) { 1806 pmccfiltr_write(env, ri, value); 1807 } else if (counter < pmu_num_counters(env)) { 1808 pmevcntr_op_start(env, counter); 1809 1810 /* 1811 * If this counter's event type is changing, store the current 1812 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1813 * pmevcntr_op_finish has the correct baseline when it converts back to 1814 * a delta. 1815 */ 1816 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1817 PMXEVTYPER_EVTCOUNT; 1818 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1819 if (old_event != new_event) { 1820 uint64_t count = 0; 1821 if (event_supported(new_event)) { 1822 uint16_t event_idx = supported_event_map[new_event]; 1823 count = pm_events[event_idx].get_count(env); 1824 } 1825 env->cp15.c14_pmevcntr_delta[counter] = count; 1826 } 1827 1828 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1829 pmevcntr_op_finish(env, counter); 1830 } 1831 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1832 * PMSELR value is equal to or greater than the number of implemented 1833 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1834 */ 1835 } 1836 1837 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1838 const uint8_t counter) 1839 { 1840 if (counter == 31) { 1841 return env->cp15.pmccfiltr_el0; 1842 } else if (counter < pmu_num_counters(env)) { 1843 return env->cp15.c14_pmevtyper[counter]; 1844 } else { 1845 /* 1846 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1847 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1848 */ 1849 return 0; 1850 } 1851 } 1852 1853 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1854 uint64_t value) 1855 { 1856 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1857 pmevtyper_write(env, ri, value, counter); 1858 } 1859 1860 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1861 uint64_t value) 1862 { 1863 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1864 env->cp15.c14_pmevtyper[counter] = value; 1865 1866 /* 1867 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1868 * pmu_op_finish calls when loading saved state for a migration. Because 1869 * we're potentially updating the type of event here, the value written to 1870 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1871 * different counter type. Therefore, we need to set this value to the 1872 * current count for the counter type we're writing so that pmu_op_finish 1873 * has the correct count for its calculation. 1874 */ 1875 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1876 if (event_supported(event)) { 1877 uint16_t event_idx = supported_event_map[event]; 1878 env->cp15.c14_pmevcntr_delta[counter] = 1879 pm_events[event_idx].get_count(env); 1880 } 1881 } 1882 1883 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1884 { 1885 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1886 return pmevtyper_read(env, ri, counter); 1887 } 1888 1889 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1890 uint64_t value) 1891 { 1892 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1893 } 1894 1895 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1896 { 1897 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1898 } 1899 1900 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1901 uint64_t value, uint8_t counter) 1902 { 1903 if (counter < pmu_num_counters(env)) { 1904 pmevcntr_op_start(env, counter); 1905 env->cp15.c14_pmevcntr[counter] = value; 1906 pmevcntr_op_finish(env, counter); 1907 } 1908 /* 1909 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1910 * are CONSTRAINED UNPREDICTABLE. 1911 */ 1912 } 1913 1914 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1915 uint8_t counter) 1916 { 1917 if (counter < pmu_num_counters(env)) { 1918 uint64_t ret; 1919 pmevcntr_op_start(env, counter); 1920 ret = env->cp15.c14_pmevcntr[counter]; 1921 pmevcntr_op_finish(env, counter); 1922 return ret; 1923 } else { 1924 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1925 * are CONSTRAINED UNPREDICTABLE. */ 1926 return 0; 1927 } 1928 } 1929 1930 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1931 uint64_t value) 1932 { 1933 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1934 pmevcntr_write(env, ri, value, counter); 1935 } 1936 1937 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1938 { 1939 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1940 return pmevcntr_read(env, ri, counter); 1941 } 1942 1943 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1944 uint64_t value) 1945 { 1946 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1947 assert(counter < pmu_num_counters(env)); 1948 env->cp15.c14_pmevcntr[counter] = value; 1949 pmevcntr_write(env, ri, value, counter); 1950 } 1951 1952 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1953 { 1954 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1955 assert(counter < pmu_num_counters(env)); 1956 return env->cp15.c14_pmevcntr[counter]; 1957 } 1958 1959 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1960 uint64_t value) 1961 { 1962 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1963 } 1964 1965 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1966 { 1967 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1968 } 1969 1970 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1971 uint64_t value) 1972 { 1973 if (arm_feature(env, ARM_FEATURE_V8)) { 1974 env->cp15.c9_pmuserenr = value & 0xf; 1975 } else { 1976 env->cp15.c9_pmuserenr = value & 1; 1977 } 1978 } 1979 1980 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1981 uint64_t value) 1982 { 1983 /* We have no event counters so only the C bit can be changed */ 1984 value &= pmu_counter_mask(env); 1985 env->cp15.c9_pminten |= value; 1986 pmu_update_irq(env); 1987 } 1988 1989 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1990 uint64_t value) 1991 { 1992 value &= pmu_counter_mask(env); 1993 env->cp15.c9_pminten &= ~value; 1994 pmu_update_irq(env); 1995 } 1996 1997 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1998 uint64_t value) 1999 { 2000 /* Note that even though the AArch64 view of this register has bits 2001 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 2002 * architectural requirements for bits which are RES0 only in some 2003 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 2004 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 2005 */ 2006 raw_write(env, ri, value & ~0x1FULL); 2007 } 2008 2009 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2010 { 2011 /* Begin with base v8.0 state. */ 2012 uint32_t valid_mask = 0x3fff; 2013 ARMCPU *cpu = env_archcpu(env); 2014 2015 if (ri->state == ARM_CP_STATE_AA64) { 2016 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 2017 valid_mask &= ~SCR_NET; 2018 2019 if (cpu_isar_feature(aa64_lor, cpu)) { 2020 valid_mask |= SCR_TLOR; 2021 } 2022 if (cpu_isar_feature(aa64_pauth, cpu)) { 2023 valid_mask |= SCR_API | SCR_APK; 2024 } 2025 if (cpu_isar_feature(aa64_mte, cpu)) { 2026 valid_mask |= SCR_ATA; 2027 } 2028 } else { 2029 valid_mask &= ~(SCR_RW | SCR_ST); 2030 } 2031 2032 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2033 valid_mask &= ~SCR_HCE; 2034 2035 /* On ARMv7, SMD (or SCD as it is called in v7) is only 2036 * supported if EL2 exists. The bit is UNK/SBZP when 2037 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 2038 * when EL2 is unavailable. 2039 * On ARMv8, this bit is always available. 2040 */ 2041 if (arm_feature(env, ARM_FEATURE_V7) && 2042 !arm_feature(env, ARM_FEATURE_V8)) { 2043 valid_mask &= ~SCR_SMD; 2044 } 2045 } 2046 2047 /* Clear all-context RES0 bits. */ 2048 value &= valid_mask; 2049 raw_write(env, ri, value); 2050 } 2051 2052 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2053 const ARMCPRegInfo *ri, 2054 bool isread) 2055 { 2056 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2057 return CP_ACCESS_TRAP_EL2; 2058 } 2059 2060 return CP_ACCESS_OK; 2061 } 2062 2063 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2064 { 2065 ARMCPU *cpu = env_archcpu(env); 2066 2067 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2068 * bank 2069 */ 2070 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2071 ri->secure & ARM_CP_SECSTATE_S); 2072 2073 return cpu->ccsidr[index]; 2074 } 2075 2076 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2077 uint64_t value) 2078 { 2079 raw_write(env, ri, value & 0xf); 2080 } 2081 2082 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2083 { 2084 CPUState *cs = env_cpu(env); 2085 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 2086 uint64_t ret = 0; 2087 bool allow_virt = (arm_current_el(env) == 1 && 2088 (!arm_is_secure_below_el3(env) || 2089 (env->cp15.scr_el3 & SCR_EEL2))); 2090 2091 if (allow_virt && (hcr_el2 & HCR_IMO)) { 2092 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2093 ret |= CPSR_I; 2094 } 2095 } else { 2096 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2097 ret |= CPSR_I; 2098 } 2099 } 2100 2101 if (allow_virt && (hcr_el2 & HCR_FMO)) { 2102 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2103 ret |= CPSR_F; 2104 } 2105 } else { 2106 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2107 ret |= CPSR_F; 2108 } 2109 } 2110 2111 /* External aborts are not possible in QEMU so A bit is always clear */ 2112 return ret; 2113 } 2114 2115 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2116 bool isread) 2117 { 2118 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2119 return CP_ACCESS_TRAP_EL2; 2120 } 2121 2122 return CP_ACCESS_OK; 2123 } 2124 2125 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2126 bool isread) 2127 { 2128 if (arm_feature(env, ARM_FEATURE_V8)) { 2129 return access_aa64_tid1(env, ri, isread); 2130 } 2131 2132 return CP_ACCESS_OK; 2133 } 2134 2135 static const ARMCPRegInfo v7_cp_reginfo[] = { 2136 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2137 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2138 .access = PL1_W, .type = ARM_CP_NOP }, 2139 /* Performance monitors are implementation defined in v7, 2140 * but with an ARM recommended set of registers, which we 2141 * follow. 2142 * 2143 * Performance registers fall into three categories: 2144 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2145 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2146 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2147 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2148 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2149 */ 2150 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2151 .access = PL0_RW, .type = ARM_CP_ALIAS, 2152 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2153 .writefn = pmcntenset_write, 2154 .accessfn = pmreg_access, 2155 .raw_writefn = raw_write }, 2156 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2157 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2158 .access = PL0_RW, .accessfn = pmreg_access, 2159 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2160 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2161 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2162 .access = PL0_RW, 2163 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2164 .accessfn = pmreg_access, 2165 .writefn = pmcntenclr_write, 2166 .type = ARM_CP_ALIAS }, 2167 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2168 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2169 .access = PL0_RW, .accessfn = pmreg_access, 2170 .type = ARM_CP_ALIAS, 2171 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2172 .writefn = pmcntenclr_write }, 2173 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2174 .access = PL0_RW, .type = ARM_CP_IO, 2175 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2176 .accessfn = pmreg_access, 2177 .writefn = pmovsr_write, 2178 .raw_writefn = raw_write }, 2179 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2180 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2181 .access = PL0_RW, .accessfn = pmreg_access, 2182 .type = ARM_CP_ALIAS | ARM_CP_IO, 2183 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2184 .writefn = pmovsr_write, 2185 .raw_writefn = raw_write }, 2186 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2187 .access = PL0_W, .accessfn = pmreg_access_swinc, 2188 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2189 .writefn = pmswinc_write }, 2190 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2191 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2192 .access = PL0_W, .accessfn = pmreg_access_swinc, 2193 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2194 .writefn = pmswinc_write }, 2195 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2196 .access = PL0_RW, .type = ARM_CP_ALIAS, 2197 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2198 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2199 .raw_writefn = raw_write}, 2200 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2201 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2202 .access = PL0_RW, .accessfn = pmreg_access_selr, 2203 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2204 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2205 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2206 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2207 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2208 .accessfn = pmreg_access_ccntr }, 2209 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2210 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2211 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2212 .type = ARM_CP_IO, 2213 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2214 .readfn = pmccntr_read, .writefn = pmccntr_write, 2215 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2216 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2217 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2218 .access = PL0_RW, .accessfn = pmreg_access, 2219 .type = ARM_CP_ALIAS | ARM_CP_IO, 2220 .resetvalue = 0, }, 2221 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2222 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2223 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2224 .access = PL0_RW, .accessfn = pmreg_access, 2225 .type = ARM_CP_IO, 2226 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2227 .resetvalue = 0, }, 2228 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2229 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2230 .accessfn = pmreg_access, 2231 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2232 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2233 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2234 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2235 .accessfn = pmreg_access, 2236 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2237 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2238 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2239 .accessfn = pmreg_access_xevcntr, 2240 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2241 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2242 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2243 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2244 .accessfn = pmreg_access_xevcntr, 2245 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2246 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2247 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2248 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2249 .resetvalue = 0, 2250 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2251 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2252 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2253 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2254 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2255 .resetvalue = 0, 2256 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2257 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2258 .access = PL1_RW, .accessfn = access_tpm, 2259 .type = ARM_CP_ALIAS | ARM_CP_IO, 2260 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2261 .resetvalue = 0, 2262 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2263 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2264 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2265 .access = PL1_RW, .accessfn = access_tpm, 2266 .type = ARM_CP_IO, 2267 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2268 .writefn = pmintenset_write, .raw_writefn = raw_write, 2269 .resetvalue = 0x0 }, 2270 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2271 .access = PL1_RW, .accessfn = access_tpm, 2272 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2273 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2274 .writefn = pmintenclr_write, }, 2275 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2276 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2277 .access = PL1_RW, .accessfn = access_tpm, 2278 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2279 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2280 .writefn = pmintenclr_write }, 2281 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2282 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2283 .access = PL1_R, 2284 .accessfn = access_aa64_tid2, 2285 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2286 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2287 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2288 .access = PL1_RW, 2289 .accessfn = access_aa64_tid2, 2290 .writefn = csselr_write, .resetvalue = 0, 2291 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2292 offsetof(CPUARMState, cp15.csselr_ns) } }, 2293 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2294 * just RAZ for all cores: 2295 */ 2296 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2297 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2298 .access = PL1_R, .type = ARM_CP_CONST, 2299 .accessfn = access_aa64_tid1, 2300 .resetvalue = 0 }, 2301 /* Auxiliary fault status registers: these also are IMPDEF, and we 2302 * choose to RAZ/WI for all cores. 2303 */ 2304 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2305 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2306 .access = PL1_RW, .accessfn = access_tvm_trvm, 2307 .type = ARM_CP_CONST, .resetvalue = 0 }, 2308 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2309 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2310 .access = PL1_RW, .accessfn = access_tvm_trvm, 2311 .type = ARM_CP_CONST, .resetvalue = 0 }, 2312 /* MAIR can just read-as-written because we don't implement caches 2313 * and so don't need to care about memory attributes. 2314 */ 2315 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2316 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2317 .access = PL1_RW, .accessfn = access_tvm_trvm, 2318 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2319 .resetvalue = 0 }, 2320 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2321 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2322 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2323 .resetvalue = 0 }, 2324 /* For non-long-descriptor page tables these are PRRR and NMRR; 2325 * regardless they still act as reads-as-written for QEMU. 2326 */ 2327 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2328 * allows them to assign the correct fieldoffset based on the endianness 2329 * handled in the field definitions. 2330 */ 2331 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2332 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2333 .access = PL1_RW, .accessfn = access_tvm_trvm, 2334 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2335 offsetof(CPUARMState, cp15.mair0_ns) }, 2336 .resetfn = arm_cp_reset_ignore }, 2337 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2338 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2339 .access = PL1_RW, .accessfn = access_tvm_trvm, 2340 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2341 offsetof(CPUARMState, cp15.mair1_ns) }, 2342 .resetfn = arm_cp_reset_ignore }, 2343 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2344 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2345 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2346 /* 32 bit ITLB invalidates */ 2347 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2348 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2349 .writefn = tlbiall_write }, 2350 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2351 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2352 .writefn = tlbimva_write }, 2353 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2354 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2355 .writefn = tlbiasid_write }, 2356 /* 32 bit DTLB invalidates */ 2357 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2358 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2359 .writefn = tlbiall_write }, 2360 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2361 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2362 .writefn = tlbimva_write }, 2363 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2364 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2365 .writefn = tlbiasid_write }, 2366 /* 32 bit TLB invalidates */ 2367 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2368 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2369 .writefn = tlbiall_write }, 2370 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2371 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2372 .writefn = tlbimva_write }, 2373 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2374 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2375 .writefn = tlbiasid_write }, 2376 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2377 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2378 .writefn = tlbimvaa_write }, 2379 REGINFO_SENTINEL 2380 }; 2381 2382 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2383 /* 32 bit TLB invalidates, Inner Shareable */ 2384 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2385 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2386 .writefn = tlbiall_is_write }, 2387 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2388 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2389 .writefn = tlbimva_is_write }, 2390 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2391 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2392 .writefn = tlbiasid_is_write }, 2393 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2394 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2395 .writefn = tlbimvaa_is_write }, 2396 REGINFO_SENTINEL 2397 }; 2398 2399 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2400 /* PMOVSSET is not implemented in v7 before v7ve */ 2401 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2402 .access = PL0_RW, .accessfn = pmreg_access, 2403 .type = ARM_CP_ALIAS | ARM_CP_IO, 2404 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2405 .writefn = pmovsset_write, 2406 .raw_writefn = raw_write }, 2407 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2408 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2409 .access = PL0_RW, .accessfn = pmreg_access, 2410 .type = ARM_CP_ALIAS | ARM_CP_IO, 2411 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2412 .writefn = pmovsset_write, 2413 .raw_writefn = raw_write }, 2414 REGINFO_SENTINEL 2415 }; 2416 2417 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2418 uint64_t value) 2419 { 2420 value &= 1; 2421 env->teecr = value; 2422 } 2423 2424 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2425 bool isread) 2426 { 2427 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2428 return CP_ACCESS_TRAP; 2429 } 2430 return CP_ACCESS_OK; 2431 } 2432 2433 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2434 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2435 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2436 .resetvalue = 0, 2437 .writefn = teecr_write }, 2438 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2439 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2440 .accessfn = teehbr_access, .resetvalue = 0 }, 2441 REGINFO_SENTINEL 2442 }; 2443 2444 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2445 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2446 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2447 .access = PL0_RW, 2448 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2449 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2450 .access = PL0_RW, 2451 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2452 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2453 .resetfn = arm_cp_reset_ignore }, 2454 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2455 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2456 .access = PL0_R|PL1_W, 2457 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2458 .resetvalue = 0}, 2459 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2460 .access = PL0_R|PL1_W, 2461 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2462 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2463 .resetfn = arm_cp_reset_ignore }, 2464 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2465 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2466 .access = PL1_RW, 2467 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2468 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2469 .access = PL1_RW, 2470 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2471 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2472 .resetvalue = 0 }, 2473 REGINFO_SENTINEL 2474 }; 2475 2476 #ifndef CONFIG_USER_ONLY 2477 2478 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2479 bool isread) 2480 { 2481 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2482 * Writable only at the highest implemented exception level. 2483 */ 2484 int el = arm_current_el(env); 2485 uint64_t hcr; 2486 uint32_t cntkctl; 2487 2488 switch (el) { 2489 case 0: 2490 hcr = arm_hcr_el2_eff(env); 2491 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2492 cntkctl = env->cp15.cnthctl_el2; 2493 } else { 2494 cntkctl = env->cp15.c14_cntkctl; 2495 } 2496 if (!extract32(cntkctl, 0, 2)) { 2497 return CP_ACCESS_TRAP; 2498 } 2499 break; 2500 case 1: 2501 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2502 arm_is_secure_below_el3(env)) { 2503 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2504 return CP_ACCESS_TRAP_UNCATEGORIZED; 2505 } 2506 break; 2507 case 2: 2508 case 3: 2509 break; 2510 } 2511 2512 if (!isread && el < arm_highest_el(env)) { 2513 return CP_ACCESS_TRAP_UNCATEGORIZED; 2514 } 2515 2516 return CP_ACCESS_OK; 2517 } 2518 2519 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2520 bool isread) 2521 { 2522 unsigned int cur_el = arm_current_el(env); 2523 bool secure = arm_is_secure(env); 2524 uint64_t hcr = arm_hcr_el2_eff(env); 2525 2526 switch (cur_el) { 2527 case 0: 2528 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2529 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2530 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2531 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2532 } 2533 2534 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2535 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2536 return CP_ACCESS_TRAP; 2537 } 2538 2539 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2540 if (hcr & HCR_E2H) { 2541 if (timeridx == GTIMER_PHYS && 2542 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2543 return CP_ACCESS_TRAP_EL2; 2544 } 2545 } else { 2546 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2547 if (arm_feature(env, ARM_FEATURE_EL2) && 2548 timeridx == GTIMER_PHYS && !secure && 2549 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2550 return CP_ACCESS_TRAP_EL2; 2551 } 2552 } 2553 break; 2554 2555 case 1: 2556 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2557 if (arm_feature(env, ARM_FEATURE_EL2) && 2558 timeridx == GTIMER_PHYS && !secure && 2559 (hcr & HCR_E2H 2560 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2561 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2562 return CP_ACCESS_TRAP_EL2; 2563 } 2564 break; 2565 } 2566 return CP_ACCESS_OK; 2567 } 2568 2569 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2570 bool isread) 2571 { 2572 unsigned int cur_el = arm_current_el(env); 2573 bool secure = arm_is_secure(env); 2574 uint64_t hcr = arm_hcr_el2_eff(env); 2575 2576 switch (cur_el) { 2577 case 0: 2578 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2579 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2580 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2581 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2582 } 2583 2584 /* 2585 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2586 * EL0 if EL0[PV]TEN is zero. 2587 */ 2588 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2589 return CP_ACCESS_TRAP; 2590 } 2591 /* fall through */ 2592 2593 case 1: 2594 if (arm_feature(env, ARM_FEATURE_EL2) && 2595 timeridx == GTIMER_PHYS && !secure) { 2596 if (hcr & HCR_E2H) { 2597 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2598 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2599 return CP_ACCESS_TRAP_EL2; 2600 } 2601 } else { 2602 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2603 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2604 return CP_ACCESS_TRAP_EL2; 2605 } 2606 } 2607 } 2608 break; 2609 } 2610 return CP_ACCESS_OK; 2611 } 2612 2613 static CPAccessResult gt_pct_access(CPUARMState *env, 2614 const ARMCPRegInfo *ri, 2615 bool isread) 2616 { 2617 return gt_counter_access(env, GTIMER_PHYS, isread); 2618 } 2619 2620 static CPAccessResult gt_vct_access(CPUARMState *env, 2621 const ARMCPRegInfo *ri, 2622 bool isread) 2623 { 2624 return gt_counter_access(env, GTIMER_VIRT, isread); 2625 } 2626 2627 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2628 bool isread) 2629 { 2630 return gt_timer_access(env, GTIMER_PHYS, isread); 2631 } 2632 2633 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2634 bool isread) 2635 { 2636 return gt_timer_access(env, GTIMER_VIRT, isread); 2637 } 2638 2639 static CPAccessResult gt_stimer_access(CPUARMState *env, 2640 const ARMCPRegInfo *ri, 2641 bool isread) 2642 { 2643 /* The AArch64 register view of the secure physical timer is 2644 * always accessible from EL3, and configurably accessible from 2645 * Secure EL1. 2646 */ 2647 switch (arm_current_el(env)) { 2648 case 1: 2649 if (!arm_is_secure(env)) { 2650 return CP_ACCESS_TRAP; 2651 } 2652 if (!(env->cp15.scr_el3 & SCR_ST)) { 2653 return CP_ACCESS_TRAP_EL3; 2654 } 2655 return CP_ACCESS_OK; 2656 case 0: 2657 case 2: 2658 return CP_ACCESS_TRAP; 2659 case 3: 2660 return CP_ACCESS_OK; 2661 default: 2662 g_assert_not_reached(); 2663 } 2664 } 2665 2666 static uint64_t gt_get_countervalue(CPUARMState *env) 2667 { 2668 ARMCPU *cpu = env_archcpu(env); 2669 2670 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2671 } 2672 2673 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2674 { 2675 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2676 2677 if (gt->ctl & 1) { 2678 /* Timer enabled: calculate and set current ISTATUS, irq, and 2679 * reset timer to when ISTATUS next has to change 2680 */ 2681 uint64_t offset = timeridx == GTIMER_VIRT ? 2682 cpu->env.cp15.cntvoff_el2 : 0; 2683 uint64_t count = gt_get_countervalue(&cpu->env); 2684 /* Note that this must be unsigned 64 bit arithmetic: */ 2685 int istatus = count - offset >= gt->cval; 2686 uint64_t nexttick; 2687 int irqstate; 2688 2689 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2690 2691 irqstate = (istatus && !(gt->ctl & 2)); 2692 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2693 2694 if (istatus) { 2695 /* Next transition is when count rolls back over to zero */ 2696 nexttick = UINT64_MAX; 2697 } else { 2698 /* Next transition is when we hit cval */ 2699 nexttick = gt->cval + offset; 2700 } 2701 /* Note that the desired next expiry time might be beyond the 2702 * signed-64-bit range of a QEMUTimer -- in this case we just 2703 * set the timer for as far in the future as possible. When the 2704 * timer expires we will reset the timer for any remaining period. 2705 */ 2706 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2707 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2708 } else { 2709 timer_mod(cpu->gt_timer[timeridx], nexttick); 2710 } 2711 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2712 } else { 2713 /* Timer disabled: ISTATUS and timer output always clear */ 2714 gt->ctl &= ~4; 2715 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2716 timer_del(cpu->gt_timer[timeridx]); 2717 trace_arm_gt_recalc_disabled(timeridx); 2718 } 2719 } 2720 2721 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2722 int timeridx) 2723 { 2724 ARMCPU *cpu = env_archcpu(env); 2725 2726 timer_del(cpu->gt_timer[timeridx]); 2727 } 2728 2729 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2730 { 2731 return gt_get_countervalue(env); 2732 } 2733 2734 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2735 { 2736 uint64_t hcr; 2737 2738 switch (arm_current_el(env)) { 2739 case 2: 2740 hcr = arm_hcr_el2_eff(env); 2741 if (hcr & HCR_E2H) { 2742 return 0; 2743 } 2744 break; 2745 case 0: 2746 hcr = arm_hcr_el2_eff(env); 2747 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2748 return 0; 2749 } 2750 break; 2751 } 2752 2753 return env->cp15.cntvoff_el2; 2754 } 2755 2756 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2757 { 2758 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2759 } 2760 2761 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2762 int timeridx, 2763 uint64_t value) 2764 { 2765 trace_arm_gt_cval_write(timeridx, value); 2766 env->cp15.c14_timer[timeridx].cval = value; 2767 gt_recalc_timer(env_archcpu(env), timeridx); 2768 } 2769 2770 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2771 int timeridx) 2772 { 2773 uint64_t offset = 0; 2774 2775 switch (timeridx) { 2776 case GTIMER_VIRT: 2777 case GTIMER_HYPVIRT: 2778 offset = gt_virt_cnt_offset(env); 2779 break; 2780 } 2781 2782 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2783 (gt_get_countervalue(env) - offset)); 2784 } 2785 2786 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2787 int timeridx, 2788 uint64_t value) 2789 { 2790 uint64_t offset = 0; 2791 2792 switch (timeridx) { 2793 case GTIMER_VIRT: 2794 case GTIMER_HYPVIRT: 2795 offset = gt_virt_cnt_offset(env); 2796 break; 2797 } 2798 2799 trace_arm_gt_tval_write(timeridx, value); 2800 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2801 sextract64(value, 0, 32); 2802 gt_recalc_timer(env_archcpu(env), timeridx); 2803 } 2804 2805 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2806 int timeridx, 2807 uint64_t value) 2808 { 2809 ARMCPU *cpu = env_archcpu(env); 2810 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2811 2812 trace_arm_gt_ctl_write(timeridx, value); 2813 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2814 if ((oldval ^ value) & 1) { 2815 /* Enable toggled */ 2816 gt_recalc_timer(cpu, timeridx); 2817 } else if ((oldval ^ value) & 2) { 2818 /* IMASK toggled: don't need to recalculate, 2819 * just set the interrupt line based on ISTATUS 2820 */ 2821 int irqstate = (oldval & 4) && !(value & 2); 2822 2823 trace_arm_gt_imask_toggle(timeridx, irqstate); 2824 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2825 } 2826 } 2827 2828 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2829 { 2830 gt_timer_reset(env, ri, GTIMER_PHYS); 2831 } 2832 2833 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2834 uint64_t value) 2835 { 2836 gt_cval_write(env, ri, GTIMER_PHYS, value); 2837 } 2838 2839 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2840 { 2841 return gt_tval_read(env, ri, GTIMER_PHYS); 2842 } 2843 2844 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2845 uint64_t value) 2846 { 2847 gt_tval_write(env, ri, GTIMER_PHYS, value); 2848 } 2849 2850 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2851 uint64_t value) 2852 { 2853 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2854 } 2855 2856 static int gt_phys_redir_timeridx(CPUARMState *env) 2857 { 2858 switch (arm_mmu_idx(env)) { 2859 case ARMMMUIdx_E20_0: 2860 case ARMMMUIdx_E20_2: 2861 case ARMMMUIdx_E20_2_PAN: 2862 return GTIMER_HYP; 2863 default: 2864 return GTIMER_PHYS; 2865 } 2866 } 2867 2868 static int gt_virt_redir_timeridx(CPUARMState *env) 2869 { 2870 switch (arm_mmu_idx(env)) { 2871 case ARMMMUIdx_E20_0: 2872 case ARMMMUIdx_E20_2: 2873 case ARMMMUIdx_E20_2_PAN: 2874 return GTIMER_HYPVIRT; 2875 default: 2876 return GTIMER_VIRT; 2877 } 2878 } 2879 2880 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2881 const ARMCPRegInfo *ri) 2882 { 2883 int timeridx = gt_phys_redir_timeridx(env); 2884 return env->cp15.c14_timer[timeridx].cval; 2885 } 2886 2887 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2888 uint64_t value) 2889 { 2890 int timeridx = gt_phys_redir_timeridx(env); 2891 gt_cval_write(env, ri, timeridx, value); 2892 } 2893 2894 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2895 const ARMCPRegInfo *ri) 2896 { 2897 int timeridx = gt_phys_redir_timeridx(env); 2898 return gt_tval_read(env, ri, timeridx); 2899 } 2900 2901 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2902 uint64_t value) 2903 { 2904 int timeridx = gt_phys_redir_timeridx(env); 2905 gt_tval_write(env, ri, timeridx, value); 2906 } 2907 2908 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2909 const ARMCPRegInfo *ri) 2910 { 2911 int timeridx = gt_phys_redir_timeridx(env); 2912 return env->cp15.c14_timer[timeridx].ctl; 2913 } 2914 2915 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2916 uint64_t value) 2917 { 2918 int timeridx = gt_phys_redir_timeridx(env); 2919 gt_ctl_write(env, ri, timeridx, value); 2920 } 2921 2922 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2923 { 2924 gt_timer_reset(env, ri, GTIMER_VIRT); 2925 } 2926 2927 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2928 uint64_t value) 2929 { 2930 gt_cval_write(env, ri, GTIMER_VIRT, value); 2931 } 2932 2933 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2934 { 2935 return gt_tval_read(env, ri, GTIMER_VIRT); 2936 } 2937 2938 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2939 uint64_t value) 2940 { 2941 gt_tval_write(env, ri, GTIMER_VIRT, value); 2942 } 2943 2944 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2945 uint64_t value) 2946 { 2947 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2948 } 2949 2950 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2951 uint64_t value) 2952 { 2953 ARMCPU *cpu = env_archcpu(env); 2954 2955 trace_arm_gt_cntvoff_write(value); 2956 raw_write(env, ri, value); 2957 gt_recalc_timer(cpu, GTIMER_VIRT); 2958 } 2959 2960 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2961 const ARMCPRegInfo *ri) 2962 { 2963 int timeridx = gt_virt_redir_timeridx(env); 2964 return env->cp15.c14_timer[timeridx].cval; 2965 } 2966 2967 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2968 uint64_t value) 2969 { 2970 int timeridx = gt_virt_redir_timeridx(env); 2971 gt_cval_write(env, ri, timeridx, value); 2972 } 2973 2974 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2975 const ARMCPRegInfo *ri) 2976 { 2977 int timeridx = gt_virt_redir_timeridx(env); 2978 return gt_tval_read(env, ri, timeridx); 2979 } 2980 2981 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2982 uint64_t value) 2983 { 2984 int timeridx = gt_virt_redir_timeridx(env); 2985 gt_tval_write(env, ri, timeridx, value); 2986 } 2987 2988 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2989 const ARMCPRegInfo *ri) 2990 { 2991 int timeridx = gt_virt_redir_timeridx(env); 2992 return env->cp15.c14_timer[timeridx].ctl; 2993 } 2994 2995 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2996 uint64_t value) 2997 { 2998 int timeridx = gt_virt_redir_timeridx(env); 2999 gt_ctl_write(env, ri, timeridx, value); 3000 } 3001 3002 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3003 { 3004 gt_timer_reset(env, ri, GTIMER_HYP); 3005 } 3006 3007 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3008 uint64_t value) 3009 { 3010 gt_cval_write(env, ri, GTIMER_HYP, value); 3011 } 3012 3013 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3014 { 3015 return gt_tval_read(env, ri, GTIMER_HYP); 3016 } 3017 3018 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3019 uint64_t value) 3020 { 3021 gt_tval_write(env, ri, GTIMER_HYP, value); 3022 } 3023 3024 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3025 uint64_t value) 3026 { 3027 gt_ctl_write(env, ri, GTIMER_HYP, value); 3028 } 3029 3030 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3031 { 3032 gt_timer_reset(env, ri, GTIMER_SEC); 3033 } 3034 3035 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3036 uint64_t value) 3037 { 3038 gt_cval_write(env, ri, GTIMER_SEC, value); 3039 } 3040 3041 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3042 { 3043 return gt_tval_read(env, ri, GTIMER_SEC); 3044 } 3045 3046 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3047 uint64_t value) 3048 { 3049 gt_tval_write(env, ri, GTIMER_SEC, value); 3050 } 3051 3052 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3053 uint64_t value) 3054 { 3055 gt_ctl_write(env, ri, GTIMER_SEC, value); 3056 } 3057 3058 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3059 { 3060 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3061 } 3062 3063 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3064 uint64_t value) 3065 { 3066 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3067 } 3068 3069 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3070 { 3071 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3072 } 3073 3074 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3075 uint64_t value) 3076 { 3077 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3078 } 3079 3080 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3081 uint64_t value) 3082 { 3083 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3084 } 3085 3086 void arm_gt_ptimer_cb(void *opaque) 3087 { 3088 ARMCPU *cpu = opaque; 3089 3090 gt_recalc_timer(cpu, GTIMER_PHYS); 3091 } 3092 3093 void arm_gt_vtimer_cb(void *opaque) 3094 { 3095 ARMCPU *cpu = opaque; 3096 3097 gt_recalc_timer(cpu, GTIMER_VIRT); 3098 } 3099 3100 void arm_gt_htimer_cb(void *opaque) 3101 { 3102 ARMCPU *cpu = opaque; 3103 3104 gt_recalc_timer(cpu, GTIMER_HYP); 3105 } 3106 3107 void arm_gt_stimer_cb(void *opaque) 3108 { 3109 ARMCPU *cpu = opaque; 3110 3111 gt_recalc_timer(cpu, GTIMER_SEC); 3112 } 3113 3114 void arm_gt_hvtimer_cb(void *opaque) 3115 { 3116 ARMCPU *cpu = opaque; 3117 3118 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3119 } 3120 3121 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3122 { 3123 ARMCPU *cpu = env_archcpu(env); 3124 3125 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3126 } 3127 3128 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3129 /* Note that CNTFRQ is purely reads-as-written for the benefit 3130 * of software; writing it doesn't actually change the timer frequency. 3131 * Our reset value matches the fixed frequency we implement the timer at. 3132 */ 3133 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3134 .type = ARM_CP_ALIAS, 3135 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3136 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3137 }, 3138 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3139 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3140 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3141 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3142 .resetfn = arm_gt_cntfrq_reset, 3143 }, 3144 /* overall control: mostly access permissions */ 3145 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3146 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3147 .access = PL1_RW, 3148 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3149 .resetvalue = 0, 3150 }, 3151 /* per-timer control */ 3152 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3153 .secure = ARM_CP_SECSTATE_NS, 3154 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3155 .accessfn = gt_ptimer_access, 3156 .fieldoffset = offsetoflow32(CPUARMState, 3157 cp15.c14_timer[GTIMER_PHYS].ctl), 3158 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3159 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3160 }, 3161 { .name = "CNTP_CTL_S", 3162 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3163 .secure = ARM_CP_SECSTATE_S, 3164 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3165 .accessfn = gt_ptimer_access, 3166 .fieldoffset = offsetoflow32(CPUARMState, 3167 cp15.c14_timer[GTIMER_SEC].ctl), 3168 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3169 }, 3170 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3171 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3172 .type = ARM_CP_IO, .access = PL0_RW, 3173 .accessfn = gt_ptimer_access, 3174 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3175 .resetvalue = 0, 3176 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3177 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3178 }, 3179 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3180 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3181 .accessfn = gt_vtimer_access, 3182 .fieldoffset = offsetoflow32(CPUARMState, 3183 cp15.c14_timer[GTIMER_VIRT].ctl), 3184 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3185 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3186 }, 3187 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3188 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3189 .type = ARM_CP_IO, .access = PL0_RW, 3190 .accessfn = gt_vtimer_access, 3191 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3192 .resetvalue = 0, 3193 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3194 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3195 }, 3196 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3197 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3198 .secure = ARM_CP_SECSTATE_NS, 3199 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3200 .accessfn = gt_ptimer_access, 3201 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3202 }, 3203 { .name = "CNTP_TVAL_S", 3204 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3205 .secure = ARM_CP_SECSTATE_S, 3206 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3207 .accessfn = gt_ptimer_access, 3208 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3209 }, 3210 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3211 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3212 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3213 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3214 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3215 }, 3216 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3217 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3218 .accessfn = gt_vtimer_access, 3219 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3220 }, 3221 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3222 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3223 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3224 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3225 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3226 }, 3227 /* The counter itself */ 3228 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3229 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3230 .accessfn = gt_pct_access, 3231 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3232 }, 3233 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3234 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3235 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3236 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3237 }, 3238 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3239 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3240 .accessfn = gt_vct_access, 3241 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3242 }, 3243 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3244 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3245 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3246 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3247 }, 3248 /* Comparison value, indicating when the timer goes off */ 3249 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3250 .secure = ARM_CP_SECSTATE_NS, 3251 .access = PL0_RW, 3252 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3253 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3254 .accessfn = gt_ptimer_access, 3255 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3256 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3257 }, 3258 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3259 .secure = ARM_CP_SECSTATE_S, 3260 .access = PL0_RW, 3261 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3262 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3263 .accessfn = gt_ptimer_access, 3264 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3265 }, 3266 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3267 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3268 .access = PL0_RW, 3269 .type = ARM_CP_IO, 3270 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3271 .resetvalue = 0, .accessfn = gt_ptimer_access, 3272 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3273 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3274 }, 3275 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3276 .access = PL0_RW, 3277 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3278 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3279 .accessfn = gt_vtimer_access, 3280 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3281 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3282 }, 3283 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3284 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3285 .access = PL0_RW, 3286 .type = ARM_CP_IO, 3287 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3288 .resetvalue = 0, .accessfn = gt_vtimer_access, 3289 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3290 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3291 }, 3292 /* Secure timer -- this is actually restricted to only EL3 3293 * and configurably Secure-EL1 via the accessfn. 