1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "target/arm/idau.h" 13 #include "trace.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/timer.h" 20 #include "qemu/bitops.h" 21 #include "qemu/crc32c.h" 22 #include "qemu/qemu-print.h" 23 #include "exec/exec-all.h" 24 #include <zlib.h> /* For crc32 */ 25 #include "hw/irq.h" 26 #include "semihosting/semihost.h" 27 #include "sysemu/cpus.h" 28 #include "sysemu/cpu-timers.h" 29 #include "sysemu/kvm.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "semihosting/common-semi.h" 38 #endif 39 #include "cpregs.h" 40 41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 42 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 43 44 #ifndef CONFIG_USER_ONLY 45 46 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 47 MMUAccessType access_type, ARMMMUIdx mmu_idx, 48 bool s1_is_el0, 49 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 50 target_ulong *page_size_ptr, 51 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 52 __attribute__((nonnull)); 53 #endif 54 55 static void switch_mode(CPUARMState *env, int mode); 56 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 57 58 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 assert(ri->fieldoffset); 61 if (cpreg_field_is_64bit(ri)) { 62 return CPREG_FIELD64(env, ri); 63 } else { 64 return CPREG_FIELD32(env, ri); 65 } 66 } 67 68 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 69 uint64_t value) 70 { 71 assert(ri->fieldoffset); 72 if (cpreg_field_is_64bit(ri)) { 73 CPREG_FIELD64(env, ri) = value; 74 } else { 75 CPREG_FIELD32(env, ri) = value; 76 } 77 } 78 79 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 80 { 81 return (char *)env + ri->fieldoffset; 82 } 83 84 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 85 { 86 /* Raw read of a coprocessor register (as needed for migration, etc). */ 87 if (ri->type & ARM_CP_CONST) { 88 return ri->resetvalue; 89 } else if (ri->raw_readfn) { 90 return ri->raw_readfn(env, ri); 91 } else if (ri->readfn) { 92 return ri->readfn(env, ri); 93 } else { 94 return raw_read(env, ri); 95 } 96 } 97 98 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 99 uint64_t v) 100 { 101 /* Raw write of a coprocessor register (as needed for migration, etc). 102 * Note that constant registers are treated as write-ignored; the 103 * caller should check for success by whether a readback gives the 104 * value written. 105 */ 106 if (ri->type & ARM_CP_CONST) { 107 return; 108 } else if (ri->raw_writefn) { 109 ri->raw_writefn(env, ri, v); 110 } else if (ri->writefn) { 111 ri->writefn(env, ri, v); 112 } else { 113 raw_write(env, ri, v); 114 } 115 } 116 117 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 118 { 119 /* Return true if the regdef would cause an assertion if you called 120 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 121 * program bug for it not to have the NO_RAW flag). 122 * NB that returning false here doesn't necessarily mean that calling 123 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 124 * read/write access functions which are safe for raw use" from "has 125 * read/write access functions which have side effects but has forgotten 126 * to provide raw access functions". 127 * The tests here line up with the conditions in read/write_raw_cp_reg() 128 * and assertions in raw_read()/raw_write(). 129 */ 130 if ((ri->type & ARM_CP_CONST) || 131 ri->fieldoffset || 132 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 133 return false; 134 } 135 return true; 136 } 137 138 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 139 { 140 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 141 int i; 142 bool ok = true; 143 144 for (i = 0; i < cpu->cpreg_array_len; i++) { 145 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 146 const ARMCPRegInfo *ri; 147 uint64_t newval; 148 149 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 150 if (!ri) { 151 ok = false; 152 continue; 153 } 154 if (ri->type & ARM_CP_NO_RAW) { 155 continue; 156 } 157 158 newval = read_raw_cp_reg(&cpu->env, ri); 159 if (kvm_sync) { 160 /* 161 * Only sync if the previous list->cpustate sync succeeded. 162 * Rather than tracking the success/failure state for every 163 * item in the list, we just recheck "does the raw write we must 164 * have made in write_list_to_cpustate() read back OK" here. 165 */ 166 uint64_t oldval = cpu->cpreg_values[i]; 167 168 if (oldval == newval) { 169 continue; 170 } 171 172 write_raw_cp_reg(&cpu->env, ri, oldval); 173 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 174 continue; 175 } 176 177 write_raw_cp_reg(&cpu->env, ri, newval); 178 } 179 cpu->cpreg_values[i] = newval; 180 } 181 return ok; 182 } 183 184 bool write_list_to_cpustate(ARMCPU *cpu) 185 { 186 int i; 187 bool ok = true; 188 189 for (i = 0; i < cpu->cpreg_array_len; i++) { 190 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 191 uint64_t v = cpu->cpreg_values[i]; 192 const ARMCPRegInfo *ri; 193 194 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 195 if (!ri) { 196 ok = false; 197 continue; 198 } 199 if (ri->type & ARM_CP_NO_RAW) { 200 continue; 201 } 202 /* Write value and confirm it reads back as written 203 * (to catch read-only registers and partially read-only 204 * registers where the incoming migration value doesn't match) 205 */ 206 write_raw_cp_reg(&cpu->env, ri, v); 207 if (read_raw_cp_reg(&cpu->env, ri) != v) { 208 ok = false; 209 } 210 } 211 return ok; 212 } 213 214 static void add_cpreg_to_list(gpointer key, gpointer opaque) 215 { 216 ARMCPU *cpu = opaque; 217 uint64_t regidx; 218 const ARMCPRegInfo *ri; 219 220 regidx = *(uint32_t *)key; 221 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 222 223 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 224 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 225 /* The value array need not be initialized at this point */ 226 cpu->cpreg_array_len++; 227 } 228 } 229 230 static void count_cpreg(gpointer key, gpointer opaque) 231 { 232 ARMCPU *cpu = opaque; 233 uint64_t regidx; 234 const ARMCPRegInfo *ri; 235 236 regidx = *(uint32_t *)key; 237 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 238 239 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 240 cpu->cpreg_array_len++; 241 } 242 } 243 244 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 245 { 246 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 247 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 248 249 if (aidx > bidx) { 250 return 1; 251 } 252 if (aidx < bidx) { 253 return -1; 254 } 255 return 0; 256 } 257 258 void init_cpreg_list(ARMCPU *cpu) 259 { 260 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 261 * Note that we require cpreg_tuples[] to be sorted by key ID. 262 */ 263 GList *keys; 264 int arraylen; 265 266 keys = g_hash_table_get_keys(cpu->cp_regs); 267 keys = g_list_sort(keys, cpreg_key_compare); 268 269 cpu->cpreg_array_len = 0; 270 271 g_list_foreach(keys, count_cpreg, cpu); 272 273 arraylen = cpu->cpreg_array_len; 274 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 275 cpu->cpreg_values = g_new(uint64_t, arraylen); 276 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 277 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 278 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 279 cpu->cpreg_array_len = 0; 280 281 g_list_foreach(keys, add_cpreg_to_list, cpu); 282 283 assert(cpu->cpreg_array_len == arraylen); 284 285 g_list_free(keys); 286 } 287 288 /* 289 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 290 */ 291 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 292 const ARMCPRegInfo *ri, 293 bool isread) 294 { 295 if (!is_a64(env) && arm_current_el(env) == 3 && 296 arm_is_secure_below_el3(env)) { 297 return CP_ACCESS_TRAP_UNCATEGORIZED; 298 } 299 return CP_ACCESS_OK; 300 } 301 302 /* Some secure-only AArch32 registers trap to EL3 if used from 303 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 304 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 305 * We assume that the .access field is set to PL1_RW. 306 */ 307 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 308 const ARMCPRegInfo *ri, 309 bool isread) 310 { 311 if (arm_current_el(env) == 3) { 312 return CP_ACCESS_OK; 313 } 314 if (arm_is_secure_below_el3(env)) { 315 if (env->cp15.scr_el3 & SCR_EEL2) { 316 return CP_ACCESS_TRAP_EL2; 317 } 318 return CP_ACCESS_TRAP_EL3; 319 } 320 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 321 return CP_ACCESS_TRAP_UNCATEGORIZED; 322 } 323 324 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 325 { 326 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 327 } 328 329 /* Check for traps to "powerdown debug" registers, which are controlled 330 * by MDCR.TDOSA 331 */ 332 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 333 bool isread) 334 { 335 int el = arm_current_el(env); 336 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 337 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 338 (arm_hcr_el2_eff(env) & HCR_TGE); 339 340 if (el < 2 && mdcr_el2_tdosa) { 341 return CP_ACCESS_TRAP_EL2; 342 } 343 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 344 return CP_ACCESS_TRAP_EL3; 345 } 346 return CP_ACCESS_OK; 347 } 348 349 /* Check for traps to "debug ROM" registers, which are controlled 350 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 351 */ 352 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 353 bool isread) 354 { 355 int el = arm_current_el(env); 356 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 357 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 358 (arm_hcr_el2_eff(env) & HCR_TGE); 359 360 if (el < 2 && mdcr_el2_tdra) { 361 return CP_ACCESS_TRAP_EL2; 362 } 363 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 364 return CP_ACCESS_TRAP_EL3; 365 } 366 return CP_ACCESS_OK; 367 } 368 369 /* Check for traps to general debug registers, which are controlled 370 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 371 */ 372 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 373 bool isread) 374 { 375 int el = arm_current_el(env); 376 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 377 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 378 (arm_hcr_el2_eff(env) & HCR_TGE); 379 380 if (el < 2 && mdcr_el2_tda) { 381 return CP_ACCESS_TRAP_EL2; 382 } 383 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 384 return CP_ACCESS_TRAP_EL3; 385 } 386 return CP_ACCESS_OK; 387 } 388 389 /* Check for traps to performance monitor registers, which are controlled 390 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 391 */ 392 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 393 bool isread) 394 { 395 int el = arm_current_el(env); 396 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 397 398 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 399 return CP_ACCESS_TRAP_EL2; 400 } 401 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 402 return CP_ACCESS_TRAP_EL3; 403 } 404 return CP_ACCESS_OK; 405 } 406 407 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 408 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 409 bool isread) 410 { 411 if (arm_current_el(env) == 1) { 412 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 413 if (arm_hcr_el2_eff(env) & trap) { 414 return CP_ACCESS_TRAP_EL2; 415 } 416 } 417 return CP_ACCESS_OK; 418 } 419 420 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 421 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 422 bool isread) 423 { 424 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 425 return CP_ACCESS_TRAP_EL2; 426 } 427 return CP_ACCESS_OK; 428 } 429 430 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 431 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 432 bool isread) 433 { 434 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 435 return CP_ACCESS_TRAP_EL2; 436 } 437 return CP_ACCESS_OK; 438 } 439 440 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 441 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 442 bool isread) 443 { 444 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 445 return CP_ACCESS_TRAP_EL2; 446 } 447 return CP_ACCESS_OK; 448 } 449 450 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 451 { 452 ARMCPU *cpu = env_archcpu(env); 453 454 raw_write(env, ri, value); 455 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 456 } 457 458 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 459 { 460 ARMCPU *cpu = env_archcpu(env); 461 462 if (raw_read(env, ri) != value) { 463 /* Unlike real hardware the qemu TLB uses virtual addresses, 464 * not modified virtual addresses, so this causes a TLB flush. 465 */ 466 tlb_flush(CPU(cpu)); 467 raw_write(env, ri, value); 468 } 469 } 470 471 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 472 uint64_t value) 473 { 474 ARMCPU *cpu = env_archcpu(env); 475 476 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 477 && !extended_addresses_enabled(env)) { 478 /* For VMSA (when not using the LPAE long descriptor page table 479 * format) this register includes the ASID, so do a TLB flush. 480 * For PMSA it is purely a process ID and no action is needed. 481 */ 482 tlb_flush(CPU(cpu)); 483 } 484 raw_write(env, ri, value); 485 } 486 487 /* IS variants of TLB operations must affect all cores */ 488 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 489 uint64_t value) 490 { 491 CPUState *cs = env_cpu(env); 492 493 tlb_flush_all_cpus_synced(cs); 494 } 495 496 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 497 uint64_t value) 498 { 499 CPUState *cs = env_cpu(env); 500 501 tlb_flush_all_cpus_synced(cs); 502 } 503 504 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 505 uint64_t value) 506 { 507 CPUState *cs = env_cpu(env); 508 509 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 510 } 511 512 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 CPUState *cs = env_cpu(env); 516 517 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 518 } 519 520 /* 521 * Non-IS variants of TLB operations are upgraded to 522 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 523 * force broadcast of these operations. 524 */ 525 static bool tlb_force_broadcast(CPUARMState *env) 526 { 527 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 528 } 529 530 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 531 uint64_t value) 532 { 533 /* Invalidate all (TLBIALL) */ 534 CPUState *cs = env_cpu(env); 535 536 if (tlb_force_broadcast(env)) { 537 tlb_flush_all_cpus_synced(cs); 538 } else { 539 tlb_flush(cs); 540 } 541 } 542 543 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 544 uint64_t value) 545 { 546 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 547 CPUState *cs = env_cpu(env); 548 549 value &= TARGET_PAGE_MASK; 550 if (tlb_force_broadcast(env)) { 551 tlb_flush_page_all_cpus_synced(cs, value); 552 } else { 553 tlb_flush_page(cs, value); 554 } 555 } 556 557 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 558 uint64_t value) 559 { 560 /* Invalidate by ASID (TLBIASID) */ 561 CPUState *cs = env_cpu(env); 562 563 if (tlb_force_broadcast(env)) { 564 tlb_flush_all_cpus_synced(cs); 565 } else { 566 tlb_flush(cs); 567 } 568 } 569 570 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 574 CPUState *cs = env_cpu(env); 575 576 value &= TARGET_PAGE_MASK; 577 if (tlb_force_broadcast(env)) { 578 tlb_flush_page_all_cpus_synced(cs, value); 579 } else { 580 tlb_flush_page(cs, value); 581 } 582 } 583 584 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 585 uint64_t value) 586 { 587 CPUState *cs = env_cpu(env); 588 589 tlb_flush_by_mmuidx(cs, 590 ARMMMUIdxBit_E10_1 | 591 ARMMMUIdxBit_E10_1_PAN | 592 ARMMMUIdxBit_E10_0); 593 } 594 595 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 596 uint64_t value) 597 { 598 CPUState *cs = env_cpu(env); 599 600 tlb_flush_by_mmuidx_all_cpus_synced(cs, 601 ARMMMUIdxBit_E10_1 | 602 ARMMMUIdxBit_E10_1_PAN | 603 ARMMMUIdxBit_E10_0); 604 } 605 606 607 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 608 uint64_t value) 609 { 610 CPUState *cs = env_cpu(env); 611 612 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 613 } 614 615 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 616 uint64_t value) 617 { 618 CPUState *cs = env_cpu(env); 619 620 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 621 } 622 623 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 624 uint64_t value) 625 { 626 CPUState *cs = env_cpu(env); 627 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 628 629 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 630 } 631 632 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 633 uint64_t value) 634 { 635 CPUState *cs = env_cpu(env); 636 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 637 638 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 639 ARMMMUIdxBit_E2); 640 } 641 642 static const ARMCPRegInfo cp_reginfo[] = { 643 /* Define the secure and non-secure FCSE identifier CP registers 644 * separately because there is no secure bank in V8 (no _EL3). This allows 645 * the secure register to be properly reset and migrated. There is also no 646 * v8 EL1 version of the register so the non-secure instance stands alone. 647 */ 648 { .name = "FCSEIDR", 649 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 650 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 651 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 652 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 653 { .name = "FCSEIDR_S", 654 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 655 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 656 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 657 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 658 /* Define the secure and non-secure context identifier CP registers 659 * separately because there is no secure bank in V8 (no _EL3). This allows 660 * the secure register to be properly reset and migrated. In the 661 * non-secure case, the 32-bit register will have reset and migration 662 * disabled during registration as it is handled by the 64-bit instance. 663 */ 664 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 665 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 666 .access = PL1_RW, .accessfn = access_tvm_trvm, 667 .secure = ARM_CP_SECSTATE_NS, 668 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 669 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 670 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 671 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 672 .access = PL1_RW, .accessfn = access_tvm_trvm, 673 .secure = ARM_CP_SECSTATE_S, 674 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 675 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 676 }; 677 678 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 679 /* NB: Some of these registers exist in v8 but with more precise 680 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 681 */ 682 /* MMU Domain access control / MPU write buffer control */ 683 { .name = "DACR", 684 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 685 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 686 .writefn = dacr_write, .raw_writefn = raw_write, 687 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 688 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 689 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 690 * For v6 and v5, these mappings are overly broad. 691 */ 692 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 693 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 694 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 695 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 696 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 697 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 698 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 699 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 700 /* Cache maintenance ops; some of this space may be overridden later. */ 701 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 702 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 703 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 704 }; 705 706 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 707 /* Not all pre-v6 cores implemented this WFI, so this is slightly 708 * over-broad. 709 */ 710 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 711 .access = PL1_W, .type = ARM_CP_WFI }, 712 }; 713 714 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 715 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 716 * is UNPREDICTABLE; we choose to NOP as most implementations do). 717 */ 718 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 719 .access = PL1_W, .type = ARM_CP_WFI }, 720 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 721 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 722 * OMAPCP will override this space. 723 */ 724 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 725 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 726 .resetvalue = 0 }, 727 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 728 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 729 .resetvalue = 0 }, 730 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 731 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 732 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 733 .resetvalue = 0 }, 734 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 735 * implementing it as RAZ means the "debug architecture version" bits 736 * will read as a reserved value, which should cause Linux to not try 737 * to use the debug hardware. 738 */ 739 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 740 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 741 /* MMU TLB control. Note that the wildcarding means we cover not just 742 * the unified TLB ops but also the dside/iside/inner-shareable variants. 743 */ 744 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 745 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 746 .type = ARM_CP_NO_RAW }, 747 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 748 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 749 .type = ARM_CP_NO_RAW }, 750 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 751 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 752 .type = ARM_CP_NO_RAW }, 753 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 754 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 755 .type = ARM_CP_NO_RAW }, 756 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 757 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 758 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 759 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 760 }; 761 762 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 763 uint64_t value) 764 { 765 uint32_t mask = 0; 766 767 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 768 if (!arm_feature(env, ARM_FEATURE_V8)) { 769 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 770 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 771 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 772 */ 773 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 774 /* VFP coprocessor: cp10 & cp11 [23:20] */ 775 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 776 777 if (!arm_feature(env, ARM_FEATURE_NEON)) { 778 /* ASEDIS [31] bit is RAO/WI */ 779 value |= (1 << 31); 780 } 781 782 /* VFPv3 and upwards with NEON implement 32 double precision 783 * registers (D0-D31). 784 */ 785 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 786 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 787 value |= (1 << 30); 788 } 789 } 790 value &= mask; 791 } 792 793 /* 794 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 795 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 796 */ 797 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 798 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 799 value &= ~(0xf << 20); 800 value |= env->cp15.cpacr_el1 & (0xf << 20); 801 } 802 803 env->cp15.cpacr_el1 = value; 804 } 805 806 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 807 { 808 /* 809 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 810 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 811 */ 812 uint64_t value = env->cp15.cpacr_el1; 813 814 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 815 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 816 value &= ~(0xf << 20); 817 } 818 return value; 819 } 820 821 822 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 823 { 824 /* Call cpacr_write() so that we reset with the correct RAO bits set 825 * for our CPU features. 826 */ 827 cpacr_write(env, ri, 0); 828 } 829 830 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 831 bool isread) 832 { 833 if (arm_feature(env, ARM_FEATURE_V8)) { 834 /* Check if CPACR accesses are to be trapped to EL2 */ 835 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 836 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 837 return CP_ACCESS_TRAP_EL2; 838 /* Check if CPACR accesses are to be trapped to EL3 */ 839 } else if (arm_current_el(env) < 3 && 840 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 841 return CP_ACCESS_TRAP_EL3; 842 } 843 } 844 845 return CP_ACCESS_OK; 846 } 847 848 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 849 bool isread) 850 { 851 /* Check if CPTR accesses are set to trap to EL3 */ 852 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 853 return CP_ACCESS_TRAP_EL3; 854 } 855 856 return CP_ACCESS_OK; 857 } 858 859 static const ARMCPRegInfo v6_cp_reginfo[] = { 860 /* prefetch by MVA in v6, NOP in v7 */ 861 { .name = "MVA_prefetch", 862 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 863 .access = PL1_W, .type = ARM_CP_NOP }, 864 /* We need to break the TB after ISB to execute self-modifying code 865 * correctly and also to take any pending interrupts immediately. 866 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 867 */ 868 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 869 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 870 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 871 .access = PL0_W, .type = ARM_CP_NOP }, 872 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 873 .access = PL0_W, .type = ARM_CP_NOP }, 874 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 875 .access = PL1_RW, .accessfn = access_tvm_trvm, 876 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 877 offsetof(CPUARMState, cp15.ifar_ns) }, 878 .resetvalue = 0, }, 879 /* Watchpoint Fault Address Register : should actually only be present 880 * for 1136, 1176, 11MPCore. 881 */ 882 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 883 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 884 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 885 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 886 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 887 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 888 }; 889 890 typedef struct pm_event { 891 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 892 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 893 bool (*supported)(CPUARMState *); 894 /* 895 * Retrieve the current count of the underlying event. The programmed 896 * counters hold a difference from the return value from this function 897 */ 898 uint64_t (*get_count)(CPUARMState *); 899 /* 900 * Return how many nanoseconds it will take (at a minimum) for count events 901 * to occur. A negative value indicates the counter will never overflow, or 902 * that the counter has otherwise arranged for the overflow bit to be set 903 * and the PMU interrupt to be raised on overflow. 904 */ 905 int64_t (*ns_per_count)(uint64_t); 906 } pm_event; 907 908 static bool event_always_supported(CPUARMState *env) 909 { 910 return true; 911 } 912 913 static uint64_t swinc_get_count(CPUARMState *env) 914 { 915 /* 916 * SW_INCR events are written directly to the pmevcntr's by writes to 917 * PMSWINC, so there is no underlying count maintained by the PMU itself 918 */ 919 return 0; 920 } 921 922 static int64_t swinc_ns_per(uint64_t ignored) 923 { 924 return -1; 925 } 926 927 /* 928 * Return the underlying cycle count for the PMU cycle counters. If we're in 929 * usermode, simply return 0. 930 */ 931 static uint64_t cycles_get_count(CPUARMState *env) 932 { 933 #ifndef CONFIG_USER_ONLY 934 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 935 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 936 #else 937 return cpu_get_host_ticks(); 938 #endif 939 } 940 941 #ifndef CONFIG_USER_ONLY 942 static int64_t cycles_ns_per(uint64_t cycles) 943 { 944 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 945 } 946 947 static bool instructions_supported(CPUARMState *env) 948 { 949 return icount_enabled() == 1; /* Precise instruction counting */ 950 } 951 952 static uint64_t instructions_get_count(CPUARMState *env) 953 { 954 return (uint64_t)icount_get_raw(); 955 } 956 957 static int64_t instructions_ns_per(uint64_t icount) 958 { 959 return icount_to_ns((int64_t)icount); 960 } 961 #endif 962 963 static bool pmu_8_1_events_supported(CPUARMState *env) 964 { 965 /* For events which are supported in any v8.1 PMU */ 966 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 967 } 968 969 static bool pmu_8_4_events_supported(CPUARMState *env) 970 { 971 /* For events which are supported in any v8.1 PMU */ 972 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 973 } 974 975 static uint64_t zero_event_get_count(CPUARMState *env) 976 { 977 /* For events which on QEMU never fire, so their count is always zero */ 978 return 0; 979 } 980 981 static int64_t zero_event_ns_per(uint64_t cycles) 982 { 983 /* An event which never fires can never overflow */ 984 return -1; 985 } 986 987 static const pm_event pm_events[] = { 988 { .number = 0x000, /* SW_INCR */ 989 .supported = event_always_supported, 990 .get_count = swinc_get_count, 991 .ns_per_count = swinc_ns_per, 992 }, 993 #ifndef CONFIG_USER_ONLY 994 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 995 .supported = instructions_supported, 996 .get_count = instructions_get_count, 997 .ns_per_count = instructions_ns_per, 998 }, 999 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1000 .supported = event_always_supported, 1001 .get_count = cycles_get_count, 1002 .ns_per_count = cycles_ns_per, 1003 }, 1004 #endif 1005 { .number = 0x023, /* STALL_FRONTEND */ 1006 .supported = pmu_8_1_events_supported, 1007 .get_count = zero_event_get_count, 1008 .ns_per_count = zero_event_ns_per, 1009 }, 1010 { .number = 0x024, /* STALL_BACKEND */ 1011 .supported = pmu_8_1_events_supported, 1012 .get_count = zero_event_get_count, 1013 .ns_per_count = zero_event_ns_per, 1014 }, 1015 { .number = 0x03c, /* STALL */ 1016 .supported = pmu_8_4_events_supported, 1017 .get_count = zero_event_get_count, 1018 .ns_per_count = zero_event_ns_per, 1019 }, 1020 }; 1021 1022 /* 1023 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1024 * events (i.e. the statistical profiling extension), this implementation 1025 * should first be updated to something sparse instead of the current 1026 * supported_event_map[] array. 1027 */ 1028 #define MAX_EVENT_ID 0x3c 1029 #define UNSUPPORTED_EVENT UINT16_MAX 1030 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1031 1032 /* 1033 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1034 * of ARM event numbers to indices in our pm_events array. 1035 * 1036 * Note: Events in the 0x40XX range are not currently supported. 1037 */ 1038 void pmu_init(ARMCPU *cpu) 1039 { 1040 unsigned int i; 1041 1042 /* 1043 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1044 * events to them 1045 */ 1046 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1047 supported_event_map[i] = UNSUPPORTED_EVENT; 1048 } 1049 cpu->pmceid0 = 0; 1050 cpu->pmceid1 = 0; 1051 1052 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1053 const pm_event *cnt = &pm_events[i]; 1054 assert(cnt->number <= MAX_EVENT_ID); 1055 /* We do not currently support events in the 0x40xx range */ 1056 assert(cnt->number <= 0x3f); 1057 1058 if (cnt->supported(&cpu->env)) { 1059 supported_event_map[cnt->number] = i; 1060 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1061 if (cnt->number & 0x20) { 1062 cpu->pmceid1 |= event_mask; 1063 } else { 1064 cpu->pmceid0 |= event_mask; 1065 } 1066 } 1067 } 1068 } 1069 1070 /* 1071 * Check at runtime whether a PMU event is supported for the current machine 1072 */ 1073 static bool event_supported(uint16_t number) 1074 { 1075 if (number > MAX_EVENT_ID) { 1076 return false; 1077 } 1078 return supported_event_map[number] != UNSUPPORTED_EVENT; 1079 } 1080 1081 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1082 bool isread) 1083 { 1084 /* Performance monitor registers user accessibility is controlled 1085 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1086 * trapping to EL2 or EL3 for other accesses. 1087 */ 1088 int el = arm_current_el(env); 1089 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1090 1091 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1092 return CP_ACCESS_TRAP; 1093 } 1094 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1095 return CP_ACCESS_TRAP_EL2; 1096 } 1097 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1098 return CP_ACCESS_TRAP_EL3; 1099 } 1100 1101 return CP_ACCESS_OK; 1102 } 1103 1104 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1105 const ARMCPRegInfo *ri, 1106 bool isread) 1107 { 1108 /* ER: event counter read trap control */ 1109 if (arm_feature(env, ARM_FEATURE_V8) 1110 && arm_current_el(env) == 0 1111 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1112 && isread) { 1113 return CP_ACCESS_OK; 1114 } 1115 1116 return pmreg_access(env, ri, isread); 1117 } 1118 1119 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1120 const ARMCPRegInfo *ri, 1121 bool isread) 1122 { 1123 /* SW: software increment write trap control */ 1124 if (arm_feature(env, ARM_FEATURE_V8) 1125 && arm_current_el(env) == 0 1126 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1127 && !isread) { 1128 return CP_ACCESS_OK; 1129 } 1130 1131 return pmreg_access(env, ri, isread); 1132 } 1133 1134 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1135 const ARMCPRegInfo *ri, 1136 bool isread) 1137 { 1138 /* ER: event counter read trap control */ 1139 if (arm_feature(env, ARM_FEATURE_V8) 1140 && arm_current_el(env) == 0 1141 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1142 return CP_ACCESS_OK; 1143 } 1144 1145 return pmreg_access(env, ri, isread); 1146 } 1147 1148 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1149 const ARMCPRegInfo *ri, 1150 bool isread) 1151 { 1152 /* CR: cycle counter read trap control */ 1153 if (arm_feature(env, ARM_FEATURE_V8) 1154 && arm_current_el(env) == 0 1155 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1156 && isread) { 1157 return CP_ACCESS_OK; 1158 } 1159 1160 return pmreg_access(env, ri, isread); 1161 } 1162 1163 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1164 * the current EL, security state, and register configuration. 1165 */ 1166 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1167 { 1168 uint64_t filter; 1169 bool e, p, u, nsk, nsu, nsh, m; 1170 bool enabled, prohibited, filtered; 1171 bool secure = arm_is_secure(env); 1172 int el = arm_current_el(env); 1173 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1174 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1175 1176 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1177 return false; 1178 } 1179 1180 if (!arm_feature(env, ARM_FEATURE_EL2) || 1181 (counter < hpmn || counter == 31)) { 1182 e = env->cp15.c9_pmcr & PMCRE; 1183 } else { 1184 e = mdcr_el2 & MDCR_HPME; 1185 } 1186 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1187 1188 if (!secure) { 1189 if (el == 2 && (counter < hpmn || counter == 31)) { 1190 prohibited = mdcr_el2 & MDCR_HPMD; 1191 } else { 1192 prohibited = false; 1193 } 1194 } else { 1195 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1196 !(env->cp15.mdcr_el3 & MDCR_SPME); 1197 } 1198 1199 if (prohibited && counter == 31) { 1200 prohibited = env->cp15.c9_pmcr & PMCRDP; 1201 } 1202 1203 if (counter == 31) { 1204 filter = env->cp15.pmccfiltr_el0; 1205 } else { 1206 filter = env->cp15.c14_pmevtyper[counter]; 1207 } 1208 1209 p = filter & PMXEVTYPER_P; 1210 u = filter & PMXEVTYPER_U; 1211 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1212 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1213 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1214 m = arm_el_is_aa64(env, 1) && 1215 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1216 1217 if (el == 0) { 1218 filtered = secure ? u : u != nsu; 1219 } else if (el == 1) { 1220 filtered = secure ? p : p != nsk; 1221 } else if (el == 2) { 1222 filtered = !nsh; 1223 } else { /* EL3 */ 1224 filtered = m != p; 1225 } 1226 1227 if (counter != 31) { 1228 /* 1229 * If not checking PMCCNTR, ensure the counter is setup to an event we 1230 * support 1231 */ 1232 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1233 if (!event_supported(event)) { 1234 return false; 1235 } 1236 } 1237 1238 return enabled && !prohibited && !filtered; 1239 } 1240 1241 static void pmu_update_irq(CPUARMState *env) 1242 { 1243 ARMCPU *cpu = env_archcpu(env); 1244 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1245 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1246 } 1247 1248 /* 1249 * Ensure c15_ccnt is the guest-visible count so that operations such as 1250 * enabling/disabling the counter or filtering, modifying the count itself, 1251 * etc. can be done logically. This is essentially a no-op if the counter is 1252 * not enabled at the time of the call. 1253 */ 1254 static void pmccntr_op_start(CPUARMState *env) 1255 { 1256 uint64_t cycles = cycles_get_count(env); 1257 1258 if (pmu_counter_enabled(env, 31)) { 1259 uint64_t eff_cycles = cycles; 1260 if (env->cp15.c9_pmcr & PMCRD) { 1261 /* Increment once every 64 processor clock cycles */ 1262 eff_cycles /= 64; 1263 } 1264 1265 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1266 1267 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1268 1ull << 63 : 1ull << 31; 1269 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1270 env->cp15.c9_pmovsr |= (1 << 31); 1271 pmu_update_irq(env); 1272 } 1273 1274 env->cp15.c15_ccnt = new_pmccntr; 1275 } 1276 env->cp15.c15_ccnt_delta = cycles; 1277 } 1278 1279 /* 1280 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1281 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1282 * pmccntr_op_start. 1283 */ 1284 static void pmccntr_op_finish(CPUARMState *env) 1285 { 1286 if (pmu_counter_enabled(env, 31)) { 1287 #ifndef CONFIG_USER_ONLY 1288 /* Calculate when the counter will next overflow */ 1289 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1290 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1291 remaining_cycles = (uint32_t)remaining_cycles; 1292 } 1293 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1294 1295 if (overflow_in > 0) { 1296 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1297 overflow_in; 1298 ARMCPU *cpu = env_archcpu(env); 1299 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1300 } 1301 #endif 1302 1303 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1304 if (env->cp15.c9_pmcr & PMCRD) { 1305 /* Increment once every 64 processor clock cycles */ 1306 prev_cycles /= 64; 1307 } 1308 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1309 } 1310 } 1311 1312 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1313 { 1314 1315 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1316 uint64_t count = 0; 1317 if (event_supported(event)) { 1318 uint16_t event_idx = supported_event_map[event]; 1319 count = pm_events[event_idx].get_count(env); 1320 } 1321 1322 if (pmu_counter_enabled(env, counter)) { 1323 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1324 1325 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1326 env->cp15.c9_pmovsr |= (1 << counter); 1327 pmu_update_irq(env); 1328 } 1329 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1330 } 1331 env->cp15.c14_pmevcntr_delta[counter] = count; 1332 } 1333 1334 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1335 { 1336 if (pmu_counter_enabled(env, counter)) { 1337 #ifndef CONFIG_USER_ONLY 1338 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1339 uint16_t event_idx = supported_event_map[event]; 1340 uint64_t delta = UINT32_MAX - 1341 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1342 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1343 1344 if (overflow_in > 0) { 1345 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1346 overflow_in; 1347 ARMCPU *cpu = env_archcpu(env); 1348 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1349 } 1350 #endif 1351 1352 env->cp15.c14_pmevcntr_delta[counter] -= 1353 env->cp15.c14_pmevcntr[counter]; 1354 } 1355 } 1356 1357 void pmu_op_start(CPUARMState *env) 1358 { 1359 unsigned int i; 1360 pmccntr_op_start(env); 1361 for (i = 0; i < pmu_num_counters(env); i++) { 1362 pmevcntr_op_start(env, i); 1363 } 1364 } 1365 1366 void pmu_op_finish(CPUARMState *env) 1367 { 1368 unsigned int i; 1369 pmccntr_op_finish(env); 1370 for (i = 0; i < pmu_num_counters(env); i++) { 1371 pmevcntr_op_finish(env, i); 1372 } 1373 } 1374 1375 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1376 { 1377 pmu_op_start(&cpu->env); 1378 } 1379 1380 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1381 { 1382 pmu_op_finish(&cpu->env); 1383 } 1384 1385 void arm_pmu_timer_cb(void *opaque) 1386 { 1387 ARMCPU *cpu = opaque; 1388 1389 /* 1390 * Update all the counter values based on the current underlying counts, 1391 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1392 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1393 * counter may expire. 1394 */ 1395 pmu_op_start(&cpu->env); 1396 pmu_op_finish(&cpu->env); 1397 } 1398 1399 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1400 uint64_t value) 1401 { 1402 pmu_op_start(env); 1403 1404 if (value & PMCRC) { 1405 /* The counter has been reset */ 1406 env->cp15.c15_ccnt = 0; 1407 } 1408 1409 if (value & PMCRP) { 1410 unsigned int i; 1411 for (i = 0; i < pmu_num_counters(env); i++) { 1412 env->cp15.c14_pmevcntr[i] = 0; 1413 } 1414 } 1415 1416 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1417 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1418 1419 pmu_op_finish(env); 1420 } 1421 1422 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1423 uint64_t value) 1424 { 1425 unsigned int i; 1426 for (i = 0; i < pmu_num_counters(env); i++) { 1427 /* Increment a counter's count iff: */ 1428 if ((value & (1 << i)) && /* counter's bit is set */ 1429 /* counter is enabled and not filtered */ 1430 pmu_counter_enabled(env, i) && 1431 /* counter is SW_INCR */ 1432 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1433 pmevcntr_op_start(env, i); 1434 1435 /* 1436 * Detect if this write causes an overflow since we can't predict 1437 * PMSWINC overflows like we can for other events 1438 */ 1439 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1440 1441 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1442 env->cp15.c9_pmovsr |= (1 << i); 1443 pmu_update_irq(env); 1444 } 1445 1446 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1447 1448 pmevcntr_op_finish(env, i); 1449 } 1450 } 1451 } 1452 1453 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1454 { 1455 uint64_t ret; 1456 pmccntr_op_start(env); 1457 ret = env->cp15.c15_ccnt; 1458 pmccntr_op_finish(env); 1459 return ret; 1460 } 1461 1462 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1463 uint64_t value) 1464 { 1465 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1466 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1467 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1468 * accessed. 