1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "target/arm/idau.h" 13 #include "trace.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/timer.h" 20 #include "qemu/bitops.h" 21 #include "qemu/crc32c.h" 22 #include "qemu/qemu-print.h" 23 #include "exec/exec-all.h" 24 #include <zlib.h> /* For crc32 */ 25 #include "hw/irq.h" 26 #include "semihosting/semihost.h" 27 #include "sysemu/cpus.h" 28 #include "sysemu/cpu-timers.h" 29 #include "sysemu/kvm.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "semihosting/common-semi.h" 38 #endif 39 #include "cpregs.h" 40 41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 42 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 43 44 #ifndef CONFIG_USER_ONLY 45 46 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 47 MMUAccessType access_type, ARMMMUIdx mmu_idx, 48 bool s1_is_el0, 49 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 50 target_ulong *page_size_ptr, 51 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 52 __attribute__((nonnull)); 53 #endif 54 55 static void switch_mode(CPUARMState *env, int mode); 56 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 57 58 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 assert(ri->fieldoffset); 61 if (cpreg_field_is_64bit(ri)) { 62 return CPREG_FIELD64(env, ri); 63 } else { 64 return CPREG_FIELD32(env, ri); 65 } 66 } 67 68 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 69 uint64_t value) 70 { 71 assert(ri->fieldoffset); 72 if (cpreg_field_is_64bit(ri)) { 73 CPREG_FIELD64(env, ri) = value; 74 } else { 75 CPREG_FIELD32(env, ri) = value; 76 } 77 } 78 79 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 80 { 81 return (char *)env + ri->fieldoffset; 82 } 83 84 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 85 { 86 /* Raw read of a coprocessor register (as needed for migration, etc). */ 87 if (ri->type & ARM_CP_CONST) { 88 return ri->resetvalue; 89 } else if (ri->raw_readfn) { 90 return ri->raw_readfn(env, ri); 91 } else if (ri->readfn) { 92 return ri->readfn(env, ri); 93 } else { 94 return raw_read(env, ri); 95 } 96 } 97 98 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 99 uint64_t v) 100 { 101 /* Raw write of a coprocessor register (as needed for migration, etc). 102 * Note that constant registers are treated as write-ignored; the 103 * caller should check for success by whether a readback gives the 104 * value written. 105 */ 106 if (ri->type & ARM_CP_CONST) { 107 return; 108 } else if (ri->raw_writefn) { 109 ri->raw_writefn(env, ri, v); 110 } else if (ri->writefn) { 111 ri->writefn(env, ri, v); 112 } else { 113 raw_write(env, ri, v); 114 } 115 } 116 117 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 118 { 119 /* Return true if the regdef would cause an assertion if you called 120 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 121 * program bug for it not to have the NO_RAW flag). 122 * NB that returning false here doesn't necessarily mean that calling 123 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 124 * read/write access functions which are safe for raw use" from "has 125 * read/write access functions which have side effects but has forgotten 126 * to provide raw access functions". 127 * The tests here line up with the conditions in read/write_raw_cp_reg() 128 * and assertions in raw_read()/raw_write(). 129 */ 130 if ((ri->type & ARM_CP_CONST) || 131 ri->fieldoffset || 132 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 133 return false; 134 } 135 return true; 136 } 137 138 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 139 { 140 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 141 int i; 142 bool ok = true; 143 144 for (i = 0; i < cpu->cpreg_array_len; i++) { 145 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 146 const ARMCPRegInfo *ri; 147 uint64_t newval; 148 149 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 150 if (!ri) { 151 ok = false; 152 continue; 153 } 154 if (ri->type & ARM_CP_NO_RAW) { 155 continue; 156 } 157 158 newval = read_raw_cp_reg(&cpu->env, ri); 159 if (kvm_sync) { 160 /* 161 * Only sync if the previous list->cpustate sync succeeded. 162 * Rather than tracking the success/failure state for every 163 * item in the list, we just recheck "does the raw write we must 164 * have made in write_list_to_cpustate() read back OK" here. 165 */ 166 uint64_t oldval = cpu->cpreg_values[i]; 167 168 if (oldval == newval) { 169 continue; 170 } 171 172 write_raw_cp_reg(&cpu->env, ri, oldval); 173 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 174 continue; 175 } 176 177 write_raw_cp_reg(&cpu->env, ri, newval); 178 } 179 cpu->cpreg_values[i] = newval; 180 } 181 return ok; 182 } 183 184 bool write_list_to_cpustate(ARMCPU *cpu) 185 { 186 int i; 187 bool ok = true; 188 189 for (i = 0; i < cpu->cpreg_array_len; i++) { 190 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 191 uint64_t v = cpu->cpreg_values[i]; 192 const ARMCPRegInfo *ri; 193 194 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 195 if (!ri) { 196 ok = false; 197 continue; 198 } 199 if (ri->type & ARM_CP_NO_RAW) { 200 continue; 201 } 202 /* Write value and confirm it reads back as written 203 * (to catch read-only registers and partially read-only 204 * registers where the incoming migration value doesn't match) 205 */ 206 write_raw_cp_reg(&cpu->env, ri, v); 207 if (read_raw_cp_reg(&cpu->env, ri) != v) { 208 ok = false; 209 } 210 } 211 return ok; 212 } 213 214 static void add_cpreg_to_list(gpointer key, gpointer opaque) 215 { 216 ARMCPU *cpu = opaque; 217 uint32_t regidx = (uintptr_t)key; 218 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 219 220 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 221 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 222 /* The value array need not be initialized at this point */ 223 cpu->cpreg_array_len++; 224 } 225 } 226 227 static void count_cpreg(gpointer key, gpointer opaque) 228 { 229 ARMCPU *cpu = opaque; 230 const ARMCPRegInfo *ri; 231 232 ri = g_hash_table_lookup(cpu->cp_regs, key); 233 234 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 235 cpu->cpreg_array_len++; 236 } 237 } 238 239 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 240 { 241 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 242 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 243 244 if (aidx > bidx) { 245 return 1; 246 } 247 if (aidx < bidx) { 248 return -1; 249 } 250 return 0; 251 } 252 253 void init_cpreg_list(ARMCPU *cpu) 254 { 255 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 256 * Note that we require cpreg_tuples[] to be sorted by key ID. 257 */ 258 GList *keys; 259 int arraylen; 260 261 keys = g_hash_table_get_keys(cpu->cp_regs); 262 keys = g_list_sort(keys, cpreg_key_compare); 263 264 cpu->cpreg_array_len = 0; 265 266 g_list_foreach(keys, count_cpreg, cpu); 267 268 arraylen = cpu->cpreg_array_len; 269 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 270 cpu->cpreg_values = g_new(uint64_t, arraylen); 271 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 272 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 273 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 274 cpu->cpreg_array_len = 0; 275 276 g_list_foreach(keys, add_cpreg_to_list, cpu); 277 278 assert(cpu->cpreg_array_len == arraylen); 279 280 g_list_free(keys); 281 } 282 283 /* 284 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 285 */ 286 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 287 const ARMCPRegInfo *ri, 288 bool isread) 289 { 290 if (!is_a64(env) && arm_current_el(env) == 3 && 291 arm_is_secure_below_el3(env)) { 292 return CP_ACCESS_TRAP_UNCATEGORIZED; 293 } 294 return CP_ACCESS_OK; 295 } 296 297 /* Some secure-only AArch32 registers trap to EL3 if used from 298 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 299 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 300 * We assume that the .access field is set to PL1_RW. 301 */ 302 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 303 const ARMCPRegInfo *ri, 304 bool isread) 305 { 306 if (arm_current_el(env) == 3) { 307 return CP_ACCESS_OK; 308 } 309 if (arm_is_secure_below_el3(env)) { 310 if (env->cp15.scr_el3 & SCR_EEL2) { 311 return CP_ACCESS_TRAP_EL2; 312 } 313 return CP_ACCESS_TRAP_EL3; 314 } 315 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 316 return CP_ACCESS_TRAP_UNCATEGORIZED; 317 } 318 319 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 320 { 321 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 322 } 323 324 /* Check for traps to "powerdown debug" registers, which are controlled 325 * by MDCR.TDOSA 326 */ 327 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 328 bool isread) 329 { 330 int el = arm_current_el(env); 331 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 332 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 333 (arm_hcr_el2_eff(env) & HCR_TGE); 334 335 if (el < 2 && mdcr_el2_tdosa) { 336 return CP_ACCESS_TRAP_EL2; 337 } 338 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 339 return CP_ACCESS_TRAP_EL3; 340 } 341 return CP_ACCESS_OK; 342 } 343 344 /* Check for traps to "debug ROM" registers, which are controlled 345 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 346 */ 347 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 348 bool isread) 349 { 350 int el = arm_current_el(env); 351 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 352 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 353 (arm_hcr_el2_eff(env) & HCR_TGE); 354 355 if (el < 2 && mdcr_el2_tdra) { 356 return CP_ACCESS_TRAP_EL2; 357 } 358 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 359 return CP_ACCESS_TRAP_EL3; 360 } 361 return CP_ACCESS_OK; 362 } 363 364 /* Check for traps to general debug registers, which are controlled 365 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 366 */ 367 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 368 bool isread) 369 { 370 int el = arm_current_el(env); 371 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 372 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 373 (arm_hcr_el2_eff(env) & HCR_TGE); 374 375 if (el < 2 && mdcr_el2_tda) { 376 return CP_ACCESS_TRAP_EL2; 377 } 378 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 379 return CP_ACCESS_TRAP_EL3; 380 } 381 return CP_ACCESS_OK; 382 } 383 384 /* Check for traps to performance monitor registers, which are controlled 385 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 386 */ 387 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 388 bool isread) 389 { 390 int el = arm_current_el(env); 391 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 392 393 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 394 return CP_ACCESS_TRAP_EL2; 395 } 396 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 397 return CP_ACCESS_TRAP_EL3; 398 } 399 return CP_ACCESS_OK; 400 } 401 402 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 403 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 404 bool isread) 405 { 406 if (arm_current_el(env) == 1) { 407 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 408 if (arm_hcr_el2_eff(env) & trap) { 409 return CP_ACCESS_TRAP_EL2; 410 } 411 } 412 return CP_ACCESS_OK; 413 } 414 415 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 416 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 417 bool isread) 418 { 419 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 420 return CP_ACCESS_TRAP_EL2; 421 } 422 return CP_ACCESS_OK; 423 } 424 425 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 426 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 427 bool isread) 428 { 429 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 430 return CP_ACCESS_TRAP_EL2; 431 } 432 return CP_ACCESS_OK; 433 } 434 435 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 436 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 437 bool isread) 438 { 439 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 440 return CP_ACCESS_TRAP_EL2; 441 } 442 return CP_ACCESS_OK; 443 } 444 445 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 446 { 447 ARMCPU *cpu = env_archcpu(env); 448 449 raw_write(env, ri, value); 450 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 451 } 452 453 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 454 { 455 ARMCPU *cpu = env_archcpu(env); 456 457 if (raw_read(env, ri) != value) { 458 /* Unlike real hardware the qemu TLB uses virtual addresses, 459 * not modified virtual addresses, so this causes a TLB flush. 460 */ 461 tlb_flush(CPU(cpu)); 462 raw_write(env, ri, value); 463 } 464 } 465 466 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 467 uint64_t value) 468 { 469 ARMCPU *cpu = env_archcpu(env); 470 471 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 472 && !extended_addresses_enabled(env)) { 473 /* For VMSA (when not using the LPAE long descriptor page table 474 * format) this register includes the ASID, so do a TLB flush. 475 * For PMSA it is purely a process ID and no action is needed. 476 */ 477 tlb_flush(CPU(cpu)); 478 } 479 raw_write(env, ri, value); 480 } 481 482 /* IS variants of TLB operations must affect all cores */ 483 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 484 uint64_t value) 485 { 486 CPUState *cs = env_cpu(env); 487 488 tlb_flush_all_cpus_synced(cs); 489 } 490 491 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 492 uint64_t value) 493 { 494 CPUState *cs = env_cpu(env); 495 496 tlb_flush_all_cpus_synced(cs); 497 } 498 499 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 CPUState *cs = env_cpu(env); 503 504 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 505 } 506 507 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 508 uint64_t value) 509 { 510 CPUState *cs = env_cpu(env); 511 512 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 513 } 514 515 /* 516 * Non-IS variants of TLB operations are upgraded to 517 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 518 * force broadcast of these operations. 519 */ 520 static bool tlb_force_broadcast(CPUARMState *env) 521 { 522 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 523 } 524 525 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 526 uint64_t value) 527 { 528 /* Invalidate all (TLBIALL) */ 529 CPUState *cs = env_cpu(env); 530 531 if (tlb_force_broadcast(env)) { 532 tlb_flush_all_cpus_synced(cs); 533 } else { 534 tlb_flush(cs); 535 } 536 } 537 538 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 539 uint64_t value) 540 { 541 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 542 CPUState *cs = env_cpu(env); 543 544 value &= TARGET_PAGE_MASK; 545 if (tlb_force_broadcast(env)) { 546 tlb_flush_page_all_cpus_synced(cs, value); 547 } else { 548 tlb_flush_page(cs, value); 549 } 550 } 551 552 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 553 uint64_t value) 554 { 555 /* Invalidate by ASID (TLBIASID) */ 556 CPUState *cs = env_cpu(env); 557 558 if (tlb_force_broadcast(env)) { 559 tlb_flush_all_cpus_synced(cs); 560 } else { 561 tlb_flush(cs); 562 } 563 } 564 565 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 566 uint64_t value) 567 { 568 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 569 CPUState *cs = env_cpu(env); 570 571 value &= TARGET_PAGE_MASK; 572 if (tlb_force_broadcast(env)) { 573 tlb_flush_page_all_cpus_synced(cs, value); 574 } else { 575 tlb_flush_page(cs, value); 576 } 577 } 578 579 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 580 uint64_t value) 581 { 582 CPUState *cs = env_cpu(env); 583 584 tlb_flush_by_mmuidx(cs, 585 ARMMMUIdxBit_E10_1 | 586 ARMMMUIdxBit_E10_1_PAN | 587 ARMMMUIdxBit_E10_0); 588 } 589 590 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 591 uint64_t value) 592 { 593 CPUState *cs = env_cpu(env); 594 595 tlb_flush_by_mmuidx_all_cpus_synced(cs, 596 ARMMMUIdxBit_E10_1 | 597 ARMMMUIdxBit_E10_1_PAN | 598 ARMMMUIdxBit_E10_0); 599 } 600 601 602 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 603 uint64_t value) 604 { 605 CPUState *cs = env_cpu(env); 606 607 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 608 } 609 610 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 611 uint64_t value) 612 { 613 CPUState *cs = env_cpu(env); 614 615 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 616 } 617 618 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 619 uint64_t value) 620 { 621 CPUState *cs = env_cpu(env); 622 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 623 624 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 625 } 626 627 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 628 uint64_t value) 629 { 630 CPUState *cs = env_cpu(env); 631 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 632 633 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 634 ARMMMUIdxBit_E2); 635 } 636 637 static const ARMCPRegInfo cp_reginfo[] = { 638 /* Define the secure and non-secure FCSE identifier CP registers 639 * separately because there is no secure bank in V8 (no _EL3). This allows 640 * the secure register to be properly reset and migrated. There is also no 641 * v8 EL1 version of the register so the non-secure instance stands alone. 642 */ 643 { .name = "FCSEIDR", 644 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 645 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 646 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 647 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 648 { .name = "FCSEIDR_S", 649 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 650 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 651 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 652 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 653 /* Define the secure and non-secure context identifier CP registers 654 * separately because there is no secure bank in V8 (no _EL3). This allows 655 * the secure register to be properly reset and migrated. In the 656 * non-secure case, the 32-bit register will have reset and migration 657 * disabled during registration as it is handled by the 64-bit instance. 658 */ 659 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 660 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 661 .access = PL1_RW, .accessfn = access_tvm_trvm, 662 .secure = ARM_CP_SECSTATE_NS, 663 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 664 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 665 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 666 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 667 .access = PL1_RW, .accessfn = access_tvm_trvm, 668 .secure = ARM_CP_SECSTATE_S, 669 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 670 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 671 }; 672 673 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 674 /* NB: Some of these registers exist in v8 but with more precise 675 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 676 */ 677 /* MMU Domain access control / MPU write buffer control */ 678 { .name = "DACR", 679 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 680 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 681 .writefn = dacr_write, .raw_writefn = raw_write, 682 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 683 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 684 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 685 * For v6 and v5, these mappings are overly broad. 686 */ 687 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 688 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 689 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 690 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 691 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 692 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 693 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 694 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 695 /* Cache maintenance ops; some of this space may be overridden later. */ 696 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 697 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 698 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 699 }; 700 701 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 702 /* Not all pre-v6 cores implemented this WFI, so this is slightly 703 * over-broad. 704 */ 705 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 706 .access = PL1_W, .type = ARM_CP_WFI }, 707 }; 708 709 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 710 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 711 * is UNPREDICTABLE; we choose to NOP as most implementations do). 712 */ 713 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 714 .access = PL1_W, .type = ARM_CP_WFI }, 715 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 716 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 717 * OMAPCP will override this space. 718 */ 719 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 720 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 721 .resetvalue = 0 }, 722 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 723 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 724 .resetvalue = 0 }, 725 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 726 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 727 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 728 .resetvalue = 0 }, 729 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 730 * implementing it as RAZ means the "debug architecture version" bits 731 * will read as a reserved value, which should cause Linux to not try 732 * to use the debug hardware. 733 */ 734 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 735 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 736 /* MMU TLB control. Note that the wildcarding means we cover not just 737 * the unified TLB ops but also the dside/iside/inner-shareable variants. 738 */ 739 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 740 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 741 .type = ARM_CP_NO_RAW }, 742 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 743 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 744 .type = ARM_CP_NO_RAW }, 745 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 746 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 747 .type = ARM_CP_NO_RAW }, 748 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 749 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 750 .type = ARM_CP_NO_RAW }, 751 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 752 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 753 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 754 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 755 }; 756 757 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 758 uint64_t value) 759 { 760 uint32_t mask = 0; 761 762 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 763 if (!arm_feature(env, ARM_FEATURE_V8)) { 764 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 765 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 766 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 767 */ 768 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 769 /* VFP coprocessor: cp10 & cp11 [23:20] */ 770 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 771 772 if (!arm_feature(env, ARM_FEATURE_NEON)) { 773 /* ASEDIS [31] bit is RAO/WI */ 774 value |= (1 << 31); 775 } 776 777 /* VFPv3 and upwards with NEON implement 32 double precision 778 * registers (D0-D31). 779 */ 780 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 781 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 782 value |= (1 << 30); 783 } 784 } 785 value &= mask; 786 } 787 788 /* 789 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 790 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 791 */ 792 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 793 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 794 value &= ~(0xf << 20); 795 value |= env->cp15.cpacr_el1 & (0xf << 20); 796 } 797 798 env->cp15.cpacr_el1 = value; 799 } 800 801 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 802 { 803 /* 804 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 805 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 806 */ 807 uint64_t value = env->cp15.cpacr_el1; 808 809 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 810 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 811 value &= ~(0xf << 20); 812 } 813 return value; 814 } 815 816 817 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 818 { 819 /* Call cpacr_write() so that we reset with the correct RAO bits set 820 * for our CPU features. 821 */ 822 cpacr_write(env, ri, 0); 823 } 824 825 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 826 bool isread) 827 { 828 if (arm_feature(env, ARM_FEATURE_V8)) { 829 /* Check if CPACR accesses are to be trapped to EL2 */ 830 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 831 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 832 return CP_ACCESS_TRAP_EL2; 833 /* Check if CPACR accesses are to be trapped to EL3 */ 834 } else if (arm_current_el(env) < 3 && 835 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 836 return CP_ACCESS_TRAP_EL3; 837 } 838 } 839 840 return CP_ACCESS_OK; 841 } 842 843 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 844 bool isread) 845 { 846 /* Check if CPTR accesses are set to trap to EL3 */ 847 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 848 return CP_ACCESS_TRAP_EL3; 849 } 850 851 return CP_ACCESS_OK; 852 } 853 854 static const ARMCPRegInfo v6_cp_reginfo[] = { 855 /* prefetch by MVA in v6, NOP in v7 */ 856 { .name = "MVA_prefetch", 857 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 858 .access = PL1_W, .type = ARM_CP_NOP }, 859 /* We need to break the TB after ISB to execute self-modifying code 860 * correctly and also to take any pending interrupts immediately. 861 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 862 */ 863 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 864 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 865 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 866 .access = PL0_W, .type = ARM_CP_NOP }, 867 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 868 .access = PL0_W, .type = ARM_CP_NOP }, 869 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 870 .access = PL1_RW, .accessfn = access_tvm_trvm, 871 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 872 offsetof(CPUARMState, cp15.ifar_ns) }, 873 .resetvalue = 0, }, 874 /* Watchpoint Fault Address Register : should actually only be present 875 * for 1136, 1176, 11MPCore. 876 */ 877 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 878 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 879 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 880 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 881 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 882 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 883 }; 884 885 typedef struct pm_event { 886 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 887 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 888 bool (*supported)(CPUARMState *); 889 /* 890 * Retrieve the current count of the underlying event. The programmed 891 * counters hold a difference from the return value from this function 892 */ 893 uint64_t (*get_count)(CPUARMState *); 894 /* 895 * Return how many nanoseconds it will take (at a minimum) for count events 896 * to occur. A negative value indicates the counter will never overflow, or 897 * that the counter has otherwise arranged for the overflow bit to be set 898 * and the PMU interrupt to be raised on overflow. 899 */ 900 int64_t (*ns_per_count)(uint64_t); 901 } pm_event; 902 903 static bool event_always_supported(CPUARMState *env) 904 { 905 return true; 906 } 907 908 static uint64_t swinc_get_count(CPUARMState *env) 909 { 910 /* 911 * SW_INCR events are written directly to the pmevcntr's by writes to 912 * PMSWINC, so there is no underlying count maintained by the PMU itself 913 */ 914 return 0; 915 } 916 917 static int64_t swinc_ns_per(uint64_t ignored) 918 { 919 return -1; 920 } 921 922 /* 923 * Return the underlying cycle count for the PMU cycle counters. If we're in 924 * usermode, simply return 0. 925 */ 926 static uint64_t cycles_get_count(CPUARMState *env) 927 { 928 #ifndef CONFIG_USER_ONLY 929 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 930 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 931 #else 932 return cpu_get_host_ticks(); 933 #endif 934 } 935 936 #ifndef CONFIG_USER_ONLY 937 static int64_t cycles_ns_per(uint64_t cycles) 938 { 939 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 940 } 941 942 static bool instructions_supported(CPUARMState *env) 943 { 944 return icount_enabled() == 1; /* Precise instruction counting */ 945 } 946 947 static uint64_t instructions_get_count(CPUARMState *env) 948 { 949 return (uint64_t)icount_get_raw(); 950 } 951 952 static int64_t instructions_ns_per(uint64_t icount) 953 { 954 return icount_to_ns((int64_t)icount); 955 } 956 #endif 957 958 static bool pmu_8_1_events_supported(CPUARMState *env) 959 { 960 /* For events which are supported in any v8.1 PMU */ 961 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 962 } 963 964 static bool pmu_8_4_events_supported(CPUARMState *env) 965 { 966 /* For events which are supported in any v8.1 PMU */ 967 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 968 } 969 970 static uint64_t zero_event_get_count(CPUARMState *env) 971 { 972 /* For events which on QEMU never fire, so their count is always zero */ 973 return 0; 974 } 975 976 static int64_t zero_event_ns_per(uint64_t cycles) 977 { 978 /* An event which never fires can never overflow */ 979 return -1; 980 } 981 982 static const pm_event pm_events[] = { 983 { .number = 0x000, /* SW_INCR */ 984 .supported = event_always_supported, 985 .get_count = swinc_get_count, 986 .ns_per_count = swinc_ns_per, 987 }, 988 #ifndef CONFIG_USER_ONLY 989 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 990 .supported = instructions_supported, 991 .get_count = instructions_get_count, 992 .ns_per_count = instructions_ns_per, 993 }, 994 { .number = 0x011, /* CPU_CYCLES, Cycle */ 995 .supported = event_always_supported, 996 .get_count = cycles_get_count, 997 .ns_per_count = cycles_ns_per, 998 }, 999 #endif 1000 { .number = 0x023, /* STALL_FRONTEND */ 1001 .supported = pmu_8_1_events_supported, 1002 .get_count = zero_event_get_count, 1003 .ns_per_count = zero_event_ns_per, 1004 }, 1005 { .number = 0x024, /* STALL_BACKEND */ 1006 .supported = pmu_8_1_events_supported, 1007 .get_count = zero_event_get_count, 1008 .ns_per_count = zero_event_ns_per, 1009 }, 1010 { .number = 0x03c, /* STALL */ 1011 .supported = pmu_8_4_events_supported, 1012 .get_count = zero_event_get_count, 1013 .ns_per_count = zero_event_ns_per, 1014 }, 1015 }; 1016 1017 /* 1018 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1019 * events (i.e. the statistical profiling extension), this implementation 1020 * should first be updated to something sparse instead of the current 1021 * supported_event_map[] array. 1022 */ 1023 #define MAX_EVENT_ID 0x3c 1024 #define UNSUPPORTED_EVENT UINT16_MAX 1025 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1026 1027 /* 1028 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1029 * of ARM event numbers to indices in our pm_events array. 1030 * 1031 * Note: Events in the 0x40XX range are not currently supported. 1032 */ 1033 void pmu_init(ARMCPU *cpu) 1034 { 1035 unsigned int i; 1036 1037 /* 1038 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1039 * events to them 1040 */ 1041 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1042 supported_event_map[i] = UNSUPPORTED_EVENT; 1043 } 1044 cpu->pmceid0 = 0; 1045 cpu->pmceid1 = 0; 1046 1047 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1048 const pm_event *cnt = &pm_events[i]; 1049 assert(cnt->number <= MAX_EVENT_ID); 1050 /* We do not currently support events in the 0x40xx range */ 1051 assert(cnt->number <= 0x3f); 1052 1053 if (cnt->supported(&cpu->env)) { 1054 supported_event_map[cnt->number] = i; 1055 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1056 if (cnt->number & 0x20) { 1057 cpu->pmceid1 |= event_mask; 1058 } else { 1059 cpu->pmceid0 |= event_mask; 1060 } 1061 } 1062 } 1063 } 1064 1065 /* 1066 * Check at runtime whether a PMU event is supported for the current machine 1067 */ 1068 static bool event_supported(uint16_t number) 1069 { 1070 if (number > MAX_EVENT_ID) { 1071 return false; 1072 } 1073 return supported_event_map[number] != UNSUPPORTED_EVENT; 1074 } 1075 1076 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1077 bool isread) 1078 { 1079 /* Performance monitor registers user accessibility is controlled 1080 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1081 * trapping to EL2 or EL3 for other accesses. 1082 */ 1083 int el = arm_current_el(env); 1084 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1085 1086 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1087 return CP_ACCESS_TRAP; 1088 } 1089 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1090 return CP_ACCESS_TRAP_EL2; 1091 } 1092 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1093 return CP_ACCESS_TRAP_EL3; 1094 } 1095 1096 return CP_ACCESS_OK; 1097 } 1098 1099 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1100 const ARMCPRegInfo *ri, 1101 bool isread) 1102 { 1103 /* ER: event counter read trap control */ 1104 if (arm_feature(env, ARM_FEATURE_V8) 1105 && arm_current_el(env) == 0 1106 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1107 && isread) { 1108 return CP_ACCESS_OK; 1109 } 1110 1111 return pmreg_access(env, ri, isread); 1112 } 1113 1114 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1115 const ARMCPRegInfo *ri, 1116 bool isread) 1117 { 1118 /* SW: software increment write trap control */ 1119 if (arm_feature(env, ARM_FEATURE_V8) 1120 && arm_current_el(env) == 0 1121 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1122 && !isread) { 1123 return CP_ACCESS_OK; 1124 } 1125 1126 return pmreg_access(env, ri, isread); 1127 } 1128 1129 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1130 const ARMCPRegInfo *ri, 1131 bool isread) 1132 { 1133 /* ER: event counter read trap control */ 1134 if (arm_feature(env, ARM_FEATURE_V8) 1135 && arm_current_el(env) == 0 1136 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1137 return CP_ACCESS_OK; 1138 } 1139 1140 return pmreg_access(env, ri, isread); 1141 } 1142 1143 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1144 const ARMCPRegInfo *ri, 1145 bool isread) 1146 { 1147 /* CR: cycle counter read trap control */ 1148 if (arm_feature(env, ARM_FEATURE_V8) 1149 && arm_current_el(env) == 0 1150 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1151 && isread) { 1152 return CP_ACCESS_OK; 1153 } 1154 1155 return pmreg_access(env, ri, isread); 1156 } 1157 1158 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1159 * the current EL, security state, and register configuration. 1160 */ 1161 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1162 { 1163 uint64_t filter; 1164 bool e, p, u, nsk, nsu, nsh, m; 1165 bool enabled, prohibited, filtered; 1166 bool secure = arm_is_secure(env); 1167 int el = arm_current_el(env); 1168 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1169 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1170 1171 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1172 return false; 1173 } 1174 1175 if (!arm_feature(env, ARM_FEATURE_EL2) || 1176 (counter < hpmn || counter == 31)) { 1177 e = env->cp15.c9_pmcr & PMCRE; 1178 } else { 1179 e = mdcr_el2 & MDCR_HPME; 1180 } 1181 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1182 1183 if (!secure) { 1184 if (el == 2 && (counter < hpmn || counter == 31)) { 1185 prohibited = mdcr_el2 & MDCR_HPMD; 1186 } else { 1187 prohibited = false; 1188 } 1189 } else { 1190 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1191 !(env->cp15.mdcr_el3 & MDCR_SPME); 1192 } 1193 1194 if (prohibited && counter == 31) { 1195 prohibited = env->cp15.c9_pmcr & PMCRDP; 1196 } 1197 1198 if (counter == 31) { 1199 filter = env->cp15.pmccfiltr_el0; 1200 } else { 1201 filter = env->cp15.c14_pmevtyper[counter]; 1202 } 1203 1204 p = filter & PMXEVTYPER_P; 1205 u = filter & PMXEVTYPER_U; 1206 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1207 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1208 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1209 m = arm_el_is_aa64(env, 1) && 1210 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1211 1212 if (el == 0) { 1213 filtered = secure ? u : u != nsu; 1214 } else if (el == 1) { 1215 filtered = secure ? p : p != nsk; 1216 } else if (el == 2) { 1217 filtered = !nsh; 1218 } else { /* EL3 */ 1219 filtered = m != p; 1220 } 1221 1222 if (counter != 31) { 1223 /* 1224 * If not checking PMCCNTR, ensure the counter is setup to an event we 1225 * support 1226 */ 1227 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1228 if (!event_supported(event)) { 1229 return false; 1230 } 1231 } 1232 1233 return enabled && !prohibited && !filtered; 1234 } 1235 1236 static void pmu_update_irq(CPUARMState *env) 1237 { 1238 ARMCPU *cpu = env_archcpu(env); 1239 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1240 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1241 } 1242 1243 /* 1244 * Ensure c15_ccnt is the guest-visible count so that operations such as 1245 * enabling/disabling the counter or filtering, modifying the count itself, 1246 * etc. can be done logically. This is essentially a no-op if the counter is 1247 * not enabled at the time of the call. 1248 */ 1249 static void pmccntr_op_start(CPUARMState *env) 1250 { 1251 uint64_t cycles = cycles_get_count(env); 1252 1253 if (pmu_counter_enabled(env, 31)) { 1254 uint64_t eff_cycles = cycles; 1255 if (env->cp15.c9_pmcr & PMCRD) { 1256 /* Increment once every 64 processor clock cycles */ 1257 eff_cycles /= 64; 1258 } 1259 1260 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1261 1262 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1263 1ull << 63 : 1ull << 31; 1264 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1265 env->cp15.c9_pmovsr |= (1 << 31); 1266 pmu_update_irq(env); 1267 } 1268 1269 env->cp15.c15_ccnt = new_pmccntr; 1270 } 1271 env->cp15.c15_ccnt_delta = cycles; 1272 } 1273 1274 /* 1275 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1276 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1277 * pmccntr_op_start. 1278 */ 1279 static void pmccntr_op_finish(CPUARMState *env) 1280 { 1281 if (pmu_counter_enabled(env, 31)) { 1282 #ifndef CONFIG_USER_ONLY 1283 /* Calculate when the counter will next overflow */ 1284 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1285 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1286 remaining_cycles = (uint32_t)remaining_cycles; 1287 } 1288 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1289 1290 if (overflow_in > 0) { 1291 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1292 overflow_in; 1293 ARMCPU *cpu = env_archcpu(env); 1294 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1295 } 1296 #endif 1297 1298 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1299 if (env->cp15.c9_pmcr & PMCRD) { 1300 /* Increment once every 64 processor clock cycles */ 1301 prev_cycles /= 64; 1302 } 1303 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1304 } 1305 } 1306 1307 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1308 { 1309 1310 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1311 uint64_t count = 0; 1312 if (event_supported(event)) { 1313 uint16_t event_idx = supported_event_map[event]; 1314 count = pm_events[event_idx].get_count(env); 1315 } 1316 1317 if (pmu_counter_enabled(env, counter)) { 1318 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1319 1320 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1321 env->cp15.c9_pmovsr |= (1 << counter); 1322 pmu_update_irq(env); 1323 } 1324 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1325 } 1326 env->cp15.c14_pmevcntr_delta[counter] = count; 1327 } 1328 1329 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1330 { 1331 if (pmu_counter_enabled(env, counter)) { 1332 #ifndef CONFIG_USER_ONLY 1333 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1334 uint16_t event_idx = supported_event_map[event]; 1335 uint64_t delta = UINT32_MAX - 1336 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1337 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1338 1339 if (overflow_in > 0) { 1340 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1341 overflow_in; 1342 ARMCPU *cpu = env_archcpu(env); 1343 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1344 } 1345 #endif 1346 1347 env->cp15.c14_pmevcntr_delta[counter] -= 1348 env->cp15.c14_pmevcntr[counter]; 1349 } 1350 } 1351 1352 void pmu_op_start(CPUARMState *env) 1353 { 1354 unsigned int i; 1355 pmccntr_op_start(env); 1356 for (i = 0; i < pmu_num_counters(env); i++) { 1357 pmevcntr_op_start(env, i); 1358 } 1359 } 1360 1361 void pmu_op_finish(CPUARMState *env) 1362 { 1363 unsigned int i; 1364 pmccntr_op_finish(env); 1365 for (i = 0; i < pmu_num_counters(env); i++) { 1366 pmevcntr_op_finish(env, i); 1367 } 1368 } 1369 1370 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1371 { 1372 pmu_op_start(&cpu->env); 1373 } 1374 1375 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1376 { 1377 pmu_op_finish(&cpu->env); 1378 } 1379 1380 void arm_pmu_timer_cb(void *opaque) 1381 { 1382 ARMCPU *cpu = opaque; 1383 1384 /* 1385 * Update all the counter values based on the current underlying counts, 1386 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1387 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1388 * counter may expire. 1389 */ 1390 pmu_op_start(&cpu->env); 1391 pmu_op_finish(&cpu->env); 1392 } 1393 1394 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1395 uint64_t value) 1396 { 1397 pmu_op_start(env); 1398 1399 if (value & PMCRC) { 1400 /* The counter has been reset */ 1401 env->cp15.c15_ccnt = 0; 1402 } 1403 1404 if (value & PMCRP) { 1405 unsigned int i; 1406 for (i = 0; i < pmu_num_counters(env); i++) { 1407 env->cp15.c14_pmevcntr[i] = 0; 1408 } 1409 } 1410 1411 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1412 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1413 1414 pmu_op_finish(env); 1415 } 1416 1417 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1418 uint64_t value) 1419 { 1420 unsigned int i; 1421 for (i = 0; i < pmu_num_counters(env); i++) { 1422 /* Increment a counter's count iff: */ 1423 if ((value & (1 << i)) && /* counter's bit is set */ 1424 /* counter is enabled and not filtered */ 1425 pmu_counter_enabled(env, i) && 1426 /* counter is SW_INCR */ 1427 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1428 pmevcntr_op_start(env, i); 1429 1430 /* 1431 * Detect if this write causes an overflow since we can't predict 1432 * PMSWINC overflows like we can for other events 1433 */ 1434 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1435 1436 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1437 env->cp15.c9_pmovsr |= (1 << i); 1438 pmu_update_irq(env); 1439 } 1440 1441 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1442 1443 pmevcntr_op_finish(env, i); 1444 } 1445 } 1446 } 1447 1448 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1449 { 1450 uint64_t ret; 1451 pmccntr_op_start(env); 1452 ret = env->cp15.c15_ccnt; 1453 pmccntr_op_finish(env); 1454 return ret; 1455 } 1456 1457 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1458 uint64_t value) 1459 { 1460 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1461 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1462 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1463 * accessed. 1464 */ 1465 env->cp15.c9_pmselr = value & 0x1f; 1466 } 1467 1468 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1469 uint64_t value) 1470 { 1471 pmccntr_op_start(env); 1472 env->cp15.c15_ccnt = value; 1473 pmccntr_op_finish(env); 1474 } 1475 1476 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1477 uint64_t value) 1478 { 1479 uint64_t cur_val = pmccntr_read(env, NULL); 1480 1481 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1482 } 1483 1484 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1485 uint64_t value) 1486 { 1487 pmccntr_op_start(env); 1488 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1489 pmccntr_op_finish(env); 1490 } 1491 1492 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1493 uint64_t value) 1494 { 1495 pmccntr_op_start(env); 1496 /* M is not accessible from AArch32 */ 1497 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1498 (value & PMCCFILTR); 1499 pmccntr_op_finish(env); 1500 } 1501 1502 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1503 { 1504 /* M is not visible in AArch32 */ 1505 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1506 } 1507 1508 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1509 uint64_t value) 1510 { 1511 value &= pmu_counter_mask(env); 1512 env->cp15.c9_pmcnten |= value; 1513 } 1514 1515 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1516 uint64_t value) 1517 { 1518 value &= pmu_counter_mask(env); 1519 env->cp15.c9_pmcnten &= ~value; 1520 } 1521 1522 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 value &= pmu_counter_mask(env); 1526 env->cp15.c9_pmovsr &= ~value; 1527 pmu_update_irq(env); 1528 } 1529 1530 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1531 uint64_t value) 1532 { 1533 value &= pmu_counter_mask(env); 1534 env->cp15.c9_pmovsr |= value; 1535 pmu_update_irq(env); 1536 } 1537 1538 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1539 uint64_t value, const uint8_t counter) 1540 { 1541 if (counter == 31) { 1542 pmccfiltr_write(env, ri, value); 1543 } else if (counter < pmu_num_counters(env)) { 1544 pmevcntr_op_start(env, counter); 1545 1546 /* 1547 * If this counter's event type is changing, store the current 1548 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1549 * pmevcntr_op_finish has the correct baseline when it converts back to 1550 * a delta. 1551 */ 1552 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1553 PMXEVTYPER_EVTCOUNT; 1554 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1555 if (old_event != new_event) { 1556 uint64_t count = 0; 1557 if (event_supported(new_event)) { 1558 uint16_t event_idx = supported_event_map[new_event]; 1559 count = pm_events[event_idx].get_count(env); 1560 } 1561 env->cp15.c14_pmevcntr_delta[counter] = count; 1562 } 1563 1564 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1565 pmevcntr_op_finish(env, counter); 1566 } 1567 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1568 * PMSELR value is equal to or greater than the number of implemented 1569 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1570 */ 1571 } 1572 1573 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1574 const uint8_t counter) 1575 { 1576 if (counter == 31) { 1577 return env->cp15.pmccfiltr_el0; 1578 } else if (counter < pmu_num_counters(env)) { 1579 return env->cp15.c14_pmevtyper[counter]; 1580 } else { 1581 /* 1582 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1583 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1584 */ 1585 return 0; 1586 } 1587 } 1588 1589 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1590 uint64_t value) 1591 { 1592 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1593 pmevtyper_write(env, ri, value, counter); 1594 } 1595 1596 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1597 uint64_t value) 1598 { 1599 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1600 env->cp15.c14_pmevtyper[counter] = value; 1601 1602 /* 1603 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1604 * pmu_op_finish calls when loading saved state for a migration. Because 1605 * we're potentially updating the type of event here, the value written to 1606 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1607 * different counter type. Therefore, we need to set this value to the 1608 * current count for the counter type we're writing so that pmu_op_finish 1609 * has the correct count for its calculation. 1610 */ 1611 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1612 if (event_supported(event)) { 1613 uint16_t event_idx = supported_event_map[event]; 1614 env->cp15.c14_pmevcntr_delta[counter] = 1615 pm_events[event_idx].get_count(env); 1616 } 1617 } 1618 1619 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1620 { 1621 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1622 return pmevtyper_read(env, ri, counter); 1623 } 1624 1625 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1626 uint64_t value) 1627 { 1628 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1629 } 1630 1631 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1632 { 1633 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1634 } 1635 1636 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1637 uint64_t value, uint8_t counter) 1638 { 1639 if (counter < pmu_num_counters(env)) { 1640 pmevcntr_op_start(env, counter); 1641 env->cp15.c14_pmevcntr[counter] = value; 1642 pmevcntr_op_finish(env, counter); 1643 } 1644 /* 1645 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1646 * are CONSTRAINED UNPREDICTABLE. 1647 */ 1648 } 1649 1650 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1651 uint8_t counter) 1652 { 1653 if (counter < pmu_num_counters(env)) { 1654 uint64_t ret; 1655 pmevcntr_op_start(env, counter); 1656 ret = env->cp15.c14_pmevcntr[counter]; 1657 pmevcntr_op_finish(env, counter); 1658 return ret; 1659 } else { 1660 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1661 * are CONSTRAINED UNPREDICTABLE. */ 1662 return 0; 1663 } 1664 } 1665 1666 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1667 uint64_t value) 1668 { 1669 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1670 pmevcntr_write(env, ri, value, counter); 1671 } 1672 1673 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1674 { 1675 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1676 return pmevcntr_read(env, ri, counter); 1677 } 1678 1679 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1680 uint64_t value) 1681 { 1682 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1683 assert(counter < pmu_num_counters(env)); 1684 env->cp15.c14_pmevcntr[counter] = value; 1685 pmevcntr_write(env, ri, value, counter); 1686 } 1687 1688 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1689 { 1690 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1691 assert(counter < pmu_num_counters(env)); 1692 return env->cp15.c14_pmevcntr[counter]; 1693 } 1694 1695 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1696 uint64_t value) 1697 { 1698 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1699 } 1700 1701 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1702 { 1703 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1704 } 1705 1706 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1707 uint64_t value) 1708 { 1709 if (arm_feature(env, ARM_FEATURE_V8)) { 1710 env->cp15.c9_pmuserenr = value & 0xf; 1711 } else { 1712 env->cp15.c9_pmuserenr = value & 1; 1713 } 1714 } 1715 1716 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1717 uint64_t value) 1718 { 1719 /* We have no event counters so only the C bit can be changed */ 1720 value &= pmu_counter_mask(env); 1721 env->cp15.c9_pminten |= value; 1722 pmu_update_irq(env); 1723 } 1724 1725 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint64_t value) 1727 { 1728 value &= pmu_counter_mask(env); 1729 env->cp15.c9_pminten &= ~value; 1730 pmu_update_irq(env); 1731 } 1732 1733 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 /* Note that even though the AArch64 view of this register has bits 1737 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1738 * architectural requirements for bits which are RES0 only in some 1739 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1740 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1741 */ 1742 raw_write(env, ri, value & ~0x1FULL); 1743 } 1744 1745 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1746 { 1747 /* Begin with base v8.0 state. */ 1748 uint32_t valid_mask = 0x3fff; 1749 ARMCPU *cpu = env_archcpu(env); 1750 1751 if (ri->state == ARM_CP_STATE_AA64) { 1752 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1753 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1754 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1755 } 1756 valid_mask &= ~SCR_NET; 1757 1758 if (cpu_isar_feature(aa64_ras, cpu)) { 1759 valid_mask |= SCR_TERR; 1760 } 1761 if (cpu_isar_feature(aa64_lor, cpu)) { 1762 valid_mask |= SCR_TLOR; 1763 } 1764 if (cpu_isar_feature(aa64_pauth, cpu)) { 1765 valid_mask |= SCR_API | SCR_APK; 1766 } 1767 if (cpu_isar_feature(aa64_sel2, cpu)) { 1768 valid_mask |= SCR_EEL2; 1769 } 1770 if (cpu_isar_feature(aa64_mte, cpu)) { 1771 valid_mask |= SCR_ATA; 1772 } 1773 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1774 valid_mask |= SCR_ENSCXT; 1775 } 1776 } else { 1777 valid_mask &= ~(SCR_RW | SCR_ST); 1778 if (cpu_isar_feature(aa32_ras, cpu)) { 1779 valid_mask |= SCR_TERR; 1780 } 1781 } 1782 1783 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1784 valid_mask &= ~SCR_HCE; 1785 1786 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1787 * supported if EL2 exists. The bit is UNK/SBZP when 1788 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1789 * when EL2 is unavailable. 1790 * On ARMv8, this bit is always available. 1791 */ 1792 if (arm_feature(env, ARM_FEATURE_V7) && 1793 !arm_feature(env, ARM_FEATURE_V8)) { 1794 valid_mask &= ~SCR_SMD; 1795 } 1796 } 1797 1798 /* Clear all-context RES0 bits. */ 1799 value &= valid_mask; 1800 raw_write(env, ri, value); 1801 } 1802 1803 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1804 { 1805 /* 1806 * scr_write will set the RES1 bits on an AArch64-only CPU. 1807 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1808 */ 1809 scr_write(env, ri, 0); 1810 } 1811 1812 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1813 const ARMCPRegInfo *ri, 1814 bool isread) 1815 { 1816 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1817 return CP_ACCESS_TRAP_EL2; 1818 } 1819 1820 return CP_ACCESS_OK; 1821 } 1822 1823 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1824 { 1825 ARMCPU *cpu = env_archcpu(env); 1826 1827 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1828 * bank 1829 */ 1830 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1831 ri->secure & ARM_CP_SECSTATE_S); 1832 1833 return cpu->ccsidr[index]; 1834 } 1835 1836 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1837 uint64_t value) 1838 { 1839 raw_write(env, ri, value & 0xf); 1840 } 1841 1842 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1843 { 1844 CPUState *cs = env_cpu(env); 1845 bool el1 = arm_current_el(env) == 1; 1846 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1847 uint64_t ret = 0; 1848 1849 if (hcr_el2 & HCR_IMO) { 1850 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1851 ret |= CPSR_I; 1852 } 1853 } else { 1854 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1855 ret |= CPSR_I; 1856 } 1857 } 1858 1859 if (hcr_el2 & HCR_FMO) { 1860 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1861 ret |= CPSR_F; 1862 } 1863 } else { 1864 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1865 ret |= CPSR_F; 1866 } 1867 } 1868 1869 if (hcr_el2 & HCR_AMO) { 1870 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1871 ret |= CPSR_A; 1872 } 1873 } 1874 1875 return ret; 1876 } 1877 1878 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1879 bool isread) 1880 { 1881 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1882 return CP_ACCESS_TRAP_EL2; 1883 } 1884 1885 return CP_ACCESS_OK; 1886 } 1887 1888 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1889 bool isread) 1890 { 1891 if (arm_feature(env, ARM_FEATURE_V8)) { 1892 return access_aa64_tid1(env, ri, isread); 1893 } 1894 1895 return CP_ACCESS_OK; 1896 } 1897 1898 static const ARMCPRegInfo v7_cp_reginfo[] = { 1899 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1900 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1901 .access = PL1_W, .type = ARM_CP_NOP }, 1902 /* Performance monitors are implementation defined in v7, 1903 * but with an ARM recommended set of registers, which we 1904 * follow. 