3294 */ 3295 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3296 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3297 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3298 .accessfn = gt_stimer_access, 3299 .readfn = gt_sec_tval_read, 3300 .writefn = gt_sec_tval_write, 3301 .resetfn = gt_sec_timer_reset, 3302 }, 3303 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3304 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3305 .type = ARM_CP_IO, .access = PL1_RW, 3306 .accessfn = gt_stimer_access, 3307 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3308 .resetvalue = 0, 3309 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3310 }, 3311 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3312 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3313 .type = ARM_CP_IO, .access = PL1_RW, 3314 .accessfn = gt_stimer_access, 3315 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3316 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3317 }, 3318 REGINFO_SENTINEL 3319 }; 3320 3321 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3322 bool isread) 3323 { 3324 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3325 return CP_ACCESS_TRAP; 3326 } 3327 return CP_ACCESS_OK; 3328 } 3329 3330 #else 3331 3332 /* In user-mode most of the generic timer registers are inaccessible 3333 * however modern kernels (4.12+) allow access to cntvct_el0 3334 */ 3335 3336 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3337 { 3338 ARMCPU *cpu = env_archcpu(env); 3339 3340 /* Currently we have no support for QEMUTimer in linux-user so we 3341 * can't call gt_get_countervalue(env), instead we directly 3342 * call the lower level functions. 3343 */ 3344 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3345 } 3346 3347 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3348 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3349 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3350 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3351 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3352 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3353 }, 3354 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3355 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3356 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3357 .readfn = gt_virt_cnt_read, 3358 }, 3359 REGINFO_SENTINEL 3360 }; 3361 3362 #endif 3363 3364 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3365 { 3366 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3367 raw_write(env, ri, value); 3368 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3369 raw_write(env, ri, value & 0xfffff6ff); 3370 } else { 3371 raw_write(env, ri, value & 0xfffff1ff); 3372 } 3373 } 3374 3375 #ifndef CONFIG_USER_ONLY 3376 /* get_phys_addr() isn't present for user-mode-only targets */ 3377 3378 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3379 bool isread) 3380 { 3381 if (ri->opc2 & 4) { 3382 /* The ATS12NSO* operations must trap to EL3 if executed in 3383 * Secure EL1 (which can only happen if EL3 is AArch64). 3384 * They are simply UNDEF if executed from NS EL1. 3385 * They function normally from EL2 or EL3. 3386 */ 3387 if (arm_current_el(env) == 1) { 3388 if (arm_is_secure_below_el3(env)) { 3389 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3390 } 3391 return CP_ACCESS_TRAP_UNCATEGORIZED; 3392 } 3393 } 3394 return CP_ACCESS_OK; 3395 } 3396 3397 #ifdef CONFIG_TCG 3398 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3399 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3400 { 3401 hwaddr phys_addr; 3402 target_ulong page_size; 3403 int prot; 3404 bool ret; 3405 uint64_t par64; 3406 bool format64 = false; 3407 MemTxAttrs attrs = {}; 3408 ARMMMUFaultInfo fi = {}; 3409 ARMCacheAttrs cacheattrs = {}; 3410 3411 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3412 &prot, &page_size, &fi, &cacheattrs); 3413 3414 if (ret) { 3415 /* 3416 * Some kinds of translation fault must cause exceptions rather 3417 * than being reported in the PAR. 3418 */ 3419 int current_el = arm_current_el(env); 3420 int target_el; 3421 uint32_t syn, fsr, fsc; 3422 bool take_exc = false; 3423 3424 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) 3425 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3426 /* 3427 * Synchronous stage 2 fault on an access made as part of the 3428 * translation table walk for AT S1E0* or AT S1E1* insn 3429 * executed from NS EL1. If this is a synchronous external abort 3430 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3431 * to EL3. Otherwise the fault is taken as an exception to EL2, 3432 * and HPFAR_EL2 holds the faulting IPA. 3433 */ 3434 if (fi.type == ARMFault_SyncExternalOnWalk && 3435 (env->cp15.scr_el3 & SCR_EA)) { 3436 target_el = 3; 3437 } else { 3438 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3439 target_el = 2; 3440 } 3441 take_exc = true; 3442 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3443 /* 3444 * Synchronous external aborts during a translation table walk 3445 * are taken as Data Abort exceptions. 3446 */ 3447 if (fi.stage2) { 3448 if (current_el == 3) { 3449 target_el = 3; 3450 } else { 3451 target_el = 2; 3452 } 3453 } else { 3454 target_el = exception_target_el(env); 3455 } 3456 take_exc = true; 3457 } 3458 3459 if (take_exc) { 3460 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3461 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3462 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3463 fsr = arm_fi_to_lfsc(&fi); 3464 fsc = extract32(fsr, 0, 6); 3465 } else { 3466 fsr = arm_fi_to_sfsc(&fi); 3467 fsc = 0x3f; 3468 } 3469 /* 3470 * Report exception with ESR indicating a fault due to a 3471 * translation table walk for a cache maintenance instruction. 3472 */ 3473 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3474 fi.ea, 1, fi.s1ptw, 1, fsc); 3475 env->exception.vaddress = value; 3476 env->exception.fsr = fsr; 3477 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3478 } 3479 } 3480 3481 if (is_a64(env)) { 3482 format64 = true; 3483 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3484 /* 3485 * ATS1Cxx: 3486 * * TTBCR.EAE determines whether the result is returned using the 3487 * 32-bit or the 64-bit PAR format 3488 * * Instructions executed in Hyp mode always use the 64bit format 3489 * 3490 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3491 * * The Non-secure TTBCR.EAE bit is set to 1 3492 * * The implementation includes EL2, and the value of HCR.VM is 1 3493 * 3494 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3495 * 3496 * ATS1Hx always uses the 64bit format. 3497 */ 3498 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3499 3500 if (arm_feature(env, ARM_FEATURE_EL2)) { 3501 if (mmu_idx == ARMMMUIdx_E10_0 || 3502 mmu_idx == ARMMMUIdx_E10_1 || 3503 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3504 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3505 } else { 3506 format64 |= arm_current_el(env) == 2; 3507 } 3508 } 3509 } 3510 3511 if (format64) { 3512 /* Create a 64-bit PAR */ 3513 par64 = (1 << 11); /* LPAE bit always set */ 3514 if (!ret) { 3515 par64 |= phys_addr & ~0xfffULL; 3516 if (!attrs.secure) { 3517 par64 |= (1 << 9); /* NS */ 3518 } 3519 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3520 par64 |= cacheattrs.shareability << 7; /* SH */ 3521 } else { 3522 uint32_t fsr = arm_fi_to_lfsc(&fi); 3523 3524 par64 |= 1; /* F */ 3525 par64 |= (fsr & 0x3f) << 1; /* FS */ 3526 if (fi.stage2) { 3527 par64 |= (1 << 9); /* S */ 3528 } 3529 if (fi.s1ptw) { 3530 par64 |= (1 << 8); /* PTW */ 3531 } 3532 } 3533 } else { 3534 /* fsr is a DFSR/IFSR value for the short descriptor 3535 * translation table format (with WnR always clear). 3536 * Convert it to a 32-bit PAR. 3537 */ 3538 if (!ret) { 3539 /* We do not set any attribute bits in the PAR */ 3540 if (page_size == (1 << 24) 3541 && arm_feature(env, ARM_FEATURE_V7)) { 3542 par64 = (phys_addr & 0xff000000) | (1 << 1); 3543 } else { 3544 par64 = phys_addr & 0xfffff000; 3545 } 3546 if (!attrs.secure) { 3547 par64 |= (1 << 9); /* NS */ 3548 } 3549 } else { 3550 uint32_t fsr = arm_fi_to_sfsc(&fi); 3551 3552 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3553 ((fsr & 0xf) << 1) | 1; 3554 } 3555 } 3556 return par64; 3557 } 3558 #endif /* CONFIG_TCG */ 3559 3560 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3561 { 3562 #ifdef CONFIG_TCG 3563 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3564 uint64_t par64; 3565 ARMMMUIdx mmu_idx; 3566 int el = arm_current_el(env); 3567 bool secure = arm_is_secure_below_el3(env); 3568 3569 switch (ri->opc2 & 6) { 3570 case 0: 3571 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3572 switch (el) { 3573 case 3: 3574 mmu_idx = ARMMMUIdx_SE3; 3575 break; 3576 case 2: 3577 g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */ 3578 /* fall through */ 3579 case 1: 3580 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3581 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3582 : ARMMMUIdx_Stage1_E1_PAN); 3583 } else { 3584 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3585 } 3586 break; 3587 default: 3588 g_assert_not_reached(); 3589 } 3590 break; 3591 case 2: 3592 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3593 switch (el) { 3594 case 3: 3595 mmu_idx = ARMMMUIdx_SE10_0; 3596 break; 3597 case 2: 3598 mmu_idx = ARMMMUIdx_Stage1_E0; 3599 break; 3600 case 1: 3601 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3602 break; 3603 default: 3604 g_assert_not_reached(); 3605 } 3606 break; 3607 case 4: 3608 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3609 mmu_idx = ARMMMUIdx_E10_1; 3610 break; 3611 case 6: 3612 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3613 mmu_idx = ARMMMUIdx_E10_0; 3614 break; 3615 default: 3616 g_assert_not_reached(); 3617 } 3618 3619 par64 = do_ats_write(env, value, access_type, mmu_idx); 3620 3621 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3622 #else 3623 /* Handled by hardware accelerator. */ 3624 g_assert_not_reached(); 3625 #endif /* CONFIG_TCG */ 3626 } 3627 3628 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3629 uint64_t value) 3630 { 3631 #ifdef CONFIG_TCG 3632 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3633 uint64_t par64; 3634 3635 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3636 3637 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3638 #else 3639 /* Handled by hardware accelerator. */ 3640 g_assert_not_reached(); 3641 #endif /* CONFIG_TCG */ 3642 } 3643 3644 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3645 bool isread) 3646 { 3647 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3648 return CP_ACCESS_TRAP; 3649 } 3650 return CP_ACCESS_OK; 3651 } 3652 3653 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3654 uint64_t value) 3655 { 3656 #ifdef CONFIG_TCG 3657 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3658 ARMMMUIdx mmu_idx; 3659 int secure = arm_is_secure_below_el3(env); 3660 3661 switch (ri->opc2 & 6) { 3662 case 0: 3663 switch (ri->opc1) { 3664 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3665 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3666 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3667 : ARMMMUIdx_Stage1_E1_PAN); 3668 } else { 3669 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3670 } 3671 break; 3672 case 4: /* AT S1E2R, AT S1E2W */ 3673 mmu_idx = ARMMMUIdx_E2; 3674 break; 3675 case 6: /* AT S1E3R, AT S1E3W */ 3676 mmu_idx = ARMMMUIdx_SE3; 3677 break; 3678 default: 3679 g_assert_not_reached(); 3680 } 3681 break; 3682 case 2: /* AT S1E0R, AT S1E0W */ 3683 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3684 break; 3685 case 4: /* AT S12E1R, AT S12E1W */ 3686 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3687 break; 3688 case 6: /* AT S12E0R, AT S12E0W */ 3689 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3690 break; 3691 default: 3692 g_assert_not_reached(); 3693 } 3694 3695 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3696 #else 3697 /* Handled by hardware accelerator. */ 3698 g_assert_not_reached(); 3699 #endif /* CONFIG_TCG */ 3700 } 3701 #endif 3702 3703 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3704 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3705 .access = PL1_RW, .resetvalue = 0, 3706 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3707 offsetoflow32(CPUARMState, cp15.par_ns) }, 3708 .writefn = par_write }, 3709 #ifndef CONFIG_USER_ONLY 3710 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3711 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3712 .access = PL1_W, .accessfn = ats_access, 3713 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3714 #endif 3715 REGINFO_SENTINEL 3716 }; 3717 3718 /* Return basic MPU access permission bits. */ 3719 static uint32_t simple_mpu_ap_bits(uint32_t val) 3720 { 3721 uint32_t ret; 3722 uint32_t mask; 3723 int i; 3724 ret = 0; 3725 mask = 3; 3726 for (i = 0; i < 16; i += 2) { 3727 ret |= (val >> i) & mask; 3728 mask <<= 2; 3729 } 3730 return ret; 3731 } 3732 3733 /* Pad basic MPU access permission bits to extended format. */ 3734 static uint32_t extended_mpu_ap_bits(uint32_t val) 3735 { 3736 uint32_t ret; 3737 uint32_t mask; 3738 int i; 3739 ret = 0; 3740 mask = 3; 3741 for (i = 0; i < 16; i += 2) { 3742 ret |= (val & mask) << i; 3743 mask <<= 2; 3744 } 3745 return ret; 3746 } 3747 3748 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3749 uint64_t value) 3750 { 3751 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3752 } 3753 3754 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3755 { 3756 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3757 } 3758 3759 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3760 uint64_t value) 3761 { 3762 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3763 } 3764 3765 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3766 { 3767 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3768 } 3769 3770 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3771 { 3772 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3773 3774 if (!u32p) { 3775 return 0; 3776 } 3777 3778 u32p += env->pmsav7.rnr[M_REG_NS]; 3779 return *u32p; 3780 } 3781 3782 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3783 uint64_t value) 3784 { 3785 ARMCPU *cpu = env_archcpu(env); 3786 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3787 3788 if (!u32p) { 3789 return; 3790 } 3791 3792 u32p += env->pmsav7.rnr[M_REG_NS]; 3793 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3794 *u32p = value; 3795 } 3796 3797 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3798 uint64_t value) 3799 { 3800 ARMCPU *cpu = env_archcpu(env); 3801 uint32_t nrgs = cpu->pmsav7_dregion; 3802 3803 if (value >= nrgs) { 3804 qemu_log_mask(LOG_GUEST_ERROR, 3805 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3806 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3807 return; 3808 } 3809 3810 raw_write(env, ri, value); 3811 } 3812 3813 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3814 /* Reset for all these registers is handled in arm_cpu_reset(), 3815 * because the PMSAv7 is also used by M-profile CPUs, which do 3816 * not register cpregs but still need the state to be reset. 3817 */ 3818 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3819 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3820 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3821 .readfn = pmsav7_read, .writefn = pmsav7_write, 3822 .resetfn = arm_cp_reset_ignore }, 3823 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3824 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3825 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3826 .readfn = pmsav7_read, .writefn = pmsav7_write, 3827 .resetfn = arm_cp_reset_ignore }, 3828 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3829 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3830 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3831 .readfn = pmsav7_read, .writefn = pmsav7_write, 3832 .resetfn = arm_cp_reset_ignore }, 3833 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3834 .access = PL1_RW, 3835 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3836 .writefn = pmsav7_rgnr_write, 3837 .resetfn = arm_cp_reset_ignore }, 3838 REGINFO_SENTINEL 3839 }; 3840 3841 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3842 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3843 .access = PL1_RW, .type = ARM_CP_ALIAS, 3844 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3845 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3846 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3847 .access = PL1_RW, .type = ARM_CP_ALIAS, 3848 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3849 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3850 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3851 .access = PL1_RW, 3852 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3853 .resetvalue = 0, }, 3854 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3855 .access = PL1_RW, 3856 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3857 .resetvalue = 0, }, 3858 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3859 .access = PL1_RW, 3860 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3861 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3862 .access = PL1_RW, 3863 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3864 /* Protection region base and size registers */ 3865 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3866 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3867 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3868 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3869 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3870 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3871 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3872 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3873 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3874 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3875 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3876 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3877 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3878 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3879 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3880 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3881 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3882 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3883 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3884 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3885 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3886 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3887 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3888 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3889 REGINFO_SENTINEL 3890 }; 3891 3892 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3893 uint64_t value) 3894 { 3895 TCR *tcr = raw_ptr(env, ri); 3896 int maskshift = extract32(value, 0, 3); 3897 3898 if (!arm_feature(env, ARM_FEATURE_V8)) { 3899 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3900 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3901 * using Long-desciptor translation table format */ 3902 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3903 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3904 /* In an implementation that includes the Security Extensions 3905 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3906 * Short-descriptor translation table format. 3907 */ 3908 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3909 } else { 3910 value &= TTBCR_N; 3911 } 3912 } 3913 3914 /* Update the masks corresponding to the TCR bank being written 3915 * Note that we always calculate mask and base_mask, but 3916 * they are only used for short-descriptor tables (ie if EAE is 0); 3917 * for long-descriptor tables the TCR fields are used differently 3918 * and the mask and base_mask values are meaningless. 3919 */ 3920 tcr->raw_tcr = value; 3921 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3922 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3923 } 3924 3925 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3926 uint64_t value) 3927 { 3928 ARMCPU *cpu = env_archcpu(env); 3929 TCR *tcr = raw_ptr(env, ri); 3930 3931 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3932 /* With LPAE the TTBCR could result in a change of ASID 3933 * via the TTBCR.A1 bit, so do a TLB flush. 3934 */ 3935 tlb_flush(CPU(cpu)); 3936 } 3937 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3938 value = deposit64(tcr->raw_tcr, 0, 32, value); 3939 vmsa_ttbcr_raw_write(env, ri, value); 3940 } 3941 3942 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3943 { 3944 TCR *tcr = raw_ptr(env, ri); 3945 3946 /* Reset both the TCR as well as the masks corresponding to the bank of 3947 * the TCR being reset. 3948 */ 3949 tcr->raw_tcr = 0; 3950 tcr->mask = 0; 3951 tcr->base_mask = 0xffffc000u; 3952 } 3953 3954 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3955 uint64_t value) 3956 { 3957 ARMCPU *cpu = env_archcpu(env); 3958 TCR *tcr = raw_ptr(env, ri); 3959 3960 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3961 tlb_flush(CPU(cpu)); 3962 tcr->raw_tcr = value; 3963 } 3964 3965 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3966 uint64_t value) 3967 { 3968 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3969 if (cpreg_field_is_64bit(ri) && 3970 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3971 ARMCPU *cpu = env_archcpu(env); 3972 tlb_flush(CPU(cpu)); 3973 } 3974 raw_write(env, ri, value); 3975 } 3976 3977 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3978 uint64_t value) 3979 { 3980 /* 3981 * If we are running with E2&0 regime, then an ASID is active. 3982 * Flush if that might be changing. Note we're not checking 3983 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3984 * holds the active ASID, only checking the field that might. 3985 */ 3986 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3987 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3988 tlb_flush_by_mmuidx(env_cpu(env), 3989 ARMMMUIdxBit_E20_2 | 3990 ARMMMUIdxBit_E20_2_PAN | 3991 ARMMMUIdxBit_E20_0); 3992 } 3993 raw_write(env, ri, value); 3994 } 3995 3996 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3997 uint64_t value) 3998 { 3999 ARMCPU *cpu = env_archcpu(env); 4000 CPUState *cs = CPU(cpu); 4001 4002 /* 4003 * A change in VMID to the stage2 page table (Stage2) invalidates 4004 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 4005 */ 4006 if (raw_read(env, ri) != value) { 4007 tlb_flush_by_mmuidx(cs, 4008 ARMMMUIdxBit_E10_1 | 4009 ARMMMUIdxBit_E10_1_PAN | 4010 ARMMMUIdxBit_E10_0); 4011 raw_write(env, ri, value); 4012 } 4013 } 4014 4015 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4016 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4017 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4018 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4019 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4020 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4021 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4022 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4023 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4024 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4025 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4026 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4027 offsetof(CPUARMState, cp15.dfar_ns) } }, 4028 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4029 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4030 .access = PL1_RW, .accessfn = access_tvm_trvm, 4031 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4032 .resetvalue = 0, }, 4033 REGINFO_SENTINEL 4034 }; 4035 4036 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4037 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4038 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4039 .access = PL1_RW, .accessfn = access_tvm_trvm, 4040 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4041 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4042 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4043 .access = PL1_RW, .accessfn = access_tvm_trvm, 4044 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4045 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4046 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4047 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4048 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4049 .access = PL1_RW, .accessfn = access_tvm_trvm, 4050 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4051 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4052 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4053 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4054 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4055 .access = PL1_RW, .accessfn = access_tvm_trvm, 4056 .writefn = vmsa_tcr_el12_write, 4057 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 4058 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4059 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4060 .access = PL1_RW, .accessfn = access_tvm_trvm, 4061 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4062 .raw_writefn = vmsa_ttbcr_raw_write, 4063 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4064 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4065 REGINFO_SENTINEL 4066 }; 4067 4068 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4069 * qemu tlbs nor adjusting cached masks. 4070 */ 4071 static const ARMCPRegInfo ttbcr2_reginfo = { 4072 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4073 .access = PL1_RW, .accessfn = access_tvm_trvm, 4074 .type = ARM_CP_ALIAS, 4075 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4076 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 4077 }; 4078 4079 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4080 uint64_t value) 4081 { 4082 env->cp15.c15_ticonfig = value & 0xe7; 4083 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4084 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4085 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4086 } 4087 4088 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4089 uint64_t value) 4090 { 4091 env->cp15.c15_threadid = value & 0xffff; 4092 } 4093 4094 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4095 uint64_t value) 4096 { 4097 /* Wait-for-interrupt (deprecated) */ 4098 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4099 } 4100 4101 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4102 uint64_t value) 4103 { 4104 /* On OMAP there are registers indicating the max/min index of dcache lines 4105 * containing a dirty line; cache flush operations have to reset these. 4106 */ 4107 env->cp15.c15_i_max = 0x000; 4108 env->cp15.c15_i_min = 0xff0; 4109 } 4110 4111 static const ARMCPRegInfo omap_cp_reginfo[] = { 4112 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4113 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4114 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4115 .resetvalue = 0, }, 4116 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4117 .access = PL1_RW, .type = ARM_CP_NOP }, 4118 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4119 .access = PL1_RW, 4120 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4121 .writefn = omap_ticonfig_write }, 4122 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4123 .access = PL1_RW, 4124 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4125 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4126 .access = PL1_RW, .resetvalue = 0xff0, 4127 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4128 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4129 .access = PL1_RW, 4130 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4131 .writefn = omap_threadid_write }, 4132 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4133 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4134 .type = ARM_CP_NO_RAW, 4135 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4136 /* TODO: Peripheral port remap register: 4137 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4138 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4139 * when MMU is off. 4140 */ 4141 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4142 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4143 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4144 .writefn = omap_cachemaint_write }, 4145 { .name = "C9", .cp = 15, .crn = 9, 4146 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4147 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4148 REGINFO_SENTINEL 4149 }; 4150 4151 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4152 uint64_t value) 4153 { 4154 env->cp15.c15_cpar = value & 0x3fff; 4155 } 4156 4157 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4158 { .name = "XSCALE_CPAR", 4159 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4160 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4161 .writefn = xscale_cpar_write, }, 4162 { .name = "XSCALE_AUXCR", 4163 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4164 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4165 .resetvalue = 0, }, 4166 /* XScale specific cache-lockdown: since we have no cache we NOP these 4167 * and hope the guest does not really rely on cache behaviour. 4168 */ 4169 { .name = "XSCALE_LOCK_ICACHE_LINE", 4170 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4171 .access = PL1_W, .type = ARM_CP_NOP }, 4172 { .name = "XSCALE_UNLOCK_ICACHE", 4173 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4174 .access = PL1_W, .type = ARM_CP_NOP }, 4175 { .name = "XSCALE_DCACHE_LOCK", 4176 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4177 .access = PL1_RW, .type = ARM_CP_NOP }, 4178 { .name = "XSCALE_UNLOCK_DCACHE", 4179 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4180 .access = PL1_W, .type = ARM_CP_NOP }, 4181 REGINFO_SENTINEL 4182 }; 4183 4184 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4185 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4186 * implementation of this implementation-defined space. 4187 * Ideally this should eventually disappear in favour of actually 4188 * implementing the correct behaviour for all cores. 4189 */ 4190 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4191 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4192 .access = PL1_RW, 4193 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4194 .resetvalue = 0 }, 4195 REGINFO_SENTINEL 4196 }; 4197 4198 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4199 /* Cache status: RAZ because we have no cache so it's always clean */ 4200 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4201 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4202 .resetvalue = 0 }, 4203 REGINFO_SENTINEL 4204 }; 4205 4206 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4207 /* We never have a a block transfer operation in progress */ 4208 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4209 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4210 .resetvalue = 0 }, 4211 /* The cache ops themselves: these all NOP for QEMU */ 4212 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4213 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4214 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4215 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4216 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4217 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4218 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4219 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4220 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4221 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4222 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4223 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4224 REGINFO_SENTINEL 4225 }; 4226 4227 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4228 /* The cache test-and-clean instructions always return (1 << 30) 4229 * to indicate that there are no dirty cache lines. 4230 */ 4231 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4232 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4233 .resetvalue = (1 << 30) }, 4234 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4235 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4236 .resetvalue = (1 << 30) }, 4237 REGINFO_SENTINEL 4238 }; 4239 4240 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4241 /* Ignore ReadBuffer accesses */ 4242 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4243 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4244 .access = PL1_RW, .resetvalue = 0, 4245 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4246 REGINFO_SENTINEL 4247 }; 4248 4249 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4250 { 4251 ARMCPU *cpu = env_archcpu(env); 4252 unsigned int cur_el = arm_current_el(env); 4253 bool secure = arm_is_secure(env); 4254 4255 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4256 return env->cp15.vpidr_el2; 4257 } 4258 return raw_read(env, ri); 4259 } 4260 4261 static uint64_t mpidr_read_val(CPUARMState *env) 4262 { 4263 ARMCPU *cpu = env_archcpu(env); 4264 uint64_t mpidr = cpu->mp_affinity; 4265 4266 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4267 mpidr |= (1U << 31); 4268 /* Cores which are uniprocessor (non-coherent) 4269 * but still implement the MP extensions set 4270 * bit 30. (For instance, Cortex-R5). 4271 */ 4272 if (cpu->mp_is_up) { 4273 mpidr |= (1u << 30); 4274 } 4275 } 4276 return mpidr; 4277 } 4278 4279 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4280 { 4281 unsigned int cur_el = arm_current_el(env); 4282 bool secure = arm_is_secure(env); 4283 4284 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4285 return env->cp15.vmpidr_el2; 4286 } 4287 return mpidr_read_val(env); 4288 } 4289 4290 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4291 /* NOP AMAIR0/1 */ 4292 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4293 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4294 .access = PL1_RW, .accessfn = access_tvm_trvm, 4295 .type = ARM_CP_CONST, .resetvalue = 0 }, 4296 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4297 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4298 .access = PL1_RW, .accessfn = access_tvm_trvm, 4299 .type = ARM_CP_CONST, .resetvalue = 0 }, 4300 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4301 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4302 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4303 offsetof(CPUARMState, cp15.par_ns)} }, 4304 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4305 .access = PL1_RW, .accessfn = access_tvm_trvm, 4306 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4307 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4308 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4309 .writefn = vmsa_ttbr_write, }, 4310 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4311 .access = PL1_RW, .accessfn = access_tvm_trvm, 4312 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4313 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4314 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4315 .writefn = vmsa_ttbr_write, }, 4316 REGINFO_SENTINEL 4317 }; 4318 4319 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4320 { 4321 return vfp_get_fpcr(env); 4322 } 4323 4324 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4325 uint64_t value) 4326 { 4327 vfp_set_fpcr(env, value); 4328 } 4329 4330 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4331 { 4332 return vfp_get_fpsr(env); 4333 } 4334 4335 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4336 uint64_t value) 4337 { 4338 vfp_set_fpsr(env, value); 4339 } 4340 4341 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4342 bool isread) 4343 { 4344 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4345 return CP_ACCESS_TRAP; 4346 } 4347 return CP_ACCESS_OK; 4348 } 4349 4350 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4351 uint64_t value) 4352 { 4353 env->daif = value & PSTATE_DAIF; 4354 } 4355 4356 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4357 { 4358 return env->pstate & PSTATE_PAN; 4359 } 4360 4361 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4362 uint64_t value) 4363 { 4364 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4365 } 4366 4367 static const ARMCPRegInfo pan_reginfo = { 4368 .name = "PAN", .state = ARM_CP_STATE_AA64, 4369 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4370 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4371 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4372 }; 4373 4374 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4375 { 4376 return env->pstate & PSTATE_UAO; 4377 } 4378 4379 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4380 uint64_t value) 4381 { 4382 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4383 } 4384 4385 static const ARMCPRegInfo uao_reginfo = { 4386 .name = "UAO", .state = ARM_CP_STATE_AA64, 4387 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4388 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4389 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4390 }; 4391 4392 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4393 const ARMCPRegInfo *ri, 4394 bool isread) 4395 { 4396 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4397 switch (arm_current_el(env)) { 4398 case 0: 4399 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4400 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4401 return CP_ACCESS_TRAP; 4402 } 4403 /* fall through */ 4404 case 1: 4405 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4406 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4407 return CP_ACCESS_TRAP_EL2; 4408 } 4409 break; 4410 } 4411 return CP_ACCESS_OK; 4412 } 4413 4414 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4415 const ARMCPRegInfo *ri, 4416 bool isread) 4417 { 4418 /* Cache invalidate/clean to Point of Unification... */ 4419 switch (arm_current_el(env)) { 4420 case 0: 4421 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4422 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4423 return CP_ACCESS_TRAP; 4424 } 4425 /* fall through */ 4426 case 1: 4427 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4428 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4429 return CP_ACCESS_TRAP_EL2; 4430 } 4431 break; 4432 } 4433 return CP_ACCESS_OK; 4434 } 4435 4436 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4437 * Page D4-1736 (DDI0487A.b) 4438 */ 4439 4440 static int vae1_tlbmask(CPUARMState *env) 4441 { 4442 /* Since we exclude secure first, we may read HCR_EL2 directly. */ 4443 if (arm_is_secure_below_el3(env)) { 4444 return ARMMMUIdxBit_SE10_1 | 4445 ARMMMUIdxBit_SE10_1_PAN | 4446 ARMMMUIdxBit_SE10_0; 4447 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) 4448 == (HCR_E2H | HCR_TGE)) { 4449 return ARMMMUIdxBit_E20_2 | 4450 ARMMMUIdxBit_E20_2_PAN | 4451 ARMMMUIdxBit_E20_0; 4452 } else { 4453 return ARMMMUIdxBit_E10_1 | 4454 ARMMMUIdxBit_E10_1_PAN | 4455 ARMMMUIdxBit_E10_0; 4456 } 4457 } 4458 4459 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4460 uint64_t value) 4461 { 4462 CPUState *cs = env_cpu(env); 4463 int mask = vae1_tlbmask(env); 4464 4465 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4466 } 4467 4468 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4469 uint64_t value) 4470 { 4471 CPUState *cs = env_cpu(env); 4472 int mask = vae1_tlbmask(env); 4473 4474 if (tlb_force_broadcast(env)) { 4475 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4476 } else { 4477 tlb_flush_by_mmuidx(cs, mask); 4478 } 4479 } 4480 4481 static int alle1_tlbmask(CPUARMState *env) 4482 { 4483 /* 4484 * Note that the 'ALL' scope must invalidate both stage 1 and 4485 * stage 2 translations, whereas most other scopes only invalidate 4486 * stage 1 translations. 4487 */ 4488 if (arm_is_secure_below_el3(env)) { 4489 return ARMMMUIdxBit_SE10_1 | 4490 ARMMMUIdxBit_SE10_1_PAN | 4491 ARMMMUIdxBit_SE10_0; 4492 } else { 4493 return ARMMMUIdxBit_E10_1 | 4494 ARMMMUIdxBit_E10_1_PAN | 4495 ARMMMUIdxBit_E10_0; 4496 } 4497 } 4498 4499 static int e2_tlbmask(CPUARMState *env) 4500 { 4501 /* TODO: ARMv8.4-SecEL2 */ 4502 return ARMMMUIdxBit_E20_0 | 4503 ARMMMUIdxBit_E20_2 | 4504 ARMMMUIdxBit_E20_2_PAN | 4505 ARMMMUIdxBit_E2; 4506 } 4507 4508 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4509 uint64_t value) 4510 { 4511 CPUState *cs = env_cpu(env); 4512 int mask = alle1_tlbmask(env); 4513 4514 tlb_flush_by_mmuidx(cs, mask); 4515 } 4516 4517 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4518 uint64_t value) 4519 { 4520 CPUState *cs = env_cpu(env); 4521 int mask = e2_tlbmask(env); 4522 4523 tlb_flush_by_mmuidx(cs, mask); 4524 } 4525 4526 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4527 uint64_t value) 4528 { 4529 ARMCPU *cpu = env_archcpu(env); 4530 CPUState *cs = CPU(cpu); 4531 4532 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4533 } 4534 4535 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4536 uint64_t value) 4537 { 4538 CPUState *cs = env_cpu(env); 4539 int mask = alle1_tlbmask(env); 4540 4541 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4542 } 4543 4544 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4545 uint64_t value) 4546 { 4547 CPUState *cs = env_cpu(env); 4548 int mask = e2_tlbmask(env); 4549 4550 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4551 } 4552 4553 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4554 uint64_t value) 4555 { 4556 CPUState *cs = env_cpu(env); 4557 4558 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4559 } 4560 4561 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4562 uint64_t value) 4563 { 4564 /* Invalidate by VA, EL2 4565 * Currently handles both VAE2 and VALE2, since we don't support 4566 * flush-last-level-only. 4567 */ 4568 CPUState *cs = env_cpu(env); 4569 int mask = e2_tlbmask(env); 4570 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4571 4572 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4573 } 4574 4575 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4576 uint64_t value) 4577 { 4578 /* Invalidate by VA, EL3 4579 * Currently handles both VAE3 and VALE3, since we don't support 4580 * flush-last-level-only. 4581 */ 4582 ARMCPU *cpu = env_archcpu(env); 4583 CPUState *cs = CPU(cpu); 4584 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4585 4586 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4587 } 4588 4589 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4590 uint64_t value) 4591 { 4592 CPUState *cs = env_cpu(env); 4593 int mask = vae1_tlbmask(env); 4594 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4595 4596 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4597 } 4598 4599 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4600 uint64_t value) 4601 { 4602 /* Invalidate by VA, EL1&0 (AArch64 version). 4603 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4604 * since we don't support flush-for-specific-ASID-only or 4605 * flush-last-level-only. 4606 */ 4607 CPUState *cs = env_cpu(env); 4608 int mask = vae1_tlbmask(env); 4609 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4610 4611 if (tlb_force_broadcast(env)) { 4612 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4613 } else { 4614 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4615 } 4616 } 4617 4618 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4619 uint64_t value) 4620 { 4621 CPUState *cs = env_cpu(env); 4622 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4623 4624 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4625 ARMMMUIdxBit_E2); 4626 } 4627 4628 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4629 uint64_t value) 4630 { 4631 CPUState *cs = env_cpu(env); 4632 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4633 4634 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4635 ARMMMUIdxBit_SE3); 4636 } 4637 4638 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4639 bool isread) 4640 { 4641 int cur_el = arm_current_el(env); 4642 4643 if (cur_el < 2) { 4644 uint64_t hcr = arm_hcr_el2_eff(env); 4645 4646 if (cur_el == 0) { 4647 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4648 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4649 return CP_ACCESS_TRAP_EL2; 4650 } 4651 } else { 4652 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4653 return CP_ACCESS_TRAP; 4654 } 4655 if (hcr & HCR_TDZ) { 4656 return CP_ACCESS_TRAP_EL2; 4657 } 4658 } 4659 } else if (hcr & HCR_TDZ) { 4660 return CP_ACCESS_TRAP_EL2; 4661 } 4662 } 4663 return CP_ACCESS_OK; 4664 } 4665 4666 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4667 { 4668 ARMCPU *cpu = env_archcpu(env); 4669 int dzp_bit = 1 << 4; 4670 4671 /* DZP indicates whether DC ZVA access is allowed */ 4672 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4673 dzp_bit = 0; 4674 } 4675 return cpu->dcz_blocksize | dzp_bit; 4676 } 4677 4678 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4679 bool isread) 4680 { 4681 if (!(env->pstate & PSTATE_SP)) { 4682 /* Access to SP_EL0 is undefined if it's being used as 4683 * the stack pointer. 4684 */ 4685 return CP_ACCESS_TRAP_UNCATEGORIZED; 4686 } 4687 return CP_ACCESS_OK; 4688 } 4689 4690 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4691 { 4692 return env->pstate & PSTATE_SP; 4693 } 4694 4695 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4696 { 4697 update_spsel(env, val); 4698 } 4699 4700 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4701 uint64_t value) 4702 { 4703 ARMCPU *cpu = env_archcpu(env); 4704 4705 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4706 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4707 value &= ~SCTLR_M; 4708 } 4709 4710 /* ??? Lots of these bits are not implemented. */ 4711 4712 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4713 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4714 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4715 } else { 4716 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4717 SCTLR_ATA0 | SCTLR_ATA); 4718 } 4719 } 4720 4721 if (raw_read(env, ri) == value) { 4722 /* Skip the TLB flush if nothing actually changed; Linux likes 4723 * to do a lot of pointless SCTLR writes. 