1469 */ 1470 env->cp15.c9_pmselr = value & 0x1f; 1471 } 1472 1473 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1474 uint64_t value) 1475 { 1476 pmccntr_op_start(env); 1477 env->cp15.c15_ccnt = value; 1478 pmccntr_op_finish(env); 1479 } 1480 1481 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1482 uint64_t value) 1483 { 1484 uint64_t cur_val = pmccntr_read(env, NULL); 1485 1486 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1487 } 1488 1489 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1490 uint64_t value) 1491 { 1492 pmccntr_op_start(env); 1493 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1494 pmccntr_op_finish(env); 1495 } 1496 1497 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1498 uint64_t value) 1499 { 1500 pmccntr_op_start(env); 1501 /* M is not accessible from AArch32 */ 1502 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1503 (value & PMCCFILTR); 1504 pmccntr_op_finish(env); 1505 } 1506 1507 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1508 { 1509 /* M is not visible in AArch32 */ 1510 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1511 } 1512 1513 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1514 uint64_t value) 1515 { 1516 value &= pmu_counter_mask(env); 1517 env->cp15.c9_pmcnten |= value; 1518 } 1519 1520 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1521 uint64_t value) 1522 { 1523 value &= pmu_counter_mask(env); 1524 env->cp15.c9_pmcnten &= ~value; 1525 } 1526 1527 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1528 uint64_t value) 1529 { 1530 value &= pmu_counter_mask(env); 1531 env->cp15.c9_pmovsr &= ~value; 1532 pmu_update_irq(env); 1533 } 1534 1535 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1536 uint64_t value) 1537 { 1538 value &= pmu_counter_mask(env); 1539 env->cp15.c9_pmovsr |= value; 1540 pmu_update_irq(env); 1541 } 1542 1543 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1544 uint64_t value, const uint8_t counter) 1545 { 1546 if (counter == 31) { 1547 pmccfiltr_write(env, ri, value); 1548 } else if (counter < pmu_num_counters(env)) { 1549 pmevcntr_op_start(env, counter); 1550 1551 /* 1552 * If this counter's event type is changing, store the current 1553 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1554 * pmevcntr_op_finish has the correct baseline when it converts back to 1555 * a delta. 1556 */ 1557 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1558 PMXEVTYPER_EVTCOUNT; 1559 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1560 if (old_event != new_event) { 1561 uint64_t count = 0; 1562 if (event_supported(new_event)) { 1563 uint16_t event_idx = supported_event_map[new_event]; 1564 count = pm_events[event_idx].get_count(env); 1565 } 1566 env->cp15.c14_pmevcntr_delta[counter] = count; 1567 } 1568 1569 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1570 pmevcntr_op_finish(env, counter); 1571 } 1572 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1573 * PMSELR value is equal to or greater than the number of implemented 1574 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1575 */ 1576 } 1577 1578 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1579 const uint8_t counter) 1580 { 1581 if (counter == 31) { 1582 return env->cp15.pmccfiltr_el0; 1583 } else if (counter < pmu_num_counters(env)) { 1584 return env->cp15.c14_pmevtyper[counter]; 1585 } else { 1586 /* 1587 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1588 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1589 */ 1590 return 0; 1591 } 1592 } 1593 1594 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1595 uint64_t value) 1596 { 1597 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1598 pmevtyper_write(env, ri, value, counter); 1599 } 1600 1601 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1602 uint64_t value) 1603 { 1604 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1605 env->cp15.c14_pmevtyper[counter] = value; 1606 1607 /* 1608 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1609 * pmu_op_finish calls when loading saved state for a migration. Because 1610 * we're potentially updating the type of event here, the value written to 1611 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1612 * different counter type. Therefore, we need to set this value to the 1613 * current count for the counter type we're writing so that pmu_op_finish 1614 * has the correct count for its calculation. 1615 */ 1616 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1617 if (event_supported(event)) { 1618 uint16_t event_idx = supported_event_map[event]; 1619 env->cp15.c14_pmevcntr_delta[counter] = 1620 pm_events[event_idx].get_count(env); 1621 } 1622 } 1623 1624 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1625 { 1626 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1627 return pmevtyper_read(env, ri, counter); 1628 } 1629 1630 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1631 uint64_t value) 1632 { 1633 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1634 } 1635 1636 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1637 { 1638 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1639 } 1640 1641 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1642 uint64_t value, uint8_t counter) 1643 { 1644 if (counter < pmu_num_counters(env)) { 1645 pmevcntr_op_start(env, counter); 1646 env->cp15.c14_pmevcntr[counter] = value; 1647 pmevcntr_op_finish(env, counter); 1648 } 1649 /* 1650 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1651 * are CONSTRAINED UNPREDICTABLE. 1652 */ 1653 } 1654 1655 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1656 uint8_t counter) 1657 { 1658 if (counter < pmu_num_counters(env)) { 1659 uint64_t ret; 1660 pmevcntr_op_start(env, counter); 1661 ret = env->cp15.c14_pmevcntr[counter]; 1662 pmevcntr_op_finish(env, counter); 1663 return ret; 1664 } else { 1665 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1666 * are CONSTRAINED UNPREDICTABLE. */ 1667 return 0; 1668 } 1669 } 1670 1671 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1672 uint64_t value) 1673 { 1674 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1675 pmevcntr_write(env, ri, value, counter); 1676 } 1677 1678 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1679 { 1680 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1681 return pmevcntr_read(env, ri, counter); 1682 } 1683 1684 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1685 uint64_t value) 1686 { 1687 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1688 assert(counter < pmu_num_counters(env)); 1689 env->cp15.c14_pmevcntr[counter] = value; 1690 pmevcntr_write(env, ri, value, counter); 1691 } 1692 1693 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1694 { 1695 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1696 assert(counter < pmu_num_counters(env)); 1697 return env->cp15.c14_pmevcntr[counter]; 1698 } 1699 1700 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1701 uint64_t value) 1702 { 1703 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1704 } 1705 1706 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1707 { 1708 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1709 } 1710 1711 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1712 uint64_t value) 1713 { 1714 if (arm_feature(env, ARM_FEATURE_V8)) { 1715 env->cp15.c9_pmuserenr = value & 0xf; 1716 } else { 1717 env->cp15.c9_pmuserenr = value & 1; 1718 } 1719 } 1720 1721 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1722 uint64_t value) 1723 { 1724 /* We have no event counters so only the C bit can be changed */ 1725 value &= pmu_counter_mask(env); 1726 env->cp15.c9_pminten |= value; 1727 pmu_update_irq(env); 1728 } 1729 1730 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1731 uint64_t value) 1732 { 1733 value &= pmu_counter_mask(env); 1734 env->cp15.c9_pminten &= ~value; 1735 pmu_update_irq(env); 1736 } 1737 1738 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1739 uint64_t value) 1740 { 1741 /* Note that even though the AArch64 view of this register has bits 1742 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1743 * architectural requirements for bits which are RES0 only in some 1744 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1745 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1746 */ 1747 raw_write(env, ri, value & ~0x1FULL); 1748 } 1749 1750 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1751 { 1752 /* Begin with base v8.0 state. */ 1753 uint32_t valid_mask = 0x3fff; 1754 ARMCPU *cpu = env_archcpu(env); 1755 1756 if (ri->state == ARM_CP_STATE_AA64) { 1757 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1758 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1759 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1760 } 1761 valid_mask &= ~SCR_NET; 1762 1763 if (cpu_isar_feature(aa64_lor, cpu)) { 1764 valid_mask |= SCR_TLOR; 1765 } 1766 if (cpu_isar_feature(aa64_pauth, cpu)) { 1767 valid_mask |= SCR_API | SCR_APK; 1768 } 1769 if (cpu_isar_feature(aa64_sel2, cpu)) { 1770 valid_mask |= SCR_EEL2; 1771 } 1772 if (cpu_isar_feature(aa64_mte, cpu)) { 1773 valid_mask |= SCR_ATA; 1774 } 1775 } else { 1776 valid_mask &= ~(SCR_RW | SCR_ST); 1777 } 1778 1779 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1780 valid_mask &= ~SCR_HCE; 1781 1782 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1783 * supported if EL2 exists. The bit is UNK/SBZP when 1784 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1785 * when EL2 is unavailable. 1786 * On ARMv8, this bit is always available. 1787 */ 1788 if (arm_feature(env, ARM_FEATURE_V7) && 1789 !arm_feature(env, ARM_FEATURE_V8)) { 1790 valid_mask &= ~SCR_SMD; 1791 } 1792 } 1793 1794 /* Clear all-context RES0 bits. */ 1795 value &= valid_mask; 1796 raw_write(env, ri, value); 1797 } 1798 1799 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1800 { 1801 /* 1802 * scr_write will set the RES1 bits on an AArch64-only CPU. 1803 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1804 */ 1805 scr_write(env, ri, 0); 1806 } 1807 1808 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1809 const ARMCPRegInfo *ri, 1810 bool isread) 1811 { 1812 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1813 return CP_ACCESS_TRAP_EL2; 1814 } 1815 1816 return CP_ACCESS_OK; 1817 } 1818 1819 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1820 { 1821 ARMCPU *cpu = env_archcpu(env); 1822 1823 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1824 * bank 1825 */ 1826 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1827 ri->secure & ARM_CP_SECSTATE_S); 1828 1829 return cpu->ccsidr[index]; 1830 } 1831 1832 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1833 uint64_t value) 1834 { 1835 raw_write(env, ri, value & 0xf); 1836 } 1837 1838 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1839 { 1840 CPUState *cs = env_cpu(env); 1841 bool el1 = arm_current_el(env) == 1; 1842 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1843 uint64_t ret = 0; 1844 1845 if (hcr_el2 & HCR_IMO) { 1846 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1847 ret |= CPSR_I; 1848 } 1849 } else { 1850 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1851 ret |= CPSR_I; 1852 } 1853 } 1854 1855 if (hcr_el2 & HCR_FMO) { 1856 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1857 ret |= CPSR_F; 1858 } 1859 } else { 1860 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1861 ret |= CPSR_F; 1862 } 1863 } 1864 1865 /* External aborts are not possible in QEMU so A bit is always clear */ 1866 return ret; 1867 } 1868 1869 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1870 bool isread) 1871 { 1872 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1873 return CP_ACCESS_TRAP_EL2; 1874 } 1875 1876 return CP_ACCESS_OK; 1877 } 1878 1879 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1880 bool isread) 1881 { 1882 if (arm_feature(env, ARM_FEATURE_V8)) { 1883 return access_aa64_tid1(env, ri, isread); 1884 } 1885 1886 return CP_ACCESS_OK; 1887 } 1888 1889 static const ARMCPRegInfo v7_cp_reginfo[] = { 1890 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1891 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1892 .access = PL1_W, .type = ARM_CP_NOP }, 1893 /* Performance monitors are implementation defined in v7, 1894 * but with an ARM recommended set of registers, which we 1895 * follow. 1896 * 1897 * Performance registers fall into three categories: 1898 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1899 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1900 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1901 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1902 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1903 */ 1904 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1905 .access = PL0_RW, .type = ARM_CP_ALIAS, 1906 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1907 .writefn = pmcntenset_write, 1908 .accessfn = pmreg_access, 1909 .raw_writefn = raw_write }, 1910 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1911 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1912 .access = PL0_RW, .accessfn = pmreg_access, 1913 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1914 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1915 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1916 .access = PL0_RW, 1917 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1918 .accessfn = pmreg_access, 1919 .writefn = pmcntenclr_write, 1920 .type = ARM_CP_ALIAS }, 1921 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1922 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1923 .access = PL0_RW, .accessfn = pmreg_access, 1924 .type = ARM_CP_ALIAS, 1925 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1926 .writefn = pmcntenclr_write }, 1927 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1928 .access = PL0_RW, .type = ARM_CP_IO, 1929 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1930 .accessfn = pmreg_access, 1931 .writefn = pmovsr_write, 1932 .raw_writefn = raw_write }, 1933 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1934 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1935 .access = PL0_RW, .accessfn = pmreg_access, 1936 .type = ARM_CP_ALIAS | ARM_CP_IO, 1937 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1938 .writefn = pmovsr_write, 1939 .raw_writefn = raw_write }, 1940 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1941 .access = PL0_W, .accessfn = pmreg_access_swinc, 1942 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1943 .writefn = pmswinc_write }, 1944 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1945 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1946 .access = PL0_W, .accessfn = pmreg_access_swinc, 1947 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1948 .writefn = pmswinc_write }, 1949 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1950 .access = PL0_RW, .type = ARM_CP_ALIAS, 1951 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1952 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1953 .raw_writefn = raw_write}, 1954 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1955 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1956 .access = PL0_RW, .accessfn = pmreg_access_selr, 1957 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1958 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1959 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1960 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1961 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1962 .accessfn = pmreg_access_ccntr }, 1963 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1964 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1965 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1966 .type = ARM_CP_IO, 1967 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1968 .readfn = pmccntr_read, .writefn = pmccntr_write, 1969 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1970 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1971 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1972 .access = PL0_RW, .accessfn = pmreg_access, 1973 .type = ARM_CP_ALIAS | ARM_CP_IO, 1974 .resetvalue = 0, }, 1975 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1976 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1977 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1978 .access = PL0_RW, .accessfn = pmreg_access, 1979 .type = ARM_CP_IO, 1980 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1981 .resetvalue = 0, }, 1982 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1983 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1984 .accessfn = pmreg_access, 1985 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1986 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1987 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1988 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1989 .accessfn = pmreg_access, 1990 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1991 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1992 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1993 .accessfn = pmreg_access_xevcntr, 1994 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1995 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 1996 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 1997 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1998 .accessfn = pmreg_access_xevcntr, 1999 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2000 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2001 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2002 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2003 .resetvalue = 0, 2004 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2005 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2006 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2007 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2008 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2009 .resetvalue = 0, 2010 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2011 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2012 .access = PL1_RW, .accessfn = access_tpm, 2013 .type = ARM_CP_ALIAS | ARM_CP_IO, 2014 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2015 .resetvalue = 0, 2016 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2017 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2018 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2019 .access = PL1_RW, .accessfn = access_tpm, 2020 .type = ARM_CP_IO, 2021 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2022 .writefn = pmintenset_write, .raw_writefn = raw_write, 2023 .resetvalue = 0x0 }, 2024 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2025 .access = PL1_RW, .accessfn = access_tpm, 2026 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2027 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2028 .writefn = pmintenclr_write, }, 2029 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2030 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2031 .access = PL1_RW, .accessfn = access_tpm, 2032 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2033 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2034 .writefn = pmintenclr_write }, 2035 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2036 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2037 .access = PL1_R, 2038 .accessfn = access_aa64_tid2, 2039 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2040 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2041 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2042 .access = PL1_RW, 2043 .accessfn = access_aa64_tid2, 2044 .writefn = csselr_write, .resetvalue = 0, 2045 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2046 offsetof(CPUARMState, cp15.csselr_ns) } }, 2047 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2048 * just RAZ for all cores: 2049 */ 2050 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2051 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2052 .access = PL1_R, .type = ARM_CP_CONST, 2053 .accessfn = access_aa64_tid1, 2054 .resetvalue = 0 }, 2055 /* Auxiliary fault status registers: these also are IMPDEF, and we 2056 * choose to RAZ/WI for all cores. 2057 */ 2058 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2059 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2060 .access = PL1_RW, .accessfn = access_tvm_trvm, 2061 .type = ARM_CP_CONST, .resetvalue = 0 }, 2062 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2063 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2064 .access = PL1_RW, .accessfn = access_tvm_trvm, 2065 .type = ARM_CP_CONST, .resetvalue = 0 }, 2066 /* MAIR can just read-as-written because we don't implement caches 2067 * and so don't need to care about memory attributes. 2068 */ 2069 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2070 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2071 .access = PL1_RW, .accessfn = access_tvm_trvm, 2072 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2073 .resetvalue = 0 }, 2074 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2075 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2076 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2077 .resetvalue = 0 }, 2078 /* For non-long-descriptor page tables these are PRRR and NMRR; 2079 * regardless they still act as reads-as-written for QEMU. 2080 */ 2081 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2082 * allows them to assign the correct fieldoffset based on the endianness 2083 * handled in the field definitions. 2084 */ 2085 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2086 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2087 .access = PL1_RW, .accessfn = access_tvm_trvm, 2088 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2089 offsetof(CPUARMState, cp15.mair0_ns) }, 2090 .resetfn = arm_cp_reset_ignore }, 2091 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2092 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2093 .access = PL1_RW, .accessfn = access_tvm_trvm, 2094 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2095 offsetof(CPUARMState, cp15.mair1_ns) }, 2096 .resetfn = arm_cp_reset_ignore }, 2097 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2098 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2099 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2100 /* 32 bit ITLB invalidates */ 2101 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2102 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2103 .writefn = tlbiall_write }, 2104 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2105 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2106 .writefn = tlbimva_write }, 2107 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2108 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2109 .writefn = tlbiasid_write }, 2110 /* 32 bit DTLB invalidates */ 2111 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2112 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2113 .writefn = tlbiall_write }, 2114 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2115 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2116 .writefn = tlbimva_write }, 2117 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2118 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2119 .writefn = tlbiasid_write }, 2120 /* 32 bit TLB invalidates */ 2121 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2122 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2123 .writefn = tlbiall_write }, 2124 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2125 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2126 .writefn = tlbimva_write }, 2127 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2128 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2129 .writefn = tlbiasid_write }, 2130 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2131 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2132 .writefn = tlbimvaa_write }, 2133 }; 2134 2135 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2136 /* 32 bit TLB invalidates, Inner Shareable */ 2137 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2138 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2139 .writefn = tlbiall_is_write }, 2140 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2141 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2142 .writefn = tlbimva_is_write }, 2143 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2144 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2145 .writefn = tlbiasid_is_write }, 2146 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2147 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2148 .writefn = tlbimvaa_is_write }, 2149 }; 2150 2151 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2152 /* PMOVSSET is not implemented in v7 before v7ve */ 2153 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2154 .access = PL0_RW, .accessfn = pmreg_access, 2155 .type = ARM_CP_ALIAS | ARM_CP_IO, 2156 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2157 .writefn = pmovsset_write, 2158 .raw_writefn = raw_write }, 2159 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2160 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2161 .access = PL0_RW, .accessfn = pmreg_access, 2162 .type = ARM_CP_ALIAS | ARM_CP_IO, 2163 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2164 .writefn = pmovsset_write, 2165 .raw_writefn = raw_write }, 2166 }; 2167 2168 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2169 uint64_t value) 2170 { 2171 value &= 1; 2172 env->teecr = value; 2173 } 2174 2175 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2176 bool isread) 2177 { 2178 /* 2179 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2180 * at all, so we don't need to check whether we're v8A. 2181 */ 2182 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2183 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2184 return CP_ACCESS_TRAP_EL2; 2185 } 2186 return CP_ACCESS_OK; 2187 } 2188 2189 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2190 bool isread) 2191 { 2192 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2193 return CP_ACCESS_TRAP; 2194 } 2195 return teecr_access(env, ri, isread); 2196 } 2197 2198 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2199 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2200 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2201 .resetvalue = 0, 2202 .writefn = teecr_write, .accessfn = teecr_access }, 2203 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2204 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2205 .accessfn = teehbr_access, .resetvalue = 0 }, 2206 }; 2207 2208 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2209 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2210 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2211 .access = PL0_RW, 2212 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2213 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2214 .access = PL0_RW, 2215 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2216 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2217 .resetfn = arm_cp_reset_ignore }, 2218 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2219 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2220 .access = PL0_R|PL1_W, 2221 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2222 .resetvalue = 0}, 2223 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2224 .access = PL0_R|PL1_W, 2225 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2226 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2227 .resetfn = arm_cp_reset_ignore }, 2228 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2229 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2230 .access = PL1_RW, 2231 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2232 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2233 .access = PL1_RW, 2234 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2235 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2236 .resetvalue = 0 }, 2237 }; 2238 2239 #ifndef CONFIG_USER_ONLY 2240 2241 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2242 bool isread) 2243 { 2244 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2245 * Writable only at the highest implemented exception level. 2246 */ 2247 int el = arm_current_el(env); 2248 uint64_t hcr; 2249 uint32_t cntkctl; 2250 2251 switch (el) { 2252 case 0: 2253 hcr = arm_hcr_el2_eff(env); 2254 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2255 cntkctl = env->cp15.cnthctl_el2; 2256 } else { 2257 cntkctl = env->cp15.c14_cntkctl; 2258 } 2259 if (!extract32(cntkctl, 0, 2)) { 2260 return CP_ACCESS_TRAP; 2261 } 2262 break; 2263 case 1: 2264 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2265 arm_is_secure_below_el3(env)) { 2266 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2267 return CP_ACCESS_TRAP_UNCATEGORIZED; 2268 } 2269 break; 2270 case 2: 2271 case 3: 2272 break; 2273 } 2274 2275 if (!isread && el < arm_highest_el(env)) { 2276 return CP_ACCESS_TRAP_UNCATEGORIZED; 2277 } 2278 2279 return CP_ACCESS_OK; 2280 } 2281 2282 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2283 bool isread) 2284 { 2285 unsigned int cur_el = arm_current_el(env); 2286 bool has_el2 = arm_is_el2_enabled(env); 2287 uint64_t hcr = arm_hcr_el2_eff(env); 2288 2289 switch (cur_el) { 2290 case 0: 2291 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2292 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2293 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2294 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2295 } 2296 2297 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2298 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2299 return CP_ACCESS_TRAP; 2300 } 2301 2302 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2303 if (hcr & HCR_E2H) { 2304 if (timeridx == GTIMER_PHYS && 2305 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2306 return CP_ACCESS_TRAP_EL2; 2307 } 2308 } else { 2309 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2310 if (has_el2 && timeridx == GTIMER_PHYS && 2311 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2312 return CP_ACCESS_TRAP_EL2; 2313 } 2314 } 2315 break; 2316 2317 case 1: 2318 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2319 if (has_el2 && timeridx == GTIMER_PHYS && 2320 (hcr & HCR_E2H 2321 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2322 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2323 return CP_ACCESS_TRAP_EL2; 2324 } 2325 break; 2326 } 2327 return CP_ACCESS_OK; 2328 } 2329 2330 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2331 bool isread) 2332 { 2333 unsigned int cur_el = arm_current_el(env); 2334 bool has_el2 = arm_is_el2_enabled(env); 2335 uint64_t hcr = arm_hcr_el2_eff(env); 2336 2337 switch (cur_el) { 2338 case 0: 2339 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2340 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2341 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2342 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2343 } 2344 2345 /* 2346 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2347 * EL0 if EL0[PV]TEN is zero. 2348 */ 2349 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2350 return CP_ACCESS_TRAP; 2351 } 2352 /* fall through */ 2353 2354 case 1: 2355 if (has_el2 && timeridx == GTIMER_PHYS) { 2356 if (hcr & HCR_E2H) { 2357 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2358 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2359 return CP_ACCESS_TRAP_EL2; 2360 } 2361 } else { 2362 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2363 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2364 return CP_ACCESS_TRAP_EL2; 2365 } 2366 } 2367 } 2368 break; 2369 } 2370 return CP_ACCESS_OK; 2371 } 2372 2373 static CPAccessResult gt_pct_access(CPUARMState *env, 2374 const ARMCPRegInfo *ri, 2375 bool isread) 2376 { 2377 return gt_counter_access(env, GTIMER_PHYS, isread); 2378 } 2379 2380 static CPAccessResult gt_vct_access(CPUARMState *env, 2381 const ARMCPRegInfo *ri, 2382 bool isread) 2383 { 2384 return gt_counter_access(env, GTIMER_VIRT, isread); 2385 } 2386 2387 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2388 bool isread) 2389 { 2390 return gt_timer_access(env, GTIMER_PHYS, isread); 2391 } 2392 2393 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2394 bool isread) 2395 { 2396 return gt_timer_access(env, GTIMER_VIRT, isread); 2397 } 2398 2399 static CPAccessResult gt_stimer_access(CPUARMState *env, 2400 const ARMCPRegInfo *ri, 2401 bool isread) 2402 { 2403 /* The AArch64 register view of the secure physical timer is 2404 * always accessible from EL3, and configurably accessible from 2405 * Secure EL1. 2406 */ 2407 switch (arm_current_el(env)) { 2408 case 1: 2409 if (!arm_is_secure(env)) { 2410 return CP_ACCESS_TRAP; 2411 } 2412 if (!(env->cp15.scr_el3 & SCR_ST)) { 2413 return CP_ACCESS_TRAP_EL3; 2414 } 2415 return CP_ACCESS_OK; 2416 case 0: 2417 case 2: 2418 return CP_ACCESS_TRAP; 2419 case 3: 2420 return CP_ACCESS_OK; 2421 default: 2422 g_assert_not_reached(); 2423 } 2424 } 2425 2426 static uint64_t gt_get_countervalue(CPUARMState *env) 2427 { 2428 ARMCPU *cpu = env_archcpu(env); 2429 2430 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2431 } 2432 2433 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2434 { 2435 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2436 2437 if (gt->ctl & 1) { 2438 /* Timer enabled: calculate and set current ISTATUS, irq, and 2439 * reset timer to when ISTATUS next has to change 2440 */ 2441 uint64_t offset = timeridx == GTIMER_VIRT ? 2442 cpu->env.cp15.cntvoff_el2 : 0; 2443 uint64_t count = gt_get_countervalue(&cpu->env); 2444 /* Note that this must be unsigned 64 bit arithmetic: */ 2445 int istatus = count - offset >= gt->cval; 2446 uint64_t nexttick; 2447 int irqstate; 2448 2449 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2450 2451 irqstate = (istatus && !(gt->ctl & 2)); 2452 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2453 2454 if (istatus) { 2455 /* Next transition is when count rolls back over to zero */ 2456 nexttick = UINT64_MAX; 2457 } else { 2458 /* Next transition is when we hit cval */ 2459 nexttick = gt->cval + offset; 2460 } 2461 /* Note that the desired next expiry time might be beyond the 2462 * signed-64-bit range of a QEMUTimer -- in this case we just 2463 * set the timer for as far in the future as possible. When the 2464 * timer expires we will reset the timer for any remaining period. 2465 */ 2466 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2467 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2468 } else { 2469 timer_mod(cpu->gt_timer[timeridx], nexttick); 2470 } 2471 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2472 } else { 2473 /* Timer disabled: ISTATUS and timer output always clear */ 2474 gt->ctl &= ~4; 2475 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2476 timer_del(cpu->gt_timer[timeridx]); 2477 trace_arm_gt_recalc_disabled(timeridx); 2478 } 2479 } 2480 2481 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2482 int timeridx) 2483 { 2484 ARMCPU *cpu = env_archcpu(env); 2485 2486 timer_del(cpu->gt_timer[timeridx]); 2487 } 2488 2489 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2490 { 2491 return gt_get_countervalue(env); 2492 } 2493 2494 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2495 { 2496 uint64_t hcr; 2497 2498 switch (arm_current_el(env)) { 2499 case 2: 2500 hcr = arm_hcr_el2_eff(env); 2501 if (hcr & HCR_E2H) { 2502 return 0; 2503 } 2504 break; 2505 case 0: 2506 hcr = arm_hcr_el2_eff(env); 2507 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2508 return 0; 2509 } 2510 break; 2511 } 2512 2513 return env->cp15.cntvoff_el2; 2514 } 2515 2516 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2517 { 2518 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2519 } 2520 2521 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2522 int timeridx, 2523 uint64_t value) 2524 { 2525 trace_arm_gt_cval_write(timeridx, value); 2526 env->cp15.c14_timer[timeridx].cval = value; 2527 gt_recalc_timer(env_archcpu(env), timeridx); 2528 } 2529 2530 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2531 int timeridx) 2532 { 2533 uint64_t offset = 0; 2534 2535 switch (timeridx) { 2536 case GTIMER_VIRT: 2537 case GTIMER_HYPVIRT: 2538 offset = gt_virt_cnt_offset(env); 2539 break; 2540 } 2541 2542 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2543 (gt_get_countervalue(env) - offset)); 2544 } 2545 2546 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2547 int timeridx, 2548 uint64_t value) 2549 { 2550 uint64_t offset = 0; 2551 2552 switch (timeridx) { 2553 case GTIMER_VIRT: 2554 case GTIMER_HYPVIRT: 2555 offset = gt_virt_cnt_offset(env); 2556 break; 2557 } 2558 2559 trace_arm_gt_tval_write(timeridx, value); 2560 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2561 sextract64(value, 0, 32); 2562 gt_recalc_timer(env_archcpu(env), timeridx); 2563 } 2564 2565 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2566 int timeridx, 2567 uint64_t value) 2568 { 2569 ARMCPU *cpu = env_archcpu(env); 2570 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2571 2572 trace_arm_gt_ctl_write(timeridx, value); 2573 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2574 if ((oldval ^ value) & 1) { 2575 /* Enable toggled */ 2576 gt_recalc_timer(cpu, timeridx); 2577 } else if ((oldval ^ value) & 2) { 2578 /* IMASK toggled: don't need to recalculate, 2579 * just set the interrupt line based on ISTATUS 2580 */ 2581 int irqstate = (oldval & 4) && !(value & 2); 2582 2583 trace_arm_gt_imask_toggle(timeridx, irqstate); 2584 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2585 } 2586 } 2587 2588 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2589 { 2590 gt_timer_reset(env, ri, GTIMER_PHYS); 2591 } 2592 2593 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2594 uint64_t value) 2595 { 2596 gt_cval_write(env, ri, GTIMER_PHYS, value); 2597 } 2598 2599 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2600 { 2601 return gt_tval_read(env, ri, GTIMER_PHYS); 2602 } 2603 2604 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2605 uint64_t value) 2606 { 2607 gt_tval_write(env, ri, GTIMER_PHYS, value); 2608 } 2609 2610 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2611 uint64_t value) 2612 { 2613 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2614 } 2615 2616 static int gt_phys_redir_timeridx(CPUARMState *env) 2617 { 2618 switch (arm_mmu_idx(env)) { 2619 case ARMMMUIdx_E20_0: 2620 case ARMMMUIdx_E20_2: 2621 case ARMMMUIdx_E20_2_PAN: 2622 case ARMMMUIdx_SE20_0: 2623 case ARMMMUIdx_SE20_2: 2624 case ARMMMUIdx_SE20_2_PAN: 2625 return GTIMER_HYP; 2626 default: 2627 return GTIMER_PHYS; 2628 } 2629 } 2630 2631 static int gt_virt_redir_timeridx(CPUARMState *env) 2632 { 2633 switch (arm_mmu_idx(env)) { 2634 case ARMMMUIdx_E20_0: 2635 case ARMMMUIdx_E20_2: 2636 case ARMMMUIdx_E20_2_PAN: 2637 case ARMMMUIdx_SE20_0: 2638 case ARMMMUIdx_SE20_2: 2639 case ARMMMUIdx_SE20_2_PAN: 2640 return GTIMER_HYPVIRT; 2641 default: 2642 return GTIMER_VIRT; 2643 } 2644 } 2645 2646 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2647 const ARMCPRegInfo *ri) 2648 { 2649 int timeridx = gt_phys_redir_timeridx(env); 2650 return env->cp15.c14_timer[timeridx].cval; 2651 } 2652 2653 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2654 uint64_t value) 2655 { 2656 int timeridx = gt_phys_redir_timeridx(env); 2657 gt_cval_write(env, ri, timeridx, value); 2658 } 2659 2660 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2661 const ARMCPRegInfo *ri) 2662 { 2663 int timeridx = gt_phys_redir_timeridx(env); 2664 return gt_tval_read(env, ri, timeridx); 2665 } 2666 2667 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2668 uint64_t value) 2669 { 2670 int timeridx = gt_phys_redir_timeridx(env); 2671 gt_tval_write(env, ri, timeridx, value); 2672 } 2673 2674 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2675 const ARMCPRegInfo *ri) 2676 { 2677 int timeridx = gt_phys_redir_timeridx(env); 2678 return env->cp15.c14_timer[timeridx].ctl; 2679 } 2680 2681 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2682 uint64_t value) 2683 { 2684 int timeridx = gt_phys_redir_timeridx(env); 2685 gt_ctl_write(env, ri, timeridx, value); 2686 } 2687 2688 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2689 { 2690 gt_timer_reset(env, ri, GTIMER_VIRT); 2691 } 2692 2693 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2694 uint64_t value) 2695 { 2696 gt_cval_write(env, ri, GTIMER_VIRT, value); 2697 } 2698 2699 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2700 { 2701 return gt_tval_read(env, ri, GTIMER_VIRT); 2702 } 2703 2704 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2705 uint64_t value) 2706 { 2707 gt_tval_write(env, ri, GTIMER_VIRT, value); 2708 } 2709 2710 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2711 uint64_t value) 2712 { 2713 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2714 } 2715 2716 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2717 uint64_t value) 2718 { 2719 ARMCPU *cpu = env_archcpu(env); 2720 2721 trace_arm_gt_cntvoff_write(value); 2722 raw_write(env, ri, value); 2723 gt_recalc_timer(cpu, GTIMER_VIRT); 2724 } 2725 2726 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2727 const ARMCPRegInfo *ri) 2728 { 2729 int timeridx = gt_virt_redir_timeridx(env); 2730 return env->cp15.c14_timer[timeridx].cval; 2731 } 2732 2733 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2734 uint64_t value) 2735 { 2736 int timeridx = gt_virt_redir_timeridx(env); 2737 gt_cval_write(env, ri, timeridx, value); 2738 } 2739 2740 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2741 const ARMCPRegInfo *ri) 2742 { 2743 int timeridx = gt_virt_redir_timeridx(env); 2744 return gt_tval_read(env, ri, timeridx); 2745 } 2746 2747 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2748 uint64_t value) 2749 { 2750 int timeridx = gt_virt_redir_timeridx(env); 2751 gt_tval_write(env, ri, timeridx, value); 2752 } 2753 2754 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2755 const ARMCPRegInfo *ri) 2756 { 2757 int timeridx = gt_virt_redir_timeridx(env); 2758 return env->cp15.c14_timer[timeridx].ctl; 2759 } 2760 2761 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2762 uint64_t value) 2763 { 2764 int timeridx = gt_virt_redir_timeridx(env); 2765 gt_ctl_write(env, ri, timeridx, value); 2766 } 2767 2768 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2769 { 2770 gt_timer_reset(env, ri, GTIMER_HYP); 2771 } 2772 2773 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2774 uint64_t value) 2775 { 2776 gt_cval_write(env, ri, GTIMER_HYP, value); 2777 } 2778 2779 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2780 { 2781 return gt_tval_read(env, ri, GTIMER_HYP); 2782 } 2783 2784 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2785 uint64_t value) 2786 { 2787 gt_tval_write(env, ri, GTIMER_HYP, value); 2788 } 2789 2790 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2791 uint64_t value) 2792 { 2793 gt_ctl_write(env, ri, GTIMER_HYP, value); 2794 } 2795 2796 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2797 { 2798 gt_timer_reset(env, ri, GTIMER_SEC); 2799 } 2800 2801 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2802 uint64_t value) 2803 { 2804 gt_cval_write(env, ri, GTIMER_SEC, value); 2805 } 2806 2807 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2808 { 2809 return gt_tval_read(env, ri, GTIMER_SEC); 2810 } 2811 2812 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2813 uint64_t value) 2814 { 2815 gt_tval_write(env, ri, GTIMER_SEC, value); 2816 } 2817 2818 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2819 uint64_t value) 2820 { 2821 gt_ctl_write(env, ri, GTIMER_SEC, value); 2822 } 2823 2824 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2825 { 2826 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2827 } 2828 2829 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2830 uint64_t value) 2831 { 2832 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2833 } 2834 2835 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2836 { 2837 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2838 } 2839 2840 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2841 uint64_t value) 2842 { 2843 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2844 } 2845 2846 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2847 uint64_t value) 2848 { 2849 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2850 } 2851 2852 void arm_gt_ptimer_cb(void *opaque) 2853 { 2854 ARMCPU *cpu = opaque; 2855 2856 gt_recalc_timer(cpu, GTIMER_PHYS); 2857 } 2858 2859 void arm_gt_vtimer_cb(void *opaque) 2860 { 2861 ARMCPU *cpu = opaque; 2862 2863 gt_recalc_timer(cpu, GTIMER_VIRT); 2864 } 2865 2866 void arm_gt_htimer_cb(void *opaque) 2867 { 2868 ARMCPU *cpu = opaque; 2869 2870 gt_recalc_timer(cpu, GTIMER_HYP); 2871 } 2872 2873 void arm_gt_stimer_cb(void *opaque) 2874 { 2875 ARMCPU *cpu = opaque; 2876 2877 gt_recalc_timer(cpu, GTIMER_SEC); 2878 } 2879 2880 void arm_gt_hvtimer_cb(void *opaque) 2881 { 2882 ARMCPU *cpu = opaque; 2883 2884 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2885 } 2886 2887 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2888 { 2889 ARMCPU *cpu = env_archcpu(env); 2890 2891 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2892 } 2893 2894 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2895 /* Note that CNTFRQ is purely reads-as-written for the benefit 2896 * of software; writing it doesn't actually change the timer frequency. 