1905 * 1906 * Performance registers fall into three categories: 1907 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1908 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1909 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1910 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1911 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1912 */ 1913 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1914 .access = PL0_RW, .type = ARM_CP_ALIAS, 1915 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1916 .writefn = pmcntenset_write, 1917 .accessfn = pmreg_access, 1918 .raw_writefn = raw_write }, 1919 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1920 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1921 .access = PL0_RW, .accessfn = pmreg_access, 1922 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1923 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1924 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1925 .access = PL0_RW, 1926 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1927 .accessfn = pmreg_access, 1928 .writefn = pmcntenclr_write, 1929 .type = ARM_CP_ALIAS }, 1930 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1931 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1932 .access = PL0_RW, .accessfn = pmreg_access, 1933 .type = ARM_CP_ALIAS, 1934 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1935 .writefn = pmcntenclr_write }, 1936 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1937 .access = PL0_RW, .type = ARM_CP_IO, 1938 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1939 .accessfn = pmreg_access, 1940 .writefn = pmovsr_write, 1941 .raw_writefn = raw_write }, 1942 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1943 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1944 .access = PL0_RW, .accessfn = pmreg_access, 1945 .type = ARM_CP_ALIAS | ARM_CP_IO, 1946 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1947 .writefn = pmovsr_write, 1948 .raw_writefn = raw_write }, 1949 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1950 .access = PL0_W, .accessfn = pmreg_access_swinc, 1951 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1952 .writefn = pmswinc_write }, 1953 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1954 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1955 .access = PL0_W, .accessfn = pmreg_access_swinc, 1956 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1957 .writefn = pmswinc_write }, 1958 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1959 .access = PL0_RW, .type = ARM_CP_ALIAS, 1960 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1961 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1962 .raw_writefn = raw_write}, 1963 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1964 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1965 .access = PL0_RW, .accessfn = pmreg_access_selr, 1966 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1967 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1968 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1969 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1970 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1971 .accessfn = pmreg_access_ccntr }, 1972 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1973 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1974 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1975 .type = ARM_CP_IO, 1976 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1977 .readfn = pmccntr_read, .writefn = pmccntr_write, 1978 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1979 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1980 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1981 .access = PL0_RW, .accessfn = pmreg_access, 1982 .type = ARM_CP_ALIAS | ARM_CP_IO, 1983 .resetvalue = 0, }, 1984 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1985 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1986 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1987 .access = PL0_RW, .accessfn = pmreg_access, 1988 .type = ARM_CP_IO, 1989 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1990 .resetvalue = 0, }, 1991 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1992 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1993 .accessfn = pmreg_access, 1994 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1995 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1996 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1997 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1998 .accessfn = pmreg_access, 1999 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2000 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2001 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2002 .accessfn = pmreg_access_xevcntr, 2003 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2004 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2005 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2006 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2007 .accessfn = pmreg_access_xevcntr, 2008 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2009 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2010 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2011 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2012 .resetvalue = 0, 2013 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2014 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2015 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2016 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2017 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2018 .resetvalue = 0, 2019 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2020 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2021 .access = PL1_RW, .accessfn = access_tpm, 2022 .type = ARM_CP_ALIAS | ARM_CP_IO, 2023 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2024 .resetvalue = 0, 2025 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2026 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2027 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2028 .access = PL1_RW, .accessfn = access_tpm, 2029 .type = ARM_CP_IO, 2030 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2031 .writefn = pmintenset_write, .raw_writefn = raw_write, 2032 .resetvalue = 0x0 }, 2033 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2034 .access = PL1_RW, .accessfn = access_tpm, 2035 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2036 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2037 .writefn = pmintenclr_write, }, 2038 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2039 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2040 .access = PL1_RW, .accessfn = access_tpm, 2041 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2042 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2043 .writefn = pmintenclr_write }, 2044 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2045 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2046 .access = PL1_R, 2047 .accessfn = access_aa64_tid2, 2048 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2049 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2050 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2051 .access = PL1_RW, 2052 .accessfn = access_aa64_tid2, 2053 .writefn = csselr_write, .resetvalue = 0, 2054 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2055 offsetof(CPUARMState, cp15.csselr_ns) } }, 2056 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2057 * just RAZ for all cores: 2058 */ 2059 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2060 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2061 .access = PL1_R, .type = ARM_CP_CONST, 2062 .accessfn = access_aa64_tid1, 2063 .resetvalue = 0 }, 2064 /* Auxiliary fault status registers: these also are IMPDEF, and we 2065 * choose to RAZ/WI for all cores. 2066 */ 2067 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2068 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2069 .access = PL1_RW, .accessfn = access_tvm_trvm, 2070 .type = ARM_CP_CONST, .resetvalue = 0 }, 2071 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2072 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2073 .access = PL1_RW, .accessfn = access_tvm_trvm, 2074 .type = ARM_CP_CONST, .resetvalue = 0 }, 2075 /* MAIR can just read-as-written because we don't implement caches 2076 * and so don't need to care about memory attributes. 2077 */ 2078 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2079 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2080 .access = PL1_RW, .accessfn = access_tvm_trvm, 2081 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2082 .resetvalue = 0 }, 2083 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2084 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2085 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2086 .resetvalue = 0 }, 2087 /* For non-long-descriptor page tables these are PRRR and NMRR; 2088 * regardless they still act as reads-as-written for QEMU. 2089 */ 2090 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2091 * allows them to assign the correct fieldoffset based on the endianness 2092 * handled in the field definitions. 2093 */ 2094 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2095 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2096 .access = PL1_RW, .accessfn = access_tvm_trvm, 2097 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2098 offsetof(CPUARMState, cp15.mair0_ns) }, 2099 .resetfn = arm_cp_reset_ignore }, 2100 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2101 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2102 .access = PL1_RW, .accessfn = access_tvm_trvm, 2103 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2104 offsetof(CPUARMState, cp15.mair1_ns) }, 2105 .resetfn = arm_cp_reset_ignore }, 2106 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2107 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2108 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2109 /* 32 bit ITLB invalidates */ 2110 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2111 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2112 .writefn = tlbiall_write }, 2113 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2114 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2115 .writefn = tlbimva_write }, 2116 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2117 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2118 .writefn = tlbiasid_write }, 2119 /* 32 bit DTLB invalidates */ 2120 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2121 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2122 .writefn = tlbiall_write }, 2123 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2124 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2125 .writefn = tlbimva_write }, 2126 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2127 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2128 .writefn = tlbiasid_write }, 2129 /* 32 bit TLB invalidates */ 2130 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2131 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2132 .writefn = tlbiall_write }, 2133 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2134 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2135 .writefn = tlbimva_write }, 2136 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2137 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2138 .writefn = tlbiasid_write }, 2139 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2140 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2141 .writefn = tlbimvaa_write }, 2142 }; 2143 2144 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2145 /* 32 bit TLB invalidates, Inner Shareable */ 2146 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2147 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2148 .writefn = tlbiall_is_write }, 2149 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2150 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2151 .writefn = tlbimva_is_write }, 2152 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2153 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2154 .writefn = tlbiasid_is_write }, 2155 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2156 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2157 .writefn = tlbimvaa_is_write }, 2158 }; 2159 2160 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2161 /* PMOVSSET is not implemented in v7 before v7ve */ 2162 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2163 .access = PL0_RW, .accessfn = pmreg_access, 2164 .type = ARM_CP_ALIAS | ARM_CP_IO, 2165 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2166 .writefn = pmovsset_write, 2167 .raw_writefn = raw_write }, 2168 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2169 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2170 .access = PL0_RW, .accessfn = pmreg_access, 2171 .type = ARM_CP_ALIAS | ARM_CP_IO, 2172 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2173 .writefn = pmovsset_write, 2174 .raw_writefn = raw_write }, 2175 }; 2176 2177 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2178 uint64_t value) 2179 { 2180 value &= 1; 2181 env->teecr = value; 2182 } 2183 2184 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2185 bool isread) 2186 { 2187 /* 2188 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2189 * at all, so we don't need to check whether we're v8A. 2190 */ 2191 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2192 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2193 return CP_ACCESS_TRAP_EL2; 2194 } 2195 return CP_ACCESS_OK; 2196 } 2197 2198 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2199 bool isread) 2200 { 2201 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2202 return CP_ACCESS_TRAP; 2203 } 2204 return teecr_access(env, ri, isread); 2205 } 2206 2207 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2208 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2209 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2210 .resetvalue = 0, 2211 .writefn = teecr_write, .accessfn = teecr_access }, 2212 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2213 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2214 .accessfn = teehbr_access, .resetvalue = 0 }, 2215 }; 2216 2217 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2218 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2219 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2220 .access = PL0_RW, 2221 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2222 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2223 .access = PL0_RW, 2224 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2225 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2226 .resetfn = arm_cp_reset_ignore }, 2227 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2228 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2229 .access = PL0_R|PL1_W, 2230 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2231 .resetvalue = 0}, 2232 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2233 .access = PL0_R|PL1_W, 2234 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2235 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2236 .resetfn = arm_cp_reset_ignore }, 2237 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2238 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2239 .access = PL1_RW, 2240 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2241 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2242 .access = PL1_RW, 2243 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2244 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2245 .resetvalue = 0 }, 2246 }; 2247 2248 #ifndef CONFIG_USER_ONLY 2249 2250 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2251 bool isread) 2252 { 2253 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2254 * Writable only at the highest implemented exception level. 2255 */ 2256 int el = arm_current_el(env); 2257 uint64_t hcr; 2258 uint32_t cntkctl; 2259 2260 switch (el) { 2261 case 0: 2262 hcr = arm_hcr_el2_eff(env); 2263 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2264 cntkctl = env->cp15.cnthctl_el2; 2265 } else { 2266 cntkctl = env->cp15.c14_cntkctl; 2267 } 2268 if (!extract32(cntkctl, 0, 2)) { 2269 return CP_ACCESS_TRAP; 2270 } 2271 break; 2272 case 1: 2273 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2274 arm_is_secure_below_el3(env)) { 2275 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2276 return CP_ACCESS_TRAP_UNCATEGORIZED; 2277 } 2278 break; 2279 case 2: 2280 case 3: 2281 break; 2282 } 2283 2284 if (!isread && el < arm_highest_el(env)) { 2285 return CP_ACCESS_TRAP_UNCATEGORIZED; 2286 } 2287 2288 return CP_ACCESS_OK; 2289 } 2290 2291 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2292 bool isread) 2293 { 2294 unsigned int cur_el = arm_current_el(env); 2295 bool has_el2 = arm_is_el2_enabled(env); 2296 uint64_t hcr = arm_hcr_el2_eff(env); 2297 2298 switch (cur_el) { 2299 case 0: 2300 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2301 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2302 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2303 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2304 } 2305 2306 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2307 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2308 return CP_ACCESS_TRAP; 2309 } 2310 2311 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2312 if (hcr & HCR_E2H) { 2313 if (timeridx == GTIMER_PHYS && 2314 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2315 return CP_ACCESS_TRAP_EL2; 2316 } 2317 } else { 2318 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2319 if (has_el2 && timeridx == GTIMER_PHYS && 2320 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2321 return CP_ACCESS_TRAP_EL2; 2322 } 2323 } 2324 break; 2325 2326 case 1: 2327 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2328 if (has_el2 && timeridx == GTIMER_PHYS && 2329 (hcr & HCR_E2H 2330 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2331 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2332 return CP_ACCESS_TRAP_EL2; 2333 } 2334 break; 2335 } 2336 return CP_ACCESS_OK; 2337 } 2338 2339 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2340 bool isread) 2341 { 2342 unsigned int cur_el = arm_current_el(env); 2343 bool has_el2 = arm_is_el2_enabled(env); 2344 uint64_t hcr = arm_hcr_el2_eff(env); 2345 2346 switch (cur_el) { 2347 case 0: 2348 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2349 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2350 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2351 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2352 } 2353 2354 /* 2355 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2356 * EL0 if EL0[PV]TEN is zero. 2357 */ 2358 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2359 return CP_ACCESS_TRAP; 2360 } 2361 /* fall through */ 2362 2363 case 1: 2364 if (has_el2 && timeridx == GTIMER_PHYS) { 2365 if (hcr & HCR_E2H) { 2366 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2367 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2368 return CP_ACCESS_TRAP_EL2; 2369 } 2370 } else { 2371 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2372 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2373 return CP_ACCESS_TRAP_EL2; 2374 } 2375 } 2376 } 2377 break; 2378 } 2379 return CP_ACCESS_OK; 2380 } 2381 2382 static CPAccessResult gt_pct_access(CPUARMState *env, 2383 const ARMCPRegInfo *ri, 2384 bool isread) 2385 { 2386 return gt_counter_access(env, GTIMER_PHYS, isread); 2387 } 2388 2389 static CPAccessResult gt_vct_access(CPUARMState *env, 2390 const ARMCPRegInfo *ri, 2391 bool isread) 2392 { 2393 return gt_counter_access(env, GTIMER_VIRT, isread); 2394 } 2395 2396 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2397 bool isread) 2398 { 2399 return gt_timer_access(env, GTIMER_PHYS, isread); 2400 } 2401 2402 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2403 bool isread) 2404 { 2405 return gt_timer_access(env, GTIMER_VIRT, isread); 2406 } 2407 2408 static CPAccessResult gt_stimer_access(CPUARMState *env, 2409 const ARMCPRegInfo *ri, 2410 bool isread) 2411 { 2412 /* The AArch64 register view of the secure physical timer is 2413 * always accessible from EL3, and configurably accessible from 2414 * Secure EL1. 2415 */ 2416 switch (arm_current_el(env)) { 2417 case 1: 2418 if (!arm_is_secure(env)) { 2419 return CP_ACCESS_TRAP; 2420 } 2421 if (!(env->cp15.scr_el3 & SCR_ST)) { 2422 return CP_ACCESS_TRAP_EL3; 2423 } 2424 return CP_ACCESS_OK; 2425 case 0: 2426 case 2: 2427 return CP_ACCESS_TRAP; 2428 case 3: 2429 return CP_ACCESS_OK; 2430 default: 2431 g_assert_not_reached(); 2432 } 2433 } 2434 2435 static uint64_t gt_get_countervalue(CPUARMState *env) 2436 { 2437 ARMCPU *cpu = env_archcpu(env); 2438 2439 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2440 } 2441 2442 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2443 { 2444 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2445 2446 if (gt->ctl & 1) { 2447 /* Timer enabled: calculate and set current ISTATUS, irq, and 2448 * reset timer to when ISTATUS next has to change 2449 */ 2450 uint64_t offset = timeridx == GTIMER_VIRT ? 2451 cpu->env.cp15.cntvoff_el2 : 0; 2452 uint64_t count = gt_get_countervalue(&cpu->env); 2453 /* Note that this must be unsigned 64 bit arithmetic: */ 2454 int istatus = count - offset >= gt->cval; 2455 uint64_t nexttick; 2456 int irqstate; 2457 2458 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2459 2460 irqstate = (istatus && !(gt->ctl & 2)); 2461 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2462 2463 if (istatus) { 2464 /* Next transition is when count rolls back over to zero */ 2465 nexttick = UINT64_MAX; 2466 } else { 2467 /* Next transition is when we hit cval */ 2468 nexttick = gt->cval + offset; 2469 } 2470 /* Note that the desired next expiry time might be beyond the 2471 * signed-64-bit range of a QEMUTimer -- in this case we just 2472 * set the timer for as far in the future as possible. When the 2473 * timer expires we will reset the timer for any remaining period. 2474 */ 2475 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2476 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2477 } else { 2478 timer_mod(cpu->gt_timer[timeridx], nexttick); 2479 } 2480 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2481 } else { 2482 /* Timer disabled: ISTATUS and timer output always clear */ 2483 gt->ctl &= ~4; 2484 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2485 timer_del(cpu->gt_timer[timeridx]); 2486 trace_arm_gt_recalc_disabled(timeridx); 2487 } 2488 } 2489 2490 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2491 int timeridx) 2492 { 2493 ARMCPU *cpu = env_archcpu(env); 2494 2495 timer_del(cpu->gt_timer[timeridx]); 2496 } 2497 2498 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2499 { 2500 return gt_get_countervalue(env); 2501 } 2502 2503 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2504 { 2505 uint64_t hcr; 2506 2507 switch (arm_current_el(env)) { 2508 case 2: 2509 hcr = arm_hcr_el2_eff(env); 2510 if (hcr & HCR_E2H) { 2511 return 0; 2512 } 2513 break; 2514 case 0: 2515 hcr = arm_hcr_el2_eff(env); 2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2517 return 0; 2518 } 2519 break; 2520 } 2521 2522 return env->cp15.cntvoff_el2; 2523 } 2524 2525 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2526 { 2527 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2528 } 2529 2530 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2531 int timeridx, 2532 uint64_t value) 2533 { 2534 trace_arm_gt_cval_write(timeridx, value); 2535 env->cp15.c14_timer[timeridx].cval = value; 2536 gt_recalc_timer(env_archcpu(env), timeridx); 2537 } 2538 2539 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2540 int timeridx) 2541 { 2542 uint64_t offset = 0; 2543 2544 switch (timeridx) { 2545 case GTIMER_VIRT: 2546 case GTIMER_HYPVIRT: 2547 offset = gt_virt_cnt_offset(env); 2548 break; 2549 } 2550 2551 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2552 (gt_get_countervalue(env) - offset)); 2553 } 2554 2555 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2556 int timeridx, 2557 uint64_t value) 2558 { 2559 uint64_t offset = 0; 2560 2561 switch (timeridx) { 2562 case GTIMER_VIRT: 2563 case GTIMER_HYPVIRT: 2564 offset = gt_virt_cnt_offset(env); 2565 break; 2566 } 2567 2568 trace_arm_gt_tval_write(timeridx, value); 2569 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2570 sextract64(value, 0, 32); 2571 gt_recalc_timer(env_archcpu(env), timeridx); 2572 } 2573 2574 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2575 int timeridx, 2576 uint64_t value) 2577 { 2578 ARMCPU *cpu = env_archcpu(env); 2579 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2580 2581 trace_arm_gt_ctl_write(timeridx, value); 2582 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2583 if ((oldval ^ value) & 1) { 2584 /* Enable toggled */ 2585 gt_recalc_timer(cpu, timeridx); 2586 } else if ((oldval ^ value) & 2) { 2587 /* IMASK toggled: don't need to recalculate, 2588 * just set the interrupt line based on ISTATUS 2589 */ 2590 int irqstate = (oldval & 4) && !(value & 2); 2591 2592 trace_arm_gt_imask_toggle(timeridx, irqstate); 2593 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2594 } 2595 } 2596 2597 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2598 { 2599 gt_timer_reset(env, ri, GTIMER_PHYS); 2600 } 2601 2602 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2603 uint64_t value) 2604 { 2605 gt_cval_write(env, ri, GTIMER_PHYS, value); 2606 } 2607 2608 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2609 { 2610 return gt_tval_read(env, ri, GTIMER_PHYS); 2611 } 2612 2613 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2614 uint64_t value) 2615 { 2616 gt_tval_write(env, ri, GTIMER_PHYS, value); 2617 } 2618 2619 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2620 uint64_t value) 2621 { 2622 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2623 } 2624 2625 static int gt_phys_redir_timeridx(CPUARMState *env) 2626 { 2627 switch (arm_mmu_idx(env)) { 2628 case ARMMMUIdx_E20_0: 2629 case ARMMMUIdx_E20_2: 2630 case ARMMMUIdx_E20_2_PAN: 2631 case ARMMMUIdx_SE20_0: 2632 case ARMMMUIdx_SE20_2: 2633 case ARMMMUIdx_SE20_2_PAN: 2634 return GTIMER_HYP; 2635 default: 2636 return GTIMER_PHYS; 2637 } 2638 } 2639 2640 static int gt_virt_redir_timeridx(CPUARMState *env) 2641 { 2642 switch (arm_mmu_idx(env)) { 2643 case ARMMMUIdx_E20_0: 2644 case ARMMMUIdx_E20_2: 2645 case ARMMMUIdx_E20_2_PAN: 2646 case ARMMMUIdx_SE20_0: 2647 case ARMMMUIdx_SE20_2: 2648 case ARMMMUIdx_SE20_2_PAN: 2649 return GTIMER_HYPVIRT; 2650 default: 2651 return GTIMER_VIRT; 2652 } 2653 } 2654 2655 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2656 const ARMCPRegInfo *ri) 2657 { 2658 int timeridx = gt_phys_redir_timeridx(env); 2659 return env->cp15.c14_timer[timeridx].cval; 2660 } 2661 2662 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2663 uint64_t value) 2664 { 2665 int timeridx = gt_phys_redir_timeridx(env); 2666 gt_cval_write(env, ri, timeridx, value); 2667 } 2668 2669 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2670 const ARMCPRegInfo *ri) 2671 { 2672 int timeridx = gt_phys_redir_timeridx(env); 2673 return gt_tval_read(env, ri, timeridx); 2674 } 2675 2676 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2677 uint64_t value) 2678 { 2679 int timeridx = gt_phys_redir_timeridx(env); 2680 gt_tval_write(env, ri, timeridx, value); 2681 } 2682 2683 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2684 const ARMCPRegInfo *ri) 2685 { 2686 int timeridx = gt_phys_redir_timeridx(env); 2687 return env->cp15.c14_timer[timeridx].ctl; 2688 } 2689 2690 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2691 uint64_t value) 2692 { 2693 int timeridx = gt_phys_redir_timeridx(env); 2694 gt_ctl_write(env, ri, timeridx, value); 2695 } 2696 2697 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2698 { 2699 gt_timer_reset(env, ri, GTIMER_VIRT); 2700 } 2701 2702 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2703 uint64_t value) 2704 { 2705 gt_cval_write(env, ri, GTIMER_VIRT, value); 2706 } 2707 2708 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2709 { 2710 return gt_tval_read(env, ri, GTIMER_VIRT); 2711 } 2712 2713 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2714 uint64_t value) 2715 { 2716 gt_tval_write(env, ri, GTIMER_VIRT, value); 2717 } 2718 2719 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2720 uint64_t value) 2721 { 2722 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2723 } 2724 2725 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2726 uint64_t value) 2727 { 2728 ARMCPU *cpu = env_archcpu(env); 2729 2730 trace_arm_gt_cntvoff_write(value); 2731 raw_write(env, ri, value); 2732 gt_recalc_timer(cpu, GTIMER_VIRT); 2733 } 2734 2735 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2736 const ARMCPRegInfo *ri) 2737 { 2738 int timeridx = gt_virt_redir_timeridx(env); 2739 return env->cp15.c14_timer[timeridx].cval; 2740 } 2741 2742 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2743 uint64_t value) 2744 { 2745 int timeridx = gt_virt_redir_timeridx(env); 2746 gt_cval_write(env, ri, timeridx, value); 2747 } 2748 2749 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2750 const ARMCPRegInfo *ri) 2751 { 2752 int timeridx = gt_virt_redir_timeridx(env); 2753 return gt_tval_read(env, ri, timeridx); 2754 } 2755 2756 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2757 uint64_t value) 2758 { 2759 int timeridx = gt_virt_redir_timeridx(env); 2760 gt_tval_write(env, ri, timeridx, value); 2761 } 2762 2763 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2764 const ARMCPRegInfo *ri) 2765 { 2766 int timeridx = gt_virt_redir_timeridx(env); 2767 return env->cp15.c14_timer[timeridx].ctl; 2768 } 2769 2770 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2771 uint64_t value) 2772 { 2773 int timeridx = gt_virt_redir_timeridx(env); 2774 gt_ctl_write(env, ri, timeridx, value); 2775 } 2776 2777 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2778 { 2779 gt_timer_reset(env, ri, GTIMER_HYP); 2780 } 2781 2782 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2783 uint64_t value) 2784 { 2785 gt_cval_write(env, ri, GTIMER_HYP, value); 2786 } 2787 2788 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2789 { 2790 return gt_tval_read(env, ri, GTIMER_HYP); 2791 } 2792 2793 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2794 uint64_t value) 2795 { 2796 gt_tval_write(env, ri, GTIMER_HYP, value); 2797 } 2798 2799 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2800 uint64_t value) 2801 { 2802 gt_ctl_write(env, ri, GTIMER_HYP, value); 2803 } 2804 2805 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2806 { 2807 gt_timer_reset(env, ri, GTIMER_SEC); 2808 } 2809 2810 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2811 uint64_t value) 2812 { 2813 gt_cval_write(env, ri, GTIMER_SEC, value); 2814 } 2815 2816 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2817 { 2818 return gt_tval_read(env, ri, GTIMER_SEC); 2819 } 2820 2821 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2822 uint64_t value) 2823 { 2824 gt_tval_write(env, ri, GTIMER_SEC, value); 2825 } 2826 2827 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2828 uint64_t value) 2829 { 2830 gt_ctl_write(env, ri, GTIMER_SEC, value); 2831 } 2832 2833 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2834 { 2835 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2836 } 2837 2838 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2839 uint64_t value) 2840 { 2841 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2842 } 2843 2844 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2845 { 2846 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2847 } 2848 2849 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2850 uint64_t value) 2851 { 2852 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2853 } 2854 2855 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2859 } 2860 2861 void arm_gt_ptimer_cb(void *opaque) 2862 { 2863 ARMCPU *cpu = opaque; 2864 2865 gt_recalc_timer(cpu, GTIMER_PHYS); 2866 } 2867 2868 void arm_gt_vtimer_cb(void *opaque) 2869 { 2870 ARMCPU *cpu = opaque; 2871 2872 gt_recalc_timer(cpu, GTIMER_VIRT); 2873 } 2874 2875 void arm_gt_htimer_cb(void *opaque) 2876 { 2877 ARMCPU *cpu = opaque; 2878 2879 gt_recalc_timer(cpu, GTIMER_HYP); 2880 } 2881 2882 void arm_gt_stimer_cb(void *opaque) 2883 { 2884 ARMCPU *cpu = opaque; 2885 2886 gt_recalc_timer(cpu, GTIMER_SEC); 2887 } 2888 2889 void arm_gt_hvtimer_cb(void *opaque) 2890 { 2891 ARMCPU *cpu = opaque; 2892 2893 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2894 } 2895 2896 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2897 { 2898 ARMCPU *cpu = env_archcpu(env); 2899 2900 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2901 } 2902 2903 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2904 /* Note that CNTFRQ is purely reads-as-written for the benefit 2905 * of software; writing it doesn't actually change the timer frequency. 2906 * Our reset value matches the fixed frequency we implement the timer at. 2907 */ 2908 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2909 .type = ARM_CP_ALIAS, 2910 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2911 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2912 }, 2913 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2914 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2915 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2916 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2917 .resetfn = arm_gt_cntfrq_reset, 2918 }, 2919 /* overall control: mostly access permissions */ 2920 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2921 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2922 .access = PL1_RW, 2923 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2924 .resetvalue = 0, 2925 }, 2926 /* per-timer control */ 2927 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2928 .secure = ARM_CP_SECSTATE_NS, 2929 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2930 .accessfn = gt_ptimer_access, 2931 .fieldoffset = offsetoflow32(CPUARMState, 2932 cp15.c14_timer[GTIMER_PHYS].ctl), 2933 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2934 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2935 }, 2936 { .name = "CNTP_CTL_S", 2937 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2938 .secure = ARM_CP_SECSTATE_S, 2939 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2940 .accessfn = gt_ptimer_access, 2941 .fieldoffset = offsetoflow32(CPUARMState, 2942 cp15.c14_timer[GTIMER_SEC].ctl), 2943 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2944 }, 2945 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2946 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2947 .type = ARM_CP_IO, .access = PL0_RW, 2948 .accessfn = gt_ptimer_access, 2949 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2950 .resetvalue = 0, 2951 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2952 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2953 }, 2954 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2955 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2956 .accessfn = gt_vtimer_access, 2957 .fieldoffset = offsetoflow32(CPUARMState, 2958 cp15.c14_timer[GTIMER_VIRT].ctl), 2959 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2960 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2961 }, 2962 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2963 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2964 .type = ARM_CP_IO, .access = PL0_RW, 2965 .accessfn = gt_vtimer_access, 2966 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2967 .resetvalue = 0, 2968 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2969 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2970 }, 2971 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2972 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2973 .secure = ARM_CP_SECSTATE_NS, 2974 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2975 .accessfn = gt_ptimer_access, 2976 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2977 }, 2978 { .name = "CNTP_TVAL_S", 2979 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2980 .secure = ARM_CP_SECSTATE_S, 2981 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2982 .accessfn = gt_ptimer_access, 2983 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2984 }, 2985 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2986 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2987 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2988 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2989 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2990 }, 2991 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2992 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2993 .accessfn = gt_vtimer_access, 2994 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2995 }, 2996 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2997 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2998 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2999 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3000 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3001 }, 3002 /* The counter itself */ 3003 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3004 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3005 .accessfn = gt_pct_access, 3006 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3007 }, 3008 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3009 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3010 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3011 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3012 }, 3013 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3014 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3015 .accessfn = gt_vct_access, 3016 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3017 }, 3018 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3019 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3020 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3021 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3022 }, 3023 /* Comparison value, indicating when the timer goes off */ 3024 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3025 .secure = ARM_CP_SECSTATE_NS, 3026 .access = PL0_RW, 3027 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3028 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3029 .accessfn = gt_ptimer_access, 3030 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3031 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3032 }, 3033 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3034 .secure = ARM_CP_SECSTATE_S, 3035 .access = PL0_RW, 3036 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3037 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3038 .accessfn = gt_ptimer_access, 3039 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3040 }, 3041 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3043 .access = PL0_RW, 3044 .type = ARM_CP_IO, 3045 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3046 .resetvalue = 0, .accessfn = gt_ptimer_access, 3047 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3048 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3049 }, 3050 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3051 .access = PL0_RW, 3052 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3053 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3054 .accessfn = gt_vtimer_access, 3055 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3056 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3057 }, 3058 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3059 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3060 .access = PL0_RW, 3061 .type = ARM_CP_IO, 3062 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3063 .resetvalue = 0, .accessfn = gt_vtimer_access, 3064 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3065 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3066 }, 3067 /* Secure timer -- this is actually restricted to only EL3 3068 * and configurably Secure-EL1 via the accessfn. 3069 */ 3070 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3071 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3072 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3073 .accessfn = gt_stimer_access, 3074 .readfn = gt_sec_tval_read, 3075 .writefn = gt_sec_tval_write, 3076 .resetfn = gt_sec_timer_reset, 3077 }, 3078 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3079 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3080 .type = ARM_CP_IO, .access = PL1_RW, 3081 .accessfn = gt_stimer_access, 3082 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3083 .resetvalue = 0, 3084 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3085 }, 3086 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3087 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3088 .type = ARM_CP_IO, .access = PL1_RW, 3089 .accessfn = gt_stimer_access, 3090 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3091 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3092 }, 3093 }; 3094 3095 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3096 bool isread) 3097 { 3098 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3099 return CP_ACCESS_TRAP; 3100 } 3101 return CP_ACCESS_OK; 3102 } 3103 3104 #else 3105 3106 /* In user-mode most of the generic timer registers are inaccessible 3107 * however modern kernels (4.12+) allow access to cntvct_el0 3108 */ 3109 3110 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3111 { 3112 ARMCPU *cpu = env_archcpu(env); 3113 3114 /* Currently we have no support for QEMUTimer in linux-user so we 3115 * can't call gt_get_countervalue(env), instead we directly 3116 * call the lower level functions. 3117 */ 3118 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3119 } 3120 3121 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3122 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3123 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3124 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3125 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3126 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3127 }, 3128 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3129 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3130 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3131 .readfn = gt_virt_cnt_read, 3132 }, 3133 }; 3134 3135 #endif 3136 3137 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3138 { 3139 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3140 raw_write(env, ri, value); 3141 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3142 raw_write(env, ri, value & 0xfffff6ff); 3143 } else { 3144 raw_write(env, ri, value & 0xfffff1ff); 3145 } 3146 } 3147 3148 #ifndef CONFIG_USER_ONLY 3149 /* get_phys_addr() isn't present for user-mode-only targets */ 3150 3151 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3152 bool isread) 3153 { 3154 if (ri->opc2 & 4) { 3155 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3156 * Secure EL1 (which can only happen if EL3 is AArch64). 3157 * They are simply UNDEF if executed from NS EL1. 3158 * They function normally from EL2 or EL3. 3159 */ 3160 if (arm_current_el(env) == 1) { 3161 if (arm_is_secure_below_el3(env)) { 3162 if (env->cp15.scr_el3 & SCR_EEL2) { 3163 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3164 } 3165 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3166 } 3167 return CP_ACCESS_TRAP_UNCATEGORIZED; 3168 } 3169 } 3170 return CP_ACCESS_OK; 3171 } 3172 3173 #ifdef CONFIG_TCG 3174 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3175 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3176 { 3177 hwaddr phys_addr; 3178 target_ulong page_size; 3179 int prot; 3180 bool ret; 3181 uint64_t par64; 3182 bool format64 = false; 3183 MemTxAttrs attrs = {}; 3184 ARMMMUFaultInfo fi = {}; 3185 ARMCacheAttrs cacheattrs = {}; 3186 3187 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3188 &prot, &page_size, &fi, &cacheattrs); 3189 3190 if (ret) { 3191 /* 3192 * Some kinds of translation fault must cause exceptions rather 3193 * than being reported in the PAR. 3194 */ 3195 int current_el = arm_current_el(env); 3196 int target_el; 3197 uint32_t syn, fsr, fsc; 3198 bool take_exc = false; 3199 3200 if (fi.s1ptw && current_el == 1 3201 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3202 /* 3203 * Synchronous stage 2 fault on an access made as part of the 3204 * translation table walk for AT S1E0* or AT S1E1* insn 3205 * executed from NS EL1. If this is a synchronous external abort 3206 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3207 * to EL3. Otherwise the fault is taken as an exception to EL2, 3208 * and HPFAR_EL2 holds the faulting IPA. 3209 */ 3210 if (fi.type == ARMFault_SyncExternalOnWalk && 3211 (env->cp15.scr_el3 & SCR_EA)) { 3212 target_el = 3; 3213 } else { 3214 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3215 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3216 env->cp15.hpfar_el2 |= HPFAR_NS; 3217 } 3218 target_el = 2; 3219 } 3220 take_exc = true; 3221 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3222 /* 3223 * Synchronous external aborts during a translation table walk 3224 * are taken as Data Abort exceptions. 3225 */ 3226 if (fi.stage2) { 3227 if (current_el == 3) { 3228 target_el = 3; 3229 } else { 3230 target_el = 2; 3231 } 3232 } else { 3233 target_el = exception_target_el(env); 3234 } 3235 take_exc = true; 3236 } 3237 3238 if (take_exc) { 3239 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3240 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3241 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3242 fsr = arm_fi_to_lfsc(&fi); 3243 fsc = extract32(fsr, 0, 6); 3244 } else { 3245 fsr = arm_fi_to_sfsc(&fi); 3246 fsc = 0x3f; 3247 } 3248 /* 3249 * Report exception with ESR indicating a fault due to a 3250 * translation table walk for a cache maintenance instruction. 3251 */ 3252 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3253 fi.ea, 1, fi.s1ptw, 1, fsc); 3254 env->exception.vaddress = value; 3255 env->exception.fsr = fsr; 3256 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3257 } 3258 } 3259 3260 if (is_a64(env)) { 3261 format64 = true; 3262 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3263 /* 3264 * ATS1Cxx: 3265 * * TTBCR.EAE determines whether the result is returned using the 3266 * 32-bit or the 64-bit PAR format 3267 * * Instructions executed in Hyp mode always use the 64bit format 3268 * 3269 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3270 * * The Non-secure TTBCR.EAE bit is set to 1 3271 * * The implementation includes EL2, and the value of HCR.VM is 1 3272 * 3273 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3274 * 3275 * ATS1Hx always uses the 64bit format. 3276 */ 3277 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3278 3279 if (arm_feature(env, ARM_FEATURE_EL2)) { 3280 if (mmu_idx == ARMMMUIdx_E10_0 || 3281 mmu_idx == ARMMMUIdx_E10_1 || 3282 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3283 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3284 } else { 3285 format64 |= arm_current_el(env) == 2; 3286 } 3287 } 3288 } 3289 3290 if (format64) { 3291 /* Create a 64-bit PAR */ 3292 par64 = (1 << 11); /* LPAE bit always set */ 3293 if (!ret) { 3294 par64 |= phys_addr & ~0xfffULL; 3295 if (!attrs.secure) { 3296 par64 |= (1 << 9); /* NS */ 3297 } 3298 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3299 par64 |= cacheattrs.shareability << 7; /* SH */ 3300 } else { 3301 uint32_t fsr = arm_fi_to_lfsc(&fi); 3302 3303 par64 |= 1; /* F */ 3304 par64 |= (fsr & 0x3f) << 1; /* FS */ 3305 if (fi.stage2) { 3306 par64 |= (1 << 9); /* S */ 3307 } 3308 if (fi.s1ptw) { 3309 par64 |= (1 << 8); /* PTW */ 3310 } 3311 } 3312 } else { 3313 /* fsr is a DFSR/IFSR value for the short descriptor 3314 * translation table format (with WnR always clear). 3315 * Convert it to a 32-bit PAR. 3316 */ 3317 if (!ret) { 3318 /* We do not set any attribute bits in the PAR */ 3319 if (page_size == (1 << 24) 3320 && arm_feature(env, ARM_FEATURE_V7)) { 3321 par64 = (phys_addr & 0xff000000) | (1 << 1); 3322 } else { 3323 par64 = phys_addr & 0xfffff000; 3324 } 3325 if (!attrs.secure) { 3326 par64 |= (1 << 9); /* NS */ 3327 } 3328 } else { 3329 uint32_t fsr = arm_fi_to_sfsc(&fi); 3330 3331 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3332 ((fsr & 0xf) << 1) | 1; 3333 } 3334 } 3335 return par64; 3336 } 3337 #endif /* CONFIG_TCG */ 3338 3339 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3340 { 3341 #ifdef CONFIG_TCG 3342 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3343 uint64_t par64; 3344 ARMMMUIdx mmu_idx; 3345 int el = arm_current_el(env); 3346 bool secure = arm_is_secure_below_el3(env); 3347 3348 switch (ri->opc2 & 6) { 3349 case 0: 3350 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3351 switch (el) { 3352 case 3: 3353 mmu_idx = ARMMMUIdx_SE3; 3354 break; 3355 case 2: 3356 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3357 /* fall through */ 3358 case 1: 3359 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3360 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3361 : ARMMMUIdx_Stage1_E1_PAN); 3362 } else { 3363 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3364 } 3365 break; 3366 default: 3367 g_assert_not_reached(); 3368 } 3369 break; 3370 case 2: 3371 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3372 switch (el) { 3373 case 3: 3374 mmu_idx = ARMMMUIdx_SE10_0; 3375 break; 3376 case 2: 3377 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3378 mmu_idx = ARMMMUIdx_Stage1_E0; 3379 break; 3380 case 1: 3381 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3382 break; 3383 default: 3384 g_assert_not_reached(); 3385 } 3386 break; 3387 case 4: 3388 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3389 mmu_idx = ARMMMUIdx_E10_1; 3390 break; 3391 case 6: 3392 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3393 mmu_idx = ARMMMUIdx_E10_0; 3394 break; 3395 default: 3396 g_assert_not_reached(); 3397 } 3398 3399 par64 = do_ats_write(env, value, access_type, mmu_idx); 3400 3401 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3402 #else 3403 /* Handled by hardware accelerator. */ 3404 g_assert_not_reached(); 3405 #endif /* CONFIG_TCG */ 3406 } 3407 3408 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3409 uint64_t value) 3410 { 3411 #ifdef CONFIG_TCG 3412 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3413 uint64_t par64; 3414 3415 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3416 3417 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3418 #else 3419 /* Handled by hardware accelerator. */ 3420 g_assert_not_reached(); 3421 #endif /* CONFIG_TCG */ 3422 } 3423 3424 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3425 bool isread) 3426 { 3427 if (arm_current_el(env) == 3 && 3428 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3429 return CP_ACCESS_TRAP; 3430 } 3431 return CP_ACCESS_OK; 3432 } 3433 3434 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3435 uint64_t value) 3436 { 3437 #ifdef CONFIG_TCG 3438 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3439 ARMMMUIdx mmu_idx; 3440 int secure = arm_is_secure_below_el3(env); 3441 3442 switch (ri->opc2 & 6) { 3443 case 0: 3444 switch (ri->opc1) { 3445 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3446 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3447 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3448 : ARMMMUIdx_Stage1_E1_PAN); 3449 } else { 3450 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3451 } 3452 break; 3453 case 4: /* AT S1E2R, AT S1E2W */ 3454 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3455 break; 3456 case 6: /* AT S1E3R, AT S1E3W */ 3457 mmu_idx = ARMMMUIdx_SE3; 3458 break; 3459 default: 3460 g_assert_not_reached(); 3461 } 3462 break; 3463 case 2: /* AT S1E0R, AT S1E0W */ 3464 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3465 break; 3466 case 4: /* AT S12E1R, AT S12E1W */ 3467 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3468 break; 3469 case 6: /* AT S12E0R, AT S12E0W */ 3470 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3471 break; 3472 default: 3473 g_assert_not_reached(); 3474 } 3475 3476 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3477 #else 3478 /* Handled by hardware accelerator. */ 3479 g_assert_not_reached(); 3480 #endif /* CONFIG_TCG */ 3481 } 3482 #endif 3483 3484 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3485 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3486 .access = PL1_RW, .resetvalue = 0, 3487 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3488 offsetoflow32(CPUARMState, cp15.par_ns) }, 3489 .writefn = par_write }, 3490 #ifndef CONFIG_USER_ONLY 3491 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3492 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3493 .access = PL1_W, .accessfn = ats_access, 3494 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3495 #endif 3496 }; 3497 3498 /* Return basic MPU access permission bits. */ 3499 static uint32_t simple_mpu_ap_bits(uint32_t val) 3500 { 3501 uint32_t ret; 3502 uint32_t mask; 3503 int i; 3504 ret = 0; 3505 mask = 3; 3506 for (i = 0; i < 16; i += 2) { 3507 ret |= (val >> i) & mask; 3508 mask <<= 2; 3509 } 3510 return ret; 3511 } 3512 3513 /* Pad basic MPU access permission bits to extended format. */ 3514 static uint32_t extended_mpu_ap_bits(uint32_t val) 3515 { 3516 uint32_t ret; 3517 uint32_t mask; 3518 int i; 3519 ret = 0; 3520 mask = 3; 3521 for (i = 0; i < 16; i += 2) { 3522 ret |= (val & mask) << i; 3523 mask <<= 2; 3524 } 3525 return ret; 3526 } 3527 3528 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3529 uint64_t value) 3530 { 3531 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3532 } 3533 3534 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3535 { 3536 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3537 } 3538 3539 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3540 uint64_t value) 3541 { 3542 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3543 } 3544 3545 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3546 { 3547 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3548 } 3549 3550 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3551 { 3552 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3553 3554 if (!u32p) { 3555 return 0; 3556 } 3557 3558 u32p += env->pmsav7.rnr[M_REG_NS]; 3559 return *u32p; 3560 } 3561 3562 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3563 uint64_t value) 3564 { 3565 ARMCPU *cpu = env_archcpu(env); 3566 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3567 3568 if (!u32p) { 3569 return; 3570 } 3571 3572 u32p += env->pmsav7.rnr[M_REG_NS]; 3573 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3574 *u32p = value; 3575 } 3576 3577 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3578 uint64_t value) 3579 { 3580 ARMCPU *cpu = env_archcpu(env); 3581 uint32_t nrgs = cpu->pmsav7_dregion; 3582 3583 if (value >= nrgs) { 3584 qemu_log_mask(LOG_GUEST_ERROR, 3585 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3586 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3587 return; 3588 } 3589 3590 raw_write(env, ri, value); 3591 } 3592 3593 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3594 /* Reset for all these registers is handled in arm_cpu_reset(), 3595 * because the PMSAv7 is also used by M-profile CPUs, which do 3596 * not register cpregs but still need the state to be reset. 3597 */ 3598 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3599 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3600 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3601 .readfn = pmsav7_read, .writefn = pmsav7_write, 3602 .resetfn = arm_cp_reset_ignore }, 3603 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3604 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3605 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3606 .readfn = pmsav7_read, .writefn = pmsav7_write, 3607 .resetfn = arm_cp_reset_ignore }, 3608 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3609 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3610 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3611 .readfn = pmsav7_read, .writefn = pmsav7_write, 3612 .resetfn = arm_cp_reset_ignore }, 3613 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3614 .access = PL1_RW, 3615 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3616 .writefn = pmsav7_rgnr_write, 3617 .resetfn = arm_cp_reset_ignore }, 3618 }; 3619 3620 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3621 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3622 .access = PL1_RW, .type = ARM_CP_ALIAS, 3623 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3624 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3625 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3626 .access = PL1_RW, .type = ARM_CP_ALIAS, 3627 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3628 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3629 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3630 .access = PL1_RW, 3631 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3632 .resetvalue = 0, }, 3633 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3634 .access = PL1_RW, 3635 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3636 .resetvalue = 0, }, 3637 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3638 .access = PL1_RW, 3639 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3640 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3641 .access = PL1_RW, 3642 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3643 /* Protection region base and size registers */ 3644 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3645 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3646 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3647 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3648 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3649 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3650 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3651 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3652 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3653 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3654 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3655 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3656 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3657 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3658 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3659 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3660 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3661 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3662 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3663 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3664 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3665 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3666 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3667 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3668 }; 3669 3670 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3671 uint64_t value) 3672 { 3673 TCR *tcr = raw_ptr(env, ri); 3674 int maskshift = extract32(value, 0, 3); 3675 3676 if (!arm_feature(env, ARM_FEATURE_V8)) { 3677 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3678 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3679 * using Long-desciptor translation table format */ 3680 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3681 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3682 /* In an implementation that includes the Security Extensions 3683 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3684 * Short-descriptor translation table format. 3685 */ 3686 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3687 } else { 3688 value &= TTBCR_N; 3689 } 3690 } 3691 3692 /* Update the masks corresponding to the TCR bank being written 3693 * Note that we always calculate mask and base_mask, but 3694 * they are only used for short-descriptor tables (ie if EAE is 0); 3695 * for long-descriptor tables the TCR fields are used differently 3696 * and the mask and base_mask values are meaningless. 