4724 */ 4725 return; 4726 } 4727 4728 raw_write(env, ri, value); 4729 4730 /* This may enable/disable the MMU, so do a TLB flush. */ 4731 tlb_flush(CPU(cpu)); 4732 4733 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4734 /* 4735 * Normally we would always end the TB on an SCTLR write; see the 4736 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4737 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4738 * of hflags from the translator, so do it here. 4739 */ 4740 arm_rebuild_hflags(env); 4741 } 4742 } 4743 4744 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4745 bool isread) 4746 { 4747 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4748 return CP_ACCESS_TRAP_FP_EL2; 4749 } 4750 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4751 return CP_ACCESS_TRAP_FP_EL3; 4752 } 4753 return CP_ACCESS_OK; 4754 } 4755 4756 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4757 uint64_t value) 4758 { 4759 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4760 } 4761 4762 static const ARMCPRegInfo v8_cp_reginfo[] = { 4763 /* Minimal set of EL0-visible registers. This will need to be expanded 4764 * significantly for system emulation of AArch64 CPUs. 4765 */ 4766 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4767 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4768 .access = PL0_RW, .type = ARM_CP_NZCV }, 4769 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4770 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4771 .type = ARM_CP_NO_RAW, 4772 .access = PL0_RW, .accessfn = aa64_daif_access, 4773 .fieldoffset = offsetof(CPUARMState, daif), 4774 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4775 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4776 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4777 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4778 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4779 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4780 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4781 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4782 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4783 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4784 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4785 .access = PL0_R, .type = ARM_CP_NO_RAW, 4786 .readfn = aa64_dczid_read }, 4787 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4788 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4789 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4790 #ifndef CONFIG_USER_ONLY 4791 /* Avoid overhead of an access check that always passes in user-mode */ 4792 .accessfn = aa64_zva_access, 4793 #endif 4794 }, 4795 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4796 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4797 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4798 /* Cache ops: all NOPs since we don't emulate caches */ 4799 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4800 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4801 .access = PL1_W, .type = ARM_CP_NOP, 4802 .accessfn = aa64_cacheop_pou_access }, 4803 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4804 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4805 .access = PL1_W, .type = ARM_CP_NOP, 4806 .accessfn = aa64_cacheop_pou_access }, 4807 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4808 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4809 .access = PL0_W, .type = ARM_CP_NOP, 4810 .accessfn = aa64_cacheop_pou_access }, 4811 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4812 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4813 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4814 .type = ARM_CP_NOP }, 4815 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4816 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4817 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4818 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4819 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4820 .access = PL0_W, .type = ARM_CP_NOP, 4821 .accessfn = aa64_cacheop_poc_access }, 4822 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4823 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4824 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4825 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4826 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4827 .access = PL0_W, .type = ARM_CP_NOP, 4828 .accessfn = aa64_cacheop_pou_access }, 4829 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4830 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4831 .access = PL0_W, .type = ARM_CP_NOP, 4832 .accessfn = aa64_cacheop_poc_access }, 4833 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4834 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4835 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4836 /* TLBI operations */ 4837 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4838 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4839 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4840 .writefn = tlbi_aa64_vmalle1is_write }, 4841 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4842 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4843 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4844 .writefn = tlbi_aa64_vae1is_write }, 4845 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4846 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4847 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4848 .writefn = tlbi_aa64_vmalle1is_write }, 4849 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4850 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4851 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4852 .writefn = tlbi_aa64_vae1is_write }, 4853 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4854 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4855 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4856 .writefn = tlbi_aa64_vae1is_write }, 4857 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4858 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4859 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4860 .writefn = tlbi_aa64_vae1is_write }, 4861 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4862 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4863 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4864 .writefn = tlbi_aa64_vmalle1_write }, 4865 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4866 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4867 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4868 .writefn = tlbi_aa64_vae1_write }, 4869 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4870 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4871 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4872 .writefn = tlbi_aa64_vmalle1_write }, 4873 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4874 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4875 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4876 .writefn = tlbi_aa64_vae1_write }, 4877 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4878 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4879 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4880 .writefn = tlbi_aa64_vae1_write }, 4881 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4882 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4883 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4884 .writefn = tlbi_aa64_vae1_write }, 4885 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4886 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4887 .access = PL2_W, .type = ARM_CP_NOP }, 4888 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4889 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4890 .access = PL2_W, .type = ARM_CP_NOP }, 4891 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4892 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4893 .access = PL2_W, .type = ARM_CP_NO_RAW, 4894 .writefn = tlbi_aa64_alle1is_write }, 4895 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4896 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4897 .access = PL2_W, .type = ARM_CP_NO_RAW, 4898 .writefn = tlbi_aa64_alle1is_write }, 4899 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4900 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4901 .access = PL2_W, .type = ARM_CP_NOP }, 4902 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4903 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4904 .access = PL2_W, .type = ARM_CP_NOP }, 4905 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4906 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4907 .access = PL2_W, .type = ARM_CP_NO_RAW, 4908 .writefn = tlbi_aa64_alle1_write }, 4909 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4910 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4911 .access = PL2_W, .type = ARM_CP_NO_RAW, 4912 .writefn = tlbi_aa64_alle1is_write }, 4913 #ifndef CONFIG_USER_ONLY 4914 /* 64 bit address translation operations */ 4915 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4916 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4917 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4918 .writefn = ats_write64 }, 4919 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4920 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4921 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4922 .writefn = ats_write64 }, 4923 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4924 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4925 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4926 .writefn = ats_write64 }, 4927 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4929 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4930 .writefn = ats_write64 }, 4931 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4932 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4933 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4934 .writefn = ats_write64 }, 4935 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4936 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4937 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4938 .writefn = ats_write64 }, 4939 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4940 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4941 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4942 .writefn = ats_write64 }, 4943 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4944 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4945 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4946 .writefn = ats_write64 }, 4947 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4948 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4949 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4950 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4951 .writefn = ats_write64 }, 4952 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4953 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4954 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4955 .writefn = ats_write64 }, 4956 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4957 .type = ARM_CP_ALIAS, 4958 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4959 .access = PL1_RW, .resetvalue = 0, 4960 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4961 .writefn = par_write }, 4962 #endif 4963 /* TLB invalidate last level of translation table walk */ 4964 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4965 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4966 .writefn = tlbimva_is_write }, 4967 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4968 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4969 .writefn = tlbimvaa_is_write }, 4970 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4971 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4972 .writefn = tlbimva_write }, 4973 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4974 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4975 .writefn = tlbimvaa_write }, 4976 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4977 .type = ARM_CP_NO_RAW, .access = PL2_W, 4978 .writefn = tlbimva_hyp_write }, 4979 { .name = "TLBIMVALHIS", 4980 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4981 .type = ARM_CP_NO_RAW, .access = PL2_W, 4982 .writefn = tlbimva_hyp_is_write }, 4983 { .name = "TLBIIPAS2", 4984 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4985 .type = ARM_CP_NOP, .access = PL2_W }, 4986 { .name = "TLBIIPAS2IS", 4987 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4988 .type = ARM_CP_NOP, .access = PL2_W }, 4989 { .name = "TLBIIPAS2L", 4990 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4991 .type = ARM_CP_NOP, .access = PL2_W }, 4992 { .name = "TLBIIPAS2LIS", 4993 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4994 .type = ARM_CP_NOP, .access = PL2_W }, 4995 /* 32 bit cache operations */ 4996 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4997 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 4998 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4999 .type = ARM_CP_NOP, .access = PL1_W }, 5000 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5001 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5002 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5003 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5004 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5005 .type = ARM_CP_NOP, .access = PL1_W }, 5006 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5007 .type = ARM_CP_NOP, .access = PL1_W }, 5008 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5009 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5010 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5011 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5012 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5013 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5014 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5015 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5016 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5017 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5018 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5019 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5020 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5021 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5022 /* MMU Domain access control / MPU write buffer control */ 5023 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5024 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5025 .writefn = dacr_write, .raw_writefn = raw_write, 5026 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5027 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5028 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5029 .type = ARM_CP_ALIAS, 5030 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5031 .access = PL1_RW, 5032 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5033 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5034 .type = ARM_CP_ALIAS, 5035 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5036 .access = PL1_RW, 5037 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5038 /* We rely on the access checks not allowing the guest to write to the 5039 * state field when SPSel indicates that it's being used as the stack 5040 * pointer. 5041 */ 5042 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5043 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5044 .access = PL1_RW, .accessfn = sp_el0_access, 5045 .type = ARM_CP_ALIAS, 5046 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5047 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5048 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5049 .access = PL2_RW, .type = ARM_CP_ALIAS, 5050 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5051 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5052 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5053 .type = ARM_CP_NO_RAW, 5054 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5055 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5056 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5057 .type = ARM_CP_ALIAS, 5058 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5059 .access = PL2_RW, .accessfn = fpexc32_access }, 5060 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5061 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5062 .access = PL2_RW, .resetvalue = 0, 5063 .writefn = dacr_write, .raw_writefn = raw_write, 5064 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5065 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5066 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5067 .access = PL2_RW, .resetvalue = 0, 5068 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5069 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5070 .type = ARM_CP_ALIAS, 5071 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5072 .access = PL2_RW, 5073 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5074 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5075 .type = ARM_CP_ALIAS, 5076 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5077 .access = PL2_RW, 5078 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5079 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5080 .type = ARM_CP_ALIAS, 5081 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5082 .access = PL2_RW, 5083 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5084 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5085 .type = ARM_CP_ALIAS, 5086 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5087 .access = PL2_RW, 5088 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5089 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5090 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5091 .resetvalue = 0, 5092 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5093 { .name = "SDCR", .type = ARM_CP_ALIAS, 5094 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5095 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5096 .writefn = sdcr_write, 5097 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5098 REGINFO_SENTINEL 5099 }; 5100 5101 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5102 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5103 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5104 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5105 .access = PL2_RW, 5106 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5107 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5108 .type = ARM_CP_NO_RAW, 5109 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5110 .access = PL2_RW, 5111 .type = ARM_CP_CONST, .resetvalue = 0 }, 5112 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5113 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5114 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5115 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5116 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5117 .access = PL2_RW, 5118 .type = ARM_CP_CONST, .resetvalue = 0 }, 5119 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5120 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5121 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5122 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5123 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5124 .access = PL2_RW, .type = ARM_CP_CONST, 5125 .resetvalue = 0 }, 5126 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5127 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5128 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5129 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5130 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5131 .access = PL2_RW, .type = ARM_CP_CONST, 5132 .resetvalue = 0 }, 5133 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5134 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5135 .access = PL2_RW, .type = ARM_CP_CONST, 5136 .resetvalue = 0 }, 5137 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5138 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5139 .access = PL2_RW, .type = ARM_CP_CONST, 5140 .resetvalue = 0 }, 5141 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5142 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5143 .access = PL2_RW, .type = ARM_CP_CONST, 5144 .resetvalue = 0 }, 5145 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5146 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5147 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5148 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5149 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5150 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5151 .type = ARM_CP_CONST, .resetvalue = 0 }, 5152 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5153 .cp = 15, .opc1 = 6, .crm = 2, 5154 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5155 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5156 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5157 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5158 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5159 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5160 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5161 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5162 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5163 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5164 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5165 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5166 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5167 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5168 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5169 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5170 .resetvalue = 0 }, 5171 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5172 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5173 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5174 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5175 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5176 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5177 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5178 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5179 .resetvalue = 0 }, 5180 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5181 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5182 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5183 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5184 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5185 .resetvalue = 0 }, 5186 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5187 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5188 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5189 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5190 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5191 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5192 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5193 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5194 .access = PL2_RW, .accessfn = access_tda, 5195 .type = ARM_CP_CONST, .resetvalue = 0 }, 5196 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5197 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5198 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5199 .type = ARM_CP_CONST, .resetvalue = 0 }, 5200 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5201 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5202 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5203 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5204 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5205 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5206 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5207 .type = ARM_CP_CONST, 5208 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5209 .access = PL2_RW, .resetvalue = 0 }, 5210 REGINFO_SENTINEL 5211 }; 5212 5213 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5214 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5215 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5216 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5217 .access = PL2_RW, 5218 .type = ARM_CP_CONST, .resetvalue = 0 }, 5219 REGINFO_SENTINEL 5220 }; 5221 5222 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5223 { 5224 ARMCPU *cpu = env_archcpu(env); 5225 5226 if (arm_feature(env, ARM_FEATURE_V8)) { 5227 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5228 } else { 5229 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5230 } 5231 5232 if (arm_feature(env, ARM_FEATURE_EL3)) { 5233 valid_mask &= ~HCR_HCD; 5234 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5235 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5236 * However, if we're using the SMC PSCI conduit then QEMU is 5237 * effectively acting like EL3 firmware and so the guest at 5238 * EL2 should retain the ability to prevent EL1 from being 5239 * able to make SMC calls into the ersatz firmware, so in 5240 * that case HCR.TSC should be read/write. 5241 */ 5242 valid_mask &= ~HCR_TSC; 5243 } 5244 5245 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5246 if (cpu_isar_feature(aa64_vh, cpu)) { 5247 valid_mask |= HCR_E2H; 5248 } 5249 if (cpu_isar_feature(aa64_lor, cpu)) { 5250 valid_mask |= HCR_TLOR; 5251 } 5252 if (cpu_isar_feature(aa64_pauth, cpu)) { 5253 valid_mask |= HCR_API | HCR_APK; 5254 } 5255 if (cpu_isar_feature(aa64_mte, cpu)) { 5256 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5257 } 5258 } 5259 5260 /* Clear RES0 bits. */ 5261 value &= valid_mask; 5262 5263 /* 5264 * These bits change the MMU setup: 5265 * HCR_VM enables stage 2 translation 5266 * HCR_PTW forbids certain page-table setups 5267 * HCR_DC disables stage1 and enables stage2 translation 5268 * HCR_DCT enables tagging on (disabled) stage1 translation 5269 */ 5270 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5271 tlb_flush(CPU(cpu)); 5272 } 5273 env->cp15.hcr_el2 = value; 5274 5275 /* 5276 * Updates to VI and VF require us to update the status of 5277 * virtual interrupts, which are the logical OR of these bits 5278 * and the state of the input lines from the GIC. (This requires 5279 * that we have the iothread lock, which is done by marking the 5280 * reginfo structs as ARM_CP_IO.) 5281 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5282 * possible for it to be taken immediately, because VIRQ and 5283 * VFIQ are masked unless running at EL0 or EL1, and HCR 5284 * can only be written at EL2. 5285 */ 5286 g_assert(qemu_mutex_iothread_locked()); 5287 arm_cpu_update_virq(cpu); 5288 arm_cpu_update_vfiq(cpu); 5289 } 5290 5291 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5292 { 5293 do_hcr_write(env, value, 0); 5294 } 5295 5296 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5297 uint64_t value) 5298 { 5299 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5300 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5301 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5302 } 5303 5304 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5305 uint64_t value) 5306 { 5307 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5308 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5309 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5310 } 5311 5312 /* 5313 * Return the effective value of HCR_EL2. 5314 * Bits that are not included here: 5315 * RW (read from SCR_EL3.RW as needed) 5316 */ 5317 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5318 { 5319 uint64_t ret = env->cp15.hcr_el2; 5320 5321 if (arm_is_secure_below_el3(env)) { 5322 /* 5323 * "This register has no effect if EL2 is not enabled in the 5324 * current Security state". This is ARMv8.4-SecEL2 speak for 5325 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5326 * 5327 * Prior to that, the language was "In an implementation that 5328 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5329 * as if this field is 0 for all purposes other than a direct 5330 * read or write access of HCR_EL2". With lots of enumeration 5331 * on a per-field basis. In current QEMU, this is condition 5332 * is arm_is_secure_below_el3. 5333 * 5334 * Since the v8.4 language applies to the entire register, and 5335 * appears to be backward compatible, use that. 5336 */ 5337 return 0; 5338 } 5339 5340 /* 5341 * For a cpu that supports both aarch64 and aarch32, we can set bits 5342 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5343 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5344 */ 5345 if (!arm_el_is_aa64(env, 2)) { 5346 uint64_t aa32_valid; 5347 5348 /* 5349 * These bits are up-to-date as of ARMv8.6. 5350 * For HCR, it's easiest to list just the 2 bits that are invalid. 5351 * For HCR2, list those that are valid. 5352 */ 5353 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5354 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5355 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5356 ret &= aa32_valid; 5357 } 5358 5359 if (ret & HCR_TGE) { 5360 /* These bits are up-to-date as of ARMv8.6. */ 5361 if (ret & HCR_E2H) { 5362 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5363 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5364 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5365 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5366 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5367 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5368 } else { 5369 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5370 } 5371 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5372 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5373 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5374 HCR_TLOR); 5375 } 5376 5377 return ret; 5378 } 5379 5380 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5381 uint64_t value) 5382 { 5383 /* 5384 * For A-profile AArch32 EL3, if NSACR.CP10 5385 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5386 */ 5387 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5388 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5389 value &= ~(0x3 << 10); 5390 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5391 } 5392 env->cp15.cptr_el[2] = value; 5393 } 5394 5395 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5396 { 5397 /* 5398 * For A-profile AArch32 EL3, if NSACR.CP10 5399 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5400 */ 5401 uint64_t value = env->cp15.cptr_el[2]; 5402 5403 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5404 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5405 value |= 0x3 << 10; 5406 } 5407 return value; 5408 } 5409 5410 static const ARMCPRegInfo el2_cp_reginfo[] = { 5411 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5412 .type = ARM_CP_IO, 5413 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5414 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5415 .writefn = hcr_write }, 5416 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5417 .type = ARM_CP_ALIAS | ARM_CP_IO, 5418 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5419 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5420 .writefn = hcr_writelow }, 5421 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5422 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5423 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5424 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5425 .type = ARM_CP_ALIAS, 5426 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5427 .access = PL2_RW, 5428 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5429 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5430 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5431 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5432 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5433 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5434 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5435 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5436 .type = ARM_CP_ALIAS, 5437 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5438 .access = PL2_RW, 5439 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5440 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5441 .type = ARM_CP_ALIAS, 5442 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5443 .access = PL2_RW, 5444 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5445 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5446 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5447 .access = PL2_RW, .writefn = vbar_write, 5448 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5449 .resetvalue = 0 }, 5450 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5451 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5452 .access = PL3_RW, .type = ARM_CP_ALIAS, 5453 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5454 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5455 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5456 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5457 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5458 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5459 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5460 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5461 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5462 .resetvalue = 0 }, 5463 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5464 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5465 .access = PL2_RW, .type = ARM_CP_ALIAS, 5466 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5467 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5468 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5469 .access = PL2_RW, .type = ARM_CP_CONST, 5470 .resetvalue = 0 }, 5471 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5472 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5473 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5474 .access = PL2_RW, .type = ARM_CP_CONST, 5475 .resetvalue = 0 }, 5476 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5477 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5478 .access = PL2_RW, .type = ARM_CP_CONST, 5479 .resetvalue = 0 }, 5480 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5481 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5482 .access = PL2_RW, .type = ARM_CP_CONST, 5483 .resetvalue = 0 }, 5484 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5485 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5486 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5487 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5488 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5489 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5490 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5491 .type = ARM_CP_ALIAS, 5492 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5493 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5494 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5495 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5496 .access = PL2_RW, 5497 /* no .writefn needed as this can't cause an ASID change; 5498 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5499 */ 5500 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5501 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5502 .cp = 15, .opc1 = 6, .crm = 2, 5503 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5504 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5505 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5506 .writefn = vttbr_write }, 5507 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5508 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5509 .access = PL2_RW, .writefn = vttbr_write, 5510 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5511 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5512 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5513 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5514 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5515 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5516 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5517 .access = PL2_RW, .resetvalue = 0, 5518 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5519 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5520 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5521 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5522 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5523 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5524 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5525 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5526 { .name = "TLBIALLNSNH", 5527 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5528 .type = ARM_CP_NO_RAW, .access = PL2_W, 5529 .writefn = tlbiall_nsnh_write }, 5530 { .name = "TLBIALLNSNHIS", 5531 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5532 .type = ARM_CP_NO_RAW, .access = PL2_W, 5533 .writefn = tlbiall_nsnh_is_write }, 5534 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5535 .type = ARM_CP_NO_RAW, .access = PL2_W, 5536 .writefn = tlbiall_hyp_write }, 5537 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5538 .type = ARM_CP_NO_RAW, .access = PL2_W, 5539 .writefn = tlbiall_hyp_is_write }, 5540 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5541 .type = ARM_CP_NO_RAW, .access = PL2_W, 5542 .writefn = tlbimva_hyp_write }, 5543 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5544 .type = ARM_CP_NO_RAW, .access = PL2_W, 5545 .writefn = tlbimva_hyp_is_write }, 5546 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5547 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5548 .type = ARM_CP_NO_RAW, .access = PL2_W, 5549 .writefn = tlbi_aa64_alle2_write }, 5550 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5551 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5552 .type = ARM_CP_NO_RAW, .access = PL2_W, 5553 .writefn = tlbi_aa64_vae2_write }, 5554 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5555 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5556 .access = PL2_W, .type = ARM_CP_NO_RAW, 5557 .writefn = tlbi_aa64_vae2_write }, 5558 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5559 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5560 .access = PL2_W, .type = ARM_CP_NO_RAW, 5561 .writefn = tlbi_aa64_alle2is_write }, 5562 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5563 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5564 .type = ARM_CP_NO_RAW, .access = PL2_W, 5565 .writefn = tlbi_aa64_vae2is_write }, 5566 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5567 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5568 .access = PL2_W, .type = ARM_CP_NO_RAW, 5569 .writefn = tlbi_aa64_vae2is_write }, 5570 #ifndef CONFIG_USER_ONLY 5571 /* Unlike the other EL2-related AT operations, these must 5572 * UNDEF from EL3 if EL2 is not implemented, which is why we 5573 * define them here rather than with the rest of the AT ops. 5574 */ 5575 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5576 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5577 .access = PL2_W, .accessfn = at_s1e2_access, 5578 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5579 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5580 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5581 .access = PL2_W, .accessfn = at_s1e2_access, 5582 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5583 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5584 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5585 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5586 * to behave as if SCR.NS was 1. 5587 */ 5588 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5589 .access = PL2_W, 5590 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5591 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5592 .access = PL2_W, 5593 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5594 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5595 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5596 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5597 * reset values as IMPDEF. We choose to reset to 3 to comply with 5598 * both ARMv7 and ARMv8. 5599 */ 5600 .access = PL2_RW, .resetvalue = 3, 5601 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5602 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5603 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5604 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5605 .writefn = gt_cntvoff_write, 5606 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5607 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5608 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5609 .writefn = gt_cntvoff_write, 5610 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5611 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5612 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5613 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5614 .type = ARM_CP_IO, .access = PL2_RW, 5615 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5616 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5617 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5618 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5619 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5620 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5621 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5622 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5623 .resetfn = gt_hyp_timer_reset, 5624 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5625 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5626 .type = ARM_CP_IO, 5627 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5628 .access = PL2_RW, 5629 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5630 .resetvalue = 0, 5631 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5632 #endif 5633 /* The only field of MDCR_EL2 that has a defined architectural reset value 5634 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5635 * don't implement any PMU event counters, so using zero as a reset 5636 * value for MDCR_EL2 is okay 5637 */ 5638 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5639 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5640 .access = PL2_RW, .resetvalue = 0, 5641 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5642 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5643 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5644 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5645 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5646 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5647 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5648 .access = PL2_RW, 5649 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5650 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5651 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5652 .access = PL2_RW, 5653 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5654 REGINFO_SENTINEL 5655 }; 5656 5657 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5658 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5659 .type = ARM_CP_ALIAS | ARM_CP_IO, 5660 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5661 .access = PL2_RW, 5662 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5663 .writefn = hcr_writehigh }, 5664 REGINFO_SENTINEL 5665 }; 5666 5667 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5668 bool isread) 5669 { 5670 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5671 * At Secure EL1 it traps to EL3. 5672 */ 5673 if (arm_current_el(env) == 3) { 5674 return CP_ACCESS_OK; 5675 } 5676 if (arm_is_secure_below_el3(env)) { 5677 return CP_ACCESS_TRAP_EL3; 5678 } 5679 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5680 if (isread) { 5681 return CP_ACCESS_OK; 5682 } 5683 return CP_ACCESS_TRAP_UNCATEGORIZED; 5684 } 5685 5686 static const ARMCPRegInfo el3_cp_reginfo[] = { 5687 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5688 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5689 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5690 .resetvalue = 0, .writefn = scr_write }, 5691 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5692 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5693 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5694 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5695 .writefn = scr_write }, 5696 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5697 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5698 .access = PL3_RW, .resetvalue = 0, 5699 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5700 { .name = "SDER", 5701 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5702 .access = PL3_RW, .resetvalue = 0, 5703 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5704 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5705 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5706 .writefn = vbar_write, .resetvalue = 0, 5707 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5708 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5709 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5710 .access = PL3_RW, .resetvalue = 0, 5711 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5712 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5713 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5714 .access = PL3_RW, 5715 /* no .writefn needed as this can't cause an ASID change; 5716 * we must provide a .raw_writefn and .resetfn because we handle 5717 * reset and migration for the AArch32 TTBCR(S), which might be 5718 * using mask and base_mask. 5719 */ 5720 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5721 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5722 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5723 .type = ARM_CP_ALIAS, 5724 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5725 .access = PL3_RW, 5726 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5727 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5728 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5729 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5730 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5731 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5732 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5733 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5734 .type = ARM_CP_ALIAS, 5735 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5736 .access = PL3_RW, 5737 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5738 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5739 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5740 .access = PL3_RW, .writefn = vbar_write, 5741 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5742 .resetvalue = 0 }, 5743 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5744 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5745 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5746 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5747 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5748 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5749 .access = PL3_RW, .resetvalue = 0, 5750 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5751 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5752 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5753 .access = PL3_RW, .type = ARM_CP_CONST, 5754 .resetvalue = 0 }, 5755 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5756 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5757 .access = PL3_RW, .type = ARM_CP_CONST, 5758 .resetvalue = 0 }, 5759 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5760 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5761 .access = PL3_RW, .type = ARM_CP_CONST, 5762 .resetvalue = 0 }, 5763 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5764 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5765 .access = PL3_W, .type = ARM_CP_NO_RAW, 5766 .writefn = tlbi_aa64_alle3is_write }, 5767 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5768 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5769 .access = PL3_W, .type = ARM_CP_NO_RAW, 5770 .writefn = tlbi_aa64_vae3is_write }, 5771 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5772 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5773 .access = PL3_W, .type = ARM_CP_NO_RAW, 5774 .writefn = tlbi_aa64_vae3is_write }, 5775 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5776 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5777 .access = PL3_W, .type = ARM_CP_NO_RAW, 5778 .writefn = tlbi_aa64_alle3_write }, 5779 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5780 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5781 .access = PL3_W, .type = ARM_CP_NO_RAW, 5782 .writefn = tlbi_aa64_vae3_write }, 5783 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5784 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5785 .access = PL3_W, .type = ARM_CP_NO_RAW, 5786 .writefn = tlbi_aa64_vae3_write }, 5787 REGINFO_SENTINEL 5788 }; 5789 5790 #ifndef CONFIG_USER_ONLY 5791 /* Test if system register redirection is to occur in the current state. */ 5792 static bool redirect_for_e2h(CPUARMState *env) 5793 { 5794 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5795 } 5796 5797 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5798 { 5799 CPReadFn *readfn; 5800 5801 if (redirect_for_e2h(env)) { 5802 /* Switch to the saved EL2 version of the register. */ 5803 ri = ri->opaque; 5804 readfn = ri->readfn; 5805 } else { 5806 readfn = ri->orig_readfn; 5807 } 5808 if (readfn == NULL) { 5809 readfn = raw_read; 5810 } 5811 return readfn(env, ri); 5812 } 5813 5814 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5815 uint64_t value) 5816 { 5817 CPWriteFn *writefn; 5818 5819 if (redirect_for_e2h(env)) { 5820 /* Switch to the saved EL2 version of the register. */ 5821 ri = ri->opaque; 5822 writefn = ri->writefn; 5823 } else { 5824 writefn = ri->orig_writefn; 5825 } 5826 if (writefn == NULL) { 5827 writefn = raw_write; 5828 } 5829 writefn(env, ri, value); 5830 } 5831 5832 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5833 { 5834 struct E2HAlias { 5835 uint32_t src_key, dst_key, new_key; 5836 const char *src_name, *dst_name, *new_name; 5837 bool (*feature)(const ARMISARegisters *id); 5838 }; 5839 5840 #define K(op0, op1, crn, crm, op2) \ 5841 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5842 5843 static const struct E2HAlias aliases[] = { 5844 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5845 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5846 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5847 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5848 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5849 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5850 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5851 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5852 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5853 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5854 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5855 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5856 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5857 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5858 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5859 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5860 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5861 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5862 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5863 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5864 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5865 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5866 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5867 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5868 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5869 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5870 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5871 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5872 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5873 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5874 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5875 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5876 5877 /* 5878 * Note that redirection of ZCR is mentioned in the description 5879 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5880 * not in the summary table. 