2897 * Our reset value matches the fixed frequency we implement the timer at. 2898 */ 2899 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2900 .type = ARM_CP_ALIAS, 2901 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2902 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2903 }, 2904 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2905 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2906 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2907 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2908 .resetfn = arm_gt_cntfrq_reset, 2909 }, 2910 /* overall control: mostly access permissions */ 2911 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2912 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2913 .access = PL1_RW, 2914 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2915 .resetvalue = 0, 2916 }, 2917 /* per-timer control */ 2918 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2919 .secure = ARM_CP_SECSTATE_NS, 2920 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2921 .accessfn = gt_ptimer_access, 2922 .fieldoffset = offsetoflow32(CPUARMState, 2923 cp15.c14_timer[GTIMER_PHYS].ctl), 2924 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2925 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2926 }, 2927 { .name = "CNTP_CTL_S", 2928 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2929 .secure = ARM_CP_SECSTATE_S, 2930 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2931 .accessfn = gt_ptimer_access, 2932 .fieldoffset = offsetoflow32(CPUARMState, 2933 cp15.c14_timer[GTIMER_SEC].ctl), 2934 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2935 }, 2936 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2937 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2938 .type = ARM_CP_IO, .access = PL0_RW, 2939 .accessfn = gt_ptimer_access, 2940 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2941 .resetvalue = 0, 2942 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2943 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2944 }, 2945 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2946 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2947 .accessfn = gt_vtimer_access, 2948 .fieldoffset = offsetoflow32(CPUARMState, 2949 cp15.c14_timer[GTIMER_VIRT].ctl), 2950 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2951 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2952 }, 2953 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2954 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2955 .type = ARM_CP_IO, .access = PL0_RW, 2956 .accessfn = gt_vtimer_access, 2957 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2958 .resetvalue = 0, 2959 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2960 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2961 }, 2962 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2963 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2964 .secure = ARM_CP_SECSTATE_NS, 2965 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2966 .accessfn = gt_ptimer_access, 2967 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2968 }, 2969 { .name = "CNTP_TVAL_S", 2970 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2971 .secure = ARM_CP_SECSTATE_S, 2972 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2973 .accessfn = gt_ptimer_access, 2974 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2975 }, 2976 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2977 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2978 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2979 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2980 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2981 }, 2982 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2983 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2984 .accessfn = gt_vtimer_access, 2985 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2986 }, 2987 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2988 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2989 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2990 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2991 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2992 }, 2993 /* The counter itself */ 2994 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2995 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2996 .accessfn = gt_pct_access, 2997 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2998 }, 2999 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3000 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3001 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3002 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3003 }, 3004 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3005 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3006 .accessfn = gt_vct_access, 3007 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3008 }, 3009 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3010 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3011 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3012 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3013 }, 3014 /* Comparison value, indicating when the timer goes off */ 3015 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3016 .secure = ARM_CP_SECSTATE_NS, 3017 .access = PL0_RW, 3018 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3019 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3020 .accessfn = gt_ptimer_access, 3021 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3022 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3023 }, 3024 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3025 .secure = ARM_CP_SECSTATE_S, 3026 .access = PL0_RW, 3027 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3028 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3029 .accessfn = gt_ptimer_access, 3030 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3031 }, 3032 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3033 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3034 .access = PL0_RW, 3035 .type = ARM_CP_IO, 3036 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3037 .resetvalue = 0, .accessfn = gt_ptimer_access, 3038 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3039 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3040 }, 3041 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3042 .access = PL0_RW, 3043 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3044 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3045 .accessfn = gt_vtimer_access, 3046 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3047 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3048 }, 3049 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3050 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3051 .access = PL0_RW, 3052 .type = ARM_CP_IO, 3053 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3054 .resetvalue = 0, .accessfn = gt_vtimer_access, 3055 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3056 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3057 }, 3058 /* Secure timer -- this is actually restricted to only EL3 3059 * and configurably Secure-EL1 via the accessfn. 3060 */ 3061 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3062 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3063 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3064 .accessfn = gt_stimer_access, 3065 .readfn = gt_sec_tval_read, 3066 .writefn = gt_sec_tval_write, 3067 .resetfn = gt_sec_timer_reset, 3068 }, 3069 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3070 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3071 .type = ARM_CP_IO, .access = PL1_RW, 3072 .accessfn = gt_stimer_access, 3073 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3074 .resetvalue = 0, 3075 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3076 }, 3077 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3078 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3079 .type = ARM_CP_IO, .access = PL1_RW, 3080 .accessfn = gt_stimer_access, 3081 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3082 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3083 }, 3084 }; 3085 3086 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3087 bool isread) 3088 { 3089 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3090 return CP_ACCESS_TRAP; 3091 } 3092 return CP_ACCESS_OK; 3093 } 3094 3095 #else 3096 3097 /* In user-mode most of the generic timer registers are inaccessible 3098 * however modern kernels (4.12+) allow access to cntvct_el0 3099 */ 3100 3101 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3102 { 3103 ARMCPU *cpu = env_archcpu(env); 3104 3105 /* Currently we have no support for QEMUTimer in linux-user so we 3106 * can't call gt_get_countervalue(env), instead we directly 3107 * call the lower level functions. 3108 */ 3109 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3110 } 3111 3112 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3113 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3114 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3115 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3116 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3117 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3118 }, 3119 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3120 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3121 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3122 .readfn = gt_virt_cnt_read, 3123 }, 3124 }; 3125 3126 #endif 3127 3128 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3129 { 3130 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3131 raw_write(env, ri, value); 3132 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3133 raw_write(env, ri, value & 0xfffff6ff); 3134 } else { 3135 raw_write(env, ri, value & 0xfffff1ff); 3136 } 3137 } 3138 3139 #ifndef CONFIG_USER_ONLY 3140 /* get_phys_addr() isn't present for user-mode-only targets */ 3141 3142 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3143 bool isread) 3144 { 3145 if (ri->opc2 & 4) { 3146 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3147 * Secure EL1 (which can only happen if EL3 is AArch64). 3148 * They are simply UNDEF if executed from NS EL1. 3149 * They function normally from EL2 or EL3. 3150 */ 3151 if (arm_current_el(env) == 1) { 3152 if (arm_is_secure_below_el3(env)) { 3153 if (env->cp15.scr_el3 & SCR_EEL2) { 3154 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3155 } 3156 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3157 } 3158 return CP_ACCESS_TRAP_UNCATEGORIZED; 3159 } 3160 } 3161 return CP_ACCESS_OK; 3162 } 3163 3164 #ifdef CONFIG_TCG 3165 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3166 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3167 { 3168 hwaddr phys_addr; 3169 target_ulong page_size; 3170 int prot; 3171 bool ret; 3172 uint64_t par64; 3173 bool format64 = false; 3174 MemTxAttrs attrs = {}; 3175 ARMMMUFaultInfo fi = {}; 3176 ARMCacheAttrs cacheattrs = {}; 3177 3178 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3179 &prot, &page_size, &fi, &cacheattrs); 3180 3181 if (ret) { 3182 /* 3183 * Some kinds of translation fault must cause exceptions rather 3184 * than being reported in the PAR. 3185 */ 3186 int current_el = arm_current_el(env); 3187 int target_el; 3188 uint32_t syn, fsr, fsc; 3189 bool take_exc = false; 3190 3191 if (fi.s1ptw && current_el == 1 3192 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3193 /* 3194 * Synchronous stage 2 fault on an access made as part of the 3195 * translation table walk for AT S1E0* or AT S1E1* insn 3196 * executed from NS EL1. If this is a synchronous external abort 3197 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3198 * to EL3. Otherwise the fault is taken as an exception to EL2, 3199 * and HPFAR_EL2 holds the faulting IPA. 3200 */ 3201 if (fi.type == ARMFault_SyncExternalOnWalk && 3202 (env->cp15.scr_el3 & SCR_EA)) { 3203 target_el = 3; 3204 } else { 3205 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3206 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3207 env->cp15.hpfar_el2 |= HPFAR_NS; 3208 } 3209 target_el = 2; 3210 } 3211 take_exc = true; 3212 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3213 /* 3214 * Synchronous external aborts during a translation table walk 3215 * are taken as Data Abort exceptions. 3216 */ 3217 if (fi.stage2) { 3218 if (current_el == 3) { 3219 target_el = 3; 3220 } else { 3221 target_el = 2; 3222 } 3223 } else { 3224 target_el = exception_target_el(env); 3225 } 3226 take_exc = true; 3227 } 3228 3229 if (take_exc) { 3230 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3231 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3232 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3233 fsr = arm_fi_to_lfsc(&fi); 3234 fsc = extract32(fsr, 0, 6); 3235 } else { 3236 fsr = arm_fi_to_sfsc(&fi); 3237 fsc = 0x3f; 3238 } 3239 /* 3240 * Report exception with ESR indicating a fault due to a 3241 * translation table walk for a cache maintenance instruction. 3242 */ 3243 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3244 fi.ea, 1, fi.s1ptw, 1, fsc); 3245 env->exception.vaddress = value; 3246 env->exception.fsr = fsr; 3247 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3248 } 3249 } 3250 3251 if (is_a64(env)) { 3252 format64 = true; 3253 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3254 /* 3255 * ATS1Cxx: 3256 * * TTBCR.EAE determines whether the result is returned using the 3257 * 32-bit or the 64-bit PAR format 3258 * * Instructions executed in Hyp mode always use the 64bit format 3259 * 3260 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3261 * * The Non-secure TTBCR.EAE bit is set to 1 3262 * * The implementation includes EL2, and the value of HCR.VM is 1 3263 * 3264 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3265 * 3266 * ATS1Hx always uses the 64bit format. 3267 */ 3268 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3269 3270 if (arm_feature(env, ARM_FEATURE_EL2)) { 3271 if (mmu_idx == ARMMMUIdx_E10_0 || 3272 mmu_idx == ARMMMUIdx_E10_1 || 3273 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3274 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3275 } else { 3276 format64 |= arm_current_el(env) == 2; 3277 } 3278 } 3279 } 3280 3281 if (format64) { 3282 /* Create a 64-bit PAR */ 3283 par64 = (1 << 11); /* LPAE bit always set */ 3284 if (!ret) { 3285 par64 |= phys_addr & ~0xfffULL; 3286 if (!attrs.secure) { 3287 par64 |= (1 << 9); /* NS */ 3288 } 3289 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3290 par64 |= cacheattrs.shareability << 7; /* SH */ 3291 } else { 3292 uint32_t fsr = arm_fi_to_lfsc(&fi); 3293 3294 par64 |= 1; /* F */ 3295 par64 |= (fsr & 0x3f) << 1; /* FS */ 3296 if (fi.stage2) { 3297 par64 |= (1 << 9); /* S */ 3298 } 3299 if (fi.s1ptw) { 3300 par64 |= (1 << 8); /* PTW */ 3301 } 3302 } 3303 } else { 3304 /* fsr is a DFSR/IFSR value for the short descriptor 3305 * translation table format (with WnR always clear). 3306 * Convert it to a 32-bit PAR. 3307 */ 3308 if (!ret) { 3309 /* We do not set any attribute bits in the PAR */ 3310 if (page_size == (1 << 24) 3311 && arm_feature(env, ARM_FEATURE_V7)) { 3312 par64 = (phys_addr & 0xff000000) | (1 << 1); 3313 } else { 3314 par64 = phys_addr & 0xfffff000; 3315 } 3316 if (!attrs.secure) { 3317 par64 |= (1 << 9); /* NS */ 3318 } 3319 } else { 3320 uint32_t fsr = arm_fi_to_sfsc(&fi); 3321 3322 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3323 ((fsr & 0xf) << 1) | 1; 3324 } 3325 } 3326 return par64; 3327 } 3328 #endif /* CONFIG_TCG */ 3329 3330 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3331 { 3332 #ifdef CONFIG_TCG 3333 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3334 uint64_t par64; 3335 ARMMMUIdx mmu_idx; 3336 int el = arm_current_el(env); 3337 bool secure = arm_is_secure_below_el3(env); 3338 3339 switch (ri->opc2 & 6) { 3340 case 0: 3341 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3342 switch (el) { 3343 case 3: 3344 mmu_idx = ARMMMUIdx_SE3; 3345 break; 3346 case 2: 3347 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3348 /* fall through */ 3349 case 1: 3350 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3351 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3352 : ARMMMUIdx_Stage1_E1_PAN); 3353 } else { 3354 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3355 } 3356 break; 3357 default: 3358 g_assert_not_reached(); 3359 } 3360 break; 3361 case 2: 3362 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3363 switch (el) { 3364 case 3: 3365 mmu_idx = ARMMMUIdx_SE10_0; 3366 break; 3367 case 2: 3368 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3369 mmu_idx = ARMMMUIdx_Stage1_E0; 3370 break; 3371 case 1: 3372 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3373 break; 3374 default: 3375 g_assert_not_reached(); 3376 } 3377 break; 3378 case 4: 3379 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3380 mmu_idx = ARMMMUIdx_E10_1; 3381 break; 3382 case 6: 3383 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3384 mmu_idx = ARMMMUIdx_E10_0; 3385 break; 3386 default: 3387 g_assert_not_reached(); 3388 } 3389 3390 par64 = do_ats_write(env, value, access_type, mmu_idx); 3391 3392 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3393 #else 3394 /* Handled by hardware accelerator. */ 3395 g_assert_not_reached(); 3396 #endif /* CONFIG_TCG */ 3397 } 3398 3399 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3400 uint64_t value) 3401 { 3402 #ifdef CONFIG_TCG 3403 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3404 uint64_t par64; 3405 3406 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3407 3408 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3409 #else 3410 /* Handled by hardware accelerator. */ 3411 g_assert_not_reached(); 3412 #endif /* CONFIG_TCG */ 3413 } 3414 3415 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3416 bool isread) 3417 { 3418 if (arm_current_el(env) == 3 && 3419 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3420 return CP_ACCESS_TRAP; 3421 } 3422 return CP_ACCESS_OK; 3423 } 3424 3425 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3426 uint64_t value) 3427 { 3428 #ifdef CONFIG_TCG 3429 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3430 ARMMMUIdx mmu_idx; 3431 int secure = arm_is_secure_below_el3(env); 3432 3433 switch (ri->opc2 & 6) { 3434 case 0: 3435 switch (ri->opc1) { 3436 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3437 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3438 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3439 : ARMMMUIdx_Stage1_E1_PAN); 3440 } else { 3441 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3442 } 3443 break; 3444 case 4: /* AT S1E2R, AT S1E2W */ 3445 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3446 break; 3447 case 6: /* AT S1E3R, AT S1E3W */ 3448 mmu_idx = ARMMMUIdx_SE3; 3449 break; 3450 default: 3451 g_assert_not_reached(); 3452 } 3453 break; 3454 case 2: /* AT S1E0R, AT S1E0W */ 3455 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3456 break; 3457 case 4: /* AT S12E1R, AT S12E1W */ 3458 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3459 break; 3460 case 6: /* AT S12E0R, AT S12E0W */ 3461 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3462 break; 3463 default: 3464 g_assert_not_reached(); 3465 } 3466 3467 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3468 #else 3469 /* Handled by hardware accelerator. */ 3470 g_assert_not_reached(); 3471 #endif /* CONFIG_TCG */ 3472 } 3473 #endif 3474 3475 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3476 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3477 .access = PL1_RW, .resetvalue = 0, 3478 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3479 offsetoflow32(CPUARMState, cp15.par_ns) }, 3480 .writefn = par_write }, 3481 #ifndef CONFIG_USER_ONLY 3482 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3483 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3484 .access = PL1_W, .accessfn = ats_access, 3485 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3486 #endif 3487 }; 3488 3489 /* Return basic MPU access permission bits. */ 3490 static uint32_t simple_mpu_ap_bits(uint32_t val) 3491 { 3492 uint32_t ret; 3493 uint32_t mask; 3494 int i; 3495 ret = 0; 3496 mask = 3; 3497 for (i = 0; i < 16; i += 2) { 3498 ret |= (val >> i) & mask; 3499 mask <<= 2; 3500 } 3501 return ret; 3502 } 3503 3504 /* Pad basic MPU access permission bits to extended format. */ 3505 static uint32_t extended_mpu_ap_bits(uint32_t val) 3506 { 3507 uint32_t ret; 3508 uint32_t mask; 3509 int i; 3510 ret = 0; 3511 mask = 3; 3512 for (i = 0; i < 16; i += 2) { 3513 ret |= (val & mask) << i; 3514 mask <<= 2; 3515 } 3516 return ret; 3517 } 3518 3519 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3520 uint64_t value) 3521 { 3522 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3523 } 3524 3525 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3526 { 3527 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3528 } 3529 3530 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3531 uint64_t value) 3532 { 3533 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3534 } 3535 3536 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3537 { 3538 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3539 } 3540 3541 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3542 { 3543 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3544 3545 if (!u32p) { 3546 return 0; 3547 } 3548 3549 u32p += env->pmsav7.rnr[M_REG_NS]; 3550 return *u32p; 3551 } 3552 3553 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3554 uint64_t value) 3555 { 3556 ARMCPU *cpu = env_archcpu(env); 3557 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3558 3559 if (!u32p) { 3560 return; 3561 } 3562 3563 u32p += env->pmsav7.rnr[M_REG_NS]; 3564 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3565 *u32p = value; 3566 } 3567 3568 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3569 uint64_t value) 3570 { 3571 ARMCPU *cpu = env_archcpu(env); 3572 uint32_t nrgs = cpu->pmsav7_dregion; 3573 3574 if (value >= nrgs) { 3575 qemu_log_mask(LOG_GUEST_ERROR, 3576 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3577 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3578 return; 3579 } 3580 3581 raw_write(env, ri, value); 3582 } 3583 3584 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3585 /* Reset for all these registers is handled in arm_cpu_reset(), 3586 * because the PMSAv7 is also used by M-profile CPUs, which do 3587 * not register cpregs but still need the state to be reset. 3588 */ 3589 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3590 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3591 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3592 .readfn = pmsav7_read, .writefn = pmsav7_write, 3593 .resetfn = arm_cp_reset_ignore }, 3594 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3595 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3596 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3597 .readfn = pmsav7_read, .writefn = pmsav7_write, 3598 .resetfn = arm_cp_reset_ignore }, 3599 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3600 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3601 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3602 .readfn = pmsav7_read, .writefn = pmsav7_write, 3603 .resetfn = arm_cp_reset_ignore }, 3604 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3605 .access = PL1_RW, 3606 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3607 .writefn = pmsav7_rgnr_write, 3608 .resetfn = arm_cp_reset_ignore }, 3609 }; 3610 3611 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3612 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3613 .access = PL1_RW, .type = ARM_CP_ALIAS, 3614 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3615 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3616 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3617 .access = PL1_RW, .type = ARM_CP_ALIAS, 3618 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3619 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3620 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3621 .access = PL1_RW, 3622 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3623 .resetvalue = 0, }, 3624 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3625 .access = PL1_RW, 3626 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3627 .resetvalue = 0, }, 3628 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3629 .access = PL1_RW, 3630 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3631 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3632 .access = PL1_RW, 3633 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3634 /* Protection region base and size registers */ 3635 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3636 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3637 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3638 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3639 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3640 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3641 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3642 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3643 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3644 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3645 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3646 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3647 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3648 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3649 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3650 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3651 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3652 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3653 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3654 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3655 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3656 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3657 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3658 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3659 }; 3660 3661 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3662 uint64_t value) 3663 { 3664 TCR *tcr = raw_ptr(env, ri); 3665 int maskshift = extract32(value, 0, 3); 3666 3667 if (!arm_feature(env, ARM_FEATURE_V8)) { 3668 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3669 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3670 * using Long-desciptor translation table format */ 3671 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3672 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3673 /* In an implementation that includes the Security Extensions 3674 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3675 * Short-descriptor translation table format. 3676 */ 3677 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3678 } else { 3679 value &= TTBCR_N; 3680 } 3681 } 3682 3683 /* Update the masks corresponding to the TCR bank being written 3684 * Note that we always calculate mask and base_mask, but 3685 * they are only used for short-descriptor tables (ie if EAE is 0); 3686 * for long-descriptor tables the TCR fields are used differently 3687 * and the mask and base_mask values are meaningless. 3688 */ 3689 tcr->raw_tcr = value; 3690 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3691 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3692 } 3693 3694 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3695 uint64_t value) 3696 { 3697 ARMCPU *cpu = env_archcpu(env); 3698 TCR *tcr = raw_ptr(env, ri); 3699 3700 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3701 /* With LPAE the TTBCR could result in a change of ASID 3702 * via the TTBCR.A1 bit, so do a TLB flush. 3703 */ 3704 tlb_flush(CPU(cpu)); 3705 } 3706 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3707 value = deposit64(tcr->raw_tcr, 0, 32, value); 3708 vmsa_ttbcr_raw_write(env, ri, value); 3709 } 3710 3711 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3712 { 3713 TCR *tcr = raw_ptr(env, ri); 3714 3715 /* Reset both the TCR as well as the masks corresponding to the bank of 3716 * the TCR being reset. 3717 */ 3718 tcr->raw_tcr = 0; 3719 tcr->mask = 0; 3720 tcr->base_mask = 0xffffc000u; 3721 } 3722 3723 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3724 uint64_t value) 3725 { 3726 ARMCPU *cpu = env_archcpu(env); 3727 TCR *tcr = raw_ptr(env, ri); 3728 3729 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3730 tlb_flush(CPU(cpu)); 3731 tcr->raw_tcr = value; 3732 } 3733 3734 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3735 uint64_t value) 3736 { 3737 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3738 if (cpreg_field_is_64bit(ri) && 3739 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3740 ARMCPU *cpu = env_archcpu(env); 3741 tlb_flush(CPU(cpu)); 3742 } 3743 raw_write(env, ri, value); 3744 } 3745 3746 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3747 uint64_t value) 3748 { 3749 /* 3750 * If we are running with E2&0 regime, then an ASID is active. 3751 * Flush if that might be changing. Note we're not checking 3752 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3753 * holds the active ASID, only checking the field that might. 3754 */ 3755 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3756 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3757 uint16_t mask = ARMMMUIdxBit_E20_2 | 3758 ARMMMUIdxBit_E20_2_PAN | 3759 ARMMMUIdxBit_E20_0; 3760 3761 if (arm_is_secure_below_el3(env)) { 3762 mask >>= ARM_MMU_IDX_A_NS; 3763 } 3764 3765 tlb_flush_by_mmuidx(env_cpu(env), mask); 3766 } 3767 raw_write(env, ri, value); 3768 } 3769 3770 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3771 uint64_t value) 3772 { 3773 ARMCPU *cpu = env_archcpu(env); 3774 CPUState *cs = CPU(cpu); 3775 3776 /* 3777 * A change in VMID to the stage2 page table (Stage2) invalidates 3778 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3779 */ 3780 if (raw_read(env, ri) != value) { 3781 uint16_t mask = ARMMMUIdxBit_E10_1 | 3782 ARMMMUIdxBit_E10_1_PAN | 3783 ARMMMUIdxBit_E10_0; 3784 3785 if (arm_is_secure_below_el3(env)) { 3786 mask >>= ARM_MMU_IDX_A_NS; 3787 } 3788 3789 tlb_flush_by_mmuidx(cs, mask); 3790 raw_write(env, ri, value); 3791 } 3792 } 3793 3794 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3795 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3796 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3797 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3798 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3799 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3800 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3801 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3802 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3803 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3804 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3805 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3806 offsetof(CPUARMState, cp15.dfar_ns) } }, 3807 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3808 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3809 .access = PL1_RW, .accessfn = access_tvm_trvm, 3810 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3811 .resetvalue = 0, }, 3812 }; 3813 3814 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3815 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3816 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3817 .access = PL1_RW, .accessfn = access_tvm_trvm, 3818 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3819 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3820 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3821 .access = PL1_RW, .accessfn = access_tvm_trvm, 3822 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3823 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3824 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3825 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3826 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3827 .access = PL1_RW, .accessfn = access_tvm_trvm, 3828 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3829 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3830 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3831 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3832 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3833 .access = PL1_RW, .accessfn = access_tvm_trvm, 3834 .writefn = vmsa_tcr_el12_write, 3835 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3836 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3837 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3838 .access = PL1_RW, .accessfn = access_tvm_trvm, 3839 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3840 .raw_writefn = vmsa_ttbcr_raw_write, 3841 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3842 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3843 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3844 }; 3845 3846 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3847 * qemu tlbs nor adjusting cached masks. 3848 */ 3849 static const ARMCPRegInfo ttbcr2_reginfo = { 3850 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3851 .access = PL1_RW, .accessfn = access_tvm_trvm, 3852 .type = ARM_CP_ALIAS, 3853 .bank_fieldoffsets = { 3854 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3855 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3856 }, 3857 }; 3858 3859 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3860 uint64_t value) 3861 { 3862 env->cp15.c15_ticonfig = value & 0xe7; 3863 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3864 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3865 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3866 } 3867 3868 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3869 uint64_t value) 3870 { 3871 env->cp15.c15_threadid = value & 0xffff; 3872 } 3873 3874 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3875 uint64_t value) 3876 { 3877 /* Wait-for-interrupt (deprecated) */ 3878 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3879 } 3880 3881 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3882 uint64_t value) 3883 { 3884 /* On OMAP there are registers indicating the max/min index of dcache lines 3885 * containing a dirty line; cache flush operations have to reset these. 3886 */ 3887 env->cp15.c15_i_max = 0x000; 3888 env->cp15.c15_i_min = 0xff0; 3889 } 3890 3891 static const ARMCPRegInfo omap_cp_reginfo[] = { 3892 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3893 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3894 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3895 .resetvalue = 0, }, 3896 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3897 .access = PL1_RW, .type = ARM_CP_NOP }, 3898 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3899 .access = PL1_RW, 3900 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3901 .writefn = omap_ticonfig_write }, 3902 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3903 .access = PL1_RW, 3904 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3905 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3906 .access = PL1_RW, .resetvalue = 0xff0, 3907 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3908 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3909 .access = PL1_RW, 3910 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3911 .writefn = omap_threadid_write }, 3912 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3913 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3914 .type = ARM_CP_NO_RAW, 3915 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3916 /* TODO: Peripheral port remap register: 3917 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3918 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3919 * when MMU is off. 3920 */ 3921 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3922 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3923 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3924 .writefn = omap_cachemaint_write }, 3925 { .name = "C9", .cp = 15, .crn = 9, 3926 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3927 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3928 }; 3929 3930 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3931 uint64_t value) 3932 { 3933 env->cp15.c15_cpar = value & 0x3fff; 3934 } 3935 3936 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3937 { .name = "XSCALE_CPAR", 3938 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3939 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3940 .writefn = xscale_cpar_write, }, 3941 { .name = "XSCALE_AUXCR", 3942 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3943 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3944 .resetvalue = 0, }, 3945 /* XScale specific cache-lockdown: since we have no cache we NOP these 3946 * and hope the guest does not really rely on cache behaviour. 3947 */ 3948 { .name = "XSCALE_LOCK_ICACHE_LINE", 3949 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3950 .access = PL1_W, .type = ARM_CP_NOP }, 3951 { .name = "XSCALE_UNLOCK_ICACHE", 3952 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3953 .access = PL1_W, .type = ARM_CP_NOP }, 3954 { .name = "XSCALE_DCACHE_LOCK", 3955 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3956 .access = PL1_RW, .type = ARM_CP_NOP }, 3957 { .name = "XSCALE_UNLOCK_DCACHE", 3958 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3959 .access = PL1_W, .type = ARM_CP_NOP }, 3960 }; 3961 3962 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3963 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3964 * implementation of this implementation-defined space. 3965 * Ideally this should eventually disappear in favour of actually 3966 * implementing the correct behaviour for all cores. 3967 */ 3968 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3969 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3970 .access = PL1_RW, 3971 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3972 .resetvalue = 0 }, 3973 }; 3974 3975 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3976 /* Cache status: RAZ because we have no cache so it's always clean */ 3977 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3978 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3979 .resetvalue = 0 }, 3980 }; 3981 3982 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3983 /* We never have a a block transfer operation in progress */ 3984 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3985 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3986 .resetvalue = 0 }, 3987 /* The cache ops themselves: these all NOP for QEMU */ 3988 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3989 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3990 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3991 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3992 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 3993 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3994 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 3995 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3996 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 3997 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3998 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 3999 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4000 }; 4001 4002 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4003 /* The cache test-and-clean instructions always return (1 << 30) 4004 * to indicate that there are no dirty cache lines. 4005 */ 4006 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4007 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4008 .resetvalue = (1 << 30) }, 4009 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4010 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4011 .resetvalue = (1 << 30) }, 4012 }; 4013 4014 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4015 /* Ignore ReadBuffer accesses */ 4016 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4017 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4018 .access = PL1_RW, .resetvalue = 0, 4019 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4020 }; 4021 4022 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4023 { 4024 unsigned int cur_el = arm_current_el(env); 4025 4026 if (arm_is_el2_enabled(env) && cur_el == 1) { 4027 return env->cp15.vpidr_el2; 4028 } 4029 return raw_read(env, ri); 4030 } 4031 4032 static uint64_t mpidr_read_val(CPUARMState *env) 4033 { 4034 ARMCPU *cpu = env_archcpu(env); 4035 uint64_t mpidr = cpu->mp_affinity; 4036 4037 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4038 mpidr |= (1U << 31); 4039 /* Cores which are uniprocessor (non-coherent) 4040 * but still implement the MP extensions set 4041 * bit 30. (For instance, Cortex-R5). 