3697 */ 3698 tcr->raw_tcr = value; 3699 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3700 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3701 } 3702 3703 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3704 uint64_t value) 3705 { 3706 ARMCPU *cpu = env_archcpu(env); 3707 TCR *tcr = raw_ptr(env, ri); 3708 3709 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3710 /* With LPAE the TTBCR could result in a change of ASID 3711 * via the TTBCR.A1 bit, so do a TLB flush. 3712 */ 3713 tlb_flush(CPU(cpu)); 3714 } 3715 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3716 value = deposit64(tcr->raw_tcr, 0, 32, value); 3717 vmsa_ttbcr_raw_write(env, ri, value); 3718 } 3719 3720 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3721 { 3722 TCR *tcr = raw_ptr(env, ri); 3723 3724 /* Reset both the TCR as well as the masks corresponding to the bank of 3725 * the TCR being reset. 3726 */ 3727 tcr->raw_tcr = 0; 3728 tcr->mask = 0; 3729 tcr->base_mask = 0xffffc000u; 3730 } 3731 3732 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3733 uint64_t value) 3734 { 3735 ARMCPU *cpu = env_archcpu(env); 3736 TCR *tcr = raw_ptr(env, ri); 3737 3738 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3739 tlb_flush(CPU(cpu)); 3740 tcr->raw_tcr = value; 3741 } 3742 3743 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3744 uint64_t value) 3745 { 3746 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3747 if (cpreg_field_is_64bit(ri) && 3748 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3749 ARMCPU *cpu = env_archcpu(env); 3750 tlb_flush(CPU(cpu)); 3751 } 3752 raw_write(env, ri, value); 3753 } 3754 3755 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3756 uint64_t value) 3757 { 3758 /* 3759 * If we are running with E2&0 regime, then an ASID is active. 3760 * Flush if that might be changing. Note we're not checking 3761 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3762 * holds the active ASID, only checking the field that might. 3763 */ 3764 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3765 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3766 uint16_t mask = ARMMMUIdxBit_E20_2 | 3767 ARMMMUIdxBit_E20_2_PAN | 3768 ARMMMUIdxBit_E20_0; 3769 3770 if (arm_is_secure_below_el3(env)) { 3771 mask >>= ARM_MMU_IDX_A_NS; 3772 } 3773 3774 tlb_flush_by_mmuidx(env_cpu(env), mask); 3775 } 3776 raw_write(env, ri, value); 3777 } 3778 3779 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3780 uint64_t value) 3781 { 3782 ARMCPU *cpu = env_archcpu(env); 3783 CPUState *cs = CPU(cpu); 3784 3785 /* 3786 * A change in VMID to the stage2 page table (Stage2) invalidates 3787 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3788 */ 3789 if (raw_read(env, ri) != value) { 3790 uint16_t mask = ARMMMUIdxBit_E10_1 | 3791 ARMMMUIdxBit_E10_1_PAN | 3792 ARMMMUIdxBit_E10_0; 3793 3794 if (arm_is_secure_below_el3(env)) { 3795 mask >>= ARM_MMU_IDX_A_NS; 3796 } 3797 3798 tlb_flush_by_mmuidx(cs, mask); 3799 raw_write(env, ri, value); 3800 } 3801 } 3802 3803 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3804 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3805 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3806 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3807 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3808 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3809 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3810 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3811 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3812 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3813 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3814 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3815 offsetof(CPUARMState, cp15.dfar_ns) } }, 3816 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3817 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3818 .access = PL1_RW, .accessfn = access_tvm_trvm, 3819 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3820 .resetvalue = 0, }, 3821 }; 3822 3823 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3824 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3825 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3826 .access = PL1_RW, .accessfn = access_tvm_trvm, 3827 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3828 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3829 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3830 .access = PL1_RW, .accessfn = access_tvm_trvm, 3831 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3832 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3833 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3834 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3835 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3836 .access = PL1_RW, .accessfn = access_tvm_trvm, 3837 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3838 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3839 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3840 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3841 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3842 .access = PL1_RW, .accessfn = access_tvm_trvm, 3843 .writefn = vmsa_tcr_el12_write, 3844 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3845 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3846 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3847 .access = PL1_RW, .accessfn = access_tvm_trvm, 3848 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3849 .raw_writefn = vmsa_ttbcr_raw_write, 3850 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3851 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3852 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3853 }; 3854 3855 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3856 * qemu tlbs nor adjusting cached masks. 3857 */ 3858 static const ARMCPRegInfo ttbcr2_reginfo = { 3859 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3860 .access = PL1_RW, .accessfn = access_tvm_trvm, 3861 .type = ARM_CP_ALIAS, 3862 .bank_fieldoffsets = { 3863 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3864 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3865 }, 3866 }; 3867 3868 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3869 uint64_t value) 3870 { 3871 env->cp15.c15_ticonfig = value & 0xe7; 3872 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3873 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3874 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3875 } 3876 3877 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3878 uint64_t value) 3879 { 3880 env->cp15.c15_threadid = value & 0xffff; 3881 } 3882 3883 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3884 uint64_t value) 3885 { 3886 /* Wait-for-interrupt (deprecated) */ 3887 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3888 } 3889 3890 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3891 uint64_t value) 3892 { 3893 /* On OMAP there are registers indicating the max/min index of dcache lines 3894 * containing a dirty line; cache flush operations have to reset these. 3895 */ 3896 env->cp15.c15_i_max = 0x000; 3897 env->cp15.c15_i_min = 0xff0; 3898 } 3899 3900 static const ARMCPRegInfo omap_cp_reginfo[] = { 3901 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3902 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3903 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3904 .resetvalue = 0, }, 3905 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3906 .access = PL1_RW, .type = ARM_CP_NOP }, 3907 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3908 .access = PL1_RW, 3909 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3910 .writefn = omap_ticonfig_write }, 3911 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3912 .access = PL1_RW, 3913 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3914 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3915 .access = PL1_RW, .resetvalue = 0xff0, 3916 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3917 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3918 .access = PL1_RW, 3919 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3920 .writefn = omap_threadid_write }, 3921 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3922 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3923 .type = ARM_CP_NO_RAW, 3924 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3925 /* TODO: Peripheral port remap register: 3926 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3927 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3928 * when MMU is off. 3929 */ 3930 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3931 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3932 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3933 .writefn = omap_cachemaint_write }, 3934 { .name = "C9", .cp = 15, .crn = 9, 3935 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3936 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3937 }; 3938 3939 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3940 uint64_t value) 3941 { 3942 env->cp15.c15_cpar = value & 0x3fff; 3943 } 3944 3945 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3946 { .name = "XSCALE_CPAR", 3947 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3948 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3949 .writefn = xscale_cpar_write, }, 3950 { .name = "XSCALE_AUXCR", 3951 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3952 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3953 .resetvalue = 0, }, 3954 /* XScale specific cache-lockdown: since we have no cache we NOP these 3955 * and hope the guest does not really rely on cache behaviour. 3956 */ 3957 { .name = "XSCALE_LOCK_ICACHE_LINE", 3958 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3959 .access = PL1_W, .type = ARM_CP_NOP }, 3960 { .name = "XSCALE_UNLOCK_ICACHE", 3961 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3962 .access = PL1_W, .type = ARM_CP_NOP }, 3963 { .name = "XSCALE_DCACHE_LOCK", 3964 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3965 .access = PL1_RW, .type = ARM_CP_NOP }, 3966 { .name = "XSCALE_UNLOCK_DCACHE", 3967 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3968 .access = PL1_W, .type = ARM_CP_NOP }, 3969 }; 3970 3971 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3972 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3973 * implementation of this implementation-defined space. 3974 * Ideally this should eventually disappear in favour of actually 3975 * implementing the correct behaviour for all cores. 3976 */ 3977 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3978 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3979 .access = PL1_RW, 3980 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3981 .resetvalue = 0 }, 3982 }; 3983 3984 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3985 /* Cache status: RAZ because we have no cache so it's always clean */ 3986 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3987 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3988 .resetvalue = 0 }, 3989 }; 3990 3991 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3992 /* We never have a a block transfer operation in progress */ 3993 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3994 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3995 .resetvalue = 0 }, 3996 /* The cache ops themselves: these all NOP for QEMU */ 3997 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3998 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3999 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4000 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4001 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4002 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4003 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4004 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4005 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4006 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4007 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4008 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4009 }; 4010 4011 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4012 /* The cache test-and-clean instructions always return (1 << 30) 4013 * to indicate that there are no dirty cache lines. 4014 */ 4015 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4016 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4017 .resetvalue = (1 << 30) }, 4018 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4019 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4020 .resetvalue = (1 << 30) }, 4021 }; 4022 4023 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4024 /* Ignore ReadBuffer accesses */ 4025 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4026 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4027 .access = PL1_RW, .resetvalue = 0, 4028 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4029 }; 4030 4031 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4032 { 4033 unsigned int cur_el = arm_current_el(env); 4034 4035 if (arm_is_el2_enabled(env) && cur_el == 1) { 4036 return env->cp15.vpidr_el2; 4037 } 4038 return raw_read(env, ri); 4039 } 4040 4041 static uint64_t mpidr_read_val(CPUARMState *env) 4042 { 4043 ARMCPU *cpu = env_archcpu(env); 4044 uint64_t mpidr = cpu->mp_affinity; 4045 4046 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4047 mpidr |= (1U << 31); 4048 /* Cores which are uniprocessor (non-coherent) 4049 * but still implement the MP extensions set 4050 * bit 30. (For instance, Cortex-R5). 4051 */ 4052 if (cpu->mp_is_up) { 4053 mpidr |= (1u << 30); 4054 } 4055 } 4056 return mpidr; 4057 } 4058 4059 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4060 { 4061 unsigned int cur_el = arm_current_el(env); 4062 4063 if (arm_is_el2_enabled(env) && cur_el == 1) { 4064 return env->cp15.vmpidr_el2; 4065 } 4066 return mpidr_read_val(env); 4067 } 4068 4069 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4070 /* NOP AMAIR0/1 */ 4071 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4072 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4073 .access = PL1_RW, .accessfn = access_tvm_trvm, 4074 .type = ARM_CP_CONST, .resetvalue = 0 }, 4075 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4076 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4077 .access = PL1_RW, .accessfn = access_tvm_trvm, 4078 .type = ARM_CP_CONST, .resetvalue = 0 }, 4079 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4080 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4081 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4082 offsetof(CPUARMState, cp15.par_ns)} }, 4083 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4084 .access = PL1_RW, .accessfn = access_tvm_trvm, 4085 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4086 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4087 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4088 .writefn = vmsa_ttbr_write, }, 4089 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4090 .access = PL1_RW, .accessfn = access_tvm_trvm, 4091 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4092 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4093 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4094 .writefn = vmsa_ttbr_write, }, 4095 }; 4096 4097 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4098 { 4099 return vfp_get_fpcr(env); 4100 } 4101 4102 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4103 uint64_t value) 4104 { 4105 vfp_set_fpcr(env, value); 4106 } 4107 4108 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4109 { 4110 return vfp_get_fpsr(env); 4111 } 4112 4113 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4114 uint64_t value) 4115 { 4116 vfp_set_fpsr(env, value); 4117 } 4118 4119 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4120 bool isread) 4121 { 4122 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4123 return CP_ACCESS_TRAP; 4124 } 4125 return CP_ACCESS_OK; 4126 } 4127 4128 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4129 uint64_t value) 4130 { 4131 env->daif = value & PSTATE_DAIF; 4132 } 4133 4134 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4135 { 4136 return env->pstate & PSTATE_PAN; 4137 } 4138 4139 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4140 uint64_t value) 4141 { 4142 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4143 } 4144 4145 static const ARMCPRegInfo pan_reginfo = { 4146 .name = "PAN", .state = ARM_CP_STATE_AA64, 4147 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4148 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4149 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4150 }; 4151 4152 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4153 { 4154 return env->pstate & PSTATE_UAO; 4155 } 4156 4157 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4158 uint64_t value) 4159 { 4160 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4161 } 4162 4163 static const ARMCPRegInfo uao_reginfo = { 4164 .name = "UAO", .state = ARM_CP_STATE_AA64, 4165 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4166 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4167 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4168 }; 4169 4170 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4171 { 4172 return env->pstate & PSTATE_DIT; 4173 } 4174 4175 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4176 uint64_t value) 4177 { 4178 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4179 } 4180 4181 static const ARMCPRegInfo dit_reginfo = { 4182 .name = "DIT", .state = ARM_CP_STATE_AA64, 4183 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4184 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4185 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4186 }; 4187 4188 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4189 { 4190 return env->pstate & PSTATE_SSBS; 4191 } 4192 4193 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4194 uint64_t value) 4195 { 4196 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4197 } 4198 4199 static const ARMCPRegInfo ssbs_reginfo = { 4200 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4201 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4202 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4203 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4204 }; 4205 4206 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4207 const ARMCPRegInfo *ri, 4208 bool isread) 4209 { 4210 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4211 switch (arm_current_el(env)) { 4212 case 0: 4213 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4214 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4215 return CP_ACCESS_TRAP; 4216 } 4217 /* fall through */ 4218 case 1: 4219 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4220 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4221 return CP_ACCESS_TRAP_EL2; 4222 } 4223 break; 4224 } 4225 return CP_ACCESS_OK; 4226 } 4227 4228 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4229 const ARMCPRegInfo *ri, 4230 bool isread) 4231 { 4232 /* Cache invalidate/clean to Point of Unification... */ 4233 switch (arm_current_el(env)) { 4234 case 0: 4235 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4236 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4237 return CP_ACCESS_TRAP; 4238 } 4239 /* fall through */ 4240 case 1: 4241 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4242 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4243 return CP_ACCESS_TRAP_EL2; 4244 } 4245 break; 4246 } 4247 return CP_ACCESS_OK; 4248 } 4249 4250 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4251 * Page D4-1736 (DDI0487A.b) 4252 */ 4253 4254 static int vae1_tlbmask(CPUARMState *env) 4255 { 4256 uint64_t hcr = arm_hcr_el2_eff(env); 4257 uint16_t mask; 4258 4259 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4260 mask = ARMMMUIdxBit_E20_2 | 4261 ARMMMUIdxBit_E20_2_PAN | 4262 ARMMMUIdxBit_E20_0; 4263 } else { 4264 mask = ARMMMUIdxBit_E10_1 | 4265 ARMMMUIdxBit_E10_1_PAN | 4266 ARMMMUIdxBit_E10_0; 4267 } 4268 4269 if (arm_is_secure_below_el3(env)) { 4270 mask >>= ARM_MMU_IDX_A_NS; 4271 } 4272 4273 return mask; 4274 } 4275 4276 /* Return 56 if TBI is enabled, 64 otherwise. */ 4277 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4278 uint64_t addr) 4279 { 4280 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4281 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4282 int select = extract64(addr, 55, 1); 4283 4284 return (tbi >> select) & 1 ? 56 : 64; 4285 } 4286 4287 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4288 { 4289 uint64_t hcr = arm_hcr_el2_eff(env); 4290 ARMMMUIdx mmu_idx; 4291 4292 /* Only the regime of the mmu_idx below is significant. */ 4293 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4294 mmu_idx = ARMMMUIdx_E20_0; 4295 } else { 4296 mmu_idx = ARMMMUIdx_E10_0; 4297 } 4298 4299 if (arm_is_secure_below_el3(env)) { 4300 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4301 } 4302 4303 return tlbbits_for_regime(env, mmu_idx, addr); 4304 } 4305 4306 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4307 uint64_t value) 4308 { 4309 CPUState *cs = env_cpu(env); 4310 int mask = vae1_tlbmask(env); 4311 4312 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4313 } 4314 4315 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4316 uint64_t value) 4317 { 4318 CPUState *cs = env_cpu(env); 4319 int mask = vae1_tlbmask(env); 4320 4321 if (tlb_force_broadcast(env)) { 4322 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4323 } else { 4324 tlb_flush_by_mmuidx(cs, mask); 4325 } 4326 } 4327 4328 static int alle1_tlbmask(CPUARMState *env) 4329 { 4330 /* 4331 * Note that the 'ALL' scope must invalidate both stage 1 and 4332 * stage 2 translations, whereas most other scopes only invalidate 4333 * stage 1 translations. 4334 */ 4335 if (arm_is_secure_below_el3(env)) { 4336 return ARMMMUIdxBit_SE10_1 | 4337 ARMMMUIdxBit_SE10_1_PAN | 4338 ARMMMUIdxBit_SE10_0; 4339 } else { 4340 return ARMMMUIdxBit_E10_1 | 4341 ARMMMUIdxBit_E10_1_PAN | 4342 ARMMMUIdxBit_E10_0; 4343 } 4344 } 4345 4346 static int e2_tlbmask(CPUARMState *env) 4347 { 4348 if (arm_is_secure_below_el3(env)) { 4349 return ARMMMUIdxBit_SE20_0 | 4350 ARMMMUIdxBit_SE20_2 | 4351 ARMMMUIdxBit_SE20_2_PAN | 4352 ARMMMUIdxBit_SE2; 4353 } else { 4354 return ARMMMUIdxBit_E20_0 | 4355 ARMMMUIdxBit_E20_2 | 4356 ARMMMUIdxBit_E20_2_PAN | 4357 ARMMMUIdxBit_E2; 4358 } 4359 } 4360 4361 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4362 uint64_t value) 4363 { 4364 CPUState *cs = env_cpu(env); 4365 int mask = alle1_tlbmask(env); 4366 4367 tlb_flush_by_mmuidx(cs, mask); 4368 } 4369 4370 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4371 uint64_t value) 4372 { 4373 CPUState *cs = env_cpu(env); 4374 int mask = e2_tlbmask(env); 4375 4376 tlb_flush_by_mmuidx(cs, mask); 4377 } 4378 4379 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4380 uint64_t value) 4381 { 4382 ARMCPU *cpu = env_archcpu(env); 4383 CPUState *cs = CPU(cpu); 4384 4385 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4386 } 4387 4388 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4389 uint64_t value) 4390 { 4391 CPUState *cs = env_cpu(env); 4392 int mask = alle1_tlbmask(env); 4393 4394 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4395 } 4396 4397 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4398 uint64_t value) 4399 { 4400 CPUState *cs = env_cpu(env); 4401 int mask = e2_tlbmask(env); 4402 4403 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4404 } 4405 4406 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4407 uint64_t value) 4408 { 4409 CPUState *cs = env_cpu(env); 4410 4411 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4412 } 4413 4414 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4415 uint64_t value) 4416 { 4417 /* Invalidate by VA, EL2 4418 * Currently handles both VAE2 and VALE2, since we don't support 4419 * flush-last-level-only. 4420 */ 4421 CPUState *cs = env_cpu(env); 4422 int mask = e2_tlbmask(env); 4423 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4424 4425 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4426 } 4427 4428 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4429 uint64_t value) 4430 { 4431 /* Invalidate by VA, EL3 4432 * Currently handles both VAE3 and VALE3, since we don't support 4433 * flush-last-level-only. 4434 */ 4435 ARMCPU *cpu = env_archcpu(env); 4436 CPUState *cs = CPU(cpu); 4437 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4438 4439 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4440 } 4441 4442 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4443 uint64_t value) 4444 { 4445 CPUState *cs = env_cpu(env); 4446 int mask = vae1_tlbmask(env); 4447 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4448 int bits = vae1_tlbbits(env, pageaddr); 4449 4450 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4451 } 4452 4453 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4454 uint64_t value) 4455 { 4456 /* Invalidate by VA, EL1&0 (AArch64 version). 4457 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4458 * since we don't support flush-for-specific-ASID-only or 4459 * flush-last-level-only. 4460 */ 4461 CPUState *cs = env_cpu(env); 4462 int mask = vae1_tlbmask(env); 4463 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4464 int bits = vae1_tlbbits(env, pageaddr); 4465 4466 if (tlb_force_broadcast(env)) { 4467 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4468 } else { 4469 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4470 } 4471 } 4472 4473 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4474 uint64_t value) 4475 { 4476 CPUState *cs = env_cpu(env); 4477 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4478 bool secure = arm_is_secure_below_el3(env); 4479 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4480 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4481 pageaddr); 4482 4483 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4484 } 4485 4486 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4487 uint64_t value) 4488 { 4489 CPUState *cs = env_cpu(env); 4490 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4491 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4492 4493 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4494 ARMMMUIdxBit_SE3, bits); 4495 } 4496 4497 #ifdef TARGET_AARCH64 4498 typedef struct { 4499 uint64_t base; 4500 uint64_t length; 4501 } TLBIRange; 4502 4503 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4504 uint64_t value) 4505 { 4506 unsigned int page_size_granule, page_shift, num, scale, exponent; 4507 /* Extract one bit to represent the va selector in use. */ 4508 uint64_t select = sextract64(value, 36, 1); 4509 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4510 TLBIRange ret = { }; 4511 4512 page_size_granule = extract64(value, 46, 2); 4513 4514 /* The granule encoded in value must match the granule in use. */ 4515 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) { 4516 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4517 page_size_granule); 4518 return ret; 4519 } 4520 4521 page_shift = (page_size_granule - 1) * 2 + 12; 4522 num = extract64(value, 39, 5); 4523 scale = extract64(value, 44, 2); 4524 exponent = (5 * scale) + 1; 4525 4526 ret.length = (num + 1) << (exponent + page_shift); 4527 4528 if (param.select) { 4529 ret.base = sextract64(value, 0, 37); 4530 } else { 4531 ret.base = extract64(value, 0, 37); 4532 } 4533 if (param.ds) { 4534 /* 4535 * With DS=1, BaseADDR is always shifted 16 so that it is able 4536 * to address all 52 va bits. The input address is perforce 4537 * aligned on a 64k boundary regardless of translation granule. 4538 */ 4539 page_shift = 16; 4540 } 4541 ret.base <<= page_shift; 4542 4543 return ret; 4544 } 4545 4546 static void do_rvae_write(CPUARMState *env, uint64_t value, 4547 int idxmap, bool synced) 4548 { 4549 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4550 TLBIRange range; 4551 int bits; 4552 4553 range = tlbi_aa64_get_range(env, one_idx, value); 4554 bits = tlbbits_for_regime(env, one_idx, range.base); 4555 4556 if (synced) { 4557 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4558 range.base, 4559 range.length, 4560 idxmap, 4561 bits); 4562 } else { 4563 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4564 range.length, idxmap, bits); 4565 } 4566 } 4567 4568 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4569 const ARMCPRegInfo *ri, 4570 uint64_t value) 4571 { 4572 /* 4573 * Invalidate by VA range, EL1&0. 4574 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4575 * since we don't support flush-for-specific-ASID-only or 4576 * flush-last-level-only. 4577 */ 4578 4579 do_rvae_write(env, value, vae1_tlbmask(env), 4580 tlb_force_broadcast(env)); 4581 } 4582 4583 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4584 const ARMCPRegInfo *ri, 4585 uint64_t value) 4586 { 4587 /* 4588 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4589 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4590 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4591 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4592 * shareable specific flushes. 4593 */ 4594 4595 do_rvae_write(env, value, vae1_tlbmask(env), true); 4596 } 4597 4598 static int vae2_tlbmask(CPUARMState *env) 4599 { 4600 return (arm_is_secure_below_el3(env) 4601 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4602 } 4603 4604 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4605 const ARMCPRegInfo *ri, 4606 uint64_t value) 4607 { 4608 /* 4609 * Invalidate by VA range, EL2. 4610 * Currently handles all of RVAE2 and RVALE2, 4611 * since we don't support flush-for-specific-ASID-only or 4612 * flush-last-level-only. 4613 */ 4614 4615 do_rvae_write(env, value, vae2_tlbmask(env), 4616 tlb_force_broadcast(env)); 4617 4618 4619 } 4620 4621 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4622 const ARMCPRegInfo *ri, 4623 uint64_t value) 4624 { 4625 /* 4626 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4627 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4628 * since we don't support flush-for-specific-ASID-only, 4629 * flush-last-level-only or inner/outer shareable specific flushes. 4630 */ 4631 4632 do_rvae_write(env, value, vae2_tlbmask(env), true); 4633 4634 } 4635 4636 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4637 const ARMCPRegInfo *ri, 4638 uint64_t value) 4639 { 4640 /* 4641 * Invalidate by VA range, EL3. 4642 * Currently handles all of RVAE3 and RVALE3, 4643 * since we don't support flush-for-specific-ASID-only or 4644 * flush-last-level-only. 4645 */ 4646 4647 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4648 tlb_force_broadcast(env)); 4649 } 4650 4651 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4652 const ARMCPRegInfo *ri, 4653 uint64_t value) 4654 { 4655 /* 4656 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4657 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4658 * since we don't support flush-for-specific-ASID-only, 4659 * flush-last-level-only or inner/outer specific flushes. 4660 */ 4661 4662 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4663 } 4664 #endif 4665 4666 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4667 bool isread) 4668 { 4669 int cur_el = arm_current_el(env); 4670 4671 if (cur_el < 2) { 4672 uint64_t hcr = arm_hcr_el2_eff(env); 4673 4674 if (cur_el == 0) { 4675 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4676 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4677 return CP_ACCESS_TRAP_EL2; 4678 } 4679 } else { 4680 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4681 return CP_ACCESS_TRAP; 4682 } 4683 if (hcr & HCR_TDZ) { 4684 return CP_ACCESS_TRAP_EL2; 4685 } 4686 } 4687 } else if (hcr & HCR_TDZ) { 4688 return CP_ACCESS_TRAP_EL2; 4689 } 4690 } 4691 return CP_ACCESS_OK; 4692 } 4693 4694 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4695 { 4696 ARMCPU *cpu = env_archcpu(env); 4697 int dzp_bit = 1 << 4; 4698 4699 /* DZP indicates whether DC ZVA access is allowed */ 4700 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4701 dzp_bit = 0; 4702 } 4703 return cpu->dcz_blocksize | dzp_bit; 4704 } 4705 4706 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4707 bool isread) 4708 { 4709 if (!(env->pstate & PSTATE_SP)) { 4710 /* Access to SP_EL0 is undefined if it's being used as 4711 * the stack pointer. 4712 */ 4713 return CP_ACCESS_TRAP_UNCATEGORIZED; 4714 } 4715 return CP_ACCESS_OK; 4716 } 4717 4718 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4719 { 4720 return env->pstate & PSTATE_SP; 4721 } 4722 4723 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4724 { 4725 update_spsel(env, val); 4726 } 4727 4728 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4729 uint64_t value) 4730 { 4731 ARMCPU *cpu = env_archcpu(env); 4732 4733 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4734 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4735 value &= ~SCTLR_M; 4736 } 4737 4738 /* ??? Lots of these bits are not implemented. */ 4739 4740 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4741 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4742 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4743 } else { 4744 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4745 SCTLR_ATA0 | SCTLR_ATA); 4746 } 4747 } 4748 4749 if (raw_read(env, ri) == value) { 4750 /* Skip the TLB flush if nothing actually changed; Linux likes 4751 * to do a lot of pointless SCTLR writes. 4752 */ 4753 return; 4754 } 4755 4756 raw_write(env, ri, value); 4757 4758 /* This may enable/disable the MMU, so do a TLB flush. */ 4759 tlb_flush(CPU(cpu)); 4760 4761 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4762 /* 4763 * Normally we would always end the TB on an SCTLR write; see the 4764 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4765 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4766 * of hflags from the translator, so do it here. 4767 */ 4768 arm_rebuild_hflags(env); 4769 } 4770 } 4771 4772 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4773 uint64_t value) 4774 { 4775 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4776 } 4777 4778 static const ARMCPRegInfo v8_cp_reginfo[] = { 4779 /* Minimal set of EL0-visible registers. This will need to be expanded 4780 * significantly for system emulation of AArch64 CPUs. 4781 */ 4782 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4783 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4784 .access = PL0_RW, .type = ARM_CP_NZCV }, 4785 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4786 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4787 .type = ARM_CP_NO_RAW, 4788 .access = PL0_RW, .accessfn = aa64_daif_access, 4789 .fieldoffset = offsetof(CPUARMState, daif), 4790 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4791 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4792 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4793 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4794 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4795 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4796 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4797 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4798 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4799 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4800 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4801 .access = PL0_R, .type = ARM_CP_NO_RAW, 4802 .readfn = aa64_dczid_read }, 4803 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4804 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4805 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4806 #ifndef CONFIG_USER_ONLY 4807 /* Avoid overhead of an access check that always passes in user-mode */ 4808 .accessfn = aa64_zva_access, 4809 #endif 4810 }, 4811 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4812 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4813 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4814 /* Cache ops: all NOPs since we don't emulate caches */ 4815 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4816 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4817 .access = PL1_W, .type = ARM_CP_NOP, 4818 .accessfn = aa64_cacheop_pou_access }, 4819 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4820 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4821 .access = PL1_W, .type = ARM_CP_NOP, 4822 .accessfn = aa64_cacheop_pou_access }, 4823 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4824 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4825 .access = PL0_W, .type = ARM_CP_NOP, 4826 .accessfn = aa64_cacheop_pou_access }, 4827 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4828 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4829 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4830 .type = ARM_CP_NOP }, 4831 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4832 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4833 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4834 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4835 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4836 .access = PL0_W, .type = ARM_CP_NOP, 4837 .accessfn = aa64_cacheop_poc_access }, 4838 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4839 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4840 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4841 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4842 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4843 .access = PL0_W, .type = ARM_CP_NOP, 4844 .accessfn = aa64_cacheop_pou_access }, 4845 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4846 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4847 .access = PL0_W, .type = ARM_CP_NOP, 4848 .accessfn = aa64_cacheop_poc_access }, 4849 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4850 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4851 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4852 /* TLBI operations */ 4853 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4854 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4855 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4856 .writefn = tlbi_aa64_vmalle1is_write }, 4857 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4858 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4859 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4860 .writefn = tlbi_aa64_vae1is_write }, 4861 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4862 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4863 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4864 .writefn = tlbi_aa64_vmalle1is_write }, 4865 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4866 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4867 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4868 .writefn = tlbi_aa64_vae1is_write }, 4869 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4870 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4871 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4872 .writefn = tlbi_aa64_vae1is_write }, 4873 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4874 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4875 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4876 .writefn = tlbi_aa64_vae1is_write }, 4877 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4878 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4879 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4880 .writefn = tlbi_aa64_vmalle1_write }, 4881 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4882 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4883 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4884 .writefn = tlbi_aa64_vae1_write }, 4885 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4886 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4887 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4888 .writefn = tlbi_aa64_vmalle1_write }, 4889 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4890 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4891 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4892 .writefn = tlbi_aa64_vae1_write }, 4893 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4894 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4895 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4896 .writefn = tlbi_aa64_vae1_write }, 4897 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4898 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4899 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4900 .writefn = tlbi_aa64_vae1_write }, 4901 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4902 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4903 .access = PL2_W, .type = ARM_CP_NOP }, 4904 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4905 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4906 .access = PL2_W, .type = ARM_CP_NOP }, 4907 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4908 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4909 .access = PL2_W, .type = ARM_CP_NO_RAW, 4910 .writefn = tlbi_aa64_alle1is_write }, 4911 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4912 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4913 .access = PL2_W, .type = ARM_CP_NO_RAW, 4914 .writefn = tlbi_aa64_alle1is_write }, 4915 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4916 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4917 .access = PL2_W, .type = ARM_CP_NOP }, 4918 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4919 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4920 .access = PL2_W, .type = ARM_CP_NOP }, 4921 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4922 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4923 .access = PL2_W, .type = ARM_CP_NO_RAW, 4924 .writefn = tlbi_aa64_alle1_write }, 4925 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4926 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4927 .access = PL2_W, .type = ARM_CP_NO_RAW, 4928 .writefn = tlbi_aa64_alle1is_write }, 4929 #ifndef CONFIG_USER_ONLY 4930 /* 64 bit address translation operations */ 4931 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4932 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4933 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4934 .writefn = ats_write64 }, 4935 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4936 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4937 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4938 .writefn = ats_write64 }, 4939 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4940 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4941 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4942 .writefn = ats_write64 }, 4943 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4944 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4945 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4946 .writefn = ats_write64 }, 4947 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4948 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4949 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4950 .writefn = ats_write64 }, 4951 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4952 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4953 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4954 .writefn = ats_write64 }, 4955 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4956 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4957 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4958 .writefn = ats_write64 }, 4959 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4960 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4961 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4962 .writefn = ats_write64 }, 4963 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4964 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4965 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4966 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4967 .writefn = ats_write64 }, 4968 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4969 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4970 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4971 .writefn = ats_write64 }, 4972 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4973 .type = ARM_CP_ALIAS, 4974 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4975 .access = PL1_RW, .resetvalue = 0, 4976 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4977 .writefn = par_write }, 4978 #endif 4979 /* TLB invalidate last level of translation table walk */ 4980 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4981 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4982 .writefn = tlbimva_is_write }, 4983 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4984 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4985 .writefn = tlbimvaa_is_write }, 4986 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4987 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4988 .writefn = tlbimva_write }, 4989 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4990 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4991 .writefn = tlbimvaa_write }, 4992 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4993 .type = ARM_CP_NO_RAW, .access = PL2_W, 4994 .writefn = tlbimva_hyp_write }, 4995 { .name = "TLBIMVALHIS", 4996 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4997 .type = ARM_CP_NO_RAW, .access = PL2_W, 4998 .writefn = tlbimva_hyp_is_write }, 4999 { .name = "TLBIIPAS2", 5000 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5001 .type = ARM_CP_NOP, .access = PL2_W }, 5002 { .name = "TLBIIPAS2IS", 5003 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5004 .type = ARM_CP_NOP, .access = PL2_W }, 5005 { .name = "TLBIIPAS2L", 5006 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5007 .type = ARM_CP_NOP, .access = PL2_W }, 5008 { .name = "TLBIIPAS2LIS", 5009 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5010 .type = ARM_CP_NOP, .access = PL2_W }, 5011 /* 32 bit cache operations */ 5012 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5013 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5014 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5015 .type = ARM_CP_NOP, .access = PL1_W }, 5016 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5017 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5018 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5019 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5020 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5021 .type = ARM_CP_NOP, .access = PL1_W }, 5022 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5023 .type = ARM_CP_NOP, .access = PL1_W }, 5024 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5025 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5026 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5027 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5028 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5029 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5030 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5031 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5032 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5033 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5034 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5035 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5036 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5037 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5038 /* MMU Domain access control / MPU write buffer control */ 5039 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5040 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5041 .writefn = dacr_write, .raw_writefn = raw_write, 5042 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5043 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5044 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5045 .type = ARM_CP_ALIAS, 5046 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5047 .access = PL1_RW, 5048 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5049 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5050 .type = ARM_CP_ALIAS, 5051 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5052 .access = PL1_RW, 5053 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5054 /* We rely on the access checks not allowing the guest to write to the 5055 * state field when SPSel indicates that it's being used as the stack 5056 * pointer. 5057 */ 5058 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5059 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5060 .access = PL1_RW, .accessfn = sp_el0_access, 5061 .type = ARM_CP_ALIAS, 5062 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5063 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5064 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5065 .access = PL2_RW, .type = ARM_CP_ALIAS, 5066 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5067 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5068 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5069 .type = ARM_CP_NO_RAW, 5070 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5071 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5072 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5073 .access = PL2_RW, 5074 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5075 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5076 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5077 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5078 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5079 .writefn = dacr_write, .raw_writefn = raw_write, 5080 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5081 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5082 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5083 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5084 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5085 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5086 .type = ARM_CP_ALIAS, 5087 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5088 .access = PL2_RW, 5089 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5090 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5091 .type = ARM_CP_ALIAS, 5092 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5093 .access = PL2_RW, 5094 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5095 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5096 .type = ARM_CP_ALIAS, 5097 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5098 .access = PL2_RW, 5099 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5100 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5101 .type = ARM_CP_ALIAS, 5102 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5103 .access = PL2_RW, 5104 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5105 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5106 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5107 .resetvalue = 0, 5108 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5109 { .name = "SDCR", .type = ARM_CP_ALIAS, 5110 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5111 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5112 .writefn = sdcr_write, 5113 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5114 }; 5115 5116 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5117 { 5118 ARMCPU *cpu = env_archcpu(env); 5119 5120 if (arm_feature(env, ARM_FEATURE_V8)) { 5121 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5122 } else { 5123 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5124 } 5125 5126 if (arm_feature(env, ARM_FEATURE_EL3)) { 5127 valid_mask &= ~HCR_HCD; 5128 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5129 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5130 * However, if we're using the SMC PSCI conduit then QEMU is 5131 * effectively acting like EL3 firmware and so the guest at 5132 * EL2 should retain the ability to prevent EL1 from being 5133 * able to make SMC calls into the ersatz firmware, so in 5134 * that case HCR.TSC should be read/write. 5135 */ 5136 valid_mask &= ~HCR_TSC; 5137 } 5138 5139 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5140 if (cpu_isar_feature(aa64_vh, cpu)) { 5141 valid_mask |= HCR_E2H; 5142 } 5143 if (cpu_isar_feature(aa64_ras, cpu)) { 5144 valid_mask |= HCR_TERR | HCR_TEA; 5145 } 5146 if (cpu_isar_feature(aa64_lor, cpu)) { 5147 valid_mask |= HCR_TLOR; 5148 } 5149 if (cpu_isar_feature(aa64_pauth, cpu)) { 5150 valid_mask |= HCR_API | HCR_APK; 5151 } 5152 if (cpu_isar_feature(aa64_mte, cpu)) { 5153 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5154 } 5155 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5156 valid_mask |= HCR_ENSCXT; 5157 } 5158 } 5159 5160 /* Clear RES0 bits. */ 5161 value &= valid_mask; 5162 5163 /* 5164 * These bits change the MMU setup: 5165 * HCR_VM enables stage 2 translation 5166 * HCR_PTW forbids certain page-table setups 5167 * HCR_DC disables stage1 and enables stage2 translation 5168 * HCR_DCT enables tagging on (disabled) stage1 translation 5169 */ 5170 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5171 tlb_flush(CPU(cpu)); 5172 } 5173 env->cp15.hcr_el2 = value; 5174 5175 /* 5176 * Updates to VI and VF require us to update the status of 5177 * virtual interrupts, which are the logical OR of these bits 5178 * and the state of the input lines from the GIC. (This requires 5179 * that we have the iothread lock, which is done by marking the 5180 * reginfo structs as ARM_CP_IO.) 5181 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5182 * possible for it to be taken immediately, because VIRQ and 5183 * VFIQ are masked unless running at EL0 or EL1, and HCR 5184 * can only be written at EL2. 5185 */ 5186 g_assert(qemu_mutex_iothread_locked()); 5187 arm_cpu_update_virq(cpu); 5188 arm_cpu_update_vfiq(cpu); 5189 arm_cpu_update_vserr(cpu); 5190 } 5191 5192 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5193 { 5194 do_hcr_write(env, value, 0); 5195 } 5196 5197 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5198 uint64_t value) 5199 { 5200 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5201 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5202 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5203 } 5204 5205 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5206 uint64_t value) 5207 { 5208 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5209 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5210 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5211 } 5212 5213 /* 5214 * Return the effective value of HCR_EL2. 5215 * Bits that are not included here: 5216 * RW (read from SCR_EL3.RW as needed) 5217 */ 5218 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5219 { 5220 uint64_t ret = env->cp15.hcr_el2; 5221 5222 if (!arm_is_el2_enabled(env)) { 5223 /* 5224 * "This register has no effect if EL2 is not enabled in the 5225 * current Security state". This is ARMv8.4-SecEL2 speak for 5226 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5227 * 5228 * Prior to that, the language was "In an implementation that 5229 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5230 * as if this field is 0 for all purposes other than a direct 5231 * read or write access of HCR_EL2". With lots of enumeration 5232 * on a per-field basis. In current QEMU, this is condition 5233 * is arm_is_secure_below_el3. 5234 * 5235 * Since the v8.4 language applies to the entire register, and 5236 * appears to be backward compatible, use that. 5237 */ 5238 return 0; 5239 } 5240 5241 /* 5242 * For a cpu that supports both aarch64 and aarch32, we can set bits 5243 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5244 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5245 */ 5246 if (!arm_el_is_aa64(env, 2)) { 5247 uint64_t aa32_valid; 5248 5249 /* 5250 * These bits are up-to-date as of ARMv8.6. 5251 * For HCR, it's easiest to list just the 2 bits that are invalid. 5252 * For HCR2, list those that are valid. 