5881 */ 5882 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5883 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5884 5885 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5886 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5887 5888 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5889 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5890 }; 5891 #undef K 5892 5893 size_t i; 5894 5895 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5896 const struct E2HAlias *a = &aliases[i]; 5897 ARMCPRegInfo *src_reg, *dst_reg; 5898 5899 if (a->feature && !a->feature(&cpu->isar)) { 5900 continue; 5901 } 5902 5903 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5904 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5905 g_assert(src_reg != NULL); 5906 g_assert(dst_reg != NULL); 5907 5908 /* Cross-compare names to detect typos in the keys. */ 5909 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5910 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5911 5912 /* None of the core system registers use opaque; we will. */ 5913 g_assert(src_reg->opaque == NULL); 5914 5915 /* Create alias before redirection so we dup the right data. */ 5916 if (a->new_key) { 5917 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5918 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5919 bool ok; 5920 5921 new_reg->name = a->new_name; 5922 new_reg->type |= ARM_CP_ALIAS; 5923 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5924 new_reg->access &= PL2_RW | PL3_RW; 5925 5926 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5927 g_assert(ok); 5928 } 5929 5930 src_reg->opaque = dst_reg; 5931 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5932 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5933 if (!src_reg->raw_readfn) { 5934 src_reg->raw_readfn = raw_read; 5935 } 5936 if (!src_reg->raw_writefn) { 5937 src_reg->raw_writefn = raw_write; 5938 } 5939 src_reg->readfn = el2_e2h_read; 5940 src_reg->writefn = el2_e2h_write; 5941 } 5942 } 5943 #endif 5944 5945 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5946 bool isread) 5947 { 5948 int cur_el = arm_current_el(env); 5949 5950 if (cur_el < 2) { 5951 uint64_t hcr = arm_hcr_el2_eff(env); 5952 5953 if (cur_el == 0) { 5954 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5955 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5956 return CP_ACCESS_TRAP_EL2; 5957 } 5958 } else { 5959 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5960 return CP_ACCESS_TRAP; 5961 } 5962 if (hcr & HCR_TID2) { 5963 return CP_ACCESS_TRAP_EL2; 5964 } 5965 } 5966 } else if (hcr & HCR_TID2) { 5967 return CP_ACCESS_TRAP_EL2; 5968 } 5969 } 5970 5971 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5972 return CP_ACCESS_TRAP_EL2; 5973 } 5974 5975 return CP_ACCESS_OK; 5976 } 5977 5978 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5979 uint64_t value) 5980 { 5981 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5982 * read via a bit in OSLSR_EL1. 5983 */ 5984 int oslock; 5985 5986 if (ri->state == ARM_CP_STATE_AA32) { 5987 oslock = (value == 0xC5ACCE55); 5988 } else { 5989 oslock = value & 1; 5990 } 5991 5992 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5993 } 5994 5995 static const ARMCPRegInfo debug_cp_reginfo[] = { 5996 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5997 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5998 * unlike DBGDRAR it is never accessible from EL0. 5999 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6000 * accessor. 6001 */ 6002 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6003 .access = PL0_R, .accessfn = access_tdra, 6004 .type = ARM_CP_CONST, .resetvalue = 0 }, 6005 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6006 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6007 .access = PL1_R, .accessfn = access_tdra, 6008 .type = ARM_CP_CONST, .resetvalue = 0 }, 6009 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6010 .access = PL0_R, .accessfn = access_tdra, 6011 .type = ARM_CP_CONST, .resetvalue = 0 }, 6012 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6013 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6014 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6015 .access = PL1_RW, .accessfn = access_tda, 6016 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6017 .resetvalue = 0 }, 6018 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 6019 * We don't implement the configurable EL0 access. 6020 */ 6021 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 6022 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6023 .type = ARM_CP_ALIAS, 6024 .access = PL1_R, .accessfn = access_tda, 6025 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6026 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6027 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6028 .access = PL1_W, .type = ARM_CP_NO_RAW, 6029 .accessfn = access_tdosa, 6030 .writefn = oslar_write }, 6031 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6032 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6033 .access = PL1_R, .resetvalue = 10, 6034 .accessfn = access_tdosa, 6035 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6036 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6037 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6038 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6039 .access = PL1_RW, .accessfn = access_tdosa, 6040 .type = ARM_CP_NOP }, 6041 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6042 * implement vector catch debug events yet. 6043 */ 6044 { .name = "DBGVCR", 6045 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6046 .access = PL1_RW, .accessfn = access_tda, 6047 .type = ARM_CP_NOP }, 6048 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6049 * to save and restore a 32-bit guest's DBGVCR) 6050 */ 6051 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6052 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6053 .access = PL2_RW, .accessfn = access_tda, 6054 .type = ARM_CP_NOP }, 6055 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6056 * Channel but Linux may try to access this register. The 32-bit 6057 * alias is DBGDCCINT. 6058 */ 6059 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6060 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6061 .access = PL1_RW, .accessfn = access_tda, 6062 .type = ARM_CP_NOP }, 6063 REGINFO_SENTINEL 6064 }; 6065 6066 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6067 /* 64 bit access versions of the (dummy) debug registers */ 6068 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6069 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6070 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6071 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6072 REGINFO_SENTINEL 6073 }; 6074 6075 /* Return the exception level to which exceptions should be taken 6076 * via SVEAccessTrap. If an exception should be routed through 6077 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6078 * take care of raising that exception. 6079 * C.f. the ARM pseudocode function CheckSVEEnabled. 6080 */ 6081 int sve_exception_el(CPUARMState *env, int el) 6082 { 6083 #ifndef CONFIG_USER_ONLY 6084 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6085 6086 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6087 bool disabled = false; 6088 6089 /* The CPACR.ZEN controls traps to EL1: 6090 * 0, 2 : trap EL0 and EL1 accesses 6091 * 1 : trap only EL0 accesses 6092 * 3 : trap no accesses 6093 */ 6094 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6095 disabled = true; 6096 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6097 disabled = el == 0; 6098 } 6099 if (disabled) { 6100 /* route_to_el2 */ 6101 return hcr_el2 & HCR_TGE ? 2 : 1; 6102 } 6103 6104 /* Check CPACR.FPEN. */ 6105 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6106 disabled = true; 6107 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6108 disabled = el == 0; 6109 } 6110 if (disabled) { 6111 return 0; 6112 } 6113 } 6114 6115 /* CPTR_EL2. Since TZ and TFP are positive, 6116 * they will be zero when EL2 is not present. 6117 */ 6118 if (el <= 2 && !arm_is_secure_below_el3(env)) { 6119 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6120 return 2; 6121 } 6122 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6123 return 0; 6124 } 6125 } 6126 6127 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6128 if (arm_feature(env, ARM_FEATURE_EL3) 6129 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6130 return 3; 6131 } 6132 #endif 6133 return 0; 6134 } 6135 6136 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6137 { 6138 uint32_t end_len; 6139 6140 end_len = start_len &= 0xf; 6141 if (!test_bit(start_len, cpu->sve_vq_map)) { 6142 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6143 assert(end_len < start_len); 6144 } 6145 return end_len; 6146 } 6147 6148 /* 6149 * Given that SVE is enabled, return the vector length for EL. 6150 */ 6151 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6152 { 6153 ARMCPU *cpu = env_archcpu(env); 6154 uint32_t zcr_len = cpu->sve_max_vq - 1; 6155 6156 if (el <= 1) { 6157 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6158 } 6159 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6160 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6161 } 6162 if (arm_feature(env, ARM_FEATURE_EL3)) { 6163 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6164 } 6165 6166 return sve_zcr_get_valid_len(cpu, zcr_len); 6167 } 6168 6169 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6170 uint64_t value) 6171 { 6172 int cur_el = arm_current_el(env); 6173 int old_len = sve_zcr_len_for_el(env, cur_el); 6174 int new_len; 6175 6176 /* Bits other than [3:0] are RAZ/WI. */ 6177 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6178 raw_write(env, ri, value & 0xf); 6179 6180 /* 6181 * Because we arrived here, we know both FP and SVE are enabled; 6182 * otherwise we would have trapped access to the ZCR_ELn register. 6183 */ 6184 new_len = sve_zcr_len_for_el(env, cur_el); 6185 if (new_len < old_len) { 6186 aarch64_sve_narrow_vq(env, new_len + 1); 6187 } 6188 } 6189 6190 static const ARMCPRegInfo zcr_el1_reginfo = { 6191 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6192 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6193 .access = PL1_RW, .type = ARM_CP_SVE, 6194 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6195 .writefn = zcr_write, .raw_writefn = raw_write 6196 }; 6197 6198 static const ARMCPRegInfo zcr_el2_reginfo = { 6199 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6200 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6201 .access = PL2_RW, .type = ARM_CP_SVE, 6202 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6203 .writefn = zcr_write, .raw_writefn = raw_write 6204 }; 6205 6206 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6207 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6208 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6209 .access = PL2_RW, .type = ARM_CP_SVE, 6210 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6211 }; 6212 6213 static const ARMCPRegInfo zcr_el3_reginfo = { 6214 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6215 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6216 .access = PL3_RW, .type = ARM_CP_SVE, 6217 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6218 .writefn = zcr_write, .raw_writefn = raw_write 6219 }; 6220 6221 void hw_watchpoint_update(ARMCPU *cpu, int n) 6222 { 6223 CPUARMState *env = &cpu->env; 6224 vaddr len = 0; 6225 vaddr wvr = env->cp15.dbgwvr[n]; 6226 uint64_t wcr = env->cp15.dbgwcr[n]; 6227 int mask; 6228 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6229 6230 if (env->cpu_watchpoint[n]) { 6231 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6232 env->cpu_watchpoint[n] = NULL; 6233 } 6234 6235 if (!extract64(wcr, 0, 1)) { 6236 /* E bit clear : watchpoint disabled */ 6237 return; 6238 } 6239 6240 switch (extract64(wcr, 3, 2)) { 6241 case 0: 6242 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6243 return; 6244 case 1: 6245 flags |= BP_MEM_READ; 6246 break; 6247 case 2: 6248 flags |= BP_MEM_WRITE; 6249 break; 6250 case 3: 6251 flags |= BP_MEM_ACCESS; 6252 break; 6253 } 6254 6255 /* Attempts to use both MASK and BAS fields simultaneously are 6256 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6257 * thus generating a watchpoint for every byte in the masked region. 6258 */ 6259 mask = extract64(wcr, 24, 4); 6260 if (mask == 1 || mask == 2) { 6261 /* Reserved values of MASK; we must act as if the mask value was 6262 * some non-reserved value, or as if the watchpoint were disabled. 6263 * We choose the latter. 6264 */ 6265 return; 6266 } else if (mask) { 6267 /* Watchpoint covers an aligned area up to 2GB in size */ 6268 len = 1ULL << mask; 6269 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6270 * whether the watchpoint fires when the unmasked bits match; we opt 6271 * to generate the exceptions. 6272 */ 6273 wvr &= ~(len - 1); 6274 } else { 6275 /* Watchpoint covers bytes defined by the byte address select bits */ 6276 int bas = extract64(wcr, 5, 8); 6277 int basstart; 6278 6279 if (extract64(wvr, 2, 1)) { 6280 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6281 * ignored, and BAS[3:0] define which bytes to watch. 6282 */ 6283 bas &= 0xf; 6284 } 6285 6286 if (bas == 0) { 6287 /* This must act as if the watchpoint is disabled */ 6288 return; 6289 } 6290 6291 /* The BAS bits are supposed to be programmed to indicate a contiguous 6292 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6293 * we fire for each byte in the word/doubleword addressed by the WVR. 6294 * We choose to ignore any non-zero bits after the first range of 1s. 6295 */ 6296 basstart = ctz32(bas); 6297 len = cto32(bas >> basstart); 6298 wvr += basstart; 6299 } 6300 6301 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6302 &env->cpu_watchpoint[n]); 6303 } 6304 6305 void hw_watchpoint_update_all(ARMCPU *cpu) 6306 { 6307 int i; 6308 CPUARMState *env = &cpu->env; 6309 6310 /* Completely clear out existing QEMU watchpoints and our array, to 6311 * avoid possible stale entries following migration load. 6312 */ 6313 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6314 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6315 6316 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6317 hw_watchpoint_update(cpu, i); 6318 } 6319 } 6320 6321 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6322 uint64_t value) 6323 { 6324 ARMCPU *cpu = env_archcpu(env); 6325 int i = ri->crm; 6326 6327 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6328 * register reads and behaves as if values written are sign extended. 6329 * Bits [1:0] are RES0. 6330 */ 6331 value = sextract64(value, 0, 49) & ~3ULL; 6332 6333 raw_write(env, ri, value); 6334 hw_watchpoint_update(cpu, i); 6335 } 6336 6337 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6338 uint64_t value) 6339 { 6340 ARMCPU *cpu = env_archcpu(env); 6341 int i = ri->crm; 6342 6343 raw_write(env, ri, value); 6344 hw_watchpoint_update(cpu, i); 6345 } 6346 6347 void hw_breakpoint_update(ARMCPU *cpu, int n) 6348 { 6349 CPUARMState *env = &cpu->env; 6350 uint64_t bvr = env->cp15.dbgbvr[n]; 6351 uint64_t bcr = env->cp15.dbgbcr[n]; 6352 vaddr addr; 6353 int bt; 6354 int flags = BP_CPU; 6355 6356 if (env->cpu_breakpoint[n]) { 6357 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6358 env->cpu_breakpoint[n] = NULL; 6359 } 6360 6361 if (!extract64(bcr, 0, 1)) { 6362 /* E bit clear : watchpoint disabled */ 6363 return; 6364 } 6365 6366 bt = extract64(bcr, 20, 4); 6367 6368 switch (bt) { 6369 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6370 case 5: /* linked address mismatch (reserved if AArch64) */ 6371 qemu_log_mask(LOG_UNIMP, 6372 "arm: address mismatch breakpoint types not implemented\n"); 6373 return; 6374 case 0: /* unlinked address match */ 6375 case 1: /* linked address match */ 6376 { 6377 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6378 * we behave as if the register was sign extended. Bits [1:0] are 6379 * RES0. The BAS field is used to allow setting breakpoints on 16 6380 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6381 * a bp will fire if the addresses covered by the bp and the addresses 6382 * covered by the insn overlap but the insn doesn't start at the 6383 * start of the bp address range. We choose to require the insn and 6384 * the bp to have the same address. The constraints on writing to 6385 * BAS enforced in dbgbcr_write mean we have only four cases: 6386 * 0b0000 => no breakpoint 6387 * 0b0011 => breakpoint on addr 6388 * 0b1100 => breakpoint on addr + 2 6389 * 0b1111 => breakpoint on addr 6390 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6391 */ 6392 int bas = extract64(bcr, 5, 4); 6393 addr = sextract64(bvr, 0, 49) & ~3ULL; 6394 if (bas == 0) { 6395 return; 6396 } 6397 if (bas == 0xc) { 6398 addr += 2; 6399 } 6400 break; 6401 } 6402 case 2: /* unlinked context ID match */ 6403 case 8: /* unlinked VMID match (reserved if no EL2) */ 6404 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6405 qemu_log_mask(LOG_UNIMP, 6406 "arm: unlinked context breakpoint types not implemented\n"); 6407 return; 6408 case 9: /* linked VMID match (reserved if no EL2) */ 6409 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6410 case 3: /* linked context ID match */ 6411 default: 6412 /* We must generate no events for Linked context matches (unless 6413 * they are linked to by some other bp/wp, which is handled in 6414 * updates for the linking bp/wp). We choose to also generate no events 6415 * for reserved values. 6416 */ 6417 return; 6418 } 6419 6420 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6421 } 6422 6423 void hw_breakpoint_update_all(ARMCPU *cpu) 6424 { 6425 int i; 6426 CPUARMState *env = &cpu->env; 6427 6428 /* Completely clear out existing QEMU breakpoints and our array, to 6429 * avoid possible stale entries following migration load. 6430 */ 6431 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6432 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6433 6434 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6435 hw_breakpoint_update(cpu, i); 6436 } 6437 } 6438 6439 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6440 uint64_t value) 6441 { 6442 ARMCPU *cpu = env_archcpu(env); 6443 int i = ri->crm; 6444 6445 raw_write(env, ri, value); 6446 hw_breakpoint_update(cpu, i); 6447 } 6448 6449 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6450 uint64_t value) 6451 { 6452 ARMCPU *cpu = env_archcpu(env); 6453 int i = ri->crm; 6454 6455 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6456 * copy of BAS[0]. 6457 */ 6458 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6459 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6460 6461 raw_write(env, ri, value); 6462 hw_breakpoint_update(cpu, i); 6463 } 6464 6465 static void define_debug_regs(ARMCPU *cpu) 6466 { 6467 /* Define v7 and v8 architectural debug registers. 6468 * These are just dummy implementations for now. 6469 */ 6470 int i; 6471 int wrps, brps, ctx_cmps; 6472 ARMCPRegInfo dbgdidr = { 6473 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 6474 .access = PL0_R, .accessfn = access_tda, 6475 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6476 }; 6477 6478 /* Note that all these register fields hold "number of Xs minus 1". */ 6479 brps = arm_num_brps(cpu); 6480 wrps = arm_num_wrps(cpu); 6481 ctx_cmps = arm_num_ctx_cmps(cpu); 6482 6483 assert(ctx_cmps <= brps); 6484 6485 define_one_arm_cp_reg(cpu, &dbgdidr); 6486 define_arm_cp_regs(cpu, debug_cp_reginfo); 6487 6488 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6489 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6490 } 6491 6492 for (i = 0; i < brps; i++) { 6493 ARMCPRegInfo dbgregs[] = { 6494 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6495 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6496 .access = PL1_RW, .accessfn = access_tda, 6497 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6498 .writefn = dbgbvr_write, .raw_writefn = raw_write 6499 }, 6500 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6501 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6502 .access = PL1_RW, .accessfn = access_tda, 6503 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6504 .writefn = dbgbcr_write, .raw_writefn = raw_write 6505 }, 6506 REGINFO_SENTINEL 6507 }; 6508 define_arm_cp_regs(cpu, dbgregs); 6509 } 6510 6511 for (i = 0; i < wrps; i++) { 6512 ARMCPRegInfo dbgregs[] = { 6513 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6514 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6515 .access = PL1_RW, .accessfn = access_tda, 6516 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6517 .writefn = dbgwvr_write, .raw_writefn = raw_write 6518 }, 6519 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6520 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6521 .access = PL1_RW, .accessfn = access_tda, 6522 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6523 .writefn = dbgwcr_write, .raw_writefn = raw_write 6524 }, 6525 REGINFO_SENTINEL 6526 }; 6527 define_arm_cp_regs(cpu, dbgregs); 6528 } 6529 } 6530 6531 static void define_pmu_regs(ARMCPU *cpu) 6532 { 6533 /* 6534 * v7 performance monitor control register: same implementor 6535 * field as main ID register, and we implement four counters in 6536 * addition to the cycle count register. 6537 */ 6538 unsigned int i, pmcrn = 4; 6539 ARMCPRegInfo pmcr = { 6540 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6541 .access = PL0_RW, 6542 .type = ARM_CP_IO | ARM_CP_ALIAS, 6543 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6544 .accessfn = pmreg_access, .writefn = pmcr_write, 6545 .raw_writefn = raw_write, 6546 }; 6547 ARMCPRegInfo pmcr64 = { 6548 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6549 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6550 .access = PL0_RW, .accessfn = pmreg_access, 6551 .type = ARM_CP_IO, 6552 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6553 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6554 PMCRLC, 6555 .writefn = pmcr_write, .raw_writefn = raw_write, 6556 }; 6557 define_one_arm_cp_reg(cpu, &pmcr); 6558 define_one_arm_cp_reg(cpu, &pmcr64); 6559 for (i = 0; i < pmcrn; i++) { 6560 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6561 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6562 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6563 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6564 ARMCPRegInfo pmev_regs[] = { 6565 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6566 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6567 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6568 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6569 .accessfn = pmreg_access }, 6570 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6571 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6572 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6573 .type = ARM_CP_IO, 6574 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6575 .raw_readfn = pmevcntr_rawread, 6576 .raw_writefn = pmevcntr_rawwrite }, 6577 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6578 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6579 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6580 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6581 .accessfn = pmreg_access }, 6582 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6583 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6584 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6585 .type = ARM_CP_IO, 6586 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6587 .raw_writefn = pmevtyper_rawwrite }, 6588 REGINFO_SENTINEL 6589 }; 6590 define_arm_cp_regs(cpu, pmev_regs); 6591 g_free(pmevcntr_name); 6592 g_free(pmevcntr_el0_name); 6593 g_free(pmevtyper_name); 6594 g_free(pmevtyper_el0_name); 6595 } 6596 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6597 ARMCPRegInfo v81_pmu_regs[] = { 6598 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6599 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6600 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6601 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6602 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6603 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6604 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6605 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6606 REGINFO_SENTINEL 6607 }; 6608 define_arm_cp_regs(cpu, v81_pmu_regs); 6609 } 6610 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6611 static const ARMCPRegInfo v84_pmmir = { 6612 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6613 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6614 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6615 .resetvalue = 0 6616 }; 6617 define_one_arm_cp_reg(cpu, &v84_pmmir); 6618 } 6619 } 6620 6621 /* We don't know until after realize whether there's a GICv3 6622 * attached, and that is what registers the gicv3 sysregs. 6623 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6624 * at runtime. 6625 */ 6626 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6627 { 6628 ARMCPU *cpu = env_archcpu(env); 6629 uint64_t pfr1 = cpu->id_pfr1; 6630 6631 if (env->gicv3state) { 6632 pfr1 |= 1 << 28; 6633 } 6634 return pfr1; 6635 } 6636 6637 #ifndef CONFIG_USER_ONLY 6638 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6639 { 6640 ARMCPU *cpu = env_archcpu(env); 6641 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6642 6643 if (env->gicv3state) { 6644 pfr0 |= 1 << 24; 6645 } 6646 return pfr0; 6647 } 6648 #endif 6649 6650 /* Shared logic between LORID and the rest of the LOR* registers. 6651 * Secure state has already been delt with. 6652 */ 6653 static CPAccessResult access_lor_ns(CPUARMState *env) 6654 { 6655 int el = arm_current_el(env); 6656 6657 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6658 return CP_ACCESS_TRAP_EL2; 6659 } 6660 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6661 return CP_ACCESS_TRAP_EL3; 6662 } 6663 return CP_ACCESS_OK; 6664 } 6665 6666 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 6667 bool isread) 6668 { 6669 if (arm_is_secure_below_el3(env)) { 6670 /* Access ok in secure mode. */ 6671 return CP_ACCESS_OK; 6672 } 6673 return access_lor_ns(env); 6674 } 6675 6676 static CPAccessResult access_lor_other(CPUARMState *env, 6677 const ARMCPRegInfo *ri, bool isread) 6678 { 6679 if (arm_is_secure_below_el3(env)) { 6680 /* Access denied in secure mode. */ 6681 return CP_ACCESS_TRAP; 6682 } 6683 return access_lor_ns(env); 6684 } 6685 6686 /* 6687 * A trivial implementation of ARMv8.1-LOR leaves all of these 6688 * registers fixed at 0, which indicates that there are zero 6689 * supported Limited Ordering regions. 6690 */ 6691 static const ARMCPRegInfo lor_reginfo[] = { 6692 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6693 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6694 .access = PL1_RW, .accessfn = access_lor_other, 6695 .type = ARM_CP_CONST, .resetvalue = 0 }, 6696 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6697 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6698 .access = PL1_RW, .accessfn = access_lor_other, 6699 .type = ARM_CP_CONST, .resetvalue = 0 }, 6700 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6701 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6702 .access = PL1_RW, .accessfn = access_lor_other, 6703 .type = ARM_CP_CONST, .resetvalue = 0 }, 6704 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6705 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6706 .access = PL1_RW, .accessfn = access_lor_other, 6707 .type = ARM_CP_CONST, .resetvalue = 0 }, 6708 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6709 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6710 .access = PL1_R, .accessfn = access_lorid, 6711 .type = ARM_CP_CONST, .resetvalue = 0 }, 6712 REGINFO_SENTINEL 6713 }; 6714 6715 #ifdef TARGET_AARCH64 6716 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6717 bool isread) 6718 { 6719 int el = arm_current_el(env); 6720 6721 if (el < 2 && 6722 arm_feature(env, ARM_FEATURE_EL2) && 6723 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6724 return CP_ACCESS_TRAP_EL2; 6725 } 6726 if (el < 3 && 6727 arm_feature(env, ARM_FEATURE_EL3) && 6728 !(env->cp15.scr_el3 & SCR_APK)) { 6729 return CP_ACCESS_TRAP_EL3; 6730 } 6731 return CP_ACCESS_OK; 6732 } 6733 6734 static const ARMCPRegInfo pauth_reginfo[] = { 6735 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6736 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6737 .access = PL1_RW, .accessfn = access_pauth, 6738 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6739 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6740 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6741 .access = PL1_RW, .accessfn = access_pauth, 6742 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6743 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6744 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6745 .access = PL1_RW, .accessfn = access_pauth, 6746 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6747 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6748 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6749 .access = PL1_RW, .accessfn = access_pauth, 6750 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6751 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6752 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6753 .access = PL1_RW, .accessfn = access_pauth, 6754 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6755 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6756 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6757 .access = PL1_RW, .accessfn = access_pauth, 6758 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6759 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6760 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6761 .access = PL1_RW, .accessfn = access_pauth, 6762 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6763 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6764 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6765 .access = PL1_RW, .accessfn = access_pauth, 6766 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6767 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6768 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6769 .access = PL1_RW, .accessfn = access_pauth, 6770 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6771 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6772 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6773 .access = PL1_RW, .accessfn = access_pauth, 6774 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6775 REGINFO_SENTINEL 6776 }; 6777 6778 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6779 { 6780 Error *err = NULL; 6781 uint64_t ret; 6782 6783 /* Success sets NZCV = 0000. */ 6784 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6785 6786 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6787 /* 6788 * ??? Failed, for unknown reasons in the crypto subsystem. 6789 * The best we can do is log the reason and return the 6790 * timed-out indication to the guest. There is no reason 6791 * we know to expect this failure to be transitory, so the 6792 * guest may well hang retrying the operation. 6793 */ 6794 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6795 ri->name, error_get_pretty(err)); 6796 error_free(err); 6797 6798 env->ZF = 0; /* NZCF = 0100 */ 6799 return 0; 6800 } 6801 return ret; 6802 } 6803 6804 /* We do not support re-seeding, so the two registers operate the same. */ 6805 static const ARMCPRegInfo rndr_reginfo[] = { 6806 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6807 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6808 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6809 .access = PL0_R, .readfn = rndr_readfn }, 6810 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6811 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6812 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6813 .access = PL0_R, .readfn = rndr_readfn }, 6814 REGINFO_SENTINEL 6815 }; 6816 6817 #ifndef CONFIG_USER_ONLY 6818 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6819 uint64_t value) 6820 { 6821 ARMCPU *cpu = env_archcpu(env); 6822 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6823 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6824 uint64_t vaddr_in = (uint64_t) value; 6825 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6826 void *haddr; 6827 int mem_idx = cpu_mmu_index(env, false); 6828 6829 /* This won't be crossing page boundaries */ 6830 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6831 if (haddr) { 6832 6833 ram_addr_t offset; 6834 MemoryRegion *mr; 6835 6836 /* RCU lock is already being held */ 6837 mr = memory_region_from_host(haddr, &offset); 6838 6839 if (mr) { 6840 memory_region_writeback(mr, offset, dline_size); 6841 } 6842 } 6843 } 6844 6845 static const ARMCPRegInfo dcpop_reg[] = { 6846 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6847 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6848 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6849 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6850 REGINFO_SENTINEL 6851 }; 6852 6853 static const ARMCPRegInfo dcpodp_reg[] = { 6854 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6855 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6856 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6857 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6858 REGINFO_SENTINEL 6859 }; 6860 #endif /*CONFIG_USER_ONLY*/ 6861 6862 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 6863 bool isread) 6864 { 6865 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 6866 return CP_ACCESS_TRAP_EL2; 6867 } 6868 6869 return CP_ACCESS_OK; 6870 } 6871 6872 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 6873 bool isread) 6874 { 6875 int el = arm_current_el(env); 6876 6877 if (el < 2 && 6878 arm_feature(env, ARM_FEATURE_EL2) && 6879 !(arm_hcr_el2_eff(env) & HCR_ATA)) { 6880 return CP_ACCESS_TRAP_EL2; 6881 } 6882 if (el < 3 && 6883 arm_feature(env, ARM_FEATURE_EL3) && 6884 !(env->cp15.scr_el3 & SCR_ATA)) { 6885 return CP_ACCESS_TRAP_EL3; 6886 } 6887 return CP_ACCESS_OK; 6888 } 6889 6890 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 6891 { 6892 return env->pstate & PSTATE_TCO; 6893 } 6894 6895 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6896 { 6897 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 6898 } 6899 6900 static const ARMCPRegInfo mte_reginfo[] = { 6901 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 6902 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 6903 .access = PL1_RW, .accessfn = access_mte, 6904 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 6905 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 6906 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 6907 .access = PL1_RW, .accessfn = access_mte, 6908 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 6909 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 6910 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 6911 .access = PL2_RW, .accessfn = access_mte, 6912 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 6913 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 6914 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 6915 .access = PL3_RW, 6916 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 6917 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 6918 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 6919 .access = PL1_RW, .accessfn = access_mte, 6920 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 6921 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 6922 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 6923 .access = PL1_RW, .accessfn = access_mte, 6924 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 6925 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 6926 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 6927 .access = PL1_R, .accessfn = access_aa64_tid5, 6928 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 6929 { .name = "TCO", .state = ARM_CP_STATE_AA64, 6930 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 6931 .type = ARM_CP_NO_RAW, 6932 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 6933 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 6934 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 6935 .type = ARM_CP_NOP, .access = PL1_W, 6936 .accessfn = aa64_cacheop_poc_access }, 6937 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 6938 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 6939 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6940 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 6941 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 6942 .type = ARM_CP_NOP, .access = PL1_W, 6943 .accessfn = aa64_cacheop_poc_access }, 6944 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 6945 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 6946 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6947 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 6948 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 6949 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6950 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 6951 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 6952 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6953 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 6954 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 6955 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6956 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 6957 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 6958 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6959 REGINFO_SENTINEL 6960 }; 6961 6962 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 6963 { .name = "TCO", .state = ARM_CP_STATE_AA64, 6964 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 6965 .type = ARM_CP_CONST, .access = PL0_RW, }, 6966 REGINFO_SENTINEL 6967 }; 6968 6969 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 6970 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 6971 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 6972 .type = ARM_CP_NOP, .access = PL0_W, 6973 .accessfn = aa64_cacheop_poc_access }, 6974 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 6975 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 6976 .type = ARM_CP_NOP, .access = PL0_W, 6977 .accessfn = aa64_cacheop_poc_access }, 6978 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 6979 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 6980 .type = ARM_CP_NOP, .access = PL0_W, 6981 .accessfn = aa64_cacheop_poc_access }, 6982 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 6983 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 6984 .type = ARM_CP_NOP, .access = PL0_W, 6985 .accessfn = aa64_cacheop_poc_access }, 6986 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 6987 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 6988 .type = ARM_CP_NOP, .access = PL0_W, 6989 .accessfn = aa64_cacheop_poc_access }, 6990 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 6991 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 6992 .type = ARM_CP_NOP, .access = PL0_W, 6993 .accessfn = aa64_cacheop_poc_access }, 6994 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 6995 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 6996 .type = ARM_CP_NOP, .access = PL0_W, 6997 .accessfn = aa64_cacheop_poc_access }, 6998 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 6999 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7000 .type = ARM_CP_NOP, .access = PL0_W, 7001 .accessfn = aa64_cacheop_poc_access }, 7002 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7003 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7004 .access = PL0_W, .type = ARM_CP_DC_GVA, 7005 #ifndef CONFIG_USER_ONLY 7006 /* Avoid overhead of an access check that always passes in user-mode */ 7007 .accessfn = aa64_zva_access, 7008 #endif 7009 }, 7010 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7011 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7012 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7013 #ifndef CONFIG_USER_ONLY 7014 /* Avoid overhead of an access check that always passes in user-mode */ 7015 .accessfn = aa64_zva_access, 7016 #endif 7017 }, 7018 REGINFO_SENTINEL 7019 }; 7020 7021 #endif 7022 7023 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7024 bool isread) 7025 { 7026 int el = arm_current_el(env); 7027 7028 if (el == 0) { 7029 uint64_t sctlr = arm_sctlr(env, el); 7030 if (!(sctlr & SCTLR_EnRCTX)) { 7031 return CP_ACCESS_TRAP; 7032 } 7033 } else if (el == 1) { 7034 uint64_t hcr = arm_hcr_el2_eff(env); 7035 if (hcr & HCR_NV) { 7036 return CP_ACCESS_TRAP_EL2; 7037 } 7038 } 7039 return CP_ACCESS_OK; 7040 } 7041 7042 static const ARMCPRegInfo predinv_reginfo[] = { 7043 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7044 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7045 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7046 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7047 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7048 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7049 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7050 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7051 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7052 /* 7053 * Note the AArch32 opcodes have a different OPC1. 7054 */ 7055 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7056 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7057 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7058 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7059 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7060 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7061 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7062 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7063 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7064 REGINFO_SENTINEL 7065 }; 7066 7067 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7068 { 7069 /* Read the high 32 bits of the current CCSIDR */ 7070 return extract64(ccsidr_read(env, ri), 32, 32); 7071 } 7072 7073 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7074 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7075 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7076 .access = PL1_R, 7077 .accessfn = access_aa64_tid2, 7078 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7079 REGINFO_SENTINEL 7080 }; 7081 7082 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7083 bool isread) 7084 { 7085 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7086 return CP_ACCESS_TRAP_EL2; 7087 } 7088 7089 return CP_ACCESS_OK; 7090 } 7091 7092 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7093 bool isread) 7094 { 7095 if (arm_feature(env, ARM_FEATURE_V8)) { 7096 return access_aa64_tid3(env, ri, isread); 7097 } 7098 7099 return CP_ACCESS_OK; 7100 } 7101 7102 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7103 bool isread) 7104 { 7105 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7106 return CP_ACCESS_TRAP_EL2; 7107 } 7108 7109 return CP_ACCESS_OK; 7110 } 7111 7112 static const ARMCPRegInfo jazelle_regs[] = { 7113 { .name = "JIDR", 7114 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7115 .access = PL1_R, .accessfn = access_jazelle, 7116 .type = ARM_CP_CONST, .resetvalue = 0 }, 7117 { .name = "JOSCR", 7118 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7119 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7120 { .name = "JMCR", 7121 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7122 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7123 REGINFO_SENTINEL 7124 }; 7125 7126 static const ARMCPRegInfo vhe_reginfo[] = { 7127 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7128 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7129 .access = PL2_RW, 7130 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7131 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7132 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7133 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7134 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7135 #ifndef CONFIG_USER_ONLY 7136 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7137 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7138 .fieldoffset = 7139 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7140 .type = ARM_CP_IO, .access = PL2_RW, 7141 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7142 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7143 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7144 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7145 .resetfn = gt_hv_timer_reset, 7146 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7147 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7148 .type = ARM_CP_IO, 7149 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7150 .access = PL2_RW, 7151 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7152 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7153 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7154 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7155 .type = ARM_CP_IO | ARM_CP_ALIAS, 7156 .access = PL2_RW, .accessfn = e2h_access, 7157 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7158 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7159 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7160 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7161 .type = ARM_CP_IO | ARM_CP_ALIAS, 7162 .access = PL2_RW, .accessfn = e2h_access, 7163 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7164 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7165 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7166 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7167 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7168 .access = PL2_RW, .accessfn = e2h_access, 7169 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7170 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7171 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7172 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7173 .access = PL2_RW, .accessfn = e2h_access, 7174 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7175 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7176 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7177 .type = ARM_CP_IO | ARM_CP_ALIAS, 7178 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7179 .access = PL2_RW, .accessfn = e2h_access, 7180 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7181 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7182 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7183 .type = ARM_CP_IO | ARM_CP_ALIAS, 7184 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7185 .access = PL2_RW, .accessfn = e2h_access, 7186 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7187 #endif 7188 REGINFO_SENTINEL 7189 }; 7190 7191 #ifndef CONFIG_USER_ONLY 7192 static const ARMCPRegInfo ats1e1_reginfo[] = { 7193 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7194 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7195 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7196 .writefn = ats_write64 }, 7197 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7198 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7199 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7200 .writefn = ats_write64 }, 7201 REGINFO_SENTINEL 7202 }; 7203 7204 static const ARMCPRegInfo ats1cp_reginfo[] = { 7205 { .name = "ATS1CPRP", 7206 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7207 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7208 .writefn = ats_write }, 7209 { .name = "ATS1CPWP", 7210 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7211 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7212 .writefn = ats_write }, 7213 REGINFO_SENTINEL 7214 }; 7215 #endif 7216 7217 /* 7218 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7219 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7220 * is non-zero, which is never for ARMv7, optionally in ARMv8 7221 * and mandatorily for ARMv8.2 and up. 7222 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7223 * implementation is RAZ/WI we can ignore this detail, as we 7224 * do for ACTLR. 