4042 */ 4043 if (cpu->mp_is_up) { 4044 mpidr |= (1u << 30); 4045 } 4046 } 4047 return mpidr; 4048 } 4049 4050 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4051 { 4052 unsigned int cur_el = arm_current_el(env); 4053 4054 if (arm_is_el2_enabled(env) && cur_el == 1) { 4055 return env->cp15.vmpidr_el2; 4056 } 4057 return mpidr_read_val(env); 4058 } 4059 4060 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4061 /* NOP AMAIR0/1 */ 4062 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4063 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4064 .access = PL1_RW, .accessfn = access_tvm_trvm, 4065 .type = ARM_CP_CONST, .resetvalue = 0 }, 4066 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4067 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4068 .access = PL1_RW, .accessfn = access_tvm_trvm, 4069 .type = ARM_CP_CONST, .resetvalue = 0 }, 4070 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4071 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4072 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4073 offsetof(CPUARMState, cp15.par_ns)} }, 4074 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4075 .access = PL1_RW, .accessfn = access_tvm_trvm, 4076 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4077 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4078 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4079 .writefn = vmsa_ttbr_write, }, 4080 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4081 .access = PL1_RW, .accessfn = access_tvm_trvm, 4082 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4083 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4084 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4085 .writefn = vmsa_ttbr_write, }, 4086 }; 4087 4088 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4089 { 4090 return vfp_get_fpcr(env); 4091 } 4092 4093 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4094 uint64_t value) 4095 { 4096 vfp_set_fpcr(env, value); 4097 } 4098 4099 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4100 { 4101 return vfp_get_fpsr(env); 4102 } 4103 4104 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4105 uint64_t value) 4106 { 4107 vfp_set_fpsr(env, value); 4108 } 4109 4110 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4111 bool isread) 4112 { 4113 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4114 return CP_ACCESS_TRAP; 4115 } 4116 return CP_ACCESS_OK; 4117 } 4118 4119 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4120 uint64_t value) 4121 { 4122 env->daif = value & PSTATE_DAIF; 4123 } 4124 4125 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4126 { 4127 return env->pstate & PSTATE_PAN; 4128 } 4129 4130 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4131 uint64_t value) 4132 { 4133 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4134 } 4135 4136 static const ARMCPRegInfo pan_reginfo = { 4137 .name = "PAN", .state = ARM_CP_STATE_AA64, 4138 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4139 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4140 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4141 }; 4142 4143 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4144 { 4145 return env->pstate & PSTATE_UAO; 4146 } 4147 4148 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4149 uint64_t value) 4150 { 4151 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4152 } 4153 4154 static const ARMCPRegInfo uao_reginfo = { 4155 .name = "UAO", .state = ARM_CP_STATE_AA64, 4156 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4157 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4158 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4159 }; 4160 4161 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4162 { 4163 return env->pstate & PSTATE_DIT; 4164 } 4165 4166 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4167 uint64_t value) 4168 { 4169 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4170 } 4171 4172 static const ARMCPRegInfo dit_reginfo = { 4173 .name = "DIT", .state = ARM_CP_STATE_AA64, 4174 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4175 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4176 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4177 }; 4178 4179 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4180 { 4181 return env->pstate & PSTATE_SSBS; 4182 } 4183 4184 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4185 uint64_t value) 4186 { 4187 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4188 } 4189 4190 static const ARMCPRegInfo ssbs_reginfo = { 4191 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4192 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4193 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4194 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4195 }; 4196 4197 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4198 const ARMCPRegInfo *ri, 4199 bool isread) 4200 { 4201 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4202 switch (arm_current_el(env)) { 4203 case 0: 4204 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4205 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4206 return CP_ACCESS_TRAP; 4207 } 4208 /* fall through */ 4209 case 1: 4210 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4211 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4212 return CP_ACCESS_TRAP_EL2; 4213 } 4214 break; 4215 } 4216 return CP_ACCESS_OK; 4217 } 4218 4219 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4220 const ARMCPRegInfo *ri, 4221 bool isread) 4222 { 4223 /* Cache invalidate/clean to Point of Unification... */ 4224 switch (arm_current_el(env)) { 4225 case 0: 4226 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4227 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4228 return CP_ACCESS_TRAP; 4229 } 4230 /* fall through */ 4231 case 1: 4232 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4233 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4234 return CP_ACCESS_TRAP_EL2; 4235 } 4236 break; 4237 } 4238 return CP_ACCESS_OK; 4239 } 4240 4241 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4242 * Page D4-1736 (DDI0487A.b) 4243 */ 4244 4245 static int vae1_tlbmask(CPUARMState *env) 4246 { 4247 uint64_t hcr = arm_hcr_el2_eff(env); 4248 uint16_t mask; 4249 4250 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4251 mask = ARMMMUIdxBit_E20_2 | 4252 ARMMMUIdxBit_E20_2_PAN | 4253 ARMMMUIdxBit_E20_0; 4254 } else { 4255 mask = ARMMMUIdxBit_E10_1 | 4256 ARMMMUIdxBit_E10_1_PAN | 4257 ARMMMUIdxBit_E10_0; 4258 } 4259 4260 if (arm_is_secure_below_el3(env)) { 4261 mask >>= ARM_MMU_IDX_A_NS; 4262 } 4263 4264 return mask; 4265 } 4266 4267 /* Return 56 if TBI is enabled, 64 otherwise. */ 4268 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4269 uint64_t addr) 4270 { 4271 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4272 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4273 int select = extract64(addr, 55, 1); 4274 4275 return (tbi >> select) & 1 ? 56 : 64; 4276 } 4277 4278 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4279 { 4280 uint64_t hcr = arm_hcr_el2_eff(env); 4281 ARMMMUIdx mmu_idx; 4282 4283 /* Only the regime of the mmu_idx below is significant. */ 4284 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4285 mmu_idx = ARMMMUIdx_E20_0; 4286 } else { 4287 mmu_idx = ARMMMUIdx_E10_0; 4288 } 4289 4290 if (arm_is_secure_below_el3(env)) { 4291 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4292 } 4293 4294 return tlbbits_for_regime(env, mmu_idx, addr); 4295 } 4296 4297 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4298 uint64_t value) 4299 { 4300 CPUState *cs = env_cpu(env); 4301 int mask = vae1_tlbmask(env); 4302 4303 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4304 } 4305 4306 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4307 uint64_t value) 4308 { 4309 CPUState *cs = env_cpu(env); 4310 int mask = vae1_tlbmask(env); 4311 4312 if (tlb_force_broadcast(env)) { 4313 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4314 } else { 4315 tlb_flush_by_mmuidx(cs, mask); 4316 } 4317 } 4318 4319 static int alle1_tlbmask(CPUARMState *env) 4320 { 4321 /* 4322 * Note that the 'ALL' scope must invalidate both stage 1 and 4323 * stage 2 translations, whereas most other scopes only invalidate 4324 * stage 1 translations. 4325 */ 4326 if (arm_is_secure_below_el3(env)) { 4327 return ARMMMUIdxBit_SE10_1 | 4328 ARMMMUIdxBit_SE10_1_PAN | 4329 ARMMMUIdxBit_SE10_0; 4330 } else { 4331 return ARMMMUIdxBit_E10_1 | 4332 ARMMMUIdxBit_E10_1_PAN | 4333 ARMMMUIdxBit_E10_0; 4334 } 4335 } 4336 4337 static int e2_tlbmask(CPUARMState *env) 4338 { 4339 if (arm_is_secure_below_el3(env)) { 4340 return ARMMMUIdxBit_SE20_0 | 4341 ARMMMUIdxBit_SE20_2 | 4342 ARMMMUIdxBit_SE20_2_PAN | 4343 ARMMMUIdxBit_SE2; 4344 } else { 4345 return ARMMMUIdxBit_E20_0 | 4346 ARMMMUIdxBit_E20_2 | 4347 ARMMMUIdxBit_E20_2_PAN | 4348 ARMMMUIdxBit_E2; 4349 } 4350 } 4351 4352 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4353 uint64_t value) 4354 { 4355 CPUState *cs = env_cpu(env); 4356 int mask = alle1_tlbmask(env); 4357 4358 tlb_flush_by_mmuidx(cs, mask); 4359 } 4360 4361 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4362 uint64_t value) 4363 { 4364 CPUState *cs = env_cpu(env); 4365 int mask = e2_tlbmask(env); 4366 4367 tlb_flush_by_mmuidx(cs, mask); 4368 } 4369 4370 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4371 uint64_t value) 4372 { 4373 ARMCPU *cpu = env_archcpu(env); 4374 CPUState *cs = CPU(cpu); 4375 4376 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4377 } 4378 4379 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4380 uint64_t value) 4381 { 4382 CPUState *cs = env_cpu(env); 4383 int mask = alle1_tlbmask(env); 4384 4385 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4386 } 4387 4388 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4389 uint64_t value) 4390 { 4391 CPUState *cs = env_cpu(env); 4392 int mask = e2_tlbmask(env); 4393 4394 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4395 } 4396 4397 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4398 uint64_t value) 4399 { 4400 CPUState *cs = env_cpu(env); 4401 4402 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4403 } 4404 4405 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4406 uint64_t value) 4407 { 4408 /* Invalidate by VA, EL2 4409 * Currently handles both VAE2 and VALE2, since we don't support 4410 * flush-last-level-only. 4411 */ 4412 CPUState *cs = env_cpu(env); 4413 int mask = e2_tlbmask(env); 4414 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4415 4416 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4417 } 4418 4419 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4420 uint64_t value) 4421 { 4422 /* Invalidate by VA, EL3 4423 * Currently handles both VAE3 and VALE3, since we don't support 4424 * flush-last-level-only. 4425 */ 4426 ARMCPU *cpu = env_archcpu(env); 4427 CPUState *cs = CPU(cpu); 4428 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4429 4430 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4431 } 4432 4433 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4434 uint64_t value) 4435 { 4436 CPUState *cs = env_cpu(env); 4437 int mask = vae1_tlbmask(env); 4438 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4439 int bits = vae1_tlbbits(env, pageaddr); 4440 4441 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4442 } 4443 4444 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4445 uint64_t value) 4446 { 4447 /* Invalidate by VA, EL1&0 (AArch64 version). 4448 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4449 * since we don't support flush-for-specific-ASID-only or 4450 * flush-last-level-only. 4451 */ 4452 CPUState *cs = env_cpu(env); 4453 int mask = vae1_tlbmask(env); 4454 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4455 int bits = vae1_tlbbits(env, pageaddr); 4456 4457 if (tlb_force_broadcast(env)) { 4458 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4459 } else { 4460 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4461 } 4462 } 4463 4464 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4465 uint64_t value) 4466 { 4467 CPUState *cs = env_cpu(env); 4468 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4469 bool secure = arm_is_secure_below_el3(env); 4470 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4471 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4472 pageaddr); 4473 4474 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4475 } 4476 4477 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4478 uint64_t value) 4479 { 4480 CPUState *cs = env_cpu(env); 4481 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4482 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4483 4484 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4485 ARMMMUIdxBit_SE3, bits); 4486 } 4487 4488 #ifdef TARGET_AARCH64 4489 typedef struct { 4490 uint64_t base; 4491 uint64_t length; 4492 } TLBIRange; 4493 4494 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4495 uint64_t value) 4496 { 4497 unsigned int page_size_granule, page_shift, num, scale, exponent; 4498 /* Extract one bit to represent the va selector in use. */ 4499 uint64_t select = sextract64(value, 36, 1); 4500 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4501 TLBIRange ret = { }; 4502 4503 page_size_granule = extract64(value, 46, 2); 4504 4505 /* The granule encoded in value must match the granule in use. */ 4506 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) { 4507 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4508 page_size_granule); 4509 return ret; 4510 } 4511 4512 page_shift = (page_size_granule - 1) * 2 + 12; 4513 num = extract64(value, 39, 5); 4514 scale = extract64(value, 44, 2); 4515 exponent = (5 * scale) + 1; 4516 4517 ret.length = (num + 1) << (exponent + page_shift); 4518 4519 if (param.select) { 4520 ret.base = sextract64(value, 0, 37); 4521 } else { 4522 ret.base = extract64(value, 0, 37); 4523 } 4524 if (param.ds) { 4525 /* 4526 * With DS=1, BaseADDR is always shifted 16 so that it is able 4527 * to address all 52 va bits. The input address is perforce 4528 * aligned on a 64k boundary regardless of translation granule. 4529 */ 4530 page_shift = 16; 4531 } 4532 ret.base <<= page_shift; 4533 4534 return ret; 4535 } 4536 4537 static void do_rvae_write(CPUARMState *env, uint64_t value, 4538 int idxmap, bool synced) 4539 { 4540 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4541 TLBIRange range; 4542 int bits; 4543 4544 range = tlbi_aa64_get_range(env, one_idx, value); 4545 bits = tlbbits_for_regime(env, one_idx, range.base); 4546 4547 if (synced) { 4548 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4549 range.base, 4550 range.length, 4551 idxmap, 4552 bits); 4553 } else { 4554 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4555 range.length, idxmap, bits); 4556 } 4557 } 4558 4559 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4560 const ARMCPRegInfo *ri, 4561 uint64_t value) 4562 { 4563 /* 4564 * Invalidate by VA range, EL1&0. 4565 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4566 * since we don't support flush-for-specific-ASID-only or 4567 * flush-last-level-only. 4568 */ 4569 4570 do_rvae_write(env, value, vae1_tlbmask(env), 4571 tlb_force_broadcast(env)); 4572 } 4573 4574 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4575 const ARMCPRegInfo *ri, 4576 uint64_t value) 4577 { 4578 /* 4579 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4580 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4581 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4582 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4583 * shareable specific flushes. 4584 */ 4585 4586 do_rvae_write(env, value, vae1_tlbmask(env), true); 4587 } 4588 4589 static int vae2_tlbmask(CPUARMState *env) 4590 { 4591 return (arm_is_secure_below_el3(env) 4592 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4593 } 4594 4595 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4596 const ARMCPRegInfo *ri, 4597 uint64_t value) 4598 { 4599 /* 4600 * Invalidate by VA range, EL2. 4601 * Currently handles all of RVAE2 and RVALE2, 4602 * since we don't support flush-for-specific-ASID-only or 4603 * flush-last-level-only. 4604 */ 4605 4606 do_rvae_write(env, value, vae2_tlbmask(env), 4607 tlb_force_broadcast(env)); 4608 4609 4610 } 4611 4612 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4613 const ARMCPRegInfo *ri, 4614 uint64_t value) 4615 { 4616 /* 4617 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4618 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4619 * since we don't support flush-for-specific-ASID-only, 4620 * flush-last-level-only or inner/outer shareable specific flushes. 4621 */ 4622 4623 do_rvae_write(env, value, vae2_tlbmask(env), true); 4624 4625 } 4626 4627 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4628 const ARMCPRegInfo *ri, 4629 uint64_t value) 4630 { 4631 /* 4632 * Invalidate by VA range, EL3. 4633 * Currently handles all of RVAE3 and RVALE3, 4634 * since we don't support flush-for-specific-ASID-only or 4635 * flush-last-level-only. 4636 */ 4637 4638 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4639 tlb_force_broadcast(env)); 4640 } 4641 4642 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4643 const ARMCPRegInfo *ri, 4644 uint64_t value) 4645 { 4646 /* 4647 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4648 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4649 * since we don't support flush-for-specific-ASID-only, 4650 * flush-last-level-only or inner/outer specific flushes. 4651 */ 4652 4653 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4654 } 4655 #endif 4656 4657 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4658 bool isread) 4659 { 4660 int cur_el = arm_current_el(env); 4661 4662 if (cur_el < 2) { 4663 uint64_t hcr = arm_hcr_el2_eff(env); 4664 4665 if (cur_el == 0) { 4666 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4667 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4668 return CP_ACCESS_TRAP_EL2; 4669 } 4670 } else { 4671 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4672 return CP_ACCESS_TRAP; 4673 } 4674 if (hcr & HCR_TDZ) { 4675 return CP_ACCESS_TRAP_EL2; 4676 } 4677 } 4678 } else if (hcr & HCR_TDZ) { 4679 return CP_ACCESS_TRAP_EL2; 4680 } 4681 } 4682 return CP_ACCESS_OK; 4683 } 4684 4685 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4686 { 4687 ARMCPU *cpu = env_archcpu(env); 4688 int dzp_bit = 1 << 4; 4689 4690 /* DZP indicates whether DC ZVA access is allowed */ 4691 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4692 dzp_bit = 0; 4693 } 4694 return cpu->dcz_blocksize | dzp_bit; 4695 } 4696 4697 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4698 bool isread) 4699 { 4700 if (!(env->pstate & PSTATE_SP)) { 4701 /* Access to SP_EL0 is undefined if it's being used as 4702 * the stack pointer. 4703 */ 4704 return CP_ACCESS_TRAP_UNCATEGORIZED; 4705 } 4706 return CP_ACCESS_OK; 4707 } 4708 4709 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4710 { 4711 return env->pstate & PSTATE_SP; 4712 } 4713 4714 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4715 { 4716 update_spsel(env, val); 4717 } 4718 4719 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4720 uint64_t value) 4721 { 4722 ARMCPU *cpu = env_archcpu(env); 4723 4724 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4725 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4726 value &= ~SCTLR_M; 4727 } 4728 4729 /* ??? Lots of these bits are not implemented. */ 4730 4731 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4732 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4733 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4734 } else { 4735 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4736 SCTLR_ATA0 | SCTLR_ATA); 4737 } 4738 } 4739 4740 if (raw_read(env, ri) == value) { 4741 /* Skip the TLB flush if nothing actually changed; Linux likes 4742 * to do a lot of pointless SCTLR writes. 4743 */ 4744 return; 4745 } 4746 4747 raw_write(env, ri, value); 4748 4749 /* This may enable/disable the MMU, so do a TLB flush. */ 4750 tlb_flush(CPU(cpu)); 4751 4752 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4753 /* 4754 * Normally we would always end the TB on an SCTLR write; see the 4755 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4756 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4757 * of hflags from the translator, so do it here. 4758 */ 4759 arm_rebuild_hflags(env); 4760 } 4761 } 4762 4763 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4764 uint64_t value) 4765 { 4766 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4767 } 4768 4769 static const ARMCPRegInfo v8_cp_reginfo[] = { 4770 /* Minimal set of EL0-visible registers. This will need to be expanded 4771 * significantly for system emulation of AArch64 CPUs. 4772 */ 4773 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4774 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4775 .access = PL0_RW, .type = ARM_CP_NZCV }, 4776 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4777 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4778 .type = ARM_CP_NO_RAW, 4779 .access = PL0_RW, .accessfn = aa64_daif_access, 4780 .fieldoffset = offsetof(CPUARMState, daif), 4781 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4782 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4783 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4784 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4785 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4786 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4787 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4788 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4789 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4790 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4791 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4792 .access = PL0_R, .type = ARM_CP_NO_RAW, 4793 .readfn = aa64_dczid_read }, 4794 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4795 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4796 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4797 #ifndef CONFIG_USER_ONLY 4798 /* Avoid overhead of an access check that always passes in user-mode */ 4799 .accessfn = aa64_zva_access, 4800 #endif 4801 }, 4802 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4803 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4804 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4805 /* Cache ops: all NOPs since we don't emulate caches */ 4806 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4807 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4808 .access = PL1_W, .type = ARM_CP_NOP, 4809 .accessfn = aa64_cacheop_pou_access }, 4810 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4811 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4812 .access = PL1_W, .type = ARM_CP_NOP, 4813 .accessfn = aa64_cacheop_pou_access }, 4814 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4815 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4816 .access = PL0_W, .type = ARM_CP_NOP, 4817 .accessfn = aa64_cacheop_pou_access }, 4818 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4819 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4820 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4821 .type = ARM_CP_NOP }, 4822 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4823 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4824 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4825 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4826 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4827 .access = PL0_W, .type = ARM_CP_NOP, 4828 .accessfn = aa64_cacheop_poc_access }, 4829 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4830 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4831 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4832 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4833 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4834 .access = PL0_W, .type = ARM_CP_NOP, 4835 .accessfn = aa64_cacheop_pou_access }, 4836 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4837 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4838 .access = PL0_W, .type = ARM_CP_NOP, 4839 .accessfn = aa64_cacheop_poc_access }, 4840 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4841 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4842 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4843 /* TLBI operations */ 4844 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4845 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4846 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4847 .writefn = tlbi_aa64_vmalle1is_write }, 4848 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4849 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4850 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4851 .writefn = tlbi_aa64_vae1is_write }, 4852 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4853 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4854 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4855 .writefn = tlbi_aa64_vmalle1is_write }, 4856 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4857 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4858 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4859 .writefn = tlbi_aa64_vae1is_write }, 4860 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4861 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4862 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4863 .writefn = tlbi_aa64_vae1is_write }, 4864 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4865 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4866 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4867 .writefn = tlbi_aa64_vae1is_write }, 4868 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4869 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4870 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4871 .writefn = tlbi_aa64_vmalle1_write }, 4872 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4873 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4874 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4875 .writefn = tlbi_aa64_vae1_write }, 4876 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4877 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4878 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4879 .writefn = tlbi_aa64_vmalle1_write }, 4880 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4881 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4882 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4883 .writefn = tlbi_aa64_vae1_write }, 4884 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4885 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4886 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4887 .writefn = tlbi_aa64_vae1_write }, 4888 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4889 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4890 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4891 .writefn = tlbi_aa64_vae1_write }, 4892 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4893 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4894 .access = PL2_W, .type = ARM_CP_NOP }, 4895 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4896 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4897 .access = PL2_W, .type = ARM_CP_NOP }, 4898 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4899 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4900 .access = PL2_W, .type = ARM_CP_NO_RAW, 4901 .writefn = tlbi_aa64_alle1is_write }, 4902 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4903 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4904 .access = PL2_W, .type = ARM_CP_NO_RAW, 4905 .writefn = tlbi_aa64_alle1is_write }, 4906 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4907 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4908 .access = PL2_W, .type = ARM_CP_NOP }, 4909 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4910 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4911 .access = PL2_W, .type = ARM_CP_NOP }, 4912 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4913 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4914 .access = PL2_W, .type = ARM_CP_NO_RAW, 4915 .writefn = tlbi_aa64_alle1_write }, 4916 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4917 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4918 .access = PL2_W, .type = ARM_CP_NO_RAW, 4919 .writefn = tlbi_aa64_alle1is_write }, 4920 #ifndef CONFIG_USER_ONLY 4921 /* 64 bit address translation operations */ 4922 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4923 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4924 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4925 .writefn = ats_write64 }, 4926 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4927 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4928 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4929 .writefn = ats_write64 }, 4930 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4931 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4932 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4933 .writefn = ats_write64 }, 4934 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4935 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4936 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4937 .writefn = ats_write64 }, 4938 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4939 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4940 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4941 .writefn = ats_write64 }, 4942 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4943 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4944 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4945 .writefn = ats_write64 }, 4946 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4947 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4948 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4949 .writefn = ats_write64 }, 4950 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4951 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4952 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4953 .writefn = ats_write64 }, 4954 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4955 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4956 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4957 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4958 .writefn = ats_write64 }, 4959 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4960 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4961 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4962 .writefn = ats_write64 }, 4963 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4964 .type = ARM_CP_ALIAS, 4965 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4966 .access = PL1_RW, .resetvalue = 0, 4967 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4968 .writefn = par_write }, 4969 #endif 4970 /* TLB invalidate last level of translation table walk */ 4971 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4972 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4973 .writefn = tlbimva_is_write }, 4974 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4975 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4976 .writefn = tlbimvaa_is_write }, 4977 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4978 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4979 .writefn = tlbimva_write }, 4980 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4981 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4982 .writefn = tlbimvaa_write }, 4983 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4984 .type = ARM_CP_NO_RAW, .access = PL2_W, 4985 .writefn = tlbimva_hyp_write }, 4986 { .name = "TLBIMVALHIS", 4987 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4988 .type = ARM_CP_NO_RAW, .access = PL2_W, 4989 .writefn = tlbimva_hyp_is_write }, 4990 { .name = "TLBIIPAS2", 4991 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4992 .type = ARM_CP_NOP, .access = PL2_W }, 4993 { .name = "TLBIIPAS2IS", 4994 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4995 .type = ARM_CP_NOP, .access = PL2_W }, 4996 { .name = "TLBIIPAS2L", 4997 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4998 .type = ARM_CP_NOP, .access = PL2_W }, 4999 { .name = "TLBIIPAS2LIS", 5000 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5001 .type = ARM_CP_NOP, .access = PL2_W }, 5002 /* 32 bit cache operations */ 5003 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5004 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5005 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5006 .type = ARM_CP_NOP, .access = PL1_W }, 5007 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5008 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5009 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5010 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5011 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5012 .type = ARM_CP_NOP, .access = PL1_W }, 5013 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5014 .type = ARM_CP_NOP, .access = PL1_W }, 5015 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5016 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5017 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5018 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5019 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5020 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5021 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5022 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5023 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5024 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5025 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5026 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5027 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5028 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5029 /* MMU Domain access control / MPU write buffer control */ 5030 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5031 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5032 .writefn = dacr_write, .raw_writefn = raw_write, 5033 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5034 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5035 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5036 .type = ARM_CP_ALIAS, 5037 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5038 .access = PL1_RW, 5039 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5040 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5041 .type = ARM_CP_ALIAS, 5042 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5043 .access = PL1_RW, 5044 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5045 /* We rely on the access checks not allowing the guest to write to the 5046 * state field when SPSel indicates that it's being used as the stack 5047 * pointer. 5048 */ 5049 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5050 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5051 .access = PL1_RW, .accessfn = sp_el0_access, 5052 .type = ARM_CP_ALIAS, 5053 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5054 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5055 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5056 .access = PL2_RW, .type = ARM_CP_ALIAS, 5057 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5058 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5059 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5060 .type = ARM_CP_NO_RAW, 5061 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5062 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5063 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5064 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_FPU, 5065 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5066 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5067 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5068 .access = PL2_RW, .resetvalue = 0, 5069 .writefn = dacr_write, .raw_writefn = raw_write, 5070 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5071 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5072 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5073 .access = PL2_RW, .resetvalue = 0, 5074 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5075 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5076 .type = ARM_CP_ALIAS, 5077 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5078 .access = PL2_RW, 5079 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5080 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5081 .type = ARM_CP_ALIAS, 5082 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5083 .access = PL2_RW, 5084 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5085 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5086 .type = ARM_CP_ALIAS, 5087 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5088 .access = PL2_RW, 5089 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5090 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5091 .type = ARM_CP_ALIAS, 5092 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5093 .access = PL2_RW, 5094 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5095 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5096 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5097 .resetvalue = 0, 5098 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5099 { .name = "SDCR", .type = ARM_CP_ALIAS, 5100 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5101 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5102 .writefn = sdcr_write, 5103 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5104 }; 5105 5106 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5107 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5108 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5109 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5110 .access = PL2_RW, 5111 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5112 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5113 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5114 .access = PL2_RW, 5115 .type = ARM_CP_CONST, .resetvalue = 0 }, 5116 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5117 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5118 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5119 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5120 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5121 .access = PL2_RW, 5122 .type = ARM_CP_CONST, .resetvalue = 0 }, 5123 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5124 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5125 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5126 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5127 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5128 .access = PL2_RW, .type = ARM_CP_CONST, 5129 .resetvalue = 0 }, 5130 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5131 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5132 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5133 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5134 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5135 .access = PL2_RW, .type = ARM_CP_CONST, 5136 .resetvalue = 0 }, 5137 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5138 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5139 .access = PL2_RW, .type = ARM_CP_CONST, 5140 .resetvalue = 0 }, 5141 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5142 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5143 .access = PL2_RW, .type = ARM_CP_CONST, 5144 .resetvalue = 0 }, 5145 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5146 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5147 .access = PL2_RW, .type = ARM_CP_CONST, 5148 .resetvalue = 0 }, 5149 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5150 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5151 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5152 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5153 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5154 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5155 .type = ARM_CP_CONST, .resetvalue = 0 }, 5156 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5157 .cp = 15, .opc1 = 6, .crm = 2, 5158 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5159 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5160 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5161 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5162 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5163 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5164 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5165 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5166 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5167 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5168 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5169 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5170 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5171 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5172 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5173 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5174 .resetvalue = 0 }, 5175 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5176 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5177 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5178 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5179 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5180 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5181 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5182 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5183 .resetvalue = 0 }, 5184 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5185 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5186 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5187 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5188 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5189 .resetvalue = 0 }, 5190 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5191 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5192 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5193 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5194 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5195 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5196 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5197 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5198 .access = PL2_RW, .accessfn = access_tda, 5199 .type = ARM_CP_CONST, .resetvalue = 0 }, 5200 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5201 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5202 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5203 .type = ARM_CP_CONST, .resetvalue = 0 }, 5204 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5205 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5206 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5207 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5208 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5209 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5210 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5211 .type = ARM_CP_CONST, 5212 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5213 .access = PL2_RW, .resetvalue = 0 }, 5214 }; 5215 5216 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5217 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5218 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5219 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5220 .access = PL2_RW, 5221 .type = ARM_CP_CONST, .resetvalue = 0 }, 5222 }; 5223 5224 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5225 { 5226 ARMCPU *cpu = env_archcpu(env); 5227 5228 if (arm_feature(env, ARM_FEATURE_V8)) { 5229 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5230 } else { 5231 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5232 } 5233 5234 if (arm_feature(env, ARM_FEATURE_EL3)) { 5235 valid_mask &= ~HCR_HCD; 5236 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5237 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5238 * However, if we're using the SMC PSCI conduit then QEMU is 5239 * effectively acting like EL3 firmware and so the guest at 5240 * EL2 should retain the ability to prevent EL1 from being 5241 * able to make SMC calls into the ersatz firmware, so in 5242 * that case HCR.TSC should be read/write. 5243 */ 5244 valid_mask &= ~HCR_TSC; 5245 } 5246 5247 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5248 if (cpu_isar_feature(aa64_vh, cpu)) { 5249 valid_mask |= HCR_E2H; 5250 } 5251 if (cpu_isar_feature(aa64_lor, cpu)) { 5252 valid_mask |= HCR_TLOR; 5253 } 5254 if (cpu_isar_feature(aa64_pauth, cpu)) { 5255 valid_mask |= HCR_API | HCR_APK; 5256 } 5257 if (cpu_isar_feature(aa64_mte, cpu)) { 5258 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5259 } 5260 } 5261 5262 /* Clear RES0 bits. */ 5263 value &= valid_mask; 5264 5265 /* 5266 * These bits change the MMU setup: 5267 * HCR_VM enables stage 2 translation 5268 * HCR_PTW forbids certain page-table setups 5269 * HCR_DC disables stage1 and enables stage2 translation 5270 * HCR_DCT enables tagging on (disabled) stage1 translation 5271 */ 5272 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5273 tlb_flush(CPU(cpu)); 5274 } 5275 env->cp15.hcr_el2 = value; 5276 5277 /* 5278 * Updates to VI and VF require us to update the status of 5279 * virtual interrupts, which are the logical OR of these bits 5280 * and the state of the input lines from the GIC. (This requires 5281 * that we have the iothread lock, which is done by marking the 5282 * reginfo structs as ARM_CP_IO.) 5283 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5284 * possible for it to be taken immediately, because VIRQ and 5285 * VFIQ are masked unless running at EL0 or EL1, and HCR 5286 * can only be written at EL2. 