5253 */ 5254 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5255 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5256 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5257 ret &= aa32_valid; 5258 } 5259 5260 if (ret & HCR_TGE) { 5261 /* These bits are up-to-date as of ARMv8.6. */ 5262 if (ret & HCR_E2H) { 5263 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5264 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5265 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5266 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5267 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5268 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5269 } else { 5270 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5271 } 5272 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5273 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5274 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5275 HCR_TLOR); 5276 } 5277 5278 return ret; 5279 } 5280 5281 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5282 uint64_t value) 5283 { 5284 /* 5285 * For A-profile AArch32 EL3, if NSACR.CP10 5286 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5287 */ 5288 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5289 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5290 value &= ~(0x3 << 10); 5291 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5292 } 5293 env->cp15.cptr_el[2] = value; 5294 } 5295 5296 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5297 { 5298 /* 5299 * For A-profile AArch32 EL3, if NSACR.CP10 5300 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5301 */ 5302 uint64_t value = env->cp15.cptr_el[2]; 5303 5304 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5305 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5306 value |= 0x3 << 10; 5307 } 5308 return value; 5309 } 5310 5311 static const ARMCPRegInfo el2_cp_reginfo[] = { 5312 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5313 .type = ARM_CP_IO, 5314 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5315 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5316 .writefn = hcr_write }, 5317 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5318 .type = ARM_CP_ALIAS | ARM_CP_IO, 5319 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5320 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5321 .writefn = hcr_writelow }, 5322 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5323 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5324 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5325 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5326 .type = ARM_CP_ALIAS, 5327 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5328 .access = PL2_RW, 5329 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5330 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5331 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5332 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5333 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5334 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5335 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5336 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5337 .type = ARM_CP_ALIAS, 5338 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5339 .access = PL2_RW, 5340 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5341 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5342 .type = ARM_CP_ALIAS, 5343 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5344 .access = PL2_RW, 5345 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5346 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5347 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5348 .access = PL2_RW, .writefn = vbar_write, 5349 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5350 .resetvalue = 0 }, 5351 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5352 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5353 .access = PL3_RW, .type = ARM_CP_ALIAS, 5354 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5355 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5356 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5357 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5358 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5359 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5360 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5361 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5362 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5363 .resetvalue = 0 }, 5364 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5365 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5366 .access = PL2_RW, .type = ARM_CP_ALIAS, 5367 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5368 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5369 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5370 .access = PL2_RW, .type = ARM_CP_CONST, 5371 .resetvalue = 0 }, 5372 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5373 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5374 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5375 .access = PL2_RW, .type = ARM_CP_CONST, 5376 .resetvalue = 0 }, 5377 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5378 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5379 .access = PL2_RW, .type = ARM_CP_CONST, 5380 .resetvalue = 0 }, 5381 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5382 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5383 .access = PL2_RW, .type = ARM_CP_CONST, 5384 .resetvalue = 0 }, 5385 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5386 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5387 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5388 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5389 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5390 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5391 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5392 .type = ARM_CP_ALIAS, 5393 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5394 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5395 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5396 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5397 .access = PL2_RW, 5398 /* no .writefn needed as this can't cause an ASID change; 5399 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5400 */ 5401 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5402 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5403 .cp = 15, .opc1 = 6, .crm = 2, 5404 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5405 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5406 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5407 .writefn = vttbr_write }, 5408 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5409 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5410 .access = PL2_RW, .writefn = vttbr_write, 5411 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5412 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5413 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5414 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5415 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5416 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5417 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5418 .access = PL2_RW, .resetvalue = 0, 5419 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5420 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5421 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5422 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5423 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5424 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5425 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5426 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5427 { .name = "TLBIALLNSNH", 5428 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5429 .type = ARM_CP_NO_RAW, .access = PL2_W, 5430 .writefn = tlbiall_nsnh_write }, 5431 { .name = "TLBIALLNSNHIS", 5432 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5433 .type = ARM_CP_NO_RAW, .access = PL2_W, 5434 .writefn = tlbiall_nsnh_is_write }, 5435 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5436 .type = ARM_CP_NO_RAW, .access = PL2_W, 5437 .writefn = tlbiall_hyp_write }, 5438 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5439 .type = ARM_CP_NO_RAW, .access = PL2_W, 5440 .writefn = tlbiall_hyp_is_write }, 5441 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5442 .type = ARM_CP_NO_RAW, .access = PL2_W, 5443 .writefn = tlbimva_hyp_write }, 5444 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5445 .type = ARM_CP_NO_RAW, .access = PL2_W, 5446 .writefn = tlbimva_hyp_is_write }, 5447 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5448 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5449 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5450 .writefn = tlbi_aa64_alle2_write }, 5451 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5452 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5453 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5454 .writefn = tlbi_aa64_vae2_write }, 5455 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5456 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5457 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5458 .writefn = tlbi_aa64_vae2_write }, 5459 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5460 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5461 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5462 .writefn = tlbi_aa64_alle2is_write }, 5463 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5464 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5465 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5466 .writefn = tlbi_aa64_vae2is_write }, 5467 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5468 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5469 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5470 .writefn = tlbi_aa64_vae2is_write }, 5471 #ifndef CONFIG_USER_ONLY 5472 /* Unlike the other EL2-related AT operations, these must 5473 * UNDEF from EL3 if EL2 is not implemented, which is why we 5474 * define them here rather than with the rest of the AT ops. 5475 */ 5476 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5477 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5478 .access = PL2_W, .accessfn = at_s1e2_access, 5479 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5480 .writefn = ats_write64 }, 5481 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5482 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5483 .access = PL2_W, .accessfn = at_s1e2_access, 5484 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5485 .writefn = ats_write64 }, 5486 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5487 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5488 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5489 * to behave as if SCR.NS was 1. 5490 */ 5491 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5492 .access = PL2_W, 5493 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5494 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5495 .access = PL2_W, 5496 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5497 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5498 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5499 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5500 * reset values as IMPDEF. We choose to reset to 3 to comply with 5501 * both ARMv7 and ARMv8. 5502 */ 5503 .access = PL2_RW, .resetvalue = 3, 5504 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5505 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5506 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5507 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5508 .writefn = gt_cntvoff_write, 5509 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5510 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5511 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5512 .writefn = gt_cntvoff_write, 5513 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5514 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5515 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5516 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5517 .type = ARM_CP_IO, .access = PL2_RW, 5518 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5519 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5520 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5521 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5522 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5523 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5524 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5525 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5526 .resetfn = gt_hyp_timer_reset, 5527 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5528 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5529 .type = ARM_CP_IO, 5530 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5531 .access = PL2_RW, 5532 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5533 .resetvalue = 0, 5534 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5535 #endif 5536 /* The only field of MDCR_EL2 that has a defined architectural reset value 5537 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5538 */ 5539 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5540 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5541 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5542 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5543 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5544 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5545 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5546 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5547 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5548 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5549 .access = PL2_RW, 5550 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5551 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5552 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5553 .access = PL2_RW, 5554 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5555 }; 5556 5557 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5558 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5559 .type = ARM_CP_ALIAS | ARM_CP_IO, 5560 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5561 .access = PL2_RW, 5562 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5563 .writefn = hcr_writehigh }, 5564 }; 5565 5566 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5567 bool isread) 5568 { 5569 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5570 return CP_ACCESS_OK; 5571 } 5572 return CP_ACCESS_TRAP_UNCATEGORIZED; 5573 } 5574 5575 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5576 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5577 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5578 .access = PL2_RW, .accessfn = sel2_access, 5579 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5580 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5581 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5582 .access = PL2_RW, .accessfn = sel2_access, 5583 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5584 }; 5585 5586 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5587 bool isread) 5588 { 5589 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5590 * At Secure EL1 it traps to EL3 or EL2. 5591 */ 5592 if (arm_current_el(env) == 3) { 5593 return CP_ACCESS_OK; 5594 } 5595 if (arm_is_secure_below_el3(env)) { 5596 if (env->cp15.scr_el3 & SCR_EEL2) { 5597 return CP_ACCESS_TRAP_EL2; 5598 } 5599 return CP_ACCESS_TRAP_EL3; 5600 } 5601 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5602 if (isread) { 5603 return CP_ACCESS_OK; 5604 } 5605 return CP_ACCESS_TRAP_UNCATEGORIZED; 5606 } 5607 5608 static const ARMCPRegInfo el3_cp_reginfo[] = { 5609 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5610 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5611 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5612 .resetfn = scr_reset, .writefn = scr_write }, 5613 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5614 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5615 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5616 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5617 .writefn = scr_write }, 5618 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5619 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5620 .access = PL3_RW, .resetvalue = 0, 5621 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5622 { .name = "SDER", 5623 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5624 .access = PL3_RW, .resetvalue = 0, 5625 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5626 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5627 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5628 .writefn = vbar_write, .resetvalue = 0, 5629 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5630 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5631 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5632 .access = PL3_RW, .resetvalue = 0, 5633 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5634 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5635 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5636 .access = PL3_RW, 5637 /* no .writefn needed as this can't cause an ASID change; 5638 * we must provide a .raw_writefn and .resetfn because we handle 5639 * reset and migration for the AArch32 TTBCR(S), which might be 5640 * using mask and base_mask. 5641 */ 5642 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5643 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5644 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5645 .type = ARM_CP_ALIAS, 5646 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5647 .access = PL3_RW, 5648 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5649 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5650 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5651 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5652 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5653 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5654 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5655 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5656 .type = ARM_CP_ALIAS, 5657 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5658 .access = PL3_RW, 5659 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5660 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5661 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5662 .access = PL3_RW, .writefn = vbar_write, 5663 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5664 .resetvalue = 0 }, 5665 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5666 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5667 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5668 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5669 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5670 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5671 .access = PL3_RW, .resetvalue = 0, 5672 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5673 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5674 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5675 .access = PL3_RW, .type = ARM_CP_CONST, 5676 .resetvalue = 0 }, 5677 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5678 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5679 .access = PL3_RW, .type = ARM_CP_CONST, 5680 .resetvalue = 0 }, 5681 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5682 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5683 .access = PL3_RW, .type = ARM_CP_CONST, 5684 .resetvalue = 0 }, 5685 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5686 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5687 .access = PL3_W, .type = ARM_CP_NO_RAW, 5688 .writefn = tlbi_aa64_alle3is_write }, 5689 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5690 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5691 .access = PL3_W, .type = ARM_CP_NO_RAW, 5692 .writefn = tlbi_aa64_vae3is_write }, 5693 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5694 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5695 .access = PL3_W, .type = ARM_CP_NO_RAW, 5696 .writefn = tlbi_aa64_vae3is_write }, 5697 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5698 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5699 .access = PL3_W, .type = ARM_CP_NO_RAW, 5700 .writefn = tlbi_aa64_alle3_write }, 5701 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5702 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5703 .access = PL3_W, .type = ARM_CP_NO_RAW, 5704 .writefn = tlbi_aa64_vae3_write }, 5705 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5706 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5707 .access = PL3_W, .type = ARM_CP_NO_RAW, 5708 .writefn = tlbi_aa64_vae3_write }, 5709 }; 5710 5711 #ifndef CONFIG_USER_ONLY 5712 /* Test if system register redirection is to occur in the current state. */ 5713 static bool redirect_for_e2h(CPUARMState *env) 5714 { 5715 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5716 } 5717 5718 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5719 { 5720 CPReadFn *readfn; 5721 5722 if (redirect_for_e2h(env)) { 5723 /* Switch to the saved EL2 version of the register. */ 5724 ri = ri->opaque; 5725 readfn = ri->readfn; 5726 } else { 5727 readfn = ri->orig_readfn; 5728 } 5729 if (readfn == NULL) { 5730 readfn = raw_read; 5731 } 5732 return readfn(env, ri); 5733 } 5734 5735 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5736 uint64_t value) 5737 { 5738 CPWriteFn *writefn; 5739 5740 if (redirect_for_e2h(env)) { 5741 /* Switch to the saved EL2 version of the register. */ 5742 ri = ri->opaque; 5743 writefn = ri->writefn; 5744 } else { 5745 writefn = ri->orig_writefn; 5746 } 5747 if (writefn == NULL) { 5748 writefn = raw_write; 5749 } 5750 writefn(env, ri, value); 5751 } 5752 5753 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5754 { 5755 struct E2HAlias { 5756 uint32_t src_key, dst_key, new_key; 5757 const char *src_name, *dst_name, *new_name; 5758 bool (*feature)(const ARMISARegisters *id); 5759 }; 5760 5761 #define K(op0, op1, crn, crm, op2) \ 5762 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5763 5764 static const struct E2HAlias aliases[] = { 5765 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5766 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5767 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5768 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5769 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5770 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5771 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5772 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5773 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5774 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5775 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5776 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5777 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5778 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5779 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5780 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5781 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5782 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5783 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5784 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5785 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5786 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5787 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5788 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5789 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5790 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5791 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5792 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5793 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5794 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5795 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5796 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5797 5798 /* 5799 * Note that redirection of ZCR is mentioned in the description 5800 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5801 * not in the summary table. 5802 */ 5803 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5804 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5805 5806 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5807 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5808 5809 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 5810 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 5811 isar_feature_aa64_scxtnum }, 5812 5813 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5814 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5815 }; 5816 #undef K 5817 5818 size_t i; 5819 5820 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5821 const struct E2HAlias *a = &aliases[i]; 5822 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 5823 bool ok; 5824 5825 if (a->feature && !a->feature(&cpu->isar)) { 5826 continue; 5827 } 5828 5829 src_reg = g_hash_table_lookup(cpu->cp_regs, 5830 (gpointer)(uintptr_t)a->src_key); 5831 dst_reg = g_hash_table_lookup(cpu->cp_regs, 5832 (gpointer)(uintptr_t)a->dst_key); 5833 g_assert(src_reg != NULL); 5834 g_assert(dst_reg != NULL); 5835 5836 /* Cross-compare names to detect typos in the keys. */ 5837 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5838 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5839 5840 /* None of the core system registers use opaque; we will. */ 5841 g_assert(src_reg->opaque == NULL); 5842 5843 /* Create alias before redirection so we dup the right data. */ 5844 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5845 5846 new_reg->name = a->new_name; 5847 new_reg->type |= ARM_CP_ALIAS; 5848 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5849 new_reg->access &= PL2_RW | PL3_RW; 5850 5851 ok = g_hash_table_insert(cpu->cp_regs, 5852 (gpointer)(uintptr_t)a->new_key, new_reg); 5853 g_assert(ok); 5854 5855 src_reg->opaque = dst_reg; 5856 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5857 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5858 if (!src_reg->raw_readfn) { 5859 src_reg->raw_readfn = raw_read; 5860 } 5861 if (!src_reg->raw_writefn) { 5862 src_reg->raw_writefn = raw_write; 5863 } 5864 src_reg->readfn = el2_e2h_read; 5865 src_reg->writefn = el2_e2h_write; 5866 } 5867 } 5868 #endif 5869 5870 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5871 bool isread) 5872 { 5873 int cur_el = arm_current_el(env); 5874 5875 if (cur_el < 2) { 5876 uint64_t hcr = arm_hcr_el2_eff(env); 5877 5878 if (cur_el == 0) { 5879 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5880 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5881 return CP_ACCESS_TRAP_EL2; 5882 } 5883 } else { 5884 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5885 return CP_ACCESS_TRAP; 5886 } 5887 if (hcr & HCR_TID2) { 5888 return CP_ACCESS_TRAP_EL2; 5889 } 5890 } 5891 } else if (hcr & HCR_TID2) { 5892 return CP_ACCESS_TRAP_EL2; 5893 } 5894 } 5895 5896 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5897 return CP_ACCESS_TRAP_EL2; 5898 } 5899 5900 return CP_ACCESS_OK; 5901 } 5902 5903 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5904 uint64_t value) 5905 { 5906 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5907 * read via a bit in OSLSR_EL1. 5908 */ 5909 int oslock; 5910 5911 if (ri->state == ARM_CP_STATE_AA32) { 5912 oslock = (value == 0xC5ACCE55); 5913 } else { 5914 oslock = value & 1; 5915 } 5916 5917 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5918 } 5919 5920 static const ARMCPRegInfo debug_cp_reginfo[] = { 5921 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5922 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5923 * unlike DBGDRAR it is never accessible from EL0. 5924 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5925 * accessor. 5926 */ 5927 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5928 .access = PL0_R, .accessfn = access_tdra, 5929 .type = ARM_CP_CONST, .resetvalue = 0 }, 5930 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5931 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5932 .access = PL1_R, .accessfn = access_tdra, 5933 .type = ARM_CP_CONST, .resetvalue = 0 }, 5934 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5935 .access = PL0_R, .accessfn = access_tdra, 5936 .type = ARM_CP_CONST, .resetvalue = 0 }, 5937 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5938 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5939 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5940 .access = PL1_RW, .accessfn = access_tda, 5941 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5942 .resetvalue = 0 }, 5943 /* 5944 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 5945 * Debug Communication Channel is not implemented. 5946 */ 5947 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 5948 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 5949 .access = PL0_R, .accessfn = access_tda, 5950 .type = ARM_CP_CONST, .resetvalue = 0 }, 5951 /* 5952 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 5953 * it is unlikely a guest will care. 5954 * We don't implement the configurable EL0 access. 5955 */ 5956 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 5957 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5958 .type = ARM_CP_ALIAS, 5959 .access = PL1_R, .accessfn = access_tda, 5960 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 5961 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 5962 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 5963 .access = PL1_W, .type = ARM_CP_NO_RAW, 5964 .accessfn = access_tdosa, 5965 .writefn = oslar_write }, 5966 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 5967 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 5968 .access = PL1_R, .resetvalue = 10, 5969 .accessfn = access_tdosa, 5970 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 5971 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 5972 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 5973 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 5974 .access = PL1_RW, .accessfn = access_tdosa, 5975 .type = ARM_CP_NOP }, 5976 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 5977 * implement vector catch debug events yet. 5978 */ 5979 { .name = "DBGVCR", 5980 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5981 .access = PL1_RW, .accessfn = access_tda, 5982 .type = ARM_CP_NOP }, 5983 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 5984 * to save and restore a 32-bit guest's DBGVCR) 5985 */ 5986 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 5987 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 5988 .access = PL2_RW, .accessfn = access_tda, 5989 .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP }, 5990 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 5991 * Channel but Linux may try to access this register. The 32-bit 5992 * alias is DBGDCCINT. 5993 */ 5994 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 5995 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5996 .access = PL1_RW, .accessfn = access_tda, 5997 .type = ARM_CP_NOP }, 5998 }; 5999 6000 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6001 /* 64 bit access versions of the (dummy) debug registers */ 6002 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6003 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6004 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6005 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6006 }; 6007 6008 /* 6009 * Check for traps to RAS registers, which are controlled 6010 * by HCR_EL2.TERR and SCR_EL3.TERR. 6011 */ 6012 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6013 bool isread) 6014 { 6015 int el = arm_current_el(env); 6016 6017 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6018 return CP_ACCESS_TRAP_EL2; 6019 } 6020 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6021 return CP_ACCESS_TRAP_EL3; 6022 } 6023 return CP_ACCESS_OK; 6024 } 6025 6026 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6027 { 6028 int el = arm_current_el(env); 6029 6030 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6031 return env->cp15.vdisr_el2; 6032 } 6033 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6034 return 0; /* RAZ/WI */ 6035 } 6036 return env->cp15.disr_el1; 6037 } 6038 6039 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6040 { 6041 int el = arm_current_el(env); 6042 6043 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6044 env->cp15.vdisr_el2 = val; 6045 return; 6046 } 6047 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6048 return; /* RAZ/WI */ 6049 } 6050 env->cp15.disr_el1 = val; 6051 } 6052 6053 /* 6054 * Minimal RAS implementation with no Error Records. 6055 * Which means that all of the Error Record registers: 6056 * ERXADDR_EL1 6057 * ERXCTLR_EL1 6058 * ERXFR_EL1 6059 * ERXMISC0_EL1 6060 * ERXMISC1_EL1 6061 * ERXMISC2_EL1 6062 * ERXMISC3_EL1 6063 * ERXPFGCDN_EL1 (RASv1p1) 6064 * ERXPFGCTL_EL1 (RASv1p1) 6065 * ERXPFGF_EL1 (RASv1p1) 6066 * ERXSTATUS_EL1 6067 * and 6068 * ERRSELR_EL1 6069 * may generate UNDEFINED, which is the effect we get by not 6070 * listing them at all. 6071 */ 6072 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6073 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6074 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6075 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6076 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6077 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6078 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6079 .access = PL1_R, .accessfn = access_terr, 6080 .type = ARM_CP_CONST, .resetvalue = 0 }, 6081 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6082 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6083 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6084 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6085 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6086 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6087 }; 6088 6089 /* Return the exception level to which exceptions should be taken 6090 * via SVEAccessTrap. If an exception should be routed through 6091 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6092 * take care of raising that exception. 6093 * C.f. the ARM pseudocode function CheckSVEEnabled. 6094 */ 6095 int sve_exception_el(CPUARMState *env, int el) 6096 { 6097 #ifndef CONFIG_USER_ONLY 6098 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6099 6100 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6101 /* Check CPACR.ZEN. */ 6102 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 6103 case 1: 6104 if (el != 0) { 6105 break; 6106 } 6107 /* fall through */ 6108 case 0: 6109 case 2: 6110 /* route_to_el2 */ 6111 return hcr_el2 & HCR_TGE ? 2 : 1; 6112 } 6113 6114 /* Check CPACR.FPEN. */ 6115 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 6116 case 1: 6117 if (el != 0) { 6118 break; 6119 } 6120 /* fall through */ 6121 case 0: 6122 case 2: 6123 return 0; 6124 } 6125 } 6126 6127 /* 6128 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). 6129 */ 6130 if (el <= 2) { 6131 if (hcr_el2 & HCR_E2H) { 6132 /* Check CPTR_EL2.ZEN. */ 6133 switch (extract32(env->cp15.cptr_el[2], 16, 2)) { 6134 case 1: 6135 if (el != 0 || !(hcr_el2 & HCR_TGE)) { 6136 break; 6137 } 6138 /* fall through */ 6139 case 0: 6140 case 2: 6141 return 2; 6142 } 6143 6144 /* Check CPTR_EL2.FPEN. */ 6145 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 6146 case 1: 6147 if (el == 2 || !(hcr_el2 & HCR_TGE)) { 6148 break; 6149 } 6150 /* fall through */ 6151 case 0: 6152 case 2: 6153 return 0; 6154 } 6155 } else if (arm_is_el2_enabled(env)) { 6156 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6157 return 2; 6158 } 6159 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6160 return 0; 6161 } 6162 } 6163 } 6164 6165 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6166 if (arm_feature(env, ARM_FEATURE_EL3) 6167 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6168 return 3; 6169 } 6170 #endif 6171 return 0; 6172 } 6173 6174 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6175 { 6176 uint32_t end_len; 6177 6178 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6179 end_len = start_len; 6180 6181 if (!test_bit(start_len, cpu->sve_vq_map)) { 6182 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6183 assert(end_len < start_len); 6184 } 6185 return end_len; 6186 } 6187 6188 /* 6189 * Given that SVE is enabled, return the vector length for EL. 6190 */ 6191 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6192 { 6193 ARMCPU *cpu = env_archcpu(env); 6194 uint32_t zcr_len = cpu->sve_max_vq - 1; 6195 6196 if (el <= 1 && 6197 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6198 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6199 } 6200 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6201 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6202 } 6203 if (arm_feature(env, ARM_FEATURE_EL3)) { 6204 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6205 } 6206 6207 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6208 } 6209 6210 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6211 uint64_t value) 6212 { 6213 int cur_el = arm_current_el(env); 6214 int old_len = sve_zcr_len_for_el(env, cur_el); 6215 int new_len; 6216 6217 /* Bits other than [3:0] are RAZ/WI. */ 6218 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6219 raw_write(env, ri, value & 0xf); 6220 6221 /* 6222 * Because we arrived here, we know both FP and SVE are enabled; 6223 * otherwise we would have trapped access to the ZCR_ELn register. 6224 */ 6225 new_len = sve_zcr_len_for_el(env, cur_el); 6226 if (new_len < old_len) { 6227 aarch64_sve_narrow_vq(env, new_len + 1); 6228 } 6229 } 6230 6231 static const ARMCPRegInfo zcr_reginfo[] = { 6232 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6233 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6234 .access = PL1_RW, .type = ARM_CP_SVE, 6235 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6236 .writefn = zcr_write, .raw_writefn = raw_write }, 6237 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6238 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6239 .access = PL2_RW, .type = ARM_CP_SVE, 6240 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6241 .writefn = zcr_write, .raw_writefn = raw_write }, 6242 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6243 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6244 .access = PL3_RW, .type = ARM_CP_SVE, 6245 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6246 .writefn = zcr_write, .raw_writefn = raw_write }, 6247 }; 6248 6249 void hw_watchpoint_update(ARMCPU *cpu, int n) 6250 { 6251 CPUARMState *env = &cpu->env; 6252 vaddr len = 0; 6253 vaddr wvr = env->cp15.dbgwvr[n]; 6254 uint64_t wcr = env->cp15.dbgwcr[n]; 6255 int mask; 6256 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6257 6258 if (env->cpu_watchpoint[n]) { 6259 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6260 env->cpu_watchpoint[n] = NULL; 6261 } 6262 6263 if (!FIELD_EX64(wcr, DBGWCR, E)) { 6264 /* E bit clear : watchpoint disabled */ 6265 return; 6266 } 6267 6268 switch (FIELD_EX64(wcr, DBGWCR, LSC)) { 6269 case 0: 6270 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6271 return; 6272 case 1: 6273 flags |= BP_MEM_READ; 6274 break; 6275 case 2: 6276 flags |= BP_MEM_WRITE; 6277 break; 6278 case 3: 6279 flags |= BP_MEM_ACCESS; 6280 break; 6281 } 6282 6283 /* Attempts to use both MASK and BAS fields simultaneously are 6284 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6285 * thus generating a watchpoint for every byte in the masked region. 6286 */ 6287 mask = FIELD_EX64(wcr, DBGWCR, MASK); 6288 if (mask == 1 || mask == 2) { 6289 /* Reserved values of MASK; we must act as if the mask value was 6290 * some non-reserved value, or as if the watchpoint were disabled. 6291 * We choose the latter. 6292 */ 6293 return; 6294 } else if (mask) { 6295 /* Watchpoint covers an aligned area up to 2GB in size */ 6296 len = 1ULL << mask; 6297 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6298 * whether the watchpoint fires when the unmasked bits match; we opt 6299 * to generate the exceptions. 6300 */ 6301 wvr &= ~(len - 1); 6302 } else { 6303 /* Watchpoint covers bytes defined by the byte address select bits */ 6304 int bas = FIELD_EX64(wcr, DBGWCR, BAS); 6305 int basstart; 6306 6307 if (extract64(wvr, 2, 1)) { 6308 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6309 * ignored, and BAS[3:0] define which bytes to watch. 6310 */ 6311 bas &= 0xf; 6312 } 6313 6314 if (bas == 0) { 6315 /* This must act as if the watchpoint is disabled */ 6316 return; 6317 } 6318 6319 /* The BAS bits are supposed to be programmed to indicate a contiguous 6320 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6321 * we fire for each byte in the word/doubleword addressed by the WVR. 6322 * We choose to ignore any non-zero bits after the first range of 1s. 6323 */ 6324 basstart = ctz32(bas); 6325 len = cto32(bas >> basstart); 6326 wvr += basstart; 6327 } 6328 6329 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6330 &env->cpu_watchpoint[n]); 6331 } 6332 6333 void hw_watchpoint_update_all(ARMCPU *cpu) 6334 { 6335 int i; 6336 CPUARMState *env = &cpu->env; 6337 6338 /* Completely clear out existing QEMU watchpoints and our array, to 6339 * avoid possible stale entries following migration load. 6340 */ 6341 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6342 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6343 6344 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6345 hw_watchpoint_update(cpu, i); 6346 } 6347 } 6348 6349 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6350 uint64_t value) 6351 { 6352 ARMCPU *cpu = env_archcpu(env); 6353 int i = ri->crm; 6354 6355 /* 6356 * Bits [1:0] are RES0. 6357 * 6358 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA) 6359 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if 6360 * they contain the value written. It is CONSTRAINED UNPREDICTABLE 6361 * whether the RESS bits are ignored when comparing an address. 6362 * 6363 * Therefore we are allowed to compare the entire register, which lets 6364 * us avoid considering whether or not FEAT_LVA is actually enabled. 6365 */ 6366 value &= ~3ULL; 6367 6368 raw_write(env, ri, value); 6369 hw_watchpoint_update(cpu, i); 6370 } 6371 6372 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6373 uint64_t value) 6374 { 6375 ARMCPU *cpu = env_archcpu(env); 6376 int i = ri->crm; 6377 6378 raw_write(env, ri, value); 6379 hw_watchpoint_update(cpu, i); 6380 } 6381 6382 void hw_breakpoint_update(ARMCPU *cpu, int n) 6383 { 6384 CPUARMState *env = &cpu->env; 6385 uint64_t bvr = env->cp15.dbgbvr[n]; 6386 uint64_t bcr = env->cp15.dbgbcr[n]; 6387 vaddr addr; 6388 int bt; 6389 int flags = BP_CPU; 6390 6391 if (env->cpu_breakpoint[n]) { 6392 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6393 env->cpu_breakpoint[n] = NULL; 6394 } 6395 6396 if (!extract64(bcr, 0, 1)) { 6397 /* E bit clear : watchpoint disabled */ 6398 return; 6399 } 6400 6401 bt = extract64(bcr, 20, 4); 6402 6403 switch (bt) { 6404 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6405 case 5: /* linked address mismatch (reserved if AArch64) */ 6406 qemu_log_mask(LOG_UNIMP, 6407 "arm: address mismatch breakpoint types not implemented\n"); 6408 return; 6409 case 0: /* unlinked address match */ 6410 case 1: /* linked address match */ 6411 { 6412 /* 6413 * Bits [1:0] are RES0. 6414 * 6415 * It is IMPLEMENTATION DEFINED whether bits [63:49] 6416 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit 6417 * of the VA field ([48] or [52] for FEAT_LVA), or whether the 6418 * value is read as written. It is CONSTRAINED UNPREDICTABLE 6419 * whether the RESS bits are ignored when comparing an address. 6420 * Therefore we are allowed to compare the entire register, which 6421 * lets us avoid considering whether FEAT_LVA is actually enabled. 6422 * 6423 * The BAS field is used to allow setting breakpoints on 16-bit 6424 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6425 * a bp will fire if the addresses covered by the bp and the addresses 6426 * covered by the insn overlap but the insn doesn't start at the 6427 * start of the bp address range. We choose to require the insn and 6428 * the bp to have the same address. The constraints on writing to 6429 * BAS enforced in dbgbcr_write mean we have only four cases: 6430 * 0b0000 => no breakpoint 6431 * 0b0011 => breakpoint on addr 6432 * 0b1100 => breakpoint on addr + 2 6433 * 0b1111 => breakpoint on addr 6434 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6435 */ 6436 int bas = extract64(bcr, 5, 4); 6437 addr = bvr & ~3ULL; 6438 if (bas == 0) { 6439 return; 6440 } 6441 if (bas == 0xc) { 6442 addr += 2; 6443 } 6444 break; 6445 } 6446 case 2: /* unlinked context ID match */ 6447 case 8: /* unlinked VMID match (reserved if no EL2) */ 6448 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6449 qemu_log_mask(LOG_UNIMP, 6450 "arm: unlinked context breakpoint types not implemented\n"); 6451 return; 6452 case 9: /* linked VMID match (reserved if no EL2) */ 6453 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6454 case 3: /* linked context ID match */ 6455 default: 6456 /* We must generate no events for Linked context matches (unless 6457 * they are linked to by some other bp/wp, which is handled in 6458 * updates for the linking bp/wp). We choose to also generate no events 6459 * for reserved values. 6460 */ 6461 return; 6462 } 6463 6464 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6465 } 6466 6467 void hw_breakpoint_update_all(ARMCPU *cpu) 6468 { 6469 int i; 6470 CPUARMState *env = &cpu->env; 6471 6472 /* Completely clear out existing QEMU breakpoints and our array, to 6473 * avoid possible stale entries following migration load. 6474 */ 6475 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6476 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6477 6478 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6479 hw_breakpoint_update(cpu, i); 6480 } 6481 } 6482 6483 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6484 uint64_t value) 6485 { 6486 ARMCPU *cpu = env_archcpu(env); 6487 int i = ri->crm; 6488 6489 raw_write(env, ri, value); 6490 hw_breakpoint_update(cpu, i); 6491 } 6492 6493 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6494 uint64_t value) 6495 { 6496 ARMCPU *cpu = env_archcpu(env); 6497 int i = ri->crm; 6498 6499 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6500 * copy of BAS[0]. 6501 */ 6502 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6503 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6504 6505 raw_write(env, ri, value); 6506 hw_breakpoint_update(cpu, i); 6507 } 6508 6509 static void define_debug_regs(ARMCPU *cpu) 6510 { 6511 /* Define v7 and v8 architectural debug registers. 6512 * These are just dummy implementations for now. 6513 */ 6514 int i; 6515 int wrps, brps, ctx_cmps; 6516 6517 /* 6518 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6519 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6520 * the register must not exist for this cpu. 6521 */ 6522 if (cpu->isar.dbgdidr != 0) { 6523 ARMCPRegInfo dbgdidr = { 6524 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6525 .opc1 = 0, .opc2 = 0, 6526 .access = PL0_R, .accessfn = access_tda, 6527 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6528 }; 6529 define_one_arm_cp_reg(cpu, &dbgdidr); 6530 } 6531 6532 /* Note that all these register fields hold "number of Xs minus 1". */ 6533 brps = arm_num_brps(cpu); 6534 wrps = arm_num_wrps(cpu); 6535 ctx_cmps = arm_num_ctx_cmps(cpu); 6536 6537 assert(ctx_cmps <= brps); 6538 6539 define_arm_cp_regs(cpu, debug_cp_reginfo); 6540 6541 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6542 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6543 } 6544 6545 for (i = 0; i < brps; i++) { 6546 ARMCPRegInfo dbgregs[] = { 6547 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6548 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6549 .access = PL1_RW, .accessfn = access_tda, 6550 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6551 .writefn = dbgbvr_write, .raw_writefn = raw_write 6552 }, 6553 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6554 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6555 .access = PL1_RW, .accessfn = access_tda, 6556 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6557 .writefn = dbgbcr_write, .raw_writefn = raw_write 6558 }, 6559 }; 6560 define_arm_cp_regs(cpu, dbgregs); 6561 } 6562 6563 for (i = 0; i < wrps; i++) { 6564 ARMCPRegInfo dbgregs[] = { 6565 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6566 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6567 .access = PL1_RW, .accessfn = access_tda, 6568 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6569 .writefn = dbgwvr_write, .raw_writefn = raw_write 6570 }, 6571 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6572 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6573 .access = PL1_RW, .accessfn = access_tda, 6574 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6575 .writefn = dbgwcr_write, .raw_writefn = raw_write 6576 }, 6577 }; 6578 define_arm_cp_regs(cpu, dbgregs); 6579 } 6580 } 6581 6582 static void define_pmu_regs(ARMCPU *cpu) 6583 { 6584 /* 6585 * v7 performance monitor control register: same implementor 6586 * field as main ID register, and we implement four counters in 6587 * addition to the cycle count register. 6588 */ 6589 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6590 ARMCPRegInfo pmcr = { 6591 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6592 .access = PL0_RW, 6593 .type = ARM_CP_IO | ARM_CP_ALIAS, 6594 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6595 .accessfn = pmreg_access, .writefn = pmcr_write, 6596 .raw_writefn = raw_write, 6597 }; 6598 ARMCPRegInfo pmcr64 = { 6599 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6600 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6601 .access = PL0_RW, .accessfn = pmreg_access, 6602 .type = ARM_CP_IO, 6603 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6604 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6605 PMCRLC, 6606 .writefn = pmcr_write, .raw_writefn = raw_write, 6607 }; 6608 define_one_arm_cp_reg(cpu, &pmcr); 6609 define_one_arm_cp_reg(cpu, &pmcr64); 6610 for (i = 0; i < pmcrn; i++) { 6611 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6612 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6613 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6614 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6615 ARMCPRegInfo pmev_regs[] = { 6616 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6617 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6618 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6619 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6620 .accessfn = pmreg_access_xevcntr }, 6621 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6622 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6623 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6624 .type = ARM_CP_IO, 6625 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6626 .raw_readfn = pmevcntr_rawread, 6627 .raw_writefn = pmevcntr_rawwrite }, 6628 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6629 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6630 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6631 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6632 .accessfn = pmreg_access }, 6633 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6634 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6635 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6636 .type = ARM_CP_IO, 6637 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6638 .raw_writefn = pmevtyper_rawwrite }, 6639 }; 6640 define_arm_cp_regs(cpu, pmev_regs); 6641 g_free(pmevcntr_name); 6642 g_free(pmevcntr_el0_name); 6643 g_free(pmevtyper_name); 6644 g_free(pmevtyper_el0_name); 6645 } 6646 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6647 ARMCPRegInfo v81_pmu_regs[] = { 6648 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6649 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6650 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6651 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6652 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6653 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6654 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6655 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6656 }; 6657 define_arm_cp_regs(cpu, v81_pmu_regs); 6658 } 6659 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6660 static const ARMCPRegInfo v84_pmmir = { 6661 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6662 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6663 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6664 .resetvalue = 0 6665 }; 6666 define_one_arm_cp_reg(cpu, &v84_pmmir); 6667 } 6668 } 6669 6670 /* We don't know until after realize whether there's a GICv3 6671 * attached, and that is what registers the gicv3 sysregs. 6672 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6673 * at runtime. 6674 */ 6675 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6676 { 6677 ARMCPU *cpu = env_archcpu(env); 6678 uint64_t pfr1 = cpu->isar.id_pfr1; 6679 6680 if (env->gicv3state) { 6681 pfr1 |= 1 << 28; 6682 } 6683 return pfr1; 6684 } 6685 6686 #ifndef CONFIG_USER_ONLY 6687 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6688 { 6689 ARMCPU *cpu = env_archcpu(env); 6690 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6691 6692 if (env->gicv3state) { 6693 pfr0 |= 1 << 24; 6694 } 6695 return pfr0; 6696 } 6697 #endif 6698 6699 /* Shared logic between LORID and the rest of the LOR* registers. 6700 * Secure state exclusion has already been dealt with. 6701 */ 6702 static CPAccessResult access_lor_ns(CPUARMState *env, 6703 const ARMCPRegInfo *ri, bool isread) 6704 { 6705 int el = arm_current_el(env); 6706 6707 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6708 return CP_ACCESS_TRAP_EL2; 6709 } 6710 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6711 return CP_ACCESS_TRAP_EL3; 6712 } 6713 return CP_ACCESS_OK; 6714 } 6715 6716 static CPAccessResult access_lor_other(CPUARMState *env, 6717 const ARMCPRegInfo *ri, bool isread) 6718 { 6719 if (arm_is_secure_below_el3(env)) { 6720 /* Access denied in secure mode. */ 6721 return CP_ACCESS_TRAP; 6722 } 6723 return access_lor_ns(env, ri, isread); 6724 } 6725 6726 /* 6727 * A trivial implementation of ARMv8.1-LOR leaves all of these 6728 * registers fixed at 0, which indicates that there are zero 6729 * supported Limited Ordering regions. 6730 */ 6731 static const ARMCPRegInfo lor_reginfo[] = { 6732 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6733 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6734 .access = PL1_RW, .accessfn = access_lor_other, 6735 .type = ARM_CP_CONST, .resetvalue = 0 }, 6736 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6737 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6738 .access = PL1_RW, .accessfn = access_lor_other, 6739 .type = ARM_CP_CONST, .resetvalue = 0 }, 6740 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6741 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6742 .access = PL1_RW, .accessfn = access_lor_other, 6743 .type = ARM_CP_CONST, .resetvalue = 0 }, 6744 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6745 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6746 .access = PL1_RW, .accessfn = access_lor_other, 6747 .type = ARM_CP_CONST, .resetvalue = 0 }, 6748 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6749 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6750 .access = PL1_R, .accessfn = access_lor_ns, 6751 .type = ARM_CP_CONST, .resetvalue = 0 }, 6752 }; 6753 6754 #ifdef TARGET_AARCH64 6755 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6756 bool isread) 6757 { 6758 int el = arm_current_el(env); 6759 6760 if (el < 2 && 6761 arm_feature(env, ARM_FEATURE_EL2) && 6762 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6763 return CP_ACCESS_TRAP_EL2; 6764 } 6765 if (el < 3 && 6766 arm_feature(env, ARM_FEATURE_EL3) && 6767 !