7225 */ 7226 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7227 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7228 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7229 .access = PL1_RW, .accessfn = access_tacr, 7230 .type = ARM_CP_CONST, .resetvalue = 0 }, 7231 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7232 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7233 .access = PL2_RW, .type = ARM_CP_CONST, 7234 .resetvalue = 0 }, 7235 REGINFO_SENTINEL 7236 }; 7237 7238 void register_cp_regs_for_features(ARMCPU *cpu) 7239 { 7240 /* Register all the coprocessor registers based on feature bits */ 7241 CPUARMState *env = &cpu->env; 7242 if (arm_feature(env, ARM_FEATURE_M)) { 7243 /* M profile has no coprocessor registers */ 7244 return; 7245 } 7246 7247 define_arm_cp_regs(cpu, cp_reginfo); 7248 if (!arm_feature(env, ARM_FEATURE_V8)) { 7249 /* Must go early as it is full of wildcards that may be 7250 * overridden by later definitions. 7251 */ 7252 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7253 } 7254 7255 if (arm_feature(env, ARM_FEATURE_V6)) { 7256 /* The ID registers all have impdef reset values */ 7257 ARMCPRegInfo v6_idregs[] = { 7258 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7259 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7260 .access = PL1_R, .type = ARM_CP_CONST, 7261 .accessfn = access_aa32_tid3, 7262 .resetvalue = cpu->id_pfr0 }, 7263 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7264 * the value of the GIC field until after we define these regs. 7265 */ 7266 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7267 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7268 .access = PL1_R, .type = ARM_CP_NO_RAW, 7269 .accessfn = access_aa32_tid3, 7270 .readfn = id_pfr1_read, 7271 .writefn = arm_cp_write_ignore }, 7272 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7273 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7274 .access = PL1_R, .type = ARM_CP_CONST, 7275 .accessfn = access_aa32_tid3, 7276 .resetvalue = cpu->isar.id_dfr0 }, 7277 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7278 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7279 .access = PL1_R, .type = ARM_CP_CONST, 7280 .accessfn = access_aa32_tid3, 7281 .resetvalue = cpu->id_afr0 }, 7282 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7283 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7284 .access = PL1_R, .type = ARM_CP_CONST, 7285 .accessfn = access_aa32_tid3, 7286 .resetvalue = cpu->isar.id_mmfr0 }, 7287 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7288 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7289 .access = PL1_R, .type = ARM_CP_CONST, 7290 .accessfn = access_aa32_tid3, 7291 .resetvalue = cpu->isar.id_mmfr1 }, 7292 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7293 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7294 .access = PL1_R, .type = ARM_CP_CONST, 7295 .accessfn = access_aa32_tid3, 7296 .resetvalue = cpu->isar.id_mmfr2 }, 7297 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7298 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7299 .access = PL1_R, .type = ARM_CP_CONST, 7300 .accessfn = access_aa32_tid3, 7301 .resetvalue = cpu->isar.id_mmfr3 }, 7302 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7303 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7304 .access = PL1_R, .type = ARM_CP_CONST, 7305 .accessfn = access_aa32_tid3, 7306 .resetvalue = cpu->isar.id_isar0 }, 7307 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7308 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7309 .access = PL1_R, .type = ARM_CP_CONST, 7310 .accessfn = access_aa32_tid3, 7311 .resetvalue = cpu->isar.id_isar1 }, 7312 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7313 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7314 .access = PL1_R, .type = ARM_CP_CONST, 7315 .accessfn = access_aa32_tid3, 7316 .resetvalue = cpu->isar.id_isar2 }, 7317 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7318 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7319 .access = PL1_R, .type = ARM_CP_CONST, 7320 .accessfn = access_aa32_tid3, 7321 .resetvalue = cpu->isar.id_isar3 }, 7322 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7323 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7324 .access = PL1_R, .type = ARM_CP_CONST, 7325 .accessfn = access_aa32_tid3, 7326 .resetvalue = cpu->isar.id_isar4 }, 7327 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7328 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7329 .access = PL1_R, .type = ARM_CP_CONST, 7330 .accessfn = access_aa32_tid3, 7331 .resetvalue = cpu->isar.id_isar5 }, 7332 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7333 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7334 .access = PL1_R, .type = ARM_CP_CONST, 7335 .accessfn = access_aa32_tid3, 7336 .resetvalue = cpu->isar.id_mmfr4 }, 7337 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7338 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7339 .access = PL1_R, .type = ARM_CP_CONST, 7340 .accessfn = access_aa32_tid3, 7341 .resetvalue = cpu->isar.id_isar6 }, 7342 REGINFO_SENTINEL 7343 }; 7344 define_arm_cp_regs(cpu, v6_idregs); 7345 define_arm_cp_regs(cpu, v6_cp_reginfo); 7346 } else { 7347 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7348 } 7349 if (arm_feature(env, ARM_FEATURE_V6K)) { 7350 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7351 } 7352 if (arm_feature(env, ARM_FEATURE_V7MP) && 7353 !arm_feature(env, ARM_FEATURE_PMSA)) { 7354 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7355 } 7356 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7357 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7358 } 7359 if (arm_feature(env, ARM_FEATURE_V7)) { 7360 ARMCPRegInfo clidr = { 7361 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7362 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7363 .access = PL1_R, .type = ARM_CP_CONST, 7364 .accessfn = access_aa64_tid2, 7365 .resetvalue = cpu->clidr 7366 }; 7367 define_one_arm_cp_reg(cpu, &clidr); 7368 define_arm_cp_regs(cpu, v7_cp_reginfo); 7369 define_debug_regs(cpu); 7370 define_pmu_regs(cpu); 7371 } else { 7372 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7373 } 7374 if (arm_feature(env, ARM_FEATURE_V8)) { 7375 /* AArch64 ID registers, which all have impdef reset values. 7376 * Note that within the ID register ranges the unused slots 7377 * must all RAZ, not UNDEF; future architecture versions may 7378 * define new registers here. 7379 */ 7380 ARMCPRegInfo v8_idregs[] = { 7381 /* 7382 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7383 * emulation because we don't know the right value for the 7384 * GIC field until after we define these regs. 7385 */ 7386 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7387 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7388 .access = PL1_R, 7389 #ifdef CONFIG_USER_ONLY 7390 .type = ARM_CP_CONST, 7391 .resetvalue = cpu->isar.id_aa64pfr0 7392 #else 7393 .type = ARM_CP_NO_RAW, 7394 .accessfn = access_aa64_tid3, 7395 .readfn = id_aa64pfr0_read, 7396 .writefn = arm_cp_write_ignore 7397 #endif 7398 }, 7399 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7400 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7401 .access = PL1_R, .type = ARM_CP_CONST, 7402 .accessfn = access_aa64_tid3, 7403 .resetvalue = cpu->isar.id_aa64pfr1}, 7404 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7405 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7406 .access = PL1_R, .type = ARM_CP_CONST, 7407 .accessfn = access_aa64_tid3, 7408 .resetvalue = 0 }, 7409 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7410 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7411 .access = PL1_R, .type = ARM_CP_CONST, 7412 .accessfn = access_aa64_tid3, 7413 .resetvalue = 0 }, 7414 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7415 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7416 .access = PL1_R, .type = ARM_CP_CONST, 7417 .accessfn = access_aa64_tid3, 7418 /* At present, only SVEver == 0 is defined anyway. */ 7419 .resetvalue = 0 }, 7420 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7421 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7422 .access = PL1_R, .type = ARM_CP_CONST, 7423 .accessfn = access_aa64_tid3, 7424 .resetvalue = 0 }, 7425 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7426 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7427 .access = PL1_R, .type = ARM_CP_CONST, 7428 .accessfn = access_aa64_tid3, 7429 .resetvalue = 0 }, 7430 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7431 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7432 .access = PL1_R, .type = ARM_CP_CONST, 7433 .accessfn = access_aa64_tid3, 7434 .resetvalue = 0 }, 7435 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7436 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7437 .access = PL1_R, .type = ARM_CP_CONST, 7438 .accessfn = access_aa64_tid3, 7439 .resetvalue = cpu->isar.id_aa64dfr0 }, 7440 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7441 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7442 .access = PL1_R, .type = ARM_CP_CONST, 7443 .accessfn = access_aa64_tid3, 7444 .resetvalue = cpu->isar.id_aa64dfr1 }, 7445 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7446 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7447 .access = PL1_R, .type = ARM_CP_CONST, 7448 .accessfn = access_aa64_tid3, 7449 .resetvalue = 0 }, 7450 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7451 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7452 .access = PL1_R, .type = ARM_CP_CONST, 7453 .accessfn = access_aa64_tid3, 7454 .resetvalue = 0 }, 7455 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7456 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7457 .access = PL1_R, .type = ARM_CP_CONST, 7458 .accessfn = access_aa64_tid3, 7459 .resetvalue = cpu->id_aa64afr0 }, 7460 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7461 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7462 .access = PL1_R, .type = ARM_CP_CONST, 7463 .accessfn = access_aa64_tid3, 7464 .resetvalue = cpu->id_aa64afr1 }, 7465 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7466 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7467 .access = PL1_R, .type = ARM_CP_CONST, 7468 .accessfn = access_aa64_tid3, 7469 .resetvalue = 0 }, 7470 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7471 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7472 .access = PL1_R, .type = ARM_CP_CONST, 7473 .accessfn = access_aa64_tid3, 7474 .resetvalue = 0 }, 7475 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7476 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7477 .access = PL1_R, .type = ARM_CP_CONST, 7478 .accessfn = access_aa64_tid3, 7479 .resetvalue = cpu->isar.id_aa64isar0 }, 7480 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7481 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7482 .access = PL1_R, .type = ARM_CP_CONST, 7483 .accessfn = access_aa64_tid3, 7484 .resetvalue = cpu->isar.id_aa64isar1 }, 7485 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7486 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7487 .access = PL1_R, .type = ARM_CP_CONST, 7488 .accessfn = access_aa64_tid3, 7489 .resetvalue = 0 }, 7490 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7491 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7492 .access = PL1_R, .type = ARM_CP_CONST, 7493 .accessfn = access_aa64_tid3, 7494 .resetvalue = 0 }, 7495 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7496 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7497 .access = PL1_R, .type = ARM_CP_CONST, 7498 .accessfn = access_aa64_tid3, 7499 .resetvalue = 0 }, 7500 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7501 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7502 .access = PL1_R, .type = ARM_CP_CONST, 7503 .accessfn = access_aa64_tid3, 7504 .resetvalue = 0 }, 7505 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7506 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7507 .access = PL1_R, .type = ARM_CP_CONST, 7508 .accessfn = access_aa64_tid3, 7509 .resetvalue = 0 }, 7510 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7511 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7512 .access = PL1_R, .type = ARM_CP_CONST, 7513 .accessfn = access_aa64_tid3, 7514 .resetvalue = 0 }, 7515 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7516 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7517 .access = PL1_R, .type = ARM_CP_CONST, 7518 .accessfn = access_aa64_tid3, 7519 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7520 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7521 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7522 .access = PL1_R, .type = ARM_CP_CONST, 7523 .accessfn = access_aa64_tid3, 7524 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7525 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7526 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7527 .access = PL1_R, .type = ARM_CP_CONST, 7528 .accessfn = access_aa64_tid3, 7529 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7530 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7531 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7532 .access = PL1_R, .type = ARM_CP_CONST, 7533 .accessfn = access_aa64_tid3, 7534 .resetvalue = 0 }, 7535 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7536 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7537 .access = PL1_R, .type = ARM_CP_CONST, 7538 .accessfn = access_aa64_tid3, 7539 .resetvalue = 0 }, 7540 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7541 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7542 .access = PL1_R, .type = ARM_CP_CONST, 7543 .accessfn = access_aa64_tid3, 7544 .resetvalue = 0 }, 7545 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7546 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7547 .access = PL1_R, .type = ARM_CP_CONST, 7548 .accessfn = access_aa64_tid3, 7549 .resetvalue = 0 }, 7550 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7552 .access = PL1_R, .type = ARM_CP_CONST, 7553 .accessfn = access_aa64_tid3, 7554 .resetvalue = 0 }, 7555 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7557 .access = PL1_R, .type = ARM_CP_CONST, 7558 .accessfn = access_aa64_tid3, 7559 .resetvalue = cpu->isar.mvfr0 }, 7560 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7561 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7562 .access = PL1_R, .type = ARM_CP_CONST, 7563 .accessfn = access_aa64_tid3, 7564 .resetvalue = cpu->isar.mvfr1 }, 7565 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7566 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7567 .access = PL1_R, .type = ARM_CP_CONST, 7568 .accessfn = access_aa64_tid3, 7569 .resetvalue = cpu->isar.mvfr2 }, 7570 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7572 .access = PL1_R, .type = ARM_CP_CONST, 7573 .accessfn = access_aa64_tid3, 7574 .resetvalue = 0 }, 7575 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7576 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7577 .access = PL1_R, .type = ARM_CP_CONST, 7578 .accessfn = access_aa64_tid3, 7579 .resetvalue = 0 }, 7580 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7581 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7582 .access = PL1_R, .type = ARM_CP_CONST, 7583 .accessfn = access_aa64_tid3, 7584 .resetvalue = 0 }, 7585 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7586 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7587 .access = PL1_R, .type = ARM_CP_CONST, 7588 .accessfn = access_aa64_tid3, 7589 .resetvalue = 0 }, 7590 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7592 .access = PL1_R, .type = ARM_CP_CONST, 7593 .accessfn = access_aa64_tid3, 7594 .resetvalue = 0 }, 7595 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7596 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7597 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7598 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7599 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7600 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7601 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7602 .resetvalue = cpu->pmceid0 }, 7603 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7604 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7605 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7606 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7607 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7608 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7609 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7610 .resetvalue = cpu->pmceid1 }, 7611 REGINFO_SENTINEL 7612 }; 7613 #ifdef CONFIG_USER_ONLY 7614 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7615 { .name = "ID_AA64PFR0_EL1", 7616 .exported_bits = 0x000f000f00ff0000, 7617 .fixed_bits = 0x0000000000000011 }, 7618 { .name = "ID_AA64PFR1_EL1", 7619 .exported_bits = 0x00000000000000f0 }, 7620 { .name = "ID_AA64PFR*_EL1_RESERVED", 7621 .is_glob = true }, 7622 { .name = "ID_AA64ZFR0_EL1" }, 7623 { .name = "ID_AA64MMFR0_EL1", 7624 .fixed_bits = 0x00000000ff000000 }, 7625 { .name = "ID_AA64MMFR1_EL1" }, 7626 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7627 .is_glob = true }, 7628 { .name = "ID_AA64DFR0_EL1", 7629 .fixed_bits = 0x0000000000000006 }, 7630 { .name = "ID_AA64DFR1_EL1" }, 7631 { .name = "ID_AA64DFR*_EL1_RESERVED", 7632 .is_glob = true }, 7633 { .name = "ID_AA64AFR*", 7634 .is_glob = true }, 7635 { .name = "ID_AA64ISAR0_EL1", 7636 .exported_bits = 0x00fffffff0fffff0 }, 7637 { .name = "ID_AA64ISAR1_EL1", 7638 .exported_bits = 0x000000f0ffffffff }, 7639 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7640 .is_glob = true }, 7641 REGUSERINFO_SENTINEL 7642 }; 7643 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7644 #endif 7645 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7646 if (!arm_feature(env, ARM_FEATURE_EL3) && 7647 !arm_feature(env, ARM_FEATURE_EL2)) { 7648 ARMCPRegInfo rvbar = { 7649 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7650 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7651 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7652 }; 7653 define_one_arm_cp_reg(cpu, &rvbar); 7654 } 7655 define_arm_cp_regs(cpu, v8_idregs); 7656 define_arm_cp_regs(cpu, v8_cp_reginfo); 7657 } 7658 if (arm_feature(env, ARM_FEATURE_EL2)) { 7659 uint64_t vmpidr_def = mpidr_read_val(env); 7660 ARMCPRegInfo vpidr_regs[] = { 7661 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7662 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7663 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7664 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7665 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7666 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7667 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7668 .access = PL2_RW, .resetvalue = cpu->midr, 7669 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7670 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7671 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7672 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7673 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7674 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7675 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7676 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7677 .access = PL2_RW, 7678 .resetvalue = vmpidr_def, 7679 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7680 REGINFO_SENTINEL 7681 }; 7682 define_arm_cp_regs(cpu, vpidr_regs); 7683 define_arm_cp_regs(cpu, el2_cp_reginfo); 7684 if (arm_feature(env, ARM_FEATURE_V8)) { 7685 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7686 } 7687 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7688 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7689 ARMCPRegInfo rvbar = { 7690 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7691 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7692 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7693 }; 7694 define_one_arm_cp_reg(cpu, &rvbar); 7695 } 7696 } else { 7697 /* If EL2 is missing but higher ELs are enabled, we need to 7698 * register the no_el2 reginfos. 7699 */ 7700 if (arm_feature(env, ARM_FEATURE_EL3)) { 7701 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 7702 * of MIDR_EL1 and MPIDR_EL1. 7703 */ 7704 ARMCPRegInfo vpidr_regs[] = { 7705 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7706 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7707 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7708 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 7709 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7710 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7711 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7712 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7713 .type = ARM_CP_NO_RAW, 7714 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 7715 REGINFO_SENTINEL 7716 }; 7717 define_arm_cp_regs(cpu, vpidr_regs); 7718 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 7719 if (arm_feature(env, ARM_FEATURE_V8)) { 7720 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 7721 } 7722 } 7723 } 7724 if (arm_feature(env, ARM_FEATURE_EL3)) { 7725 define_arm_cp_regs(cpu, el3_cp_reginfo); 7726 ARMCPRegInfo el3_regs[] = { 7727 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7728 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7729 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 7730 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7731 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7732 .access = PL3_RW, 7733 .raw_writefn = raw_write, .writefn = sctlr_write, 7734 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7735 .resetvalue = cpu->reset_sctlr }, 7736 REGINFO_SENTINEL 7737 }; 7738 7739 define_arm_cp_regs(cpu, el3_regs); 7740 } 7741 /* The behaviour of NSACR is sufficiently various that we don't 7742 * try to describe it in a single reginfo: 7743 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7744 * reads as constant 0xc00 from NS EL1 and NS EL2 7745 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7746 * if v7 without EL3, register doesn't exist 7747 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7748 */ 7749 if (arm_feature(env, ARM_FEATURE_EL3)) { 7750 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7751 ARMCPRegInfo nsacr = { 7752 .name = "NSACR", .type = ARM_CP_CONST, 7753 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7754 .access = PL1_RW, .accessfn = nsacr_access, 7755 .resetvalue = 0xc00 7756 }; 7757 define_one_arm_cp_reg(cpu, &nsacr); 7758 } else { 7759 ARMCPRegInfo nsacr = { 7760 .name = "NSACR", 7761 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7762 .access = PL3_RW | PL1_R, 7763 .resetvalue = 0, 7764 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7765 }; 7766 define_one_arm_cp_reg(cpu, &nsacr); 7767 } 7768 } else { 7769 if (arm_feature(env, ARM_FEATURE_V8)) { 7770 ARMCPRegInfo nsacr = { 7771 .name = "NSACR", .type = ARM_CP_CONST, 7772 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7773 .access = PL1_R, 7774 .resetvalue = 0xc00 7775 }; 7776 define_one_arm_cp_reg(cpu, &nsacr); 7777 } 7778 } 7779 7780 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7781 if (arm_feature(env, ARM_FEATURE_V6)) { 7782 /* PMSAv6 not implemented */ 7783 assert(arm_feature(env, ARM_FEATURE_V7)); 7784 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7785 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7786 } else { 7787 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7788 } 7789 } else { 7790 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7791 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7792 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7793 if (cpu_isar_feature(aa32_hpd, cpu)) { 7794 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7795 } 7796 } 7797 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7798 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7799 } 7800 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7801 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7802 } 7803 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7804 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7805 } 7806 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7807 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7808 } 7809 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7810 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7811 } 7812 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7813 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7814 } 7815 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7816 define_arm_cp_regs(cpu, omap_cp_reginfo); 7817 } 7818 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7819 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7820 } 7821 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7822 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7823 } 7824 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7825 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7826 } 7827 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7828 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7829 } 7830 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7831 define_arm_cp_regs(cpu, jazelle_regs); 7832 } 7833 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7834 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7835 * be read-only (ie write causes UNDEF exception). 7836 */ 7837 { 7838 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7839 /* Pre-v8 MIDR space. 7840 * Note that the MIDR isn't a simple constant register because 7841 * of the TI925 behaviour where writes to another register can 7842 * cause the MIDR value to change. 7843 * 7844 * Unimplemented registers in the c15 0 0 0 space default to 7845 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 7846 * and friends override accordingly. 7847 */ 7848 { .name = "MIDR", 7849 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 7850 .access = PL1_R, .resetvalue = cpu->midr, 7851 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 7852 .readfn = midr_read, 7853 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7854 .type = ARM_CP_OVERRIDE }, 7855 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 7856 { .name = "DUMMY", 7857 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 7858 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7859 { .name = "DUMMY", 7860 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 7861 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7862 { .name = "DUMMY", 7863 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 7864 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7865 { .name = "DUMMY", 7866 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 7867 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7868 { .name = "DUMMY", 7869 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 7870 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7871 REGINFO_SENTINEL 7872 }; 7873 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 7874 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 7875 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 7876 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 7877 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7878 .readfn = midr_read }, 7879 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 7880 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7881 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7882 .access = PL1_R, .resetvalue = cpu->midr }, 7883 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7884 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 7885 .access = PL1_R, .resetvalue = cpu->midr }, 7886 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 7887 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 7888 .access = PL1_R, 7889 .accessfn = access_aa64_tid1, 7890 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 7891 REGINFO_SENTINEL 7892 }; 7893 ARMCPRegInfo id_cp_reginfo[] = { 7894 /* These are common to v8 and pre-v8 */ 7895 { .name = "CTR", 7896 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 7897 .access = PL1_R, .accessfn = ctr_el0_access, 7898 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7899 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 7900 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 7901 .access = PL0_R, .accessfn = ctr_el0_access, 7902 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7903 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 7904 { .name = "TCMTR", 7905 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 7906 .access = PL1_R, 7907 .accessfn = access_aa32_tid1, 7908 .type = ARM_CP_CONST, .resetvalue = 0 }, 7909 REGINFO_SENTINEL 7910 }; 7911 /* TLBTR is specific to VMSA */ 7912 ARMCPRegInfo id_tlbtr_reginfo = { 7913 .name = "TLBTR", 7914 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 7915 .access = PL1_R, 7916 .accessfn = access_aa32_tid1, 7917 .type = ARM_CP_CONST, .resetvalue = 0, 7918 }; 7919 /* MPUIR is specific to PMSA V6+ */ 7920 ARMCPRegInfo id_mpuir_reginfo = { 7921 .name = "MPUIR", 7922 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7923 .access = PL1_R, .type = ARM_CP_CONST, 7924 .resetvalue = cpu->pmsav7_dregion << 8 7925 }; 7926 ARMCPRegInfo crn0_wi_reginfo = { 7927 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 7928 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 7929 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 7930 }; 7931 #ifdef CONFIG_USER_ONLY 7932 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 7933 { .name = "MIDR_EL1", 7934 .exported_bits = 0x00000000ffffffff }, 7935 { .name = "REVIDR_EL1" }, 7936 REGUSERINFO_SENTINEL 7937 }; 7938 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 7939 #endif 7940 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 7941 arm_feature(env, ARM_FEATURE_STRONGARM)) { 7942 ARMCPRegInfo *r; 7943 /* Register the blanket "writes ignored" value first to cover the 7944 * whole space. Then update the specific ID registers to allow write 7945 * access, so that they ignore writes rather than causing them to 7946 * UNDEF. 7947 */ 7948 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 7949 for (r = id_pre_v8_midr_cp_reginfo; 7950 r->type != ARM_CP_SENTINEL; r++) { 7951 r->access = PL1_RW; 7952 } 7953 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 7954 r->access = PL1_RW; 7955 } 7956 id_mpuir_reginfo.access = PL1_RW; 7957 id_tlbtr_reginfo.access = PL1_RW; 7958 } 7959 if (arm_feature(env, ARM_FEATURE_V8)) { 7960 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 7961 } else { 7962 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 7963 } 7964 define_arm_cp_regs(cpu, id_cp_reginfo); 7965 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 7966 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 7967 } else if (arm_feature(env, ARM_FEATURE_V7)) { 7968 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 7969 } 7970 } 7971 7972 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 7973 ARMCPRegInfo mpidr_cp_reginfo[] = { 7974 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 7975 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 7976 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 7977 REGINFO_SENTINEL 7978 }; 7979 #ifdef CONFIG_USER_ONLY 7980 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 7981 { .name = "MPIDR_EL1", 7982 .fixed_bits = 0x0000000080000000 }, 7983 REGUSERINFO_SENTINEL 7984 }; 7985 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 7986 #endif 7987 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 7988 } 7989 7990 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 7991 ARMCPRegInfo auxcr_reginfo[] = { 7992 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 7993 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 7994 .access = PL1_RW, .accessfn = access_tacr, 7995 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 7996 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 7997 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 7998 .access = PL2_RW, .type = ARM_CP_CONST, 7999 .resetvalue = 0 }, 8000 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8001 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8002 .access = PL3_RW, .type = ARM_CP_CONST, 8003 .resetvalue = 0 }, 8004 REGINFO_SENTINEL 8005 }; 8006 define_arm_cp_regs(cpu, auxcr_reginfo); 8007 if (cpu_isar_feature(aa32_ac2, cpu)) { 8008 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8009 } 8010 } 8011 8012 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8013 /* 8014 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8015 * There are two flavours: 8016 * (1) older 32-bit only cores have a simple 32-bit CBAR 8017 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8018 * 32-bit register visible to AArch32 at a different encoding 8019 * to the "flavour 1" register and with the bits rearranged to 8020 * be able to squash a 64-bit address into the 32-bit view. 8021 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8022 * in future if we support AArch32-only configs of some of the 8023 * AArch64 cores we might need to add a specific feature flag 8024 * to indicate cores with "flavour 2" CBAR. 8025 */ 8026 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8027 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8028 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8029 | extract64(cpu->reset_cbar, 32, 12); 8030 ARMCPRegInfo cbar_reginfo[] = { 8031 { .name = "CBAR", 8032 .type = ARM_CP_CONST, 8033 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8034 .access = PL1_R, .resetvalue = cbar32 }, 8035 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8036 .type = ARM_CP_CONST, 8037 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8038 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8039 REGINFO_SENTINEL 8040 }; 8041 /* We don't implement a r/w 64 bit CBAR currently */ 8042 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8043 define_arm_cp_regs(cpu, cbar_reginfo); 8044 } else { 8045 ARMCPRegInfo cbar = { 8046 .name = "CBAR", 8047 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8048 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8049 .fieldoffset = offsetof(CPUARMState, 8050 cp15.c15_config_base_address) 8051 }; 8052 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8053 cbar.access = PL1_R; 8054 cbar.fieldoffset = 0; 8055 cbar.type = ARM_CP_CONST; 8056 } 8057 define_one_arm_cp_reg(cpu, &cbar); 8058 } 8059 } 8060 8061 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8062 ARMCPRegInfo vbar_cp_reginfo[] = { 8063 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8064 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8065 .access = PL1_RW, .writefn = vbar_write, 8066 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8067 offsetof(CPUARMState, cp15.vbar_ns) }, 8068 .resetvalue = 0 }, 8069 REGINFO_SENTINEL 8070 }; 8071 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8072 } 8073 8074 /* Generic registers whose values depend on the implementation */ 8075 { 8076 ARMCPRegInfo sctlr = { 8077 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8078 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8079 .access = PL1_RW, .accessfn = access_tvm_trvm, 8080 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8081 offsetof(CPUARMState, cp15.sctlr_ns) }, 8082 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8083 .raw_writefn = raw_write, 8084 }; 8085 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8086 /* Normally we would always end the TB on an SCTLR write, but Linux 8087 * arch/arm/mach-pxa/sleep.S expects two instructions following 8088 * an MMU enable to execute from cache. Imitate this behaviour. 8089 */ 8090 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8091 } 8092 define_one_arm_cp_reg(cpu, &sctlr); 8093 } 8094 8095 if (cpu_isar_feature(aa64_lor, cpu)) { 8096 define_arm_cp_regs(cpu, lor_reginfo); 8097 } 8098 if (cpu_isar_feature(aa64_pan, cpu)) { 8099 define_one_arm_cp_reg(cpu, &pan_reginfo); 8100 } 8101 #ifndef CONFIG_USER_ONLY 8102 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8103 define_arm_cp_regs(cpu, ats1e1_reginfo); 8104 } 8105 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8106 define_arm_cp_regs(cpu, ats1cp_reginfo); 8107 } 8108 #endif 8109 if (cpu_isar_feature(aa64_uao, cpu)) { 8110 define_one_arm_cp_reg(cpu, &uao_reginfo); 8111 } 8112 8113 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8114 define_arm_cp_regs(cpu, vhe_reginfo); 8115 } 8116 8117 if (cpu_isar_feature(aa64_sve, cpu)) { 8118 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8119 if (arm_feature(env, ARM_FEATURE_EL2)) { 8120 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8121 } else { 8122 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8123 } 8124 if (arm_feature(env, ARM_FEATURE_EL3)) { 8125 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8126 } 8127 } 8128 8129 #ifdef TARGET_AARCH64 8130 if (cpu_isar_feature(aa64_pauth, cpu)) { 8131 define_arm_cp_regs(cpu, pauth_reginfo); 8132 } 8133 if (cpu_isar_feature(aa64_rndr, cpu)) { 8134 define_arm_cp_regs(cpu, rndr_reginfo); 8135 } 8136 #ifndef CONFIG_USER_ONLY 8137 /* Data Cache clean instructions up to PoP */ 8138 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8139 define_one_arm_cp_reg(cpu, dcpop_reg); 8140 8141 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8142 define_one_arm_cp_reg(cpu, dcpodp_reg); 8143 } 8144 } 8145 #endif /*CONFIG_USER_ONLY*/ 8146 8147 /* 8148 * If full MTE is enabled, add all of the system registers. 8149 * If only "instructions available at EL0" are enabled, 8150 * then define only a RAZ/WI version of PSTATE.TCO. 8151 */ 8152 if (cpu_isar_feature(aa64_mte, cpu)) { 8153 define_arm_cp_regs(cpu, mte_reginfo); 8154 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8155 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8156 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8157 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8158 } 8159 #endif 8160 8161 if (cpu_isar_feature(any_predinv, cpu)) { 8162 define_arm_cp_regs(cpu, predinv_reginfo); 8163 } 8164 8165 if (cpu_isar_feature(any_ccidx, cpu)) { 8166 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8167 } 8168 8169 #ifndef CONFIG_USER_ONLY 8170 /* 8171 * Register redirections and aliases must be done last, 8172 * after the registers from the other extensions have been defined. 8173 */ 8174 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8175 define_arm_vh_e2h_redirects_aliases(cpu); 8176 } 8177 #endif 8178 } 8179 8180 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 8181 { 8182 CPUState *cs = CPU(cpu); 8183 CPUARMState *env = &cpu->env; 8184 8185 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8186 /* 8187 * The lower part of each SVE register aliases to the FPU 8188 * registers so we don't need to include both. 8189 */ 8190 #ifdef TARGET_AARCH64 8191 if (isar_feature_aa64_sve(&cpu->isar)) { 8192 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, 8193 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), 8194 "sve-registers.xml", 0); 8195 } else 8196 #endif 8197 { 8198 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 8199 aarch64_fpu_gdb_set_reg, 8200 34, "aarch64-fpu.xml", 0); 8201 } 8202 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 8203 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8204 51, "arm-neon.xml", 0); 8205 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 8206 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8207 35, "arm-vfp3.xml", 0); 8208 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 8209 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8210 19, "arm-vfp.xml", 0); 8211 } 8212 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 8213 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), 8214 "system-registers.xml", 0); 8215 8216 } 8217 8218 /* Sort alphabetically by type name, except for "any". */ 8219 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8220 { 8221 ObjectClass *class_a = (ObjectClass *)a; 8222 ObjectClass *class_b = (ObjectClass *)b; 8223 const char *name_a, *name_b; 8224 8225 name_a = object_class_get_name(class_a); 8226 name_b = object_class_get_name(class_b); 8227 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8228 return 1; 8229 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8230 return -1; 8231 } else { 8232 return strcmp(name_a, name_b); 8233 } 8234 } 8235 8236 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8237 { 8238 ObjectClass *oc = data; 8239 const char *typename; 8240 char *name; 8241 8242 typename = object_class_get_name(oc); 8243 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8244 qemu_printf(" %s\n", name); 8245 g_free(name); 8246 } 8247 8248 void arm_cpu_list(void) 8249 { 8250 GSList *list; 8251 8252 list = object_class_get_list(TYPE_ARM_CPU, false); 8253 list = g_slist_sort(list, arm_cpu_list_compare); 8254 qemu_printf("Available CPUs:\n"); 8255 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8256 g_slist_free(list); 8257 } 8258 8259 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8260 { 8261 ObjectClass *oc = data; 8262 CpuDefinitionInfoList **cpu_list = user_data; 8263 CpuDefinitionInfoList *entry; 8264 CpuDefinitionInfo *info; 8265 const char *typename; 8266 8267 typename = object_class_get_name(oc); 8268 info = g_malloc0(sizeof(*info)); 8269 info->name = g_strndup(typename, 8270 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8271 info->q_typename = g_strdup(typename); 8272 8273 entry = g_malloc0(sizeof(*entry)); 8274 entry->value = info; 8275 entry->next = *cpu_list; 8276 *cpu_list = entry; 8277 } 8278 8279 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8280 { 8281 CpuDefinitionInfoList *cpu_list = NULL; 8282 GSList *list; 8283 8284 list = object_class_get_list(TYPE_ARM_CPU, false); 8285 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8286 g_slist_free(list); 8287 8288 return cpu_list; 8289 } 8290 8291 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8292 void *opaque, int state, int secstate, 8293 int crm, int opc1, int opc2, 8294 const char *name) 8295 { 8296 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8297 * add a single reginfo struct to the hash table. 8298 */ 8299 uint32_t *key = g_new(uint32_t, 1); 8300 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8301 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8302 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8303 8304 r2->name = g_strdup(name); 8305 /* Reset the secure state to the specific incoming state. This is 8306 * necessary as the register may have been defined with both states. 8307 */ 8308 r2->secure = secstate; 8309 8310 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8311 /* Register is banked (using both entries in array). 8312 * Overwriting fieldoffset as the array is only used to define 8313 * banked registers but later only fieldoffset is used. 8314 */ 8315 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8316 } 8317 8318 if (state == ARM_CP_STATE_AA32) { 8319 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8320 /* If the register is banked then we don't need to migrate or 8321 * reset the 32-bit instance in certain cases: 8322 * 8323 * 1) If the register has both 32-bit and 64-bit instances then we 8324 * can count on the 64-bit instance taking care of the 8325 * non-secure bank. 8326 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8327 * taking care of the secure bank. This requires that separate 8328 * 32 and 64-bit definitions are provided. 8329 */ 8330 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8331 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8332 r2->type |= ARM_CP_ALIAS; 8333 } 8334 } else if ((secstate != r->secure) && !ns) { 8335 /* The register is not banked so we only want to allow migration of 8336 * the non-secure instance. 8337 */ 8338 r2->type |= ARM_CP_ALIAS; 8339 } 8340 8341 if (r->state == ARM_CP_STATE_BOTH) { 8342 /* We assume it is a cp15 register if the .cp field is left unset. 8343 */ 8344 if (r2->cp == 0) { 8345 r2->cp = 15; 8346 } 8347 8348 #ifdef HOST_WORDS_BIGENDIAN 8349 if (r2->fieldoffset) { 8350 r2->fieldoffset += sizeof(uint32_t); 8351 } 8352 #endif 8353 } 8354 } 8355 if (state == ARM_CP_STATE_AA64) { 8356 /* To allow abbreviation of ARMCPRegInfo 8357 * definitions, we treat cp == 0 as equivalent to 8358 * the value for "standard guest-visible sysreg". 8359 * STATE_BOTH definitions are also always "standard 8360 * sysreg" in their AArch64 view (the .cp value may 8361 * be non-zero for the benefit of the AArch32 view). 8362 */ 8363 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8364 r2->cp = CP_REG_ARM64_SYSREG_CP; 8365 } 8366 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8367 r2->opc0, opc1, opc2); 8368 } else { 8369 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8370 } 8371 if (opaque) { 8372 r2->opaque = opaque; 8373 } 8374 /* reginfo passed to helpers is correct for the actual access, 8375 * and is never ARM_CP_STATE_BOTH: 8376 */ 8377 r2->state = state; 8378 /* Make sure reginfo passed to helpers for wildcarded regs 8379 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8380 */ 8381 r2->crm = crm; 8382 r2->opc1 = opc1; 8383 r2->opc2 = opc2; 8384 /* By convention, for wildcarded registers only the first 8385 * entry is used for migration; the others are marked as 8386 * ALIAS so we don't try to transfer the register 8387 * multiple times. Special registers (ie NOP/WFI) are 8388 * never migratable and not even raw-accessible. 8389 */ 8390 if ((r->type & ARM_CP_SPECIAL)) { 8391 r2->type |= ARM_CP_NO_RAW; 8392 } 8393 if (((r->crm == CP_ANY) && crm != 0) || 8394 ((r->opc1 == CP_ANY) && opc1 != 0) || 8395 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8396 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8397 } 8398 8399 /* Check that raw accesses are either forbidden or handled. Note that 8400 * we can't assert this earlier because the setup of fieldoffset for 8401 * banked registers has to be done first. 8402 */ 8403 if (!(r2->type & ARM_CP_NO_RAW)) { 8404 assert(!raw_accessors_invalid(r2)); 8405 } 8406 8407 /* Overriding of an existing definition must be explicitly 8408 * requested. 8409 */ 8410 if (!(r->type & ARM_CP_OVERRIDE)) { 8411 ARMCPRegInfo *oldreg; 8412 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8413 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8414 fprintf(stderr, "Register redefined: cp=%d %d bit " 8415 "crn=%d crm=%d opc1=%d opc2=%d, " 8416 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8417 r2->crn, r2->crm, r2->opc1, r2->opc2, 8418 oldreg->name, r2->name); 8419 g_assert_not_reached(); 8420 } 8421 } 8422 g_hash_table_insert(cpu->cp_regs, key, r2); 8423 } 8424 8425 8426 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8427 const ARMCPRegInfo *r, void *opaque) 8428 { 8429 /* Define implementations of coprocessor registers. 