5287 */ 5288 g_assert(qemu_mutex_iothread_locked()); 5289 arm_cpu_update_virq(cpu); 5290 arm_cpu_update_vfiq(cpu); 5291 } 5292 5293 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5294 { 5295 do_hcr_write(env, value, 0); 5296 } 5297 5298 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5299 uint64_t value) 5300 { 5301 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5302 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5303 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5304 } 5305 5306 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5307 uint64_t value) 5308 { 5309 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5310 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5311 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5312 } 5313 5314 /* 5315 * Return the effective value of HCR_EL2. 5316 * Bits that are not included here: 5317 * RW (read from SCR_EL3.RW as needed) 5318 */ 5319 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5320 { 5321 uint64_t ret = env->cp15.hcr_el2; 5322 5323 if (!arm_is_el2_enabled(env)) { 5324 /* 5325 * "This register has no effect if EL2 is not enabled in the 5326 * current Security state". This is ARMv8.4-SecEL2 speak for 5327 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5328 * 5329 * Prior to that, the language was "In an implementation that 5330 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5331 * as if this field is 0 for all purposes other than a direct 5332 * read or write access of HCR_EL2". With lots of enumeration 5333 * on a per-field basis. In current QEMU, this is condition 5334 * is arm_is_secure_below_el3. 5335 * 5336 * Since the v8.4 language applies to the entire register, and 5337 * appears to be backward compatible, use that. 5338 */ 5339 return 0; 5340 } 5341 5342 /* 5343 * For a cpu that supports both aarch64 and aarch32, we can set bits 5344 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5345 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5346 */ 5347 if (!arm_el_is_aa64(env, 2)) { 5348 uint64_t aa32_valid; 5349 5350 /* 5351 * These bits are up-to-date as of ARMv8.6. 5352 * For HCR, it's easiest to list just the 2 bits that are invalid. 5353 * For HCR2, list those that are valid. 5354 */ 5355 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5356 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5357 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5358 ret &= aa32_valid; 5359 } 5360 5361 if (ret & HCR_TGE) { 5362 /* These bits are up-to-date as of ARMv8.6. */ 5363 if (ret & HCR_E2H) { 5364 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5365 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5366 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5367 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5368 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5369 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5370 } else { 5371 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5372 } 5373 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5374 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5375 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5376 HCR_TLOR); 5377 } 5378 5379 return ret; 5380 } 5381 5382 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5383 uint64_t value) 5384 { 5385 /* 5386 * For A-profile AArch32 EL3, if NSACR.CP10 5387 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5388 */ 5389 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5390 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5391 value &= ~(0x3 << 10); 5392 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5393 } 5394 env->cp15.cptr_el[2] = value; 5395 } 5396 5397 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5398 { 5399 /* 5400 * For A-profile AArch32 EL3, if NSACR.CP10 5401 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5402 */ 5403 uint64_t value = env->cp15.cptr_el[2]; 5404 5405 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5406 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5407 value |= 0x3 << 10; 5408 } 5409 return value; 5410 } 5411 5412 static const ARMCPRegInfo el2_cp_reginfo[] = { 5413 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5414 .type = ARM_CP_IO, 5415 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5416 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5417 .writefn = hcr_write }, 5418 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5419 .type = ARM_CP_ALIAS | ARM_CP_IO, 5420 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5421 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5422 .writefn = hcr_writelow }, 5423 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5424 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5425 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5426 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5427 .type = ARM_CP_ALIAS, 5428 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5429 .access = PL2_RW, 5430 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5431 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5432 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5433 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5434 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5435 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5436 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5437 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5438 .type = ARM_CP_ALIAS, 5439 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5440 .access = PL2_RW, 5441 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5442 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5443 .type = ARM_CP_ALIAS, 5444 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5445 .access = PL2_RW, 5446 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5447 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5448 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5449 .access = PL2_RW, .writefn = vbar_write, 5450 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5451 .resetvalue = 0 }, 5452 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5453 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5454 .access = PL3_RW, .type = ARM_CP_ALIAS, 5455 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5456 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5457 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5458 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5459 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5460 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5461 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5462 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5463 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5464 .resetvalue = 0 }, 5465 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5466 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5467 .access = PL2_RW, .type = ARM_CP_ALIAS, 5468 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5469 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5470 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5471 .access = PL2_RW, .type = ARM_CP_CONST, 5472 .resetvalue = 0 }, 5473 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5474 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5475 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5476 .access = PL2_RW, .type = ARM_CP_CONST, 5477 .resetvalue = 0 }, 5478 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5479 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5480 .access = PL2_RW, .type = ARM_CP_CONST, 5481 .resetvalue = 0 }, 5482 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5483 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5484 .access = PL2_RW, .type = ARM_CP_CONST, 5485 .resetvalue = 0 }, 5486 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5487 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5488 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5489 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5490 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5491 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5492 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5493 .type = ARM_CP_ALIAS, 5494 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5495 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5496 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5497 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5498 .access = PL2_RW, 5499 /* no .writefn needed as this can't cause an ASID change; 5500 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5501 */ 5502 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5503 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5504 .cp = 15, .opc1 = 6, .crm = 2, 5505 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5506 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5507 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5508 .writefn = vttbr_write }, 5509 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5510 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5511 .access = PL2_RW, .writefn = vttbr_write, 5512 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5513 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5514 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5515 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5516 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5517 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5518 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5519 .access = PL2_RW, .resetvalue = 0, 5520 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5521 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5522 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5523 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5524 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5525 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5526 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5527 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5528 { .name = "TLBIALLNSNH", 5529 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5530 .type = ARM_CP_NO_RAW, .access = PL2_W, 5531 .writefn = tlbiall_nsnh_write }, 5532 { .name = "TLBIALLNSNHIS", 5533 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5534 .type = ARM_CP_NO_RAW, .access = PL2_W, 5535 .writefn = tlbiall_nsnh_is_write }, 5536 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5537 .type = ARM_CP_NO_RAW, .access = PL2_W, 5538 .writefn = tlbiall_hyp_write }, 5539 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5540 .type = ARM_CP_NO_RAW, .access = PL2_W, 5541 .writefn = tlbiall_hyp_is_write }, 5542 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5543 .type = ARM_CP_NO_RAW, .access = PL2_W, 5544 .writefn = tlbimva_hyp_write }, 5545 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5546 .type = ARM_CP_NO_RAW, .access = PL2_W, 5547 .writefn = tlbimva_hyp_is_write }, 5548 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5549 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5550 .type = ARM_CP_NO_RAW, .access = PL2_W, 5551 .writefn = tlbi_aa64_alle2_write }, 5552 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5553 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5554 .type = ARM_CP_NO_RAW, .access = PL2_W, 5555 .writefn = tlbi_aa64_vae2_write }, 5556 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5557 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5558 .access = PL2_W, .type = ARM_CP_NO_RAW, 5559 .writefn = tlbi_aa64_vae2_write }, 5560 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5561 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5562 .access = PL2_W, .type = ARM_CP_NO_RAW, 5563 .writefn = tlbi_aa64_alle2is_write }, 5564 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5565 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5566 .type = ARM_CP_NO_RAW, .access = PL2_W, 5567 .writefn = tlbi_aa64_vae2is_write }, 5568 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5569 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5570 .access = PL2_W, .type = ARM_CP_NO_RAW, 5571 .writefn = tlbi_aa64_vae2is_write }, 5572 #ifndef CONFIG_USER_ONLY 5573 /* Unlike the other EL2-related AT operations, these must 5574 * UNDEF from EL3 if EL2 is not implemented, which is why we 5575 * define them here rather than with the rest of the AT ops. 5576 */ 5577 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5578 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5579 .access = PL2_W, .accessfn = at_s1e2_access, 5580 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5581 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5582 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5583 .access = PL2_W, .accessfn = at_s1e2_access, 5584 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5585 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5586 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5587 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5588 * to behave as if SCR.NS was 1. 5589 */ 5590 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5591 .access = PL2_W, 5592 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5593 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5594 .access = PL2_W, 5595 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5596 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5597 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5598 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5599 * reset values as IMPDEF. We choose to reset to 3 to comply with 5600 * both ARMv7 and ARMv8. 5601 */ 5602 .access = PL2_RW, .resetvalue = 3, 5603 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5604 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5605 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5606 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5607 .writefn = gt_cntvoff_write, 5608 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5609 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5610 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5611 .writefn = gt_cntvoff_write, 5612 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5613 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5614 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5615 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5616 .type = ARM_CP_IO, .access = PL2_RW, 5617 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5618 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5619 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5620 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5621 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5622 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5623 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5624 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5625 .resetfn = gt_hyp_timer_reset, 5626 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5627 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5628 .type = ARM_CP_IO, 5629 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5630 .access = PL2_RW, 5631 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5632 .resetvalue = 0, 5633 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5634 #endif 5635 /* The only field of MDCR_EL2 that has a defined architectural reset value 5636 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5637 */ 5638 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5639 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5640 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5641 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5642 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5643 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5644 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5645 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5646 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5647 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5648 .access = PL2_RW, 5649 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5650 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5651 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5652 .access = PL2_RW, 5653 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5654 }; 5655 5656 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5657 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5658 .type = ARM_CP_ALIAS | ARM_CP_IO, 5659 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5660 .access = PL2_RW, 5661 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5662 .writefn = hcr_writehigh }, 5663 }; 5664 5665 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5666 bool isread) 5667 { 5668 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5669 return CP_ACCESS_OK; 5670 } 5671 return CP_ACCESS_TRAP_UNCATEGORIZED; 5672 } 5673 5674 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5675 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5676 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5677 .access = PL2_RW, .accessfn = sel2_access, 5678 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5679 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5680 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5681 .access = PL2_RW, .accessfn = sel2_access, 5682 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5683 }; 5684 5685 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5686 bool isread) 5687 { 5688 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5689 * At Secure EL1 it traps to EL3 or EL2. 5690 */ 5691 if (arm_current_el(env) == 3) { 5692 return CP_ACCESS_OK; 5693 } 5694 if (arm_is_secure_below_el3(env)) { 5695 if (env->cp15.scr_el3 & SCR_EEL2) { 5696 return CP_ACCESS_TRAP_EL2; 5697 } 5698 return CP_ACCESS_TRAP_EL3; 5699 } 5700 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5701 if (isread) { 5702 return CP_ACCESS_OK; 5703 } 5704 return CP_ACCESS_TRAP_UNCATEGORIZED; 5705 } 5706 5707 static const ARMCPRegInfo el3_cp_reginfo[] = { 5708 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5709 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5710 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5711 .resetfn = scr_reset, .writefn = scr_write }, 5712 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5713 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5714 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5715 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5716 .writefn = scr_write }, 5717 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5718 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5719 .access = PL3_RW, .resetvalue = 0, 5720 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5721 { .name = "SDER", 5722 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5723 .access = PL3_RW, .resetvalue = 0, 5724 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5725 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5726 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5727 .writefn = vbar_write, .resetvalue = 0, 5728 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5729 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5730 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5731 .access = PL3_RW, .resetvalue = 0, 5732 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5733 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5734 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5735 .access = PL3_RW, 5736 /* no .writefn needed as this can't cause an ASID change; 5737 * we must provide a .raw_writefn and .resetfn because we handle 5738 * reset and migration for the AArch32 TTBCR(S), which might be 5739 * using mask and base_mask. 5740 */ 5741 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5742 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5743 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5744 .type = ARM_CP_ALIAS, 5745 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5746 .access = PL3_RW, 5747 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5748 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5749 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5750 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5751 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5752 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5753 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5754 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5755 .type = ARM_CP_ALIAS, 5756 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5757 .access = PL3_RW, 5758 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5759 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5760 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5761 .access = PL3_RW, .writefn = vbar_write, 5762 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5763 .resetvalue = 0 }, 5764 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5765 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5766 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5767 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5768 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5769 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5770 .access = PL3_RW, .resetvalue = 0, 5771 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5772 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5773 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5774 .access = PL3_RW, .type = ARM_CP_CONST, 5775 .resetvalue = 0 }, 5776 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5777 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5778 .access = PL3_RW, .type = ARM_CP_CONST, 5779 .resetvalue = 0 }, 5780 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5781 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5782 .access = PL3_RW, .type = ARM_CP_CONST, 5783 .resetvalue = 0 }, 5784 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5785 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5786 .access = PL3_W, .type = ARM_CP_NO_RAW, 5787 .writefn = tlbi_aa64_alle3is_write }, 5788 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5789 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5790 .access = PL3_W, .type = ARM_CP_NO_RAW, 5791 .writefn = tlbi_aa64_vae3is_write }, 5792 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5793 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5794 .access = PL3_W, .type = ARM_CP_NO_RAW, 5795 .writefn = tlbi_aa64_vae3is_write }, 5796 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5797 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5798 .access = PL3_W, .type = ARM_CP_NO_RAW, 5799 .writefn = tlbi_aa64_alle3_write }, 5800 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5801 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5802 .access = PL3_W, .type = ARM_CP_NO_RAW, 5803 .writefn = tlbi_aa64_vae3_write }, 5804 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5805 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5806 .access = PL3_W, .type = ARM_CP_NO_RAW, 5807 .writefn = tlbi_aa64_vae3_write }, 5808 }; 5809 5810 #ifndef CONFIG_USER_ONLY 5811 /* Test if system register redirection is to occur in the current state. */ 5812 static bool redirect_for_e2h(CPUARMState *env) 5813 { 5814 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5815 } 5816 5817 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5818 { 5819 CPReadFn *readfn; 5820 5821 if (redirect_for_e2h(env)) { 5822 /* Switch to the saved EL2 version of the register. */ 5823 ri = ri->opaque; 5824 readfn = ri->readfn; 5825 } else { 5826 readfn = ri->orig_readfn; 5827 } 5828 if (readfn == NULL) { 5829 readfn = raw_read; 5830 } 5831 return readfn(env, ri); 5832 } 5833 5834 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5835 uint64_t value) 5836 { 5837 CPWriteFn *writefn; 5838 5839 if (redirect_for_e2h(env)) { 5840 /* Switch to the saved EL2 version of the register. */ 5841 ri = ri->opaque; 5842 writefn = ri->writefn; 5843 } else { 5844 writefn = ri->orig_writefn; 5845 } 5846 if (writefn == NULL) { 5847 writefn = raw_write; 5848 } 5849 writefn(env, ri, value); 5850 } 5851 5852 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5853 { 5854 struct E2HAlias { 5855 uint32_t src_key, dst_key, new_key; 5856 const char *src_name, *dst_name, *new_name; 5857 bool (*feature)(const ARMISARegisters *id); 5858 }; 5859 5860 #define K(op0, op1, crn, crm, op2) \ 5861 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5862 5863 static const struct E2HAlias aliases[] = { 5864 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5865 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5866 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5867 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5868 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5869 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5870 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5871 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5872 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5873 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5874 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5875 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5876 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5877 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5878 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5879 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5880 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5881 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5882 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5883 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5884 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5885 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5886 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5887 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5888 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5889 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5890 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5891 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5892 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5893 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5894 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5895 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5896 5897 /* 5898 * Note that redirection of ZCR is mentioned in the description 5899 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5900 * not in the summary table. 5901 */ 5902 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5903 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5904 5905 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5906 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5907 5908 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5909 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5910 }; 5911 #undef K 5912 5913 size_t i; 5914 5915 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5916 const struct E2HAlias *a = &aliases[i]; 5917 ARMCPRegInfo *src_reg, *dst_reg; 5918 5919 if (a->feature && !a->feature(&cpu->isar)) { 5920 continue; 5921 } 5922 5923 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5924 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5925 g_assert(src_reg != NULL); 5926 g_assert(dst_reg != NULL); 5927 5928 /* Cross-compare names to detect typos in the keys. */ 5929 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5930 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5931 5932 /* None of the core system registers use opaque; we will. */ 5933 g_assert(src_reg->opaque == NULL); 5934 5935 /* Create alias before redirection so we dup the right data. */ 5936 if (a->new_key) { 5937 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5938 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5939 bool ok; 5940 5941 new_reg->name = a->new_name; 5942 new_reg->type |= ARM_CP_ALIAS; 5943 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5944 new_reg->access &= PL2_RW | PL3_RW; 5945 5946 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5947 g_assert(ok); 5948 } 5949 5950 src_reg->opaque = dst_reg; 5951 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5952 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5953 if (!src_reg->raw_readfn) { 5954 src_reg->raw_readfn = raw_read; 5955 } 5956 if (!src_reg->raw_writefn) { 5957 src_reg->raw_writefn = raw_write; 5958 } 5959 src_reg->readfn = el2_e2h_read; 5960 src_reg->writefn = el2_e2h_write; 5961 } 5962 } 5963 #endif 5964 5965 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5966 bool isread) 5967 { 5968 int cur_el = arm_current_el(env); 5969 5970 if (cur_el < 2) { 5971 uint64_t hcr = arm_hcr_el2_eff(env); 5972 5973 if (cur_el == 0) { 5974 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5975 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5976 return CP_ACCESS_TRAP_EL2; 5977 } 5978 } else { 5979 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5980 return CP_ACCESS_TRAP; 5981 } 5982 if (hcr & HCR_TID2) { 5983 return CP_ACCESS_TRAP_EL2; 5984 } 5985 } 5986 } else if (hcr & HCR_TID2) { 5987 return CP_ACCESS_TRAP_EL2; 5988 } 5989 } 5990 5991 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5992 return CP_ACCESS_TRAP_EL2; 5993 } 5994 5995 return CP_ACCESS_OK; 5996 } 5997 5998 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5999 uint64_t value) 6000 { 6001 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6002 * read via a bit in OSLSR_EL1. 6003 */ 6004 int oslock; 6005 6006 if (ri->state == ARM_CP_STATE_AA32) { 6007 oslock = (value == 0xC5ACCE55); 6008 } else { 6009 oslock = value & 1; 6010 } 6011 6012 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6013 } 6014 6015 static const ARMCPRegInfo debug_cp_reginfo[] = { 6016 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6017 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6018 * unlike DBGDRAR it is never accessible from EL0. 6019 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6020 * accessor. 6021 */ 6022 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6023 .access = PL0_R, .accessfn = access_tdra, 6024 .type = ARM_CP_CONST, .resetvalue = 0 }, 6025 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6026 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6027 .access = PL1_R, .accessfn = access_tdra, 6028 .type = ARM_CP_CONST, .resetvalue = 0 }, 6029 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6030 .access = PL0_R, .accessfn = access_tdra, 6031 .type = ARM_CP_CONST, .resetvalue = 0 }, 6032 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6033 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6034 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6035 .access = PL1_RW, .accessfn = access_tda, 6036 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6037 .resetvalue = 0 }, 6038 /* 6039 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 6040 * Debug Communication Channel is not implemented. 6041 */ 6042 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 6043 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 6044 .access = PL0_R, .accessfn = access_tda, 6045 .type = ARM_CP_CONST, .resetvalue = 0 }, 6046 /* 6047 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 6048 * it is unlikely a guest will care. 6049 * We don't implement the configurable EL0 access. 6050 */ 6051 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 6052 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6053 .type = ARM_CP_ALIAS, 6054 .access = PL1_R, .accessfn = access_tda, 6055 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6056 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6057 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6058 .access = PL1_W, .type = ARM_CP_NO_RAW, 6059 .accessfn = access_tdosa, 6060 .writefn = oslar_write }, 6061 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6062 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6063 .access = PL1_R, .resetvalue = 10, 6064 .accessfn = access_tdosa, 6065 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6066 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6067 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6068 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6069 .access = PL1_RW, .accessfn = access_tdosa, 6070 .type = ARM_CP_NOP }, 6071 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6072 * implement vector catch debug events yet. 6073 */ 6074 { .name = "DBGVCR", 6075 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6076 .access = PL1_RW, .accessfn = access_tda, 6077 .type = ARM_CP_NOP }, 6078 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6079 * to save and restore a 32-bit guest's DBGVCR) 6080 */ 6081 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6082 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6083 .access = PL2_RW, .accessfn = access_tda, 6084 .type = ARM_CP_NOP }, 6085 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6086 * Channel but Linux may try to access this register. The 32-bit 6087 * alias is DBGDCCINT. 6088 */ 6089 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6090 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6091 .access = PL1_RW, .accessfn = access_tda, 6092 .type = ARM_CP_NOP }, 6093 }; 6094 6095 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6096 /* 64 bit access versions of the (dummy) debug registers */ 6097 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6098 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6099 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6100 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6101 }; 6102 6103 /* Return the exception level to which exceptions should be taken 6104 * via SVEAccessTrap. If an exception should be routed through 6105 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6106 * take care of raising that exception. 6107 * C.f. the ARM pseudocode function CheckSVEEnabled. 6108 */ 6109 int sve_exception_el(CPUARMState *env, int el) 6110 { 6111 #ifndef CONFIG_USER_ONLY 6112 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6113 6114 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6115 /* Check CPACR.ZEN. */ 6116 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 6117 case 1: 6118 if (el != 0) { 6119 break; 6120 } 6121 /* fall through */ 6122 case 0: 6123 case 2: 6124 /* route_to_el2 */ 6125 return hcr_el2 & HCR_TGE ? 2 : 1; 6126 } 6127 6128 /* Check CPACR.FPEN. */ 6129 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 6130 case 1: 6131 if (el != 0) { 6132 break; 6133 } 6134 /* fall through */ 6135 case 0: 6136 case 2: 6137 return 0; 6138 } 6139 } 6140 6141 /* 6142 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). 6143 */ 6144 if (el <= 2) { 6145 if (hcr_el2 & HCR_E2H) { 6146 /* Check CPTR_EL2.ZEN. */ 6147 switch (extract32(env->cp15.cptr_el[2], 16, 2)) { 6148 case 1: 6149 if (el != 0 || !(hcr_el2 & HCR_TGE)) { 6150 break; 6151 } 6152 /* fall through */ 6153 case 0: 6154 case 2: 6155 return 2; 6156 } 6157 6158 /* Check CPTR_EL2.FPEN. */ 6159 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 6160 case 1: 6161 if (el == 2 || !(hcr_el2 & HCR_TGE)) { 6162 break; 6163 } 6164 /* fall through */ 6165 case 0: 6166 case 2: 6167 return 0; 6168 } 6169 } else if (arm_is_el2_enabled(env)) { 6170 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6171 return 2; 6172 } 6173 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6174 return 0; 6175 } 6176 } 6177 } 6178 6179 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6180 if (arm_feature(env, ARM_FEATURE_EL3) 6181 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6182 return 3; 6183 } 6184 #endif 6185 return 0; 6186 } 6187 6188 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6189 { 6190 uint32_t end_len; 6191 6192 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6193 end_len = start_len; 6194 6195 if (!test_bit(start_len, cpu->sve_vq_map)) { 6196 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6197 assert(end_len < start_len); 6198 } 6199 return end_len; 6200 } 6201 6202 /* 6203 * Given that SVE is enabled, return the vector length for EL. 6204 */ 6205 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6206 { 6207 ARMCPU *cpu = env_archcpu(env); 6208 uint32_t zcr_len = cpu->sve_max_vq - 1; 6209 6210 if (el <= 1 && 6211 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6212 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6213 } 6214 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6215 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6216 } 6217 if (arm_feature(env, ARM_FEATURE_EL3)) { 6218 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6219 } 6220 6221 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6222 } 6223 6224 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6225 uint64_t value) 6226 { 6227 int cur_el = arm_current_el(env); 6228 int old_len = sve_zcr_len_for_el(env, cur_el); 6229 int new_len; 6230 6231 /* Bits other than [3:0] are RAZ/WI. */ 6232 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6233 raw_write(env, ri, value & 0xf); 6234 6235 /* 6236 * Because we arrived here, we know both FP and SVE are enabled; 6237 * otherwise we would have trapped access to the ZCR_ELn register. 6238 */ 6239 new_len = sve_zcr_len_for_el(env, cur_el); 6240 if (new_len < old_len) { 6241 aarch64_sve_narrow_vq(env, new_len + 1); 6242 } 6243 } 6244 6245 static const ARMCPRegInfo zcr_el1_reginfo = { 6246 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6247 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6248 .access = PL1_RW, .type = ARM_CP_SVE, 6249 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6250 .writefn = zcr_write, .raw_writefn = raw_write 6251 }; 6252 6253 static const ARMCPRegInfo zcr_el2_reginfo = { 6254 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6255 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6256 .access = PL2_RW, .type = ARM_CP_SVE, 6257 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6258 .writefn = zcr_write, .raw_writefn = raw_write 6259 }; 6260 6261 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6262 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6263 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6264 .access = PL2_RW, .type = ARM_CP_SVE, 6265 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6266 }; 6267 6268 static const ARMCPRegInfo zcr_el3_reginfo = { 6269 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6270 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6271 .access = PL3_RW, .type = ARM_CP_SVE, 6272 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6273 .writefn = zcr_write, .raw_writefn = raw_write 6274 }; 6275 6276 void hw_watchpoint_update(ARMCPU *cpu, int n) 6277 { 6278 CPUARMState *env = &cpu->env; 6279 vaddr len = 0; 6280 vaddr wvr = env->cp15.dbgwvr[n]; 6281 uint64_t wcr = env->cp15.dbgwcr[n]; 6282 int mask; 6283 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6284 6285 if (env->cpu_watchpoint[n]) { 6286 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6287 env->cpu_watchpoint[n] = NULL; 6288 } 6289 6290 if (!FIELD_EX64(wcr, DBGWCR, E)) { 6291 /* E bit clear : watchpoint disabled */ 6292 return; 6293 } 6294 6295 switch (FIELD_EX64(wcr, DBGWCR, LSC)) { 6296 case 0: 6297 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6298 return; 6299 case 1: 6300 flags |= BP_MEM_READ; 6301 break; 6302 case 2: 6303 flags |= BP_MEM_WRITE; 6304 break; 6305 case 3: 6306 flags |= BP_MEM_ACCESS; 6307 break; 6308 } 6309 6310 /* Attempts to use both MASK and BAS fields simultaneously are 6311 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6312 * thus generating a watchpoint for every byte in the masked region. 6313 */ 6314 mask = FIELD_EX64(wcr, DBGWCR, MASK); 6315 if (mask == 1 || mask == 2) { 6316 /* Reserved values of MASK; we must act as if the mask value was 6317 * some non-reserved value, or as if the watchpoint were disabled. 6318 * We choose the latter. 6319 */ 6320 return; 6321 } else if (mask) { 6322 /* Watchpoint covers an aligned area up to 2GB in size */ 6323 len = 1ULL << mask; 6324 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6325 * whether the watchpoint fires when the unmasked bits match; we opt 6326 * to generate the exceptions. 6327 */ 6328 wvr &= ~(len - 1); 6329 } else { 6330 /* Watchpoint covers bytes defined by the byte address select bits */ 6331 int bas = FIELD_EX64(wcr, DBGWCR, BAS); 6332 int basstart; 6333 6334 if (extract64(wvr, 2, 1)) { 6335 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6336 * ignored, and BAS[3:0] define which bytes to watch. 6337 */ 6338 bas &= 0xf; 6339 } 6340 6341 if (bas == 0) { 6342 /* This must act as if the watchpoint is disabled */ 6343 return; 6344 } 6345 6346 /* The BAS bits are supposed to be programmed to indicate a contiguous 6347 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6348 * we fire for each byte in the word/doubleword addressed by the WVR. 6349 * We choose to ignore any non-zero bits after the first range of 1s. 6350 */ 6351 basstart = ctz32(bas); 6352 len = cto32(bas >> basstart); 6353 wvr += basstart; 6354 } 6355 6356 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6357 &env->cpu_watchpoint[n]); 6358 } 6359 6360 void hw_watchpoint_update_all(ARMCPU *cpu) 6361 { 6362 int i; 6363 CPUARMState *env = &cpu->env; 6364 6365 /* Completely clear out existing QEMU watchpoints and our array, to 6366 * avoid possible stale entries following migration load. 6367 */ 6368 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6369 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6370 6371 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6372 hw_watchpoint_update(cpu, i); 6373 } 6374 } 6375 6376 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6377 uint64_t value) 6378 { 6379 ARMCPU *cpu = env_archcpu(env); 6380 int i = ri->crm; 6381 6382 /* 6383 * Bits [1:0] are RES0. 6384 * 6385 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA) 6386 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if 6387 * they contain the value written. It is CONSTRAINED UNPREDICTABLE 6388 * whether the RESS bits are ignored when comparing an address. 6389 * 6390 * Therefore we are allowed to compare the entire register, which lets 6391 * us avoid considering whether or not FEAT_LVA is actually enabled. 6392 */ 6393 value &= ~3ULL; 6394 6395 raw_write(env, ri, value); 6396 hw_watchpoint_update(cpu, i); 6397 } 6398 6399 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6400 uint64_t value) 6401 { 6402 ARMCPU *cpu = env_archcpu(env); 6403 int i = ri->crm; 6404 6405 raw_write(env, ri, value); 6406 hw_watchpoint_update(cpu, i); 6407 } 6408 6409 void hw_breakpoint_update(ARMCPU *cpu, int n) 6410 { 6411 CPUARMState *env = &cpu->env; 6412 uint64_t bvr = env->cp15.dbgbvr[n]; 6413 uint64_t bcr = env->cp15.dbgbcr[n]; 6414 vaddr addr; 6415 int bt; 6416 int flags = BP_CPU; 6417 6418 if (env->cpu_breakpoint[n]) { 6419 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6420 env->cpu_breakpoint[n] = NULL; 6421 } 6422 6423 if (!extract64(bcr, 0, 1)) { 6424 /* E bit clear : watchpoint disabled */ 6425 return; 6426 } 6427 6428 bt = extract64(bcr, 20, 4); 6429 6430 switch (bt) { 6431 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6432 case 5: /* linked address mismatch (reserved if AArch64) */ 6433 qemu_log_mask(LOG_UNIMP, 6434 "arm: address mismatch breakpoint types not implemented\n"); 6435 return; 6436 case 0: /* unlinked address match */ 6437 case 1: /* linked address match */ 6438 { 6439 /* 6440 * Bits [1:0] are RES0. 6441 * 6442 * It is IMPLEMENTATION DEFINED whether bits [63:49] 6443 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit 6444 * of the VA field ([48] or [52] for FEAT_LVA), or whether the 6445 * value is read as written. It is CONSTRAINED UNPREDICTABLE 6446 * whether the RESS bits are ignored when comparing an address. 