(env->cp15.scr_el3 & SCR_APK)) { 6768 return CP_ACCESS_TRAP_EL3; 6769 } 6770 return CP_ACCESS_OK; 6771 } 6772 6773 static const ARMCPRegInfo pauth_reginfo[] = { 6774 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6775 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6776 .access = PL1_RW, .accessfn = access_pauth, 6777 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6778 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6779 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6780 .access = PL1_RW, .accessfn = access_pauth, 6781 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6782 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6783 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6784 .access = PL1_RW, .accessfn = access_pauth, 6785 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6786 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6787 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6788 .access = PL1_RW, .accessfn = access_pauth, 6789 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6790 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6791 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6792 .access = PL1_RW, .accessfn = access_pauth, 6793 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6794 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6795 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6796 .access = PL1_RW, .accessfn = access_pauth, 6797 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6798 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6799 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6800 .access = PL1_RW, .accessfn = access_pauth, 6801 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6802 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6803 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6804 .access = PL1_RW, .accessfn = access_pauth, 6805 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6806 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6807 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6808 .access = PL1_RW, .accessfn = access_pauth, 6809 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6810 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6811 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6812 .access = PL1_RW, .accessfn = access_pauth, 6813 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6814 }; 6815 6816 static const ARMCPRegInfo tlbirange_reginfo[] = { 6817 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6818 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6819 .access = PL1_W, .type = ARM_CP_NO_RAW, 6820 .writefn = tlbi_aa64_rvae1is_write }, 6821 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6822 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6823 .access = PL1_W, .type = ARM_CP_NO_RAW, 6824 .writefn = tlbi_aa64_rvae1is_write }, 6825 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6826 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6827 .access = PL1_W, .type = ARM_CP_NO_RAW, 6828 .writefn = tlbi_aa64_rvae1is_write }, 6829 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6830 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6831 .access = PL1_W, .type = ARM_CP_NO_RAW, 6832 .writefn = tlbi_aa64_rvae1is_write }, 6833 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6834 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6835 .access = PL1_W, .type = ARM_CP_NO_RAW, 6836 .writefn = tlbi_aa64_rvae1is_write }, 6837 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6838 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6839 .access = PL1_W, .type = ARM_CP_NO_RAW, 6840 .writefn = tlbi_aa64_rvae1is_write }, 6841 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6842 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6843 .access = PL1_W, .type = ARM_CP_NO_RAW, 6844 .writefn = tlbi_aa64_rvae1is_write }, 6845 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6846 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6847 .access = PL1_W, .type = ARM_CP_NO_RAW, 6848 .writefn = tlbi_aa64_rvae1is_write }, 6849 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6850 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6851 .access = PL1_W, .type = ARM_CP_NO_RAW, 6852 .writefn = tlbi_aa64_rvae1_write }, 6853 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6854 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6855 .access = PL1_W, .type = ARM_CP_NO_RAW, 6856 .writefn = tlbi_aa64_rvae1_write }, 6857 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6858 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6859 .access = PL1_W, .type = ARM_CP_NO_RAW, 6860 .writefn = tlbi_aa64_rvae1_write }, 6861 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6862 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6863 .access = PL1_W, .type = ARM_CP_NO_RAW, 6864 .writefn = tlbi_aa64_rvae1_write }, 6865 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6866 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6867 .access = PL2_W, .type = ARM_CP_NOP }, 6868 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6869 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6870 .access = PL2_W, .type = ARM_CP_NOP }, 6871 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6872 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6873 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6874 .writefn = tlbi_aa64_rvae2is_write }, 6875 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6876 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6877 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6878 .writefn = tlbi_aa64_rvae2is_write }, 6879 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6880 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6881 .access = PL2_W, .type = ARM_CP_NOP }, 6882 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6883 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6884 .access = PL2_W, .type = ARM_CP_NOP }, 6885 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6886 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6887 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6888 .writefn = tlbi_aa64_rvae2is_write }, 6889 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6890 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6891 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6892 .writefn = tlbi_aa64_rvae2is_write }, 6893 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6894 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6895 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6896 .writefn = tlbi_aa64_rvae2_write }, 6897 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6898 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6899 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6900 .writefn = tlbi_aa64_rvae2_write }, 6901 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6902 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6903 .access = PL3_W, .type = ARM_CP_NO_RAW, 6904 .writefn = tlbi_aa64_rvae3is_write }, 6905 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6906 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6907 .access = PL3_W, .type = ARM_CP_NO_RAW, 6908 .writefn = tlbi_aa64_rvae3is_write }, 6909 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6910 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6911 .access = PL3_W, .type = ARM_CP_NO_RAW, 6912 .writefn = tlbi_aa64_rvae3is_write }, 6913 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6914 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6915 .access = PL3_W, .type = ARM_CP_NO_RAW, 6916 .writefn = tlbi_aa64_rvae3is_write }, 6917 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6918 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6919 .access = PL3_W, .type = ARM_CP_NO_RAW, 6920 .writefn = tlbi_aa64_rvae3_write }, 6921 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6922 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6923 .access = PL3_W, .type = ARM_CP_NO_RAW, 6924 .writefn = tlbi_aa64_rvae3_write }, 6925 }; 6926 6927 static const ARMCPRegInfo tlbios_reginfo[] = { 6928 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6929 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6930 .access = PL1_W, .type = ARM_CP_NO_RAW, 6931 .writefn = tlbi_aa64_vmalle1is_write }, 6932 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6933 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6934 .access = PL1_W, .type = ARM_CP_NO_RAW, 6935 .writefn = tlbi_aa64_vae1is_write }, 6936 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6937 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6938 .access = PL1_W, .type = ARM_CP_NO_RAW, 6939 .writefn = tlbi_aa64_vmalle1is_write }, 6940 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 6941 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 6942 .access = PL1_W, .type = ARM_CP_NO_RAW, 6943 .writefn = tlbi_aa64_vae1is_write }, 6944 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 6945 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 6946 .access = PL1_W, .type = ARM_CP_NO_RAW, 6947 .writefn = tlbi_aa64_vae1is_write }, 6948 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 6949 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 6950 .access = PL1_W, .type = ARM_CP_NO_RAW, 6951 .writefn = tlbi_aa64_vae1is_write }, 6952 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 6953 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 6954 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6955 .writefn = tlbi_aa64_alle2is_write }, 6956 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 6957 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 6958 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6959 .writefn = tlbi_aa64_vae2is_write }, 6960 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 6961 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 6962 .access = PL2_W, .type = ARM_CP_NO_RAW, 6963 .writefn = tlbi_aa64_alle1is_write }, 6964 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 6965 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 6966 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6967 .writefn = tlbi_aa64_vae2is_write }, 6968 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 6969 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 6970 .access = PL2_W, .type = ARM_CP_NO_RAW, 6971 .writefn = tlbi_aa64_alle1is_write }, 6972 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 6973 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 6974 .access = PL2_W, .type = ARM_CP_NOP }, 6975 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 6976 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 6977 .access = PL2_W, .type = ARM_CP_NOP }, 6978 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6979 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 6980 .access = PL2_W, .type = ARM_CP_NOP }, 6981 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6982 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 6983 .access = PL2_W, .type = ARM_CP_NOP }, 6984 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 6985 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 6986 .access = PL3_W, .type = ARM_CP_NO_RAW, 6987 .writefn = tlbi_aa64_alle3is_write }, 6988 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 6989 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 6990 .access = PL3_W, .type = ARM_CP_NO_RAW, 6991 .writefn = tlbi_aa64_vae3is_write }, 6992 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 6993 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 6994 .access = PL3_W, .type = ARM_CP_NO_RAW, 6995 .writefn = tlbi_aa64_vae3is_write }, 6996 }; 6997 6998 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6999 { 7000 Error *err = NULL; 7001 uint64_t ret; 7002 7003 /* Success sets NZCV = 0000. */ 7004 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7005 7006 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7007 /* 7008 * ??? Failed, for unknown reasons in the crypto subsystem. 7009 * The best we can do is log the reason and return the 7010 * timed-out indication to the guest. There is no reason 7011 * we know to expect this failure to be transitory, so the 7012 * guest may well hang retrying the operation. 7013 */ 7014 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7015 ri->name, error_get_pretty(err)); 7016 error_free(err); 7017 7018 env->ZF = 0; /* NZCF = 0100 */ 7019 return 0; 7020 } 7021 return ret; 7022 } 7023 7024 /* We do not support re-seeding, so the two registers operate the same. */ 7025 static const ARMCPRegInfo rndr_reginfo[] = { 7026 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7027 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7028 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7029 .access = PL0_R, .readfn = rndr_readfn }, 7030 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7031 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7032 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7033 .access = PL0_R, .readfn = rndr_readfn }, 7034 }; 7035 7036 #ifndef CONFIG_USER_ONLY 7037 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7038 uint64_t value) 7039 { 7040 ARMCPU *cpu = env_archcpu(env); 7041 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7042 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7043 uint64_t vaddr_in = (uint64_t) value; 7044 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7045 void *haddr; 7046 int mem_idx = cpu_mmu_index(env, false); 7047 7048 /* This won't be crossing page boundaries */ 7049 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7050 if (haddr) { 7051 7052 ram_addr_t offset; 7053 MemoryRegion *mr; 7054 7055 /* RCU lock is already being held */ 7056 mr = memory_region_from_host(haddr, &offset); 7057 7058 if (mr) { 7059 memory_region_writeback(mr, offset, dline_size); 7060 } 7061 } 7062 } 7063 7064 static const ARMCPRegInfo dcpop_reg[] = { 7065 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7066 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7067 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7068 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7069 }; 7070 7071 static const ARMCPRegInfo dcpodp_reg[] = { 7072 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7073 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7074 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7075 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7076 }; 7077 #endif /*CONFIG_USER_ONLY*/ 7078 7079 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7080 bool isread) 7081 { 7082 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7083 return CP_ACCESS_TRAP_EL2; 7084 } 7085 7086 return CP_ACCESS_OK; 7087 } 7088 7089 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7090 bool isread) 7091 { 7092 int el = arm_current_el(env); 7093 7094 if (el < 2 && arm_is_el2_enabled(env)) { 7095 uint64_t hcr = arm_hcr_el2_eff(env); 7096 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7097 return CP_ACCESS_TRAP_EL2; 7098 } 7099 } 7100 if (el < 3 && 7101 arm_feature(env, ARM_FEATURE_EL3) && 7102 !(env->cp15.scr_el3 & SCR_ATA)) { 7103 return CP_ACCESS_TRAP_EL3; 7104 } 7105 return CP_ACCESS_OK; 7106 } 7107 7108 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7109 { 7110 return env->pstate & PSTATE_TCO; 7111 } 7112 7113 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7114 { 7115 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7116 } 7117 7118 static const ARMCPRegInfo mte_reginfo[] = { 7119 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7120 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7121 .access = PL1_RW, .accessfn = access_mte, 7122 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7123 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7124 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7125 .access = PL1_RW, .accessfn = access_mte, 7126 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7127 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7128 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7129 .access = PL2_RW, .accessfn = access_mte, 7130 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7131 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7132 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7133 .access = PL3_RW, 7134 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7135 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7136 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7137 .access = PL1_RW, .accessfn = access_mte, 7138 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7139 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7140 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7141 .access = PL1_RW, .accessfn = access_mte, 7142 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7143 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7144 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7145 .access = PL1_R, .accessfn = access_aa64_tid5, 7146 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7147 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7148 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7149 .type = ARM_CP_NO_RAW, 7150 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7151 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7152 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7153 .type = ARM_CP_NOP, .access = PL1_W, 7154 .accessfn = aa64_cacheop_poc_access }, 7155 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7156 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7157 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7158 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7159 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7160 .type = ARM_CP_NOP, .access = PL1_W, 7161 .accessfn = aa64_cacheop_poc_access }, 7162 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7163 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7164 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7165 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7166 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7167 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7168 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7169 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7170 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7171 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7172 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7173 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7174 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7175 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7176 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7177 }; 7178 7179 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7180 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7181 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7182 .type = ARM_CP_CONST, .access = PL0_RW, }, 7183 }; 7184 7185 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7186 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7187 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7188 .type = ARM_CP_NOP, .access = PL0_W, 7189 .accessfn = aa64_cacheop_poc_access }, 7190 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7191 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7192 .type = ARM_CP_NOP, .access = PL0_W, 7193 .accessfn = aa64_cacheop_poc_access }, 7194 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7195 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7196 .type = ARM_CP_NOP, .access = PL0_W, 7197 .accessfn = aa64_cacheop_poc_access }, 7198 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7199 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7200 .type = ARM_CP_NOP, .access = PL0_W, 7201 .accessfn = aa64_cacheop_poc_access }, 7202 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7203 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7204 .type = ARM_CP_NOP, .access = PL0_W, 7205 .accessfn = aa64_cacheop_poc_access }, 7206 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7207 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7208 .type = ARM_CP_NOP, .access = PL0_W, 7209 .accessfn = aa64_cacheop_poc_access }, 7210 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7211 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7212 .type = ARM_CP_NOP, .access = PL0_W, 7213 .accessfn = aa64_cacheop_poc_access }, 7214 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7215 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7216 .type = ARM_CP_NOP, .access = PL0_W, 7217 .accessfn = aa64_cacheop_poc_access }, 7218 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7219 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7220 .access = PL0_W, .type = ARM_CP_DC_GVA, 7221 #ifndef CONFIG_USER_ONLY 7222 /* Avoid overhead of an access check that always passes in user-mode */ 7223 .accessfn = aa64_zva_access, 7224 #endif 7225 }, 7226 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7227 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7228 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7229 #ifndef CONFIG_USER_ONLY 7230 /* Avoid overhead of an access check that always passes in user-mode */ 7231 .accessfn = aa64_zva_access, 7232 #endif 7233 }, 7234 }; 7235 7236 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7237 bool isread) 7238 { 7239 uint64_t hcr = arm_hcr_el2_eff(env); 7240 int el = arm_current_el(env); 7241 7242 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7243 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7244 if (hcr & HCR_TGE) { 7245 return CP_ACCESS_TRAP_EL2; 7246 } 7247 return CP_ACCESS_TRAP; 7248 } 7249 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7250 return CP_ACCESS_TRAP_EL2; 7251 } 7252 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7253 return CP_ACCESS_TRAP_EL2; 7254 } 7255 if (el < 3 7256 && arm_feature(env, ARM_FEATURE_EL3) 7257 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7258 return CP_ACCESS_TRAP_EL3; 7259 } 7260 return CP_ACCESS_OK; 7261 } 7262 7263 static const ARMCPRegInfo scxtnum_reginfo[] = { 7264 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7265 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7266 .access = PL0_RW, .accessfn = access_scxtnum, 7267 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7268 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7269 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7270 .access = PL1_RW, .accessfn = access_scxtnum, 7271 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7272 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7273 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7274 .access = PL2_RW, .accessfn = access_scxtnum, 7275 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7276 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7277 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7278 .access = PL3_RW, 7279 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7280 }; 7281 #endif /* TARGET_AARCH64 */ 7282 7283 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7284 bool isread) 7285 { 7286 int el = arm_current_el(env); 7287 7288 if (el == 0) { 7289 uint64_t sctlr = arm_sctlr(env, el); 7290 if (!(sctlr & SCTLR_EnRCTX)) { 7291 return CP_ACCESS_TRAP; 7292 } 7293 } else if (el == 1) { 7294 uint64_t hcr = arm_hcr_el2_eff(env); 7295 if (hcr & HCR_NV) { 7296 return CP_ACCESS_TRAP_EL2; 7297 } 7298 } 7299 return CP_ACCESS_OK; 7300 } 7301 7302 static const ARMCPRegInfo predinv_reginfo[] = { 7303 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7304 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7305 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7306 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7307 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7308 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7309 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7310 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7311 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7312 /* 7313 * Note the AArch32 opcodes have a different OPC1. 7314 */ 7315 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7316 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7317 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7318 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7319 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7320 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7321 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7322 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7323 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7324 }; 7325 7326 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7327 { 7328 /* Read the high 32 bits of the current CCSIDR */ 7329 return extract64(ccsidr_read(env, ri), 32, 32); 7330 } 7331 7332 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7333 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7334 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7335 .access = PL1_R, 7336 .accessfn = access_aa64_tid2, 7337 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7338 }; 7339 7340 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7341 bool isread) 7342 { 7343 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7344 return CP_ACCESS_TRAP_EL2; 7345 } 7346 7347 return CP_ACCESS_OK; 7348 } 7349 7350 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7351 bool isread) 7352 { 7353 if (arm_feature(env, ARM_FEATURE_V8)) { 7354 return access_aa64_tid3(env, ri, isread); 7355 } 7356 7357 return CP_ACCESS_OK; 7358 } 7359 7360 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7361 bool isread) 7362 { 7363 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7364 return CP_ACCESS_TRAP_EL2; 7365 } 7366 7367 return CP_ACCESS_OK; 7368 } 7369 7370 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7371 const ARMCPRegInfo *ri, bool isread) 7372 { 7373 /* 7374 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7375 * in v7A, not in v8A. 7376 */ 7377 if (!arm_feature(env, ARM_FEATURE_V8) && 7378 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7379 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7380 return CP_ACCESS_TRAP_EL2; 7381 } 7382 return CP_ACCESS_OK; 7383 } 7384 7385 static const ARMCPRegInfo jazelle_regs[] = { 7386 { .name = "JIDR", 7387 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7388 .access = PL1_R, .accessfn = access_jazelle, 7389 .type = ARM_CP_CONST, .resetvalue = 0 }, 7390 { .name = "JOSCR", 7391 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7392 .accessfn = access_joscr_jmcr, 7393 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7394 { .name = "JMCR", 7395 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7396 .accessfn = access_joscr_jmcr, 7397 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7398 }; 7399 7400 static const ARMCPRegInfo contextidr_el2 = { 7401 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7402 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7403 .access = PL2_RW, 7404 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7405 }; 7406 7407 static const ARMCPRegInfo vhe_reginfo[] = { 7408 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7409 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7410 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7411 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7412 #ifndef CONFIG_USER_ONLY 7413 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7414 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7415 .fieldoffset = 7416 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7417 .type = ARM_CP_IO, .access = PL2_RW, 7418 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7419 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7420 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7421 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7422 .resetfn = gt_hv_timer_reset, 7423 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7424 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7425 .type = ARM_CP_IO, 7426 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7427 .access = PL2_RW, 7428 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7429 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7430 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7431 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7432 .type = ARM_CP_IO | ARM_CP_ALIAS, 7433 .access = PL2_RW, .accessfn = e2h_access, 7434 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7435 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7436 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7437 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7438 .type = ARM_CP_IO | ARM_CP_ALIAS, 7439 .access = PL2_RW, .accessfn = e2h_access, 7440 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7441 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7442 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7443 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7444 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7445 .access = PL2_RW, .accessfn = e2h_access, 7446 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7447 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7448 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7449 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7450 .access = PL2_RW, .accessfn = e2h_access, 7451 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7452 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7453 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7454 .type = ARM_CP_IO | ARM_CP_ALIAS, 7455 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7456 .access = PL2_RW, .accessfn = e2h_access, 7457 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7458 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7459 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7460 .type = ARM_CP_IO | ARM_CP_ALIAS, 7461 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7462 .access = PL2_RW, .accessfn = e2h_access, 7463 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7464 #endif 7465 }; 7466 7467 #ifndef CONFIG_USER_ONLY 7468 static const ARMCPRegInfo ats1e1_reginfo[] = { 7469 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7470 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7471 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7472 .writefn = ats_write64 }, 7473 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7474 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7475 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7476 .writefn = ats_write64 }, 7477 }; 7478 7479 static const ARMCPRegInfo ats1cp_reginfo[] = { 7480 { .name = "ATS1CPRP", 7481 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7482 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7483 .writefn = ats_write }, 7484 { .name = "ATS1CPWP", 7485 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7486 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7487 .writefn = ats_write }, 7488 }; 7489 #endif 7490 7491 /* 7492 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7493 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7494 * is non-zero, which is never for ARMv7, optionally in ARMv8 7495 * and mandatorily for ARMv8.2 and up. 7496 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7497 * implementation is RAZ/WI we can ignore this detail, as we 7498 * do for ACTLR. 7499 */ 7500 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7501 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7502 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7503 .access = PL1_RW, .accessfn = access_tacr, 7504 .type = ARM_CP_CONST, .resetvalue = 0 }, 7505 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7506 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7507 .access = PL2_RW, .type = ARM_CP_CONST, 7508 .resetvalue = 0 }, 7509 }; 7510 7511 void register_cp_regs_for_features(ARMCPU *cpu) 7512 { 7513 /* Register all the coprocessor registers based on feature bits */ 7514 CPUARMState *env = &cpu->env; 7515 if (arm_feature(env, ARM_FEATURE_M)) { 7516 /* M profile has no coprocessor registers */ 7517 return; 7518 } 7519 7520 define_arm_cp_regs(cpu, cp_reginfo); 7521 if (!arm_feature(env, ARM_FEATURE_V8)) { 7522 /* Must go early as it is full of wildcards that may be 7523 * overridden by later definitions. 7524 */ 7525 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7526 } 7527 7528 if (arm_feature(env, ARM_FEATURE_V6)) { 7529 /* The ID registers all have impdef reset values */ 7530 ARMCPRegInfo v6_idregs[] = { 7531 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7532 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7533 .access = PL1_R, .type = ARM_CP_CONST, 7534 .accessfn = access_aa32_tid3, 7535 .resetvalue = cpu->isar.id_pfr0 }, 7536 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7537 * the value of the GIC field until after we define these regs. 7538 */ 7539 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7540 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7541 .access = PL1_R, .type = ARM_CP_NO_RAW, 7542 .accessfn = access_aa32_tid3, 7543 .readfn = id_pfr1_read, 7544 .writefn = arm_cp_write_ignore }, 7545 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7546 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7547 .access = PL1_R, .type = ARM_CP_CONST, 7548 .accessfn = access_aa32_tid3, 7549 .resetvalue = cpu->isar.id_dfr0 }, 7550 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7552 .access = PL1_R, .type = ARM_CP_CONST, 7553 .accessfn = access_aa32_tid3, 7554 .resetvalue = cpu->id_afr0 }, 7555 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7557 .access = PL1_R, .type = ARM_CP_CONST, 7558 .accessfn = access_aa32_tid3, 7559 .resetvalue = cpu->isar.id_mmfr0 }, 7560 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7561 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7562 .access = PL1_R, .type = ARM_CP_CONST, 7563 .accessfn = access_aa32_tid3, 7564 .resetvalue = cpu->isar.id_mmfr1 }, 7565 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7566 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7567 .access = PL1_R, .type = ARM_CP_CONST, 7568 .accessfn = access_aa32_tid3, 7569 .resetvalue = cpu->isar.id_mmfr2 }, 7570 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7572 .access = PL1_R, .type = ARM_CP_CONST, 7573 .accessfn = access_aa32_tid3, 7574 .resetvalue = cpu->isar.id_mmfr3 }, 7575 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7576 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7577 .access = PL1_R, .type = ARM_CP_CONST, 7578 .accessfn = access_aa32_tid3, 7579 .resetvalue = cpu->isar.id_isar0 }, 7580 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7581 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7582 .access = PL1_R, .type = ARM_CP_CONST, 7583 .accessfn = access_aa32_tid3, 7584 .resetvalue = cpu->isar.id_isar1 }, 7585 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7586 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7587 .access = PL1_R, .type = ARM_CP_CONST, 7588 .accessfn = access_aa32_tid3, 7589 .resetvalue = cpu->isar.id_isar2 }, 7590 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7592 .access = PL1_R, .type = ARM_CP_CONST, 7593 .accessfn = access_aa32_tid3, 7594 .resetvalue = cpu->isar.id_isar3 }, 7595 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7596 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7597 .access = PL1_R, .type = ARM_CP_CONST, 7598 .accessfn = access_aa32_tid3, 7599 .resetvalue = cpu->isar.id_isar4 }, 7600 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7601 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7602 .access = PL1_R, .type = ARM_CP_CONST, 7603 .accessfn = access_aa32_tid3, 7604 .resetvalue = cpu->isar.id_isar5 }, 7605 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7606 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7607 .access = PL1_R, .type = ARM_CP_CONST, 7608 .accessfn = access_aa32_tid3, 7609 .resetvalue = cpu->isar.id_mmfr4 }, 7610 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7611 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7612 .access = PL1_R, .type = ARM_CP_CONST, 7613 .accessfn = access_aa32_tid3, 7614 .resetvalue = cpu->isar.id_isar6 }, 7615 }; 7616 define_arm_cp_regs(cpu, v6_idregs); 7617 define_arm_cp_regs(cpu, v6_cp_reginfo); 7618 } else { 7619 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7620 } 7621 if (arm_feature(env, ARM_FEATURE_V6K)) { 7622 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7623 } 7624 if (arm_feature(env, ARM_FEATURE_V7MP) && 7625 !arm_feature(env, ARM_FEATURE_PMSA)) { 7626 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7627 } 7628 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7629 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7630 } 7631 if (arm_feature(env, ARM_FEATURE_V7)) { 7632 ARMCPRegInfo clidr = { 7633 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7634 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7635 .access = PL1_R, .type = ARM_CP_CONST, 7636 .accessfn = access_aa64_tid2, 7637 .resetvalue = cpu->clidr 7638 }; 7639 define_one_arm_cp_reg(cpu, &clidr); 7640 define_arm_cp_regs(cpu, v7_cp_reginfo); 7641 define_debug_regs(cpu); 7642 define_pmu_regs(cpu); 7643 } else { 7644 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7645 } 7646 if (arm_feature(env, ARM_FEATURE_V8)) { 7647 /* AArch64 ID registers, which all have impdef reset values. 7648 * Note that within the ID register ranges the unused slots 7649 * must all RAZ, not UNDEF; future architecture versions may 7650 * define new registers here. 7651 */ 7652 ARMCPRegInfo v8_idregs[] = { 7653 /* 7654 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7655 * emulation because we don't know the right value for the 7656 * GIC field until after we define these regs. 7657 */ 7658 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7659 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7660 .access = PL1_R, 7661 #ifdef CONFIG_USER_ONLY 7662 .type = ARM_CP_CONST, 7663 .resetvalue = cpu->isar.id_aa64pfr0 7664 #else 7665 .type = ARM_CP_NO_RAW, 7666 .accessfn = access_aa64_tid3, 7667 .readfn = id_aa64pfr0_read, 7668 .writefn = arm_cp_write_ignore 7669 #endif 7670 }, 7671 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7672 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7673 .access = PL1_R, .type = ARM_CP_CONST, 7674 .accessfn = access_aa64_tid3, 7675 .resetvalue = cpu->isar.id_aa64pfr1}, 7676 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7677 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7678 .access = PL1_R, .type = ARM_CP_CONST, 7679 .accessfn = access_aa64_tid3, 7680 .resetvalue = 0 }, 7681 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7682 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7683 .access = PL1_R, .type = ARM_CP_CONST, 7684 .accessfn = access_aa64_tid3, 7685 .resetvalue = 0 }, 7686 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7688 .access = PL1_R, .type = ARM_CP_CONST, 7689 .accessfn = access_aa64_tid3, 7690 .resetvalue = cpu->isar.id_aa64zfr0 }, 7691 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7692 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7693 .access = PL1_R, .type = ARM_CP_CONST, 7694 .accessfn = access_aa64_tid3, 7695 .resetvalue = 0 }, 7696 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7697 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7698 .access = PL1_R, .type = ARM_CP_CONST, 7699 .accessfn = access_aa64_tid3, 7700 .resetvalue = 0 }, 7701 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7702 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7703 .access = PL1_R, .type = ARM_CP_CONST, 7704 .accessfn = access_aa64_tid3, 7705 .resetvalue = 0 }, 7706 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7708 .access = PL1_R, .type = ARM_CP_CONST, 7709 .accessfn = access_aa64_tid3, 7710 .resetvalue = cpu->isar.id_aa64dfr0 }, 7711 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7712 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7713 .access = PL1_R, .type = ARM_CP_CONST, 7714 .accessfn = access_aa64_tid3, 7715 .resetvalue = cpu->isar.id_aa64dfr1 }, 7716 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7717 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7718 .access = PL1_R, .type = ARM_CP_CONST, 7719 .accessfn = access_aa64_tid3, 7720 .resetvalue = 0 }, 7721 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7723 .access = PL1_R, .type = ARM_CP_CONST, 7724 .accessfn = access_aa64_tid3, 7725 .resetvalue = 0 }, 7726 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7727 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7728 .access = PL1_R, .type = ARM_CP_CONST, 7729 .accessfn = access_aa64_tid3, 7730 .resetvalue = cpu->id_aa64afr0 }, 7731 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7732 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7733 .access = PL1_R, .type = ARM_CP_CONST, 7734 .accessfn = access_aa64_tid3, 7735 .resetvalue = cpu->id_aa64afr1 }, 7736 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7737 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7738 .access = PL1_R, .type = ARM_CP_CONST, 7739 .accessfn = access_aa64_tid3, 7740 .resetvalue = 0 }, 7741 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7743 .access = PL1_R, .type = ARM_CP_CONST, 7744 .accessfn = access_aa64_tid3, 7745 .resetvalue = 0 }, 7746 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7748 .access = PL1_R, .type = ARM_CP_CONST, 7749 .accessfn = access_aa64_tid3, 7750 .resetvalue = cpu->isar.id_aa64isar0 }, 7751 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7753 .access = PL1_R, .type = ARM_CP_CONST, 7754 .accessfn = access_aa64_tid3, 7755 .resetvalue = cpu->isar.id_aa64isar1 }, 7756 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7757 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7758 .access = PL1_R, .type = ARM_CP_CONST, 7759 .accessfn = access_aa64_tid3, 7760 .resetvalue = 0 }, 7761 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7763 .access = PL1_R, .type = ARM_CP_CONST, 7764 .accessfn = access_aa64_tid3, 7765 .resetvalue = 0 }, 7766 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7768 .access = PL1_R, .type = ARM_CP_CONST, 7769 .accessfn = access_aa64_tid3, 7770 .resetvalue = 0 }, 7771 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7773 .access = PL1_R, .type = ARM_CP_CONST, 7774 .accessfn = access_aa64_tid3, 7775 .resetvalue = 0 }, 7776 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7778 .access = PL1_R, .type = ARM_CP_CONST, 7779 .accessfn = access_aa64_tid3, 7780 .resetvalue = 0 }, 7781 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7783 .access = PL1_R, .type = ARM_CP_CONST, 7784 .accessfn = access_aa64_tid3, 7785 .resetvalue = 0 }, 7786 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7788 .access = PL1_R, .type = ARM_CP_CONST, 7789 .accessfn = access_aa64_tid3, 7790 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7791 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7793 .access = PL1_R, .type = ARM_CP_CONST, 7794 .accessfn = access_aa64_tid3, 7795 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7796 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7798 .access = PL1_R, .type = ARM_CP_CONST, 7799 .accessfn = access_aa64_tid3, 7800 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7801 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7803 .access = PL1_R, .type = ARM_CP_CONST, 7804 .accessfn = access_aa64_tid3, 7805 .resetvalue = 0 }, 7806 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7808 .access = PL1_R, .type = ARM_CP_CONST, 7809 .accessfn = access_aa64_tid3, 7810 .resetvalue = 0 }, 7811 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7813 .access = PL1_R, .type = ARM_CP_CONST, 7814 .accessfn = access_aa64_tid3, 7815 .resetvalue = 0 }, 7816 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7817 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7818 .access = PL1_R, .type = ARM_CP_CONST, 7819 .accessfn = access_aa64_tid3, 7820 .resetvalue = 0 }, 7821 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7823 .access = PL1_R, .type = ARM_CP_CONST, 7824 .accessfn = access_aa64_tid3, 7825 .resetvalue = 0 }, 7826 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7827 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7828 .access = PL1_R, .type = ARM_CP_CONST, 7829 .accessfn = access_aa64_tid3, 7830 .resetvalue = cpu->isar.mvfr0 }, 7831 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7833 .access = PL1_R, .type = ARM_CP_CONST, 7834 .accessfn = access_aa64_tid3, 7835 .resetvalue = cpu->isar.mvfr1 }, 7836 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7837 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7838 .access = PL1_R, .type = ARM_CP_CONST, 7839 .accessfn = access_aa64_tid3, 7840 .resetvalue = cpu->isar.mvfr2 }, 7841 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7842 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7843 .access = PL1_R, .type = ARM_CP_CONST, 7844 .accessfn = access_aa64_tid3, 7845 .resetvalue = 0 }, 7846 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7848 .access = PL1_R, .type = ARM_CP_CONST, 7849 .accessfn = access_aa64_tid3, 7850 .resetvalue = cpu->isar.id_pfr2 }, 7851 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7853 .access = PL1_R, .type = ARM_CP_CONST, 7854 .accessfn = access_aa64_tid3, 7855 .resetvalue = 0 }, 7856 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7857 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7858 .access = PL1_R, .type = ARM_CP_CONST, 7859 .accessfn = access_aa64_tid3, 7860 .resetvalue = 0 }, 7861 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7862 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7863 .access = PL1_R, .type = ARM_CP_CONST, 7864 .accessfn = access_aa64_tid3, 7865 .resetvalue = 0 }, 7866 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7867 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7868 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7869 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7870 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7871 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7872 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7873 .resetvalue = cpu->pmceid0 }, 7874 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7875 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7876 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7877 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7878 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7879 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7880 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7881 .resetvalue = cpu->pmceid1 }, 7882 }; 7883 #ifdef CONFIG_USER_ONLY 7884 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7885 { .name = "ID_AA64PFR0_EL1", 7886 .exported_bits = 0x000f000f00ff0000, 7887 .fixed_bits = 0x0000000000000011 }, 7888 { .name = "ID_AA64PFR1_EL1", 7889 .exported_bits = 0x00000000000000f0 }, 7890 { .name = "ID_AA64PFR*_EL1_RESERVED", 7891 .is_glob = true }, 7892 { .name = "ID_AA64ZFR0_EL1" }, 7893 { .name = "ID_AA64MMFR0_EL1", 7894 .fixed_bits = 0x00000000ff000000 }, 7895 { .name = "ID_AA64MMFR1_EL1" }, 7896 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7897 .is_glob = true }, 7898 { .name = "ID_AA64DFR0_EL1", 7899 .fixed_bits = 0x0000000000000006 }, 7900 { .name = "ID_AA64DFR1_EL1" }, 7901 { .name = "ID_AA64DFR*_EL1_RESERVED", 7902 .is_glob = true }, 7903 { .name = "ID_AA64AFR*", 7904 .is_glob = true }, 7905 { .name = "ID_AA64ISAR0_EL1", 7906 .exported_bits = 0x00fffffff0fffff0 }, 7907 { .name = "ID_AA64ISAR1_EL1", 7908 .exported_bits = 0x000000f0ffffffff }, 7909 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7910 .is_glob = true }, 7911 }; 7912 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7913 #endif 7914 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7915 if (!arm_feature(env, ARM_FEATURE_EL3) && 7916 !arm_feature(env, ARM_FEATURE_EL2)) { 7917 ARMCPRegInfo rvbar = { 7918 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7919 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7920 .access = PL1_R, 7921 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7922 }; 7923 define_one_arm_cp_reg(cpu, &rvbar); 7924 } 7925 define_arm_cp_regs(cpu, v8_idregs); 7926 define_arm_cp_regs(cpu, v8_cp_reginfo); 7927 } 7928 7929 /* 7930 * Register the base EL2 cpregs. 7931 * Pre v8, these registers are implemented only as part of the 7932 * Virtualization Extensions (EL2 present). Beginning with v8, 7933 * if EL2 is missing but EL3 is enabled, mostly these become 7934 * RES0 from EL3, with some specific exceptions. 7935 */ 7936 if (arm_feature(env, ARM_FEATURE_EL2) 7937 || (arm_feature(env, ARM_FEATURE_EL3) 7938 && arm_feature(env, ARM_FEATURE_V8))) { 7939 uint64_t vmpidr_def = mpidr_read_val(env); 7940 ARMCPRegInfo vpidr_regs[] = { 7941 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7942 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7943 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7944 .resetvalue = cpu->midr, 7945 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7946 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7947 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7948 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7949 .access = PL2_RW, .resetvalue = cpu->midr, 7950 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7951 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7952 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7953 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7954 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7955 .resetvalue = vmpidr_def, 7956 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7957 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7958 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7959 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7960 .access = PL2_RW, .resetvalue = vmpidr_def, 7961 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7962 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7963 }; 7964 define_arm_cp_regs(cpu, vpidr_regs); 7965 define_arm_cp_regs(cpu, el2_cp_reginfo); 7966 if (arm_feature(env, ARM_FEATURE_V8)) { 7967 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7968 } 7969 if (cpu_isar_feature(aa64_sel2, cpu)) { 7970 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7971 } 7972 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7973 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7974 ARMCPRegInfo rvbar = { 7975 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7976 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7977 .access = PL2_R, 7978 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7979 }; 7980 define_one_arm_cp_reg(cpu, &rvbar); 7981 } 7982 } 7983 7984 /* Register the base EL3 cpregs. */ 7985 if (arm_feature(env, ARM_FEATURE_EL3)) { 7986 define_arm_cp_regs(cpu, el3_cp_reginfo); 7987 ARMCPRegInfo el3_regs[] = { 7988 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7989 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7990 .access = PL3_R, 7991 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7992 }, 7993 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7994 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7995 .access = PL3_RW, 7996 .raw_writefn = raw_write, .writefn = sctlr_write, 7997 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7998 .resetvalue = cpu->reset_sctlr }, 7999 }; 8000 8001 define_arm_cp_regs(cpu, el3_regs); 8002 } 8003 /* The behaviour of NSACR is sufficiently various that we don't 8004 * try to describe it in a single reginfo: 8005 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8006 * reads as constant 0xc00 from NS EL1 and NS EL2 8007 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8008 * if v7 without EL3, register doesn't exist 8009 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8010 */ 8011 if (arm_feature(env, ARM_FEATURE_EL3)) { 8012 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8013 static const ARMCPRegInfo nsacr = { 8014 .name = "NSACR", .type = ARM_CP_CONST, 8015 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8016 .access = PL1_RW, .accessfn = nsacr_access, 8017 .resetvalue = 0xc00 8018 }; 8019 define_one_arm_cp_reg(cpu, &nsacr); 8020 } else { 8021 static const ARMCPRegInfo nsacr = { 8022 .name = "NSACR", 8023 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8024 .access = PL3_RW | PL1_R, 8025 .resetvalue = 0, 8026 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8027 }; 8028 define_one_arm_cp_reg(cpu, &nsacr); 8029 } 8030 } else { 8031 if (arm_feature(env, ARM_FEATURE_V8)) { 8032 static const ARMCPRegInfo nsacr = { 8033 .name = "NSACR", .type = ARM_CP_CONST, 8034 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8035 .access = PL1_R, 8036 .resetvalue = 0xc00 8037 }; 8038 define_one_arm_cp_reg(cpu, &nsacr); 8039 } 8040 } 8041 8042 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8043 if (arm_feature(env, ARM_FEATURE_V6)) { 8044 /* PMSAv6 not implemented */ 8045 assert(arm_feature(env, ARM_FEATURE_V7)); 8046 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8047 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8048 } else { 8049 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8050 } 8051 } else { 8052 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8053 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8054 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8055 if (cpu_isar_feature(aa32_hpd, cpu)) { 8056 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8057 } 8058 } 8059 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8060 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8061 } 8062 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8063 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8064 } 8065 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8066 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8067 } 8068 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8069 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8070 } 8071 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8072 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8073 } 8074 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8075 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8076 } 8077 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8078 define_arm_cp_regs(cpu, omap_cp_reginfo); 8079 } 8080 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8081 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8082 } 8083 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8084 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8085 } 8086 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8087 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8088 } 8089 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8090 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8091 } 8092 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8093 define_arm_cp_regs(cpu, jazelle_regs); 8094 } 8095 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8096 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8097 * be read-only (ie write causes UNDEF exception). 8098 */ 8099 { 8100 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8101 /* Pre-v8 MIDR space. 8102 * Note that the MIDR isn't a simple constant register because 8103 * of the TI925 behaviour where writes to another register can 8104 * cause the MIDR value to change. 8105 * 8106 * Unimplemented registers in the c15 0 0 0 space default to 8107 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8108 * and friends override accordingly. 8109 */ 8110 { .name = "MIDR", 8111 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8112 .access = PL1_R, .resetvalue = cpu->midr, 8113 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8114 .readfn = midr_read, 8115 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8116 .type = ARM_CP_OVERRIDE }, 8117 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8118 { .name = "DUMMY", 8119 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8120 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8121 { .name = "DUMMY", 8122 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8123 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8124 { .name = "DUMMY", 8125 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8126 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8127 { .name = "DUMMY", 8128 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8129 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8130 { .name = "DUMMY", 8131 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8132 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8133 }; 8134 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8135 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8136 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8137 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8138 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8139 .readfn = midr_read }, 8140 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8141 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8142 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8143 .access = PL1_R, .resetvalue = cpu->midr }, 8144 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8145 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8146 .access = PL1_R, .resetvalue = cpu->midr }, 8147 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8148 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8149 .access = PL1_R, 8150 .accessfn = access_aa64_tid1, 8151 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8152 }; 8153 ARMCPRegInfo id_cp_reginfo[] = { 8154 /* These are common to v8 and pre-v8 */ 8155 { .name = "CTR", 8156 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8157 .access = PL1_R, .accessfn = ctr_el0_access, 8158 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8159 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8160 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8161 .access = PL0_R, .accessfn = ctr_el0_access, 8162 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8163 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8164 { .name = "TCMTR", 8165 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8166 .access = PL1_R, 8167 .accessfn = access_aa32_tid1, 8168 .type = ARM_CP_CONST, .resetvalue = 0 }, 8169 }; 8170 /* TLBTR is specific to VMSA */ 8171 ARMCPRegInfo id_tlbtr_reginfo = { 8172 .name = "TLBTR", 8173 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8174 .access = PL1_R, 8175 .accessfn = access_aa32_tid1, 8176 .type = ARM_CP_CONST, .resetvalue = 0, 8177 }; 8178 /* MPUIR is specific to PMSA V6+ */ 8179 ARMCPRegInfo id_mpuir_reginfo = { 8180 .name = "MPUIR", 8181 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8182 .access = PL1_R, .type = ARM_CP_CONST, 8183 .resetvalue = cpu->pmsav7_dregion << 8 8184 }; 8185 static const ARMCPRegInfo crn0_wi_reginfo = { 8186 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8187 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8188 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8189 }; 8190 #ifdef CONFIG_USER_ONLY 8191 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8192 { .name = "MIDR_EL1", 8193 .exported_bits = 0x00000000ffffffff }, 8194 { .name = "REVIDR_EL1" }, 8195 }; 8196 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8197 #endif 8198 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8199 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8200 size_t i; 8201 /* Register the blanket "writes ignored" value first to cover the 8202 * whole space. Then update the specific ID registers to allow write 8203 * access, so that they ignore writes rather than causing them to 8204 * UNDEF. 