8430 * We store these in a hashtable because typically 8431 * there are less than 150 registers in a space which 8432 * is 16*16*16*8*8 = 262144 in size. 8433 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8434 * If a register is defined twice then the second definition is 8435 * used, so this can be used to define some generic registers and 8436 * then override them with implementation specific variations. 8437 * At least one of the original and the second definition should 8438 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8439 * against accidental use. 8440 * 8441 * The state field defines whether the register is to be 8442 * visible in the AArch32 or AArch64 execution state. If the 8443 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8444 * reginfo structure for the AArch32 view, which sees the lower 8445 * 32 bits of the 64 bit register. 8446 * 8447 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8448 * be wildcarded. AArch64 registers are always considered to be 64 8449 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8450 * the register, if any. 8451 */ 8452 int crm, opc1, opc2, state; 8453 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8454 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8455 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8456 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8457 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8458 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8459 /* 64 bit registers have only CRm and Opc1 fields */ 8460 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8461 /* op0 only exists in the AArch64 encodings */ 8462 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8463 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8464 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8465 /* 8466 * This API is only for Arm's system coprocessors (14 and 15) or 8467 * (M-profile or v7A-and-earlier only) for implementation defined 8468 * coprocessors in the range 0..7. Our decode assumes this, since 8469 * 8..13 can be used for other insns including VFP and Neon. See 8470 * valid_cp() in translate.c. Assert here that we haven't tried 8471 * to use an invalid coprocessor number. 8472 */ 8473 switch (r->state) { 8474 case ARM_CP_STATE_BOTH: 8475 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8476 if (r->cp == 0) { 8477 break; 8478 } 8479 /* fall through */ 8480 case ARM_CP_STATE_AA32: 8481 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8482 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8483 assert(r->cp >= 14 && r->cp <= 15); 8484 } else { 8485 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8486 } 8487 break; 8488 case ARM_CP_STATE_AA64: 8489 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8490 break; 8491 default: 8492 g_assert_not_reached(); 8493 } 8494 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8495 * encodes a minimum access level for the register. We roll this 8496 * runtime check into our general permission check code, so check 8497 * here that the reginfo's specified permissions are strict enough 8498 * to encompass the generic architectural permission check. 8499 */ 8500 if (r->state != ARM_CP_STATE_AA32) { 8501 int mask = 0; 8502 switch (r->opc1) { 8503 case 0: 8504 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8505 mask = PL0U_R | PL1_RW; 8506 break; 8507 case 1: case 2: 8508 /* min_EL EL1 */ 8509 mask = PL1_RW; 8510 break; 8511 case 3: 8512 /* min_EL EL0 */ 8513 mask = PL0_RW; 8514 break; 8515 case 4: 8516 case 5: 8517 /* min_EL EL2 */ 8518 mask = PL2_RW; 8519 break; 8520 case 6: 8521 /* min_EL EL3 */ 8522 mask = PL3_RW; 8523 break; 8524 case 7: 8525 /* min_EL EL1, secure mode only (we don't check the latter) */ 8526 mask = PL1_RW; 8527 break; 8528 default: 8529 /* broken reginfo with out-of-range opc1 */ 8530 assert(false); 8531 break; 8532 } 8533 /* assert our permissions are not too lax (stricter is fine) */ 8534 assert((r->access & ~mask) == 0); 8535 } 8536 8537 /* Check that the register definition has enough info to handle 8538 * reads and writes if they are permitted. 8539 */ 8540 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8541 if (r->access & PL3_R) { 8542 assert((r->fieldoffset || 8543 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8544 r->readfn); 8545 } 8546 if (r->access & PL3_W) { 8547 assert((r->fieldoffset || 8548 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8549 r->writefn); 8550 } 8551 } 8552 /* Bad type field probably means missing sentinel at end of reg list */ 8553 assert(cptype_valid(r->type)); 8554 for (crm = crmmin; crm <= crmmax; crm++) { 8555 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8556 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8557 for (state = ARM_CP_STATE_AA32; 8558 state <= ARM_CP_STATE_AA64; state++) { 8559 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8560 continue; 8561 } 8562 if (state == ARM_CP_STATE_AA32) { 8563 /* Under AArch32 CP registers can be common 8564 * (same for secure and non-secure world) or banked. 8565 */ 8566 char *name; 8567 8568 switch (r->secure) { 8569 case ARM_CP_SECSTATE_S: 8570 case ARM_CP_SECSTATE_NS: 8571 add_cpreg_to_hashtable(cpu, r, opaque, state, 8572 r->secure, crm, opc1, opc2, 8573 r->name); 8574 break; 8575 default: 8576 name = g_strdup_printf("%s_S", r->name); 8577 add_cpreg_to_hashtable(cpu, r, opaque, state, 8578 ARM_CP_SECSTATE_S, 8579 crm, opc1, opc2, name); 8580 g_free(name); 8581 add_cpreg_to_hashtable(cpu, r, opaque, state, 8582 ARM_CP_SECSTATE_NS, 8583 crm, opc1, opc2, r->name); 8584 break; 8585 } 8586 } else { 8587 /* AArch64 registers get mapped to non-secure instance 8588 * of AArch32 */ 8589 add_cpreg_to_hashtable(cpu, r, opaque, state, 8590 ARM_CP_SECSTATE_NS, 8591 crm, opc1, opc2, r->name); 8592 } 8593 } 8594 } 8595 } 8596 } 8597 } 8598 8599 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8600 const ARMCPRegInfo *regs, void *opaque) 8601 { 8602 /* Define a whole list of registers */ 8603 const ARMCPRegInfo *r; 8604 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8605 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8606 } 8607 } 8608 8609 /* 8610 * Modify ARMCPRegInfo for access from userspace. 8611 * 8612 * This is a data driven modification directed by 8613 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8614 * user-space cannot alter any values and dynamic values pertaining to 8615 * execution state are hidden from user space view anyway. 8616 */ 8617 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8618 { 8619 const ARMCPRegUserSpaceInfo *m; 8620 ARMCPRegInfo *r; 8621 8622 for (m = mods; m->name; m++) { 8623 GPatternSpec *pat = NULL; 8624 if (m->is_glob) { 8625 pat = g_pattern_spec_new(m->name); 8626 } 8627 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8628 if (pat && g_pattern_match_string(pat, r->name)) { 8629 r->type = ARM_CP_CONST; 8630 r->access = PL0U_R; 8631 r->resetvalue = 0; 8632 /* continue */ 8633 } else if (strcmp(r->name, m->name) == 0) { 8634 r->type = ARM_CP_CONST; 8635 r->access = PL0U_R; 8636 r->resetvalue &= m->exported_bits; 8637 r->resetvalue |= m->fixed_bits; 8638 break; 8639 } 8640 } 8641 if (pat) { 8642 g_pattern_spec_free(pat); 8643 } 8644 } 8645 } 8646 8647 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8648 { 8649 return g_hash_table_lookup(cpregs, &encoded_cp); 8650 } 8651 8652 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8653 uint64_t value) 8654 { 8655 /* Helper coprocessor write function for write-ignore registers */ 8656 } 8657 8658 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8659 { 8660 /* Helper coprocessor write function for read-as-zero registers */ 8661 return 0; 8662 } 8663 8664 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8665 { 8666 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8667 } 8668 8669 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8670 { 8671 /* Return true if it is not valid for us to switch to 8672 * this CPU mode (ie all the UNPREDICTABLE cases in 8673 * the ARM ARM CPSRWriteByInstr pseudocode). 8674 */ 8675 8676 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8677 if (write_type == CPSRWriteByInstr && 8678 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8679 mode == ARM_CPU_MODE_HYP)) { 8680 return 1; 8681 } 8682 8683 switch (mode) { 8684 case ARM_CPU_MODE_USR: 8685 return 0; 8686 case ARM_CPU_MODE_SYS: 8687 case ARM_CPU_MODE_SVC: 8688 case ARM_CPU_MODE_ABT: 8689 case ARM_CPU_MODE_UND: 8690 case ARM_CPU_MODE_IRQ: 8691 case ARM_CPU_MODE_FIQ: 8692 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8693 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8694 */ 8695 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8696 * and CPS are treated as illegal mode changes. 8697 */ 8698 if (write_type == CPSRWriteByInstr && 8699 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8700 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8701 return 1; 8702 } 8703 return 0; 8704 case ARM_CPU_MODE_HYP: 8705 return !arm_feature(env, ARM_FEATURE_EL2) 8706 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 8707 case ARM_CPU_MODE_MON: 8708 return arm_current_el(env) < 3; 8709 default: 8710 return 1; 8711 } 8712 } 8713 8714 uint32_t cpsr_read(CPUARMState *env) 8715 { 8716 int ZF; 8717 ZF = (env->ZF == 0); 8718 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8719 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8720 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8721 | ((env->condexec_bits & 0xfc) << 8) 8722 | (env->GE << 16) | (env->daif & CPSR_AIF); 8723 } 8724 8725 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8726 CPSRWriteType write_type) 8727 { 8728 uint32_t changed_daif; 8729 8730 if (mask & CPSR_NZCV) { 8731 env->ZF = (~val) & CPSR_Z; 8732 env->NF = val; 8733 env->CF = (val >> 29) & 1; 8734 env->VF = (val << 3) & 0x80000000; 8735 } 8736 if (mask & CPSR_Q) 8737 env->QF = ((val & CPSR_Q) != 0); 8738 if (mask & CPSR_T) 8739 env->thumb = ((val & CPSR_T) != 0); 8740 if (mask & CPSR_IT_0_1) { 8741 env->condexec_bits &= ~3; 8742 env->condexec_bits |= (val >> 25) & 3; 8743 } 8744 if (mask & CPSR_IT_2_7) { 8745 env->condexec_bits &= 3; 8746 env->condexec_bits |= (val >> 8) & 0xfc; 8747 } 8748 if (mask & CPSR_GE) { 8749 env->GE = (val >> 16) & 0xf; 8750 } 8751 8752 /* In a V7 implementation that includes the security extensions but does 8753 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8754 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8755 * bits respectively. 8756 * 8757 * In a V8 implementation, it is permitted for privileged software to 8758 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8759 */ 8760 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8761 arm_feature(env, ARM_FEATURE_EL3) && 8762 !arm_feature(env, ARM_FEATURE_EL2) && 8763 !arm_is_secure(env)) { 8764 8765 changed_daif = (env->daif ^ val) & mask; 8766 8767 if (changed_daif & CPSR_A) { 8768 /* Check to see if we are allowed to change the masking of async 8769 * abort exceptions from a non-secure state. 8770 */ 8771 if (!(env->cp15.scr_el3 & SCR_AW)) { 8772 qemu_log_mask(LOG_GUEST_ERROR, 8773 "Ignoring attempt to switch CPSR_A flag from " 8774 "non-secure world with SCR.AW bit clear\n"); 8775 mask &= ~CPSR_A; 8776 } 8777 } 8778 8779 if (changed_daif & CPSR_F) { 8780 /* Check to see if we are allowed to change the masking of FIQ 8781 * exceptions from a non-secure state. 8782 */ 8783 if (!(env->cp15.scr_el3 & SCR_FW)) { 8784 qemu_log_mask(LOG_GUEST_ERROR, 8785 "Ignoring attempt to switch CPSR_F flag from " 8786 "non-secure world with SCR.FW bit clear\n"); 8787 mask &= ~CPSR_F; 8788 } 8789 8790 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8791 * If this bit is set software is not allowed to mask 8792 * FIQs, but is allowed to set CPSR_F to 0. 8793 */ 8794 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8795 (val & CPSR_F)) { 8796 qemu_log_mask(LOG_GUEST_ERROR, 8797 "Ignoring attempt to enable CPSR_F flag " 8798 "(non-maskable FIQ [NMFI] support enabled)\n"); 8799 mask &= ~CPSR_F; 8800 } 8801 } 8802 } 8803 8804 env->daif &= ~(CPSR_AIF & mask); 8805 env->daif |= val & CPSR_AIF & mask; 8806 8807 if (write_type != CPSRWriteRaw && 8808 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 8809 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 8810 /* Note that we can only get here in USR mode if this is a 8811 * gdb stub write; for this case we follow the architectural 8812 * behaviour for guest writes in USR mode of ignoring an attempt 8813 * to switch mode. (Those are caught by translate.c for writes 8814 * triggered by guest instructions.) 8815 */ 8816 mask &= ~CPSR_M; 8817 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 8818 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 8819 * v7, and has defined behaviour in v8: 8820 * + leave CPSR.M untouched 8821 * + allow changes to the other CPSR fields 8822 * + set PSTATE.IL 8823 * For user changes via the GDB stub, we don't set PSTATE.IL, 8824 * as this would be unnecessarily harsh for a user error. 8825 */ 8826 mask &= ~CPSR_M; 8827 if (write_type != CPSRWriteByGDBStub && 8828 arm_feature(env, ARM_FEATURE_V8)) { 8829 mask |= CPSR_IL; 8830 val |= CPSR_IL; 8831 } 8832 qemu_log_mask(LOG_GUEST_ERROR, 8833 "Illegal AArch32 mode switch attempt from %s to %s\n", 8834 aarch32_mode_name(env->uncached_cpsr), 8835 aarch32_mode_name(val)); 8836 } else { 8837 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 8838 write_type == CPSRWriteExceptionReturn ? 8839 "Exception return from AArch32" : 8840 "AArch32 mode switch from", 8841 aarch32_mode_name(env->uncached_cpsr), 8842 aarch32_mode_name(val), env->regs[15]); 8843 switch_mode(env, val & CPSR_M); 8844 } 8845 } 8846 mask &= ~CACHED_CPSR_BITS; 8847 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 8848 } 8849 8850 /* Sign/zero extend */ 8851 uint32_t HELPER(sxtb16)(uint32_t x) 8852 { 8853 uint32_t res; 8854 res = (uint16_t)(int8_t)x; 8855 res |= (uint32_t)(int8_t)(x >> 16) << 16; 8856 return res; 8857 } 8858 8859 uint32_t HELPER(uxtb16)(uint32_t x) 8860 { 8861 uint32_t res; 8862 res = (uint16_t)(uint8_t)x; 8863 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 8864 return res; 8865 } 8866 8867 int32_t HELPER(sdiv)(int32_t num, int32_t den) 8868 { 8869 if (den == 0) 8870 return 0; 8871 if (num == INT_MIN && den == -1) 8872 return INT_MIN; 8873 return num / den; 8874 } 8875 8876 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 8877 { 8878 if (den == 0) 8879 return 0; 8880 return num / den; 8881 } 8882 8883 uint32_t HELPER(rbit)(uint32_t x) 8884 { 8885 return revbit32(x); 8886 } 8887 8888 #ifdef CONFIG_USER_ONLY 8889 8890 static void switch_mode(CPUARMState *env, int mode) 8891 { 8892 ARMCPU *cpu = env_archcpu(env); 8893 8894 if (mode != ARM_CPU_MODE_USR) { 8895 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 8896 } 8897 } 8898 8899 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 8900 uint32_t cur_el, bool secure) 8901 { 8902 return 1; 8903 } 8904 8905 void aarch64_sync_64_to_32(CPUARMState *env) 8906 { 8907 g_assert_not_reached(); 8908 } 8909 8910 #else 8911 8912 static void switch_mode(CPUARMState *env, int mode) 8913 { 8914 int old_mode; 8915 int i; 8916 8917 old_mode = env->uncached_cpsr & CPSR_M; 8918 if (mode == old_mode) 8919 return; 8920 8921 if (old_mode == ARM_CPU_MODE_FIQ) { 8922 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8923 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 8924 } else if (mode == ARM_CPU_MODE_FIQ) { 8925 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8926 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 8927 } 8928 8929 i = bank_number(old_mode); 8930 env->banked_r13[i] = env->regs[13]; 8931 env->banked_spsr[i] = env->spsr; 8932 8933 i = bank_number(mode); 8934 env->regs[13] = env->banked_r13[i]; 8935 env->spsr = env->banked_spsr[i]; 8936 8937 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 8938 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 8939 } 8940 8941 /* Physical Interrupt Target EL Lookup Table 8942 * 8943 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 8944 * 8945 * The below multi-dimensional table is used for looking up the target 8946 * exception level given numerous condition criteria. Specifically, the 8947 * target EL is based on SCR and HCR routing controls as well as the 8948 * currently executing EL and secure state. 8949 * 8950 * Dimensions: 8951 * target_el_table[2][2][2][2][2][4] 8952 * | | | | | +--- Current EL 8953 * | | | | +------ Non-secure(0)/Secure(1) 8954 * | | | +--------- HCR mask override 8955 * | | +------------ SCR exec state control 8956 * | +--------------- SCR mask override 8957 * +------------------ 32-bit(0)/64-bit(1) EL3 8958 * 8959 * The table values are as such: 8960 * 0-3 = EL0-EL3 8961 * -1 = Cannot occur 8962 * 8963 * The ARM ARM target EL table includes entries indicating that an "exception 8964 * is not taken". The two cases where this is applicable are: 8965 * 1) An exception is taken from EL3 but the SCR does not have the exception 8966 * routed to EL3. 8967 * 2) An exception is taken from EL2 but the HCR does not have the exception 8968 * routed to EL2. 8969 * In these two cases, the below table contain a target of EL1. This value is 8970 * returned as it is expected that the consumer of the table data will check 8971 * for "target EL >= current EL" to ensure the exception is not taken. 8972 * 8973 * SCR HCR 8974 * 64 EA AMO From 8975 * BIT IRQ IMO Non-secure Secure 8976 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 8977 */ 8978 static const int8_t target_el_table[2][2][2][2][2][4] = { 8979 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 8980 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 8981 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 8982 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 8983 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 8984 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 8985 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 8986 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 8987 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 8988 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 8989 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 8990 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 8991 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 8992 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 8993 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 8994 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 8995 }; 8996 8997 /* 8998 * Determine the target EL for physical exceptions 8999 */ 9000 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9001 uint32_t cur_el, bool secure) 9002 { 9003 CPUARMState *env = cs->env_ptr; 9004 bool rw; 9005 bool scr; 9006 bool hcr; 9007 int target_el; 9008 /* Is the highest EL AArch64? */ 9009 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9010 uint64_t hcr_el2; 9011 9012 if (arm_feature(env, ARM_FEATURE_EL3)) { 9013 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9014 } else { 9015 /* Either EL2 is the highest EL (and so the EL2 register width 9016 * is given by is64); or there is no EL2 or EL3, in which case 9017 * the value of 'rw' does not affect the table lookup anyway. 9018 */ 9019 rw = is64; 9020 } 9021 9022 hcr_el2 = arm_hcr_el2_eff(env); 9023 switch (excp_idx) { 9024 case EXCP_IRQ: 9025 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9026 hcr = hcr_el2 & HCR_IMO; 9027 break; 9028 case EXCP_FIQ: 9029 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9030 hcr = hcr_el2 & HCR_FMO; 9031 break; 9032 default: 9033 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9034 hcr = hcr_el2 & HCR_AMO; 9035 break; 9036 }; 9037 9038 /* 9039 * For these purposes, TGE and AMO/IMO/FMO both force the 9040 * interrupt to EL2. Fold TGE into the bit extracted above. 9041 */ 9042 hcr |= (hcr_el2 & HCR_TGE) != 0; 9043 9044 /* Perform a table-lookup for the target EL given the current state */ 9045 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9046 9047 assert(target_el > 0); 9048 9049 return target_el; 9050 } 9051 9052 void arm_log_exception(int idx) 9053 { 9054 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9055 const char *exc = NULL; 9056 static const char * const excnames[] = { 9057 [EXCP_UDEF] = "Undefined Instruction", 9058 [EXCP_SWI] = "SVC", 9059 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9060 [EXCP_DATA_ABORT] = "Data Abort", 9061 [EXCP_IRQ] = "IRQ", 9062 [EXCP_FIQ] = "FIQ", 9063 [EXCP_BKPT] = "Breakpoint", 9064 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9065 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9066 [EXCP_HVC] = "Hypervisor Call", 9067 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9068 [EXCP_SMC] = "Secure Monitor Call", 9069 [EXCP_VIRQ] = "Virtual IRQ", 9070 [EXCP_VFIQ] = "Virtual FIQ", 9071 [EXCP_SEMIHOST] = "Semihosting call", 9072 [EXCP_NOCP] = "v7M NOCP UsageFault", 9073 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9074 [EXCP_STKOF] = "v8M STKOF UsageFault", 9075 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9076 [EXCP_LSERR] = "v8M LSERR UsageFault", 9077 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9078 }; 9079 9080 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9081 exc = excnames[idx]; 9082 } 9083 if (!exc) { 9084 exc = "unknown"; 9085 } 9086 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 9087 } 9088 } 9089 9090 /* 9091 * Function used to synchronize QEMU's AArch64 register set with AArch32 9092 * register set. This is necessary when switching between AArch32 and AArch64 9093 * execution state. 9094 */ 9095 void aarch64_sync_32_to_64(CPUARMState *env) 9096 { 9097 int i; 9098 uint32_t mode = env->uncached_cpsr & CPSR_M; 9099 9100 /* We can blanket copy R[0:7] to X[0:7] */ 9101 for (i = 0; i < 8; i++) { 9102 env->xregs[i] = env->regs[i]; 9103 } 9104 9105 /* 9106 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9107 * Otherwise, they come from the banked user regs. 9108 */ 9109 if (mode == ARM_CPU_MODE_FIQ) { 9110 for (i = 8; i < 13; i++) { 9111 env->xregs[i] = env->usr_regs[i - 8]; 9112 } 9113 } else { 9114 for (i = 8; i < 13; i++) { 9115 env->xregs[i] = env->regs[i]; 9116 } 9117 } 9118 9119 /* 9120 * Registers x13-x23 are the various mode SP and FP registers. Registers 9121 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9122 * from the mode banked register. 9123 */ 9124 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9125 env->xregs[13] = env->regs[13]; 9126 env->xregs[14] = env->regs[14]; 9127 } else { 9128 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9129 /* HYP is an exception in that it is copied from r14 */ 9130 if (mode == ARM_CPU_MODE_HYP) { 9131 env->xregs[14] = env->regs[14]; 9132 } else { 9133 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9134 } 9135 } 9136 9137 if (mode == ARM_CPU_MODE_HYP) { 9138 env->xregs[15] = env->regs[13]; 9139 } else { 9140 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9141 } 9142 9143 if (mode == ARM_CPU_MODE_IRQ) { 9144 env->xregs[16] = env->regs[14]; 9145 env->xregs[17] = env->regs[13]; 9146 } else { 9147 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9148 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9149 } 9150 9151 if (mode == ARM_CPU_MODE_SVC) { 9152 env->xregs[18] = env->regs[14]; 9153 env->xregs[19] = env->regs[13]; 9154 } else { 9155 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9156 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9157 } 9158 9159 if (mode == ARM_CPU_MODE_ABT) { 9160 env->xregs[20] = env->regs[14]; 9161 env->xregs[21] = env->regs[13]; 9162 } else { 9163 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9164 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9165 } 9166 9167 if (mode == ARM_CPU_MODE_UND) { 9168 env->xregs[22] = env->regs[14]; 9169 env->xregs[23] = env->regs[13]; 9170 } else { 9171 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9172 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9173 } 9174 9175 /* 9176 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9177 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9178 * FIQ bank for r8-r14. 9179 */ 9180 if (mode == ARM_CPU_MODE_FIQ) { 9181 for (i = 24; i < 31; i++) { 9182 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9183 } 9184 } else { 9185 for (i = 24; i < 29; i++) { 9186 env->xregs[i] = env->fiq_regs[i - 24]; 9187 } 9188 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9189 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9190 } 9191 9192 env->pc = env->regs[15]; 9193 } 9194 9195 /* 9196 * Function used to synchronize QEMU's AArch32 register set with AArch64 9197 * register set. This is necessary when switching between AArch32 and AArch64 9198 * execution state. 9199 */ 9200 void aarch64_sync_64_to_32(CPUARMState *env) 9201 { 9202 int i; 9203 uint32_t mode = env->uncached_cpsr & CPSR_M; 9204 9205 /* We can blanket copy X[0:7] to R[0:7] */ 9206 for (i = 0; i < 8; i++) { 9207 env->regs[i] = env->xregs[i]; 9208 } 9209 9210 /* 9211 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9212 * Otherwise, we copy x8-x12 into the banked user regs. 9213 */ 9214 if (mode == ARM_CPU_MODE_FIQ) { 9215 for (i = 8; i < 13; i++) { 9216 env->usr_regs[i - 8] = env->xregs[i]; 9217 } 9218 } else { 9219 for (i = 8; i < 13; i++) { 9220 env->regs[i] = env->xregs[i]; 9221 } 9222 } 9223 9224 /* 9225 * Registers r13 & r14 depend on the current mode. 9226 * If we are in a given mode, we copy the corresponding x registers to r13 9227 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9228 * for the mode. 9229 */ 9230 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9231 env->regs[13] = env->xregs[13]; 9232 env->regs[14] = env->xregs[14]; 9233 } else { 9234 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9235 9236 /* 9237 * HYP is an exception in that it does not have its own banked r14 but 9238 * shares the USR r14 9239 */ 9240 if (mode == ARM_CPU_MODE_HYP) { 9241 env->regs[14] = env->xregs[14]; 9242 } else { 9243 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9244 } 9245 } 9246 9247 if (mode == ARM_CPU_MODE_HYP) { 9248 env->regs[13] = env->xregs[15]; 9249 } else { 9250 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9251 } 9252 9253 if (mode == ARM_CPU_MODE_IRQ) { 9254 env->regs[14] = env->xregs[16]; 9255 env->regs[13] = env->xregs[17]; 9256 } else { 9257 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9258 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9259 } 9260 9261 if (mode == ARM_CPU_MODE_SVC) { 9262 env->regs[14] = env->xregs[18]; 9263 env->regs[13] = env->xregs[19]; 9264 } else { 9265 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9266 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9267 } 9268 9269 if (mode == ARM_CPU_MODE_ABT) { 9270 env->regs[14] = env->xregs[20]; 9271 env->regs[13] = env->xregs[21]; 9272 } else { 9273 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9274 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9275 } 9276 9277 if (mode == ARM_CPU_MODE_UND) { 9278 env->regs[14] = env->xregs[22]; 9279 env->regs[13] = env->xregs[23]; 9280 } else { 9281 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9282 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9283 } 9284 9285 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9286 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9287 * FIQ bank for r8-r14. 9288 */ 9289 if (mode == ARM_CPU_MODE_FIQ) { 9290 for (i = 24; i < 31; i++) { 9291 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9292 } 9293 } else { 9294 for (i = 24; i < 29; i++) { 9295 env->fiq_regs[i - 24] = env->xregs[i]; 9296 } 9297 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9298 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9299 } 9300 9301 env->regs[15] = env->pc; 9302 } 9303 9304 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9305 uint32_t mask, uint32_t offset, 9306 uint32_t newpc) 9307 { 9308 int new_el; 9309 9310 /* Change the CPU state so as to actually take the exception. */ 9311 switch_mode(env, new_mode); 9312 9313 /* 9314 * For exceptions taken to AArch32 we must clear the SS bit in both 9315 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9316 */ 9317 env->uncached_cpsr &= ~PSTATE_SS; 9318 env->spsr = cpsr_read(env); 9319 /* Clear IT bits. */ 9320 env->condexec_bits = 0; 9321 /* Switch to the new mode, and to the correct instruction set. */ 9322 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9323 9324 /* This must be after mode switching. */ 9325 new_el = arm_current_el(env); 9326 9327 /* Set new mode endianness */ 9328 env->uncached_cpsr &= ~CPSR_E; 9329 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9330 env->uncached_cpsr |= CPSR_E; 9331 } 9332 /* J and IL must always be cleared for exception entry */ 9333 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9334 env->daif |= mask; 9335 9336 if (new_mode == ARM_CPU_MODE_HYP) { 9337 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9338 env->elr_el[2] = env->regs[15]; 9339 } else { 9340 /* CPSR.PAN is normally preserved preserved unless... */ 9341 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9342 switch (new_el) { 9343 case 3: 9344 if (!arm_is_secure_below_el3(env)) { 9345 /* ... the target is EL3, from non-secure state. */ 9346 env->uncached_cpsr &= ~CPSR_PAN; 9347 break; 9348 } 9349 /* ... the target is EL3, from secure state ... */ 9350 /* fall through */ 9351 case 1: 9352 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9353 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9354 env->uncached_cpsr |= CPSR_PAN; 9355 } 9356 break; 9357 } 9358 } 9359 /* 9360 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9361 * and we should just guard the thumb mode on V4 9362 */ 9363 if (arm_feature(env, ARM_FEATURE_V4T)) { 9364 env->thumb = 9365 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9366 } 9367 env->regs[14] = env->regs[15] + offset; 9368 } 9369 env->regs[15] = newpc; 9370 arm_rebuild_hflags(env); 9371 } 9372 9373 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9374 { 9375 /* 9376 * Handle exception entry to Hyp mode; this is sufficiently 9377 * different to entry to other AArch32 modes that we handle it 9378 * separately here. 9379 * 9380 * The vector table entry used is always the 0x14 Hyp mode entry point, 9381 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9382 * The offset applied to the preferred return address is always zero 9383 * (see DDI0487C.a section G1.12.3). 9384 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9385 */ 9386 uint32_t addr, mask; 9387 ARMCPU *cpu = ARM_CPU(cs); 9388 CPUARMState *env = &cpu->env; 9389 9390 switch (cs->exception_index) { 9391 case EXCP_UDEF: 9392 addr = 0x04; 9393 break; 9394 case EXCP_SWI: 9395 addr = 0x14; 9396 break; 9397 case EXCP_BKPT: 9398 /* Fall through to prefetch abort. */ 9399 case EXCP_PREFETCH_ABORT: 9400 env->cp15.ifar_s = env->exception.vaddress; 9401 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9402 (uint32_t)env->exception.vaddress); 9403 addr = 0x0c; 9404 break; 9405 case EXCP_DATA_ABORT: 9406 env->cp15.dfar_s = env->exception.vaddress; 9407 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9408 (uint32_t)env->exception.vaddress); 9409 addr = 0x10; 9410 break; 9411 case EXCP_IRQ: 9412 addr = 0x18; 9413 break; 9414 case EXCP_FIQ: 9415 addr = 0x1c; 9416 break; 9417 case EXCP_HVC: 9418 addr = 0x08; 9419 break; 9420 case EXCP_HYP_TRAP: 9421 addr = 0x14; 9422 break; 9423 default: 9424 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9425 } 9426 9427 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9428 if (!arm_feature(env, ARM_FEATURE_V8)) { 9429 /* 9430 * QEMU syndrome values are v8-style. v7 has the IL bit 9431 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9432 * If this is a v7 CPU, squash the IL bit in those cases. 9433 */ 9434 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9435 (cs->exception_index == EXCP_DATA_ABORT && 9436 !(env->exception.syndrome & ARM_EL_ISV)) || 9437 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9438 env->exception.syndrome &= ~ARM_EL_IL; 9439 } 9440 } 9441 env->cp15.esr_el[2] = env->exception.syndrome; 9442 } 9443 9444 if (arm_current_el(env) != 2 && addr < 0x14) { 9445 addr = 0x14; 9446 } 9447 9448 mask = 0; 9449 if (!(env->cp15.scr_el3 & SCR_EA)) { 9450 mask |= CPSR_A; 9451 } 9452 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9453 mask |= CPSR_I; 9454 } 9455 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9456 mask |= CPSR_F; 9457 } 9458 9459 addr += env->cp15.hvbar; 9460 9461 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9462 } 9463 9464 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9465 { 9466 ARMCPU *cpu = ARM_CPU(cs); 9467 CPUARMState *env = &cpu->env; 9468 uint32_t addr; 9469 uint32_t mask; 9470 int new_mode; 9471 uint32_t offset; 9472 uint32_t moe; 9473 9474 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9475 switch (syn_get_ec(env->exception.syndrome)) { 9476 case EC_BREAKPOINT: 9477 case EC_BREAKPOINT_SAME_EL: 9478 moe = 1; 9479 break; 9480 case EC_WATCHPOINT: 9481 case EC_WATCHPOINT_SAME_EL: 9482 moe = 10; 9483 break; 9484 case EC_AA32_BKPT: 9485 moe = 3; 9486 break; 9487 case EC_VECTORCATCH: 9488 moe = 5; 9489 break; 9490 default: 9491 moe = 0; 9492 break; 9493 } 9494 9495 if (moe) { 9496 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9497 } 9498 9499 if (env->exception.target_el == 2) { 9500 arm_cpu_do_interrupt_aarch32_hyp(cs); 9501 return; 9502 } 9503 9504 switch (cs->exception_index) { 9505 case EXCP_UDEF: 9506 new_mode = ARM_CPU_MODE_UND; 9507 addr = 0x04; 9508 mask = CPSR_I; 9509 if (env->thumb) 9510 offset = 2; 9511 else 9512 offset = 4; 9513 break; 9514 case EXCP_SWI: 9515 new_mode = ARM_CPU_MODE_SVC; 9516 addr = 0x08; 9517 mask = CPSR_I; 9518 /* The PC already points to the next instruction. */ 9519 offset = 0; 9520 break; 9521 case EXCP_BKPT: 9522 /* Fall through to prefetch abort. */ 9523 case EXCP_PREFETCH_ABORT: 9524 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9525 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9526 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9527 env->exception.fsr, (uint32_t)env->exception.vaddress); 9528 new_mode = ARM_CPU_MODE_ABT; 9529 addr = 0x0c; 9530 mask = CPSR_A | CPSR_I; 9531 offset = 4; 9532 break; 9533 case EXCP_DATA_ABORT: 9534 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9535 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9536 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9537 env->exception.fsr, 9538 (uint32_t)env->exception.vaddress); 9539 new_mode = ARM_CPU_MODE_ABT; 9540 addr = 0x10; 9541 mask = CPSR_A | CPSR_I; 9542 offset = 8; 9543 break; 9544 case EXCP_IRQ: 9545 new_mode = ARM_CPU_MODE_IRQ; 9546 addr = 0x18; 9547 /* Disable IRQ and imprecise data aborts. */ 9548 mask = CPSR_A | CPSR_I; 9549 offset = 4; 9550 if (env->cp15.scr_el3 & SCR_IRQ) { 9551 /* IRQ routed to monitor mode */ 9552 new_mode = ARM_CPU_MODE_MON; 9553 mask |= CPSR_F; 9554 } 9555 break; 9556 case EXCP_FIQ: 9557 new_mode = ARM_CPU_MODE_FIQ; 9558 addr = 0x1c; 9559 /* Disable FIQ, IRQ and imprecise data aborts. */ 9560 mask = CPSR_A | CPSR_I | CPSR_F; 9561 if (env->cp15.scr_el3 & SCR_FIQ) { 9562 /* FIQ routed to monitor mode */ 9563 new_mode = ARM_CPU_MODE_MON; 9564 } 9565 offset = 4; 9566 break; 9567 case EXCP_VIRQ: 9568 new_mode = ARM_CPU_MODE_IRQ; 9569 addr = 0x18; 9570 /* Disable IRQ and imprecise data aborts. */ 9571 mask = CPSR_A | CPSR_I; 9572 offset = 4; 9573 break; 9574 case EXCP_VFIQ: 9575 new_mode = ARM_CPU_MODE_FIQ; 9576 addr = 0x1c; 9577 /* Disable FIQ, IRQ and imprecise data aborts. */ 9578 mask = CPSR_A | CPSR_I | CPSR_F; 9579 offset = 4; 9580 break; 9581 case EXCP_SMC: 9582 new_mode = ARM_CPU_MODE_MON; 9583 addr = 0x08; 9584 mask = CPSR_A | CPSR_I | CPSR_F; 9585 offset = 0; 9586 break; 9587 default: 9588 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9589 return; /* Never happens. Keep compiler happy. */ 9590 } 9591 9592 if (new_mode == ARM_CPU_MODE_MON) { 9593 addr += env->cp15.mvbar; 9594 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9595 /* High vectors. When enabled, base address cannot be remapped. */ 9596 addr += 0xffff0000; 9597 } else { 9598 /* ARM v7 architectures provide a vector base address register to remap 9599 * the interrupt vector table. 9600 * This register is only followed in non-monitor mode, and is banked. 9601 * Note: only bits 31:5 are valid. 9602 */ 9603 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9604 } 9605 9606 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9607 env->cp15.scr_el3 &= ~SCR_NS; 9608 } 9609 9610 take_aarch32_exception(env, new_mode, mask, offset, addr); 9611 } 9612 9613 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9614 { 9615 /* 9616 * Return the register number of the AArch64 view of the AArch32 9617 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9618 * be that of the AArch32 mode the exception came from. 9619 */ 9620 int mode = env->uncached_cpsr & CPSR_M; 9621 9622 switch (aarch32_reg) { 9623 case 0 ... 7: 9624 return aarch32_reg; 9625 case 8 ... 12: 9626 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9627 case 13: 9628 switch (mode) { 9629 case ARM_CPU_MODE_USR: 9630 case ARM_CPU_MODE_SYS: 9631 return 13; 9632 case ARM_CPU_MODE_HYP: 9633 return 15; 9634 case ARM_CPU_MODE_IRQ: 9635 return 17; 9636 case ARM_CPU_MODE_SVC: 9637 return 19; 9638 case ARM_CPU_MODE_ABT: 9639 return 21; 9640 case ARM_CPU_MODE_UND: 9641 return 23; 9642 case ARM_CPU_MODE_FIQ: 9643 return 29; 9644 default: 9645 g_assert_not_reached(); 9646 } 9647 case 14: 9648 switch (mode) { 9649 case ARM_CPU_MODE_USR: 9650 case ARM_CPU_MODE_SYS: 9651 case ARM_CPU_MODE_HYP: 9652 return 14; 9653 case ARM_CPU_MODE_IRQ: 9654 return 16; 9655 case ARM_CPU_MODE_SVC: 9656 return 18; 9657 case ARM_CPU_MODE_ABT: 9658 return 20; 9659 case ARM_CPU_MODE_UND: 9660 return 22; 9661 case ARM_CPU_MODE_FIQ: 9662 return 30; 9663 default: 9664 g_assert_not_reached(); 9665 } 9666 case 15: 9667 return 31; 9668 default: 9669 g_assert_not_reached(); 9670 } 9671 } 9672 9673 /* Handle exception entry to a target EL which is using AArch64 */ 9674 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9675 { 9676 ARMCPU *cpu = ARM_CPU(cs); 9677 CPUARMState *env = &cpu->env; 9678 unsigned int new_el = env->exception.target_el; 9679 target_ulong addr = env->cp15.vbar_el[new_el]; 9680 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9681 unsigned int old_mode; 9682 unsigned int cur_el = arm_current_el(env); 9683 int rt; 9684 9685 /* 9686 * Note that new_el can never be 0. If cur_el is 0, then 9687 * el0_a64 is is_a64(), else el0_a64 is ignored. 9688 */ 9689 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9690 9691 if (cur_el < new_el) { 9692 /* Entry vector offset depends on whether the implemented EL 9693 * immediately lower than the target level is using AArch32 or AArch64 9694 */ 9695 bool is_aa64; 9696 uint64_t hcr; 9697 9698 switch (new_el) { 9699 case 3: 9700 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9701 break; 9702 case 2: 9703 hcr = arm_hcr_el2_eff(env); 9704 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9705 is_aa64 = (hcr & HCR_RW) != 0; 9706 break; 9707 } 9708 /* fall through */ 9709 case 1: 9710 is_aa64 = is_a64(env); 9711 break; 9712 default: 9713 g_assert_not_reached(); 9714 } 9715 9716 if (is_aa64) { 9717 addr += 0x400; 9718 } else { 9719 addr += 0x600; 9720 } 9721 } else if (pstate_read(env) & PSTATE_SP) { 9722 addr += 0x200; 9723 } 9724 9725 switch (cs->exception_index) { 9726 case EXCP_PREFETCH_ABORT: 9727 case EXCP_DATA_ABORT: 9728 env->cp15.far_el[new_el] = env->exception.vaddress; 9729 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9730 env->cp15.far_el[new_el]); 9731 /* fall through */ 9732 case EXCP_BKPT: 9733 case EXCP_UDEF: 9734 case EXCP_SWI: 9735 case EXCP_HVC: 9736 case EXCP_HYP_TRAP: 9737 case EXCP_SMC: 9738 switch (syn_get_ec(env->exception.syndrome)) { 9739 case EC_ADVSIMDFPACCESSTRAP: 9740 /* 9741 * QEMU internal FP/SIMD syndromes from AArch32 include the 9742 * TA and coproc fields which are only exposed if the exception 9743 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9744 * AArch64 format syndrome. 9745 */ 9746 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9747 break; 9748 case EC_CP14RTTRAP: 9749 case EC_CP15RTTRAP: 9750 case EC_CP14DTTRAP: 9751 /* 9752 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 9753 * the raw register field from the insn; when taking this to 9754 * AArch64 we must convert it to the AArch64 view of the register 9755 * number. Notice that we read a 4-bit AArch32 register number and 9756 * write back a 5-bit AArch64 one. 9757 */ 9758 rt = extract32(env->exception.syndrome, 5, 4); 9759 rt = aarch64_regnum(env, rt); 9760 env->exception.syndrome = deposit32(env->exception.syndrome, 9761 5, 5, rt); 9762 break; 9763 case EC_CP15RRTTRAP: 9764 case EC_CP14RRTTRAP: 9765 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 9766 rt = extract32(env->exception.syndrome, 5, 4); 9767 rt = aarch64_regnum(env, rt); 9768 env->exception.syndrome = deposit32(env->exception.syndrome, 9769 5, 5, rt); 9770 rt = extract32(env->exception.syndrome, 10, 4); 9771 rt = aarch64_regnum(env, rt); 9772 env->exception.syndrome = deposit32(env->exception.syndrome, 9773 10, 5, rt); 9774 break; 9775 } 9776 env->cp15.esr_el[new_el] = env->exception.syndrome; 9777 break; 9778 case EXCP_IRQ: 9779 case EXCP_VIRQ: 9780 addr += 0x80; 9781 break; 9782 case EXCP_FIQ: 9783 case EXCP_VFIQ: 9784 addr += 0x100; 9785 break; 9786 default: 9787 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9788 } 9789 9790 if (is_a64(env)) { 9791 old_mode = pstate_read(env); 9792 aarch64_save_sp(env, arm_current_el(env)); 9793 env->elr_el[new_el] = env->pc; 9794 } else { 9795 old_mode = cpsr_read(env); 9796 env->elr_el[new_el] = env->regs[15]; 9797 9798 aarch64_sync_32_to_64(env); 9799 9800 env->condexec_bits = 0; 9801 } 9802 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 9803 9804 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9805 env->elr_el[new_el]); 9806 9807 if (cpu_isar_feature(aa64_pan, cpu)) { 9808 /* The value of PSTATE.PAN is normally preserved, except when ... */ 9809 new_mode |= old_mode & PSTATE_PAN; 9810 switch (new_el) { 9811 case 2: 9812 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 9813 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 9814 != (HCR_E2H | HCR_TGE)) { 9815 break; 9816 } 9817 /* fall through */ 9818 case 1: 9819 /* ... the target is EL1 ... */ 9820 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 9821 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 9822 new_mode |= PSTATE_PAN; 9823 } 9824 break; 9825 } 9826 } 9827 if (cpu_isar_feature(aa64_mte, cpu)) { 9828 new_mode |= PSTATE_TCO; 9829 } 9830 9831 pstate_write(env, PSTATE_DAIF | new_mode); 9832 env->aarch64 = 1; 9833 aarch64_restore_sp(env, new_el); 9834 helper_rebuild_hflags_a64(env, new_el); 9835 9836 env->pc = addr; 9837 9838 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 9839 new_el, env->pc, pstate_read(env)); 9840 } 9841 9842 /* 9843 * Do semihosting call and set the appropriate return value. All the 9844 * permission and validity checks have been done at translate time. 9845 * 9846 * We only see semihosting exceptions in TCG only as they are not 9847 * trapped to the hypervisor in KVM. 9848 */ 9849 #ifdef CONFIG_TCG 9850 static void handle_semihosting(CPUState *cs) 9851 { 9852 ARMCPU *cpu = ARM_CPU(cs); 9853 CPUARMState *env = &cpu->env; 9854 9855 if (is_a64(env)) { 9856 qemu_log_mask(CPU_LOG_INT, 9857 "...handling as semihosting call 0x%" PRIx64 "\n", 9858 env->xregs[0]); 9859 env->xregs[0] = do_arm_semihosting(env); 9860 env->pc += 4; 9861 } else { 9862 qemu_log_mask(CPU_LOG_INT, 9863 "...handling as semihosting call 0x%x\n", 9864 env->regs[0]); 9865 env->regs[0] = do_arm_semihosting(env); 9866 env->regs[15] += env->thumb ? 2 : 4; 9867 } 9868 } 9869 #endif 9870 9871 /* Handle a CPU exception for A and R profile CPUs. 9872 * Do any appropriate logging, handle PSCI calls, and then hand off 9873 * to the AArch64-entry or AArch32-entry function depending on the 9874 * target exception level's register width. 9875 */ 9876 void arm_cpu_do_interrupt(CPUState *cs) 9877 { 9878 ARMCPU *cpu = ARM_CPU(cs); 9879 CPUARMState *env = &cpu->env; 9880 unsigned int new_el = env->exception.target_el; 9881 9882 assert(!arm_feature(env, ARM_FEATURE_M)); 9883 9884 arm_log_exception(cs->exception_index); 9885 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 9886 new_el); 9887 if (qemu_loglevel_mask(CPU_LOG_INT) 9888 && !excp_is_internal(cs->exception_index)) { 9889 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 9890 syn_get_ec(env->exception.syndrome), 9891 env->exception.syndrome); 9892 } 9893 9894 if (arm_is_psci_call(cpu, cs->exception_index)) { 9895 arm_handle_psci_call(cpu); 9896 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 9897 return; 9898 } 9899 9900 /* 9901 * Semihosting semantics depend on the register width of the code 9902 * that caused the exception, not the target exception level, so 9903 * must be handled here. 9904 */ 9905 #ifdef CONFIG_TCG 9906 if (cs->exception_index == EXCP_SEMIHOST) { 9907 handle_semihosting(cs); 9908 return; 9909 } 9910 #endif 9911 9912 /* Hooks may change global state so BQL should be held, also the 9913 * BQL needs to be held for any modification of 9914 * cs->interrupt_request. 9915 */ 9916 g_assert(qemu_mutex_iothread_locked()); 9917 9918 arm_call_pre_el_change_hook(cpu); 9919 9920 assert(!excp_is_internal(cs->exception_index)); 9921 if (arm_el_is_aa64(env, new_el)) { 9922 arm_cpu_do_interrupt_aarch64(cs); 9923 } else { 9924 arm_cpu_do_interrupt_aarch32(cs); 9925 } 9926 9927 arm_call_el_change_hook(cpu); 9928 9929 if (!kvm_enabled()) { 9930 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 9931 } 9932 } 9933 #endif /* !CONFIG_USER_ONLY */ 9934 9935 uint64_t arm_sctlr(CPUARMState *env, int el) 9936 { 9937 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 9938 if (el == 0) { 9939 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 9940 el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1); 9941 } 9942 return env->cp15.sctlr_el[el]; 9943 } 9944 9945 /* Return the SCTLR value which controls this address translation regime */ 9946 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 9947 { 9948 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 9949 } 9950 9951 #ifndef CONFIG_USER_ONLY 9952 9953 /* Return true if the specified stage of address translation is disabled */ 9954 static inline bool regime_translation_disabled(CPUARMState *env, 9955 ARMMMUIdx mmu_idx) 9956 { 9957 if (arm_feature(env, ARM_FEATURE_M)) { 9958 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 9959 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 9960 case R_V7M_MPU_CTRL_ENABLE_MASK: 9961 /* Enabled, but not for HardFault and NMI */ 9962 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 9963 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 9964 /* Enabled for all cases */ 9965 return false; 9966 case 0: 9967 default: 9968 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 9969 * we warned about that in armv7m_nvic.c when the guest set it. 9970 */ 9971 return true; 9972 } 9973 } 9974 9975 if (mmu_idx == ARMMMUIdx_Stage2) { 9976 /* HCR.DC means HCR.VM behaves as 1 */ 9977 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 9978 } 9979 9980 if (env->cp15.hcr_el2 & HCR_TGE) { 9981 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 9982 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 9983 return true; 9984 } 9985 } 9986 9987 if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 9988 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 9989 return true; 9990 } 9991 9992 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 9993 } 9994 9995 static inline bool regime_translation_big_endian(CPUARMState *env, 9996 ARMMMUIdx mmu_idx) 9997 { 9998 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 9999 } 10000 10001 /* Return the TTBR associated with this translation regime */ 10002 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10003 int ttbrn) 10004 { 10005 if (mmu_idx == ARMMMUIdx_Stage2) { 10006 return env->cp15.vttbr_el2; 10007 } 10008 if (ttbrn == 0) { 10009 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10010 } else { 10011 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10012 } 10013 } 10014 10015 #endif /* !CONFIG_USER_ONLY */ 10016 10017 /* Convert a possible stage1+2 MMU index into the appropriate 10018 * stage 1 MMU index 10019 */ 10020 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10021 { 10022 switch (mmu_idx) { 10023 case ARMMMUIdx_E10_0: 10024 return ARMMMUIdx_Stage1_E0; 10025 case ARMMMUIdx_E10_1: 10026 return ARMMMUIdx_Stage1_E1; 10027 case ARMMMUIdx_E10_1_PAN: 10028 return ARMMMUIdx_Stage1_E1_PAN; 10029 default: 10030 return mmu_idx; 10031 } 10032 } 10033 10034 /* Return true if the translation regime is using LPAE format page tables */ 10035 static inline bool regime_using_lpae_format(CPUARMState *env, 10036 ARMMMUIdx mmu_idx) 10037 { 10038 int el = regime_el(env, mmu_idx); 10039 if (el == 2 || arm_el_is_aa64(env, el)) { 10040 return true; 10041 } 10042 if (arm_feature(env, ARM_FEATURE_LPAE) 10043 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10044 return true; 10045 } 10046 return false; 10047 } 10048 10049 /* Returns true if the stage 1 translation regime is using LPAE format page 10050 * tables. Used when raising alignment exceptions, whose FSR changes depending 10051 * on whether the long or short descriptor format is in use. */ 10052 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10053 { 10054 mmu_idx = stage_1_mmu_idx(mmu_idx); 10055 10056 return regime_using_lpae_format(env, mmu_idx); 10057 } 10058 10059 #ifndef CONFIG_USER_ONLY 10060 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10061 { 10062 switch (mmu_idx) { 10063 case ARMMMUIdx_SE10_0: 10064 case ARMMMUIdx_E20_0: 10065 case ARMMMUIdx_Stage1_E0: 10066 case ARMMMUIdx_MUser: 10067 case ARMMMUIdx_MSUser: 10068 case ARMMMUIdx_MUserNegPri: 10069 case ARMMMUIdx_MSUserNegPri: 10070 return true; 10071 default: 10072 return false; 10073 case ARMMMUIdx_E10_0: 10074 case ARMMMUIdx_E10_1: 10075 case ARMMMUIdx_E10_1_PAN: 10076 g_assert_not_reached(); 10077 } 10078 } 10079 10080 /* Translate section/page access permissions to page 10081 * R/W protection flags 10082 * 10083 * @env: CPUARMState 10084 * @mmu_idx: MMU index indicating required translation regime 10085 * @ap: The 3-bit access permissions (AP[2:0]) 10086 * @domain_prot: The 2-bit domain access permissions 10087 */ 10088 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10089 int ap, int domain_prot) 10090 { 10091 bool is_user = regime_is_user(env, mmu_idx); 10092 10093 if (domain_prot == 3) { 10094 return PAGE_READ | PAGE_WRITE; 10095 } 10096 10097 switch (ap) { 10098 case 0: 10099 if (arm_feature(env, ARM_FEATURE_V7)) { 10100 return 0; 10101 } 10102 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10103 case SCTLR_S: 10104 return is_user ? 