6447 * Therefore we are allowed to compare the entire register, which 6448 * lets us avoid considering whether FEAT_LVA is actually enabled. 6449 * 6450 * The BAS field is used to allow setting breakpoints on 16-bit 6451 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6452 * a bp will fire if the addresses covered by the bp and the addresses 6453 * covered by the insn overlap but the insn doesn't start at the 6454 * start of the bp address range. We choose to require the insn and 6455 * the bp to have the same address. The constraints on writing to 6456 * BAS enforced in dbgbcr_write mean we have only four cases: 6457 * 0b0000 => no breakpoint 6458 * 0b0011 => breakpoint on addr 6459 * 0b1100 => breakpoint on addr + 2 6460 * 0b1111 => breakpoint on addr 6461 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6462 */ 6463 int bas = extract64(bcr, 5, 4); 6464 addr = bvr & ~3ULL; 6465 if (bas == 0) { 6466 return; 6467 } 6468 if (bas == 0xc) { 6469 addr += 2; 6470 } 6471 break; 6472 } 6473 case 2: /* unlinked context ID match */ 6474 case 8: /* unlinked VMID match (reserved if no EL2) */ 6475 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6476 qemu_log_mask(LOG_UNIMP, 6477 "arm: unlinked context breakpoint types not implemented\n"); 6478 return; 6479 case 9: /* linked VMID match (reserved if no EL2) */ 6480 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6481 case 3: /* linked context ID match */ 6482 default: 6483 /* We must generate no events for Linked context matches (unless 6484 * they are linked to by some other bp/wp, which is handled in 6485 * updates for the linking bp/wp). We choose to also generate no events 6486 * for reserved values. 6487 */ 6488 return; 6489 } 6490 6491 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6492 } 6493 6494 void hw_breakpoint_update_all(ARMCPU *cpu) 6495 { 6496 int i; 6497 CPUARMState *env = &cpu->env; 6498 6499 /* Completely clear out existing QEMU breakpoints and our array, to 6500 * avoid possible stale entries following migration load. 6501 */ 6502 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6503 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6504 6505 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6506 hw_breakpoint_update(cpu, i); 6507 } 6508 } 6509 6510 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6511 uint64_t value) 6512 { 6513 ARMCPU *cpu = env_archcpu(env); 6514 int i = ri->crm; 6515 6516 raw_write(env, ri, value); 6517 hw_breakpoint_update(cpu, i); 6518 } 6519 6520 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6521 uint64_t value) 6522 { 6523 ARMCPU *cpu = env_archcpu(env); 6524 int i = ri->crm; 6525 6526 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6527 * copy of BAS[0]. 6528 */ 6529 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6530 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6531 6532 raw_write(env, ri, value); 6533 hw_breakpoint_update(cpu, i); 6534 } 6535 6536 static void define_debug_regs(ARMCPU *cpu) 6537 { 6538 /* Define v7 and v8 architectural debug registers. 6539 * These are just dummy implementations for now. 6540 */ 6541 int i; 6542 int wrps, brps, ctx_cmps; 6543 6544 /* 6545 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6546 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6547 * the register must not exist for this cpu. 6548 */ 6549 if (cpu->isar.dbgdidr != 0) { 6550 ARMCPRegInfo dbgdidr = { 6551 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6552 .opc1 = 0, .opc2 = 0, 6553 .access = PL0_R, .accessfn = access_tda, 6554 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6555 }; 6556 define_one_arm_cp_reg(cpu, &dbgdidr); 6557 } 6558 6559 /* Note that all these register fields hold "number of Xs minus 1". */ 6560 brps = arm_num_brps(cpu); 6561 wrps = arm_num_wrps(cpu); 6562 ctx_cmps = arm_num_ctx_cmps(cpu); 6563 6564 assert(ctx_cmps <= brps); 6565 6566 define_arm_cp_regs(cpu, debug_cp_reginfo); 6567 6568 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6569 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6570 } 6571 6572 for (i = 0; i < brps; i++) { 6573 ARMCPRegInfo dbgregs[] = { 6574 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6575 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6576 .access = PL1_RW, .accessfn = access_tda, 6577 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6578 .writefn = dbgbvr_write, .raw_writefn = raw_write 6579 }, 6580 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6581 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6582 .access = PL1_RW, .accessfn = access_tda, 6583 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6584 .writefn = dbgbcr_write, .raw_writefn = raw_write 6585 }, 6586 }; 6587 define_arm_cp_regs(cpu, dbgregs); 6588 } 6589 6590 for (i = 0; i < wrps; i++) { 6591 ARMCPRegInfo dbgregs[] = { 6592 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6593 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6594 .access = PL1_RW, .accessfn = access_tda, 6595 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6596 .writefn = dbgwvr_write, .raw_writefn = raw_write 6597 }, 6598 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6599 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6600 .access = PL1_RW, .accessfn = access_tda, 6601 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6602 .writefn = dbgwcr_write, .raw_writefn = raw_write 6603 }, 6604 }; 6605 define_arm_cp_regs(cpu, dbgregs); 6606 } 6607 } 6608 6609 static void define_pmu_regs(ARMCPU *cpu) 6610 { 6611 /* 6612 * v7 performance monitor control register: same implementor 6613 * field as main ID register, and we implement four counters in 6614 * addition to the cycle count register. 6615 */ 6616 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6617 ARMCPRegInfo pmcr = { 6618 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6619 .access = PL0_RW, 6620 .type = ARM_CP_IO | ARM_CP_ALIAS, 6621 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6622 .accessfn = pmreg_access, .writefn = pmcr_write, 6623 .raw_writefn = raw_write, 6624 }; 6625 ARMCPRegInfo pmcr64 = { 6626 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6627 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6628 .access = PL0_RW, .accessfn = pmreg_access, 6629 .type = ARM_CP_IO, 6630 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6631 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6632 PMCRLC, 6633 .writefn = pmcr_write, .raw_writefn = raw_write, 6634 }; 6635 define_one_arm_cp_reg(cpu, &pmcr); 6636 define_one_arm_cp_reg(cpu, &pmcr64); 6637 for (i = 0; i < pmcrn; i++) { 6638 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6639 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6640 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6641 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6642 ARMCPRegInfo pmev_regs[] = { 6643 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6644 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6645 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6646 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6647 .accessfn = pmreg_access }, 6648 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6649 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6650 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6651 .type = ARM_CP_IO, 6652 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6653 .raw_readfn = pmevcntr_rawread, 6654 .raw_writefn = pmevcntr_rawwrite }, 6655 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6656 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6657 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6658 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6659 .accessfn = pmreg_access }, 6660 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6661 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6662 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6663 .type = ARM_CP_IO, 6664 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6665 .raw_writefn = pmevtyper_rawwrite }, 6666 }; 6667 define_arm_cp_regs(cpu, pmev_regs); 6668 g_free(pmevcntr_name); 6669 g_free(pmevcntr_el0_name); 6670 g_free(pmevtyper_name); 6671 g_free(pmevtyper_el0_name); 6672 } 6673 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6674 ARMCPRegInfo v81_pmu_regs[] = { 6675 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6676 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6677 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6678 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6679 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6680 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6681 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6682 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6683 }; 6684 define_arm_cp_regs(cpu, v81_pmu_regs); 6685 } 6686 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6687 static const ARMCPRegInfo v84_pmmir = { 6688 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6689 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6690 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6691 .resetvalue = 0 6692 }; 6693 define_one_arm_cp_reg(cpu, &v84_pmmir); 6694 } 6695 } 6696 6697 /* We don't know until after realize whether there's a GICv3 6698 * attached, and that is what registers the gicv3 sysregs. 6699 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6700 * at runtime. 6701 */ 6702 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6703 { 6704 ARMCPU *cpu = env_archcpu(env); 6705 uint64_t pfr1 = cpu->isar.id_pfr1; 6706 6707 if (env->gicv3state) { 6708 pfr1 |= 1 << 28; 6709 } 6710 return pfr1; 6711 } 6712 6713 #ifndef CONFIG_USER_ONLY 6714 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6715 { 6716 ARMCPU *cpu = env_archcpu(env); 6717 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6718 6719 if (env->gicv3state) { 6720 pfr0 |= 1 << 24; 6721 } 6722 return pfr0; 6723 } 6724 #endif 6725 6726 /* Shared logic between LORID and the rest of the LOR* registers. 6727 * Secure state exclusion has already been dealt with. 6728 */ 6729 static CPAccessResult access_lor_ns(CPUARMState *env, 6730 const ARMCPRegInfo *ri, bool isread) 6731 { 6732 int el = arm_current_el(env); 6733 6734 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6735 return CP_ACCESS_TRAP_EL2; 6736 } 6737 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6738 return CP_ACCESS_TRAP_EL3; 6739 } 6740 return CP_ACCESS_OK; 6741 } 6742 6743 static CPAccessResult access_lor_other(CPUARMState *env, 6744 const ARMCPRegInfo *ri, bool isread) 6745 { 6746 if (arm_is_secure_below_el3(env)) { 6747 /* Access denied in secure mode. */ 6748 return CP_ACCESS_TRAP; 6749 } 6750 return access_lor_ns(env, ri, isread); 6751 } 6752 6753 /* 6754 * A trivial implementation of ARMv8.1-LOR leaves all of these 6755 * registers fixed at 0, which indicates that there are zero 6756 * supported Limited Ordering regions. 6757 */ 6758 static const ARMCPRegInfo lor_reginfo[] = { 6759 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6760 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6761 .access = PL1_RW, .accessfn = access_lor_other, 6762 .type = ARM_CP_CONST, .resetvalue = 0 }, 6763 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6764 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6765 .access = PL1_RW, .accessfn = access_lor_other, 6766 .type = ARM_CP_CONST, .resetvalue = 0 }, 6767 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6768 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6769 .access = PL1_RW, .accessfn = access_lor_other, 6770 .type = ARM_CP_CONST, .resetvalue = 0 }, 6771 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6772 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6773 .access = PL1_RW, .accessfn = access_lor_other, 6774 .type = ARM_CP_CONST, .resetvalue = 0 }, 6775 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6776 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6777 .access = PL1_R, .accessfn = access_lor_ns, 6778 .type = ARM_CP_CONST, .resetvalue = 0 }, 6779 }; 6780 6781 #ifdef TARGET_AARCH64 6782 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6783 bool isread) 6784 { 6785 int el = arm_current_el(env); 6786 6787 if (el < 2 && 6788 arm_feature(env, ARM_FEATURE_EL2) && 6789 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6790 return CP_ACCESS_TRAP_EL2; 6791 } 6792 if (el < 3 && 6793 arm_feature(env, ARM_FEATURE_EL3) && 6794 !(env->cp15.scr_el3 & SCR_APK)) { 6795 return CP_ACCESS_TRAP_EL3; 6796 } 6797 return CP_ACCESS_OK; 6798 } 6799 6800 static const ARMCPRegInfo pauth_reginfo[] = { 6801 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6802 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6803 .access = PL1_RW, .accessfn = access_pauth, 6804 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6805 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6806 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6807 .access = PL1_RW, .accessfn = access_pauth, 6808 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6809 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6810 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6811 .access = PL1_RW, .accessfn = access_pauth, 6812 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6813 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6814 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6815 .access = PL1_RW, .accessfn = access_pauth, 6816 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6817 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6818 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6819 .access = PL1_RW, .accessfn = access_pauth, 6820 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6821 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6822 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6823 .access = PL1_RW, .accessfn = access_pauth, 6824 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6825 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6826 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6827 .access = PL1_RW, .accessfn = access_pauth, 6828 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6829 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6830 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6831 .access = PL1_RW, .accessfn = access_pauth, 6832 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6833 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6834 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6835 .access = PL1_RW, .accessfn = access_pauth, 6836 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6837 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6838 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6839 .access = PL1_RW, .accessfn = access_pauth, 6840 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6841 }; 6842 6843 static const ARMCPRegInfo tlbirange_reginfo[] = { 6844 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6845 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6846 .access = PL1_W, .type = ARM_CP_NO_RAW, 6847 .writefn = tlbi_aa64_rvae1is_write }, 6848 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6849 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6850 .access = PL1_W, .type = ARM_CP_NO_RAW, 6851 .writefn = tlbi_aa64_rvae1is_write }, 6852 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6853 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6854 .access = PL1_W, .type = ARM_CP_NO_RAW, 6855 .writefn = tlbi_aa64_rvae1is_write }, 6856 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6857 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6858 .access = PL1_W, .type = ARM_CP_NO_RAW, 6859 .writefn = tlbi_aa64_rvae1is_write }, 6860 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6861 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6862 .access = PL1_W, .type = ARM_CP_NO_RAW, 6863 .writefn = tlbi_aa64_rvae1is_write }, 6864 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6865 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6866 .access = PL1_W, .type = ARM_CP_NO_RAW, 6867 .writefn = tlbi_aa64_rvae1is_write }, 6868 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6869 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6870 .access = PL1_W, .type = ARM_CP_NO_RAW, 6871 .writefn = tlbi_aa64_rvae1is_write }, 6872 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6873 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6874 .access = PL1_W, .type = ARM_CP_NO_RAW, 6875 .writefn = tlbi_aa64_rvae1is_write }, 6876 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6877 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6878 .access = PL1_W, .type = ARM_CP_NO_RAW, 6879 .writefn = tlbi_aa64_rvae1_write }, 6880 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6881 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6882 .access = PL1_W, .type = ARM_CP_NO_RAW, 6883 .writefn = tlbi_aa64_rvae1_write }, 6884 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6885 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6886 .access = PL1_W, .type = ARM_CP_NO_RAW, 6887 .writefn = tlbi_aa64_rvae1_write }, 6888 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6889 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6890 .access = PL1_W, .type = ARM_CP_NO_RAW, 6891 .writefn = tlbi_aa64_rvae1_write }, 6892 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6893 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6894 .access = PL2_W, .type = ARM_CP_NOP }, 6895 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6896 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6897 .access = PL2_W, .type = ARM_CP_NOP }, 6898 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6899 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6900 .access = PL2_W, .type = ARM_CP_NO_RAW, 6901 .writefn = tlbi_aa64_rvae2is_write }, 6902 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6903 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6904 .access = PL2_W, .type = ARM_CP_NO_RAW, 6905 .writefn = tlbi_aa64_rvae2is_write }, 6906 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6907 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6908 .access = PL2_W, .type = ARM_CP_NOP }, 6909 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6910 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6911 .access = PL2_W, .type = ARM_CP_NOP }, 6912 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6913 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6914 .access = PL2_W, .type = ARM_CP_NO_RAW, 6915 .writefn = tlbi_aa64_rvae2is_write }, 6916 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6917 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6918 .access = PL2_W, .type = ARM_CP_NO_RAW, 6919 .writefn = tlbi_aa64_rvae2is_write }, 6920 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6921 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6922 .access = PL2_W, .type = ARM_CP_NO_RAW, 6923 .writefn = tlbi_aa64_rvae2_write }, 6924 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6925 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6926 .access = PL2_W, .type = ARM_CP_NO_RAW, 6927 .writefn = tlbi_aa64_rvae2_write }, 6928 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6929 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6930 .access = PL3_W, .type = ARM_CP_NO_RAW, 6931 .writefn = tlbi_aa64_rvae3is_write }, 6932 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6933 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6934 .access = PL3_W, .type = ARM_CP_NO_RAW, 6935 .writefn = tlbi_aa64_rvae3is_write }, 6936 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6937 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6938 .access = PL3_W, .type = ARM_CP_NO_RAW, 6939 .writefn = tlbi_aa64_rvae3is_write }, 6940 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6941 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6942 .access = PL3_W, .type = ARM_CP_NO_RAW, 6943 .writefn = tlbi_aa64_rvae3is_write }, 6944 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6945 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6946 .access = PL3_W, .type = ARM_CP_NO_RAW, 6947 .writefn = tlbi_aa64_rvae3_write }, 6948 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6949 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6950 .access = PL3_W, .type = ARM_CP_NO_RAW, 6951 .writefn = tlbi_aa64_rvae3_write }, 6952 }; 6953 6954 static const ARMCPRegInfo tlbios_reginfo[] = { 6955 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6956 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6957 .access = PL1_W, .type = ARM_CP_NO_RAW, 6958 .writefn = tlbi_aa64_vmalle1is_write }, 6959 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6960 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6961 .access = PL1_W, .type = ARM_CP_NO_RAW, 6962 .writefn = tlbi_aa64_vae1is_write }, 6963 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6964 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6965 .access = PL1_W, .type = ARM_CP_NO_RAW, 6966 .writefn = tlbi_aa64_vmalle1is_write }, 6967 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 6968 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 6969 .access = PL1_W, .type = ARM_CP_NO_RAW, 6970 .writefn = tlbi_aa64_vae1is_write }, 6971 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 6972 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 6973 .access = PL1_W, .type = ARM_CP_NO_RAW, 6974 .writefn = tlbi_aa64_vae1is_write }, 6975 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 6976 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 6977 .access = PL1_W, .type = ARM_CP_NO_RAW, 6978 .writefn = tlbi_aa64_vae1is_write }, 6979 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 6980 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 6981 .access = PL2_W, .type = ARM_CP_NO_RAW, 6982 .writefn = tlbi_aa64_alle2is_write }, 6983 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 6984 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 6985 .access = PL2_W, .type = ARM_CP_NO_RAW, 6986 .writefn = tlbi_aa64_vae2is_write }, 6987 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 6988 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 6989 .access = PL2_W, .type = ARM_CP_NO_RAW, 6990 .writefn = tlbi_aa64_alle1is_write }, 6991 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 6992 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 6993 .access = PL2_W, .type = ARM_CP_NO_RAW, 6994 .writefn = tlbi_aa64_vae2is_write }, 6995 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 6996 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 6997 .access = PL2_W, .type = ARM_CP_NO_RAW, 6998 .writefn = tlbi_aa64_alle1is_write }, 6999 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7000 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7001 .access = PL2_W, .type = ARM_CP_NOP }, 7002 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7003 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7004 .access = PL2_W, .type = ARM_CP_NOP }, 7005 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7006 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7007 .access = PL2_W, .type = ARM_CP_NOP }, 7008 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7009 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7010 .access = PL2_W, .type = ARM_CP_NOP }, 7011 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7012 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7013 .access = PL3_W, .type = ARM_CP_NO_RAW, 7014 .writefn = tlbi_aa64_alle3is_write }, 7015 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7016 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7017 .access = PL3_W, .type = ARM_CP_NO_RAW, 7018 .writefn = tlbi_aa64_vae3is_write }, 7019 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7020 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7021 .access = PL3_W, .type = ARM_CP_NO_RAW, 7022 .writefn = tlbi_aa64_vae3is_write }, 7023 }; 7024 7025 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7026 { 7027 Error *err = NULL; 7028 uint64_t ret; 7029 7030 /* Success sets NZCV = 0000. */ 7031 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7032 7033 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7034 /* 7035 * ??? Failed, for unknown reasons in the crypto subsystem. 7036 * The best we can do is log the reason and return the 7037 * timed-out indication to the guest. There is no reason 7038 * we know to expect this failure to be transitory, so the 7039 * guest may well hang retrying the operation. 7040 */ 7041 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7042 ri->name, error_get_pretty(err)); 7043 error_free(err); 7044 7045 env->ZF = 0; /* NZCF = 0100 */ 7046 return 0; 7047 } 7048 return ret; 7049 } 7050 7051 /* We do not support re-seeding, so the two registers operate the same. */ 7052 static const ARMCPRegInfo rndr_reginfo[] = { 7053 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7054 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7055 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7056 .access = PL0_R, .readfn = rndr_readfn }, 7057 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7058 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7059 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7060 .access = PL0_R, .readfn = rndr_readfn }, 7061 }; 7062 7063 #ifndef CONFIG_USER_ONLY 7064 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7065 uint64_t value) 7066 { 7067 ARMCPU *cpu = env_archcpu(env); 7068 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7069 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7070 uint64_t vaddr_in = (uint64_t) value; 7071 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7072 void *haddr; 7073 int mem_idx = cpu_mmu_index(env, false); 7074 7075 /* This won't be crossing page boundaries */ 7076 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7077 if (haddr) { 7078 7079 ram_addr_t offset; 7080 MemoryRegion *mr; 7081 7082 /* RCU lock is already being held */ 7083 mr = memory_region_from_host(haddr, &offset); 7084 7085 if (mr) { 7086 memory_region_writeback(mr, offset, dline_size); 7087 } 7088 } 7089 } 7090 7091 static const ARMCPRegInfo dcpop_reg[] = { 7092 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7093 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7094 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7095 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7096 }; 7097 7098 static const ARMCPRegInfo dcpodp_reg[] = { 7099 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7100 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7101 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7102 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7103 }; 7104 #endif /*CONFIG_USER_ONLY*/ 7105 7106 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7107 bool isread) 7108 { 7109 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7110 return CP_ACCESS_TRAP_EL2; 7111 } 7112 7113 return CP_ACCESS_OK; 7114 } 7115 7116 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7117 bool isread) 7118 { 7119 int el = arm_current_el(env); 7120 7121 if (el < 2 && arm_is_el2_enabled(env)) { 7122 uint64_t hcr = arm_hcr_el2_eff(env); 7123 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7124 return CP_ACCESS_TRAP_EL2; 7125 } 7126 } 7127 if (el < 3 && 7128 arm_feature(env, ARM_FEATURE_EL3) && 7129 !(env->cp15.scr_el3 & SCR_ATA)) { 7130 return CP_ACCESS_TRAP_EL3; 7131 } 7132 return CP_ACCESS_OK; 7133 } 7134 7135 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7136 { 7137 return env->pstate & PSTATE_TCO; 7138 } 7139 7140 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7141 { 7142 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7143 } 7144 7145 static const ARMCPRegInfo mte_reginfo[] = { 7146 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7147 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7148 .access = PL1_RW, .accessfn = access_mte, 7149 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7150 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7151 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7152 .access = PL1_RW, .accessfn = access_mte, 7153 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7154 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7155 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7156 .access = PL2_RW, .accessfn = access_mte, 7157 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7158 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7159 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7160 .access = PL3_RW, 7161 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7162 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7163 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7164 .access = PL1_RW, .accessfn = access_mte, 7165 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7166 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7167 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7168 .access = PL1_RW, .accessfn = access_mte, 7169 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7170 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7171 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7172 .access = PL1_R, .accessfn = access_aa64_tid5, 7173 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7174 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7175 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7176 .type = ARM_CP_NO_RAW, 7177 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7178 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7179 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7180 .type = ARM_CP_NOP, .access = PL1_W, 7181 .accessfn = aa64_cacheop_poc_access }, 7182 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7183 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7184 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7185 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7186 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7187 .type = ARM_CP_NOP, .access = PL1_W, 7188 .accessfn = aa64_cacheop_poc_access }, 7189 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7190 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7191 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7192 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7193 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7194 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7195 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7196 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7197 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7198 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7199 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7200 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7201 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7202 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7203 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7204 }; 7205 7206 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7207 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7208 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7209 .type = ARM_CP_CONST, .access = PL0_RW, }, 7210 }; 7211 7212 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7213 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7214 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7215 .type = ARM_CP_NOP, .access = PL0_W, 7216 .accessfn = aa64_cacheop_poc_access }, 7217 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7218 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7219 .type = ARM_CP_NOP, .access = PL0_W, 7220 .accessfn = aa64_cacheop_poc_access }, 7221 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7222 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7223 .type = ARM_CP_NOP, .access = PL0_W, 7224 .accessfn = aa64_cacheop_poc_access }, 7225 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7226 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7227 .type = ARM_CP_NOP, .access = PL0_W, 7228 .accessfn = aa64_cacheop_poc_access }, 7229 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7230 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7231 .type = ARM_CP_NOP, .access = PL0_W, 7232 .accessfn = aa64_cacheop_poc_access }, 7233 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7234 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7235 .type = ARM_CP_NOP, .access = PL0_W, 7236 .accessfn = aa64_cacheop_poc_access }, 7237 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7238 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7239 .type = ARM_CP_NOP, .access = PL0_W, 7240 .accessfn = aa64_cacheop_poc_access }, 7241 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7242 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7243 .type = ARM_CP_NOP, .access = PL0_W, 7244 .accessfn = aa64_cacheop_poc_access }, 7245 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7246 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7247 .access = PL0_W, .type = ARM_CP_DC_GVA, 7248 #ifndef CONFIG_USER_ONLY 7249 /* Avoid overhead of an access check that always passes in user-mode */ 7250 .accessfn = aa64_zva_access, 7251 #endif 7252 }, 7253 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7254 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7255 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7256 #ifndef CONFIG_USER_ONLY 7257 /* Avoid overhead of an access check that always passes in user-mode */ 7258 .accessfn = aa64_zva_access, 7259 #endif 7260 }, 7261 }; 7262 7263 #endif 7264 7265 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7266 bool isread) 7267 { 7268 int el = arm_current_el(env); 7269 7270 if (el == 0) { 7271 uint64_t sctlr = arm_sctlr(env, el); 7272 if (!(sctlr & SCTLR_EnRCTX)) { 7273 return CP_ACCESS_TRAP; 7274 } 7275 } else if (el == 1) { 7276 uint64_t hcr = arm_hcr_el2_eff(env); 7277 if (hcr & HCR_NV) { 7278 return CP_ACCESS_TRAP_EL2; 7279 } 7280 } 7281 return CP_ACCESS_OK; 7282 } 7283 7284 static const ARMCPRegInfo predinv_reginfo[] = { 7285 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7286 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7287 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7288 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7289 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7290 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7291 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7292 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7293 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7294 /* 7295 * Note the AArch32 opcodes have a different OPC1. 7296 */ 7297 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7298 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7299 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7300 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7301 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7302 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7303 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7304 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7305 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7306 }; 7307 7308 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7309 { 7310 /* Read the high 32 bits of the current CCSIDR */ 7311 return extract64(ccsidr_read(env, ri), 32, 32); 7312 } 7313 7314 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7315 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7316 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7317 .access = PL1_R, 7318 .accessfn = access_aa64_tid2, 7319 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7320 }; 7321 7322 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7323 bool isread) 7324 { 7325 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7326 return CP_ACCESS_TRAP_EL2; 7327 } 7328 7329 return CP_ACCESS_OK; 7330 } 7331 7332 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7333 bool isread) 7334 { 7335 if (arm_feature(env, ARM_FEATURE_V8)) { 7336 return access_aa64_tid3(env, ri, isread); 7337 } 7338 7339 return CP_ACCESS_OK; 7340 } 7341 7342 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7343 bool isread) 7344 { 7345 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7346 return CP_ACCESS_TRAP_EL2; 7347 } 7348 7349 return CP_ACCESS_OK; 7350 } 7351 7352 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7353 const ARMCPRegInfo *ri, bool isread) 7354 { 7355 /* 7356 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7357 * in v7A, not in v8A. 7358 */ 7359 if (!arm_feature(env, ARM_FEATURE_V8) && 7360 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7361 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7362 return CP_ACCESS_TRAP_EL2; 7363 } 7364 return CP_ACCESS_OK; 7365 } 7366 7367 static const ARMCPRegInfo jazelle_regs[] = { 7368 { .name = "JIDR", 7369 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7370 .access = PL1_R, .accessfn = access_jazelle, 7371 .type = ARM_CP_CONST, .resetvalue = 0 }, 7372 { .name = "JOSCR", 7373 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7374 .accessfn = access_joscr_jmcr, 7375 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7376 { .name = "JMCR", 7377 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7378 .accessfn = access_joscr_jmcr, 7379 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7380 }; 7381 7382 static const ARMCPRegInfo vhe_reginfo[] = { 7383 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7384 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7385 .access = PL2_RW, 7386 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7387 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7388 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7389 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7390 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7391 #ifndef CONFIG_USER_ONLY 7392 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7393 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7394 .fieldoffset = 7395 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7396 .type = ARM_CP_IO, .access = PL2_RW, 7397 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7398 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7399 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7400 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7401 .resetfn = gt_hv_timer_reset, 7402 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7403 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7404 .type = ARM_CP_IO, 7405 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7406 .access = PL2_RW, 7407 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7408 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7409 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7410 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7411 .type = ARM_CP_IO | ARM_CP_ALIAS, 7412 .access = PL2_RW, .accessfn = e2h_access, 7413 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7414 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7415 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7416 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7417 .type = ARM_CP_IO | ARM_CP_ALIAS, 7418 .access = PL2_RW, .accessfn = e2h_access, 7419 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7420 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7421 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7422 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7423 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7424 .access = PL2_RW, .accessfn = e2h_access, 7425 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7426 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7427 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7428 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7429 .access = PL2_RW, .accessfn = e2h_access, 7430 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7431 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7432 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7433 .type = ARM_CP_IO | ARM_CP_ALIAS, 7434 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7435 .access = PL2_RW, .accessfn = e2h_access, 7436 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7437 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7438 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7439 .type = ARM_CP_IO | ARM_CP_ALIAS, 7440 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7441 .access = PL2_RW, .accessfn = e2h_access, 7442 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7443 #endif 7444 }; 7445 7446 #ifndef CONFIG_USER_ONLY 7447 static const ARMCPRegInfo ats1e1_reginfo[] = { 7448 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7449 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7450 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7451 .writefn = ats_write64 }, 7452 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7453 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7454 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7455 .writefn = ats_write64 }, 7456 }; 7457 7458 static const ARMCPRegInfo ats1cp_reginfo[] = { 7459 { .name = "ATS1CPRP", 7460 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7461 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7462 .writefn = ats_write }, 7463 { .name = "ATS1CPWP", 7464 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7465 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7466 .writefn = ats_write }, 7467 }; 7468 #endif 7469 7470 /* 7471 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7472 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7473 * is non-zero, which is never for ARMv7, optionally in ARMv8 7474 * and mandatorily for ARMv8.2 and up. 7475 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7476 * implementation is RAZ/WI we can ignore this detail, as we 7477 * do for ACTLR. 7478 */ 7479 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7480 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7481 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7482 .access = PL1_RW, .accessfn = access_tacr, 7483 .type = ARM_CP_CONST, .resetvalue = 0 }, 7484 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7485 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7486 .access = PL2_RW, .type = ARM_CP_CONST, 7487 .resetvalue = 0 }, 7488 }; 7489 7490 void register_cp_regs_for_features(ARMCPU *cpu) 7491 { 7492 /* Register all the coprocessor registers based on feature bits */ 7493 CPUARMState *env = &cpu->env; 7494 if (arm_feature(env, ARM_FEATURE_M)) { 7495 /* M profile has no coprocessor registers */ 7496 return; 7497 } 7498 7499 define_arm_cp_regs(cpu, cp_reginfo); 7500 if (!arm_feature(env, ARM_FEATURE_V8)) { 7501 /* Must go early as it is full of wildcards that may be 7502 * overridden by later definitions. 