8205 */ 8206 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8207 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8208 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8209 } 8210 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8211 id_cp_reginfo[i].access = PL1_RW; 8212 } 8213 id_mpuir_reginfo.access = PL1_RW; 8214 id_tlbtr_reginfo.access = PL1_RW; 8215 } 8216 if (arm_feature(env, ARM_FEATURE_V8)) { 8217 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8218 } else { 8219 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8220 } 8221 define_arm_cp_regs(cpu, id_cp_reginfo); 8222 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8223 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8224 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8225 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8226 } 8227 } 8228 8229 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8230 ARMCPRegInfo mpidr_cp_reginfo[] = { 8231 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8232 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8233 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8234 }; 8235 #ifdef CONFIG_USER_ONLY 8236 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8237 { .name = "MPIDR_EL1", 8238 .fixed_bits = 0x0000000080000000 }, 8239 }; 8240 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8241 #endif 8242 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8243 } 8244 8245 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8246 ARMCPRegInfo auxcr_reginfo[] = { 8247 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8248 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8249 .access = PL1_RW, .accessfn = access_tacr, 8250 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8251 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8252 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8253 .access = PL2_RW, .type = ARM_CP_CONST, 8254 .resetvalue = 0 }, 8255 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8256 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8257 .access = PL3_RW, .type = ARM_CP_CONST, 8258 .resetvalue = 0 }, 8259 }; 8260 define_arm_cp_regs(cpu, auxcr_reginfo); 8261 if (cpu_isar_feature(aa32_ac2, cpu)) { 8262 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8263 } 8264 } 8265 8266 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8267 /* 8268 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8269 * There are two flavours: 8270 * (1) older 32-bit only cores have a simple 32-bit CBAR 8271 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8272 * 32-bit register visible to AArch32 at a different encoding 8273 * to the "flavour 1" register and with the bits rearranged to 8274 * be able to squash a 64-bit address into the 32-bit view. 8275 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8276 * in future if we support AArch32-only configs of some of the 8277 * AArch64 cores we might need to add a specific feature flag 8278 * to indicate cores with "flavour 2" CBAR. 8279 */ 8280 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8281 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8282 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8283 | extract64(cpu->reset_cbar, 32, 12); 8284 ARMCPRegInfo cbar_reginfo[] = { 8285 { .name = "CBAR", 8286 .type = ARM_CP_CONST, 8287 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8288 .access = PL1_R, .resetvalue = cbar32 }, 8289 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8290 .type = ARM_CP_CONST, 8291 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8292 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8293 }; 8294 /* We don't implement a r/w 64 bit CBAR currently */ 8295 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8296 define_arm_cp_regs(cpu, cbar_reginfo); 8297 } else { 8298 ARMCPRegInfo cbar = { 8299 .name = "CBAR", 8300 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8301 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8302 .fieldoffset = offsetof(CPUARMState, 8303 cp15.c15_config_base_address) 8304 }; 8305 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8306 cbar.access = PL1_R; 8307 cbar.fieldoffset = 0; 8308 cbar.type = ARM_CP_CONST; 8309 } 8310 define_one_arm_cp_reg(cpu, &cbar); 8311 } 8312 } 8313 8314 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8315 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8316 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8317 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8318 .access = PL1_RW, .writefn = vbar_write, 8319 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8320 offsetof(CPUARMState, cp15.vbar_ns) }, 8321 .resetvalue = 0 }, 8322 }; 8323 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8324 } 8325 8326 /* Generic registers whose values depend on the implementation */ 8327 { 8328 ARMCPRegInfo sctlr = { 8329 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8330 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8331 .access = PL1_RW, .accessfn = access_tvm_trvm, 8332 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8333 offsetof(CPUARMState, cp15.sctlr_ns) }, 8334 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8335 .raw_writefn = raw_write, 8336 }; 8337 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8338 /* Normally we would always end the TB on an SCTLR write, but Linux 8339 * arch/arm/mach-pxa/sleep.S expects two instructions following 8340 * an MMU enable to execute from cache. Imitate this behaviour. 8341 */ 8342 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8343 } 8344 define_one_arm_cp_reg(cpu, &sctlr); 8345 } 8346 8347 if (cpu_isar_feature(aa64_lor, cpu)) { 8348 define_arm_cp_regs(cpu, lor_reginfo); 8349 } 8350 if (cpu_isar_feature(aa64_pan, cpu)) { 8351 define_one_arm_cp_reg(cpu, &pan_reginfo); 8352 } 8353 #ifndef CONFIG_USER_ONLY 8354 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8355 define_arm_cp_regs(cpu, ats1e1_reginfo); 8356 } 8357 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8358 define_arm_cp_regs(cpu, ats1cp_reginfo); 8359 } 8360 #endif 8361 if (cpu_isar_feature(aa64_uao, cpu)) { 8362 define_one_arm_cp_reg(cpu, &uao_reginfo); 8363 } 8364 8365 if (cpu_isar_feature(aa64_dit, cpu)) { 8366 define_one_arm_cp_reg(cpu, &dit_reginfo); 8367 } 8368 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8369 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8370 } 8371 if (cpu_isar_feature(any_ras, cpu)) { 8372 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8373 } 8374 8375 if (cpu_isar_feature(aa64_vh, cpu) || 8376 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8377 define_one_arm_cp_reg(cpu, &contextidr_el2); 8378 } 8379 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8380 define_arm_cp_regs(cpu, vhe_reginfo); 8381 } 8382 8383 if (cpu_isar_feature(aa64_sve, cpu)) { 8384 define_arm_cp_regs(cpu, zcr_reginfo); 8385 } 8386 8387 #ifdef TARGET_AARCH64 8388 if (cpu_isar_feature(aa64_pauth, cpu)) { 8389 define_arm_cp_regs(cpu, pauth_reginfo); 8390 } 8391 if (cpu_isar_feature(aa64_rndr, cpu)) { 8392 define_arm_cp_regs(cpu, rndr_reginfo); 8393 } 8394 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8395 define_arm_cp_regs(cpu, tlbirange_reginfo); 8396 } 8397 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8398 define_arm_cp_regs(cpu, tlbios_reginfo); 8399 } 8400 #ifndef CONFIG_USER_ONLY 8401 /* Data Cache clean instructions up to PoP */ 8402 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8403 define_one_arm_cp_reg(cpu, dcpop_reg); 8404 8405 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8406 define_one_arm_cp_reg(cpu, dcpodp_reg); 8407 } 8408 } 8409 #endif /*CONFIG_USER_ONLY*/ 8410 8411 /* 8412 * If full MTE is enabled, add all of the system registers. 8413 * If only "instructions available at EL0" are enabled, 8414 * then define only a RAZ/WI version of PSTATE.TCO. 8415 */ 8416 if (cpu_isar_feature(aa64_mte, cpu)) { 8417 define_arm_cp_regs(cpu, mte_reginfo); 8418 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8419 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8420 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8421 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8422 } 8423 8424 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8425 define_arm_cp_regs(cpu, scxtnum_reginfo); 8426 } 8427 #endif 8428 8429 if (cpu_isar_feature(any_predinv, cpu)) { 8430 define_arm_cp_regs(cpu, predinv_reginfo); 8431 } 8432 8433 if (cpu_isar_feature(any_ccidx, cpu)) { 8434 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8435 } 8436 8437 #ifndef CONFIG_USER_ONLY 8438 /* 8439 * Register redirections and aliases must be done last, 8440 * after the registers from the other extensions have been defined. 8441 */ 8442 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8443 define_arm_vh_e2h_redirects_aliases(cpu); 8444 } 8445 #endif 8446 } 8447 8448 /* Sort alphabetically by type name, except for "any". */ 8449 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8450 { 8451 ObjectClass *class_a = (ObjectClass *)a; 8452 ObjectClass *class_b = (ObjectClass *)b; 8453 const char *name_a, *name_b; 8454 8455 name_a = object_class_get_name(class_a); 8456 name_b = object_class_get_name(class_b); 8457 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8458 return 1; 8459 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8460 return -1; 8461 } else { 8462 return strcmp(name_a, name_b); 8463 } 8464 } 8465 8466 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8467 { 8468 ObjectClass *oc = data; 8469 const char *typename; 8470 char *name; 8471 8472 typename = object_class_get_name(oc); 8473 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8474 qemu_printf(" %s\n", name); 8475 g_free(name); 8476 } 8477 8478 void arm_cpu_list(void) 8479 { 8480 GSList *list; 8481 8482 list = object_class_get_list(TYPE_ARM_CPU, false); 8483 list = g_slist_sort(list, arm_cpu_list_compare); 8484 qemu_printf("Available CPUs:\n"); 8485 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8486 g_slist_free(list); 8487 } 8488 8489 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8490 { 8491 ObjectClass *oc = data; 8492 CpuDefinitionInfoList **cpu_list = user_data; 8493 CpuDefinitionInfo *info; 8494 const char *typename; 8495 8496 typename = object_class_get_name(oc); 8497 info = g_malloc0(sizeof(*info)); 8498 info->name = g_strndup(typename, 8499 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8500 info->q_typename = g_strdup(typename); 8501 8502 QAPI_LIST_PREPEND(*cpu_list, info); 8503 } 8504 8505 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8506 { 8507 CpuDefinitionInfoList *cpu_list = NULL; 8508 GSList *list; 8509 8510 list = object_class_get_list(TYPE_ARM_CPU, false); 8511 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8512 g_slist_free(list); 8513 8514 return cpu_list; 8515 } 8516 8517 /* 8518 * Private utility function for define_one_arm_cp_reg_with_opaque(): 8519 * add a single reginfo struct to the hash table. 8520 */ 8521 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8522 void *opaque, CPState state, 8523 CPSecureState secstate, 8524 int crm, int opc1, int opc2, 8525 const char *name) 8526 { 8527 CPUARMState *env = &cpu->env; 8528 uint32_t key; 8529 ARMCPRegInfo *r2; 8530 bool is64 = r->type & ARM_CP_64BIT; 8531 bool ns = secstate & ARM_CP_SECSTATE_NS; 8532 int cp = r->cp; 8533 size_t name_len; 8534 bool make_const; 8535 8536 switch (state) { 8537 case ARM_CP_STATE_AA32: 8538 /* We assume it is a cp15 register if the .cp field is left unset. */ 8539 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 8540 cp = 15; 8541 } 8542 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 8543 break; 8544 case ARM_CP_STATE_AA64: 8545 /* 8546 * To allow abbreviation of ARMCPRegInfo definitions, we treat 8547 * cp == 0 as equivalent to the value for "standard guest-visible 8548 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 8549 * in their AArch64 view (the .cp value may be non-zero for the 8550 * benefit of the AArch32 view). 8551 */ 8552 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8553 cp = CP_REG_ARM64_SYSREG_CP; 8554 } 8555 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 8556 break; 8557 default: 8558 g_assert_not_reached(); 8559 } 8560 8561 /* Overriding of an existing definition must be explicitly requested. */ 8562 if (!(r->type & ARM_CP_OVERRIDE)) { 8563 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 8564 if (oldreg) { 8565 assert(oldreg->type & ARM_CP_OVERRIDE); 8566 } 8567 } 8568 8569 /* 8570 * Eliminate registers that are not present because the EL is missing. 8571 * Doing this here makes it easier to put all registers for a given 8572 * feature into the same ARMCPRegInfo array and define them all at once. 8573 */ 8574 make_const = false; 8575 if (arm_feature(env, ARM_FEATURE_EL3)) { 8576 /* 8577 * An EL2 register without EL2 but with EL3 is (usually) RES0. 8578 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 8579 */ 8580 int min_el = ctz32(r->access) / 2; 8581 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 8582 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 8583 return; 8584 } 8585 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 8586 } 8587 } else { 8588 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 8589 ? PL2_RW : PL1_RW); 8590 if ((r->access & max_el) == 0) { 8591 return; 8592 } 8593 } 8594 8595 /* Combine cpreg and name into one allocation. */ 8596 name_len = strlen(name) + 1; 8597 r2 = g_malloc(sizeof(*r2) + name_len); 8598 *r2 = *r; 8599 r2->name = memcpy(r2 + 1, name, name_len); 8600 8601 /* 8602 * Update fields to match the instantiation, overwiting wildcards 8603 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 8604 */ 8605 r2->cp = cp; 8606 r2->crm = crm; 8607 r2->opc1 = opc1; 8608 r2->opc2 = opc2; 8609 r2->state = state; 8610 r2->secure = secstate; 8611 if (opaque) { 8612 r2->opaque = opaque; 8613 } 8614 8615 if (make_const) { 8616 /* This should not have been a very special register to begin. */ 8617 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 8618 assert(old_special == 0 || old_special == ARM_CP_NOP); 8619 /* 8620 * Set the special function to CONST, retaining the other flags. 8621 * This is important for e.g. ARM_CP_SVE so that we still 8622 * take the SVE trap if CPTR_EL3.EZ == 0. 8623 */ 8624 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 8625 /* 8626 * Usually, these registers become RES0, but there are a few 8627 * special cases like VPIDR_EL2 which have a constant non-zero 8628 * value with writes ignored. 8629 */ 8630 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 8631 r2->resetvalue = 0; 8632 } 8633 /* 8634 * ARM_CP_CONST has precedence, so removing the callbacks and 8635 * offsets are not strictly necessary, but it is potentially 8636 * less confusing to debug later. 8637 */ 8638 r2->readfn = NULL; 8639 r2->writefn = NULL; 8640 r2->raw_readfn = NULL; 8641 r2->raw_writefn = NULL; 8642 r2->resetfn = NULL; 8643 r2->fieldoffset = 0; 8644 r2->bank_fieldoffsets[0] = 0; 8645 r2->bank_fieldoffsets[1] = 0; 8646 } else { 8647 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 8648 8649 if (isbanked) { 8650 /* 8651 * Register is banked (using both entries in array). 8652 * Overwriting fieldoffset as the array is only used to define 8653 * banked registers but later only fieldoffset is used. 8654 */ 8655 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8656 } 8657 if (state == ARM_CP_STATE_AA32) { 8658 if (isbanked) { 8659 /* 8660 * If the register is banked then we don't need to migrate or 8661 * reset the 32-bit instance in certain cases: 8662 * 8663 * 1) If the register has both 32-bit and 64-bit instances 8664 * then we can count on the 64-bit instance taking care 8665 * of the non-secure bank. 8666 * 2) If ARMv8 is enabled then we can count on a 64-bit 8667 * version taking care of the secure bank. This requires 8668 * that separate 32 and 64-bit definitions are provided. 8669 */ 8670 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8671 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 8672 r2->type |= ARM_CP_ALIAS; 8673 } 8674 } else if ((secstate != r->secure) && !ns) { 8675 /* 8676 * The register is not banked so we only want to allow 8677 * migration of the non-secure instance. 8678 */ 8679 r2->type |= ARM_CP_ALIAS; 8680 } 8681 8682 if (HOST_BIG_ENDIAN && 8683 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 8684 r2->fieldoffset += sizeof(uint32_t); 8685 } 8686 } 8687 } 8688 8689 /* 8690 * By convention, for wildcarded registers only the first 8691 * entry is used for migration; the others are marked as 8692 * ALIAS so we don't try to transfer the register 8693 * multiple times. Special registers (ie NOP/WFI) are 8694 * never migratable and not even raw-accessible. 8695 */ 8696 if (r2->type & ARM_CP_SPECIAL_MASK) { 8697 r2->type |= ARM_CP_NO_RAW; 8698 } 8699 if (((r->crm == CP_ANY) && crm != 0) || 8700 ((r->opc1 == CP_ANY) && opc1 != 0) || 8701 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8702 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8703 } 8704 8705 /* 8706 * Check that raw accesses are either forbidden or handled. Note that 8707 * we can't assert this earlier because the setup of fieldoffset for 8708 * banked registers has to be done first. 8709 */ 8710 if (!(r2->type & ARM_CP_NO_RAW)) { 8711 assert(!raw_accessors_invalid(r2)); 8712 } 8713 8714 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 8715 } 8716 8717 8718 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8719 const ARMCPRegInfo *r, void *opaque) 8720 { 8721 /* Define implementations of coprocessor registers. 8722 * We store these in a hashtable because typically 8723 * there are less than 150 registers in a space which 8724 * is 16*16*16*8*8 = 262144 in size. 8725 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8726 * If a register is defined twice then the second definition is 8727 * used, so this can be used to define some generic registers and 8728 * then override them with implementation specific variations. 8729 * At least one of the original and the second definition should 8730 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8731 * against accidental use. 8732 * 8733 * The state field defines whether the register is to be 8734 * visible in the AArch32 or AArch64 execution state. If the 8735 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8736 * reginfo structure for the AArch32 view, which sees the lower 8737 * 32 bits of the 64 bit register. 8738 * 8739 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8740 * be wildcarded. AArch64 registers are always considered to be 64 8741 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8742 * the register, if any. 8743 */ 8744 int crm, opc1, opc2; 8745 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8746 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8747 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8748 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8749 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8750 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8751 CPState state; 8752 8753 /* 64 bit registers have only CRm and Opc1 fields */ 8754 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8755 /* op0 only exists in the AArch64 encodings */ 8756 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8757 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8758 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8759 /* 8760 * This API is only for Arm's system coprocessors (14 and 15) or 8761 * (M-profile or v7A-and-earlier only) for implementation defined 8762 * coprocessors in the range 0..7. Our decode assumes this, since 8763 * 8..13 can be used for other insns including VFP and Neon. See 8764 * valid_cp() in translate.c. Assert here that we haven't tried 8765 * to use an invalid coprocessor number. 8766 */ 8767 switch (r->state) { 8768 case ARM_CP_STATE_BOTH: 8769 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8770 if (r->cp == 0) { 8771 break; 8772 } 8773 /* fall through */ 8774 case ARM_CP_STATE_AA32: 8775 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8776 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8777 assert(r->cp >= 14 && r->cp <= 15); 8778 } else { 8779 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8780 } 8781 break; 8782 case ARM_CP_STATE_AA64: 8783 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8784 break; 8785 default: 8786 g_assert_not_reached(); 8787 } 8788 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8789 * encodes a minimum access level for the register. We roll this 8790 * runtime check into our general permission check code, so check 8791 * here that the reginfo's specified permissions are strict enough 8792 * to encompass the generic architectural permission check. 8793 */ 8794 if (r->state != ARM_CP_STATE_AA32) { 8795 CPAccessRights mask; 8796 switch (r->opc1) { 8797 case 0: 8798 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8799 mask = PL0U_R | PL1_RW; 8800 break; 8801 case 1: case 2: 8802 /* min_EL EL1 */ 8803 mask = PL1_RW; 8804 break; 8805 case 3: 8806 /* min_EL EL0 */ 8807 mask = PL0_RW; 8808 break; 8809 case 4: 8810 case 5: 8811 /* min_EL EL2 */ 8812 mask = PL2_RW; 8813 break; 8814 case 6: 8815 /* min_EL EL3 */ 8816 mask = PL3_RW; 8817 break; 8818 case 7: 8819 /* min_EL EL1, secure mode only (we don't check the latter) */ 8820 mask = PL1_RW; 8821 break; 8822 default: 8823 /* broken reginfo with out-of-range opc1 */ 8824 g_assert_not_reached(); 8825 } 8826 /* assert our permissions are not too lax (stricter is fine) */ 8827 assert((r->access & ~mask) == 0); 8828 } 8829 8830 /* Check that the register definition has enough info to handle 8831 * reads and writes if they are permitted. 8832 */ 8833 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 8834 if (r->access & PL3_R) { 8835 assert((r->fieldoffset || 8836 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8837 r->readfn); 8838 } 8839 if (r->access & PL3_W) { 8840 assert((r->fieldoffset || 8841 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8842 r->writefn); 8843 } 8844 } 8845 8846 for (crm = crmmin; crm <= crmmax; crm++) { 8847 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8848 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8849 for (state = ARM_CP_STATE_AA32; 8850 state <= ARM_CP_STATE_AA64; state++) { 8851 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8852 continue; 8853 } 8854 if (state == ARM_CP_STATE_AA32) { 8855 /* Under AArch32 CP registers can be common 8856 * (same for secure and non-secure world) or banked. 8857 */ 8858 char *name; 8859 8860 switch (r->secure) { 8861 case ARM_CP_SECSTATE_S: 8862 case ARM_CP_SECSTATE_NS: 8863 add_cpreg_to_hashtable(cpu, r, opaque, state, 8864 r->secure, crm, opc1, opc2, 8865 r->name); 8866 break; 8867 case ARM_CP_SECSTATE_BOTH: 8868 name = g_strdup_printf("%s_S", r->name); 8869 add_cpreg_to_hashtable(cpu, r, opaque, state, 8870 ARM_CP_SECSTATE_S, 8871 crm, opc1, opc2, name); 8872 g_free(name); 8873 add_cpreg_to_hashtable(cpu, r, opaque, state, 8874 ARM_CP_SECSTATE_NS, 8875 crm, opc1, opc2, r->name); 8876 break; 8877 default: 8878 g_assert_not_reached(); 8879 } 8880 } else { 8881 /* AArch64 registers get mapped to non-secure instance 8882 * of AArch32 */ 8883 add_cpreg_to_hashtable(cpu, r, opaque, state, 8884 ARM_CP_SECSTATE_NS, 8885 crm, opc1, opc2, r->name); 8886 } 8887 } 8888 } 8889 } 8890 } 8891 } 8892 8893 /* Define a whole list of registers */ 8894 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 8895 void *opaque, size_t len) 8896 { 8897 size_t i; 8898 for (i = 0; i < len; ++i) { 8899 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 8900 } 8901 } 8902 8903 /* 8904 * Modify ARMCPRegInfo for access from userspace. 8905 * 8906 * This is a data driven modification directed by 8907 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8908 * user-space cannot alter any values and dynamic values pertaining to 8909 * execution state are hidden from user space view anyway. 8910 */ 8911 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 8912 const ARMCPRegUserSpaceInfo *mods, 8913 size_t mods_len) 8914 { 8915 for (size_t mi = 0; mi < mods_len; ++mi) { 8916 const ARMCPRegUserSpaceInfo *m = mods + mi; 8917 GPatternSpec *pat = NULL; 8918 8919 if (m->is_glob) { 8920 pat = g_pattern_spec_new(m->name); 8921 } 8922 for (size_t ri = 0; ri < regs_len; ++ri) { 8923 ARMCPRegInfo *r = regs + ri; 8924 8925 if (pat && g_pattern_match_string(pat, r->name)) { 8926 r->type = ARM_CP_CONST; 8927 r->access = PL0U_R; 8928 r->resetvalue = 0; 8929 /* continue */ 8930 } else if (strcmp(r->name, m->name) == 0) { 8931 r->type = ARM_CP_CONST; 8932 r->access = PL0U_R; 8933 r->resetvalue &= m->exported_bits; 8934 r->resetvalue |= m->fixed_bits; 8935 break; 8936 } 8937 } 8938 if (pat) { 8939 g_pattern_spec_free(pat); 8940 } 8941 } 8942 } 8943 8944 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8945 { 8946 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 8947 } 8948 8949 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8950 uint64_t value) 8951 { 8952 /* Helper coprocessor write function for write-ignore registers */ 8953 } 8954 8955 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8956 { 8957 /* Helper coprocessor write function for read-as-zero registers */ 8958 return 0; 8959 } 8960 8961 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8962 { 8963 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8964 } 8965 8966 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8967 { 8968 /* Return true if it is not valid for us to switch to 8969 * this CPU mode (ie all the UNPREDICTABLE cases in 8970 * the ARM ARM CPSRWriteByInstr pseudocode). 8971 */ 8972 8973 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8974 if (write_type == CPSRWriteByInstr && 8975 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8976 mode == ARM_CPU_MODE_HYP)) { 8977 return 1; 8978 } 8979 8980 switch (mode) { 8981 case ARM_CPU_MODE_USR: 8982 return 0; 8983 case ARM_CPU_MODE_SYS: 8984 case ARM_CPU_MODE_SVC: 8985 case ARM_CPU_MODE_ABT: 8986 case ARM_CPU_MODE_UND: 8987 case ARM_CPU_MODE_IRQ: 8988 case ARM_CPU_MODE_FIQ: 8989 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8990 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8991 */ 8992 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8993 * and CPS are treated as illegal mode changes. 8994 */ 8995 if (write_type == CPSRWriteByInstr && 8996 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8997 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8998 return 1; 8999 } 9000 return 0; 9001 case ARM_CPU_MODE_HYP: 9002 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9003 case ARM_CPU_MODE_MON: 9004 return arm_current_el(env) < 3; 9005 default: 9006 return 1; 9007 } 9008 } 9009 9010 uint32_t cpsr_read(CPUARMState *env) 9011 { 9012 int ZF; 9013 ZF = (env->ZF == 0); 9014 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9015 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9016 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9017 | ((env->condexec_bits & 0xfc) << 8) 9018 | (env->GE << 16) | (env->daif & CPSR_AIF); 9019 } 9020 9021 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9022 CPSRWriteType write_type) 9023 { 9024 uint32_t changed_daif; 9025 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9026 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9027 9028 if (mask & CPSR_NZCV) { 9029 env->ZF = (~val) & CPSR_Z; 9030 env->NF = val; 9031 env->CF = (val >> 29) & 1; 9032 env->VF = (val << 3) & 0x80000000; 9033 } 9034 if (mask & CPSR_Q) 9035 env->QF = ((val & CPSR_Q) != 0); 9036 if (mask & CPSR_T) 9037 env->thumb = ((val & CPSR_T) != 0); 9038 if (mask & CPSR_IT_0_1) { 9039 env->condexec_bits &= ~3; 9040 env->condexec_bits |= (val >> 25) & 3; 9041 } 9042 if (mask & CPSR_IT_2_7) { 9043 env->condexec_bits &= 3; 9044 env->condexec_bits |= (val >> 8) & 0xfc; 9045 } 9046 if (mask & CPSR_GE) { 9047 env->GE = (val >> 16) & 0xf; 9048 } 9049 9050 /* In a V7 implementation that includes the security extensions but does 9051 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9052 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9053 * bits respectively. 9054 * 9055 * In a V8 implementation, it is permitted for privileged software to 9056 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9057 */ 9058 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9059 arm_feature(env, ARM_FEATURE_EL3) && 9060 !arm_feature(env, ARM_FEATURE_EL2) && 9061 !arm_is_secure(env)) { 9062 9063 changed_daif = (env->daif ^ val) & mask; 9064 9065 if (changed_daif & CPSR_A) { 9066 /* Check to see if we are allowed to change the masking of async 9067 * abort exceptions from a non-secure state. 9068 */ 9069 if (!(env->cp15.scr_el3 & SCR_AW)) { 9070 qemu_log_mask(LOG_GUEST_ERROR, 9071 "Ignoring attempt to switch CPSR_A flag from " 9072 "non-secure world with SCR.AW bit clear\n"); 9073 mask &= ~CPSR_A; 9074 } 9075 } 9076 9077 if (changed_daif & CPSR_F) { 9078 /* Check to see if we are allowed to change the masking of FIQ 9079 * exceptions from a non-secure state. 9080 */ 9081 if (!(env->cp15.scr_el3 & SCR_FW)) { 9082 qemu_log_mask(LOG_GUEST_ERROR, 9083 "Ignoring attempt to switch CPSR_F flag from " 9084 "non-secure world with SCR.FW bit clear\n"); 9085 mask &= ~CPSR_F; 9086 } 9087 9088 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9089 * If this bit is set software is not allowed to mask 9090 * FIQs, but is allowed to set CPSR_F to 0. 9091 */ 9092 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9093 (val & CPSR_F)) { 9094 qemu_log_mask(LOG_GUEST_ERROR, 9095 "Ignoring attempt to enable CPSR_F flag " 9096 "(non-maskable FIQ [NMFI] support enabled)\n"); 9097 mask &= ~CPSR_F; 9098 } 9099 } 9100 } 9101 9102 env->daif &= ~(CPSR_AIF & mask); 9103 env->daif |= val & CPSR_AIF & mask; 9104 9105 if (write_type != CPSRWriteRaw && 9106 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9107 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9108 /* Note that we can only get here in USR mode if this is a 9109 * gdb stub write; for this case we follow the architectural 9110 * behaviour for guest writes in USR mode of ignoring an attempt 9111 * to switch mode. (Those are caught by translate.c for writes 9112 * triggered by guest instructions.) 9113 */ 9114 mask &= ~CPSR_M; 9115 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9116 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9117 * v7, and has defined behaviour in v8: 9118 * + leave CPSR.M untouched 9119 * + allow changes to the other CPSR fields 9120 * + set PSTATE.IL 9121 * For user changes via the GDB stub, we don't set PSTATE.IL, 9122 * as this would be unnecessarily harsh for a user error. 9123 */ 9124 mask &= ~CPSR_M; 9125 if (write_type != CPSRWriteByGDBStub && 9126 arm_feature(env, ARM_FEATURE_V8)) { 9127 mask |= CPSR_IL; 9128 val |= CPSR_IL; 9129 } 9130 qemu_log_mask(LOG_GUEST_ERROR, 9131 "Illegal AArch32 mode switch attempt from %s to %s\n", 9132 aarch32_mode_name(env->uncached_cpsr), 9133 aarch32_mode_name(val)); 9134 } else { 9135 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9136 write_type == CPSRWriteExceptionReturn ? 9137 "Exception return from AArch32" : 9138 "AArch32 mode switch from", 9139 aarch32_mode_name(env->uncached_cpsr), 9140 aarch32_mode_name(val), env->regs[15]); 9141 switch_mode(env, val & CPSR_M); 9142 } 9143 } 9144 mask &= ~CACHED_CPSR_BITS; 9145 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9146 if (rebuild_hflags) { 9147 arm_rebuild_hflags(env); 9148 } 9149 } 9150 9151 /* Sign/zero extend */ 9152 uint32_t HELPER(sxtb16)(uint32_t x) 9153 { 9154 uint32_t res; 9155 res = (uint16_t)(int8_t)x; 9156 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9157 return res; 9158 } 9159 9160 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9161 { 9162 /* 9163 * Take a division-by-zero exception if necessary; otherwise return 9164 * to get the usual non-trapping division behaviour (result of 0) 9165 */ 9166 if (arm_feature(env, ARM_FEATURE_M) 9167 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9168 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9169 } 9170 } 9171 9172 uint32_t HELPER(uxtb16)(uint32_t x) 9173 { 9174 uint32_t res; 9175 res = (uint16_t)(uint8_t)x; 9176 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9177 return res; 9178 } 9179 9180 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9181 { 9182 if (den == 0) { 9183 handle_possible_div0_trap(env, GETPC()); 9184 return 0; 9185 } 9186 if (num == INT_MIN && den == -1) { 9187 return INT_MIN; 9188 } 9189 return num / den; 9190 } 9191 9192 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9193 { 9194 if (den == 0) { 9195 handle_possible_div0_trap(env, GETPC()); 9196 return 0; 9197 } 9198 return num / den; 9199 } 9200 9201 uint32_t HELPER(rbit)(uint32_t x) 9202 { 9203 return revbit32(x); 9204 } 9205 9206 #ifdef CONFIG_USER_ONLY 9207 9208 static void switch_mode(CPUARMState *env, int mode) 9209 { 9210 ARMCPU *cpu = env_archcpu(env); 9211 9212 if (mode != ARM_CPU_MODE_USR) { 9213 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9214 } 9215 } 9216 9217 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9218 uint32_t cur_el, bool secure) 9219 { 9220 return 1; 9221 } 9222 9223 void aarch64_sync_64_to_32(CPUARMState *env) 9224 { 9225 g_assert_not_reached(); 9226 } 9227 9228 #else 9229 9230 static void switch_mode(CPUARMState *env, int mode) 9231 { 9232 int old_mode; 9233 int i; 9234 9235 old_mode = env->uncached_cpsr & CPSR_M; 9236 if (mode == old_mode) 9237 return; 9238 9239 if (old_mode == ARM_CPU_MODE_FIQ) { 9240 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9241 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9242 } else if (mode == ARM_CPU_MODE_FIQ) { 9243 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9244 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9245 } 9246 9247 i = bank_number(old_mode); 9248 env->banked_r13[i] = env->regs[13]; 9249 env->banked_spsr[i] = env->spsr; 9250 9251 i = bank_number(mode); 9252 env->regs[13] = env->banked_r13[i]; 9253 env->spsr = env->banked_spsr[i]; 9254 9255 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9256 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9257 } 9258 9259 /* Physical Interrupt Target EL Lookup Table 9260 * 9261 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9262 * 9263 * The below multi-dimensional table is used for looking up the target 9264 * exception level given numerous condition criteria. Specifically, the 9265 * target EL is based on SCR and HCR routing controls as well as the 9266 * currently executing EL and secure state. 9267 * 9268 * Dimensions: 9269 * target_el_table[2][2][2][2][2][4] 9270 * | | | | | +--- Current EL 9271 * | | | | +------ Non-secure(0)/Secure(1) 9272 * | | | +--------- HCR mask override 9273 * | | +------------ SCR exec state control 9274 * | +--------------- SCR mask override 9275 * +------------------ 32-bit(0)/64-bit(1) EL3 9276 * 9277 * The table values are as such: 9278 * 0-3 = EL0-EL3 9279 * -1 = Cannot occur 9280 * 9281 * The ARM ARM target EL table includes entries indicating that an "exception 9282 * is not taken". The two cases where this is applicable are: 9283 * 1) An exception is taken from EL3 but the SCR does not have the exception 9284 * routed to EL3. 9285 * 2) An exception is taken from EL2 but the HCR does not have the exception 9286 * routed to EL2. 9287 * In these two cases, the below table contain a target of EL1. This value is 9288 * returned as it is expected that the consumer of the table data will check 9289 * for "target EL >= current EL" to ensure the exception is not taken. 9290 * 9291 * SCR HCR 9292 * 64 EA AMO From 9293 * BIT IRQ IMO Non-secure Secure 9294 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9295 */ 9296 static const int8_t target_el_table[2][2][2][2][2][4] = { 9297 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9298 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9299 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9300 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9301 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9302 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9303 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9304 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9305 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9306 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9307 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9308 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9309 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9310 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9311 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9312 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9313 }; 9314 9315 /* 9316 * Determine the target EL for physical exceptions 9317 */ 9318 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9319 uint32_t cur_el, bool secure) 9320 { 9321 CPUARMState *env = cs->env_ptr; 9322 bool rw; 9323 bool scr; 9324 bool hcr; 9325 int target_el; 9326 /* Is the highest EL AArch64? */ 9327 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9328 uint64_t hcr_el2; 9329 9330 if (arm_feature(env, ARM_FEATURE_EL3)) { 9331 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9332 } else { 9333 /* Either EL2 is the highest EL (and so the EL2 register width 9334 * is given by is64); or there is no EL2 or EL3, in which case 9335 * the value of 'rw' does not affect the table lookup anyway. 9336 */ 9337 rw = is64; 9338 } 9339 9340 hcr_el2 = arm_hcr_el2_eff(env); 9341 switch (excp_idx) { 9342 case EXCP_IRQ: 9343 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9344 hcr = hcr_el2 & HCR_IMO; 9345 break; 9346 case EXCP_FIQ: 9347 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9348 hcr = hcr_el2 & HCR_FMO; 9349 break; 9350 default: 9351 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9352 hcr = hcr_el2 & HCR_AMO; 9353 break; 9354 }; 9355 9356 /* 9357 * For these purposes, TGE and AMO/IMO/FMO both force the 9358 * interrupt to EL2. Fold TGE into the bit extracted above. 9359 */ 9360 hcr |= (hcr_el2 & HCR_TGE) != 0; 9361 9362 /* Perform a table-lookup for the target EL given the current state */ 9363 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9364 9365 assert(target_el > 0); 9366 9367 return target_el; 9368 } 9369 9370 void arm_log_exception(CPUState *cs) 9371 { 9372 int idx = cs->exception_index; 9373 9374 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9375 const char *exc = NULL; 9376 static const char * const excnames[] = { 9377 [EXCP_UDEF] = "Undefined Instruction", 9378 [EXCP_SWI] = "SVC", 9379 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9380 [EXCP_DATA_ABORT] = "Data Abort", 9381 [EXCP_IRQ] = "IRQ", 9382 [EXCP_FIQ] = "FIQ", 9383 [EXCP_BKPT] = "Breakpoint", 9384 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9385 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9386 [EXCP_HVC] = "Hypervisor Call", 9387 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9388 [EXCP_SMC] = "Secure Monitor Call", 9389 [EXCP_VIRQ] = "Virtual IRQ", 9390 [EXCP_VFIQ] = "Virtual FIQ", 9391 [EXCP_SEMIHOST] = "Semihosting call", 9392 [EXCP_NOCP] = "v7M NOCP UsageFault", 9393 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9394 [EXCP_STKOF] = "v8M STKOF UsageFault", 9395 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9396 [EXCP_LSERR] = "v8M LSERR UsageFault", 9397 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9398 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9399 [EXCP_VSERR] = "Virtual SERR", 9400 }; 9401 9402 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9403 exc = excnames[idx]; 9404 } 9405 if (!exc) { 9406 exc = "unknown"; 9407 } 9408 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9409 idx, exc, cs->cpu_index); 9410 } 9411 } 9412 9413 /* 9414 * Function used to synchronize QEMU's AArch64 register set with AArch32 9415 * register set. This is necessary when switching between AArch32 and AArch64 9416 * execution state. 9417 */ 9418 void aarch64_sync_32_to_64(CPUARMState *env) 9419 { 9420 int i; 9421 uint32_t mode = env->uncached_cpsr & CPSR_M; 9422 9423 /* We can blanket copy R[0:7] to X[0:7] */ 9424 for (i = 0; i < 8; i++) { 9425 env->xregs[i] = env->regs[i]; 9426 } 9427 9428 /* 9429 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9430 * Otherwise, they come from the banked user regs. 9431 */ 9432 if (mode == ARM_CPU_MODE_FIQ) { 9433 for (i = 8; i < 13; i++) { 9434 env->xregs[i] = env->usr_regs[i - 8]; 9435 } 9436 } else { 9437 for (i = 8; i < 13; i++) { 9438 env->xregs[i] = env->regs[i]; 9439 } 9440 } 9441 9442 /* 9443 * Registers x13-x23 are the various mode SP and FP registers. Registers 9444 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9445 * from the mode banked register. 9446 */ 9447 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9448 env->xregs[13] = env->regs[13]; 9449 env->xregs[14] = env->regs[14]; 9450 } else { 9451 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9452 /* HYP is an exception in that it is copied from r14 */ 9453 if (mode == ARM_CPU_MODE_HYP) { 9454 env->xregs[14] = env->regs[14]; 9455 } else { 9456 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9457 } 9458 } 9459 9460 if (mode == ARM_CPU_MODE_HYP) { 9461 env->xregs[15] = env->regs[13]; 9462 } else { 9463 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9464 } 9465 9466 if (mode == ARM_CPU_MODE_IRQ) { 9467 env->xregs[16] = env->regs[14]; 9468 env->xregs[17] = env->regs[13]; 9469 } else { 9470 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9471 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9472 } 9473 9474 if (mode == ARM_CPU_MODE_SVC) { 9475 env->xregs[18] = env->regs[14]; 9476 env->xregs[19] = env->regs[13]; 9477 } else { 9478 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9479 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9480 } 9481 9482 if (mode == ARM_CPU_MODE_ABT) { 9483 env->xregs[20] = env->regs[14]; 9484 env->xregs[21] = env->regs[13]; 9485 } else { 9486 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9487 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9488 } 9489 9490 if (mode == ARM_CPU_MODE_UND) { 9491 env->xregs[22] = env->regs[14]; 9492 env->xregs[23] = env->regs[13]; 9493 } else { 9494 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9495 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9496 } 9497 9498 /* 9499 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9500 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9501 * FIQ bank for r8-r14. 9502 */ 9503 if (mode == ARM_CPU_MODE_FIQ) { 9504 for (i = 24; i < 31; i++) { 9505 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9506 } 9507 } else { 9508 for (i = 24; i < 29; i++) { 9509 env->xregs[i] = env->fiq_regs[i - 24]; 9510 } 9511 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9512 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9513 } 9514 9515 env->pc = env->regs[15]; 9516 } 9517 9518 /* 9519 * Function used to synchronize QEMU's AArch32 register set with AArch64 9520 * register set. This is necessary when switching between AArch32 and AArch64 9521 * execution state. 9522 */ 9523 void aarch64_sync_64_to_32(CPUARMState *env) 9524 { 9525 int i; 9526 uint32_t mode = env->uncached_cpsr & CPSR_M; 9527 9528 /* We can blanket copy X[0:7] to R[0:7] */ 9529 for (i = 0; i < 8; i++) { 9530 env->regs[i] = env->xregs[i]; 9531 } 9532 9533 /* 9534 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9535 * Otherwise, we copy x8-x12 into the banked user regs. 9536 */ 9537 if (mode == ARM_CPU_MODE_FIQ) { 9538 for (i = 8; i < 13; i++) { 9539 env->usr_regs[i - 8] = env->xregs[i]; 9540 } 9541 } else { 9542 for (i = 8; i < 13; i++) { 9543 env->regs[i] = env->xregs[i]; 9544 } 9545 } 9546 9547 /* 9548 * Registers r13 & r14 depend on the current mode. 9549 * If we are in a given mode, we copy the corresponding x registers to r13 9550 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9551 * for the mode. 9552 */ 9553 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9554 env->regs[13] = env->xregs[13]; 9555 env->regs[14] = env->xregs[14]; 9556 } else { 9557 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9558 9559 /* 9560 * HYP is an exception in that it does not have its own banked r14 but 9561 * shares the USR r14 9562 */ 9563 if (mode == ARM_CPU_MODE_HYP) { 9564 env->regs[14] = env->xregs[14]; 9565 } else { 9566 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9567 } 9568 } 9569 9570 if (mode == ARM_CPU_MODE_HYP) { 9571 env->regs[13] = env->xregs[15]; 9572 } else { 9573 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9574 } 9575 9576 if (mode == ARM_CPU_MODE_IRQ) { 9577 env->regs[14] = env->xregs[16]; 9578 env->regs[13] = env->xregs[17]; 9579 } else { 9580 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9581 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9582 } 9583 9584 if (mode == ARM_CPU_MODE_SVC) { 9585 env->regs[14] = env->xregs[18]; 9586 env->regs[13] = env->xregs[19]; 9587 } else { 9588 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9589 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9590 } 9591 9592 if (mode == ARM_CPU_MODE_ABT) { 9593 env->regs[14] = env->xregs[20]; 9594 env->regs[13] = env->xregs[21]; 9595 } else { 9596 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9597 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9598 } 9599 9600 if (mode == ARM_CPU_MODE_UND) { 9601 env->regs[14] = env->xregs[22]; 9602 env->regs[13] = env->xregs[23]; 9603 } else { 9604 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9605 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9606 } 9607 9608 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9609 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9610 * FIQ bank for r8-r14. 9611 */ 9612 if (mode == ARM_CPU_MODE_FIQ) { 9613 for (i = 24; i < 31; i++) { 9614 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9615 } 9616 } else { 9617 for (i = 24; i < 29; i++) { 9618 env->fiq_regs[i - 24] = env->xregs[i]; 9619 } 9620 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9621 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9622 } 9623 9624 env->regs[15] = env->pc; 9625 } 9626 9627 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9628 uint32_t mask, uint32_t offset, 9629 uint32_t newpc) 9630 { 9631 int new_el; 9632 9633 /* Change the CPU state so as to actually take the exception. */ 9634 switch_mode(env, new_mode); 9635 9636 /* 9637 * For exceptions taken to AArch32 we must clear the SS bit in both 9638 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9639 */ 9640 env->pstate &= ~PSTATE_SS; 9641 env->spsr = cpsr_read(env); 9642 /* Clear IT bits. */ 9643 env->condexec_bits = 0; 9644 /* Switch to the new mode, and to the correct instruction set. */ 9645 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9646 9647 /* This must be after mode switching. */ 9648 new_el = arm_current_el(env); 9649 9650 /* Set new mode endianness */ 9651 env->uncached_cpsr &= ~CPSR_E; 9652 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9653 env->uncached_cpsr |= CPSR_E; 9654 } 9655 /* J and IL must always be cleared for exception entry */ 9656 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9657 env->daif |= mask; 9658 9659 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9660 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9661 env->uncached_cpsr |= CPSR_SSBS; 9662 } else { 9663 env->uncached_cpsr &= ~CPSR_SSBS; 9664 } 9665 } 9666 9667 if (new_mode == ARM_CPU_MODE_HYP) { 9668 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9669 env->elr_el[2] = env->regs[15]; 9670 } else { 9671 /* CPSR.PAN is normally preserved preserved unless... */ 9672 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9673 switch (new_el) { 9674 case 3: 9675 if (!arm_is_secure_below_el3(env)) { 9676 /* ... the target is EL3, from non-secure state. */ 9677 env->uncached_cpsr &= ~CPSR_PAN; 9678 break; 9679 } 9680 /* ... the target is EL3, from secure state ... */ 9681 /* fall through */ 9682 case 1: 9683 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9684 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9685 env->uncached_cpsr |= CPSR_PAN; 9686 } 9687 break; 9688 } 9689 } 9690 /* 9691 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9692 * and we should just guard the thumb mode on V4 9693 */ 9694 if (arm_feature(env, ARM_FEATURE_V4T)) { 9695 env->thumb = 9696 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9697 } 9698 env->regs[14] = env->regs[15] + offset; 9699 } 9700 env->regs[15] = newpc; 9701 arm_rebuild_hflags(env); 9702 } 9703 9704 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9705 { 9706 /* 9707 * Handle exception entry to Hyp mode; this is sufficiently 9708 * different to entry to other AArch32 modes that we handle it 9709 * separately here. 9710 * 9711 * The vector table entry used is always the 0x14 Hyp mode entry point, 9712 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9713 * The offset applied to the preferred return address is always zero 9714 * (see DDI0487C.a section G1.12.3). 9715 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9716 */ 9717 uint32_t addr, mask; 9718 ARMCPU *cpu = ARM_CPU(cs); 9719 CPUARMState *env = &cpu->env; 9720 9721 switch (cs->exception_index) { 9722 case EXCP_UDEF: 9723 addr = 0x04; 9724 break; 9725 case EXCP_SWI: 9726 addr = 0x08; 9727 break; 9728 case EXCP_BKPT: 9729 /* Fall through to prefetch abort. */ 9730 case EXCP_PREFETCH_ABORT: 9731 env->cp15.ifar_s = env->exception.vaddress; 9732 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9733 (uint32_t)env->exception.vaddress); 9734 addr = 0x0c; 9735 break; 9736 case EXCP_DATA_ABORT: 9737 env->cp15.dfar_s = env->exception.vaddress; 9738 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9739 (uint32_t)env->exception.vaddress); 9740 addr = 0x10; 9741 break; 9742 case EXCP_IRQ: 9743 addr = 0x18; 9744 break; 9745 case EXCP_FIQ: 9746 addr = 0x1c; 9747 break; 9748 case EXCP_HVC: 9749 addr = 0x08; 9750 break; 9751 case EXCP_HYP_TRAP: 9752 addr = 0x14; 9753 break; 9754 default: 9755 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9756 } 9757 9758 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9759 if (!arm_feature(env, ARM_FEATURE_V8)) { 9760 /* 9761 * QEMU syndrome values are v8-style. v7 has the IL bit 9762 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9763 * If this is a v7 CPU, squash the IL bit in those cases. 9764 */ 9765 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9766 (cs->exception_index == EXCP_DATA_ABORT && 9767 !(env->exception.syndrome & ARM_EL_ISV)) || 9768 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9769 env->exception.syndrome &= ~ARM_EL_IL; 9770 } 9771 } 9772 env->cp15.esr_el[2] = env->exception.syndrome; 9773 } 9774 9775 if (arm_current_el(env) != 2 && addr < 0x14) { 9776 addr = 0x14; 9777 } 9778 9779 mask = 0; 9780 if (!(env->cp15.scr_el3 & SCR_EA)) { 9781 mask |= CPSR_A; 9782 } 9783 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9784 mask |= CPSR_I; 9785 } 9786 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9787 mask |= CPSR_F; 9788 } 9789 9790 addr += env->cp15.hvbar; 9791 9792 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9793 } 9794 9795 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9796 { 9797 ARMCPU *cpu = ARM_CPU(cs); 9798 CPUARMState *env = &cpu->env; 9799 uint32_t addr; 9800 uint32_t mask; 9801 int new_mode; 9802 uint32_t offset; 9803 uint32_t moe; 9804 9805 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9806 switch (syn_get_ec(env->exception.syndrome)) { 9807 case EC_BREAKPOINT: 9808 case EC_BREAKPOINT_SAME_EL: 9809 moe = 1; 9810 break; 9811 case EC_WATCHPOINT: 9812 case EC_WATCHPOINT_SAME_EL: 9813 moe = 10; 9814 break; 9815 case EC_AA32_BKPT: 9816 moe = 3; 9817 break; 9818 case EC_VECTORCATCH: 9819 moe = 5; 9820 break; 9821 default: 9822 moe = 0; 9823 break; 9824 } 9825 9826 if (moe) { 9827 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9828 } 9829 9830 if (env->exception.target_el == 2) { 9831 arm_cpu_do_interrupt_aarch32_hyp(cs); 9832 return; 9833 } 9834 9835 switch (cs->exception_index) { 9836 case EXCP_UDEF: 9837 new_mode = ARM_CPU_MODE_UND; 9838 addr = 0x04; 9839 mask = CPSR_I; 9840 if (env->thumb) 9841 offset = 2; 9842 else 9843 offset = 4; 9844 break; 9845 case EXCP_SWI: 9846 new_mode = ARM_CPU_MODE_SVC; 9847 addr = 0x08; 9848 mask = CPSR_I; 9849 /* The PC already points to the next instruction. */ 9850 offset = 0; 9851 break; 9852 case EXCP_BKPT: 9853 /* Fall through to prefetch abort. */ 9854 case EXCP_PREFETCH_ABORT: 9855 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9856 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9857 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9858 env->exception.fsr, (uint32_t)env->exception.vaddress); 9859 new_mode = ARM_CPU_MODE_ABT; 9860 addr = 0x0c; 9861 mask = CPSR_A | CPSR_I; 9862 offset = 4; 9863 break; 9864 case EXCP_DATA_ABORT: 9865 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9866 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9867 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9868 env->exception.fsr, 9869 (uint32_t)env->exception.vaddress); 9870 new_mode = ARM_CPU_MODE_ABT; 9871 addr = 0x10; 9872 mask = CPSR_A | CPSR_I; 9873 offset = 8; 9874 break; 9875 case EXCP_IRQ: 9876 new_mode = ARM_CPU_MODE_IRQ; 9877 addr = 0x18; 9878 /* Disable IRQ and imprecise data aborts. */ 9879 mask = CPSR_A | CPSR_I; 9880 offset = 4; 9881 if (env->cp15.scr_el3 & SCR_IRQ) { 9882 /* IRQ routed to monitor mode */ 9883 new_mode = ARM_CPU_MODE_MON; 9884 mask |= CPSR_F; 9885 } 9886 break; 9887 case EXCP_FIQ: 9888 new_mode = ARM_CPU_MODE_FIQ; 9889 addr = 0x1c; 9890 /* Disable FIQ, IRQ and imprecise data aborts. */ 9891 mask = CPSR_A | CPSR_I | CPSR_F; 9892 if (env->cp15.scr_el3 & SCR_FIQ) { 9893 /* FIQ routed to monitor mode */ 9894 new_mode = ARM_CPU_MODE_MON; 9895 } 9896 offset = 4; 9897 break; 9898 case EXCP_VIRQ: 9899 new_mode = ARM_CPU_MODE_IRQ; 9900 addr = 0x18; 9901 /* Disable IRQ and imprecise data aborts. */ 9902 mask = CPSR_A | CPSR_I; 9903 offset = 4; 9904 break; 9905 case EXCP_VFIQ: 9906 new_mode = ARM_CPU_MODE_FIQ; 9907 addr = 0x1c; 9908 /* Disable FIQ, IRQ and imprecise data aborts. */ 9909 mask = CPSR_A | CPSR_I | CPSR_F; 9910 offset = 4; 9911 break; 9912 case EXCP_VSERR: 9913 { 9914 /* 9915 * Note that this is reported as a data abort, but the DFAR 9916 * has an UNKNOWN value. Construct the SError syndrome from 9917 * AET and ExT fields. 9918 */ 9919 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 9920 9921 if (extended_addresses_enabled(env)) { 9922 env->exception.fsr = arm_fi_to_lfsc(&fi); 9923 } else { 9924 env->exception.fsr = arm_fi_to_sfsc(&fi); 9925 } 9926 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 9927 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9928 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 9929 env->exception.fsr); 9930 9931 new_mode = ARM_CPU_MODE_ABT; 9932 addr = 0x10; 9933 mask = CPSR_A | CPSR_I; 9934 offset = 8; 9935 } 9936 break; 9937 case EXCP_SMC: 9938 new_mode = ARM_CPU_MODE_MON; 9939 addr = 0x08; 9940 mask = CPSR_A | CPSR_I | CPSR_F; 9941 offset = 0; 9942 break; 9943 default: 9944 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9945 return; /* Never happens. Keep compiler happy. */ 9946 } 9947 9948 if (new_mode == ARM_CPU_MODE_MON) { 9949 addr += env->cp15.mvbar; 9950 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9951 /* High vectors. When enabled, base address cannot be remapped. */ 9952 addr += 0xffff0000; 9953 } else { 9954 /* ARM v7 architectures provide a vector base address register to remap 9955 * the interrupt vector table. 9956 * This register is only followed in non-monitor mode, and is banked. 9957 * Note: only bits 31:5 are valid. 9958 */ 9959 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9960 } 9961 9962 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9963 env->cp15.scr_el3 &= ~SCR_NS; 9964 } 9965 9966 take_aarch32_exception(env, new_mode, mask, offset, addr); 9967 } 9968 9969 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9970 { 9971 /* 9972 * Return the register number of the AArch64 view of the AArch32 9973 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9974 * be that of the AArch32 mode the exception came from. 9975 */ 9976 int mode = env->uncached_cpsr & CPSR_M; 9977 9978 switch (aarch32_reg) { 9979 case 0 ... 7: 9980 return aarch32_reg; 9981 case 8 ... 12: 9982 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9983 case 13: 9984 switch (mode) { 9985 case ARM_CPU_MODE_USR: 9986 case ARM_CPU_MODE_SYS: 9987 return 13; 9988 case ARM_CPU_MODE_HYP: 9989 return 15; 9990 case ARM_CPU_MODE_IRQ: 9991 return 17; 9992 case ARM_CPU_MODE_SVC: 9993 return 19; 9994 case ARM_CPU_MODE_ABT: 9995 return 21; 9996 case ARM_CPU_MODE_UND: 9997 return 23; 9998 case ARM_CPU_MODE_FIQ: 9999 return 29; 10000 default: 10001 g_assert_not_reached(); 10002 } 10003 case 14: 10004 switch (mode) { 10005 case ARM_CPU_MODE_USR: 10006 case ARM_CPU_MODE_SYS: 10007 case ARM_CPU_MODE_HYP: 10008 return 14; 10009 case ARM_CPU_MODE_IRQ: 10010 return 16; 10011 case ARM_CPU_MODE_SVC: 10012 return 18; 10013 case ARM_CPU_MODE_ABT: 10014 return 20; 10015 case ARM_CPU_MODE_UND: 10016 return 22; 10017 case ARM_CPU_MODE_FIQ: 10018 return 30; 10019 default: 10020 g_assert_not_reached(); 10021 } 10022 case 15: 10023 return 31; 10024 default: 10025 g_assert_not_reached(); 10026 } 10027 } 10028 10029 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10030 { 10031 uint32_t ret = cpsr_read(env); 10032 10033 /* Move DIT to the correct location for SPSR_ELx */ 10034 if (ret & CPSR_DIT) { 10035 ret &= ~CPSR_DIT; 10036 ret |= PSTATE_DIT; 10037 } 10038 /* Merge PSTATE.SS into SPSR_ELx */ 10039 ret |= env->pstate & PSTATE_SS; 10040 10041 return ret; 10042 } 10043 10044 /* Handle exception entry to a target EL which is using AArch64 */ 10045 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10046 { 10047 ARMCPU *cpu = ARM_CPU(cs); 10048 CPUARMState *env = &cpu->env; 10049 unsigned int new_el = env->exception.target_el; 10050 target_ulong addr = env->cp15.vbar_el[new_el]; 10051 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10052 unsigned int old_mode; 10053 unsigned int cur_el = arm_current_el(env); 10054 int rt; 10055 10056 /* 10057 * Note that new_el can never be 0. If cur_el is 0, then 10058 * el0_a64 is is_a64(), else el0_a64 is ignored. 10059 */ 10060 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10061 10062 if (cur_el < new_el) { 10063 /* Entry vector offset depends on whether the implemented EL 10064 * immediately lower than the target level is using AArch32 or AArch64 10065 */ 10066 bool is_aa64; 10067 uint64_t hcr; 10068 10069 switch (new_el) { 10070 case 3: 10071 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10072 break; 10073 case 2: 10074 hcr = arm_hcr_el2_eff(env); 10075 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10076 is_aa64 = (hcr & HCR_RW) != 0; 10077 break; 10078 } 10079 /* fall through */ 10080 case 1: 10081 is_aa64 = is_a64(env); 10082 break; 10083 default: 10084 g_assert_not_reached(); 10085 } 10086 10087 if (is_aa64) { 10088 addr += 0x400; 10089 } else { 10090 addr += 0x600; 10091 } 10092 } else if (pstate_read(env) & PSTATE_SP) { 10093 addr += 0x200; 10094 } 10095 10096 switch (cs->exception_index) { 10097 case EXCP_PREFETCH_ABORT: 10098 case EXCP_DATA_ABORT: 10099 env->cp15.far_el[new_el] = env->exception.vaddress; 10100 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10101 env->cp15.far_el[new_el]); 10102 /* fall through */ 10103 case EXCP_BKPT: 10104 case EXCP_UDEF: 10105 case EXCP_SWI: 10106 case EXCP_HVC: 10107 case EXCP_HYP_TRAP: 10108 case EXCP_SMC: 10109 switch (syn_get_ec(env->exception.syndrome)) { 10110 case EC_ADVSIMDFPACCESSTRAP: 10111 /* 10112 * QEMU internal FP/SIMD syndromes from AArch32 include the 10113 * TA and coproc fields which are only exposed if the exception 10114 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10115 * AArch64 format syndrome. 