0 : PAGE_READ; 10105 case SCTLR_R: 10106 return PAGE_READ; 10107 default: 10108 return 0; 10109 } 10110 case 1: 10111 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10112 case 2: 10113 if (is_user) { 10114 return PAGE_READ; 10115 } else { 10116 return PAGE_READ | PAGE_WRITE; 10117 } 10118 case 3: 10119 return PAGE_READ | PAGE_WRITE; 10120 case 4: /* Reserved. */ 10121 return 0; 10122 case 5: 10123 return is_user ? 0 : PAGE_READ; 10124 case 6: 10125 return PAGE_READ; 10126 case 7: 10127 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10128 return 0; 10129 } 10130 return PAGE_READ; 10131 default: 10132 g_assert_not_reached(); 10133 } 10134 } 10135 10136 /* Translate section/page access permissions to page 10137 * R/W protection flags. 10138 * 10139 * @ap: The 2-bit simple AP (AP[2:1]) 10140 * @is_user: TRUE if accessing from PL0 10141 */ 10142 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10143 { 10144 switch (ap) { 10145 case 0: 10146 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10147 case 1: 10148 return PAGE_READ | PAGE_WRITE; 10149 case 2: 10150 return is_user ? 0 : PAGE_READ; 10151 case 3: 10152 return PAGE_READ; 10153 default: 10154 g_assert_not_reached(); 10155 } 10156 } 10157 10158 static inline int 10159 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10160 { 10161 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10162 } 10163 10164 /* Translate S2 section/page access permissions to protection flags 10165 * 10166 * @env: CPUARMState 10167 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10168 * @xn: XN (execute-never) bits 10169 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10170 */ 10171 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10172 { 10173 int prot = 0; 10174 10175 if (s2ap & 1) { 10176 prot |= PAGE_READ; 10177 } 10178 if (s2ap & 2) { 10179 prot |= PAGE_WRITE; 10180 } 10181 10182 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10183 switch (xn) { 10184 case 0: 10185 prot |= PAGE_EXEC; 10186 break; 10187 case 1: 10188 if (s1_is_el0) { 10189 prot |= PAGE_EXEC; 10190 } 10191 break; 10192 case 2: 10193 break; 10194 case 3: 10195 if (!s1_is_el0) { 10196 prot |= PAGE_EXEC; 10197 } 10198 break; 10199 default: 10200 g_assert_not_reached(); 10201 } 10202 } else { 10203 if (!extract32(xn, 1, 1)) { 10204 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10205 prot |= PAGE_EXEC; 10206 } 10207 } 10208 } 10209 return prot; 10210 } 10211 10212 /* Translate section/page access permissions to protection flags 10213 * 10214 * @env: CPUARMState 10215 * @mmu_idx: MMU index indicating required translation regime 10216 * @is_aa64: TRUE if AArch64 10217 * @ap: The 2-bit simple AP (AP[2:1]) 10218 * @ns: NS (non-secure) bit 10219 * @xn: XN (execute-never) bit 10220 * @pxn: PXN (privileged execute-never) bit 10221 */ 10222 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10223 int ap, int ns, int xn, int pxn) 10224 { 10225 bool is_user = regime_is_user(env, mmu_idx); 10226 int prot_rw, user_rw; 10227 bool have_wxn; 10228 int wxn = 0; 10229 10230 assert(mmu_idx != ARMMMUIdx_Stage2); 10231 10232 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10233 if (is_user) { 10234 prot_rw = user_rw; 10235 } else { 10236 if (user_rw && regime_is_pan(env, mmu_idx)) { 10237 /* PAN forbids data accesses but doesn't affect insn fetch */ 10238 prot_rw = 0; 10239 } else { 10240 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10241 } 10242 } 10243 10244 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10245 return prot_rw; 10246 } 10247 10248 /* TODO have_wxn should be replaced with 10249 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10250 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10251 * compatible processors have EL2, which is required for [U]WXN. 10252 */ 10253 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10254 10255 if (have_wxn) { 10256 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10257 } 10258 10259 if (is_aa64) { 10260 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10261 xn = pxn || (user_rw & PAGE_WRITE); 10262 } 10263 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10264 switch (regime_el(env, mmu_idx)) { 10265 case 1: 10266 case 3: 10267 if (is_user) { 10268 xn = xn || !(user_rw & PAGE_READ); 10269 } else { 10270 int uwxn = 0; 10271 if (have_wxn) { 10272 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10273 } 10274 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10275 (uwxn && (user_rw & PAGE_WRITE)); 10276 } 10277 break; 10278 case 2: 10279 break; 10280 } 10281 } else { 10282 xn = wxn = 0; 10283 } 10284 10285 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10286 return prot_rw; 10287 } 10288 return prot_rw | PAGE_EXEC; 10289 } 10290 10291 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10292 uint32_t *table, uint32_t address) 10293 { 10294 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10295 TCR *tcr = regime_tcr(env, mmu_idx); 10296 10297 if (address & tcr->mask) { 10298 if (tcr->raw_tcr & TTBCR_PD1) { 10299 /* Translation table walk disabled for TTBR1 */ 10300 return false; 10301 } 10302 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10303 } else { 10304 if (tcr->raw_tcr & TTBCR_PD0) { 10305 /* Translation table walk disabled for TTBR0 */ 10306 return false; 10307 } 10308 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10309 } 10310 *table |= (address >> 18) & 0x3ffc; 10311 return true; 10312 } 10313 10314 /* Translate a S1 pagetable walk through S2 if needed. */ 10315 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10316 hwaddr addr, MemTxAttrs txattrs, 10317 ARMMMUFaultInfo *fi) 10318 { 10319 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10320 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10321 target_ulong s2size; 10322 hwaddr s2pa; 10323 int s2prot; 10324 int ret; 10325 ARMCacheAttrs cacheattrs = {}; 10326 10327 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2, 10328 false, 10329 &s2pa, &txattrs, &s2prot, &s2size, fi, 10330 &cacheattrs); 10331 if (ret) { 10332 assert(fi->type != ARMFault_None); 10333 fi->s2addr = addr; 10334 fi->stage2 = true; 10335 fi->s1ptw = true; 10336 return ~0; 10337 } 10338 if ((env->cp15.hcr_el2 & HCR_PTW) && (cacheattrs.attrs & 0xf0) == 0) { 10339 /* 10340 * PTW set and S1 walk touched S2 Device memory: 10341 * generate Permission fault. 10342 */ 10343 fi->type = ARMFault_Permission; 10344 fi->s2addr = addr; 10345 fi->stage2 = true; 10346 fi->s1ptw = true; 10347 return ~0; 10348 } 10349 addr = s2pa; 10350 } 10351 return addr; 10352 } 10353 10354 /* All loads done in the course of a page table walk go through here. */ 10355 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10356 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10357 { 10358 ARMCPU *cpu = ARM_CPU(cs); 10359 CPUARMState *env = &cpu->env; 10360 MemTxAttrs attrs = {}; 10361 MemTxResult result = MEMTX_OK; 10362 AddressSpace *as; 10363 uint32_t data; 10364 10365 attrs.secure = is_secure; 10366 as = arm_addressspace(cs, attrs); 10367 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10368 if (fi->s1ptw) { 10369 return 0; 10370 } 10371 if (regime_translation_big_endian(env, mmu_idx)) { 10372 data = address_space_ldl_be(as, addr, attrs, &result); 10373 } else { 10374 data = address_space_ldl_le(as, addr, attrs, &result); 10375 } 10376 if (result == MEMTX_OK) { 10377 return data; 10378 } 10379 fi->type = ARMFault_SyncExternalOnWalk; 10380 fi->ea = arm_extabort_type(result); 10381 return 0; 10382 } 10383 10384 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10385 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10386 { 10387 ARMCPU *cpu = ARM_CPU(cs); 10388 CPUARMState *env = &cpu->env; 10389 MemTxAttrs attrs = {}; 10390 MemTxResult result = MEMTX_OK; 10391 AddressSpace *as; 10392 uint64_t data; 10393 10394 attrs.secure = is_secure; 10395 as = arm_addressspace(cs, attrs); 10396 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10397 if (fi->s1ptw) { 10398 return 0; 10399 } 10400 if (regime_translation_big_endian(env, mmu_idx)) { 10401 data = address_space_ldq_be(as, addr, attrs, &result); 10402 } else { 10403 data = address_space_ldq_le(as, addr, attrs, &result); 10404 } 10405 if (result == MEMTX_OK) { 10406 return data; 10407 } 10408 fi->type = ARMFault_SyncExternalOnWalk; 10409 fi->ea = arm_extabort_type(result); 10410 return 0; 10411 } 10412 10413 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10414 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10415 hwaddr *phys_ptr, int *prot, 10416 target_ulong *page_size, 10417 ARMMMUFaultInfo *fi) 10418 { 10419 CPUState *cs = env_cpu(env); 10420 int level = 1; 10421 uint32_t table; 10422 uint32_t desc; 10423 int type; 10424 int ap; 10425 int domain = 0; 10426 int domain_prot; 10427 hwaddr phys_addr; 10428 uint32_t dacr; 10429 10430 /* Pagetable walk. */ 10431 /* Lookup l1 descriptor. */ 10432 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10433 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10434 fi->type = ARMFault_Translation; 10435 goto do_fault; 10436 } 10437 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10438 mmu_idx, fi); 10439 if (fi->type != ARMFault_None) { 10440 goto do_fault; 10441 } 10442 type = (desc & 3); 10443 domain = (desc >> 5) & 0x0f; 10444 if (regime_el(env, mmu_idx) == 1) { 10445 dacr = env->cp15.dacr_ns; 10446 } else { 10447 dacr = env->cp15.dacr_s; 10448 } 10449 domain_prot = (dacr >> (domain * 2)) & 3; 10450 if (type == 0) { 10451 /* Section translation fault. */ 10452 fi->type = ARMFault_Translation; 10453 goto do_fault; 10454 } 10455 if (type != 2) { 10456 level = 2; 10457 } 10458 if (domain_prot == 0 || domain_prot == 2) { 10459 fi->type = ARMFault_Domain; 10460 goto do_fault; 10461 } 10462 if (type == 2) { 10463 /* 1Mb section. */ 10464 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10465 ap = (desc >> 10) & 3; 10466 *page_size = 1024 * 1024; 10467 } else { 10468 /* Lookup l2 entry. */ 10469 if (type == 1) { 10470 /* Coarse pagetable. */ 10471 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10472 } else { 10473 /* Fine pagetable. */ 10474 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10475 } 10476 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10477 mmu_idx, fi); 10478 if (fi->type != ARMFault_None) { 10479 goto do_fault; 10480 } 10481 switch (desc & 3) { 10482 case 0: /* Page translation fault. */ 10483 fi->type = ARMFault_Translation; 10484 goto do_fault; 10485 case 1: /* 64k page. */ 10486 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10487 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10488 *page_size = 0x10000; 10489 break; 10490 case 2: /* 4k page. */ 10491 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10492 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10493 *page_size = 0x1000; 10494 break; 10495 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10496 if (type == 1) { 10497 /* ARMv6/XScale extended small page format */ 10498 if (arm_feature(env, ARM_FEATURE_XSCALE) 10499 || arm_feature(env, ARM_FEATURE_V6)) { 10500 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10501 *page_size = 0x1000; 10502 } else { 10503 /* UNPREDICTABLE in ARMv5; we choose to take a 10504 * page translation fault. 10505 */ 10506 fi->type = ARMFault_Translation; 10507 goto do_fault; 10508 } 10509 } else { 10510 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10511 *page_size = 0x400; 10512 } 10513 ap = (desc >> 4) & 3; 10514 break; 10515 default: 10516 /* Never happens, but compiler isn't smart enough to tell. */ 10517 abort(); 10518 } 10519 } 10520 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10521 *prot |= *prot ? PAGE_EXEC : 0; 10522 if (!(*prot & (1 << access_type))) { 10523 /* Access permission fault. */ 10524 fi->type = ARMFault_Permission; 10525 goto do_fault; 10526 } 10527 *phys_ptr = phys_addr; 10528 return false; 10529 do_fault: 10530 fi->domain = domain; 10531 fi->level = level; 10532 return true; 10533 } 10534 10535 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10536 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10537 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10538 target_ulong *page_size, ARMMMUFaultInfo *fi) 10539 { 10540 CPUState *cs = env_cpu(env); 10541 int level = 1; 10542 uint32_t table; 10543 uint32_t desc; 10544 uint32_t xn; 10545 uint32_t pxn = 0; 10546 int type; 10547 int ap; 10548 int domain = 0; 10549 int domain_prot; 10550 hwaddr phys_addr; 10551 uint32_t dacr; 10552 bool ns; 10553 10554 /* Pagetable walk. */ 10555 /* Lookup l1 descriptor. */ 10556 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10557 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10558 fi->type = ARMFault_Translation; 10559 goto do_fault; 10560 } 10561 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10562 mmu_idx, fi); 10563 if (fi->type != ARMFault_None) { 10564 goto do_fault; 10565 } 10566 type = (desc & 3); 10567 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 10568 /* Section translation fault, or attempt to use the encoding 10569 * which is Reserved on implementations without PXN. 10570 */ 10571 fi->type = ARMFault_Translation; 10572 goto do_fault; 10573 } 10574 if ((type == 1) || !(desc & (1 << 18))) { 10575 /* Page or Section. */ 10576 domain = (desc >> 5) & 0x0f; 10577 } 10578 if (regime_el(env, mmu_idx) == 1) { 10579 dacr = env->cp15.dacr_ns; 10580 } else { 10581 dacr = env->cp15.dacr_s; 10582 } 10583 if (type == 1) { 10584 level = 2; 10585 } 10586 domain_prot = (dacr >> (domain * 2)) & 3; 10587 if (domain_prot == 0 || domain_prot == 2) { 10588 /* Section or Page domain fault */ 10589 fi->type = ARMFault_Domain; 10590 goto do_fault; 10591 } 10592 if (type != 1) { 10593 if (desc & (1 << 18)) { 10594 /* Supersection. */ 10595 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10596 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10597 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10598 *page_size = 0x1000000; 10599 } else { 10600 /* Section. */ 10601 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10602 *page_size = 0x100000; 10603 } 10604 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10605 xn = desc & (1 << 4); 10606 pxn = desc & 1; 10607 ns = extract32(desc, 19, 1); 10608 } else { 10609 if (arm_feature(env, ARM_FEATURE_PXN)) { 10610 pxn = (desc >> 2) & 1; 10611 } 10612 ns = extract32(desc, 3, 1); 10613 /* Lookup l2 entry. */ 10614 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10615 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10616 mmu_idx, fi); 10617 if (fi->type != ARMFault_None) { 10618 goto do_fault; 10619 } 10620 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10621 switch (desc & 3) { 10622 case 0: /* Page translation fault. */ 10623 fi->type = ARMFault_Translation; 10624 goto do_fault; 10625 case 1: /* 64k page. */ 10626 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10627 xn = desc & (1 << 15); 10628 *page_size = 0x10000; 10629 break; 10630 case 2: case 3: /* 4k page. */ 10631 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10632 xn = desc & 1; 10633 *page_size = 0x1000; 10634 break; 10635 default: 10636 /* Never happens, but compiler isn't smart enough to tell. */ 10637 abort(); 10638 } 10639 } 10640 if (domain_prot == 3) { 10641 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10642 } else { 10643 if (pxn && !regime_is_user(env, mmu_idx)) { 10644 xn = 1; 10645 } 10646 if (xn && access_type == MMU_INST_FETCH) { 10647 fi->type = ARMFault_Permission; 10648 goto do_fault; 10649 } 10650 10651 if (arm_feature(env, ARM_FEATURE_V6K) && 10652 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10653 /* The simplified model uses AP[0] as an access control bit. */ 10654 if ((ap & 1) == 0) { 10655 /* Access flag fault. */ 10656 fi->type = ARMFault_AccessFlag; 10657 goto do_fault; 10658 } 10659 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10660 } else { 10661 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10662 } 10663 if (*prot && !xn) { 10664 *prot |= PAGE_EXEC; 10665 } 10666 if (!(*prot & (1 << access_type))) { 10667 /* Access permission fault. */ 10668 fi->type = ARMFault_Permission; 10669 goto do_fault; 10670 } 10671 } 10672 if (ns) { 10673 /* The NS bit will (as required by the architecture) have no effect if 10674 * the CPU doesn't support TZ or this is a non-secure translation 10675 * regime, because the attribute will already be non-secure. 10676 */ 10677 attrs->secure = false; 10678 } 10679 *phys_ptr = phys_addr; 10680 return false; 10681 do_fault: 10682 fi->domain = domain; 10683 fi->level = level; 10684 return true; 10685 } 10686 10687 /* 10688 * check_s2_mmu_setup 10689 * @cpu: ARMCPU 10690 * @is_aa64: True if the translation regime is in AArch64 state 10691 * @startlevel: Suggested starting level 10692 * @inputsize: Bitsize of IPAs 10693 * @stride: Page-table stride (See the ARM ARM) 10694 * 10695 * Returns true if the suggested S2 translation parameters are OK and 10696 * false otherwise. 10697 */ 10698 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10699 int inputsize, int stride) 10700 { 10701 const int grainsize = stride + 3; 10702 int startsizecheck; 10703 10704 /* Negative levels are never allowed. */ 10705 if (level < 0) { 10706 return false; 10707 } 10708 10709 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10710 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10711 return false; 10712 } 10713 10714 if (is_aa64) { 10715 CPUARMState *env = &cpu->env; 10716 unsigned int pamax = arm_pamax(cpu); 10717 10718 switch (stride) { 10719 case 13: /* 64KB Pages. */ 10720 if (level == 0 || (level == 1 && pamax <= 42)) { 10721 return false; 10722 } 10723 break; 10724 case 11: /* 16KB Pages. */ 10725 if (level == 0 || (level == 1 && pamax <= 40)) { 10726 return false; 10727 } 10728 break; 10729 case 9: /* 4KB Pages. */ 10730 if (level == 0 && pamax <= 42) { 10731 return false; 10732 } 10733 break; 10734 default: 10735 g_assert_not_reached(); 10736 } 10737 10738 /* Inputsize checks. */ 10739 if (inputsize > pamax && 10740 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 10741 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10742 return false; 10743 } 10744 } else { 10745 /* AArch32 only supports 4KB pages. Assert on that. */ 10746 assert(stride == 9); 10747 10748 if (level == 0) { 10749 return false; 10750 } 10751 } 10752 return true; 10753 } 10754 10755 /* Translate from the 4-bit stage 2 representation of 10756 * memory attributes (without cache-allocation hints) to 10757 * the 8-bit representation of the stage 1 MAIR registers 10758 * (which includes allocation hints). 10759 * 10760 * ref: shared/translation/attrs/S2AttrDecode() 10761 * .../S2ConvertAttrsHints() 10762 */ 10763 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 10764 { 10765 uint8_t hiattr = extract32(s2attrs, 2, 2); 10766 uint8_t loattr = extract32(s2attrs, 0, 2); 10767 uint8_t hihint = 0, lohint = 0; 10768 10769 if (hiattr != 0) { /* normal memory */ 10770 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 10771 hiattr = loattr = 1; /* non-cacheable */ 10772 } else { 10773 if (hiattr != 1) { /* Write-through or write-back */ 10774 hihint = 3; /* RW allocate */ 10775 } 10776 if (loattr != 1) { /* Write-through or write-back */ 10777 lohint = 3; /* RW allocate */ 10778 } 10779 } 10780 } 10781 10782 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 10783 } 10784 #endif /* !CONFIG_USER_ONLY */ 10785 10786 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10787 { 10788 if (regime_has_2_ranges(mmu_idx)) { 10789 return extract64(tcr, 37, 2); 10790 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10791 return 0; /* VTCR_EL2 */ 10792 } else { 10793 /* Replicate the single TBI bit so we always have 2 bits. */ 10794 return extract32(tcr, 20, 1) * 3; 10795 } 10796 } 10797 10798 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10799 { 10800 if (regime_has_2_ranges(mmu_idx)) { 10801 return extract64(tcr, 51, 2); 10802 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10803 return 0; /* VTCR_EL2 */ 10804 } else { 10805 /* Replicate the single TBID bit so we always have 2 bits. */ 10806 return extract32(tcr, 29, 1) * 3; 10807 } 10808 } 10809 10810 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10811 { 10812 if (regime_has_2_ranges(mmu_idx)) { 10813 return extract64(tcr, 57, 2); 10814 } else { 10815 /* Replicate the single TCMA bit so we always have 2 bits. */ 10816 return extract32(tcr, 30, 1) * 3; 10817 } 10818 } 10819 10820 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10821 ARMMMUIdx mmu_idx, bool data) 10822 { 10823 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10824 bool epd, hpd, using16k, using64k; 10825 int select, tsz, tbi; 10826 10827 if (!regime_has_2_ranges(mmu_idx)) { 10828 select = 0; 10829 tsz = extract32(tcr, 0, 6); 10830 using64k = extract32(tcr, 14, 1); 10831 using16k = extract32(tcr, 15, 1); 10832 if (mmu_idx == ARMMMUIdx_Stage2) { 10833 /* VTCR_EL2 */ 10834 hpd = false; 10835 } else { 10836 hpd = extract32(tcr, 24, 1); 10837 } 10838 epd = false; 10839 } else { 10840 /* 10841 * Bit 55 is always between the two regions, and is canonical for 10842 * determining if address tagging is enabled. 10843 */ 10844 select = extract64(va, 55, 1); 10845 if (!select) { 10846 tsz = extract32(tcr, 0, 6); 10847 epd = extract32(tcr, 7, 1); 10848 using64k = extract32(tcr, 14, 1); 10849 using16k = extract32(tcr, 15, 1); 10850 hpd = extract64(tcr, 41, 1); 10851 } else { 10852 int tg = extract32(tcr, 30, 2); 10853 using16k = tg == 1; 10854 using64k = tg == 3; 10855 tsz = extract32(tcr, 16, 6); 10856 epd = extract32(tcr, 23, 1); 10857 hpd = extract64(tcr, 42, 1); 10858 } 10859 } 10860 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 10861 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 10862 10863 /* Present TBI as a composite with TBID. */ 10864 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10865 if (!data) { 10866 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10867 } 10868 tbi = (tbi >> select) & 1; 10869 10870 return (ARMVAParameters) { 10871 .tsz = tsz, 10872 .select = select, 10873 .tbi = tbi, 10874 .epd = epd, 10875 .hpd = hpd, 10876 .using16k = using16k, 10877 .using64k = using64k, 10878 }; 10879 } 10880 10881 #ifndef CONFIG_USER_ONLY 10882 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 10883 ARMMMUIdx mmu_idx) 10884 { 10885 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10886 uint32_t el = regime_el(env, mmu_idx); 10887 int select, tsz; 10888 bool epd, hpd; 10889 10890 if (mmu_idx == ARMMMUIdx_Stage2) { 10891 /* VTCR */ 10892 bool sext = extract32(tcr, 4, 1); 10893 bool sign = extract32(tcr, 3, 1); 10894 10895 /* 10896 * If the sign-extend bit is not the same as t0sz[3], the result 10897 * is unpredictable. Flag this as a guest error. 10898 */ 10899 if (sign != sext) { 10900 qemu_log_mask(LOG_GUEST_ERROR, 10901 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 10902 } 10903 tsz = sextract32(tcr, 0, 4) + 8; 10904 select = 0; 10905 hpd = false; 10906 epd = false; 10907 } else if (el == 2) { 10908 /* HTCR */ 10909 tsz = extract32(tcr, 0, 3); 10910 select = 0; 10911 hpd = extract64(tcr, 24, 1); 10912 epd = false; 10913 } else { 10914 int t0sz = extract32(tcr, 0, 3); 10915 int t1sz = extract32(tcr, 16, 3); 10916 10917 if (t1sz == 0) { 10918 select = va > (0xffffffffu >> t0sz); 10919 } else { 10920 /* Note that we will detect errors later. */ 10921 select = va >= ~(0xffffffffu >> t1sz); 10922 } 10923 if (!select) { 10924 tsz = t0sz; 10925 epd = extract32(tcr, 7, 1); 10926 hpd = extract64(tcr, 41, 1); 10927 } else { 10928 tsz = t1sz; 10929 epd = extract32(tcr, 23, 1); 10930 hpd = extract64(tcr, 42, 1); 10931 } 10932 /* For aarch32, hpd0 is not enabled without t2e as well. */ 10933 hpd &= extract32(tcr, 6, 1); 10934 } 10935 10936 return (ARMVAParameters) { 10937 .tsz = tsz, 10938 .select = select, 10939 .epd = epd, 10940 .hpd = hpd, 10941 }; 10942 } 10943 10944 /** 10945 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 10946 * 10947 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10948 * prot and page_size may not be filled in, and the populated fsr value provides 10949 * information on why the translation aborted, in the format of a long-format 10950 * DFSR/IFSR fault register, with the following caveats: 10951 * * the WnR bit is never set (the caller must do this). 10952 * 10953 * @env: CPUARMState 10954 * @address: virtual address to get physical address for 10955 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 10956 * @mmu_idx: MMU index indicating required translation regime 10957 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 10958 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 10959 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 10960 * @phys_ptr: set to the physical address corresponding to the virtual address 10961 * @attrs: set to the memory transaction attributes to use 10962 * @prot: set to the permissions for the page containing phys_ptr 10963 * @page_size_ptr: set to the size of the page containing phys_ptr 10964 * @fi: set to fault info if the translation fails 10965 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10966 */ 10967 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 10968 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10969 bool s1_is_el0, 10970 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 10971 target_ulong *page_size_ptr, 10972 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10973 { 10974 ARMCPU *cpu = env_archcpu(env); 10975 CPUState *cs = CPU(cpu); 10976 /* Read an LPAE long-descriptor translation table. */ 10977 ARMFaultType fault_type = ARMFault_Translation; 10978 uint32_t level; 10979 ARMVAParameters param; 10980 uint64_t ttbr; 10981 hwaddr descaddr, indexmask, indexmask_grainsize; 10982 uint32_t tableattrs; 10983 target_ulong page_size; 10984 uint32_t attrs; 10985 int32_t stride; 10986 int addrsize, inputsize; 10987 TCR *tcr = regime_tcr(env, mmu_idx); 10988 int ap, ns, xn, pxn; 10989 uint32_t el = regime_el(env, mmu_idx); 10990 uint64_t descaddrmask; 10991 bool aarch64 = arm_el_is_aa64(env, el); 10992 bool guarded = false; 10993 10994 /* TODO: This code does not support shareability levels. */ 10995 if (aarch64) { 10996 param = aa64_va_parameters(env, address, mmu_idx, 10997 access_type != MMU_INST_FETCH); 10998 level = 0; 10999 addrsize = 64 - 8 * param.tbi; 11000 inputsize = 64 - param.tsz; 11001 } else { 11002 param = aa32_va_parameters(env, address, mmu_idx); 11003 level = 1; 11004 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11005 inputsize = addrsize - param.tsz; 11006 } 11007 11008 /* 11009 * We determined the region when collecting the parameters, but we 11010 * have not yet validated that the address is valid for the region. 11011 * Extract the top bits and verify that they all match select. 11012 * 11013 * For aa32, if inputsize == addrsize, then we have selected the 11014 * region by exclusion in aa32_va_parameters and there is no more 11015 * validation to do here. 11016 */ 11017 if (inputsize < addrsize) { 11018 target_ulong top_bits = sextract64(address, inputsize, 11019 addrsize - inputsize); 11020 if (-top_bits != param.select) { 11021 /* The gap between the two regions is a Translation fault */ 11022 fault_type = ARMFault_Translation; 11023 goto do_fault; 11024 } 11025 } 11026 11027 if (param.using64k) { 11028 stride = 13; 11029 } else if (param.using16k) { 11030 stride = 11; 11031 } else { 11032 stride = 9; 11033 } 11034 11035 /* Note that QEMU ignores shareability and cacheability attributes, 11036 * so we don't need to do anything with the SH, ORGN, IRGN fields 11037 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11038 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11039 * implement any ASID-like capability so we can ignore it (instead 11040 * we will always flush the TLB any time the ASID is changed). 11041 */ 11042 ttbr = regime_ttbr(env, mmu_idx, param.select); 11043 11044 /* Here we should have set up all the parameters for the translation: 11045 * inputsize, ttbr, epd, stride, tbi 11046 */ 11047 11048 if (param.epd) { 11049 /* Translation table walk disabled => Translation fault on TLB miss 11050 * Note: This is always 0 on 64-bit EL2 and EL3. 11051 */ 11052 goto do_fault; 11053 } 11054 11055 if (mmu_idx != ARMMMUIdx_Stage2) { 11056 /* The starting level depends on the virtual address size (which can 11057 * be up to 48 bits) and the translation granule size. It indicates 11058 * the number of strides (stride bits at a time) needed to 11059 * consume the bits of the input address. In the pseudocode this is: 11060 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11061 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11062 * our 'stride + 3' and 'stride' is our 'stride'. 11063 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11064 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11065 * = 4 - (inputsize - 4) / stride; 11066 */ 11067 level = 4 - (inputsize - 4) / stride; 11068 } else { 11069 /* For stage 2 translations the starting level is specified by the 11070 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11071 */ 11072 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11073 uint32_t startlevel; 11074 bool ok; 11075 11076 if (!aarch64 || stride == 9) { 11077 /* AArch32 or 4KB pages */ 11078 startlevel = 2 - sl0; 11079 } else { 11080 /* 16KB or 64KB pages */ 11081 startlevel = 3 - sl0; 11082 } 11083 11084 /* Check that the starting level is valid. */ 11085 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11086 inputsize, stride); 11087 if (!ok) { 11088 fault_type = ARMFault_Translation; 11089 goto do_fault; 11090 } 11091 level = startlevel; 11092 } 11093 11094 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11095 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11096 11097 /* Now we can extract the actual base address from the TTBR */ 11098 descaddr = extract64(ttbr, 0, 48); 11099 /* 11100 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11101 * and also to mask out CnP (bit 0) which could validly be non-zero. 11102 */ 11103 descaddr &= ~indexmask; 11104 11105 /* The address field in the descriptor goes up to bit 39 for ARMv7 11106 * but up to bit 47 for ARMv8, but we use the descaddrmask 11107 * up to bit 39 for AArch32, because we don't need other bits in that case 11108 * to construct next descriptor address (anyway they should be all zeroes). 11109 */ 11110 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11111 ~indexmask_grainsize; 11112 11113 /* Secure accesses start with the page table in secure memory and 11114 * can be downgraded to non-secure at any step. Non-secure accesses 11115 * remain non-secure. We implement this by just ORing in the NSTable/NS 11116 * bits at each step. 11117 */ 11118 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11119 for (;;) { 11120 uint64_t descriptor; 11121 bool nstable; 11122 11123 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11124 descaddr &= ~7ULL; 11125 nstable = extract32(tableattrs, 4, 1); 11126 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11127 if (fi->type != ARMFault_None) { 11128 goto do_fault; 11129 } 11130 11131 if (!(descriptor & 1) || 11132 (!(descriptor & 2) && (level == 3))) { 11133 /* Invalid, or the Reserved level 3 encoding */ 11134 goto do_fault; 11135 } 11136 descaddr = descriptor & descaddrmask; 11137 11138 if ((descriptor & 2) && (level < 3)) { 11139 /* Table entry. The top five bits are attributes which may 11140 * propagate down through lower levels of the table (and 11141 * which are all arranged so that 0 means "no effect", so 11142 * we can gather them up by ORing in the bits at each level). 11143 */ 11144 tableattrs |= extract64(descriptor, 59, 5); 11145 level++; 11146 indexmask = indexmask_grainsize; 11147 continue; 11148 } 11149 /* Block entry at level 1 or 2, or page entry at level 3. 11150 * These are basically the same thing, although the number 11151 * of bits we pull in from the vaddr varies. 11152 */ 11153 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11154 descaddr |= (address & (page_size - 1)); 11155 /* Extract attributes from the descriptor */ 11156 attrs = extract64(descriptor, 2, 10) 11157 | (extract64(descriptor, 52, 12) << 10); 11158 11159 if (mmu_idx == ARMMMUIdx_Stage2) { 11160 /* Stage 2 table descriptors do not include any attribute fields */ 11161 break; 11162 } 11163 /* Merge in attributes from table descriptors */ 11164 attrs |= nstable << 3; /* NS */ 11165 guarded = extract64(descriptor, 50, 1); /* GP */ 11166 if (param.hpd) { 11167 /* HPD disables all the table attributes except NSTable. */ 11168 break; 11169 } 11170 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11171 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11172 * means "force PL1 access only", which means forcing AP[1] to 0. 11173 */ 11174 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11175 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11176 break; 11177 } 11178 /* Here descaddr is the final physical address, and attributes 11179 * are all in attrs. 11180 */ 11181 fault_type = ARMFault_AccessFlag; 11182 if ((attrs & (1 << 8)) == 0) { 11183 /* Access flag */ 11184 goto do_fault; 11185 } 11186 11187 ap = extract32(attrs, 4, 2); 11188 11189 if (mmu_idx == ARMMMUIdx_Stage2) { 11190 ns = true; 11191 xn = extract32(attrs, 11, 2); 11192 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11193 } else { 11194 ns = extract32(attrs, 3, 1); 11195 xn = extract32(attrs, 12, 1); 11196 pxn = extract32(attrs, 11, 1); 11197 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11198 } 11199 11200 fault_type = ARMFault_Permission; 11201 if (!(*prot & (1 << access_type))) { 11202 goto do_fault; 11203 } 11204 11205 if (ns) { 11206 /* The NS bit will (as required by the architecture) have no effect if 11207 * the CPU doesn't support TZ or this is a non-secure translation 11208 * regime, because the attribute will already be non-secure. 11209 */ 11210 txattrs->secure = false; 11211 } 11212 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11213 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11214 arm_tlb_bti_gp(txattrs) = true; 11215 } 11216 11217 if (mmu_idx == ARMMMUIdx_Stage2) { 11218 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11219 } else { 11220 /* Index into MAIR registers for cache attributes */ 11221 uint8_t attrindx = extract32(attrs, 0, 3); 11222 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11223 assert(attrindx <= 7); 11224 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11225 } 11226 cacheattrs->shareability = extract32(attrs, 6, 2); 11227 11228 *phys_ptr = descaddr; 11229 *page_size_ptr = page_size; 11230 return false; 11231 11232 do_fault: 11233 fi->type = fault_type; 11234 fi->level = level; 11235 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11236 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2); 11237 return true; 11238 } 11239 11240 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11241 ARMMMUIdx mmu_idx, 11242 int32_t address, int *prot) 11243 { 11244 if (!arm_feature(env, ARM_FEATURE_M)) { 11245 *prot = PAGE_READ | PAGE_WRITE; 11246 switch (address) { 11247 case 0xF0000000 ... 0xFFFFFFFF: 11248 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11249 /* hivecs execing is ok */ 11250 *prot |= PAGE_EXEC; 11251 } 11252 break; 11253 case 0x00000000 ... 0x7FFFFFFF: 11254 *prot |= PAGE_EXEC; 11255 break; 11256 } 11257 } else { 11258 /* Default system address map for M profile cores. 11259 * The architecture specifies which regions are execute-never; 11260 * at the MPU level no other checks are defined. 11261 */ 11262 switch (address) { 11263 case 0x00000000 ... 0x1fffffff: /* ROM */ 11264 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11265 case 0x60000000 ... 0x7fffffff: /* RAM */ 11266 case 0x80000000 ... 0x9fffffff: /* RAM */ 11267 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11268 break; 11269 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11270 case 0xa0000000 ... 0xbfffffff: /* Device */ 11271 case 0xc0000000 ... 0xdfffffff: /* Device */ 11272 case 0xe0000000 ... 0xffffffff: /* System */ 11273 *prot = PAGE_READ | PAGE_WRITE; 11274 break; 11275 default: 11276 g_assert_not_reached(); 11277 } 11278 } 11279 } 11280 11281 static bool pmsav7_use_background_region(ARMCPU *cpu, 11282 ARMMMUIdx mmu_idx, bool is_user) 11283 { 11284 /* Return true if we should use the default memory map as a 11285 * "background" region if there are no hits against any MPU regions. 11286 */ 11287 CPUARMState *env = &cpu->env; 11288 11289 if (is_user) { 11290 return false; 11291 } 11292 11293 if (arm_feature(env, ARM_FEATURE_M)) { 11294 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11295 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11296 } else { 11297 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11298 } 11299 } 11300 11301 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11302 { 11303 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11304 return arm_feature(env, ARM_FEATURE_M) && 11305 extract32(address, 20, 12) == 0xe00; 11306 } 11307 11308 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11309 { 11310 /* True if address is in the M profile system region 11311 * 0xe0000000 - 0xffffffff 11312 */ 11313 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11314 } 11315 11316 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11317 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11318 hwaddr *phys_ptr, int *prot, 11319 target_ulong *page_size, 11320 ARMMMUFaultInfo *fi) 11321 { 11322 ARMCPU *cpu = env_archcpu(env); 11323 int n; 11324 bool is_user = regime_is_user(env, mmu_idx); 11325 11326 *phys_ptr = address; 11327 *page_size = TARGET_PAGE_SIZE; 11328 *prot = 0; 11329 11330 if (regime_translation_disabled(env, mmu_idx) || 11331 m_is_ppb_region(env, address)) { 11332 /* MPU disabled or M profile PPB access: use default memory map. 11333 * The other case which uses the default memory map in the 11334 * v7M ARM ARM pseudocode is exception vector reads from the vector 11335 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11336 * which always does a direct read using address_space_ldl(), rather 11337 * than going via this function, so we don't need to check that here. 11338 */ 11339 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11340 } else { /* MPU enabled */ 11341 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11342 /* region search */ 11343 uint32_t base = env->pmsav7.drbar[n]; 11344 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11345 uint32_t rmask; 11346 bool srdis = false; 11347 11348 if (!(env->pmsav7.drsr[n] & 0x1)) { 11349 continue; 11350 } 11351 11352 if (!rsize) { 11353 qemu_log_mask(LOG_GUEST_ERROR, 11354 "DRSR[%d]: Rsize field cannot be 0\n", n); 11355 continue; 11356 } 11357 rsize++; 11358 rmask = (1ull << rsize) - 1; 11359 11360 if (base & rmask) { 11361 qemu_log_mask(LOG_GUEST_ERROR, 11362 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11363 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11364 n, base, rmask); 11365 continue; 11366 } 11367 11368 if (address < base || address > base + rmask) { 11369 /* 11370 * Address not in this region. We must check whether the 11371 * region covers addresses in the same page as our address. 11372 * In that case we must not report a size that covers the 11373 * whole page for a subsequent hit against a different MPU 11374 * region or the background region, because it would result in 11375 * incorrect TLB hits for subsequent accesses to addresses that 11376 * are in this MPU region. 11377 */ 11378 if (ranges_overlap(base, rmask, 11379 address & TARGET_PAGE_MASK, 11380 TARGET_PAGE_SIZE)) { 11381 *page_size = 1; 11382 } 11383 continue; 11384 } 11385 11386 /* Region matched */ 11387 11388 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11389 int i, snd; 11390 uint32_t srdis_mask; 11391 11392 rsize -= 3; /* sub region size (power of 2) */ 11393 snd = ((address - base) >> rsize) & 0x7; 11394 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11395 11396 srdis_mask = srdis ? 0x3 : 0x0; 11397 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11398 /* This will check in groups of 2, 4 and then 8, whether 11399 * the subregion bits are consistent. rsize is incremented 11400 * back up to give the region size, considering consistent 11401 * adjacent subregions as one region. Stop testing if rsize 11402 * is already big enough for an entire QEMU page. 11403 */ 11404 int snd_rounded = snd & ~(i - 1); 11405 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11406 snd_rounded + 8, i); 11407 if (srdis_mask ^ srdis_multi) { 11408 break; 11409 } 11410 srdis_mask = (srdis_mask << i) | srdis_mask; 11411 rsize++; 11412 } 11413 } 11414 if (srdis) { 11415 continue; 11416 } 11417 if (rsize < TARGET_PAGE_BITS) { 11418 *page_size = 1 << rsize; 11419 } 11420 break; 11421 } 11422 11423 if (n == -1) { /* no hits */ 11424 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11425 /* background fault */ 11426 fi->type = ARMFault_Background; 11427 return true; 11428 } 11429 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11430 } else { /* a MPU hit! */ 11431 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11432 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11433 11434 if (m_is_system_region(env, address)) { 11435 /* System space is always execute never */ 11436 xn = 1; 11437 } 11438 11439 if (is_user) { /* User mode AP bit decoding */ 11440 switch (ap) { 11441 case 0: 11442 case 1: 11443 case 5: 11444 break; /* no access */ 11445 case 3: 11446 *prot |= PAGE_WRITE; 11447 /* fall through */ 11448 case 2: 11449 case 6: 11450 *prot |= PAGE_READ | PAGE_EXEC; 11451 break; 11452 case 7: 11453 /* for v7M, same as 6; for R profile a reserved value */ 11454 if (arm_feature(env, ARM_FEATURE_M)) { 11455 *prot |= PAGE_READ | PAGE_EXEC; 11456 break; 11457 } 11458 /* fall through */ 11459 default: 11460 qemu_log_mask(LOG_GUEST_ERROR, 11461 "DRACR[%d]: Bad value for AP bits: 0x%" 11462 PRIx32 "\n", n, ap); 11463 } 11464 } else { /* Priv. mode AP bits decoding */ 11465 switch (ap) { 11466 case 0: 11467 break; /* no access */ 11468 case 1: 11469 case 2: 11470 case 3: 11471 *prot |= PAGE_WRITE; 11472 /* fall through */ 11473 case 5: 11474 case 6: 11475 *prot |= PAGE_READ | PAGE_EXEC; 11476 break; 11477 case 7: 11478 /* for v7M, same as 6; for R profile a reserved value */ 11479 if (arm_feature(env, ARM_FEATURE_M)) { 11480 *prot |= PAGE_READ | PAGE_EXEC; 11481 break; 11482 } 11483 /* fall through */ 11484 default: 11485 qemu_log_mask(LOG_GUEST_ERROR, 11486 "DRACR[%d]: Bad value for AP bits: 0x%" 11487 PRIx32 "\n", n, ap); 11488 } 11489 } 11490 11491 /* execute never */ 11492 if (xn) { 11493 *prot &= ~PAGE_EXEC; 11494 } 11495 } 11496 } 11497 11498 fi->type = ARMFault_Permission; 11499 fi->level = 1; 11500 return !(*prot & (1 << access_type)); 11501 } 11502 11503 static bool v8m_is_sau_exempt(CPUARMState *env, 11504 uint32_t address, MMUAccessType access_type) 11505 { 11506 /* The architecture specifies that certain address ranges are 11507 * exempt from v8M SAU/IDAU checks. 11508 */ 11509 return 11510 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11511 (address >= 0xe0000000 && address <= 0xe0002fff) || 11512 (address >= 0xe000e000 && address <= 0xe000efff) || 11513 (address >= 0xe002e000 && address <= 0xe002efff) || 11514 (address >= 0xe0040000 && address <= 0xe0041fff) || 11515 (address >= 0xe00ff000 && address <= 0xe00fffff); 11516 } 11517 11518 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11519 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11520 V8M_SAttributes *sattrs) 11521 { 11522 /* Look up the security attributes for this address. Compare the 11523 * pseudocode SecurityCheck() function. 11524 * We assume the caller has zero-initialized *sattrs. 11525 */ 11526 ARMCPU *cpu = env_archcpu(env); 11527 int r; 11528 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11529 int idau_region = IREGION_NOTVALID; 11530 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11531 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11532 11533 if (cpu->idau) { 11534 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11535 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11536 11537 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11538 &idau_nsc); 11539 } 11540 11541 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11542 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11543 return; 11544 } 11545 11546 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11547 sattrs->ns = !regime_is_secure(env, mmu_idx); 11548 return; 11549 } 11550 11551 if (idau_region != IREGION_NOTVALID) { 11552 sattrs->irvalid = true; 11553 sattrs->iregion = idau_region; 11554 } 11555 11556 switch (env->sau.ctrl & 3) { 11557 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11558 break; 11559 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11560 sattrs->ns = true; 11561 break; 11562 default: /* SAU.ENABLE == 1 */ 11563 for (r = 0; r < cpu->sau_sregion; r++) { 11564 if (env->sau.rlar[r] & 1) { 11565 uint32_t base = env->sau.rbar[r] & ~0x1f; 11566 uint32_t limit = env->sau.rlar[r] | 0x1f; 11567 11568 if (base <= address && limit >= address) { 11569 if (base > addr_page_base || limit < addr_page_limit) { 11570 sattrs->subpage = true; 11571 } 11572 if (sattrs->srvalid) { 11573 /* If we hit in more than one region then we must report 11574 * as Secure, not NS-Callable, with no valid region 11575 * number info. 11576 */ 11577 sattrs->ns = false; 11578 sattrs->nsc = false; 11579 sattrs->sregion = 0; 11580 sattrs->srvalid = false; 11581 break; 11582 } else { 11583 if (env->sau.rlar[r] & 2) { 11584 sattrs->nsc = true; 11585 } else { 11586 sattrs->ns = true; 11587 } 11588 sattrs->srvalid = true; 11589 sattrs->sregion = r; 11590 } 11591 } else { 11592 /* 11593 * Address not in this region. We must check whether the 11594 * region covers addresses in the same page as our address. 11595 * In that case we must not report a size that covers the 11596 * whole page for a subsequent hit against a different MPU 11597 * region or the background region, because it would result 11598 * in incorrect TLB hits for subsequent accesses to 11599 * addresses that are in this MPU region. 