7503 */ 7504 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7505 } 7506 7507 if (arm_feature(env, ARM_FEATURE_V6)) { 7508 /* The ID registers all have impdef reset values */ 7509 ARMCPRegInfo v6_idregs[] = { 7510 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7511 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7512 .access = PL1_R, .type = ARM_CP_CONST, 7513 .accessfn = access_aa32_tid3, 7514 .resetvalue = cpu->isar.id_pfr0 }, 7515 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7516 * the value of the GIC field until after we define these regs. 7517 */ 7518 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7519 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7520 .access = PL1_R, .type = ARM_CP_NO_RAW, 7521 .accessfn = access_aa32_tid3, 7522 .readfn = id_pfr1_read, 7523 .writefn = arm_cp_write_ignore }, 7524 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7525 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7526 .access = PL1_R, .type = ARM_CP_CONST, 7527 .accessfn = access_aa32_tid3, 7528 .resetvalue = cpu->isar.id_dfr0 }, 7529 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7530 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7531 .access = PL1_R, .type = ARM_CP_CONST, 7532 .accessfn = access_aa32_tid3, 7533 .resetvalue = cpu->id_afr0 }, 7534 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7535 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7536 .access = PL1_R, .type = ARM_CP_CONST, 7537 .accessfn = access_aa32_tid3, 7538 .resetvalue = cpu->isar.id_mmfr0 }, 7539 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7540 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7541 .access = PL1_R, .type = ARM_CP_CONST, 7542 .accessfn = access_aa32_tid3, 7543 .resetvalue = cpu->isar.id_mmfr1 }, 7544 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7545 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7546 .access = PL1_R, .type = ARM_CP_CONST, 7547 .accessfn = access_aa32_tid3, 7548 .resetvalue = cpu->isar.id_mmfr2 }, 7549 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7550 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7551 .access = PL1_R, .type = ARM_CP_CONST, 7552 .accessfn = access_aa32_tid3, 7553 .resetvalue = cpu->isar.id_mmfr3 }, 7554 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7556 .access = PL1_R, .type = ARM_CP_CONST, 7557 .accessfn = access_aa32_tid3, 7558 .resetvalue = cpu->isar.id_isar0 }, 7559 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7561 .access = PL1_R, .type = ARM_CP_CONST, 7562 .accessfn = access_aa32_tid3, 7563 .resetvalue = cpu->isar.id_isar1 }, 7564 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7565 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7566 .access = PL1_R, .type = ARM_CP_CONST, 7567 .accessfn = access_aa32_tid3, 7568 .resetvalue = cpu->isar.id_isar2 }, 7569 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7570 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7571 .access = PL1_R, .type = ARM_CP_CONST, 7572 .accessfn = access_aa32_tid3, 7573 .resetvalue = cpu->isar.id_isar3 }, 7574 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7575 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7576 .access = PL1_R, .type = ARM_CP_CONST, 7577 .accessfn = access_aa32_tid3, 7578 .resetvalue = cpu->isar.id_isar4 }, 7579 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7580 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7581 .access = PL1_R, .type = ARM_CP_CONST, 7582 .accessfn = access_aa32_tid3, 7583 .resetvalue = cpu->isar.id_isar5 }, 7584 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7585 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7586 .access = PL1_R, .type = ARM_CP_CONST, 7587 .accessfn = access_aa32_tid3, 7588 .resetvalue = cpu->isar.id_mmfr4 }, 7589 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7590 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7591 .access = PL1_R, .type = ARM_CP_CONST, 7592 .accessfn = access_aa32_tid3, 7593 .resetvalue = cpu->isar.id_isar6 }, 7594 }; 7595 define_arm_cp_regs(cpu, v6_idregs); 7596 define_arm_cp_regs(cpu, v6_cp_reginfo); 7597 } else { 7598 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7599 } 7600 if (arm_feature(env, ARM_FEATURE_V6K)) { 7601 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7602 } 7603 if (arm_feature(env, ARM_FEATURE_V7MP) && 7604 !arm_feature(env, ARM_FEATURE_PMSA)) { 7605 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7606 } 7607 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7608 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7609 } 7610 if (arm_feature(env, ARM_FEATURE_V7)) { 7611 ARMCPRegInfo clidr = { 7612 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7613 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7614 .access = PL1_R, .type = ARM_CP_CONST, 7615 .accessfn = access_aa64_tid2, 7616 .resetvalue = cpu->clidr 7617 }; 7618 define_one_arm_cp_reg(cpu, &clidr); 7619 define_arm_cp_regs(cpu, v7_cp_reginfo); 7620 define_debug_regs(cpu); 7621 define_pmu_regs(cpu); 7622 } else { 7623 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7624 } 7625 if (arm_feature(env, ARM_FEATURE_V8)) { 7626 /* AArch64 ID registers, which all have impdef reset values. 7627 * Note that within the ID register ranges the unused slots 7628 * must all RAZ, not UNDEF; future architecture versions may 7629 * define new registers here. 7630 */ 7631 ARMCPRegInfo v8_idregs[] = { 7632 /* 7633 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7634 * emulation because we don't know the right value for the 7635 * GIC field until after we define these regs. 7636 */ 7637 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7638 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7639 .access = PL1_R, 7640 #ifdef CONFIG_USER_ONLY 7641 .type = ARM_CP_CONST, 7642 .resetvalue = cpu->isar.id_aa64pfr0 7643 #else 7644 .type = ARM_CP_NO_RAW, 7645 .accessfn = access_aa64_tid3, 7646 .readfn = id_aa64pfr0_read, 7647 .writefn = arm_cp_write_ignore 7648 #endif 7649 }, 7650 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7651 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7652 .access = PL1_R, .type = ARM_CP_CONST, 7653 .accessfn = access_aa64_tid3, 7654 .resetvalue = cpu->isar.id_aa64pfr1}, 7655 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7657 .access = PL1_R, .type = ARM_CP_CONST, 7658 .accessfn = access_aa64_tid3, 7659 .resetvalue = 0 }, 7660 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7661 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7662 .access = PL1_R, .type = ARM_CP_CONST, 7663 .accessfn = access_aa64_tid3, 7664 .resetvalue = 0 }, 7665 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7666 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7667 .access = PL1_R, .type = ARM_CP_CONST, 7668 .accessfn = access_aa64_tid3, 7669 .resetvalue = cpu->isar.id_aa64zfr0 }, 7670 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7672 .access = PL1_R, .type = ARM_CP_CONST, 7673 .accessfn = access_aa64_tid3, 7674 .resetvalue = 0 }, 7675 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7676 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7677 .access = PL1_R, .type = ARM_CP_CONST, 7678 .accessfn = access_aa64_tid3, 7679 .resetvalue = 0 }, 7680 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7681 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7682 .access = PL1_R, .type = ARM_CP_CONST, 7683 .accessfn = access_aa64_tid3, 7684 .resetvalue = 0 }, 7685 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7686 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7687 .access = PL1_R, .type = ARM_CP_CONST, 7688 .accessfn = access_aa64_tid3, 7689 .resetvalue = cpu->isar.id_aa64dfr0 }, 7690 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7691 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7692 .access = PL1_R, .type = ARM_CP_CONST, 7693 .accessfn = access_aa64_tid3, 7694 .resetvalue = cpu->isar.id_aa64dfr1 }, 7695 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7696 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7697 .access = PL1_R, .type = ARM_CP_CONST, 7698 .accessfn = access_aa64_tid3, 7699 .resetvalue = 0 }, 7700 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7701 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7702 .access = PL1_R, .type = ARM_CP_CONST, 7703 .accessfn = access_aa64_tid3, 7704 .resetvalue = 0 }, 7705 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7706 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7707 .access = PL1_R, .type = ARM_CP_CONST, 7708 .accessfn = access_aa64_tid3, 7709 .resetvalue = cpu->id_aa64afr0 }, 7710 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7711 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7712 .access = PL1_R, .type = ARM_CP_CONST, 7713 .accessfn = access_aa64_tid3, 7714 .resetvalue = cpu->id_aa64afr1 }, 7715 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7716 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7717 .access = PL1_R, .type = ARM_CP_CONST, 7718 .accessfn = access_aa64_tid3, 7719 .resetvalue = 0 }, 7720 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7721 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7722 .access = PL1_R, .type = ARM_CP_CONST, 7723 .accessfn = access_aa64_tid3, 7724 .resetvalue = 0 }, 7725 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7726 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7727 .access = PL1_R, .type = ARM_CP_CONST, 7728 .accessfn = access_aa64_tid3, 7729 .resetvalue = cpu->isar.id_aa64isar0 }, 7730 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7732 .access = PL1_R, .type = ARM_CP_CONST, 7733 .accessfn = access_aa64_tid3, 7734 .resetvalue = cpu->isar.id_aa64isar1 }, 7735 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7736 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7737 .access = PL1_R, .type = ARM_CP_CONST, 7738 .accessfn = access_aa64_tid3, 7739 .resetvalue = 0 }, 7740 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7741 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7742 .access = PL1_R, .type = ARM_CP_CONST, 7743 .accessfn = access_aa64_tid3, 7744 .resetvalue = 0 }, 7745 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7746 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7747 .access = PL1_R, .type = ARM_CP_CONST, 7748 .accessfn = access_aa64_tid3, 7749 .resetvalue = 0 }, 7750 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7751 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7752 .access = PL1_R, .type = ARM_CP_CONST, 7753 .accessfn = access_aa64_tid3, 7754 .resetvalue = 0 }, 7755 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7756 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7757 .access = PL1_R, .type = ARM_CP_CONST, 7758 .accessfn = access_aa64_tid3, 7759 .resetvalue = 0 }, 7760 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7761 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7762 .access = PL1_R, .type = ARM_CP_CONST, 7763 .accessfn = access_aa64_tid3, 7764 .resetvalue = 0 }, 7765 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7766 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7767 .access = PL1_R, .type = ARM_CP_CONST, 7768 .accessfn = access_aa64_tid3, 7769 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7770 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7771 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7772 .access = PL1_R, .type = ARM_CP_CONST, 7773 .accessfn = access_aa64_tid3, 7774 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7775 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7777 .access = PL1_R, .type = ARM_CP_CONST, 7778 .accessfn = access_aa64_tid3, 7779 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7780 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7781 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7782 .access = PL1_R, .type = ARM_CP_CONST, 7783 .accessfn = access_aa64_tid3, 7784 .resetvalue = 0 }, 7785 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7786 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7787 .access = PL1_R, .type = ARM_CP_CONST, 7788 .accessfn = access_aa64_tid3, 7789 .resetvalue = 0 }, 7790 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7791 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7792 .access = PL1_R, .type = ARM_CP_CONST, 7793 .accessfn = access_aa64_tid3, 7794 .resetvalue = 0 }, 7795 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7797 .access = PL1_R, .type = ARM_CP_CONST, 7798 .accessfn = access_aa64_tid3, 7799 .resetvalue = 0 }, 7800 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7801 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7802 .access = PL1_R, .type = ARM_CP_CONST, 7803 .accessfn = access_aa64_tid3, 7804 .resetvalue = 0 }, 7805 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7807 .access = PL1_R, .type = ARM_CP_CONST, 7808 .accessfn = access_aa64_tid3, 7809 .resetvalue = cpu->isar.mvfr0 }, 7810 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7811 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7812 .access = PL1_R, .type = ARM_CP_CONST, 7813 .accessfn = access_aa64_tid3, 7814 .resetvalue = cpu->isar.mvfr1 }, 7815 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7817 .access = PL1_R, .type = ARM_CP_CONST, 7818 .accessfn = access_aa64_tid3, 7819 .resetvalue = cpu->isar.mvfr2 }, 7820 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7821 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7822 .access = PL1_R, .type = ARM_CP_CONST, 7823 .accessfn = access_aa64_tid3, 7824 .resetvalue = 0 }, 7825 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7826 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7827 .access = PL1_R, .type = ARM_CP_CONST, 7828 .accessfn = access_aa64_tid3, 7829 .resetvalue = cpu->isar.id_pfr2 }, 7830 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7831 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7832 .access = PL1_R, .type = ARM_CP_CONST, 7833 .accessfn = access_aa64_tid3, 7834 .resetvalue = 0 }, 7835 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7837 .access = PL1_R, .type = ARM_CP_CONST, 7838 .accessfn = access_aa64_tid3, 7839 .resetvalue = 0 }, 7840 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7841 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7842 .access = PL1_R, .type = ARM_CP_CONST, 7843 .accessfn = access_aa64_tid3, 7844 .resetvalue = 0 }, 7845 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7846 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7847 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7848 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7849 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7850 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7851 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7852 .resetvalue = cpu->pmceid0 }, 7853 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7854 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7855 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7856 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7857 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7858 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7859 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7860 .resetvalue = cpu->pmceid1 }, 7861 }; 7862 #ifdef CONFIG_USER_ONLY 7863 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7864 { .name = "ID_AA64PFR0_EL1", 7865 .exported_bits = 0x000f000f00ff0000, 7866 .fixed_bits = 0x0000000000000011 }, 7867 { .name = "ID_AA64PFR1_EL1", 7868 .exported_bits = 0x00000000000000f0 }, 7869 { .name = "ID_AA64PFR*_EL1_RESERVED", 7870 .is_glob = true }, 7871 { .name = "ID_AA64ZFR0_EL1" }, 7872 { .name = "ID_AA64MMFR0_EL1", 7873 .fixed_bits = 0x00000000ff000000 }, 7874 { .name = "ID_AA64MMFR1_EL1" }, 7875 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7876 .is_glob = true }, 7877 { .name = "ID_AA64DFR0_EL1", 7878 .fixed_bits = 0x0000000000000006 }, 7879 { .name = "ID_AA64DFR1_EL1" }, 7880 { .name = "ID_AA64DFR*_EL1_RESERVED", 7881 .is_glob = true }, 7882 { .name = "ID_AA64AFR*", 7883 .is_glob = true }, 7884 { .name = "ID_AA64ISAR0_EL1", 7885 .exported_bits = 0x00fffffff0fffff0 }, 7886 { .name = "ID_AA64ISAR1_EL1", 7887 .exported_bits = 0x000000f0ffffffff }, 7888 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7889 .is_glob = true }, 7890 }; 7891 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7892 #endif 7893 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7894 if (!arm_feature(env, ARM_FEATURE_EL3) && 7895 !arm_feature(env, ARM_FEATURE_EL2)) { 7896 ARMCPRegInfo rvbar = { 7897 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7898 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7899 .access = PL1_R, 7900 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7901 }; 7902 define_one_arm_cp_reg(cpu, &rvbar); 7903 } 7904 define_arm_cp_regs(cpu, v8_idregs); 7905 define_arm_cp_regs(cpu, v8_cp_reginfo); 7906 } 7907 if (arm_feature(env, ARM_FEATURE_EL2)) { 7908 uint64_t vmpidr_def = mpidr_read_val(env); 7909 ARMCPRegInfo vpidr_regs[] = { 7910 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7911 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7912 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7913 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7914 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7915 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7916 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7917 .access = PL2_RW, .resetvalue = cpu->midr, 7918 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7919 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7920 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7921 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7922 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7923 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7924 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7925 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7926 .access = PL2_RW, 7927 .resetvalue = vmpidr_def, 7928 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7929 }; 7930 define_arm_cp_regs(cpu, vpidr_regs); 7931 define_arm_cp_regs(cpu, el2_cp_reginfo); 7932 if (arm_feature(env, ARM_FEATURE_V8)) { 7933 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7934 } 7935 if (cpu_isar_feature(aa64_sel2, cpu)) { 7936 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7937 } 7938 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7939 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7940 ARMCPRegInfo rvbar = { 7941 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7942 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7943 .access = PL2_R, 7944 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7945 }; 7946 define_one_arm_cp_reg(cpu, &rvbar); 7947 } 7948 } else { 7949 /* If EL2 is missing but higher ELs are enabled, we need to 7950 * register the no_el2 reginfos. 7951 */ 7952 if (arm_feature(env, ARM_FEATURE_EL3)) { 7953 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 7954 * of MIDR_EL1 and MPIDR_EL1. 7955 */ 7956 ARMCPRegInfo vpidr_regs[] = { 7957 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7958 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7959 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7960 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 7961 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7962 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7963 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7964 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7965 .type = ARM_CP_NO_RAW, 7966 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 7967 }; 7968 define_arm_cp_regs(cpu, vpidr_regs); 7969 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 7970 if (arm_feature(env, ARM_FEATURE_V8)) { 7971 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 7972 } 7973 } 7974 } 7975 if (arm_feature(env, ARM_FEATURE_EL3)) { 7976 define_arm_cp_regs(cpu, el3_cp_reginfo); 7977 ARMCPRegInfo el3_regs[] = { 7978 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7979 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7980 .access = PL3_R, 7981 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7982 }, 7983 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7984 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7985 .access = PL3_RW, 7986 .raw_writefn = raw_write, .writefn = sctlr_write, 7987 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7988 .resetvalue = cpu->reset_sctlr }, 7989 }; 7990 7991 define_arm_cp_regs(cpu, el3_regs); 7992 } 7993 /* The behaviour of NSACR is sufficiently various that we don't 7994 * try to describe it in a single reginfo: 7995 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7996 * reads as constant 0xc00 from NS EL1 and NS EL2 7997 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7998 * if v7 without EL3, register doesn't exist 7999 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8000 */ 8001 if (arm_feature(env, ARM_FEATURE_EL3)) { 8002 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8003 ARMCPRegInfo nsacr = { 8004 .name = "NSACR", .type = ARM_CP_CONST, 8005 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8006 .access = PL1_RW, .accessfn = nsacr_access, 8007 .resetvalue = 0xc00 8008 }; 8009 define_one_arm_cp_reg(cpu, &nsacr); 8010 } else { 8011 ARMCPRegInfo nsacr = { 8012 .name = "NSACR", 8013 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8014 .access = PL3_RW | PL1_R, 8015 .resetvalue = 0, 8016 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8017 }; 8018 define_one_arm_cp_reg(cpu, &nsacr); 8019 } 8020 } else { 8021 if (arm_feature(env, ARM_FEATURE_V8)) { 8022 ARMCPRegInfo nsacr = { 8023 .name = "NSACR", .type = ARM_CP_CONST, 8024 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8025 .access = PL1_R, 8026 .resetvalue = 0xc00 8027 }; 8028 define_one_arm_cp_reg(cpu, &nsacr); 8029 } 8030 } 8031 8032 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8033 if (arm_feature(env, ARM_FEATURE_V6)) { 8034 /* PMSAv6 not implemented */ 8035 assert(arm_feature(env, ARM_FEATURE_V7)); 8036 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8037 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8038 } else { 8039 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8040 } 8041 } else { 8042 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8043 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8044 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8045 if (cpu_isar_feature(aa32_hpd, cpu)) { 8046 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8047 } 8048 } 8049 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8050 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8051 } 8052 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8053 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8054 } 8055 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8056 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8057 } 8058 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8059 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8060 } 8061 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8062 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8063 } 8064 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8065 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8066 } 8067 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8068 define_arm_cp_regs(cpu, omap_cp_reginfo); 8069 } 8070 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8071 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8072 } 8073 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8074 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8075 } 8076 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8077 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8078 } 8079 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8080 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8081 } 8082 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8083 define_arm_cp_regs(cpu, jazelle_regs); 8084 } 8085 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8086 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8087 * be read-only (ie write causes UNDEF exception). 8088 */ 8089 { 8090 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8091 /* Pre-v8 MIDR space. 8092 * Note that the MIDR isn't a simple constant register because 8093 * of the TI925 behaviour where writes to another register can 8094 * cause the MIDR value to change. 8095 * 8096 * Unimplemented registers in the c15 0 0 0 space default to 8097 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8098 * and friends override accordingly. 8099 */ 8100 { .name = "MIDR", 8101 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8102 .access = PL1_R, .resetvalue = cpu->midr, 8103 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8104 .readfn = midr_read, 8105 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8106 .type = ARM_CP_OVERRIDE }, 8107 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8108 { .name = "DUMMY", 8109 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8110 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8111 { .name = "DUMMY", 8112 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8113 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8114 { .name = "DUMMY", 8115 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8116 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8117 { .name = "DUMMY", 8118 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8119 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8120 { .name = "DUMMY", 8121 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8122 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8123 }; 8124 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8125 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8126 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8127 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8128 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8129 .readfn = midr_read }, 8130 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8131 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8132 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8133 .access = PL1_R, .resetvalue = cpu->midr }, 8134 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8135 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8136 .access = PL1_R, .resetvalue = cpu->midr }, 8137 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8138 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8139 .access = PL1_R, 8140 .accessfn = access_aa64_tid1, 8141 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8142 }; 8143 ARMCPRegInfo id_cp_reginfo[] = { 8144 /* These are common to v8 and pre-v8 */ 8145 { .name = "CTR", 8146 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8147 .access = PL1_R, .accessfn = ctr_el0_access, 8148 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8149 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8150 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8151 .access = PL0_R, .accessfn = ctr_el0_access, 8152 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8153 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8154 { .name = "TCMTR", 8155 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8156 .access = PL1_R, 8157 .accessfn = access_aa32_tid1, 8158 .type = ARM_CP_CONST, .resetvalue = 0 }, 8159 }; 8160 /* TLBTR is specific to VMSA */ 8161 ARMCPRegInfo id_tlbtr_reginfo = { 8162 .name = "TLBTR", 8163 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8164 .access = PL1_R, 8165 .accessfn = access_aa32_tid1, 8166 .type = ARM_CP_CONST, .resetvalue = 0, 8167 }; 8168 /* MPUIR is specific to PMSA V6+ */ 8169 ARMCPRegInfo id_mpuir_reginfo = { 8170 .name = "MPUIR", 8171 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8172 .access = PL1_R, .type = ARM_CP_CONST, 8173 .resetvalue = cpu->pmsav7_dregion << 8 8174 }; 8175 ARMCPRegInfo crn0_wi_reginfo = { 8176 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8177 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8178 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8179 }; 8180 #ifdef CONFIG_USER_ONLY 8181 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8182 { .name = "MIDR_EL1", 8183 .exported_bits = 0x00000000ffffffff }, 8184 { .name = "REVIDR_EL1" }, 8185 }; 8186 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8187 #endif 8188 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8189 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8190 size_t i; 8191 /* Register the blanket "writes ignored" value first to cover the 8192 * whole space. Then update the specific ID registers to allow write 8193 * access, so that they ignore writes rather than causing them to 8194 * UNDEF. 8195 */ 8196 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8197 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8198 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8199 } 8200 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8201 id_cp_reginfo[i].access = PL1_RW; 8202 } 8203 id_mpuir_reginfo.access = PL1_RW; 8204 id_tlbtr_reginfo.access = PL1_RW; 8205 } 8206 if (arm_feature(env, ARM_FEATURE_V8)) { 8207 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8208 } else { 8209 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8210 } 8211 define_arm_cp_regs(cpu, id_cp_reginfo); 8212 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8213 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8214 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8215 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8216 } 8217 } 8218 8219 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8220 ARMCPRegInfo mpidr_cp_reginfo[] = { 8221 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8222 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8223 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8224 }; 8225 #ifdef CONFIG_USER_ONLY 8226 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8227 { .name = "MPIDR_EL1", 8228 .fixed_bits = 0x0000000080000000 }, 8229 }; 8230 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8231 #endif 8232 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8233 } 8234 8235 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8236 ARMCPRegInfo auxcr_reginfo[] = { 8237 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8238 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8239 .access = PL1_RW, .accessfn = access_tacr, 8240 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8241 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8242 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8243 .access = PL2_RW, .type = ARM_CP_CONST, 8244 .resetvalue = 0 }, 8245 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8246 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8247 .access = PL3_RW, .type = ARM_CP_CONST, 8248 .resetvalue = 0 }, 8249 }; 8250 define_arm_cp_regs(cpu, auxcr_reginfo); 8251 if (cpu_isar_feature(aa32_ac2, cpu)) { 8252 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8253 } 8254 } 8255 8256 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8257 /* 8258 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8259 * There are two flavours: 8260 * (1) older 32-bit only cores have a simple 32-bit CBAR 8261 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8262 * 32-bit register visible to AArch32 at a different encoding 8263 * to the "flavour 1" register and with the bits rearranged to 8264 * be able to squash a 64-bit address into the 32-bit view. 8265 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8266 * in future if we support AArch32-only configs of some of the 8267 * AArch64 cores we might need to add a specific feature flag 8268 * to indicate cores with "flavour 2" CBAR. 8269 */ 8270 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8271 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8272 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8273 | extract64(cpu->reset_cbar, 32, 12); 8274 ARMCPRegInfo cbar_reginfo[] = { 8275 { .name = "CBAR", 8276 .type = ARM_CP_CONST, 8277 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8278 .access = PL1_R, .resetvalue = cbar32 }, 8279 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8280 .type = ARM_CP_CONST, 8281 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8282 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8283 }; 8284 /* We don't implement a r/w 64 bit CBAR currently */ 8285 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8286 define_arm_cp_regs(cpu, cbar_reginfo); 8287 } else { 8288 ARMCPRegInfo cbar = { 8289 .name = "CBAR", 8290 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8291 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8292 .fieldoffset = offsetof(CPUARMState, 8293 cp15.c15_config_base_address) 8294 }; 8295 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8296 cbar.access = PL1_R; 8297 cbar.fieldoffset = 0; 8298 cbar.type = ARM_CP_CONST; 8299 } 8300 define_one_arm_cp_reg(cpu, &cbar); 8301 } 8302 } 8303 8304 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8305 ARMCPRegInfo vbar_cp_reginfo[] = { 8306 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8307 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8308 .access = PL1_RW, .writefn = vbar_write, 8309 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8310 offsetof(CPUARMState, cp15.vbar_ns) }, 8311 .resetvalue = 0 }, 8312 }; 8313 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8314 } 8315 8316 /* Generic registers whose values depend on the implementation */ 8317 { 8318 ARMCPRegInfo sctlr = { 8319 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8320 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8321 .access = PL1_RW, .accessfn = access_tvm_trvm, 8322 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8323 offsetof(CPUARMState, cp15.sctlr_ns) }, 8324 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8325 .raw_writefn = raw_write, 8326 }; 8327 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8328 /* Normally we would always end the TB on an SCTLR write, but Linux 8329 * arch/arm/mach-pxa/sleep.S expects two instructions following 8330 * an MMU enable to execute from cache. Imitate this behaviour. 8331 */ 8332 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8333 } 8334 define_one_arm_cp_reg(cpu, &sctlr); 8335 } 8336 8337 if (cpu_isar_feature(aa64_lor, cpu)) { 8338 define_arm_cp_regs(cpu, lor_reginfo); 8339 } 8340 if (cpu_isar_feature(aa64_pan, cpu)) { 8341 define_one_arm_cp_reg(cpu, &pan_reginfo); 8342 } 8343 #ifndef CONFIG_USER_ONLY 8344 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8345 define_arm_cp_regs(cpu, ats1e1_reginfo); 8346 } 8347 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8348 define_arm_cp_regs(cpu, ats1cp_reginfo); 8349 } 8350 #endif 8351 if (cpu_isar_feature(aa64_uao, cpu)) { 8352 define_one_arm_cp_reg(cpu, &uao_reginfo); 8353 } 8354 8355 if (cpu_isar_feature(aa64_dit, cpu)) { 8356 define_one_arm_cp_reg(cpu, &dit_reginfo); 8357 } 8358 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8359 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8360 } 8361 8362 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8363 define_arm_cp_regs(cpu, vhe_reginfo); 8364 } 8365 8366 if (cpu_isar_feature(aa64_sve, cpu)) { 8367 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8368 if (arm_feature(env, ARM_FEATURE_EL2)) { 8369 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8370 } else { 8371 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8372 } 8373 if (arm_feature(env, ARM_FEATURE_EL3)) { 8374 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8375 } 8376 } 8377 8378 #ifdef TARGET_AARCH64 8379 if (cpu_isar_feature(aa64_pauth, cpu)) { 8380 define_arm_cp_regs(cpu, pauth_reginfo); 8381 } 8382 if (cpu_isar_feature(aa64_rndr, cpu)) { 8383 define_arm_cp_regs(cpu, rndr_reginfo); 8384 } 8385 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8386 define_arm_cp_regs(cpu, tlbirange_reginfo); 8387 } 8388 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8389 define_arm_cp_regs(cpu, tlbios_reginfo); 8390 } 8391 #ifndef CONFIG_USER_ONLY 8392 /* Data Cache clean instructions up to PoP */ 8393 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8394 define_one_arm_cp_reg(cpu, dcpop_reg); 8395 8396 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8397 define_one_arm_cp_reg(cpu, dcpodp_reg); 8398 } 8399 } 8400 #endif /*CONFIG_USER_ONLY*/ 8401 8402 /* 8403 * If full MTE is enabled, add all of the system registers. 8404 * If only "instructions available at EL0" are enabled, 8405 * then define only a RAZ/WI version of PSTATE.TCO. 8406 */ 8407 if (cpu_isar_feature(aa64_mte, cpu)) { 8408 define_arm_cp_regs(cpu, mte_reginfo); 8409 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8410 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8411 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8412 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8413 } 8414 #endif 8415 8416 if (cpu_isar_feature(any_predinv, cpu)) { 8417 define_arm_cp_regs(cpu, predinv_reginfo); 8418 } 8419 8420 if (cpu_isar_feature(any_ccidx, cpu)) { 8421 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8422 } 8423 8424 #ifndef CONFIG_USER_ONLY 8425 /* 8426 * Register redirections and aliases must be done last, 8427 * after the registers from the other extensions have been defined. 8428 */ 8429 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8430 define_arm_vh_e2h_redirects_aliases(cpu); 8431 } 8432 #endif 8433 } 8434 8435 /* Sort alphabetically by type name, except for "any". */ 8436 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8437 { 8438 ObjectClass *class_a = (ObjectClass *)a; 8439 ObjectClass *class_b = (ObjectClass *)b; 8440 const char *name_a, *name_b; 8441 8442 name_a = object_class_get_name(class_a); 8443 name_b = object_class_get_name(class_b); 8444 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8445 return 1; 8446 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8447 return -1; 8448 } else { 8449 return strcmp(name_a, name_b); 8450 } 8451 } 8452 8453 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8454 { 8455 ObjectClass *oc = data; 8456 const char *typename; 8457 char *name; 8458 8459 typename = object_class_get_name(oc); 8460 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8461 qemu_printf(" %s\n", name); 8462 g_free(name); 8463 } 8464 8465 void arm_cpu_list(void) 8466 { 8467 GSList *list; 8468 8469 list = object_class_get_list(TYPE_ARM_CPU, false); 8470 list = g_slist_sort(list, arm_cpu_list_compare); 8471 qemu_printf("Available CPUs:\n"); 8472 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8473 g_slist_free(list); 8474 } 8475 8476 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8477 { 8478 ObjectClass *oc = data; 8479 CpuDefinitionInfoList **cpu_list = user_data; 8480 CpuDefinitionInfo *info; 8481 const char *typename; 8482 8483 typename = object_class_get_name(oc); 8484 info = g_malloc0(sizeof(*info)); 8485 info->name = g_strndup(typename, 8486 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8487 info->q_typename = g_strdup(typename); 8488 8489 QAPI_LIST_PREPEND(*cpu_list, info); 8490 } 8491 8492 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8493 { 8494 CpuDefinitionInfoList *cpu_list = NULL; 8495 GSList *list; 8496 8497 list = object_class_get_list(TYPE_ARM_CPU, false); 8498 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8499 g_slist_free(list); 8500 8501 return cpu_list; 8502 } 8503 8504 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8505 void *opaque, int state, int secstate, 8506 int crm, int opc1, int opc2, 8507 const char *name) 8508 { 8509 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8510 * add a single reginfo struct to the hash table. 8511 */ 8512 uint32_t *key = g_new(uint32_t, 1); 8513 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8514 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8515 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8516 8517 r2->name = g_strdup(name); 8518 /* Reset the secure state to the specific incoming state. This is 8519 * necessary as the register may have been defined with both states. 8520 */ 8521 r2->secure = secstate; 8522 8523 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8524 /* Register is banked (using both entries in array). 8525 * Overwriting fieldoffset as the array is only used to define 8526 * banked registers but later only fieldoffset is used. 8527 */ 8528 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8529 } 8530 8531 if (state == ARM_CP_STATE_AA32) { 8532 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8533 /* If the register is banked then we don't need to migrate or 8534 * reset the 32-bit instance in certain cases: 8535 * 8536 * 1) If the register has both 32-bit and 64-bit instances then we 8537 * can count on the 64-bit instance taking care of the 8538 * non-secure bank. 8539 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8540 * taking care of the secure bank. This requires that separate 8541 * 32 and 64-bit definitions are provided. 8542 */ 8543 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8544 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8545 r2->type |= ARM_CP_ALIAS; 8546 } 8547 } else if ((secstate != r->secure) && !ns) { 8548 /* The register is not banked so we only want to allow migration of 8549 * the non-secure instance. 8550 */ 8551 r2->type |= ARM_CP_ALIAS; 8552 } 8553 8554 if (r->state == ARM_CP_STATE_BOTH) { 8555 /* We assume it is a cp15 register if the .cp field is left unset. 8556 */ 8557 if (r2->cp == 0) { 8558 r2->cp = 15; 8559 } 8560 8561 #if HOST_BIG_ENDIAN 8562 if (r2->fieldoffset) { 8563 r2->fieldoffset += sizeof(uint32_t); 8564 } 8565 #endif 8566 } 8567 } 8568 if (state == ARM_CP_STATE_AA64) { 8569 /* To allow abbreviation of ARMCPRegInfo 8570 * definitions, we treat cp == 0 as equivalent to 8571 * the value for "standard guest-visible sysreg". 8572 * STATE_BOTH definitions are also always "standard 8573 * sysreg" in their AArch64 view (the .cp value may 8574 * be non-zero for the benefit of the AArch32 view). 8575 */ 8576 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8577 r2->cp = CP_REG_ARM64_SYSREG_CP; 8578 } 8579 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8580 r2->opc0, opc1, opc2); 8581 } else { 8582 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8583 } 8584 if (opaque) { 8585 r2->opaque = opaque; 8586 } 8587 /* reginfo passed to helpers is correct for the actual access, 8588 * and is never ARM_CP_STATE_BOTH: 8589 */ 8590 r2->state = state; 8591 /* Make sure reginfo passed to helpers for wildcarded regs 8592 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8593 */ 8594 r2->crm = crm; 8595 r2->opc1 = opc1; 8596 r2->opc2 = opc2; 8597 /* By convention, for wildcarded registers only the first 8598 * entry is used for migration; the others are marked as 8599 * ALIAS so we don't try to transfer the register 8600 * multiple times. Special registers (ie NOP/WFI) are 8601 * never migratable and not even raw-accessible. 8602 */ 8603 if ((r->type & ARM_CP_SPECIAL)) { 8604 r2->type |= ARM_CP_NO_RAW; 8605 } 8606 if (((r->crm == CP_ANY) && crm != 0) || 8607 ((r->opc1 == CP_ANY) && opc1 != 0) || 8608 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8609 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8610 } 8611 8612 /* Check that raw accesses are either forbidden or handled. Note that 8613 * we can't assert this earlier because the setup of fieldoffset for 8614 * banked registers has to be done first. 8615 */ 8616 if (!(r2->type & ARM_CP_NO_RAW)) { 8617 assert(!raw_accessors_invalid(r2)); 8618 } 8619 8620 /* Overriding of an existing definition must be explicitly 8621 * requested. 8622 */ 8623 if (!(r->type & ARM_CP_OVERRIDE)) { 8624 ARMCPRegInfo *oldreg; 8625 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8626 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8627 fprintf(stderr, "Register redefined: cp=%d %d bit " 8628 "crn=%d crm=%d opc1=%d opc2=%d, " 8629 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8630 r2->crn, r2->crm, r2->opc1, r2->opc2, 8631 oldreg->name, r2->name); 8632 g_assert_not_reached(); 8633 } 8634 } 8635 g_hash_table_insert(cpu->cp_regs, key, r2); 8636 } 8637 8638 8639 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8640 const ARMCPRegInfo *r, void *opaque) 8641 { 8642 /* Define implementations of coprocessor registers. 8643 * We store these in a hashtable because typically 8644 * there are less than 150 registers in a space which 8645 * is 16*16*16*8*8 = 262144 in size. 8646 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8647 * If a register is defined twice then the second definition is 8648 * used, so this can be used to define some generic registers and 8649 * then override them with implementation specific variations. 