10116 */ 10117 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10118 break; 10119 case EC_CP14RTTRAP: 10120 case EC_CP15RTTRAP: 10121 case EC_CP14DTTRAP: 10122 /* 10123 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10124 * the raw register field from the insn; when taking this to 10125 * AArch64 we must convert it to the AArch64 view of the register 10126 * number. Notice that we read a 4-bit AArch32 register number and 10127 * write back a 5-bit AArch64 one. 10128 */ 10129 rt = extract32(env->exception.syndrome, 5, 4); 10130 rt = aarch64_regnum(env, rt); 10131 env->exception.syndrome = deposit32(env->exception.syndrome, 10132 5, 5, rt); 10133 break; 10134 case EC_CP15RRTTRAP: 10135 case EC_CP14RRTTRAP: 10136 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10137 rt = extract32(env->exception.syndrome, 5, 4); 10138 rt = aarch64_regnum(env, rt); 10139 env->exception.syndrome = deposit32(env->exception.syndrome, 10140 5, 5, rt); 10141 rt = extract32(env->exception.syndrome, 10, 4); 10142 rt = aarch64_regnum(env, rt); 10143 env->exception.syndrome = deposit32(env->exception.syndrome, 10144 10, 5, rt); 10145 break; 10146 } 10147 env->cp15.esr_el[new_el] = env->exception.syndrome; 10148 break; 10149 case EXCP_IRQ: 10150 case EXCP_VIRQ: 10151 addr += 0x80; 10152 break; 10153 case EXCP_FIQ: 10154 case EXCP_VFIQ: 10155 addr += 0x100; 10156 break; 10157 case EXCP_VSERR: 10158 addr += 0x180; 10159 /* Construct the SError syndrome from IDS and ISS fields. */ 10160 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10161 env->cp15.esr_el[new_el] = env->exception.syndrome; 10162 break; 10163 default: 10164 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10165 } 10166 10167 if (is_a64(env)) { 10168 old_mode = pstate_read(env); 10169 aarch64_save_sp(env, arm_current_el(env)); 10170 env->elr_el[new_el] = env->pc; 10171 } else { 10172 old_mode = cpsr_read_for_spsr_elx(env); 10173 env->elr_el[new_el] = env->regs[15]; 10174 10175 aarch64_sync_32_to_64(env); 10176 10177 env->condexec_bits = 0; 10178 } 10179 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10180 10181 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10182 env->elr_el[new_el]); 10183 10184 if (cpu_isar_feature(aa64_pan, cpu)) { 10185 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10186 new_mode |= old_mode & PSTATE_PAN; 10187 switch (new_el) { 10188 case 2: 10189 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10190 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10191 != (HCR_E2H | HCR_TGE)) { 10192 break; 10193 } 10194 /* fall through */ 10195 case 1: 10196 /* ... the target is EL1 ... */ 10197 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10198 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10199 new_mode |= PSTATE_PAN; 10200 } 10201 break; 10202 } 10203 } 10204 if (cpu_isar_feature(aa64_mte, cpu)) { 10205 new_mode |= PSTATE_TCO; 10206 } 10207 10208 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10209 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10210 new_mode |= PSTATE_SSBS; 10211 } else { 10212 new_mode &= ~PSTATE_SSBS; 10213 } 10214 } 10215 10216 pstate_write(env, PSTATE_DAIF | new_mode); 10217 env->aarch64 = true; 10218 aarch64_restore_sp(env, new_el); 10219 helper_rebuild_hflags_a64(env, new_el); 10220 10221 env->pc = addr; 10222 10223 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10224 new_el, env->pc, pstate_read(env)); 10225 } 10226 10227 /* 10228 * Do semihosting call and set the appropriate return value. All the 10229 * permission and validity checks have been done at translate time. 10230 * 10231 * We only see semihosting exceptions in TCG only as they are not 10232 * trapped to the hypervisor in KVM. 10233 */ 10234 #ifdef CONFIG_TCG 10235 static void handle_semihosting(CPUState *cs) 10236 { 10237 ARMCPU *cpu = ARM_CPU(cs); 10238 CPUARMState *env = &cpu->env; 10239 10240 if (is_a64(env)) { 10241 qemu_log_mask(CPU_LOG_INT, 10242 "...handling as semihosting call 0x%" PRIx64 "\n", 10243 env->xregs[0]); 10244 env->xregs[0] = do_common_semihosting(cs); 10245 env->pc += 4; 10246 } else { 10247 qemu_log_mask(CPU_LOG_INT, 10248 "...handling as semihosting call 0x%x\n", 10249 env->regs[0]); 10250 env->regs[0] = do_common_semihosting(cs); 10251 env->regs[15] += env->thumb ? 2 : 4; 10252 } 10253 } 10254 #endif 10255 10256 /* Handle a CPU exception for A and R profile CPUs. 10257 * Do any appropriate logging, handle PSCI calls, and then hand off 10258 * to the AArch64-entry or AArch32-entry function depending on the 10259 * target exception level's register width. 10260 * 10261 * Note: this is used for both TCG (as the do_interrupt tcg op), 10262 * and KVM to re-inject guest debug exceptions, and to 10263 * inject a Synchronous-External-Abort. 10264 */ 10265 void arm_cpu_do_interrupt(CPUState *cs) 10266 { 10267 ARMCPU *cpu = ARM_CPU(cs); 10268 CPUARMState *env = &cpu->env; 10269 unsigned int new_el = env->exception.target_el; 10270 10271 assert(!arm_feature(env, ARM_FEATURE_M)); 10272 10273 arm_log_exception(cs); 10274 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10275 new_el); 10276 if (qemu_loglevel_mask(CPU_LOG_INT) 10277 && !excp_is_internal(cs->exception_index)) { 10278 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10279 syn_get_ec(env->exception.syndrome), 10280 env->exception.syndrome); 10281 } 10282 10283 if (arm_is_psci_call(cpu, cs->exception_index)) { 10284 arm_handle_psci_call(cpu); 10285 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10286 return; 10287 } 10288 10289 /* 10290 * Semihosting semantics depend on the register width of the code 10291 * that caused the exception, not the target exception level, so 10292 * must be handled here. 10293 */ 10294 #ifdef CONFIG_TCG 10295 if (cs->exception_index == EXCP_SEMIHOST) { 10296 handle_semihosting(cs); 10297 return; 10298 } 10299 #endif 10300 10301 /* Hooks may change global state so BQL should be held, also the 10302 * BQL needs to be held for any modification of 10303 * cs->interrupt_request. 10304 */ 10305 g_assert(qemu_mutex_iothread_locked()); 10306 10307 arm_call_pre_el_change_hook(cpu); 10308 10309 assert(!excp_is_internal(cs->exception_index)); 10310 if (arm_el_is_aa64(env, new_el)) { 10311 arm_cpu_do_interrupt_aarch64(cs); 10312 } else { 10313 arm_cpu_do_interrupt_aarch32(cs); 10314 } 10315 10316 arm_call_el_change_hook(cpu); 10317 10318 if (!kvm_enabled()) { 10319 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10320 } 10321 } 10322 #endif /* !CONFIG_USER_ONLY */ 10323 10324 uint64_t arm_sctlr(CPUARMState *env, int el) 10325 { 10326 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10327 if (el == 0) { 10328 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10329 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10330 ? 2 : 1; 10331 } 10332 return env->cp15.sctlr_el[el]; 10333 } 10334 10335 /* Return the SCTLR value which controls this address translation regime */ 10336 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10337 { 10338 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10339 } 10340 10341 #ifndef CONFIG_USER_ONLY 10342 10343 /* Return true if the specified stage of address translation is disabled */ 10344 static inline bool regime_translation_disabled(CPUARMState *env, 10345 ARMMMUIdx mmu_idx) 10346 { 10347 uint64_t hcr_el2; 10348 10349 if (arm_feature(env, ARM_FEATURE_M)) { 10350 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10351 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10352 case R_V7M_MPU_CTRL_ENABLE_MASK: 10353 /* Enabled, but not for HardFault and NMI */ 10354 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10355 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10356 /* Enabled for all cases */ 10357 return false; 10358 case 0: 10359 default: 10360 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10361 * we warned about that in armv7m_nvic.c when the guest set it. 10362 */ 10363 return true; 10364 } 10365 } 10366 10367 hcr_el2 = arm_hcr_el2_eff(env); 10368 10369 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10370 /* HCR.DC means HCR.VM behaves as 1 */ 10371 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10372 } 10373 10374 if (hcr_el2 & HCR_TGE) { 10375 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10376 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10377 return true; 10378 } 10379 } 10380 10381 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10382 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10383 return true; 10384 } 10385 10386 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10387 } 10388 10389 static inline bool regime_translation_big_endian(CPUARMState *env, 10390 ARMMMUIdx mmu_idx) 10391 { 10392 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10393 } 10394 10395 /* Return the TTBR associated with this translation regime */ 10396 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10397 int ttbrn) 10398 { 10399 if (mmu_idx == ARMMMUIdx_Stage2) { 10400 return env->cp15.vttbr_el2; 10401 } 10402 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10403 return env->cp15.vsttbr_el2; 10404 } 10405 if (ttbrn == 0) { 10406 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10407 } else { 10408 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10409 } 10410 } 10411 10412 #endif /* !CONFIG_USER_ONLY */ 10413 10414 /* Convert a possible stage1+2 MMU index into the appropriate 10415 * stage 1 MMU index 10416 */ 10417 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10418 { 10419 switch (mmu_idx) { 10420 case ARMMMUIdx_SE10_0: 10421 return ARMMMUIdx_Stage1_SE0; 10422 case ARMMMUIdx_SE10_1: 10423 return ARMMMUIdx_Stage1_SE1; 10424 case ARMMMUIdx_SE10_1_PAN: 10425 return ARMMMUIdx_Stage1_SE1_PAN; 10426 case ARMMMUIdx_E10_0: 10427 return ARMMMUIdx_Stage1_E0; 10428 case ARMMMUIdx_E10_1: 10429 return ARMMMUIdx_Stage1_E1; 10430 case ARMMMUIdx_E10_1_PAN: 10431 return ARMMMUIdx_Stage1_E1_PAN; 10432 default: 10433 return mmu_idx; 10434 } 10435 } 10436 10437 /* Return true if the translation regime is using LPAE format page tables */ 10438 static inline bool regime_using_lpae_format(CPUARMState *env, 10439 ARMMMUIdx mmu_idx) 10440 { 10441 int el = regime_el(env, mmu_idx); 10442 if (el == 2 || arm_el_is_aa64(env, el)) { 10443 return true; 10444 } 10445 if (arm_feature(env, ARM_FEATURE_LPAE) 10446 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10447 return true; 10448 } 10449 return false; 10450 } 10451 10452 /* Returns true if the stage 1 translation regime is using LPAE format page 10453 * tables. Used when raising alignment exceptions, whose FSR changes depending 10454 * on whether the long or short descriptor format is in use. */ 10455 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10456 { 10457 mmu_idx = stage_1_mmu_idx(mmu_idx); 10458 10459 return regime_using_lpae_format(env, mmu_idx); 10460 } 10461 10462 #ifndef CONFIG_USER_ONLY 10463 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10464 { 10465 switch (mmu_idx) { 10466 case ARMMMUIdx_SE10_0: 10467 case ARMMMUIdx_E20_0: 10468 case ARMMMUIdx_SE20_0: 10469 case ARMMMUIdx_Stage1_E0: 10470 case ARMMMUIdx_Stage1_SE0: 10471 case ARMMMUIdx_MUser: 10472 case ARMMMUIdx_MSUser: 10473 case ARMMMUIdx_MUserNegPri: 10474 case ARMMMUIdx_MSUserNegPri: 10475 return true; 10476 default: 10477 return false; 10478 case ARMMMUIdx_E10_0: 10479 case ARMMMUIdx_E10_1: 10480 case ARMMMUIdx_E10_1_PAN: 10481 g_assert_not_reached(); 10482 } 10483 } 10484 10485 /* Translate section/page access permissions to page 10486 * R/W protection flags 10487 * 10488 * @env: CPUARMState 10489 * @mmu_idx: MMU index indicating required translation regime 10490 * @ap: The 3-bit access permissions (AP[2:0]) 10491 * @domain_prot: The 2-bit domain access permissions 10492 */ 10493 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10494 int ap, int domain_prot) 10495 { 10496 bool is_user = regime_is_user(env, mmu_idx); 10497 10498 if (domain_prot == 3) { 10499 return PAGE_READ | PAGE_WRITE; 10500 } 10501 10502 switch (ap) { 10503 case 0: 10504 if (arm_feature(env, ARM_FEATURE_V7)) { 10505 return 0; 10506 } 10507 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10508 case SCTLR_S: 10509 return is_user ? 0 : PAGE_READ; 10510 case SCTLR_R: 10511 return PAGE_READ; 10512 default: 10513 return 0; 10514 } 10515 case 1: 10516 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10517 case 2: 10518 if (is_user) { 10519 return PAGE_READ; 10520 } else { 10521 return PAGE_READ | PAGE_WRITE; 10522 } 10523 case 3: 10524 return PAGE_READ | PAGE_WRITE; 10525 case 4: /* Reserved. */ 10526 return 0; 10527 case 5: 10528 return is_user ? 0 : PAGE_READ; 10529 case 6: 10530 return PAGE_READ; 10531 case 7: 10532 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10533 return 0; 10534 } 10535 return PAGE_READ; 10536 default: 10537 g_assert_not_reached(); 10538 } 10539 } 10540 10541 /* Translate section/page access permissions to page 10542 * R/W protection flags. 10543 * 10544 * @ap: The 2-bit simple AP (AP[2:1]) 10545 * @is_user: TRUE if accessing from PL0 10546 */ 10547 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10548 { 10549 switch (ap) { 10550 case 0: 10551 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10552 case 1: 10553 return PAGE_READ | PAGE_WRITE; 10554 case 2: 10555 return is_user ? 0 : PAGE_READ; 10556 case 3: 10557 return PAGE_READ; 10558 default: 10559 g_assert_not_reached(); 10560 } 10561 } 10562 10563 static inline int 10564 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10565 { 10566 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10567 } 10568 10569 /* Translate S2 section/page access permissions to protection flags 10570 * 10571 * @env: CPUARMState 10572 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10573 * @xn: XN (execute-never) bits 10574 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10575 */ 10576 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10577 { 10578 int prot = 0; 10579 10580 if (s2ap & 1) { 10581 prot |= PAGE_READ; 10582 } 10583 if (s2ap & 2) { 10584 prot |= PAGE_WRITE; 10585 } 10586 10587 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10588 switch (xn) { 10589 case 0: 10590 prot |= PAGE_EXEC; 10591 break; 10592 case 1: 10593 if (s1_is_el0) { 10594 prot |= PAGE_EXEC; 10595 } 10596 break; 10597 case 2: 10598 break; 10599 case 3: 10600 if (!s1_is_el0) { 10601 prot |= PAGE_EXEC; 10602 } 10603 break; 10604 default: 10605 g_assert_not_reached(); 10606 } 10607 } else { 10608 if (!extract32(xn, 1, 1)) { 10609 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10610 prot |= PAGE_EXEC; 10611 } 10612 } 10613 } 10614 return prot; 10615 } 10616 10617 /* Translate section/page access permissions to protection flags 10618 * 10619 * @env: CPUARMState 10620 * @mmu_idx: MMU index indicating required translation regime 10621 * @is_aa64: TRUE if AArch64 10622 * @ap: The 2-bit simple AP (AP[2:1]) 10623 * @ns: NS (non-secure) bit 10624 * @xn: XN (execute-never) bit 10625 * @pxn: PXN (privileged execute-never) bit 10626 */ 10627 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10628 int ap, int ns, int xn, int pxn) 10629 { 10630 bool is_user = regime_is_user(env, mmu_idx); 10631 int prot_rw, user_rw; 10632 bool have_wxn; 10633 int wxn = 0; 10634 10635 assert(mmu_idx != ARMMMUIdx_Stage2); 10636 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10637 10638 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10639 if (is_user) { 10640 prot_rw = user_rw; 10641 } else { 10642 if (user_rw && regime_is_pan(env, mmu_idx)) { 10643 /* PAN forbids data accesses but doesn't affect insn fetch */ 10644 prot_rw = 0; 10645 } else { 10646 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10647 } 10648 } 10649 10650 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10651 return prot_rw; 10652 } 10653 10654 /* TODO have_wxn should be replaced with 10655 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10656 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10657 * compatible processors have EL2, which is required for [U]WXN. 10658 */ 10659 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10660 10661 if (have_wxn) { 10662 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10663 } 10664 10665 if (is_aa64) { 10666 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10667 xn = pxn || (user_rw & PAGE_WRITE); 10668 } 10669 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10670 switch (regime_el(env, mmu_idx)) { 10671 case 1: 10672 case 3: 10673 if (is_user) { 10674 xn = xn || !(user_rw & PAGE_READ); 10675 } else { 10676 int uwxn = 0; 10677 if (have_wxn) { 10678 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10679 } 10680 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10681 (uwxn && (user_rw & PAGE_WRITE)); 10682 } 10683 break; 10684 case 2: 10685 break; 10686 } 10687 } else { 10688 xn = wxn = 0; 10689 } 10690 10691 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10692 return prot_rw; 10693 } 10694 return prot_rw | PAGE_EXEC; 10695 } 10696 10697 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10698 uint32_t *table, uint32_t address) 10699 { 10700 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10701 TCR *tcr = regime_tcr(env, mmu_idx); 10702 10703 if (address & tcr->mask) { 10704 if (tcr->raw_tcr & TTBCR_PD1) { 10705 /* Translation table walk disabled for TTBR1 */ 10706 return false; 10707 } 10708 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10709 } else { 10710 if (tcr->raw_tcr & TTBCR_PD0) { 10711 /* Translation table walk disabled for TTBR0 */ 10712 return false; 10713 } 10714 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10715 } 10716 *table |= (address >> 18) & 0x3ffc; 10717 return true; 10718 } 10719 10720 /* Translate a S1 pagetable walk through S2 if needed. */ 10721 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10722 hwaddr addr, bool *is_secure, 10723 ARMMMUFaultInfo *fi) 10724 { 10725 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10726 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10727 target_ulong s2size; 10728 hwaddr s2pa; 10729 int s2prot; 10730 int ret; 10731 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10732 : ARMMMUIdx_Stage2; 10733 ARMCacheAttrs cacheattrs = {}; 10734 MemTxAttrs txattrs = {}; 10735 10736 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10737 &s2pa, &txattrs, &s2prot, &s2size, fi, 10738 &cacheattrs); 10739 if (ret) { 10740 assert(fi->type != ARMFault_None); 10741 fi->s2addr = addr; 10742 fi->stage2 = true; 10743 fi->s1ptw = true; 10744 fi->s1ns = !*is_secure; 10745 return ~0; 10746 } 10747 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10748 (cacheattrs.attrs & 0xf0) == 0) { 10749 /* 10750 * PTW set and S1 walk touched S2 Device memory: 10751 * generate Permission fault. 10752 */ 10753 fi->type = ARMFault_Permission; 10754 fi->s2addr = addr; 10755 fi->stage2 = true; 10756 fi->s1ptw = true; 10757 fi->s1ns = !*is_secure; 10758 return ~0; 10759 } 10760 10761 if (arm_is_secure_below_el3(env)) { 10762 /* Check if page table walk is to secure or non-secure PA space. */ 10763 if (*is_secure) { 10764 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10765 } else { 10766 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10767 } 10768 } else { 10769 assert(!*is_secure); 10770 } 10771 10772 addr = s2pa; 10773 } 10774 return addr; 10775 } 10776 10777 /* All loads done in the course of a page table walk go through here. */ 10778 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10779 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10780 { 10781 ARMCPU *cpu = ARM_CPU(cs); 10782 CPUARMState *env = &cpu->env; 10783 MemTxAttrs attrs = {}; 10784 MemTxResult result = MEMTX_OK; 10785 AddressSpace *as; 10786 uint32_t data; 10787 10788 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10789 attrs.secure = is_secure; 10790 as = arm_addressspace(cs, attrs); 10791 if (fi->s1ptw) { 10792 return 0; 10793 } 10794 if (regime_translation_big_endian(env, mmu_idx)) { 10795 data = address_space_ldl_be(as, addr, attrs, &result); 10796 } else { 10797 data = address_space_ldl_le(as, addr, attrs, &result); 10798 } 10799 if (result == MEMTX_OK) { 10800 return data; 10801 } 10802 fi->type = ARMFault_SyncExternalOnWalk; 10803 fi->ea = arm_extabort_type(result); 10804 return 0; 10805 } 10806 10807 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10808 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10809 { 10810 ARMCPU *cpu = ARM_CPU(cs); 10811 CPUARMState *env = &cpu->env; 10812 MemTxAttrs attrs = {}; 10813 MemTxResult result = MEMTX_OK; 10814 AddressSpace *as; 10815 uint64_t data; 10816 10817 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10818 attrs.secure = is_secure; 10819 as = arm_addressspace(cs, attrs); 10820 if (fi->s1ptw) { 10821 return 0; 10822 } 10823 if (regime_translation_big_endian(env, mmu_idx)) { 10824 data = address_space_ldq_be(as, addr, attrs, &result); 10825 } else { 10826 data = address_space_ldq_le(as, addr, attrs, &result); 10827 } 10828 if (result == MEMTX_OK) { 10829 return data; 10830 } 10831 fi->type = ARMFault_SyncExternalOnWalk; 10832 fi->ea = arm_extabort_type(result); 10833 return 0; 10834 } 10835 10836 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10837 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10838 hwaddr *phys_ptr, int *prot, 10839 target_ulong *page_size, 10840 ARMMMUFaultInfo *fi) 10841 { 10842 CPUState *cs = env_cpu(env); 10843 int level = 1; 10844 uint32_t table; 10845 uint32_t desc; 10846 int type; 10847 int ap; 10848 int domain = 0; 10849 int domain_prot; 10850 hwaddr phys_addr; 10851 uint32_t dacr; 10852 10853 /* Pagetable walk. */ 10854 /* Lookup l1 descriptor. */ 10855 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10856 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10857 fi->type = ARMFault_Translation; 10858 goto do_fault; 10859 } 10860 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10861 mmu_idx, fi); 10862 if (fi->type != ARMFault_None) { 10863 goto do_fault; 10864 } 10865 type = (desc & 3); 10866 domain = (desc >> 5) & 0x0f; 10867 if (regime_el(env, mmu_idx) == 1) { 10868 dacr = env->cp15.dacr_ns; 10869 } else { 10870 dacr = env->cp15.dacr_s; 10871 } 10872 domain_prot = (dacr >> (domain * 2)) & 3; 10873 if (type == 0) { 10874 /* Section translation fault. */ 10875 fi->type = ARMFault_Translation; 10876 goto do_fault; 10877 } 10878 if (type != 2) { 10879 level = 2; 10880 } 10881 if (domain_prot == 0 || domain_prot == 2) { 10882 fi->type = ARMFault_Domain; 10883 goto do_fault; 10884 } 10885 if (type == 2) { 10886 /* 1Mb section. */ 10887 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10888 ap = (desc >> 10) & 3; 10889 *page_size = 1024 * 1024; 10890 } else { 10891 /* Lookup l2 entry. */ 10892 if (type == 1) { 10893 /* Coarse pagetable. */ 10894 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10895 } else { 10896 /* Fine pagetable. */ 10897 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10898 } 10899 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10900 mmu_idx, fi); 10901 if (fi->type != ARMFault_None) { 10902 goto do_fault; 10903 } 10904 switch (desc & 3) { 10905 case 0: /* Page translation fault. */ 10906 fi->type = ARMFault_Translation; 10907 goto do_fault; 10908 case 1: /* 64k page. */ 10909 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10910 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10911 *page_size = 0x10000; 10912 break; 10913 case 2: /* 4k page. */ 10914 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10915 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10916 *page_size = 0x1000; 10917 break; 10918 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10919 if (type == 1) { 10920 /* ARMv6/XScale extended small page format */ 10921 if (arm_feature(env, ARM_FEATURE_XSCALE) 10922 || arm_feature(env, ARM_FEATURE_V6)) { 10923 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10924 *page_size = 0x1000; 10925 } else { 10926 /* UNPREDICTABLE in ARMv5; we choose to take a 10927 * page translation fault. 10928 */ 10929 fi->type = ARMFault_Translation; 10930 goto do_fault; 10931 } 10932 } else { 10933 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10934 *page_size = 0x400; 10935 } 10936 ap = (desc >> 4) & 3; 10937 break; 10938 default: 10939 /* Never happens, but compiler isn't smart enough to tell. */ 10940 g_assert_not_reached(); 10941 } 10942 } 10943 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10944 *prot |= *prot ? PAGE_EXEC : 0; 10945 if (!(*prot & (1 << access_type))) { 10946 /* Access permission fault. */ 10947 fi->type = ARMFault_Permission; 10948 goto do_fault; 10949 } 10950 *phys_ptr = phys_addr; 10951 return false; 10952 do_fault: 10953 fi->domain = domain; 10954 fi->level = level; 10955 return true; 10956 } 10957 10958 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10959 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10960 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10961 target_ulong *page_size, ARMMMUFaultInfo *fi) 10962 { 10963 CPUState *cs = env_cpu(env); 10964 ARMCPU *cpu = env_archcpu(env); 10965 int level = 1; 10966 uint32_t table; 10967 uint32_t desc; 10968 uint32_t xn; 10969 uint32_t pxn = 0; 10970 int type; 10971 int ap; 10972 int domain = 0; 10973 int domain_prot; 10974 hwaddr phys_addr; 10975 uint32_t dacr; 10976 bool ns; 10977 10978 /* Pagetable walk. */ 10979 /* Lookup l1 descriptor. */ 10980 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10981 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10982 fi->type = ARMFault_Translation; 10983 goto do_fault; 10984 } 10985 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10986 mmu_idx, fi); 10987 if (fi->type != ARMFault_None) { 10988 goto do_fault; 10989 } 10990 type = (desc & 3); 10991 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10992 /* Section translation fault, or attempt to use the encoding 10993 * which is Reserved on implementations without PXN. 10994 */ 10995 fi->type = ARMFault_Translation; 10996 goto do_fault; 10997 } 10998 if ((type == 1) || !(desc & (1 << 18))) { 10999 /* Page or Section. */ 11000 domain = (desc >> 5) & 0x0f; 11001 } 11002 if (regime_el(env, mmu_idx) == 1) { 11003 dacr = env->cp15.dacr_ns; 11004 } else { 11005 dacr = env->cp15.dacr_s; 11006 } 11007 if (type == 1) { 11008 level = 2; 11009 } 11010 domain_prot = (dacr >> (domain * 2)) & 3; 11011 if (domain_prot == 0 || domain_prot == 2) { 11012 /* Section or Page domain fault */ 11013 fi->type = ARMFault_Domain; 11014 goto do_fault; 11015 } 11016 if (type != 1) { 11017 if (desc & (1 << 18)) { 11018 /* Supersection. */ 11019 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 11020 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 11021 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 11022 *page_size = 0x1000000; 11023 } else { 11024 /* Section. */ 11025 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 11026 *page_size = 0x100000; 11027 } 11028 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 11029 xn = desc & (1 << 4); 11030 pxn = desc & 1; 11031 ns = extract32(desc, 19, 1); 11032 } else { 11033 if (cpu_isar_feature(aa32_pxn, cpu)) { 11034 pxn = (desc >> 2) & 1; 11035 } 11036 ns = extract32(desc, 3, 1); 11037 /* Lookup l2 entry. */ 11038 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11039 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11040 mmu_idx, fi); 11041 if (fi->type != ARMFault_None) { 11042 goto do_fault; 11043 } 11044 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 11045 switch (desc & 3) { 11046 case 0: /* Page translation fault. */ 11047 fi->type = ARMFault_Translation; 11048 goto do_fault; 11049 case 1: /* 64k page. */ 11050 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11051 xn = desc & (1 << 15); 11052 *page_size = 0x10000; 11053 break; 11054 case 2: case 3: /* 4k page. */ 11055 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11056 xn = desc & 1; 11057 *page_size = 0x1000; 11058 break; 11059 default: 11060 /* Never happens, but compiler isn't smart enough to tell. */ 11061 g_assert_not_reached(); 11062 } 11063 } 11064 if (domain_prot == 3) { 11065 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11066 } else { 11067 if (pxn && !regime_is_user(env, mmu_idx)) { 11068 xn = 1; 11069 } 11070 if (xn && access_type == MMU_INST_FETCH) { 11071 fi->type = ARMFault_Permission; 11072 goto do_fault; 11073 } 11074 11075 if (arm_feature(env, ARM_FEATURE_V6K) && 11076 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11077 /* The simplified model uses AP[0] as an access control bit. */ 11078 if ((ap & 1) == 0) { 11079 /* Access flag fault. */ 11080 fi->type = ARMFault_AccessFlag; 11081 goto do_fault; 11082 } 11083 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11084 } else { 11085 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11086 } 11087 if (*prot && !xn) { 11088 *prot |= PAGE_EXEC; 11089 } 11090 if (!(*prot & (1 << access_type))) { 11091 /* Access permission fault. */ 11092 fi->type = ARMFault_Permission; 11093 goto do_fault; 11094 } 11095 } 11096 if (ns) { 11097 /* The NS bit will (as required by the architecture) have no effect if 11098 * the CPU doesn't support TZ or this is a non-secure translation 11099 * regime, because the attribute will already be non-secure. 11100 */ 11101 attrs->secure = false; 11102 } 11103 *phys_ptr = phys_addr; 11104 return false; 11105 do_fault: 11106 fi->domain = domain; 11107 fi->level = level; 11108 return true; 11109 } 11110 11111 /* 11112 * check_s2_mmu_setup 11113 * @cpu: ARMCPU 11114 * @is_aa64: True if the translation regime is in AArch64 state 11115 * @startlevel: Suggested starting level 11116 * @inputsize: Bitsize of IPAs 11117 * @stride: Page-table stride (See the ARM ARM) 11118 * 11119 * Returns true if the suggested S2 translation parameters are OK and 11120 * false otherwise. 11121 */ 11122 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11123 int inputsize, int stride, int outputsize) 11124 { 11125 const int grainsize = stride + 3; 11126 int startsizecheck; 11127 11128 /* 11129 * Negative levels are usually not allowed... 11130 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which 11131 * begins with level -1. Note that previous feature tests will have 11132 * eliminated this combination if it is not enabled. 11133 */ 11134 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { 11135 return false; 11136 } 11137 11138 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11139 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11140 return false; 11141 } 11142 11143 if (is_aa64) { 11144 switch (stride) { 11145 case 13: /* 64KB Pages. */ 11146 if (level == 0 || (level == 1 && outputsize <= 42)) { 11147 return false; 11148 } 11149 break; 11150 case 11: /* 16KB Pages. */ 11151 if (level == 0 || (level == 1 && outputsize <= 40)) { 11152 return false; 11153 } 11154 break; 11155 case 9: /* 4KB Pages. */ 11156 if (level == 0 && outputsize <= 42) { 11157 return false; 11158 } 11159 break; 11160 default: 11161 g_assert_not_reached(); 11162 } 11163 11164 /* Inputsize checks. */ 11165 if (inputsize > outputsize && 11166 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 11167 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11168 return false; 11169 } 11170 } else { 11171 /* AArch32 only supports 4KB pages. Assert on that. */ 11172 assert(stride == 9); 11173 11174 if (level == 0) { 11175 return false; 11176 } 11177 } 11178 return true; 11179 } 11180 11181 /* Translate from the 4-bit stage 2 representation of 11182 * memory attributes (without cache-allocation hints) to 11183 * the 8-bit representation of the stage 1 MAIR registers 11184 * (which includes allocation hints). 11185 * 11186 * ref: shared/translation/attrs/S2AttrDecode() 11187 * .../S2ConvertAttrsHints() 11188 */ 11189 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11190 { 11191 uint8_t hiattr = extract32(s2attrs, 2, 2); 11192 uint8_t loattr = extract32(s2attrs, 0, 2); 11193 uint8_t hihint = 0, lohint = 0; 11194 11195 if (hiattr != 0) { /* normal memory */ 11196 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11197 hiattr = loattr = 1; /* non-cacheable */ 11198 } else { 11199 if (hiattr != 1) { /* Write-through or write-back */ 11200 hihint = 3; /* RW allocate */ 11201 } 11202 if (loattr != 1) { /* Write-through or write-back */ 11203 lohint = 3; /* RW allocate */ 11204 } 11205 } 11206 } 11207 11208 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11209 } 11210 #endif /* !CONFIG_USER_ONLY */ 11211 11212 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 11213 static const uint8_t pamax_map[] = { 11214 [0] = 32, 11215 [1] = 36, 11216 [2] = 40, 11217 [3] = 42, 11218 [4] = 44, 11219 [5] = 48, 11220 [6] = 52, 11221 }; 11222 11223 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 11224 unsigned int arm_pamax(ARMCPU *cpu) 11225 { 11226 unsigned int parange = 11227 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11228 11229 /* 11230 * id_aa64mmfr0 is a read-only register so values outside of the 11231 * supported mappings can be considered an implementation error. 11232 */ 11233 assert(parange < ARRAY_SIZE(pamax_map)); 11234 return pamax_map[parange]; 11235 } 11236 11237 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11238 { 11239 if (regime_has_2_ranges(mmu_idx)) { 11240 return extract64(tcr, 37, 2); 11241 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11242 return 0; /* VTCR_EL2 */ 11243 } else { 11244 /* Replicate the single TBI bit so we always have 2 bits. */ 11245 return extract32(tcr, 20, 1) * 3; 11246 } 11247 } 11248 11249 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11250 { 11251 if (regime_has_2_ranges(mmu_idx)) { 11252 return extract64(tcr, 51, 2); 11253 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11254 return 0; /* VTCR_EL2 */ 11255 } else { 11256 /* Replicate the single TBID bit so we always have 2 bits. */ 11257 return extract32(tcr, 29, 1) * 3; 11258 } 11259 } 11260 11261 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11262 { 11263 if (regime_has_2_ranges(mmu_idx)) { 11264 return extract64(tcr, 57, 2); 11265 } else { 11266 /* Replicate the single TCMA bit so we always have 2 bits. */ 11267 return extract32(tcr, 30, 1) * 3; 11268 } 11269 } 11270 11271 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11272 ARMMMUIdx mmu_idx, bool data) 11273 { 11274 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11275 bool epd, hpd, using16k, using64k, tsz_oob, ds; 11276 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11277 ARMCPU *cpu = env_archcpu(env); 11278 11279 if (!regime_has_2_ranges(mmu_idx)) { 11280 select = 0; 11281 tsz = extract32(tcr, 0, 6); 11282 using64k = extract32(tcr, 14, 1); 11283 using16k = extract32(tcr, 15, 1); 11284 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11285 /* VTCR_EL2 */ 11286 hpd = false; 11287 } else { 11288 hpd = extract32(tcr, 24, 1); 11289 } 11290 epd = false; 11291 sh = extract32(tcr, 12, 2); 11292 ps = extract32(tcr, 16, 3); 11293 ds = extract64(tcr, 32, 1); 11294 } else { 11295 /* 11296 * Bit 55 is always between the two regions, and is canonical for 11297 * determining if address tagging is enabled. 11298 */ 11299 select = extract64(va, 55, 1); 11300 if (!select) { 11301 tsz = extract32(tcr, 0, 6); 11302 epd = extract32(tcr, 7, 1); 11303 sh = extract32(tcr, 12, 2); 11304 using64k = extract32(tcr, 14, 1); 11305 using16k = extract32(tcr, 15, 1); 11306 hpd = extract64(tcr, 41, 1); 11307 } else { 11308 int tg = extract32(tcr, 30, 2); 11309 using16k = tg == 1; 11310 using64k = tg == 3; 11311 tsz = extract32(tcr, 16, 6); 11312 epd = extract32(tcr, 23, 1); 11313 sh = extract32(tcr, 28, 2); 11314 hpd = extract64(tcr, 42, 1); 11315 } 11316 ps = extract64(tcr, 32, 3); 11317 ds = extract64(tcr, 59, 1); 11318 } 11319 11320 if (cpu_isar_feature(aa64_st, cpu)) { 11321 max_tsz = 48 - using64k; 11322 } else { 11323 max_tsz = 39; 11324 } 11325 11326 /* 11327 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11328 * adjust the effective value of DS, as documented. 11329 */ 11330 min_tsz = 16; 11331 if (using64k) { 11332 if (cpu_isar_feature(aa64_lva, cpu)) { 11333 min_tsz = 12; 11334 } 11335 ds = false; 11336 } else if (ds) { 11337 switch (mmu_idx) { 11338 case ARMMMUIdx_Stage2: 11339 case ARMMMUIdx_Stage2_S: 11340 if (using16k) { 11341 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11342 } else { 11343 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11344 } 11345 break; 11346 default: 11347 if (using16k) { 11348 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11349 } else { 11350 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11351 } 11352 break; 11353 } 11354 if (ds) { 11355 min_tsz = 12; 11356 } 11357 } 11358 11359 if (tsz > max_tsz) { 11360 tsz = max_tsz; 11361 tsz_oob = true; 11362 } else if (tsz < min_tsz) { 11363 tsz = min_tsz; 11364 tsz_oob = true; 11365 } else { 11366 tsz_oob = false; 11367 } 11368 11369 /* Present TBI as a composite with TBID. */ 11370 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11371 if (!data) { 11372 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11373 } 11374 tbi = (tbi >> select) & 1; 11375 11376 return (ARMVAParameters) { 11377 .tsz = tsz, 11378 .ps = ps, 11379 .sh = sh, 11380 .select = select, 11381 .tbi = tbi, 11382 .epd = epd, 11383 .hpd = hpd, 11384 .using16k = using16k, 11385 .using64k = using64k, 11386 .tsz_oob = tsz_oob, 11387 .ds = ds, 11388 }; 11389 } 11390 11391 #ifndef CONFIG_USER_ONLY 11392 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11393 ARMMMUIdx mmu_idx) 11394 { 11395 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11396 uint32_t el = regime_el(env, mmu_idx); 11397 int select, tsz; 11398 bool epd, hpd; 11399 11400 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11401 11402 if (mmu_idx == ARMMMUIdx_Stage2) { 11403 /* VTCR */ 11404 bool sext = extract32(tcr, 4, 1); 11405 bool sign = extract32(tcr, 3, 1); 11406 11407 /* 11408 * If the sign-extend bit is not the same as t0sz[3], the result 11409 * is unpredictable. Flag this as a guest error. 11410 */ 11411 if (sign != sext) { 11412 qemu_log_mask(LOG_GUEST_ERROR, 11413 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11414 } 11415 tsz = sextract32(tcr, 0, 4) + 8; 11416 select = 0; 11417 hpd = false; 11418 epd = false; 11419 } else if (el == 2) { 11420 /* HTCR */ 11421 tsz = extract32(tcr, 0, 3); 11422 select = 0; 11423 hpd = extract64(tcr, 24, 1); 11424 epd = false; 11425 } else { 11426 int t0sz = extract32(tcr, 0, 3); 11427 int t1sz = extract32(tcr, 16, 3); 11428 11429 if (t1sz == 0) { 11430 select = va > (0xffffffffu >> t0sz); 11431 } else { 11432 /* Note that we will detect errors later. */ 11433 select = va >= ~(0xffffffffu >> t1sz); 11434 } 11435 if (!select) { 11436 tsz = t0sz; 11437 epd = extract32(tcr, 7, 1); 11438 hpd = extract64(tcr, 41, 1); 11439 } else { 11440 tsz = t1sz; 11441 epd = extract32(tcr, 23, 1); 11442 hpd = extract64(tcr, 42, 1); 11443 } 11444 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11445 hpd &= extract32(tcr, 6, 1); 11446 } 11447 11448 return (ARMVAParameters) { 11449 .tsz = tsz, 11450 .select = select, 11451 .epd = epd, 11452 .hpd = hpd, 11453 }; 11454 } 11455 11456 /** 11457 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11458 * 11459 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11460 * prot and page_size may not be filled in, and the populated fsr value provides 11461 * information on why the translation aborted, in the format of a long-format 11462 * DFSR/IFSR fault register, with the following caveats: 11463 * * the WnR bit is never set (the caller must do this). 11464 * 11465 * @env: CPUARMState 11466 * @address: virtual address to get physical address for 11467 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11468 * @mmu_idx: MMU index indicating required translation regime 11469 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11470 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11471 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11472 * @phys_ptr: set to the physical address corresponding to the virtual address 11473 * @attrs: set to the memory transaction attributes to use 11474 * @prot: set to the permissions for the page containing phys_ptr 11475 * @page_size_ptr: set to the size of the page containing phys_ptr 11476 * @fi: set to fault info if the translation fails 11477 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11478 */ 11479 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11480 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11481 bool s1_is_el0, 11482 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11483 target_ulong *page_size_ptr, 11484 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11485 { 11486 ARMCPU *cpu = env_archcpu(env); 11487 CPUState *cs = CPU(cpu); 11488 /* Read an LPAE long-descriptor translation table. */ 11489 ARMFaultType fault_type = ARMFault_Translation; 11490 uint32_t level; 11491 ARMVAParameters param; 11492 uint64_t ttbr; 11493 hwaddr descaddr, indexmask, indexmask_grainsize; 11494 uint32_t tableattrs; 11495 target_ulong page_size; 11496 uint32_t attrs; 11497 int32_t stride; 11498 int addrsize, inputsize, outputsize; 11499 TCR *tcr = regime_tcr(env, mmu_idx); 11500 int ap, ns, xn, pxn; 11501 uint32_t el = regime_el(env, mmu_idx); 11502 uint64_t descaddrmask; 11503 bool aarch64 = arm_el_is_aa64(env, el); 11504 bool guarded = false; 11505 11506 /* TODO: This code does not support shareability levels. */ 11507 if (aarch64) { 11508 int ps; 11509 11510 param = aa64_va_parameters(env, address, mmu_idx, 11511 access_type != MMU_INST_FETCH); 11512 level = 0; 11513 11514 /* 11515 * If TxSZ is programmed to a value larger than the maximum, 11516 * or smaller than the effective minimum, it is IMPLEMENTATION 11517 * DEFINED whether we behave as if the field were programmed 11518 * within bounds, or if a level 0 Translation fault is generated. 11519 * 11520 * With FEAT_LVA, fault on less than minimum becomes required, 11521 * so our choice is to always raise the fault. 11522 */ 11523 if (param.tsz_oob) { 11524 fault_type = ARMFault_Translation; 11525 goto do_fault; 11526 } 11527 11528 addrsize = 64 - 8 * param.tbi; 11529 inputsize = 64 - param.tsz; 11530 11531 /* 11532 * Bound PS by PARANGE to find the effective output address size. 11533 * ID_AA64MMFR0 is a read-only register so values outside of the 11534 * supported mappings can be considered an implementation error. 11535 */ 11536 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11537 ps = MIN(ps, param.ps); 11538 assert(ps < ARRAY_SIZE(pamax_map)); 11539 outputsize = pamax_map[ps]; 11540 } else { 11541 param = aa32_va_parameters(env, address, mmu_idx); 11542 level = 1; 11543 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11544 inputsize = addrsize - param.tsz; 11545 outputsize = 40; 11546 } 11547 11548 /* 11549 * We determined the region when collecting the parameters, but we 11550 * have not yet validated that the address is valid for the region. 11551 * Extract the top bits and verify that they all match select. 11552 * 11553 * For aa32, if inputsize == addrsize, then we have selected the 11554 * region by exclusion in aa32_va_parameters and there is no more 11555 * validation to do here. 11556 */ 11557 if (inputsize < addrsize) { 11558 target_ulong top_bits = sextract64(address, inputsize, 11559 addrsize - inputsize); 11560 if (-top_bits != param.select) { 11561 /* The gap between the two regions is a Translation fault */ 11562 fault_type = ARMFault_Translation; 11563 goto do_fault; 11564 } 11565 } 11566 11567 if (param.using64k) { 11568 stride = 13; 11569 } else if (param.using16k) { 11570 stride = 11; 11571 } else { 11572 stride = 9; 11573 } 11574 11575 /* Note that QEMU ignores shareability and cacheability attributes, 11576 * so we don't need to do anything with the SH, ORGN, IRGN fields 11577 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11578 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11579 * implement any ASID-like capability so we can ignore it (instead 11580 * we will always flush the TLB any time the ASID is changed). 11581 */ 11582 ttbr = regime_ttbr(env, mmu_idx, param.select); 11583 11584 /* Here we should have set up all the parameters for the translation: 11585 * inputsize, ttbr, epd, stride, tbi 11586 */ 11587 11588 if (param.epd) { 11589 /* Translation table walk disabled => Translation fault on TLB miss 11590 * Note: This is always 0 on 64-bit EL2 and EL3. 11591 */ 11592 goto do_fault; 11593 } 11594 11595 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11596 /* The starting level depends on the virtual address size (which can 11597 * be up to 48 bits) and the translation granule size. It indicates 11598 * the number of strides (stride bits at a time) needed to 11599 * consume the bits of the input address. In the pseudocode this is: 11600 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11601 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11602 * our 'stride + 3' and 'stride' is our 'stride'. 11603 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11604 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11605 * = 4 - (inputsize - 4) / stride; 11606 */ 11607 level = 4 - (inputsize - 4) / stride; 11608 } else { 11609 /* For stage 2 translations the starting level is specified by the 11610 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11611 */ 11612 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11613 uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1); 11614 uint32_t startlevel; 11615 bool ok; 11616 11617 /* SL2 is RES0 unless DS=1 & 4kb granule. */ 11618 if (param.ds && stride == 9 && sl2) { 11619 if (sl0 != 0) { 11620 level = 0; 11621 fault_type = ARMFault_Translation; 11622 goto do_fault; 11623 } 11624 startlevel = -1; 11625 } else if (!aarch64 || stride == 9) { 11626 /* AArch32 or 4KB pages */ 11627 startlevel = 2 - sl0; 11628 11629 if (cpu_isar_feature(aa64_st, cpu)) { 11630 startlevel &= 3; 11631 } 11632 } else { 11633 /* 16KB or 64KB pages */ 11634 startlevel = 3 - sl0; 11635 } 11636 11637 /* Check that the starting level is valid. */ 11638 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11639 inputsize, stride, outputsize); 11640 if (!ok) { 11641 fault_type = ARMFault_Translation; 11642 goto do_fault; 11643 } 11644 level = startlevel; 11645 } 11646 11647 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 11648 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 11649 11650 /* Now we can extract the actual base address from the TTBR */ 11651 descaddr = extract64(ttbr, 0, 48); 11652 11653 /* 11654 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 11655 * 11656 * Otherwise, if the base address is out of range, raise AddressSizeFault. 11657 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 11658 * but we've just cleared the bits above 47, so simplify the test. 11659 */ 11660 if (outputsize > 48) { 11661 descaddr |= extract64(ttbr, 2, 4) << 48; 11662 } else if (descaddr >> outputsize) { 11663 level = 0; 11664 fault_type = ARMFault_AddressSize; 11665 goto do_fault; 11666 } 11667 11668 /* 11669 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11670 * and also to mask out CnP (bit 0) which could validly be non-zero. 11671 */ 11672 descaddr &= ~indexmask; 11673 11674 /* 11675 * For AArch32, the address field in the descriptor goes up to bit 39 11676 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 11677 * or an AddressSize fault is raised. So for v8 we extract those SBZ 11678 * bits as part of the address, which will be checked via outputsize. 11679 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 11680 * the highest bits of a 52-bit output are placed elsewhere. 11681 */ 11682 if (param.ds) { 11683 descaddrmask = MAKE_64BIT_MASK(0, 50); 11684 } else if (arm_feature(env, ARM_FEATURE_V8)) { 11685 descaddrmask = MAKE_64BIT_MASK(0, 48); 11686 } else { 11687 descaddrmask = MAKE_64BIT_MASK(0, 40); 11688 } 11689 descaddrmask &= ~indexmask_grainsize; 11690 11691 /* Secure accesses start with the page table in secure memory and 11692 * can be downgraded to non-secure at any step. Non-secure accesses 11693 * remain non-secure. We implement this by just ORing in the NSTable/NS 11694 * bits at each step. 11695 */ 11696 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11697 for (;;) { 11698 uint64_t descriptor; 11699 bool nstable; 11700 11701 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11702 descaddr &= ~7ULL; 11703 nstable = extract32(tableattrs, 4, 1); 11704 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11705 if (fi->type != ARMFault_None) { 11706 goto do_fault; 11707 } 11708 11709 if (!(descriptor & 1) || 11710 (!(descriptor & 2) && (level == 3))) { 11711 /* Invalid, or the Reserved level 3 encoding */ 11712 goto do_fault; 11713 } 11714 11715 descaddr = descriptor & descaddrmask; 11716 11717 /* 11718 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 11719 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 11720 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 11721 * raise AddressSizeFault. 11722 */ 11723 if (outputsize > 48) { 11724 if (param.ds) { 11725 descaddr |= extract64(descriptor, 8, 2) << 50; 11726 } else { 11727 descaddr |= extract64(descriptor, 12, 4) << 48; 11728 } 11729 } else if (descaddr >> outputsize) { 11730 fault_type = ARMFault_AddressSize; 11731 goto do_fault; 11732 } 11733 11734 if ((descriptor & 2) && (level < 3)) { 11735 /* Table entry. The top five bits are attributes which may 11736 * propagate down through lower levels of the table (and 11737 * which are all arranged so that 0 means "no effect", so 11738 * we can gather them up by ORing in the bits at each level). 11739 */ 11740 tableattrs |= extract64(descriptor, 59, 5); 11741 level++; 11742 indexmask = indexmask_grainsize; 11743 continue; 11744 } 11745 /* 11746 * Block entry at level 1 or 2, or page entry at level 3. 11747 * These are basically the same thing, although the number 11748 * of bits we pull in from the vaddr varies. Note that although 11749 * descaddrmask masks enough of the low bits of the descriptor 11750 * to give a correct page or table address, the address field 11751 * in a block descriptor is smaller; so we need to explicitly 11752 * clear the lower bits here before ORing in the low vaddr bits. 11753 */ 11754 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11755 descaddr &= ~(page_size - 1); 11756 descaddr |= (address & (page_size - 1)); 11757 /* Extract attributes from the descriptor */ 11758 attrs = extract64(descriptor, 2, 10) 11759 | (extract64(descriptor, 52, 12) << 10); 11760 11761 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11762 /* Stage 2 table descriptors do not include any attribute fields */ 11763 break; 11764 } 11765 /* Merge in attributes from table descriptors */ 11766 attrs |= nstable << 3; /* NS */ 11767 guarded = extract64(descriptor, 50, 1); /* GP */ 11768 if (param.hpd) { 11769 /* HPD disables all the table attributes except NSTable. */ 11770 break; 11771 } 11772 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11773 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11774 * means "force PL1 access only", which means forcing AP[1] to 0. 11775 */ 11776 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11777 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11778 break; 11779 } 11780 /* Here descaddr is the final physical address, and attributes 11781 * are all in attrs. 11782 */ 11783 fault_type = ARMFault_AccessFlag; 11784 if ((attrs & (1 << 8)) == 0) { 11785 /* Access flag */ 11786 goto do_fault; 11787 } 11788 11789 ap = extract32(attrs, 4, 2); 11790 11791 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11792 ns = mmu_idx == ARMMMUIdx_Stage2; 11793 xn = extract32(attrs, 11, 2); 11794 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11795 } else { 11796 ns = extract32(attrs, 3, 1); 11797 xn = extract32(attrs, 12, 1); 11798 pxn = extract32(attrs, 11, 1); 11799 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11800 } 11801 11802 fault_type = ARMFault_Permission; 11803 if (!(*prot & (1 << access_type))) { 11804 goto do_fault; 11805 } 11806 11807 if (ns) { 11808 /* The NS bit will (as required by the architecture) have no effect if 11809 * the CPU doesn't support TZ or this is a non-secure translation 11810 * regime, because the attribute will already be non-secure. 11811 */ 11812 txattrs->secure = false; 11813 } 11814 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11815 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11816 arm_tlb_bti_gp(txattrs) = true; 11817 } 11818 11819 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11820 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11821 } else { 11822 /* Index into MAIR registers for cache attributes */ 11823 uint8_t attrindx = extract32(attrs, 0, 3); 11824 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11825 assert(attrindx <= 7); 11826 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11827 } 11828 11829 /* 11830 * For FEAT_LPA2 and effective DS, the SH field in the attributes 11831 * was re-purposed for output address bits. The SH attribute in 11832 * that case comes from TCR_ELx, which we extracted earlier. 11833 */ 11834 if (param.ds) { 11835 cacheattrs->shareability = param.sh; 11836 } else { 11837 cacheattrs->shareability = extract32(attrs, 6, 2); 11838 } 11839 11840 *phys_ptr = descaddr; 11841 *page_size_ptr = page_size; 11842 return false; 11843 11844 do_fault: 11845 fi->type = fault_type; 11846 fi->level = level; 11847 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11848 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11849 mmu_idx == ARMMMUIdx_Stage2_S); 11850 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11851 return true; 11852 } 11853 11854 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11855 ARMMMUIdx mmu_idx, 11856 int32_t address, int *prot) 11857 { 11858 if (!arm_feature(env, ARM_FEATURE_M)) { 11859 *prot = PAGE_READ | PAGE_WRITE; 11860 switch (address) { 11861 case 0xF0000000 ... 0xFFFFFFFF: 11862 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11863 /* hivecs execing is ok */ 11864 *prot |= PAGE_EXEC; 11865 } 11866 break; 11867 case 0x00000000 ... 0x7FFFFFFF: 11868 *prot |= PAGE_EXEC; 11869 break; 11870 } 11871 } else { 11872 /* Default system address map for M profile cores. 11873 * The architecture specifies which regions are execute-never; 11874 * at the MPU level no other checks are defined. 11875 */ 11876 switch (address) { 11877 case 0x00000000 ... 0x1fffffff: /* ROM */ 11878 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11879 case 0x60000000 ... 0x7fffffff: /* RAM */ 11880 case 0x80000000 ... 0x9fffffff: /* RAM */ 11881 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11882 break; 11883 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11884 case 0xa0000000 ... 0xbfffffff: /* Device */ 11885 case 0xc0000000 ... 0xdfffffff: /* Device */ 11886 case 0xe0000000 ... 0xffffffff: /* System */ 11887 *prot = PAGE_READ | PAGE_WRITE; 11888 break; 11889 default: 11890 g_assert_not_reached(); 11891 } 11892 } 11893 } 11894 11895 static bool pmsav7_use_background_region(ARMCPU *cpu, 11896 ARMMMUIdx mmu_idx, bool is_user) 11897 { 11898 /* Return true if we should use the default memory map as a 11899 * "background" region if there are no hits against any MPU regions. 11900 */ 11901 CPUARMState *env = &cpu->env; 11902 11903 if (is_user) { 11904 return false; 11905 } 11906 11907 if (arm_feature(env, ARM_FEATURE_M)) { 11908 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11909 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11910 } else { 11911 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11912 } 11913 } 11914 11915 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11916 { 11917 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11918 return arm_feature(env, ARM_FEATURE_M) && 11919 extract32(address, 20, 12) == 0xe00; 11920 } 11921 11922 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11923 { 11924 /* True if address is in the M profile system region 11925 * 0xe0000000 - 0xffffffff 11926 */ 11927 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11928 } 11929 11930 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11931 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11932 hwaddr *phys_ptr, int *prot, 11933 target_ulong *page_size, 11934 ARMMMUFaultInfo *fi) 11935 { 11936 ARMCPU *cpu = env_archcpu(env); 11937 int n; 11938 bool is_user = regime_is_user(env, mmu_idx); 11939 11940 *phys_ptr = address; 11941 *page_size = TARGET_PAGE_SIZE; 11942 *prot = 0; 11943 11944 if (regime_translation_disabled(env, mmu_idx) || 11945 m_is_ppb_region(env, address)) { 11946 /* MPU disabled or M profile PPB access: use default memory map. 11947 * The other case which uses the default memory map in the 11948 * v7M ARM ARM pseudocode is exception vector reads from the vector 11949 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11950 * which always does a direct read using address_space_ldl(), rather 11951 * than going via this function, so we don't need to check that here. 11952 */ 11953 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11954 } else { /* MPU enabled */ 11955 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11956 /* region search */ 11957 uint32_t base = env->pmsav7.drbar[n]; 11958 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11959 uint32_t rmask; 11960 bool srdis = false; 11961 11962 if (!(env->pmsav7.drsr[n] & 0x1)) { 11963 continue; 11964 } 11965 11966 if (!rsize) { 11967 qemu_log_mask(LOG_GUEST_ERROR, 11968 "DRSR[%d]: Rsize field cannot be 0\n", n); 11969 continue; 11970 } 11971 rsize++; 11972 rmask = (1ull << rsize) - 1; 11973 11974 if (base & rmask) { 11975 qemu_log_mask(LOG_GUEST_ERROR, 11976 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11977 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11978 n, base, rmask); 11979 continue; 11980 } 11981 11982 if (address < base || address > base + rmask) { 11983 /* 11984 * Address not in this region. We must check whether the 11985 * region covers addresses in the same page as our address. 11986 * In that case we must not report a size that covers the 11987 * whole page for a subsequent hit against a different MPU 11988 * region or the background region, because it would result in 11989 * incorrect TLB hits for subsequent accesses to addresses that 11990 * are in this MPU region. 