11600 */ 11601 if (limit >= base && 11602 ranges_overlap(base, limit - base + 1, 11603 addr_page_base, 11604 TARGET_PAGE_SIZE)) { 11605 sattrs->subpage = true; 11606 } 11607 } 11608 } 11609 } 11610 break; 11611 } 11612 11613 /* 11614 * The IDAU will override the SAU lookup results if it specifies 11615 * higher security than the SAU does. 11616 */ 11617 if (!idau_ns) { 11618 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11619 sattrs->ns = false; 11620 sattrs->nsc = idau_nsc; 11621 } 11622 } 11623 } 11624 11625 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11626 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11627 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11628 int *prot, bool *is_subpage, 11629 ARMMMUFaultInfo *fi, uint32_t *mregion) 11630 { 11631 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11632 * that a full phys-to-virt translation does). 11633 * mregion is (if not NULL) set to the region number which matched, 11634 * or -1 if no region number is returned (MPU off, address did not 11635 * hit a region, address hit in multiple regions). 11636 * We set is_subpage to true if the region hit doesn't cover the 11637 * entire TARGET_PAGE the address is within. 11638 */ 11639 ARMCPU *cpu = env_archcpu(env); 11640 bool is_user = regime_is_user(env, mmu_idx); 11641 uint32_t secure = regime_is_secure(env, mmu_idx); 11642 int n; 11643 int matchregion = -1; 11644 bool hit = false; 11645 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11646 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11647 11648 *is_subpage = false; 11649 *phys_ptr = address; 11650 *prot = 0; 11651 if (mregion) { 11652 *mregion = -1; 11653 } 11654 11655 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11656 * was an exception vector read from the vector table (which is always 11657 * done using the default system address map), because those accesses 11658 * are done in arm_v7m_load_vector(), which always does a direct 11659 * read using address_space_ldl(), rather than going via this function. 11660 */ 11661 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11662 hit = true; 11663 } else if (m_is_ppb_region(env, address)) { 11664 hit = true; 11665 } else { 11666 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11667 hit = true; 11668 } 11669 11670 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11671 /* region search */ 11672 /* Note that the base address is bits [31:5] from the register 11673 * with bits [4:0] all zeroes, but the limit address is bits 11674 * [31:5] from the register with bits [4:0] all ones. 11675 */ 11676 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11677 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 11678 11679 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 11680 /* Region disabled */ 11681 continue; 11682 } 11683 11684 if (address < base || address > limit) { 11685 /* 11686 * Address not in this region. We must check whether the 11687 * region covers addresses in the same page as our address. 11688 * In that case we must not report a size that covers the 11689 * whole page for a subsequent hit against a different MPU 11690 * region or the background region, because it would result in 11691 * incorrect TLB hits for subsequent accesses to addresses that 11692 * are in this MPU region. 11693 */ 11694 if (limit >= base && 11695 ranges_overlap(base, limit - base + 1, 11696 addr_page_base, 11697 TARGET_PAGE_SIZE)) { 11698 *is_subpage = true; 11699 } 11700 continue; 11701 } 11702 11703 if (base > addr_page_base || limit < addr_page_limit) { 11704 *is_subpage = true; 11705 } 11706 11707 if (matchregion != -1) { 11708 /* Multiple regions match -- always a failure (unlike 11709 * PMSAv7 where highest-numbered-region wins) 11710 */ 11711 fi->type = ARMFault_Permission; 11712 fi->level = 1; 11713 return true; 11714 } 11715 11716 matchregion = n; 11717 hit = true; 11718 } 11719 } 11720 11721 if (!hit) { 11722 /* background fault */ 11723 fi->type = ARMFault_Background; 11724 return true; 11725 } 11726 11727 if (matchregion == -1) { 11728 /* hit using the background region */ 11729 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11730 } else { 11731 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 11732 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 11733 11734 if (m_is_system_region(env, address)) { 11735 /* System space is always execute never */ 11736 xn = 1; 11737 } 11738 11739 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 11740 if (*prot && !xn) { 11741 *prot |= PAGE_EXEC; 11742 } 11743 /* We don't need to look the attribute up in the MAIR0/MAIR1 11744 * registers because that only tells us about cacheability. 11745 */ 11746 if (mregion) { 11747 *mregion = matchregion; 11748 } 11749 } 11750 11751 fi->type = ARMFault_Permission; 11752 fi->level = 1; 11753 return !(*prot & (1 << access_type)); 11754 } 11755 11756 11757 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 11758 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11759 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11760 int *prot, target_ulong *page_size, 11761 ARMMMUFaultInfo *fi) 11762 { 11763 uint32_t secure = regime_is_secure(env, mmu_idx); 11764 V8M_SAttributes sattrs = {}; 11765 bool ret; 11766 bool mpu_is_subpage; 11767 11768 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11769 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 11770 if (access_type == MMU_INST_FETCH) { 11771 /* Instruction fetches always use the MMU bank and the 11772 * transaction attribute determined by the fetch address, 11773 * regardless of CPU state. This is painful for QEMU 11774 * to handle, because it would mean we need to encode 11775 * into the mmu_idx not just the (user, negpri) information 11776 * for the current security state but also that for the 11777 * other security state, which would balloon the number 11778 * of mmu_idx values needed alarmingly. 11779 * Fortunately we can avoid this because it's not actually 11780 * possible to arbitrarily execute code from memory with 11781 * the wrong security attribute: it will always generate 11782 * an exception of some kind or another, apart from the 11783 * special case of an NS CPU executing an SG instruction 11784 * in S&NSC memory. So we always just fail the translation 11785 * here and sort things out in the exception handler 11786 * (including possibly emulating an SG instruction). 11787 */ 11788 if (sattrs.ns != !secure) { 11789 if (sattrs.nsc) { 11790 fi->type = ARMFault_QEMU_NSCExec; 11791 } else { 11792 fi->type = ARMFault_QEMU_SFault; 11793 } 11794 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11795 *phys_ptr = address; 11796 *prot = 0; 11797 return true; 11798 } 11799 } else { 11800 /* For data accesses we always use the MMU bank indicated 11801 * by the current CPU state, but the security attributes 11802 * might downgrade a secure access to nonsecure. 11803 */ 11804 if (sattrs.ns) { 11805 txattrs->secure = false; 11806 } else if (!secure) { 11807 /* NS access to S memory must fault. 11808 * Architecturally we should first check whether the 11809 * MPU information for this address indicates that we 11810 * are doing an unaligned access to Device memory, which 11811 * should generate a UsageFault instead. QEMU does not 11812 * currently check for that kind of unaligned access though. 11813 * If we added it we would need to do so as a special case 11814 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 11815 */ 11816 fi->type = ARMFault_QEMU_SFault; 11817 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11818 *phys_ptr = address; 11819 *prot = 0; 11820 return true; 11821 } 11822 } 11823 } 11824 11825 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 11826 txattrs, prot, &mpu_is_subpage, fi, NULL); 11827 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 11828 return ret; 11829 } 11830 11831 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 11832 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11833 hwaddr *phys_ptr, int *prot, 11834 ARMMMUFaultInfo *fi) 11835 { 11836 int n; 11837 uint32_t mask; 11838 uint32_t base; 11839 bool is_user = regime_is_user(env, mmu_idx); 11840 11841 if (regime_translation_disabled(env, mmu_idx)) { 11842 /* MPU disabled. */ 11843 *phys_ptr = address; 11844 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11845 return false; 11846 } 11847 11848 *phys_ptr = address; 11849 for (n = 7; n >= 0; n--) { 11850 base = env->cp15.c6_region[n]; 11851 if ((base & 1) == 0) { 11852 continue; 11853 } 11854 mask = 1 << ((base >> 1) & 0x1f); 11855 /* Keep this shift separate from the above to avoid an 11856 (undefined) << 32. */ 11857 mask = (mask << 1) - 1; 11858 if (((base ^ address) & ~mask) == 0) { 11859 break; 11860 } 11861 } 11862 if (n < 0) { 11863 fi->type = ARMFault_Background; 11864 return true; 11865 } 11866 11867 if (access_type == MMU_INST_FETCH) { 11868 mask = env->cp15.pmsav5_insn_ap; 11869 } else { 11870 mask = env->cp15.pmsav5_data_ap; 11871 } 11872 mask = (mask >> (n * 4)) & 0xf; 11873 switch (mask) { 11874 case 0: 11875 fi->type = ARMFault_Permission; 11876 fi->level = 1; 11877 return true; 11878 case 1: 11879 if (is_user) { 11880 fi->type = ARMFault_Permission; 11881 fi->level = 1; 11882 return true; 11883 } 11884 *prot = PAGE_READ | PAGE_WRITE; 11885 break; 11886 case 2: 11887 *prot = PAGE_READ; 11888 if (!is_user) { 11889 *prot |= PAGE_WRITE; 11890 } 11891 break; 11892 case 3: 11893 *prot = PAGE_READ | PAGE_WRITE; 11894 break; 11895 case 5: 11896 if (is_user) { 11897 fi->type = ARMFault_Permission; 11898 fi->level = 1; 11899 return true; 11900 } 11901 *prot = PAGE_READ; 11902 break; 11903 case 6: 11904 *prot = PAGE_READ; 11905 break; 11906 default: 11907 /* Bad permission. */ 11908 fi->type = ARMFault_Permission; 11909 fi->level = 1; 11910 return true; 11911 } 11912 *prot |= PAGE_EXEC; 11913 return false; 11914 } 11915 11916 /* Combine either inner or outer cacheability attributes for normal 11917 * memory, according to table D4-42 and pseudocode procedure 11918 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 11919 * 11920 * NB: only stage 1 includes allocation hints (RW bits), leading to 11921 * some asymmetry. 11922 */ 11923 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 11924 { 11925 if (s1 == 4 || s2 == 4) { 11926 /* non-cacheable has precedence */ 11927 return 4; 11928 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 11929 /* stage 1 write-through takes precedence */ 11930 return s1; 11931 } else if (extract32(s2, 2, 2) == 2) { 11932 /* stage 2 write-through takes precedence, but the allocation hint 11933 * is still taken from stage 1 11934 */ 11935 return (2 << 2) | extract32(s1, 0, 2); 11936 } else { /* write-back */ 11937 return s1; 11938 } 11939 } 11940 11941 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 11942 * and CombineS1S2Desc() 11943 * 11944 * @s1: Attributes from stage 1 walk 11945 * @s2: Attributes from stage 2 walk 11946 */ 11947 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 11948 { 11949 uint8_t s1lo, s2lo, s1hi, s2hi; 11950 ARMCacheAttrs ret; 11951 bool tagged = false; 11952 11953 if (s1.attrs == 0xf0) { 11954 tagged = true; 11955 s1.attrs = 0xff; 11956 } 11957 11958 s1lo = extract32(s1.attrs, 0, 4); 11959 s2lo = extract32(s2.attrs, 0, 4); 11960 s1hi = extract32(s1.attrs, 4, 4); 11961 s2hi = extract32(s2.attrs, 4, 4); 11962 11963 /* Combine shareability attributes (table D4-43) */ 11964 if (s1.shareability == 2 || s2.shareability == 2) { 11965 /* if either are outer-shareable, the result is outer-shareable */ 11966 ret.shareability = 2; 11967 } else if (s1.shareability == 3 || s2.shareability == 3) { 11968 /* if either are inner-shareable, the result is inner-shareable */ 11969 ret.shareability = 3; 11970 } else { 11971 /* both non-shareable */ 11972 ret.shareability = 0; 11973 } 11974 11975 /* Combine memory type and cacheability attributes */ 11976 if (s1hi == 0 || s2hi == 0) { 11977 /* Device has precedence over normal */ 11978 if (s1lo == 0 || s2lo == 0) { 11979 /* nGnRnE has precedence over anything */ 11980 ret.attrs = 0; 11981 } else if (s1lo == 4 || s2lo == 4) { 11982 /* non-Reordering has precedence over Reordering */ 11983 ret.attrs = 4; /* nGnRE */ 11984 } else if (s1lo == 8 || s2lo == 8) { 11985 /* non-Gathering has precedence over Gathering */ 11986 ret.attrs = 8; /* nGRE */ 11987 } else { 11988 ret.attrs = 0xc; /* GRE */ 11989 } 11990 11991 /* Any location for which the resultant memory type is any 11992 * type of Device memory is always treated as Outer Shareable. 11993 */ 11994 ret.shareability = 2; 11995 } else { /* Normal memory */ 11996 /* Outer/inner cacheability combine independently */ 11997 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 11998 | combine_cacheattr_nibble(s1lo, s2lo); 11999 12000 if (ret.attrs == 0x44) { 12001 /* Any location for which the resultant memory type is Normal 12002 * Inner Non-cacheable, Outer Non-cacheable is always treated 12003 * as Outer Shareable. 12004 */ 12005 ret.shareability = 2; 12006 } 12007 } 12008 12009 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12010 if (tagged && ret.attrs == 0xff) { 12011 ret.attrs = 0xf0; 12012 } 12013 12014 return ret; 12015 } 12016 12017 12018 /* get_phys_addr - get the physical address for this virtual address 12019 * 12020 * Find the physical address corresponding to the given virtual address, 12021 * by doing a translation table walk on MMU based systems or using the 12022 * MPU state on MPU based systems. 12023 * 12024 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12025 * prot and page_size may not be filled in, and the populated fsr value provides 12026 * information on why the translation aborted, in the format of a 12027 * DFSR/IFSR fault register, with the following caveats: 12028 * * we honour the short vs long DFSR format differences. 12029 * * the WnR bit is never set (the caller must do this). 12030 * * for PSMAv5 based systems we don't bother to return a full FSR format 12031 * value. 12032 * 12033 * @env: CPUARMState 12034 * @address: virtual address to get physical address for 12035 * @access_type: 0 for read, 1 for write, 2 for execute 12036 * @mmu_idx: MMU index indicating required translation regime 12037 * @phys_ptr: set to the physical address corresponding to the virtual address 12038 * @attrs: set to the memory transaction attributes to use 12039 * @prot: set to the permissions for the page containing phys_ptr 12040 * @page_size: set to the size of the page containing phys_ptr 12041 * @fi: set to fault info if the translation fails 12042 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12043 */ 12044 bool get_phys_addr(CPUARMState *env, target_ulong address, 12045 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12046 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12047 target_ulong *page_size, 12048 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12049 { 12050 if (mmu_idx == ARMMMUIdx_E10_0 || 12051 mmu_idx == ARMMMUIdx_E10_1 || 12052 mmu_idx == ARMMMUIdx_E10_1_PAN) { 12053 /* Call ourselves recursively to do the stage 1 and then stage 2 12054 * translations. 12055 */ 12056 if (arm_feature(env, ARM_FEATURE_EL2)) { 12057 hwaddr ipa; 12058 int s2_prot; 12059 int ret; 12060 ARMCacheAttrs cacheattrs2 = {}; 12061 12062 ret = get_phys_addr(env, address, access_type, 12063 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 12064 prot, page_size, fi, cacheattrs); 12065 12066 /* If S1 fails or S2 is disabled, return early. */ 12067 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12068 *phys_ptr = ipa; 12069 return ret; 12070 } 12071 12072 /* S1 is done. Now do S2 translation. */ 12073 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2, 12074 mmu_idx == ARMMMUIdx_E10_0, 12075 phys_ptr, attrs, &s2_prot, 12076 page_size, fi, &cacheattrs2); 12077 fi->s2addr = ipa; 12078 /* Combine the S1 and S2 perms. */ 12079 *prot &= s2_prot; 12080 12081 /* If S2 fails, return early. */ 12082 if (ret) { 12083 return ret; 12084 } 12085 12086 /* Combine the S1 and S2 cache attributes. */ 12087 if (env->cp15.hcr_el2 & HCR_DC) { 12088 /* 12089 * HCR.DC forces the first stage attributes to 12090 * Normal Non-Shareable, 12091 * Inner Write-Back Read-Allocate Write-Allocate, 12092 * Outer Write-Back Read-Allocate Write-Allocate. 12093 * Do not overwrite Tagged within attrs. 12094 */ 12095 if (cacheattrs->attrs != 0xf0) { 12096 cacheattrs->attrs = 0xff; 12097 } 12098 cacheattrs->shareability = 0; 12099 } 12100 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12101 return 0; 12102 } else { 12103 /* 12104 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12105 */ 12106 mmu_idx = stage_1_mmu_idx(mmu_idx); 12107 } 12108 } 12109 12110 /* The page table entries may downgrade secure to non-secure, but 12111 * cannot upgrade an non-secure translation regime's attributes 12112 * to secure. 12113 */ 12114 attrs->secure = regime_is_secure(env, mmu_idx); 12115 attrs->user = regime_is_user(env, mmu_idx); 12116 12117 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12118 * In v7 and earlier it affects all stage 1 translations. 12119 */ 12120 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12121 && !arm_feature(env, ARM_FEATURE_V8)) { 12122 if (regime_el(env, mmu_idx) == 3) { 12123 address += env->cp15.fcseidr_s; 12124 } else { 12125 address += env->cp15.fcseidr_ns; 12126 } 12127 } 12128 12129 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12130 bool ret; 12131 *page_size = TARGET_PAGE_SIZE; 12132 12133 if (arm_feature(env, ARM_FEATURE_V8)) { 12134 /* PMSAv8 */ 12135 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12136 phys_ptr, attrs, prot, page_size, fi); 12137 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12138 /* PMSAv7 */ 12139 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12140 phys_ptr, prot, page_size, fi); 12141 } else { 12142 /* Pre-v7 MPU */ 12143 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12144 phys_ptr, prot, fi); 12145 } 12146 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12147 " mmu_idx %u -> %s (prot %c%c%c)\n", 12148 access_type == MMU_DATA_LOAD ? "reading" : 12149 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12150 (uint32_t)address, mmu_idx, 12151 ret ? "Miss" : "Hit", 12152 *prot & PAGE_READ ? 'r' : '-', 12153 *prot & PAGE_WRITE ? 'w' : '-', 12154 *prot & PAGE_EXEC ? 'x' : '-'); 12155 12156 return ret; 12157 } 12158 12159 /* Definitely a real MMU, not an MPU */ 12160 12161 if (regime_translation_disabled(env, mmu_idx)) { 12162 uint64_t hcr; 12163 uint8_t memattr; 12164 12165 /* 12166 * MMU disabled. S1 addresses within aa64 translation regimes are 12167 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12168 */ 12169 if (mmu_idx != ARMMMUIdx_Stage2) { 12170 int r_el = regime_el(env, mmu_idx); 12171 if (arm_el_is_aa64(env, r_el)) { 12172 int pamax = arm_pamax(env_archcpu(env)); 12173 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12174 int addrtop, tbi; 12175 12176 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12177 if (access_type == MMU_INST_FETCH) { 12178 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12179 } 12180 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12181 addrtop = (tbi ? 55 : 63); 12182 12183 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12184 fi->type = ARMFault_AddressSize; 12185 fi->level = 0; 12186 fi->stage2 = false; 12187 return 1; 12188 } 12189 12190 /* 12191 * When TBI is disabled, we've just validated that all of the 12192 * bits above PAMax are zero, so logically we only need to 12193 * clear the top byte for TBI. But it's clearer to follow 12194 * the pseudocode set of addrdesc.paddress. 12195 */ 12196 address = extract64(address, 0, 52); 12197 } 12198 } 12199 *phys_ptr = address; 12200 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12201 *page_size = TARGET_PAGE_SIZE; 12202 12203 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12204 hcr = arm_hcr_el2_eff(env); 12205 cacheattrs->shareability = 0; 12206 if (hcr & HCR_DC) { 12207 if (hcr & HCR_DCT) { 12208 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12209 } else { 12210 memattr = 0xff; /* Normal, WB, RWA */ 12211 } 12212 } else if (access_type == MMU_INST_FETCH) { 12213 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12214 memattr = 0xee; /* Normal, WT, RA, NT */ 12215 } else { 12216 memattr = 0x44; /* Normal, NC, No */ 12217 } 12218 cacheattrs->shareability = 2; /* outer sharable */ 12219 } else { 12220 memattr = 0x00; /* Device, nGnRnE */ 12221 } 12222 cacheattrs->attrs = memattr; 12223 return 0; 12224 } 12225 12226 if (regime_using_lpae_format(env, mmu_idx)) { 12227 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12228 phys_ptr, attrs, prot, page_size, 12229 fi, cacheattrs); 12230 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12231 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12232 phys_ptr, attrs, prot, page_size, fi); 12233 } else { 12234 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12235 phys_ptr, prot, page_size, fi); 12236 } 12237 } 12238 12239 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12240 MemTxAttrs *attrs) 12241 { 12242 ARMCPU *cpu = ARM_CPU(cs); 12243 CPUARMState *env = &cpu->env; 12244 hwaddr phys_addr; 12245 target_ulong page_size; 12246 int prot; 12247 bool ret; 12248 ARMMMUFaultInfo fi = {}; 12249 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12250 ARMCacheAttrs cacheattrs = {}; 12251 12252 *attrs = (MemTxAttrs) {}; 12253 12254 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 12255 attrs, &prot, &page_size, &fi, &cacheattrs); 12256 12257 if (ret) { 12258 return -1; 12259 } 12260 return phys_addr; 12261 } 12262 12263 #endif 12264 12265 /* Note that signed overflow is undefined in C. The following routines are 12266 careful to use unsigned types where modulo arithmetic is required. 12267 Failure to do so _will_ break on newer gcc. */ 12268 12269 /* Signed saturating arithmetic. */ 12270 12271 /* Perform 16-bit signed saturating addition. */ 12272 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12273 { 12274 uint16_t res; 12275 12276 res = a + b; 12277 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12278 if (a & 0x8000) 12279 res = 0x8000; 12280 else 12281 res = 0x7fff; 12282 } 12283 return res; 12284 } 12285 12286 /* Perform 8-bit signed saturating addition. */ 12287 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12288 { 12289 uint8_t res; 12290 12291 res = a + b; 12292 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12293 if (a & 0x80) 12294 res = 0x80; 12295 else 12296 res = 0x7f; 12297 } 12298 return res; 12299 } 12300 12301 /* Perform 16-bit signed saturating subtraction. */ 12302 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12303 { 12304 uint16_t res; 12305 12306 res = a - b; 12307 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12308 if (a & 0x8000) 12309 res = 0x8000; 12310 else 12311 res = 0x7fff; 12312 } 12313 return res; 12314 } 12315 12316 /* Perform 8-bit signed saturating subtraction. */ 12317 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12318 { 12319 uint8_t res; 12320 12321 res = a - b; 12322 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12323 if (a & 0x80) 12324 res = 0x80; 12325 else 12326 res = 0x7f; 12327 } 12328 return res; 12329 } 12330 12331 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12332 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12333 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12334 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12335 #define PFX q 12336 12337 #include "op_addsub.h" 12338 12339 /* Unsigned saturating arithmetic. */ 12340 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12341 { 12342 uint16_t res; 12343 res = a + b; 12344 if (res < a) 12345 res = 0xffff; 12346 return res; 12347 } 12348 12349 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12350 { 12351 if (a > b) 12352 return a - b; 12353 else 12354 return 0; 12355 } 12356 12357 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12358 { 12359 uint8_t res; 12360 res = a + b; 12361 if (res < a) 12362 res = 0xff; 12363 return res; 12364 } 12365 12366 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12367 { 12368 if (a > b) 12369 return a - b; 12370 else 12371 return 0; 12372 } 12373 12374 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12375 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12376 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12377 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12378 #define PFX uq 12379 12380 #include "op_addsub.h" 12381 12382 /* Signed modulo arithmetic. */ 12383 #define SARITH16(a, b, n, op) do { \ 12384 int32_t sum; \ 12385 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12386 RESULT(sum, n, 16); \ 12387 if (sum >= 0) \ 12388 ge |= 3 << (n * 2); \ 12389 } while(0) 12390 12391 #define SARITH8(a, b, n, op) do { \ 12392 int32_t sum; \ 12393 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12394 RESULT(sum, n, 8); \ 12395 if (sum >= 0) \ 12396 ge |= 1 << n; \ 12397 } while(0) 12398 12399 12400 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12401 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12402 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12403 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12404 #define PFX s 12405 #define ARITH_GE 12406 12407 #include "op_addsub.h" 12408 12409 /* Unsigned modulo arithmetic. */ 12410 #define ADD16(a, b, n) do { \ 12411 uint32_t sum; \ 12412 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12413 RESULT(sum, n, 16); \ 12414 if ((sum >> 16) == 1) \ 12415 ge |= 3 << (n * 2); \ 12416 } while(0) 12417 12418 #define ADD8(a, b, n) do { \ 12419 uint32_t sum; \ 12420 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12421 RESULT(sum, n, 8); \ 12422 if ((sum >> 8) == 1) \ 12423 ge |= 1 << n; \ 12424 } while(0) 12425 12426 #define SUB16(a, b, n) do { \ 12427 uint32_t sum; \ 12428 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12429 RESULT(sum, n, 16); \ 12430 if ((sum >> 16) == 0) \ 12431 ge |= 3 << (n * 2); \ 12432 } while(0) 12433 12434 #define SUB8(a, b, n) do { \ 12435 uint32_t sum; \ 12436 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12437 RESULT(sum, n, 8); \ 12438 if ((sum >> 8) == 0) \ 12439 ge |= 1 << n; \ 12440 } while(0) 12441 12442 #define PFX u 12443 #define ARITH_GE 12444 12445 #include "op_addsub.h" 12446 12447 /* Halved signed arithmetic. */ 12448 #define ADD16(a, b, n) \ 12449 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12450 #define SUB16(a, b, n) \ 12451 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12452 #define ADD8(a, b, n) \ 12453 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12454 #define SUB8(a, b, n) \ 12455 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12456 #define PFX sh 12457 12458 #include "op_addsub.h" 12459 12460 /* Halved unsigned arithmetic. */ 12461 #define ADD16(a, b, n) \ 12462 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12463 #define SUB16(a, b, n) \ 12464 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12465 #define ADD8(a, b, n) \ 12466 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12467 #define SUB8(a, b, n) \ 12468 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12469 #define PFX uh 12470 12471 #include "op_addsub.h" 12472 12473 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12474 { 12475 if (a > b) 12476 return a - b; 12477 else 12478 return b - a; 12479 } 12480 12481 /* Unsigned sum of absolute byte differences. */ 12482 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12483 { 12484 uint32_t sum; 12485 sum = do_usad(a, b); 12486 sum += do_usad(a >> 8, b >> 8); 12487 sum += do_usad(a >> 16, b >>16); 12488 sum += do_usad(a >> 24, b >> 24); 12489 return sum; 12490 } 12491 12492 /* For ARMv6 SEL instruction. */ 12493 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12494 { 12495 uint32_t mask; 12496 12497 mask = 0; 12498 if (flags & 1) 12499 mask |= 0xff; 12500 if (flags & 2) 12501 mask |= 0xff00; 12502 if (flags & 4) 12503 mask |= 0xff0000; 12504 if (flags & 8) 12505 mask |= 0xff000000; 12506 return (a & mask) | (b & ~mask); 12507 } 12508 12509 /* CRC helpers. 12510 * The upper bytes of val (above the number specified by 'bytes') must have 12511 * been zeroed out by the caller. 12512 */ 12513 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12514 { 12515 uint8_t buf[4]; 12516 12517 stl_le_p(buf, val); 12518 12519 /* zlib crc32 converts the accumulator and output to one's complement. */ 12520 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12521 } 12522 12523 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12524 { 12525 uint8_t buf[4]; 12526 12527 stl_le_p(buf, val); 12528 12529 /* Linux crc32c converts the output to one's complement. */ 12530 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12531 } 12532 12533 /* Return the exception level to which FP-disabled exceptions should 12534 * be taken, or 0 if FP is enabled. 12535 */ 12536 int fp_exception_el(CPUARMState *env, int cur_el) 12537 { 12538 #ifndef CONFIG_USER_ONLY 12539 /* CPACR and the CPTR registers don't exist before v6, so FP is 12540 * always accessible 12541 */ 12542 if (!arm_feature(env, ARM_FEATURE_V6)) { 12543 return 0; 12544 } 12545 12546 if (arm_feature(env, ARM_FEATURE_M)) { 12547 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12548 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12549 return 1; 12550 } 12551 12552 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12553 if (!extract32(env->v7m.nsacr, 10, 1)) { 12554 /* FP insns cause a NOCP UsageFault taken to Secure */ 12555 return 3; 12556 } 12557 } 12558 12559 return 0; 12560 } 12561 12562 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12563 * 0, 2 : trap EL0 and EL1/PL1 accesses 12564 * 1 : trap only EL0 accesses 12565 * 3 : trap no accesses 12566 * This register is ignored if E2H+TGE are both set. 12567 */ 12568 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12569 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12570 12571 switch (fpen) { 12572 case 0: 12573 case 2: 12574 if (cur_el == 0 || cur_el == 1) { 12575 /* Trap to PL1, which might be EL1 or EL3 */ 12576 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12577 return 3; 12578 } 12579 return 1; 12580 } 12581 if (cur_el == 3 && !is_a64(env)) { 12582 /* Secure PL1 running at EL3 */ 12583 return 3; 12584 } 12585 break; 12586 case 1: 12587 if (cur_el == 0) { 12588 return 1; 12589 } 12590 break; 12591 case 3: 12592 break; 12593 } 12594 } 12595 12596 /* 12597 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12598 * to control non-secure access to the FPU. It doesn't have any 12599 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12600 */ 12601 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12602 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12603 if (!extract32(env->cp15.nsacr, 10, 1)) { 12604 /* FP insns act as UNDEF */ 12605 return cur_el == 2 ? 2 : 1; 12606 } 12607 } 12608 12609 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12610 * check because zero bits in the registers mean "don't trap". 12611 */ 12612 12613 /* CPTR_EL2 : present in v7VE or v8 */ 12614 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12615 && !arm_is_secure_below_el3(env)) { 12616 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12617 return 2; 12618 } 12619 12620 /* CPTR_EL3 : present in v8 */ 12621 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12622 /* Trap all FP ops to EL3 */ 12623 return 3; 12624 } 12625 #endif 12626 return 0; 12627 } 12628 12629 /* Return the exception level we're running at if this is our mmu_idx */ 12630 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12631 { 12632 if (mmu_idx & ARM_MMU_IDX_M) { 12633 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12634 } 12635 12636 switch (mmu_idx) { 12637 case ARMMMUIdx_E10_0: 12638 case ARMMMUIdx_E20_0: 12639 case ARMMMUIdx_SE10_0: 12640 return 0; 12641 case ARMMMUIdx_E10_1: 12642 case ARMMMUIdx_E10_1_PAN: 12643 case ARMMMUIdx_SE10_1: 12644 case ARMMMUIdx_SE10_1_PAN: 12645 return 1; 12646 case ARMMMUIdx_E2: 12647 case ARMMMUIdx_E20_2: 12648 case ARMMMUIdx_E20_2_PAN: 12649 return 2; 12650 case ARMMMUIdx_SE3: 12651 return 3; 12652 default: 12653 g_assert_not_reached(); 12654 } 12655 } 12656 12657 #ifndef CONFIG_TCG 12658 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12659 { 12660 g_assert_not_reached(); 12661 } 12662 #endif 12663 12664 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12665 { 12666 if (arm_feature(env, ARM_FEATURE_M)) { 12667 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12668 } 12669 12670 /* See ARM pseudo-function ELIsInHost. */ 12671 switch (el) { 12672 case 0: 12673 if (arm_is_secure_below_el3(env)) { 12674 return ARMMMUIdx_SE10_0; 12675 } 12676 if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE) 12677 && arm_el_is_aa64(env, 2)) { 12678 return ARMMMUIdx_E20_0; 12679 } 12680 return ARMMMUIdx_E10_0; 12681 case 1: 12682 if (arm_is_secure_below_el3(env)) { 12683 if (env->pstate & PSTATE_PAN) { 12684 return ARMMMUIdx_SE10_1_PAN; 12685 } 12686 return ARMMMUIdx_SE10_1; 12687 } 12688 if (env->pstate & PSTATE_PAN) { 12689 return ARMMMUIdx_E10_1_PAN; 12690 } 12691 return ARMMMUIdx_E10_1; 12692 case 2: 12693 /* TODO: ARMv8.4-SecEL2 */ 12694 /* Note that TGE does not apply at EL2. */ 12695 if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) { 12696 if (env->pstate & PSTATE_PAN) { 12697 return ARMMMUIdx_E20_2_PAN; 12698 } 12699 return ARMMMUIdx_E20_2; 12700 } 12701 return ARMMMUIdx_E2; 12702 case 3: 12703 return ARMMMUIdx_SE3; 12704 default: 12705 g_assert_not_reached(); 12706 } 12707 } 12708 12709 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12710 { 12711 return arm_mmu_idx_el(env, arm_current_el(env)); 12712 } 12713 12714 #ifndef CONFIG_USER_ONLY 12715 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 12716 { 12717 return stage_1_mmu_idx(arm_mmu_idx(env)); 12718 } 12719 #endif 12720 12721 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 12722 ARMMMUIdx mmu_idx, uint32_t flags) 12723 { 12724 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 12725 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 12726 arm_to_core_mmu_idx(mmu_idx)); 12727 12728 if (arm_singlestep_active(env)) { 12729 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 12730 } 12731 return flags; 12732 } 12733 12734 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 12735 ARMMMUIdx mmu_idx, uint32_t flags) 12736 { 12737 bool sctlr_b = arm_sctlr_b(env); 12738 12739 if (sctlr_b) { 12740 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 12741 } 12742 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 12743 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12744 } 12745 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 12746 12747 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12748 } 12749 12750 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 12751 ARMMMUIdx mmu_idx) 12752 { 12753 uint32_t flags = 0; 12754 12755 if (arm_v7m_is_handler_mode(env)) { 12756 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1); 12757 } 12758 12759 /* 12760 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 12761 * is suppressing them because the requested execution priority 12762 * is less than 0. 12763 */ 12764 if (arm_feature(env, ARM_FEATURE_V8) && 12765 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 12766 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 12767 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1); 12768 } 12769 12770 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12771 } 12772 12773 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 12774 { 12775 int flags = 0; 12776 12777 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 12778 arm_debug_target_el(env)); 12779 return flags; 12780 } 12781 12782 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 12783 ARMMMUIdx mmu_idx) 12784 { 12785 uint32_t flags = rebuild_hflags_aprofile(env); 12786 12787 if (arm_el_is_aa64(env, 1)) { 12788 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 12789 } 12790 12791 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && 12792 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12793 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); 12794 } 12795 12796 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12797 } 12798 12799 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 12800 ARMMMUIdx mmu_idx) 12801 { 12802 uint32_t flags = rebuild_hflags_aprofile(env); 12803 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 12804 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 12805 uint64_t sctlr; 12806 int tbii, tbid; 12807 12808 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 12809 12810 /* Get control bits for tagged addresses. */ 12811 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 12812 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 12813 12814 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 12815 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 12816 12817 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 12818 int sve_el = sve_exception_el(env, el); 12819 uint32_t zcr_len; 12820 12821 /* 12822 * If SVE is disabled, but FP is enabled, 12823 * then the effective len is 0. 12824 */ 12825 if (sve_el != 0 && fp_el == 0) { 12826 zcr_len = 0; 12827 } else { 12828 zcr_len = sve_zcr_len_for_el(env, el); 12829 } 12830 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 12831 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 12832 } 12833 12834 sctlr = regime_sctlr(env, stage1); 12835 12836 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 12837 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12838 } 12839 12840 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 12841 /* 12842 * In order to save space in flags, we record only whether 12843 * pauth is "inactive", meaning all insns are implemented as 12844 * a nop, or "active" when some action must be performed. 12845 * The decision of which action to take is left to a helper. 12846 */ 12847 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 12848 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 12849 } 12850 } 12851 12852 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12853 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 12854 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 12855 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 12856 } 12857 } 12858 12859 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 12860 if (!(env->pstate & PSTATE_UAO)) { 12861 switch (mmu_idx) { 12862 case ARMMMUIdx_E10_1: 12863 case ARMMMUIdx_E10_1_PAN: 12864 case ARMMMUIdx_SE10_1: 12865 case ARMMMUIdx_SE10_1_PAN: 12866 /* TODO: ARMv8.3-NV */ 12867 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12868 break; 12869 case ARMMMUIdx_E20_2: 12870 case ARMMMUIdx_E20_2_PAN: 12871 /* TODO: ARMv8.4-SecEL2 */ 12872 /* 12873 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 12874 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 12875 */ 12876 if (env->cp15.hcr_el2 & HCR_TGE) { 12877 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12878 } 12879 break; 12880 default: 12881 break; 12882 } 12883 } 12884 12885 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 12886 /* 12887 * Set MTE_ACTIVE if any access may be Checked, and leave clear 12888 * if all accesses must be Unchecked: 12889 * 1) If no TBI, then there are no tags in the address to check, 12890 * 2) If Tag Check Override, then all accesses are Unchecked, 12891 * 3) If Tag Check Fail == 0, then Checked access have no effect, 12892 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 12893 */ 12894 if (allocation_tag_access_enabled(env, el, sctlr)) { 12895 flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1); 12896 if (tbid 12897 && !(env->pstate & PSTATE_TCO) 12898 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 12899 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1); 12900 } 12901 } 12902 /* And again for unprivileged accesses, if required. */ 12903 if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV) 12904 && tbid 12905 && !(env->pstate & PSTATE_TCO) 12906 && (sctlr & SCTLR_TCF0) 12907 && allocation_tag_access_enabled(env, 0, sctlr)) { 12908 flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1); 12909 } 12910 /* Cache TCMA as well as TBI. */ 12911 flags = FIELD_DP32(flags, TBFLAG_A64, TCMA, 12912 aa64_va_parameter_tcma(tcr, mmu_idx)); 12913 } 12914 12915 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12916 } 12917 12918 static uint32_t rebuild_hflags_internal(CPUARMState *env) 12919 { 12920 int el = arm_current_el(env); 12921 int fp_el = fp_exception_el(env, el); 12922 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12923 12924 if (is_a64(env)) { 12925 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12926 } else if (arm_feature(env, ARM_FEATURE_M)) { 12927 return rebuild_hflags_m32(env, fp_el, mmu_idx); 12928 } else { 12929 return rebuild_hflags_a32(env, fp_el, mmu_idx); 12930 } 12931 } 12932 12933 void arm_rebuild_hflags(CPUARMState *env) 12934 { 12935 env->hflags = rebuild_hflags_internal(env); 12936 } 12937 12938 /* 12939 * If we have triggered a EL state change we can't rely on the 12940 * translator having passed it to us, we need to recompute. 12941 */ 12942 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 12943 { 12944 int el = arm_current_el(env); 12945 int fp_el = fp_exception_el(env, el); 12946 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12947 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12948 } 12949 12950 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 12951 { 12952 int fp_el = fp_exception_el(env, el); 12953 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12954 12955 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12956 } 12957 12958 /* 12959 * If we have triggered a EL state change we can't rely on the 12960 * translator having passed it to us, we need to recompute. 12961 */ 12962 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 12963 { 12964 int el = arm_current_el(env); 12965 int fp_el = fp_exception_el(env, el); 12966 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12967 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12968 } 12969 12970 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 12971 { 12972 int fp_el = fp_exception_el(env, el); 12973 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12974 12975 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12976 } 12977 12978 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 12979 { 12980 int fp_el = fp_exception_el(env, el); 12981 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12982 12983 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12984 } 12985 12986 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 12987 { 12988 #ifdef CONFIG_DEBUG_TCG 12989 uint32_t env_flags_current = env->hflags; 12990 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); 12991 12992 if (unlikely(env_flags_current != env_flags_rebuilt)) { 12993 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", 12994 env_flags_current, env_flags_rebuilt); 12995 abort(); 12996 } 12997 #endif 12998 } 12999 13000 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13001 target_ulong *cs_base, uint32_t *pflags) 13002 { 13003 uint32_t flags = env->hflags; 13004 uint32_t pstate_for_ss; 13005 13006 *cs_base = 0; 13007 assert_hflags_rebuild_correctly(env); 13008 13009 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 13010 *pc = env->pc; 13011 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13012 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 13013 } 13014 pstate_for_ss = env->pstate; 13015 } else { 13016 *pc = env->regs[15]; 13017 13018 if (arm_feature(env, ARM_FEATURE_M)) { 13019 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13020 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13021 != env->v7m.secure) { 13022 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1); 13023 } 13024 13025 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13026 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13027 (env->v7m.secure && 13028 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13029 /* 13030 * ASPEN is set, but FPCA/SFPA indicate that there is no 13031 * active FP context; we must create a new FP context before 13032 * executing any FP insn. 13033 */ 13034 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1); 13035 } 13036 13037 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13038 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13039 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1); 13040 } 13041 } else { 13042 /* 13043 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13044 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13045 */ 13046 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13047 flags = FIELD_DP32(flags, TBFLAG_A32, 13048 XSCALE_CPAR, env->cp15.c15_cpar); 13049 } else { 13050 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 13051 env->vfp.vec_len); 13052 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 13053 env->vfp.vec_stride); 13054 } 13055 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13056 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 13057 } 13058 } 13059 13060 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb); 13061 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits); 13062 pstate_for_ss = env->uncached_cpsr; 13063 } 13064 13065 /* 13066 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13067 * states defined in the ARM ARM for software singlestep: 13068 * SS_ACTIVE PSTATE.SS State 13069 * 0 x Inactive (the TB flag for SS is always 0) 13070 * 1 0 Active-pending 13071 * 1 1 Active-not-pending 13072 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 13073 */ 13074 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 13075 (pstate_for_ss & PSTATE_SS)) { 13076 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 13077 } 13078 13079 *pflags = flags; 13080 } 13081 13082 #ifdef TARGET_AARCH64 13083 /* 13084 * The manual says that when SVE is enabled and VQ is widened the 13085 * implementation is allowed to zero the previously inaccessible 13086 * portion of the registers. The corollary to that is that when 13087 * SVE is enabled and VQ is narrowed we are also allowed to zero 13088 * the now inaccessible portion of the registers. 13089 * 13090 * The intent of this is that no predicate bit beyond VQ is ever set. 13091 * Which means that some operations on predicate registers themselves 13092 * may operate on full uint64_t or even unrolled across the maximum 13093 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13094 * may well be cheaper than conditionals to restrict the operation 13095 * to the relevant portion of a uint16_t[16]. 13096 */ 13097 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13098 { 13099 int i, j; 13100 uint64_t pmask; 13101 13102 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13103 assert(vq <= env_archcpu(env)->sve_max_vq); 13104 13105 /* Zap the high bits of the zregs. */ 13106 for (i = 0; i < 32; i++) { 13107 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13108 } 13109 13110 /* Zap the high bits of the pregs and ffr. */ 13111 pmask = 0; 13112 if (vq & 3) { 13113 pmask = ~(-1ULL << (16 * (vq & 3))); 13114 } 13115 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13116 for (i = 0; i < 17; ++i) { 13117 env->vfp.pregs[i].p[j] &= pmask; 13118 } 13119 pmask = 0; 13120 } 13121 } 13122 13123 /* 13124 * Notice a change in SVE vector size when changing EL. 13125 */ 13126 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13127 int new_el, bool el0_a64) 13128 { 13129 ARMCPU *cpu = env_archcpu(env); 13130 int old_len, new_len; 13131 bool old_a64, new_a64; 13132 13133 /* Nothing to do if no SVE. */ 13134 if (!cpu_isar_feature(aa64_sve, cpu)) { 13135 return; 13136 } 13137 13138 /* Nothing to do if FP is disabled in either EL. */ 13139 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13140 return; 13141 } 13142 13143 /* 13144 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13145 * at ELx, or not available because the EL is in AArch32 state, then 13146 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13147 * has an effective value of 0". 13148 * 13149 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13150 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13151 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13152 * we already have the correct register contents when encountering the 13153 * vq0->vq0 transition between EL0->EL1. 13154 */ 13155 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13156 old_len = (old_a64 && !sve_exception_el(env, old_el) 13157 ? sve_zcr_len_for_el(env, old_el) : 0); 13158 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13159 new_len = (new_a64 && !sve_exception_el(env, new_el) 13160 ? sve_zcr_len_for_el(env, new_el) : 0); 13161 13162 /* When changing vector length, clear inaccessible state. */ 13163 if (new_len < old_len) { 13164 aarch64_sve_narrow_vq(env, new_len + 1); 13165 } 13166 } 13167 #endif 13168