11991 */ 11992 if (ranges_overlap(base, rmask, 11993 address & TARGET_PAGE_MASK, 11994 TARGET_PAGE_SIZE)) { 11995 *page_size = 1; 11996 } 11997 continue; 11998 } 11999 12000 /* Region matched */ 12001 12002 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 12003 int i, snd; 12004 uint32_t srdis_mask; 12005 12006 rsize -= 3; /* sub region size (power of 2) */ 12007 snd = ((address - base) >> rsize) & 0x7; 12008 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 12009 12010 srdis_mask = srdis ? 0x3 : 0x0; 12011 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 12012 /* This will check in groups of 2, 4 and then 8, whether 12013 * the subregion bits are consistent. rsize is incremented 12014 * back up to give the region size, considering consistent 12015 * adjacent subregions as one region. Stop testing if rsize 12016 * is already big enough for an entire QEMU page. 12017 */ 12018 int snd_rounded = snd & ~(i - 1); 12019 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 12020 snd_rounded + 8, i); 12021 if (srdis_mask ^ srdis_multi) { 12022 break; 12023 } 12024 srdis_mask = (srdis_mask << i) | srdis_mask; 12025 rsize++; 12026 } 12027 } 12028 if (srdis) { 12029 continue; 12030 } 12031 if (rsize < TARGET_PAGE_BITS) { 12032 *page_size = 1 << rsize; 12033 } 12034 break; 12035 } 12036 12037 if (n == -1) { /* no hits */ 12038 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12039 /* background fault */ 12040 fi->type = ARMFault_Background; 12041 return true; 12042 } 12043 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12044 } else { /* a MPU hit! */ 12045 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 12046 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 12047 12048 if (m_is_system_region(env, address)) { 12049 /* System space is always execute never */ 12050 xn = 1; 12051 } 12052 12053 if (is_user) { /* User mode AP bit decoding */ 12054 switch (ap) { 12055 case 0: 12056 case 1: 12057 case 5: 12058 break; /* no access */ 12059 case 3: 12060 *prot |= PAGE_WRITE; 12061 /* fall through */ 12062 case 2: 12063 case 6: 12064 *prot |= PAGE_READ | PAGE_EXEC; 12065 break; 12066 case 7: 12067 /* for v7M, same as 6; for R profile a reserved value */ 12068 if (arm_feature(env, ARM_FEATURE_M)) { 12069 *prot |= PAGE_READ | PAGE_EXEC; 12070 break; 12071 } 12072 /* fall through */ 12073 default: 12074 qemu_log_mask(LOG_GUEST_ERROR, 12075 "DRACR[%d]: Bad value for AP bits: 0x%" 12076 PRIx32 "\n", n, ap); 12077 } 12078 } else { /* Priv. mode AP bits decoding */ 12079 switch (ap) { 12080 case 0: 12081 break; /* no access */ 12082 case 1: 12083 case 2: 12084 case 3: 12085 *prot |= PAGE_WRITE; 12086 /* fall through */ 12087 case 5: 12088 case 6: 12089 *prot |= PAGE_READ | PAGE_EXEC; 12090 break; 12091 case 7: 12092 /* for v7M, same as 6; for R profile a reserved value */ 12093 if (arm_feature(env, ARM_FEATURE_M)) { 12094 *prot |= PAGE_READ | PAGE_EXEC; 12095 break; 12096 } 12097 /* fall through */ 12098 default: 12099 qemu_log_mask(LOG_GUEST_ERROR, 12100 "DRACR[%d]: Bad value for AP bits: 0x%" 12101 PRIx32 "\n", n, ap); 12102 } 12103 } 12104 12105 /* execute never */ 12106 if (xn) { 12107 *prot &= ~PAGE_EXEC; 12108 } 12109 } 12110 } 12111 12112 fi->type = ARMFault_Permission; 12113 fi->level = 1; 12114 return !(*prot & (1 << access_type)); 12115 } 12116 12117 static bool v8m_is_sau_exempt(CPUARMState *env, 12118 uint32_t address, MMUAccessType access_type) 12119 { 12120 /* The architecture specifies that certain address ranges are 12121 * exempt from v8M SAU/IDAU checks. 12122 */ 12123 return 12124 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 12125 (address >= 0xe0000000 && address <= 0xe0002fff) || 12126 (address >= 0xe000e000 && address <= 0xe000efff) || 12127 (address >= 0xe002e000 && address <= 0xe002efff) || 12128 (address >= 0xe0040000 && address <= 0xe0041fff) || 12129 (address >= 0xe00ff000 && address <= 0xe00fffff); 12130 } 12131 12132 void v8m_security_lookup(CPUARMState *env, uint32_t address, 12133 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12134 V8M_SAttributes *sattrs) 12135 { 12136 /* Look up the security attributes for this address. Compare the 12137 * pseudocode SecurityCheck() function. 12138 * We assume the caller has zero-initialized *sattrs. 12139 */ 12140 ARMCPU *cpu = env_archcpu(env); 12141 int r; 12142 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12143 int idau_region = IREGION_NOTVALID; 12144 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12145 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12146 12147 if (cpu->idau) { 12148 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12149 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12150 12151 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12152 &idau_nsc); 12153 } 12154 12155 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12156 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12157 return; 12158 } 12159 12160 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12161 sattrs->ns = !regime_is_secure(env, mmu_idx); 12162 return; 12163 } 12164 12165 if (idau_region != IREGION_NOTVALID) { 12166 sattrs->irvalid = true; 12167 sattrs->iregion = idau_region; 12168 } 12169 12170 switch (env->sau.ctrl & 3) { 12171 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12172 break; 12173 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12174 sattrs->ns = true; 12175 break; 12176 default: /* SAU.ENABLE == 1 */ 12177 for (r = 0; r < cpu->sau_sregion; r++) { 12178 if (env->sau.rlar[r] & 1) { 12179 uint32_t base = env->sau.rbar[r] & ~0x1f; 12180 uint32_t limit = env->sau.rlar[r] | 0x1f; 12181 12182 if (base <= address && limit >= address) { 12183 if (base > addr_page_base || limit < addr_page_limit) { 12184 sattrs->subpage = true; 12185 } 12186 if (sattrs->srvalid) { 12187 /* If we hit in more than one region then we must report 12188 * as Secure, not NS-Callable, with no valid region 12189 * number info. 12190 */ 12191 sattrs->ns = false; 12192 sattrs->nsc = false; 12193 sattrs->sregion = 0; 12194 sattrs->srvalid = false; 12195 break; 12196 } else { 12197 if (env->sau.rlar[r] & 2) { 12198 sattrs->nsc = true; 12199 } else { 12200 sattrs->ns = true; 12201 } 12202 sattrs->srvalid = true; 12203 sattrs->sregion = r; 12204 } 12205 } else { 12206 /* 12207 * Address not in this region. We must check whether the 12208 * region covers addresses in the same page as our address. 12209 * In that case we must not report a size that covers the 12210 * whole page for a subsequent hit against a different MPU 12211 * region or the background region, because it would result 12212 * in incorrect TLB hits for subsequent accesses to 12213 * addresses that are in this MPU region. 12214 */ 12215 if (limit >= base && 12216 ranges_overlap(base, limit - base + 1, 12217 addr_page_base, 12218 TARGET_PAGE_SIZE)) { 12219 sattrs->subpage = true; 12220 } 12221 } 12222 } 12223 } 12224 break; 12225 } 12226 12227 /* 12228 * The IDAU will override the SAU lookup results if it specifies 12229 * higher security than the SAU does. 12230 */ 12231 if (!idau_ns) { 12232 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12233 sattrs->ns = false; 12234 sattrs->nsc = idau_nsc; 12235 } 12236 } 12237 } 12238 12239 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12240 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12241 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12242 int *prot, bool *is_subpage, 12243 ARMMMUFaultInfo *fi, uint32_t *mregion) 12244 { 12245 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12246 * that a full phys-to-virt translation does). 12247 * mregion is (if not NULL) set to the region number which matched, 12248 * or -1 if no region number is returned (MPU off, address did not 12249 * hit a region, address hit in multiple regions). 12250 * We set is_subpage to true if the region hit doesn't cover the 12251 * entire TARGET_PAGE the address is within. 12252 */ 12253 ARMCPU *cpu = env_archcpu(env); 12254 bool is_user = regime_is_user(env, mmu_idx); 12255 uint32_t secure = regime_is_secure(env, mmu_idx); 12256 int n; 12257 int matchregion = -1; 12258 bool hit = false; 12259 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12260 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12261 12262 *is_subpage = false; 12263 *phys_ptr = address; 12264 *prot = 0; 12265 if (mregion) { 12266 *mregion = -1; 12267 } 12268 12269 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12270 * was an exception vector read from the vector table (which is always 12271 * done using the default system address map), because those accesses 12272 * are done in arm_v7m_load_vector(), which always does a direct 12273 * read using address_space_ldl(), rather than going via this function. 12274 */ 12275 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12276 hit = true; 12277 } else if (m_is_ppb_region(env, address)) { 12278 hit = true; 12279 } else { 12280 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12281 hit = true; 12282 } 12283 12284 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12285 /* region search */ 12286 /* Note that the base address is bits [31:5] from the register 12287 * with bits [4:0] all zeroes, but the limit address is bits 12288 * [31:5] from the register with bits [4:0] all ones. 12289 */ 12290 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12291 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12292 12293 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12294 /* Region disabled */ 12295 continue; 12296 } 12297 12298 if (address < base || address > limit) { 12299 /* 12300 * Address not in this region. We must check whether the 12301 * region covers addresses in the same page as our address. 12302 * In that case we must not report a size that covers the 12303 * whole page for a subsequent hit against a different MPU 12304 * region or the background region, because it would result in 12305 * incorrect TLB hits for subsequent accesses to addresses that 12306 * are in this MPU region. 12307 */ 12308 if (limit >= base && 12309 ranges_overlap(base, limit - base + 1, 12310 addr_page_base, 12311 TARGET_PAGE_SIZE)) { 12312 *is_subpage = true; 12313 } 12314 continue; 12315 } 12316 12317 if (base > addr_page_base || limit < addr_page_limit) { 12318 *is_subpage = true; 12319 } 12320 12321 if (matchregion != -1) { 12322 /* Multiple regions match -- always a failure (unlike 12323 * PMSAv7 where highest-numbered-region wins) 12324 */ 12325 fi->type = ARMFault_Permission; 12326 fi->level = 1; 12327 return true; 12328 } 12329 12330 matchregion = n; 12331 hit = true; 12332 } 12333 } 12334 12335 if (!hit) { 12336 /* background fault */ 12337 fi->type = ARMFault_Background; 12338 return true; 12339 } 12340 12341 if (matchregion == -1) { 12342 /* hit using the background region */ 12343 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12344 } else { 12345 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12346 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12347 bool pxn = false; 12348 12349 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12350 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12351 } 12352 12353 if (m_is_system_region(env, address)) { 12354 /* System space is always execute never */ 12355 xn = 1; 12356 } 12357 12358 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12359 if (*prot && !xn && !(pxn && !is_user)) { 12360 *prot |= PAGE_EXEC; 12361 } 12362 /* We don't need to look the attribute up in the MAIR0/MAIR1 12363 * registers because that only tells us about cacheability. 12364 */ 12365 if (mregion) { 12366 *mregion = matchregion; 12367 } 12368 } 12369 12370 fi->type = ARMFault_Permission; 12371 fi->level = 1; 12372 return !(*prot & (1 << access_type)); 12373 } 12374 12375 12376 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12377 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12378 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12379 int *prot, target_ulong *page_size, 12380 ARMMMUFaultInfo *fi) 12381 { 12382 uint32_t secure = regime_is_secure(env, mmu_idx); 12383 V8M_SAttributes sattrs = {}; 12384 bool ret; 12385 bool mpu_is_subpage; 12386 12387 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12388 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12389 if (access_type == MMU_INST_FETCH) { 12390 /* Instruction fetches always use the MMU bank and the 12391 * transaction attribute determined by the fetch address, 12392 * regardless of CPU state. This is painful for QEMU 12393 * to handle, because it would mean we need to encode 12394 * into the mmu_idx not just the (user, negpri) information 12395 * for the current security state but also that for the 12396 * other security state, which would balloon the number 12397 * of mmu_idx values needed alarmingly. 12398 * Fortunately we can avoid this because it's not actually 12399 * possible to arbitrarily execute code from memory with 12400 * the wrong security attribute: it will always generate 12401 * an exception of some kind or another, apart from the 12402 * special case of an NS CPU executing an SG instruction 12403 * in S&NSC memory. So we always just fail the translation 12404 * here and sort things out in the exception handler 12405 * (including possibly emulating an SG instruction). 12406 */ 12407 if (sattrs.ns != !secure) { 12408 if (sattrs.nsc) { 12409 fi->type = ARMFault_QEMU_NSCExec; 12410 } else { 12411 fi->type = ARMFault_QEMU_SFault; 12412 } 12413 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12414 *phys_ptr = address; 12415 *prot = 0; 12416 return true; 12417 } 12418 } else { 12419 /* For data accesses we always use the MMU bank indicated 12420 * by the current CPU state, but the security attributes 12421 * might downgrade a secure access to nonsecure. 12422 */ 12423 if (sattrs.ns) { 12424 txattrs->secure = false; 12425 } else if (!secure) { 12426 /* NS access to S memory must fault. 12427 * Architecturally we should first check whether the 12428 * MPU information for this address indicates that we 12429 * are doing an unaligned access to Device memory, which 12430 * should generate a UsageFault instead. QEMU does not 12431 * currently check for that kind of unaligned access though. 12432 * If we added it we would need to do so as a special case 12433 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12434 */ 12435 fi->type = ARMFault_QEMU_SFault; 12436 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12437 *phys_ptr = address; 12438 *prot = 0; 12439 return true; 12440 } 12441 } 12442 } 12443 12444 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12445 txattrs, prot, &mpu_is_subpage, fi, NULL); 12446 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12447 return ret; 12448 } 12449 12450 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12451 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12452 hwaddr *phys_ptr, int *prot, 12453 ARMMMUFaultInfo *fi) 12454 { 12455 int n; 12456 uint32_t mask; 12457 uint32_t base; 12458 bool is_user = regime_is_user(env, mmu_idx); 12459 12460 if (regime_translation_disabled(env, mmu_idx)) { 12461 /* MPU disabled. */ 12462 *phys_ptr = address; 12463 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12464 return false; 12465 } 12466 12467 *phys_ptr = address; 12468 for (n = 7; n >= 0; n--) { 12469 base = env->cp15.c6_region[n]; 12470 if ((base & 1) == 0) { 12471 continue; 12472 } 12473 mask = 1 << ((base >> 1) & 0x1f); 12474 /* Keep this shift separate from the above to avoid an 12475 (undefined) << 32. */ 12476 mask = (mask << 1) - 1; 12477 if (((base ^ address) & ~mask) == 0) { 12478 break; 12479 } 12480 } 12481 if (n < 0) { 12482 fi->type = ARMFault_Background; 12483 return true; 12484 } 12485 12486 if (access_type == MMU_INST_FETCH) { 12487 mask = env->cp15.pmsav5_insn_ap; 12488 } else { 12489 mask = env->cp15.pmsav5_data_ap; 12490 } 12491 mask = (mask >> (n * 4)) & 0xf; 12492 switch (mask) { 12493 case 0: 12494 fi->type = ARMFault_Permission; 12495 fi->level = 1; 12496 return true; 12497 case 1: 12498 if (is_user) { 12499 fi->type = ARMFault_Permission; 12500 fi->level = 1; 12501 return true; 12502 } 12503 *prot = PAGE_READ | PAGE_WRITE; 12504 break; 12505 case 2: 12506 *prot = PAGE_READ; 12507 if (!is_user) { 12508 *prot |= PAGE_WRITE; 12509 } 12510 break; 12511 case 3: 12512 *prot = PAGE_READ | PAGE_WRITE; 12513 break; 12514 case 5: 12515 if (is_user) { 12516 fi->type = ARMFault_Permission; 12517 fi->level = 1; 12518 return true; 12519 } 12520 *prot = PAGE_READ; 12521 break; 12522 case 6: 12523 *prot = PAGE_READ; 12524 break; 12525 default: 12526 /* Bad permission. */ 12527 fi->type = ARMFault_Permission; 12528 fi->level = 1; 12529 return true; 12530 } 12531 *prot |= PAGE_EXEC; 12532 return false; 12533 } 12534 12535 /* Combine either inner or outer cacheability attributes for normal 12536 * memory, according to table D4-42 and pseudocode procedure 12537 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12538 * 12539 * NB: only stage 1 includes allocation hints (RW bits), leading to 12540 * some asymmetry. 12541 */ 12542 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12543 { 12544 if (s1 == 4 || s2 == 4) { 12545 /* non-cacheable has precedence */ 12546 return 4; 12547 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12548 /* stage 1 write-through takes precedence */ 12549 return s1; 12550 } else if (extract32(s2, 2, 2) == 2) { 12551 /* stage 2 write-through takes precedence, but the allocation hint 12552 * is still taken from stage 1 12553 */ 12554 return (2 << 2) | extract32(s1, 0, 2); 12555 } else { /* write-back */ 12556 return s1; 12557 } 12558 } 12559 12560 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12561 * and CombineS1S2Desc() 12562 * 12563 * @s1: Attributes from stage 1 walk 12564 * @s2: Attributes from stage 2 walk 12565 */ 12566 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12567 { 12568 uint8_t s1lo, s2lo, s1hi, s2hi; 12569 ARMCacheAttrs ret; 12570 bool tagged = false; 12571 12572 if (s1.attrs == 0xf0) { 12573 tagged = true; 12574 s1.attrs = 0xff; 12575 } 12576 12577 s1lo = extract32(s1.attrs, 0, 4); 12578 s2lo = extract32(s2.attrs, 0, 4); 12579 s1hi = extract32(s1.attrs, 4, 4); 12580 s2hi = extract32(s2.attrs, 4, 4); 12581 12582 /* Combine shareability attributes (table D4-43) */ 12583 if (s1.shareability == 2 || s2.shareability == 2) { 12584 /* if either are outer-shareable, the result is outer-shareable */ 12585 ret.shareability = 2; 12586 } else if (s1.shareability == 3 || s2.shareability == 3) { 12587 /* if either are inner-shareable, the result is inner-shareable */ 12588 ret.shareability = 3; 12589 } else { 12590 /* both non-shareable */ 12591 ret.shareability = 0; 12592 } 12593 12594 /* Combine memory type and cacheability attributes */ 12595 if (s1hi == 0 || s2hi == 0) { 12596 /* Device has precedence over normal */ 12597 if (s1lo == 0 || s2lo == 0) { 12598 /* nGnRnE has precedence over anything */ 12599 ret.attrs = 0; 12600 } else if (s1lo == 4 || s2lo == 4) { 12601 /* non-Reordering has precedence over Reordering */ 12602 ret.attrs = 4; /* nGnRE */ 12603 } else if (s1lo == 8 || s2lo == 8) { 12604 /* non-Gathering has precedence over Gathering */ 12605 ret.attrs = 8; /* nGRE */ 12606 } else { 12607 ret.attrs = 0xc; /* GRE */ 12608 } 12609 12610 /* Any location for which the resultant memory type is any 12611 * type of Device memory is always treated as Outer Shareable. 12612 */ 12613 ret.shareability = 2; 12614 } else { /* Normal memory */ 12615 /* Outer/inner cacheability combine independently */ 12616 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12617 | combine_cacheattr_nibble(s1lo, s2lo); 12618 12619 if (ret.attrs == 0x44) { 12620 /* Any location for which the resultant memory type is Normal 12621 * Inner Non-cacheable, Outer Non-cacheable is always treated 12622 * as Outer Shareable. 12623 */ 12624 ret.shareability = 2; 12625 } 12626 } 12627 12628 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12629 if (tagged && ret.attrs == 0xff) { 12630 ret.attrs = 0xf0; 12631 } 12632 12633 return ret; 12634 } 12635 12636 12637 /* get_phys_addr - get the physical address for this virtual address 12638 * 12639 * Find the physical address corresponding to the given virtual address, 12640 * by doing a translation table walk on MMU based systems or using the 12641 * MPU state on MPU based systems. 12642 * 12643 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12644 * prot and page_size may not be filled in, and the populated fsr value provides 12645 * information on why the translation aborted, in the format of a 12646 * DFSR/IFSR fault register, with the following caveats: 12647 * * we honour the short vs long DFSR format differences. 12648 * * the WnR bit is never set (the caller must do this). 12649 * * for PSMAv5 based systems we don't bother to return a full FSR format 12650 * value. 12651 * 12652 * @env: CPUARMState 12653 * @address: virtual address to get physical address for 12654 * @access_type: 0 for read, 1 for write, 2 for execute 12655 * @mmu_idx: MMU index indicating required translation regime 12656 * @phys_ptr: set to the physical address corresponding to the virtual address 12657 * @attrs: set to the memory transaction attributes to use 12658 * @prot: set to the permissions for the page containing phys_ptr 12659 * @page_size: set to the size of the page containing phys_ptr 12660 * @fi: set to fault info if the translation fails 12661 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12662 */ 12663 bool get_phys_addr(CPUARMState *env, target_ulong address, 12664 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12665 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12666 target_ulong *page_size, 12667 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12668 { 12669 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12670 12671 if (mmu_idx != s1_mmu_idx) { 12672 /* Call ourselves recursively to do the stage 1 and then stage 2 12673 * translations if mmu_idx is a two-stage regime. 12674 */ 12675 if (arm_feature(env, ARM_FEATURE_EL2)) { 12676 hwaddr ipa; 12677 int s2_prot; 12678 int ret; 12679 bool ipa_secure; 12680 ARMCacheAttrs cacheattrs2 = {}; 12681 ARMMMUIdx s2_mmu_idx; 12682 bool is_el0; 12683 12684 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12685 attrs, prot, page_size, fi, cacheattrs); 12686 12687 /* If S1 fails or S2 is disabled, return early. */ 12688 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12689 *phys_ptr = ipa; 12690 return ret; 12691 } 12692 12693 ipa_secure = attrs->secure; 12694 if (arm_is_secure_below_el3(env)) { 12695 if (ipa_secure) { 12696 attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 12697 } else { 12698 attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 12699 } 12700 } else { 12701 assert(!ipa_secure); 12702 } 12703 12704 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12705 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12706 12707 /* S1 is done. Now do S2 translation. */ 12708 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12709 phys_ptr, attrs, &s2_prot, 12710 page_size, fi, &cacheattrs2); 12711 fi->s2addr = ipa; 12712 /* Combine the S1 and S2 perms. */ 12713 *prot &= s2_prot; 12714 12715 /* If S2 fails, return early. */ 12716 if (ret) { 12717 return ret; 12718 } 12719 12720 /* Combine the S1 and S2 cache attributes. */ 12721 if (arm_hcr_el2_eff(env) & HCR_DC) { 12722 /* 12723 * HCR.DC forces the first stage attributes to 12724 * Normal Non-Shareable, 12725 * Inner Write-Back Read-Allocate Write-Allocate, 12726 * Outer Write-Back Read-Allocate Write-Allocate. 12727 * Do not overwrite Tagged within attrs. 12728 */ 12729 if (cacheattrs->attrs != 0xf0) { 12730 cacheattrs->attrs = 0xff; 12731 } 12732 cacheattrs->shareability = 0; 12733 } 12734 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12735 12736 /* Check if IPA translates to secure or non-secure PA space. */ 12737 if (arm_is_secure_below_el3(env)) { 12738 if (ipa_secure) { 12739 attrs->secure = 12740 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12741 } else { 12742 attrs->secure = 12743 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12744 || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW))); 12745 } 12746 } 12747 return 0; 12748 } else { 12749 /* 12750 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12751 */ 12752 mmu_idx = stage_1_mmu_idx(mmu_idx); 12753 } 12754 } 12755 12756 /* The page table entries may downgrade secure to non-secure, but 12757 * cannot upgrade an non-secure translation regime's attributes 12758 * to secure. 12759 */ 12760 attrs->secure = regime_is_secure(env, mmu_idx); 12761 attrs->user = regime_is_user(env, mmu_idx); 12762 12763 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12764 * In v7 and earlier it affects all stage 1 translations. 12765 */ 12766 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12767 && !arm_feature(env, ARM_FEATURE_V8)) { 12768 if (regime_el(env, mmu_idx) == 3) { 12769 address += env->cp15.fcseidr_s; 12770 } else { 12771 address += env->cp15.fcseidr_ns; 12772 } 12773 } 12774 12775 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12776 bool ret; 12777 *page_size = TARGET_PAGE_SIZE; 12778 12779 if (arm_feature(env, ARM_FEATURE_V8)) { 12780 /* PMSAv8 */ 12781 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12782 phys_ptr, attrs, prot, page_size, fi); 12783 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12784 /* PMSAv7 */ 12785 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12786 phys_ptr, prot, page_size, fi); 12787 } else { 12788 /* Pre-v7 MPU */ 12789 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12790 phys_ptr, prot, fi); 12791 } 12792 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12793 " mmu_idx %u -> %s (prot %c%c%c)\n", 12794 access_type == MMU_DATA_LOAD ? "reading" : 12795 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12796 (uint32_t)address, mmu_idx, 12797 ret ? "Miss" : "Hit", 12798 *prot & PAGE_READ ? 'r' : '-', 12799 *prot & PAGE_WRITE ? 'w' : '-', 12800 *prot & PAGE_EXEC ? 'x' : '-'); 12801 12802 return ret; 12803 } 12804 12805 /* Definitely a real MMU, not an MPU */ 12806 12807 if (regime_translation_disabled(env, mmu_idx)) { 12808 uint64_t hcr; 12809 uint8_t memattr; 12810 12811 /* 12812 * MMU disabled. S1 addresses within aa64 translation regimes are 12813 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12814 */ 12815 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12816 int r_el = regime_el(env, mmu_idx); 12817 if (arm_el_is_aa64(env, r_el)) { 12818 int pamax = arm_pamax(env_archcpu(env)); 12819 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12820 int addrtop, tbi; 12821 12822 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12823 if (access_type == MMU_INST_FETCH) { 12824 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12825 } 12826 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12827 addrtop = (tbi ? 55 : 63); 12828 12829 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12830 fi->type = ARMFault_AddressSize; 12831 fi->level = 0; 12832 fi->stage2 = false; 12833 return 1; 12834 } 12835 12836 /* 12837 * When TBI is disabled, we've just validated that all of the 12838 * bits above PAMax are zero, so logically we only need to 12839 * clear the top byte for TBI. But it's clearer to follow 12840 * the pseudocode set of addrdesc.paddress. 12841 */ 12842 address = extract64(address, 0, 52); 12843 } 12844 } 12845 *phys_ptr = address; 12846 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12847 *page_size = TARGET_PAGE_SIZE; 12848 12849 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12850 hcr = arm_hcr_el2_eff(env); 12851 cacheattrs->shareability = 0; 12852 if (hcr & HCR_DC) { 12853 if (hcr & HCR_DCT) { 12854 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12855 } else { 12856 memattr = 0xff; /* Normal, WB, RWA */ 12857 } 12858 } else if (access_type == MMU_INST_FETCH) { 12859 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12860 memattr = 0xee; /* Normal, WT, RA, NT */ 12861 } else { 12862 memattr = 0x44; /* Normal, NC, No */ 12863 } 12864 cacheattrs->shareability = 2; /* outer sharable */ 12865 } else { 12866 memattr = 0x00; /* Device, nGnRnE */ 12867 } 12868 cacheattrs->attrs = memattr; 12869 return 0; 12870 } 12871 12872 if (regime_using_lpae_format(env, mmu_idx)) { 12873 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12874 phys_ptr, attrs, prot, page_size, 12875 fi, cacheattrs); 12876 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12877 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12878 phys_ptr, attrs, prot, page_size, fi); 12879 } else { 12880 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12881 phys_ptr, prot, page_size, fi); 12882 } 12883 } 12884 12885 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12886 MemTxAttrs *attrs) 12887 { 12888 ARMCPU *cpu = ARM_CPU(cs); 12889 CPUARMState *env = &cpu->env; 12890 hwaddr phys_addr; 12891 target_ulong page_size; 12892 int prot; 12893 bool ret; 12894 ARMMMUFaultInfo fi = {}; 12895 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12896 ARMCacheAttrs cacheattrs = {}; 12897 12898 *attrs = (MemTxAttrs) {}; 12899 12900 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12901 attrs, &prot, &page_size, &fi, &cacheattrs); 12902 12903 if (ret) { 12904 return -1; 12905 } 12906 return phys_addr; 12907 } 12908 12909 #endif 12910 12911 /* Note that signed overflow is undefined in C. The following routines are 12912 careful to use unsigned types where modulo arithmetic is required. 12913 Failure to do so _will_ break on newer gcc. */ 12914 12915 /* Signed saturating arithmetic. */ 12916 12917 /* Perform 16-bit signed saturating addition. */ 12918 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12919 { 12920 uint16_t res; 12921 12922 res = a + b; 12923 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12924 if (a & 0x8000) 12925 res = 0x8000; 12926 else 12927 res = 0x7fff; 12928 } 12929 return res; 12930 } 12931 12932 /* Perform 8-bit signed saturating addition. */ 12933 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12934 { 12935 uint8_t res; 12936 12937 res = a + b; 12938 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12939 if (a & 0x80) 12940 res = 0x80; 12941 else 12942 res = 0x7f; 12943 } 12944 return res; 12945 } 12946 12947 /* Perform 16-bit signed saturating subtraction. */ 12948 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12949 { 12950 uint16_t res; 12951 12952 res = a - b; 12953 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12954 if (a & 0x8000) 12955 res = 0x8000; 12956 else 12957 res = 0x7fff; 12958 } 12959 return res; 12960 } 12961 12962 /* Perform 8-bit signed saturating subtraction. */ 12963 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12964 { 12965 uint8_t res; 12966 12967 res = a - b; 12968 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12969 if (a & 0x80) 12970 res = 0x80; 12971 else 12972 res = 0x7f; 12973 } 12974 return res; 12975 } 12976 12977 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12978 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12979 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12980 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12981 #define PFX q 12982 12983 #include "op_addsub.h" 12984 12985 /* Unsigned saturating arithmetic. */ 12986 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12987 { 12988 uint16_t res; 12989 res = a + b; 12990 if (res < a) 12991 res = 0xffff; 12992 return res; 12993 } 12994 12995 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12996 { 12997 if (a > b) 12998 return a - b; 12999 else 13000 return 0; 13001 } 13002 13003 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 13004 { 13005 uint8_t res; 13006 res = a + b; 13007 if (res < a) 13008 res = 0xff; 13009 return res; 13010 } 13011 13012 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 13013 { 13014 if (a > b) 13015 return a - b; 13016 else 13017 return 0; 13018 } 13019 13020 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 13021 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 13022 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 13023 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 13024 #define PFX uq 13025 13026 #include "op_addsub.h" 13027 13028 /* Signed modulo arithmetic. */ 13029 #define SARITH16(a, b, n, op) do { \ 13030 int32_t sum; \ 13031 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 13032 RESULT(sum, n, 16); \ 13033 if (sum >= 0) \ 13034 ge |= 3 << (n * 2); \ 13035 } while(0) 13036 13037 #define SARITH8(a, b, n, op) do { \ 13038 int32_t sum; \ 13039 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 13040 RESULT(sum, n, 8); \ 13041 if (sum >= 0) \ 13042 ge |= 1 << n; \ 13043 } while(0) 13044 13045 13046 #define ADD16(a, b, n) SARITH16(a, b, n, +) 13047 #define SUB16(a, b, n) SARITH16(a, b, n, -) 13048 #define ADD8(a, b, n) SARITH8(a, b, n, +) 13049 #define SUB8(a, b, n) SARITH8(a, b, n, -) 13050 #define PFX s 13051 #define ARITH_GE 13052 13053 #include "op_addsub.h" 13054 13055 /* Unsigned modulo arithmetic. */ 13056 #define ADD16(a, b, n) do { \ 13057 uint32_t sum; \ 13058 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 13059 RESULT(sum, n, 16); \ 13060 if ((sum >> 16) == 1) \ 13061 ge |= 3 << (n * 2); \ 13062 } while(0) 13063 13064 #define ADD8(a, b, n) do { \ 13065 uint32_t sum; \ 13066 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 13067 RESULT(sum, n, 8); \ 13068 if ((sum >> 8) == 1) \ 13069 ge |= 1 << n; \ 13070 } while(0) 13071 13072 #define SUB16(a, b, n) do { \ 13073 uint32_t sum; \ 13074 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 13075 RESULT(sum, n, 16); \ 13076 if ((sum >> 16) == 0) \ 13077 ge |= 3 << (n * 2); \ 13078 } while(0) 13079 13080 #define SUB8(a, b, n) do { \ 13081 uint32_t sum; \ 13082 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 13083 RESULT(sum, n, 8); \ 13084 if ((sum >> 8) == 0) \ 13085 ge |= 1 << n; \ 13086 } while(0) 13087 13088 #define PFX u 13089 #define ARITH_GE 13090 13091 #include "op_addsub.h" 13092 13093 /* Halved signed arithmetic. */ 13094 #define ADD16(a, b, n) \ 13095 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 13096 #define SUB16(a, b, n) \ 13097 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 13098 #define ADD8(a, b, n) \ 13099 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 13100 #define SUB8(a, b, n) \ 13101 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 13102 #define PFX sh 13103 13104 #include "op_addsub.h" 13105 13106 /* Halved unsigned arithmetic. */ 13107 #define ADD16(a, b, n) \ 13108 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13109 #define SUB16(a, b, n) \ 13110 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13111 #define ADD8(a, b, n) \ 13112 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13113 #define SUB8(a, b, n) \ 13114 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13115 #define PFX uh 13116 13117 #include "op_addsub.h" 13118 13119 static inline uint8_t do_usad(uint8_t a, uint8_t b) 13120 { 13121 if (a > b) 13122 return a - b; 13123 else 13124 return b - a; 13125 } 13126 13127 /* Unsigned sum of absolute byte differences. */ 13128 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 13129 { 13130 uint32_t sum; 13131 sum = do_usad(a, b); 13132 sum += do_usad(a >> 8, b >> 8); 13133 sum += do_usad(a >> 16, b >> 16); 13134 sum += do_usad(a >> 24, b >> 24); 13135 return sum; 13136 } 13137 13138 /* For ARMv6 SEL instruction. */ 13139 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13140 { 13141 uint32_t mask; 13142 13143 mask = 0; 13144 if (flags & 1) 13145 mask |= 0xff; 13146 if (flags & 2) 13147 mask |= 0xff00; 13148 if (flags & 4) 13149 mask |= 0xff0000; 13150 if (flags & 8) 13151 mask |= 0xff000000; 13152 return (a & mask) | (b & ~mask); 13153 } 13154 13155 /* CRC helpers. 13156 * The upper bytes of val (above the number specified by 'bytes') must have 13157 * been zeroed out by the caller. 13158 */ 13159 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13160 { 13161 uint8_t buf[4]; 13162 13163 stl_le_p(buf, val); 13164 13165 /* zlib crc32 converts the accumulator and output to one's complement. */ 13166 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13167 } 13168 13169 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13170 { 13171 uint8_t buf[4]; 13172 13173 stl_le_p(buf, val); 13174 13175 /* Linux crc32c converts the output to one's complement. */ 13176 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13177 } 13178 13179 /* Return the exception level to which FP-disabled exceptions should 13180 * be taken, or 0 if FP is enabled. 13181 */ 13182 int fp_exception_el(CPUARMState *env, int cur_el) 13183 { 13184 #ifndef CONFIG_USER_ONLY 13185 uint64_t hcr_el2; 13186 13187 /* CPACR and the CPTR registers don't exist before v6, so FP is 13188 * always accessible 13189 */ 13190 if (!arm_feature(env, ARM_FEATURE_V6)) { 13191 return 0; 13192 } 13193 13194 if (arm_feature(env, ARM_FEATURE_M)) { 13195 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13196 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13197 return 1; 13198 } 13199 13200 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13201 if (!extract32(env->v7m.nsacr, 10, 1)) { 13202 /* FP insns cause a NOCP UsageFault taken to Secure */ 13203 return 3; 13204 } 13205 } 13206 13207 return 0; 13208 } 13209 13210 hcr_el2 = arm_hcr_el2_eff(env); 13211 13212 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13213 * 0, 2 : trap EL0 and EL1/PL1 accesses 13214 * 1 : trap only EL0 accesses 13215 * 3 : trap no accesses 13216 * This register is ignored if E2H+TGE are both set. 13217 */ 13218 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13219 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13220 13221 switch (fpen) { 13222 case 0: 13223 case 2: 13224 if (cur_el == 0 || cur_el == 1) { 13225 /* Trap to PL1, which might be EL1 or EL3 */ 13226 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13227 return 3; 13228 } 13229 return 1; 13230 } 13231 if (cur_el == 3 && !is_a64(env)) { 13232 /* Secure PL1 running at EL3 */ 13233 return 3; 13234 } 13235 break; 13236 case 1: 13237 if (cur_el == 0) { 13238 return 1; 13239 } 13240 break; 13241 case 3: 13242 break; 13243 } 13244 } 13245 13246 /* 13247 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13248 * to control non-secure access to the FPU. It doesn't have any 13249 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13250 */ 13251 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13252 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13253 if (!extract32(env->cp15.nsacr, 10, 1)) { 13254 /* FP insns act as UNDEF */ 13255 return cur_el == 2 ? 2 : 1; 13256 } 13257 } 13258 13259 /* 13260 * CPTR_EL2 is present in v7VE or v8, and changes format 13261 * with HCR_EL2.E2H (regardless of TGE). 13262 */ 13263 if (cur_el <= 2) { 13264 if (hcr_el2 & HCR_E2H) { 13265 /* Check CPTR_EL2.FPEN. */ 13266 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 13267 case 1: 13268 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 13269 break; 13270 } 13271 /* fall through */ 13272 case 0: 13273 case 2: 13274 return 2; 13275 } 13276 } else if (arm_is_el2_enabled(env)) { 13277 if (env->cp15.cptr_el[2] & CPTR_TFP) { 13278 return 2; 13279 } 13280 } 13281 } 13282 13283 /* CPTR_EL3 : present in v8 */ 13284 if (env->cp15.cptr_el[3] & CPTR_TFP) { 13285 /* Trap all FP ops to EL3 */ 13286 return 3; 13287 } 13288 #endif 13289 return 0; 13290 } 13291 13292 /* Return the exception level we're running at if this is our mmu_idx */ 13293 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13294 { 13295 if (mmu_idx & ARM_MMU_IDX_M) { 13296 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13297 } 13298 13299 switch (mmu_idx) { 13300 case ARMMMUIdx_E10_0: 13301 case ARMMMUIdx_E20_0: 13302 case ARMMMUIdx_SE10_0: 13303 case ARMMMUIdx_SE20_0: 13304 return 0; 13305 case ARMMMUIdx_E10_1: 13306 case ARMMMUIdx_E10_1_PAN: 13307 case ARMMMUIdx_SE10_1: 13308 case ARMMMUIdx_SE10_1_PAN: 13309 return 1; 13310 case ARMMMUIdx_E2: 13311 case ARMMMUIdx_E20_2: 13312 case ARMMMUIdx_E20_2_PAN: 13313 case ARMMMUIdx_SE2: 13314 case ARMMMUIdx_SE20_2: 13315 case ARMMMUIdx_SE20_2_PAN: 13316 return 2; 13317 case ARMMMUIdx_SE3: 13318 return 3; 13319 default: 13320 g_assert_not_reached(); 13321 } 13322 } 13323 13324 #ifndef CONFIG_TCG 13325 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13326 { 13327 g_assert_not_reached(); 13328 } 13329 #endif 13330 13331 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13332 { 13333 ARMMMUIdx idx; 13334 uint64_t hcr; 13335 13336 if (arm_feature(env, ARM_FEATURE_M)) { 13337 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13338 } 13339 13340 /* See ARM pseudo-function ELIsInHost. */ 13341 switch (el) { 13342 case 0: 13343 hcr = arm_hcr_el2_eff(env); 13344 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13345 idx = ARMMMUIdx_E20_0; 13346 } else { 13347 idx = ARMMMUIdx_E10_0; 13348 } 13349 break; 13350 case 1: 13351 if (env->pstate & PSTATE_PAN) { 13352 idx = ARMMMUIdx_E10_1_PAN; 13353 } else { 13354 idx = ARMMMUIdx_E10_1; 13355 } 13356 break; 13357 case 2: 13358 /* Note that TGE does not apply at EL2. */ 13359 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13360 if (env->pstate & PSTATE_PAN) { 13361 idx = ARMMMUIdx_E20_2_PAN; 13362 } else { 13363 idx = ARMMMUIdx_E20_2; 13364 } 13365 } else { 13366 idx = ARMMMUIdx_E2; 13367 } 13368 break; 13369 case 3: 13370 return ARMMMUIdx_SE3; 13371 default: 13372 g_assert_not_reached(); 13373 } 13374 13375 if (arm_is_secure_below_el3(env)) { 13376 idx &= ~ARM_MMU_IDX_A_NS; 13377 } 13378 13379 return idx; 13380 } 13381 13382 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13383 { 13384 return arm_mmu_idx_el(env, arm_current_el(env)); 13385 } 13386 13387 #ifndef CONFIG_USER_ONLY 13388 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13389 { 13390 return stage_1_mmu_idx(arm_mmu_idx(env)); 13391 } 13392 #endif 13393 13394 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13395 ARMMMUIdx mmu_idx, 13396 CPUARMTBFlags flags) 13397 { 13398 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13399 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13400 13401 if (arm_singlestep_active(env)) { 13402 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13403 } 13404 return flags; 13405 } 13406 13407 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13408 ARMMMUIdx mmu_idx, 13409 CPUARMTBFlags flags) 13410 { 13411 bool sctlr_b = arm_sctlr_b(env); 13412 13413 if (sctlr_b) { 13414 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13415 } 13416 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13417 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13418 } 13419 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13420 13421 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13422 } 13423 13424 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13425 ARMMMUIdx mmu_idx) 13426 { 13427 CPUARMTBFlags flags = {}; 13428 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13429 13430 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13431 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13432 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13433 } 13434 13435 if (arm_v7m_is_handler_mode(env)) { 13436 DP_TBFLAG_M32(flags, HANDLER, 1); 13437 } 13438 13439 /* 13440 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13441 * is suppressing them because the requested execution priority 13442 * is less than 0. 13443 */ 13444 if (arm_feature(env, ARM_FEATURE_V8) && 13445 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13446 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13447 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13448 } 13449 13450 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13451 } 13452 13453 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13454 { 13455 CPUARMTBFlags flags = {}; 13456 13457 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13458 return flags; 13459 } 13460 13461 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13462 ARMMMUIdx mmu_idx) 13463 { 13464 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13465 int el = arm_current_el(env); 13466 13467 if (arm_sctlr(env, el) & SCTLR_A) { 13468 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13469 } 13470 13471 if (arm_el_is_aa64(env, 1)) { 13472 DP_TBFLAG_A32(flags, VFPEN, 1); 13473 } 13474 13475 if (el < 2 && env->cp15.hstr_el2 && 13476 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13477 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13478 } 13479 13480 if (env->uncached_cpsr & CPSR_IL) { 13481 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13482 } 13483 13484 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13485 } 13486 13487 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13488 ARMMMUIdx mmu_idx) 13489 { 13490 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13491 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13492 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13493 uint64_t sctlr; 13494 int tbii, tbid; 13495 13496 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13497 13498 /* Get control bits for tagged addresses. */ 13499 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13500 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13501 13502 DP_TBFLAG_A64(flags, TBII, tbii); 13503 DP_TBFLAG_A64(flags, TBID, tbid); 13504 13505 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13506 int sve_el = sve_exception_el(env, el); 13507 uint32_t zcr_len; 13508 13509 /* 13510 * If SVE is disabled, but FP is enabled, 13511 * then the effective len is 0. 13512 */ 13513 if (sve_el != 0 && fp_el == 0) { 13514 zcr_len = 0; 13515 } else { 13516 zcr_len = sve_zcr_len_for_el(env, el); 13517 } 13518 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13519 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13520 } 13521 13522 sctlr = regime_sctlr(env, stage1); 13523 13524 if (sctlr & SCTLR_A) { 13525 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13526 } 13527 13528 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13529 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13530 } 13531 13532 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13533 /* 13534 * In order to save space in flags, we record only whether 13535 * pauth is "inactive", meaning all insns are implemented as 13536 * a nop, or "active" when some action must be performed. 13537 * The decision of which action to take is left to a helper. 13538 */ 13539 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13540 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13541 } 13542 } 13543 13544 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13545 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13546 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13547 DP_TBFLAG_A64(flags, BT, 1); 13548 } 13549 } 13550 13551 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13552 if (!(env->pstate & PSTATE_UAO)) { 13553 switch (mmu_idx) { 13554 case ARMMMUIdx_E10_1: 13555 case ARMMMUIdx_E10_1_PAN: 13556 case ARMMMUIdx_SE10_1: 13557 case ARMMMUIdx_SE10_1_PAN: 13558 /* TODO: ARMv8.3-NV */ 13559 DP_TBFLAG_A64(flags, UNPRIV, 1); 13560 break; 13561 case ARMMMUIdx_E20_2: 13562 case ARMMMUIdx_E20_2_PAN: 13563 case ARMMMUIdx_SE20_2: 13564 case ARMMMUIdx_SE20_2_PAN: 13565 /* 13566 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13567 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13568 */ 13569 if (env->cp15.hcr_el2 & HCR_TGE) { 13570 DP_TBFLAG_A64(flags, UNPRIV, 1); 13571 } 13572 break; 13573 default: 13574 break; 13575 } 13576 } 13577 13578 if (env->pstate & PSTATE_IL) { 13579 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13580 } 13581 13582 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13583 /* 13584 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13585 * if all accesses must be Unchecked: 13586 * 1) If no TBI, then there are no tags in the address to check, 13587 * 2) If Tag Check Override, then all accesses are Unchecked, 13588 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13589 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13590 */ 13591 if (allocation_tag_access_enabled(env, el, sctlr)) { 13592 DP_TBFLAG_A64(flags, ATA, 1); 13593 if (tbid 13594 && !(env->pstate & PSTATE_TCO) 13595 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13596 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13597 } 13598 } 13599 /* And again for unprivileged accesses, if required. */ 13600 if (EX_TBFLAG_A64(flags, UNPRIV) 13601 && tbid 13602 && !(env->pstate & PSTATE_TCO) 13603 && (sctlr & SCTLR_TCF0) 13604 && allocation_tag_access_enabled(env, 0, sctlr)) { 13605 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13606 } 13607 /* Cache TCMA as well as TBI. */ 13608 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13609 } 13610 13611 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13612 } 13613 13614 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13615 { 13616 int el = arm_current_el(env); 13617 int fp_el = fp_exception_el(env, el); 13618 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13619 13620 if (is_a64(env)) { 13621 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13622 } else if (arm_feature(env, ARM_FEATURE_M)) { 13623 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13624 } else { 13625 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13626 } 13627 } 13628 13629 void arm_rebuild_hflags(CPUARMState *env) 13630 { 13631 env->hflags = rebuild_hflags_internal(env); 13632 } 13633 13634 /* 13635 * If we have triggered a EL state change we can't rely on the 13636 * translator having passed it to us, we need to recompute. 13637 */ 13638 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13639 { 13640 int el = arm_current_el(env); 13641 int fp_el = fp_exception_el(env, el); 13642 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13643 13644 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13645 } 13646 13647 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13648 { 13649 int fp_el = fp_exception_el(env, el); 13650 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13651 13652 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13653 } 13654 13655 /* 13656 * If we have triggered a EL state change we can't rely on the 13657 * translator having passed it to us, we need to recompute. 13658 */ 13659 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13660 { 13661 int el = arm_current_el(env); 13662 int fp_el = fp_exception_el(env, el); 13663 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13664 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13665 } 13666 13667 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13668 { 13669 int fp_el = fp_exception_el(env, el); 13670 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13671 13672 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13673 } 13674 13675 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13676 { 13677 int fp_el = fp_exception_el(env, el); 13678 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13679 13680 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13681 } 13682 13683 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13684 { 13685 #ifdef CONFIG_DEBUG_TCG 13686 CPUARMTBFlags c = env->hflags; 13687 CPUARMTBFlags r = rebuild_hflags_internal(env); 13688 13689 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13690 fprintf(stderr, "TCG hflags mismatch " 13691 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13692 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13693 c.flags, c.flags2, r.flags, r.flags2); 13694 abort(); 13695 } 13696 #endif 13697 } 13698 13699 static bool mve_no_pred(CPUARMState *env) 13700 { 13701 /* 13702 * Return true if there is definitely no predication of MVE 13703 * instructions by VPR or LTPSIZE. (Returning false even if there 13704 * isn't any predication is OK; generated code will just be 13705 * a little worse.) 13706 * If the CPU does not implement MVE then this TB flag is always 0. 13707 * 13708 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13709 * logic in gen_update_fp_context() needs to be updated to match. 13710 * 13711 * We do not include the effect of the ECI bits here -- they are 13712 * tracked in other TB flags. This simplifies the logic for 13713 * "when did we emit code that changes the MVE_NO_PRED TB flag 13714 * and thus need to end the TB?". 13715 */ 13716 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13717 return false; 13718 } 13719 if (env->v7m.vpr) { 13720 return false; 13721 } 13722 if (env->v7m.ltpsize < 4) { 13723 return false; 13724 } 13725 return true; 13726 } 13727 13728 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13729 target_ulong *cs_base, uint32_t *pflags) 13730 { 13731 CPUARMTBFlags flags; 13732 13733 assert_hflags_rebuild_correctly(env); 13734 flags = env->hflags; 13735 13736 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13737 *pc = env->pc; 13738 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13739 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13740 } 13741 } else { 13742 *pc = env->regs[15]; 13743 13744 if (arm_feature(env, ARM_FEATURE_M)) { 13745 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13746 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13747 != env->v7m.secure) { 13748 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13749 } 13750 13751 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13752 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13753 (env->v7m.secure && 13754 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13755 /* 13756 * ASPEN is set, but FPCA/SFPA indicate that there is no 13757 * active FP context; we must create a new FP context before 13758 * executing any FP insn. 13759 */ 13760 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13761 } 13762 13763 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13764 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13765 DP_TBFLAG_M32(flags, LSPACT, 1); 13766 } 13767 13768 if (mve_no_pred(env)) { 13769 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13770 } 13771 } else { 13772 /* 13773 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13774 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13775 */ 13776 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13777 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13778 } else { 13779 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13780 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13781 } 13782 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13783 DP_TBFLAG_A32(flags, VFPEN, 1); 13784 } 13785 } 13786 13787 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13788 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13789 } 13790 13791 /* 13792 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13793 * states defined in the ARM ARM for software singlestep: 13794 * SS_ACTIVE PSTATE.SS State 13795 * 0 x Inactive (the TB flag for SS is always 0) 13796 * 1 0 Active-pending 13797 * 1 1 Active-not-pending 13798 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13799 */ 13800 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13801 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13802 } 13803 13804 *pflags = flags.flags; 13805 *cs_base = flags.flags2; 13806 } 13807 13808 #ifdef TARGET_AARCH64 13809 /* 13810 * The manual says that when SVE is enabled and VQ is widened the 13811 * implementation is allowed to zero the previously inaccessible 13812 * portion of the registers. The corollary to that is that when 13813 * SVE is enabled and VQ is narrowed we are also allowed to zero 13814 * the now inaccessible portion of the registers. 13815 * 13816 * The intent of this is that no predicate bit beyond VQ is ever set. 13817 * Which means that some operations on predicate registers themselves 13818 * may operate on full uint64_t or even unrolled across the maximum 13819 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13820 * may well be cheaper than conditionals to restrict the operation 13821 * to the relevant portion of a uint16_t[16]. 13822 */ 13823 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13824 { 13825 int i, j; 13826 uint64_t pmask; 13827 13828 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13829 assert(vq <= env_archcpu(env)->sve_max_vq); 13830 13831 /* Zap the high bits of the zregs. */ 13832 for (i = 0; i < 32; i++) { 13833 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13834 } 13835 13836 /* Zap the high bits of the pregs and ffr. */ 13837 pmask = 0; 13838 if (vq & 3) { 13839 pmask = ~(-1ULL << (16 * (vq & 3))); 13840 } 13841 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13842 for (i = 0; i < 17; ++i) { 13843 env->vfp.pregs[i].p[j] &= pmask; 13844 } 13845 pmask = 0; 13846 } 13847 } 13848 13849 /* 13850 * Notice a change in SVE vector size when changing EL. 13851 */ 13852 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13853 int new_el, bool el0_a64) 13854 { 13855 ARMCPU *cpu = env_archcpu(env); 13856 int old_len, new_len; 13857 bool old_a64, new_a64; 13858 13859 /* Nothing to do if no SVE. */ 13860 if (!cpu_isar_feature(aa64_sve, cpu)) { 13861 return; 13862 } 13863 13864 /* Nothing to do if FP is disabled in either EL. */ 13865 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13866 return; 13867 } 13868 13869 /* 13870 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13871 * at ELx, or not available because the EL is in AArch32 state, then 13872 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13873 * has an effective value of 0". 13874 * 13875 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13876 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13877 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13878 * we already have the correct register contents when encountering the 13879 * vq0->vq0 transition between EL0->EL1. 13880 */ 13881 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13882 old_len = (old_a64 && !sve_exception_el(env, old_el) 13883 ? sve_zcr_len_for_el(env, old_el) : 0); 13884 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13885 new_len = (new_a64 && !sve_exception_el(env, new_el) 13886 ? sve_zcr_len_for_el(env, new_el) : 0); 13887 13888 /* When changing vector length, clear inaccessible state. */ 13889 if (new_len < old_len) { 13890 aarch64_sve_narrow_vq(env, new_len + 1); 13891 } 13892 } 13893 #endif 13894