8650 * At least one of the original and the second definition should 8651 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8652 * against accidental use. 8653 * 8654 * The state field defines whether the register is to be 8655 * visible in the AArch32 or AArch64 execution state. If the 8656 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8657 * reginfo structure for the AArch32 view, which sees the lower 8658 * 32 bits of the 64 bit register. 8659 * 8660 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8661 * be wildcarded. AArch64 registers are always considered to be 64 8662 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8663 * the register, if any. 8664 */ 8665 int crm, opc1, opc2, state; 8666 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8667 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8668 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8669 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8670 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8671 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8672 /* 64 bit registers have only CRm and Opc1 fields */ 8673 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8674 /* op0 only exists in the AArch64 encodings */ 8675 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8676 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8677 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8678 /* 8679 * This API is only for Arm's system coprocessors (14 and 15) or 8680 * (M-profile or v7A-and-earlier only) for implementation defined 8681 * coprocessors in the range 0..7. Our decode assumes this, since 8682 * 8..13 can be used for other insns including VFP and Neon. See 8683 * valid_cp() in translate.c. Assert here that we haven't tried 8684 * to use an invalid coprocessor number. 8685 */ 8686 switch (r->state) { 8687 case ARM_CP_STATE_BOTH: 8688 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8689 if (r->cp == 0) { 8690 break; 8691 } 8692 /* fall through */ 8693 case ARM_CP_STATE_AA32: 8694 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8695 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8696 assert(r->cp >= 14 && r->cp <= 15); 8697 } else { 8698 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8699 } 8700 break; 8701 case ARM_CP_STATE_AA64: 8702 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8703 break; 8704 default: 8705 g_assert_not_reached(); 8706 } 8707 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8708 * encodes a minimum access level for the register. We roll this 8709 * runtime check into our general permission check code, so check 8710 * here that the reginfo's specified permissions are strict enough 8711 * to encompass the generic architectural permission check. 8712 */ 8713 if (r->state != ARM_CP_STATE_AA32) { 8714 int mask = 0; 8715 switch (r->opc1) { 8716 case 0: 8717 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8718 mask = PL0U_R | PL1_RW; 8719 break; 8720 case 1: case 2: 8721 /* min_EL EL1 */ 8722 mask = PL1_RW; 8723 break; 8724 case 3: 8725 /* min_EL EL0 */ 8726 mask = PL0_RW; 8727 break; 8728 case 4: 8729 case 5: 8730 /* min_EL EL2 */ 8731 mask = PL2_RW; 8732 break; 8733 case 6: 8734 /* min_EL EL3 */ 8735 mask = PL3_RW; 8736 break; 8737 case 7: 8738 /* min_EL EL1, secure mode only (we don't check the latter) */ 8739 mask = PL1_RW; 8740 break; 8741 default: 8742 /* broken reginfo with out-of-range opc1 */ 8743 assert(false); 8744 break; 8745 } 8746 /* assert our permissions are not too lax (stricter is fine) */ 8747 assert((r->access & ~mask) == 0); 8748 } 8749 8750 /* Check that the register definition has enough info to handle 8751 * reads and writes if they are permitted. 8752 */ 8753 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8754 if (r->access & PL3_R) { 8755 assert((r->fieldoffset || 8756 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8757 r->readfn); 8758 } 8759 if (r->access & PL3_W) { 8760 assert((r->fieldoffset || 8761 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8762 r->writefn); 8763 } 8764 } 8765 8766 for (crm = crmmin; crm <= crmmax; crm++) { 8767 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8768 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8769 for (state = ARM_CP_STATE_AA32; 8770 state <= ARM_CP_STATE_AA64; state++) { 8771 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8772 continue; 8773 } 8774 if (state == ARM_CP_STATE_AA32) { 8775 /* Under AArch32 CP registers can be common 8776 * (same for secure and non-secure world) or banked. 8777 */ 8778 char *name; 8779 8780 switch (r->secure) { 8781 case ARM_CP_SECSTATE_S: 8782 case ARM_CP_SECSTATE_NS: 8783 add_cpreg_to_hashtable(cpu, r, opaque, state, 8784 r->secure, crm, opc1, opc2, 8785 r->name); 8786 break; 8787 default: 8788 name = g_strdup_printf("%s_S", r->name); 8789 add_cpreg_to_hashtable(cpu, r, opaque, state, 8790 ARM_CP_SECSTATE_S, 8791 crm, opc1, opc2, name); 8792 g_free(name); 8793 add_cpreg_to_hashtable(cpu, r, opaque, state, 8794 ARM_CP_SECSTATE_NS, 8795 crm, opc1, opc2, r->name); 8796 break; 8797 } 8798 } else { 8799 /* AArch64 registers get mapped to non-secure instance 8800 * of AArch32 */ 8801 add_cpreg_to_hashtable(cpu, r, opaque, state, 8802 ARM_CP_SECSTATE_NS, 8803 crm, opc1, opc2, r->name); 8804 } 8805 } 8806 } 8807 } 8808 } 8809 } 8810 8811 /* Define a whole list of registers */ 8812 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 8813 void *opaque, size_t len) 8814 { 8815 size_t i; 8816 for (i = 0; i < len; ++i) { 8817 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 8818 } 8819 } 8820 8821 /* 8822 * Modify ARMCPRegInfo for access from userspace. 8823 * 8824 * This is a data driven modification directed by 8825 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8826 * user-space cannot alter any values and dynamic values pertaining to 8827 * execution state are hidden from user space view anyway. 8828 */ 8829 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 8830 const ARMCPRegUserSpaceInfo *mods, 8831 size_t mods_len) 8832 { 8833 for (size_t mi = 0; mi < mods_len; ++mi) { 8834 const ARMCPRegUserSpaceInfo *m = mods + mi; 8835 GPatternSpec *pat = NULL; 8836 8837 if (m->is_glob) { 8838 pat = g_pattern_spec_new(m->name); 8839 } 8840 for (size_t ri = 0; ri < regs_len; ++ri) { 8841 ARMCPRegInfo *r = regs + ri; 8842 8843 if (pat && g_pattern_match_string(pat, r->name)) { 8844 r->type = ARM_CP_CONST; 8845 r->access = PL0U_R; 8846 r->resetvalue = 0; 8847 /* continue */ 8848 } else if (strcmp(r->name, m->name) == 0) { 8849 r->type = ARM_CP_CONST; 8850 r->access = PL0U_R; 8851 r->resetvalue &= m->exported_bits; 8852 r->resetvalue |= m->fixed_bits; 8853 break; 8854 } 8855 } 8856 if (pat) { 8857 g_pattern_spec_free(pat); 8858 } 8859 } 8860 } 8861 8862 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8863 { 8864 return g_hash_table_lookup(cpregs, &encoded_cp); 8865 } 8866 8867 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8868 uint64_t value) 8869 { 8870 /* Helper coprocessor write function for write-ignore registers */ 8871 } 8872 8873 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8874 { 8875 /* Helper coprocessor write function for read-as-zero registers */ 8876 return 0; 8877 } 8878 8879 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8880 { 8881 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8882 } 8883 8884 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8885 { 8886 /* Return true if it is not valid for us to switch to 8887 * this CPU mode (ie all the UNPREDICTABLE cases in 8888 * the ARM ARM CPSRWriteByInstr pseudocode). 8889 */ 8890 8891 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8892 if (write_type == CPSRWriteByInstr && 8893 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8894 mode == ARM_CPU_MODE_HYP)) { 8895 return 1; 8896 } 8897 8898 switch (mode) { 8899 case ARM_CPU_MODE_USR: 8900 return 0; 8901 case ARM_CPU_MODE_SYS: 8902 case ARM_CPU_MODE_SVC: 8903 case ARM_CPU_MODE_ABT: 8904 case ARM_CPU_MODE_UND: 8905 case ARM_CPU_MODE_IRQ: 8906 case ARM_CPU_MODE_FIQ: 8907 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8908 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8909 */ 8910 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8911 * and CPS are treated as illegal mode changes. 8912 */ 8913 if (write_type == CPSRWriteByInstr && 8914 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8915 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8916 return 1; 8917 } 8918 return 0; 8919 case ARM_CPU_MODE_HYP: 8920 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8921 case ARM_CPU_MODE_MON: 8922 return arm_current_el(env) < 3; 8923 default: 8924 return 1; 8925 } 8926 } 8927 8928 uint32_t cpsr_read(CPUARMState *env) 8929 { 8930 int ZF; 8931 ZF = (env->ZF == 0); 8932 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8933 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8934 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8935 | ((env->condexec_bits & 0xfc) << 8) 8936 | (env->GE << 16) | (env->daif & CPSR_AIF); 8937 } 8938 8939 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8940 CPSRWriteType write_type) 8941 { 8942 uint32_t changed_daif; 8943 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 8944 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 8945 8946 if (mask & CPSR_NZCV) { 8947 env->ZF = (~val) & CPSR_Z; 8948 env->NF = val; 8949 env->CF = (val >> 29) & 1; 8950 env->VF = (val << 3) & 0x80000000; 8951 } 8952 if (mask & CPSR_Q) 8953 env->QF = ((val & CPSR_Q) != 0); 8954 if (mask & CPSR_T) 8955 env->thumb = ((val & CPSR_T) != 0); 8956 if (mask & CPSR_IT_0_1) { 8957 env->condexec_bits &= ~3; 8958 env->condexec_bits |= (val >> 25) & 3; 8959 } 8960 if (mask & CPSR_IT_2_7) { 8961 env->condexec_bits &= 3; 8962 env->condexec_bits |= (val >> 8) & 0xfc; 8963 } 8964 if (mask & CPSR_GE) { 8965 env->GE = (val >> 16) & 0xf; 8966 } 8967 8968 /* In a V7 implementation that includes the security extensions but does 8969 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8970 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8971 * bits respectively. 8972 * 8973 * In a V8 implementation, it is permitted for privileged software to 8974 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8975 */ 8976 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8977 arm_feature(env, ARM_FEATURE_EL3) && 8978 !arm_feature(env, ARM_FEATURE_EL2) && 8979 !arm_is_secure(env)) { 8980 8981 changed_daif = (env->daif ^ val) & mask; 8982 8983 if (changed_daif & CPSR_A) { 8984 /* Check to see if we are allowed to change the masking of async 8985 * abort exceptions from a non-secure state. 8986 */ 8987 if (!(env->cp15.scr_el3 & SCR_AW)) { 8988 qemu_log_mask(LOG_GUEST_ERROR, 8989 "Ignoring attempt to switch CPSR_A flag from " 8990 "non-secure world with SCR.AW bit clear\n"); 8991 mask &= ~CPSR_A; 8992 } 8993 } 8994 8995 if (changed_daif & CPSR_F) { 8996 /* Check to see if we are allowed to change the masking of FIQ 8997 * exceptions from a non-secure state. 8998 */ 8999 if (!(env->cp15.scr_el3 & SCR_FW)) { 9000 qemu_log_mask(LOG_GUEST_ERROR, 9001 "Ignoring attempt to switch CPSR_F flag from " 9002 "non-secure world with SCR.FW bit clear\n"); 9003 mask &= ~CPSR_F; 9004 } 9005 9006 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9007 * If this bit is set software is not allowed to mask 9008 * FIQs, but is allowed to set CPSR_F to 0. 9009 */ 9010 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9011 (val & CPSR_F)) { 9012 qemu_log_mask(LOG_GUEST_ERROR, 9013 "Ignoring attempt to enable CPSR_F flag " 9014 "(non-maskable FIQ [NMFI] support enabled)\n"); 9015 mask &= ~CPSR_F; 9016 } 9017 } 9018 } 9019 9020 env->daif &= ~(CPSR_AIF & mask); 9021 env->daif |= val & CPSR_AIF & mask; 9022 9023 if (write_type != CPSRWriteRaw && 9024 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9025 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9026 /* Note that we can only get here in USR mode if this is a 9027 * gdb stub write; for this case we follow the architectural 9028 * behaviour for guest writes in USR mode of ignoring an attempt 9029 * to switch mode. (Those are caught by translate.c for writes 9030 * triggered by guest instructions.) 9031 */ 9032 mask &= ~CPSR_M; 9033 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9034 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9035 * v7, and has defined behaviour in v8: 9036 * + leave CPSR.M untouched 9037 * + allow changes to the other CPSR fields 9038 * + set PSTATE.IL 9039 * For user changes via the GDB stub, we don't set PSTATE.IL, 9040 * as this would be unnecessarily harsh for a user error. 9041 */ 9042 mask &= ~CPSR_M; 9043 if (write_type != CPSRWriteByGDBStub && 9044 arm_feature(env, ARM_FEATURE_V8)) { 9045 mask |= CPSR_IL; 9046 val |= CPSR_IL; 9047 } 9048 qemu_log_mask(LOG_GUEST_ERROR, 9049 "Illegal AArch32 mode switch attempt from %s to %s\n", 9050 aarch32_mode_name(env->uncached_cpsr), 9051 aarch32_mode_name(val)); 9052 } else { 9053 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9054 write_type == CPSRWriteExceptionReturn ? 9055 "Exception return from AArch32" : 9056 "AArch32 mode switch from", 9057 aarch32_mode_name(env->uncached_cpsr), 9058 aarch32_mode_name(val), env->regs[15]); 9059 switch_mode(env, val & CPSR_M); 9060 } 9061 } 9062 mask &= ~CACHED_CPSR_BITS; 9063 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9064 if (rebuild_hflags) { 9065 arm_rebuild_hflags(env); 9066 } 9067 } 9068 9069 /* Sign/zero extend */ 9070 uint32_t HELPER(sxtb16)(uint32_t x) 9071 { 9072 uint32_t res; 9073 res = (uint16_t)(int8_t)x; 9074 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9075 return res; 9076 } 9077 9078 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9079 { 9080 /* 9081 * Take a division-by-zero exception if necessary; otherwise return 9082 * to get the usual non-trapping division behaviour (result of 0) 9083 */ 9084 if (arm_feature(env, ARM_FEATURE_M) 9085 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9086 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9087 } 9088 } 9089 9090 uint32_t HELPER(uxtb16)(uint32_t x) 9091 { 9092 uint32_t res; 9093 res = (uint16_t)(uint8_t)x; 9094 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9095 return res; 9096 } 9097 9098 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9099 { 9100 if (den == 0) { 9101 handle_possible_div0_trap(env, GETPC()); 9102 return 0; 9103 } 9104 if (num == INT_MIN && den == -1) { 9105 return INT_MIN; 9106 } 9107 return num / den; 9108 } 9109 9110 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9111 { 9112 if (den == 0) { 9113 handle_possible_div0_trap(env, GETPC()); 9114 return 0; 9115 } 9116 return num / den; 9117 } 9118 9119 uint32_t HELPER(rbit)(uint32_t x) 9120 { 9121 return revbit32(x); 9122 } 9123 9124 #ifdef CONFIG_USER_ONLY 9125 9126 static void switch_mode(CPUARMState *env, int mode) 9127 { 9128 ARMCPU *cpu = env_archcpu(env); 9129 9130 if (mode != ARM_CPU_MODE_USR) { 9131 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9132 } 9133 } 9134 9135 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9136 uint32_t cur_el, bool secure) 9137 { 9138 return 1; 9139 } 9140 9141 void aarch64_sync_64_to_32(CPUARMState *env) 9142 { 9143 g_assert_not_reached(); 9144 } 9145 9146 #else 9147 9148 static void switch_mode(CPUARMState *env, int mode) 9149 { 9150 int old_mode; 9151 int i; 9152 9153 old_mode = env->uncached_cpsr & CPSR_M; 9154 if (mode == old_mode) 9155 return; 9156 9157 if (old_mode == ARM_CPU_MODE_FIQ) { 9158 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9159 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9160 } else if (mode == ARM_CPU_MODE_FIQ) { 9161 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9162 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9163 } 9164 9165 i = bank_number(old_mode); 9166 env->banked_r13[i] = env->regs[13]; 9167 env->banked_spsr[i] = env->spsr; 9168 9169 i = bank_number(mode); 9170 env->regs[13] = env->banked_r13[i]; 9171 env->spsr = env->banked_spsr[i]; 9172 9173 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9174 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9175 } 9176 9177 /* Physical Interrupt Target EL Lookup Table 9178 * 9179 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9180 * 9181 * The below multi-dimensional table is used for looking up the target 9182 * exception level given numerous condition criteria. Specifically, the 9183 * target EL is based on SCR and HCR routing controls as well as the 9184 * currently executing EL and secure state. 9185 * 9186 * Dimensions: 9187 * target_el_table[2][2][2][2][2][4] 9188 * | | | | | +--- Current EL 9189 * | | | | +------ Non-secure(0)/Secure(1) 9190 * | | | +--------- HCR mask override 9191 * | | +------------ SCR exec state control 9192 * | +--------------- SCR mask override 9193 * +------------------ 32-bit(0)/64-bit(1) EL3 9194 * 9195 * The table values are as such: 9196 * 0-3 = EL0-EL3 9197 * -1 = Cannot occur 9198 * 9199 * The ARM ARM target EL table includes entries indicating that an "exception 9200 * is not taken". The two cases where this is applicable are: 9201 * 1) An exception is taken from EL3 but the SCR does not have the exception 9202 * routed to EL3. 9203 * 2) An exception is taken from EL2 but the HCR does not have the exception 9204 * routed to EL2. 9205 * In these two cases, the below table contain a target of EL1. This value is 9206 * returned as it is expected that the consumer of the table data will check 9207 * for "target EL >= current EL" to ensure the exception is not taken. 9208 * 9209 * SCR HCR 9210 * 64 EA AMO From 9211 * BIT IRQ IMO Non-secure Secure 9212 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9213 */ 9214 static const int8_t target_el_table[2][2][2][2][2][4] = { 9215 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9216 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9217 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9218 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9219 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9220 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9221 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9222 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9223 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9224 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9225 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9226 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9227 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9228 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9229 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9230 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9231 }; 9232 9233 /* 9234 * Determine the target EL for physical exceptions 9235 */ 9236 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9237 uint32_t cur_el, bool secure) 9238 { 9239 CPUARMState *env = cs->env_ptr; 9240 bool rw; 9241 bool scr; 9242 bool hcr; 9243 int target_el; 9244 /* Is the highest EL AArch64? */ 9245 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9246 uint64_t hcr_el2; 9247 9248 if (arm_feature(env, ARM_FEATURE_EL3)) { 9249 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9250 } else { 9251 /* Either EL2 is the highest EL (and so the EL2 register width 9252 * is given by is64); or there is no EL2 or EL3, in which case 9253 * the value of 'rw' does not affect the table lookup anyway. 9254 */ 9255 rw = is64; 9256 } 9257 9258 hcr_el2 = arm_hcr_el2_eff(env); 9259 switch (excp_idx) { 9260 case EXCP_IRQ: 9261 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9262 hcr = hcr_el2 & HCR_IMO; 9263 break; 9264 case EXCP_FIQ: 9265 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9266 hcr = hcr_el2 & HCR_FMO; 9267 break; 9268 default: 9269 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9270 hcr = hcr_el2 & HCR_AMO; 9271 break; 9272 }; 9273 9274 /* 9275 * For these purposes, TGE and AMO/IMO/FMO both force the 9276 * interrupt to EL2. Fold TGE into the bit extracted above. 9277 */ 9278 hcr |= (hcr_el2 & HCR_TGE) != 0; 9279 9280 /* Perform a table-lookup for the target EL given the current state */ 9281 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9282 9283 assert(target_el > 0); 9284 9285 return target_el; 9286 } 9287 9288 void arm_log_exception(CPUState *cs) 9289 { 9290 int idx = cs->exception_index; 9291 9292 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9293 const char *exc = NULL; 9294 static const char * const excnames[] = { 9295 [EXCP_UDEF] = "Undefined Instruction", 9296 [EXCP_SWI] = "SVC", 9297 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9298 [EXCP_DATA_ABORT] = "Data Abort", 9299 [EXCP_IRQ] = "IRQ", 9300 [EXCP_FIQ] = "FIQ", 9301 [EXCP_BKPT] = "Breakpoint", 9302 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9303 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9304 [EXCP_HVC] = "Hypervisor Call", 9305 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9306 [EXCP_SMC] = "Secure Monitor Call", 9307 [EXCP_VIRQ] = "Virtual IRQ", 9308 [EXCP_VFIQ] = "Virtual FIQ", 9309 [EXCP_SEMIHOST] = "Semihosting call", 9310 [EXCP_NOCP] = "v7M NOCP UsageFault", 9311 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9312 [EXCP_STKOF] = "v8M STKOF UsageFault", 9313 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9314 [EXCP_LSERR] = "v8M LSERR UsageFault", 9315 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9316 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9317 }; 9318 9319 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9320 exc = excnames[idx]; 9321 } 9322 if (!exc) { 9323 exc = "unknown"; 9324 } 9325 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9326 idx, exc, cs->cpu_index); 9327 } 9328 } 9329 9330 /* 9331 * Function used to synchronize QEMU's AArch64 register set with AArch32 9332 * register set. This is necessary when switching between AArch32 and AArch64 9333 * execution state. 9334 */ 9335 void aarch64_sync_32_to_64(CPUARMState *env) 9336 { 9337 int i; 9338 uint32_t mode = env->uncached_cpsr & CPSR_M; 9339 9340 /* We can blanket copy R[0:7] to X[0:7] */ 9341 for (i = 0; i < 8; i++) { 9342 env->xregs[i] = env->regs[i]; 9343 } 9344 9345 /* 9346 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9347 * Otherwise, they come from the banked user regs. 9348 */ 9349 if (mode == ARM_CPU_MODE_FIQ) { 9350 for (i = 8; i < 13; i++) { 9351 env->xregs[i] = env->usr_regs[i - 8]; 9352 } 9353 } else { 9354 for (i = 8; i < 13; i++) { 9355 env->xregs[i] = env->regs[i]; 9356 } 9357 } 9358 9359 /* 9360 * Registers x13-x23 are the various mode SP and FP registers. Registers 9361 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9362 * from the mode banked register. 9363 */ 9364 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9365 env->xregs[13] = env->regs[13]; 9366 env->xregs[14] = env->regs[14]; 9367 } else { 9368 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9369 /* HYP is an exception in that it is copied from r14 */ 9370 if (mode == ARM_CPU_MODE_HYP) { 9371 env->xregs[14] = env->regs[14]; 9372 } else { 9373 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9374 } 9375 } 9376 9377 if (mode == ARM_CPU_MODE_HYP) { 9378 env->xregs[15] = env->regs[13]; 9379 } else { 9380 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9381 } 9382 9383 if (mode == ARM_CPU_MODE_IRQ) { 9384 env->xregs[16] = env->regs[14]; 9385 env->xregs[17] = env->regs[13]; 9386 } else { 9387 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9388 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9389 } 9390 9391 if (mode == ARM_CPU_MODE_SVC) { 9392 env->xregs[18] = env->regs[14]; 9393 env->xregs[19] = env->regs[13]; 9394 } else { 9395 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9396 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9397 } 9398 9399 if (mode == ARM_CPU_MODE_ABT) { 9400 env->xregs[20] = env->regs[14]; 9401 env->xregs[21] = env->regs[13]; 9402 } else { 9403 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9404 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9405 } 9406 9407 if (mode == ARM_CPU_MODE_UND) { 9408 env->xregs[22] = env->regs[14]; 9409 env->xregs[23] = env->regs[13]; 9410 } else { 9411 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9412 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9413 } 9414 9415 /* 9416 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9417 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9418 * FIQ bank for r8-r14. 9419 */ 9420 if (mode == ARM_CPU_MODE_FIQ) { 9421 for (i = 24; i < 31; i++) { 9422 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9423 } 9424 } else { 9425 for (i = 24; i < 29; i++) { 9426 env->xregs[i] = env->fiq_regs[i - 24]; 9427 } 9428 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9429 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9430 } 9431 9432 env->pc = env->regs[15]; 9433 } 9434 9435 /* 9436 * Function used to synchronize QEMU's AArch32 register set with AArch64 9437 * register set. This is necessary when switching between AArch32 and AArch64 9438 * execution state. 9439 */ 9440 void aarch64_sync_64_to_32(CPUARMState *env) 9441 { 9442 int i; 9443 uint32_t mode = env->uncached_cpsr & CPSR_M; 9444 9445 /* We can blanket copy X[0:7] to R[0:7] */ 9446 for (i = 0; i < 8; i++) { 9447 env->regs[i] = env->xregs[i]; 9448 } 9449 9450 /* 9451 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9452 * Otherwise, we copy x8-x12 into the banked user regs. 9453 */ 9454 if (mode == ARM_CPU_MODE_FIQ) { 9455 for (i = 8; i < 13; i++) { 9456 env->usr_regs[i - 8] = env->xregs[i]; 9457 } 9458 } else { 9459 for (i = 8; i < 13; i++) { 9460 env->regs[i] = env->xregs[i]; 9461 } 9462 } 9463 9464 /* 9465 * Registers r13 & r14 depend on the current mode. 9466 * If we are in a given mode, we copy the corresponding x registers to r13 9467 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9468 * for the mode. 9469 */ 9470 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9471 env->regs[13] = env->xregs[13]; 9472 env->regs[14] = env->xregs[14]; 9473 } else { 9474 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9475 9476 /* 9477 * HYP is an exception in that it does not have its own banked r14 but 9478 * shares the USR r14 9479 */ 9480 if (mode == ARM_CPU_MODE_HYP) { 9481 env->regs[14] = env->xregs[14]; 9482 } else { 9483 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9484 } 9485 } 9486 9487 if (mode == ARM_CPU_MODE_HYP) { 9488 env->regs[13] = env->xregs[15]; 9489 } else { 9490 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9491 } 9492 9493 if (mode == ARM_CPU_MODE_IRQ) { 9494 env->regs[14] = env->xregs[16]; 9495 env->regs[13] = env->xregs[17]; 9496 } else { 9497 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9498 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9499 } 9500 9501 if (mode == ARM_CPU_MODE_SVC) { 9502 env->regs[14] = env->xregs[18]; 9503 env->regs[13] = env->xregs[19]; 9504 } else { 9505 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9506 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9507 } 9508 9509 if (mode == ARM_CPU_MODE_ABT) { 9510 env->regs[14] = env->xregs[20]; 9511 env->regs[13] = env->xregs[21]; 9512 } else { 9513 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9514 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9515 } 9516 9517 if (mode == ARM_CPU_MODE_UND) { 9518 env->regs[14] = env->xregs[22]; 9519 env->regs[13] = env->xregs[23]; 9520 } else { 9521 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9522 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9523 } 9524 9525 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9526 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9527 * FIQ bank for r8-r14. 9528 */ 9529 if (mode == ARM_CPU_MODE_FIQ) { 9530 for (i = 24; i < 31; i++) { 9531 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9532 } 9533 } else { 9534 for (i = 24; i < 29; i++) { 9535 env->fiq_regs[i - 24] = env->xregs[i]; 9536 } 9537 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9538 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9539 } 9540 9541 env->regs[15] = env->pc; 9542 } 9543 9544 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9545 uint32_t mask, uint32_t offset, 9546 uint32_t newpc) 9547 { 9548 int new_el; 9549 9550 /* Change the CPU state so as to actually take the exception. */ 9551 switch_mode(env, new_mode); 9552 9553 /* 9554 * For exceptions taken to AArch32 we must clear the SS bit in both 9555 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9556 */ 9557 env->pstate &= ~PSTATE_SS; 9558 env->spsr = cpsr_read(env); 9559 /* Clear IT bits. */ 9560 env->condexec_bits = 0; 9561 /* Switch to the new mode, and to the correct instruction set. */ 9562 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9563 9564 /* This must be after mode switching. */ 9565 new_el = arm_current_el(env); 9566 9567 /* Set new mode endianness */ 9568 env->uncached_cpsr &= ~CPSR_E; 9569 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9570 env->uncached_cpsr |= CPSR_E; 9571 } 9572 /* J and IL must always be cleared for exception entry */ 9573 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9574 env->daif |= mask; 9575 9576 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9577 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9578 env->uncached_cpsr |= CPSR_SSBS; 9579 } else { 9580 env->uncached_cpsr &= ~CPSR_SSBS; 9581 } 9582 } 9583 9584 if (new_mode == ARM_CPU_MODE_HYP) { 9585 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9586 env->elr_el[2] = env->regs[15]; 9587 } else { 9588 /* CPSR.PAN is normally preserved preserved unless... */ 9589 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9590 switch (new_el) { 9591 case 3: 9592 if (!arm_is_secure_below_el3(env)) { 9593 /* ... the target is EL3, from non-secure state. */ 9594 env->uncached_cpsr &= ~CPSR_PAN; 9595 break; 9596 } 9597 /* ... the target is EL3, from secure state ... */ 9598 /* fall through */ 9599 case 1: 9600 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9601 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9602 env->uncached_cpsr |= CPSR_PAN; 9603 } 9604 break; 9605 } 9606 } 9607 /* 9608 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9609 * and we should just guard the thumb mode on V4 9610 */ 9611 if (arm_feature(env, ARM_FEATURE_V4T)) { 9612 env->thumb = 9613 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9614 } 9615 env->regs[14] = env->regs[15] + offset; 9616 } 9617 env->regs[15] = newpc; 9618 arm_rebuild_hflags(env); 9619 } 9620 9621 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9622 { 9623 /* 9624 * Handle exception entry to Hyp mode; this is sufficiently 9625 * different to entry to other AArch32 modes that we handle it 9626 * separately here. 9627 * 9628 * The vector table entry used is always the 0x14 Hyp mode entry point, 9629 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9630 * The offset applied to the preferred return address is always zero 9631 * (see DDI0487C.a section G1.12.3). 9632 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9633 */ 9634 uint32_t addr, mask; 9635 ARMCPU *cpu = ARM_CPU(cs); 9636 CPUARMState *env = &cpu->env; 9637 9638 switch (cs->exception_index) { 9639 case EXCP_UDEF: 9640 addr = 0x04; 9641 break; 9642 case EXCP_SWI: 9643 addr = 0x08; 9644 break; 9645 case EXCP_BKPT: 9646 /* Fall through to prefetch abort. */ 9647 case EXCP_PREFETCH_ABORT: 9648 env->cp15.ifar_s = env->exception.vaddress; 9649 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9650 (uint32_t)env->exception.vaddress); 9651 addr = 0x0c; 9652 break; 9653 case EXCP_DATA_ABORT: 9654 env->cp15.dfar_s = env->exception.vaddress; 9655 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9656 (uint32_t)env->exception.vaddress); 9657 addr = 0x10; 9658 break; 9659 case EXCP_IRQ: 9660 addr = 0x18; 9661 break; 9662 case EXCP_FIQ: 9663 addr = 0x1c; 9664 break; 9665 case EXCP_HVC: 9666 addr = 0x08; 9667 break; 9668 case EXCP_HYP_TRAP: 9669 addr = 0x14; 9670 break; 9671 default: 9672 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9673 } 9674 9675 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9676 if (!arm_feature(env, ARM_FEATURE_V8)) { 9677 /* 9678 * QEMU syndrome values are v8-style. v7 has the IL bit 9679 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9680 * If this is a v7 CPU, squash the IL bit in those cases. 9681 */ 9682 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9683 (cs->exception_index == EXCP_DATA_ABORT && 9684 !(env->exception.syndrome & ARM_EL_ISV)) || 9685 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9686 env->exception.syndrome &= ~ARM_EL_IL; 9687 } 9688 } 9689 env->cp15.esr_el[2] = env->exception.syndrome; 9690 } 9691 9692 if (arm_current_el(env) != 2 && addr < 0x14) { 9693 addr = 0x14; 9694 } 9695 9696 mask = 0; 9697 if (!(env->cp15.scr_el3 & SCR_EA)) { 9698 mask |= CPSR_A; 9699 } 9700 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9701 mask |= CPSR_I; 9702 } 9703 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9704 mask |= CPSR_F; 9705 } 9706 9707 addr += env->cp15.hvbar; 9708 9709 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9710 } 9711 9712 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9713 { 9714 ARMCPU *cpu = ARM_CPU(cs); 9715 CPUARMState *env = &cpu->env; 9716 uint32_t addr; 9717 uint32_t mask; 9718 int new_mode; 9719 uint32_t offset; 9720 uint32_t moe; 9721 9722 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9723 switch (syn_get_ec(env->exception.syndrome)) { 9724 case EC_BREAKPOINT: 9725 case EC_BREAKPOINT_SAME_EL: 9726 moe = 1; 9727 break; 9728 case EC_WATCHPOINT: 9729 case EC_WATCHPOINT_SAME_EL: 9730 moe = 10; 9731 break; 9732 case EC_AA32_BKPT: 9733 moe = 3; 9734 break; 9735 case EC_VECTORCATCH: 9736 moe = 5; 9737 break; 9738 default: 9739 moe = 0; 9740 break; 9741 } 9742 9743 if (moe) { 9744 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9745 } 9746 9747 if (env->exception.target_el == 2) { 9748 arm_cpu_do_interrupt_aarch32_hyp(cs); 9749 return; 9750 } 9751 9752 switch (cs->exception_index) { 9753 case EXCP_UDEF: 9754 new_mode = ARM_CPU_MODE_UND; 9755 addr = 0x04; 9756 mask = CPSR_I; 9757 if (env->thumb) 9758 offset = 2; 9759 else 9760 offset = 4; 9761 break; 9762 case EXCP_SWI: 9763 new_mode = ARM_CPU_MODE_SVC; 9764 addr = 0x08; 9765 mask = CPSR_I; 9766 /* The PC already points to the next instruction. */ 9767 offset = 0; 9768 break; 9769 case EXCP_BKPT: 9770 /* Fall through to prefetch abort. */ 9771 case EXCP_PREFETCH_ABORT: 9772 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9773 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9774 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9775 env->exception.fsr, (uint32_t)env->exception.vaddress); 9776 new_mode = ARM_CPU_MODE_ABT; 9777 addr = 0x0c; 9778 mask = CPSR_A | CPSR_I; 9779 offset = 4; 9780 break; 9781 case EXCP_DATA_ABORT: 9782 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9783 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9784 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9785 env->exception.fsr, 9786 (uint32_t)env->exception.vaddress); 9787 new_mode = ARM_CPU_MODE_ABT; 9788 addr = 0x10; 9789 mask = CPSR_A | CPSR_I; 9790 offset = 8; 9791 break; 9792 case EXCP_IRQ: 9793 new_mode = ARM_CPU_MODE_IRQ; 9794 addr = 0x18; 9795 /* Disable IRQ and imprecise data aborts. */ 9796 mask = CPSR_A | CPSR_I; 9797 offset = 4; 9798 if (env->cp15.scr_el3 & SCR_IRQ) { 9799 /* IRQ routed to monitor mode */ 9800 new_mode = ARM_CPU_MODE_MON; 9801 mask |= CPSR_F; 9802 } 9803 break; 9804 case EXCP_FIQ: 9805 new_mode = ARM_CPU_MODE_FIQ; 9806 addr = 0x1c; 9807 /* Disable FIQ, IRQ and imprecise data aborts. */ 9808 mask = CPSR_A | CPSR_I | CPSR_F; 9809 if (env->cp15.scr_el3 & SCR_FIQ) { 9810 /* FIQ routed to monitor mode */ 9811 new_mode = ARM_CPU_MODE_MON; 9812 } 9813 offset = 4; 9814 break; 9815 case EXCP_VIRQ: 9816 new_mode = ARM_CPU_MODE_IRQ; 9817 addr = 0x18; 9818 /* Disable IRQ and imprecise data aborts. */ 9819 mask = CPSR_A | CPSR_I; 9820 offset = 4; 9821 break; 9822 case EXCP_VFIQ: 9823 new_mode = ARM_CPU_MODE_FIQ; 9824 addr = 0x1c; 9825 /* Disable FIQ, IRQ and imprecise data aborts. */ 9826 mask = CPSR_A | CPSR_I | CPSR_F; 9827 offset = 4; 9828 break; 9829 case EXCP_SMC: 9830 new_mode = ARM_CPU_MODE_MON; 9831 addr = 0x08; 9832 mask = CPSR_A | CPSR_I | CPSR_F; 9833 offset = 0; 9834 break; 9835 default: 9836 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9837 return; /* Never happens. Keep compiler happy. */ 9838 } 9839 9840 if (new_mode == ARM_CPU_MODE_MON) { 9841 addr += env->cp15.mvbar; 9842 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9843 /* High vectors. When enabled, base address cannot be remapped. */ 9844 addr += 0xffff0000; 9845 } else { 9846 /* ARM v7 architectures provide a vector base address register to remap 9847 * the interrupt vector table. 9848 * This register is only followed in non-monitor mode, and is banked. 9849 * Note: only bits 31:5 are valid. 9850 */ 9851 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9852 } 9853 9854 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9855 env->cp15.scr_el3 &= ~SCR_NS; 9856 } 9857 9858 take_aarch32_exception(env, new_mode, mask, offset, addr); 9859 } 9860 9861 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9862 { 9863 /* 9864 * Return the register number of the AArch64 view of the AArch32 9865 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9866 * be that of the AArch32 mode the exception came from. 9867 */ 9868 int mode = env->uncached_cpsr & CPSR_M; 9869 9870 switch (aarch32_reg) { 9871 case 0 ... 7: 9872 return aarch32_reg; 9873 case 8 ... 12: 9874 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9875 case 13: 9876 switch (mode) { 9877 case ARM_CPU_MODE_USR: 9878 case ARM_CPU_MODE_SYS: 9879 return 13; 9880 case ARM_CPU_MODE_HYP: 9881 return 15; 9882 case ARM_CPU_MODE_IRQ: 9883 return 17; 9884 case ARM_CPU_MODE_SVC: 9885 return 19; 9886 case ARM_CPU_MODE_ABT: 9887 return 21; 9888 case ARM_CPU_MODE_UND: 9889 return 23; 9890 case ARM_CPU_MODE_FIQ: 9891 return 29; 9892 default: 9893 g_assert_not_reached(); 9894 } 9895 case 14: 9896 switch (mode) { 9897 case ARM_CPU_MODE_USR: 9898 case ARM_CPU_MODE_SYS: 9899 case ARM_CPU_MODE_HYP: 9900 return 14; 9901 case ARM_CPU_MODE_IRQ: 9902 return 16; 9903 case ARM_CPU_MODE_SVC: 9904 return 18; 9905 case ARM_CPU_MODE_ABT: 9906 return 20; 9907 case ARM_CPU_MODE_UND: 9908 return 22; 9909 case ARM_CPU_MODE_FIQ: 9910 return 30; 9911 default: 9912 g_assert_not_reached(); 9913 } 9914 case 15: 9915 return 31; 9916 default: 9917 g_assert_not_reached(); 9918 } 9919 } 9920 9921 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 9922 { 9923 uint32_t ret = cpsr_read(env); 9924 9925 /* Move DIT to the correct location for SPSR_ELx */ 9926 if (ret & CPSR_DIT) { 9927 ret &= ~CPSR_DIT; 9928 ret |= PSTATE_DIT; 9929 } 9930 /* Merge PSTATE.SS into SPSR_ELx */ 9931 ret |= env->pstate & PSTATE_SS; 9932 9933 return ret; 9934 } 9935 9936 /* Handle exception entry to a target EL which is using AArch64 */ 9937 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9938 { 9939 ARMCPU *cpu = ARM_CPU(cs); 9940 CPUARMState *env = &cpu->env; 9941 unsigned int new_el = env->exception.target_el; 9942 target_ulong addr = env->cp15.vbar_el[new_el]; 9943 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9944 unsigned int old_mode; 9945 unsigned int cur_el = arm_current_el(env); 9946 int rt; 9947 9948 /* 9949 * Note that new_el can never be 0. If cur_el is 0, then 9950 * el0_a64 is is_a64(), else el0_a64 is ignored. 9951 */ 9952 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9953 9954 if (cur_el < new_el) { 9955 /* Entry vector offset depends on whether the implemented EL 9956 * immediately lower than the target level is using AArch32 or AArch64 9957 */ 9958 bool is_aa64; 9959 uint64_t hcr; 9960 9961 switch (new_el) { 9962 case 3: 9963 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9964 break; 9965 case 2: 9966 hcr = arm_hcr_el2_eff(env); 9967 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9968 is_aa64 = (hcr & HCR_RW) != 0; 9969 break; 9970 } 9971 /* fall through */ 9972 case 1: 9973 is_aa64 = is_a64(env); 9974 break; 9975 default: 9976 g_assert_not_reached(); 9977 } 9978 9979 if (is_aa64) { 9980 addr += 0x400; 9981 } else { 9982 addr += 0x600; 9983 } 9984 } else if (pstate_read(env) & PSTATE_SP) { 9985 addr += 0x200; 9986 } 9987 9988 switch (cs->exception_index) { 9989 case EXCP_PREFETCH_ABORT: 9990 case EXCP_DATA_ABORT: 9991 env->cp15.far_el[new_el] = env->exception.vaddress; 9992 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9993 env->cp15.far_el[new_el]); 9994 /* fall through */ 9995 case EXCP_BKPT: 9996 case EXCP_UDEF: 9997 case EXCP_SWI: 9998 case EXCP_HVC: 9999 case EXCP_HYP_TRAP: 10000 case EXCP_SMC: 10001 switch (syn_get_ec(env->exception.syndrome)) { 10002 case EC_ADVSIMDFPACCESSTRAP: 10003 /* 10004 * QEMU internal FP/SIMD syndromes from AArch32 include the 10005 * TA and coproc fields which are only exposed if the exception 10006 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10007 * AArch64 format syndrome. 10008 */ 10009 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10010 break; 10011 case EC_CP14RTTRAP: 10012 case EC_CP15RTTRAP: 10013 case EC_CP14DTTRAP: 10014 /* 10015 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10016 * the raw register field from the insn; when taking this to 10017 * AArch64 we must convert it to the AArch64 view of the register 10018 * number. Notice that we read a 4-bit AArch32 register number and 10019 * write back a 5-bit AArch64 one. 10020 */ 10021 rt = extract32(env->exception.syndrome, 5, 4); 10022 rt = aarch64_regnum(env, rt); 10023 env->exception.syndrome = deposit32(env->exception.syndrome, 10024 5, 5, rt); 10025 break; 10026 case EC_CP15RRTTRAP: 10027 case EC_CP14RRTTRAP: 10028 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10029 rt = extract32(env->exception.syndrome, 5, 4); 10030 rt = aarch64_regnum(env, rt); 10031 env->exception.syndrome = deposit32(env->exception.syndrome, 10032 5, 5, rt); 10033 rt = extract32(env->exception.syndrome, 10, 4); 10034 rt = aarch64_regnum(env, rt); 10035 env->exception.syndrome = deposit32(env->exception.syndrome, 10036 10, 5, rt); 10037 break; 10038 } 10039 env->cp15.esr_el[new_el] = env->exception.syndrome; 10040 break; 10041 case EXCP_IRQ: 10042 case EXCP_VIRQ: 10043 addr += 0x80; 10044 break; 10045 case EXCP_FIQ: 10046 case EXCP_VFIQ: 10047 addr += 0x100; 10048 break; 10049 default: 10050 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10051 } 10052 10053 if (is_a64(env)) { 10054 old_mode = pstate_read(env); 10055 aarch64_save_sp(env, arm_current_el(env)); 10056 env->elr_el[new_el] = env->pc; 10057 } else { 10058 old_mode = cpsr_read_for_spsr_elx(env); 10059 env->elr_el[new_el] = env->regs[15]; 10060 10061 aarch64_sync_32_to_64(env); 10062 10063 env->condexec_bits = 0; 10064 } 10065 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10066 10067 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10068 env->elr_el[new_el]); 10069 10070 if (cpu_isar_feature(aa64_pan, cpu)) { 10071 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10072 new_mode |= old_mode & PSTATE_PAN; 10073 switch (new_el) { 10074 case 2: 10075 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10076 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10077 != (HCR_E2H | HCR_TGE)) { 10078 break; 10079 } 10080 /* fall through */ 10081 case 1: 10082 /* ... the target is EL1 ... */ 10083 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10084 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10085 new_mode |= PSTATE_PAN; 10086 } 10087 break; 10088 } 10089 } 10090 if (cpu_isar_feature(aa64_mte, cpu)) { 10091 new_mode |= PSTATE_TCO; 10092 } 10093 10094 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10095 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10096 new_mode |= PSTATE_SSBS; 10097 } else { 10098 new_mode &= ~PSTATE_SSBS; 10099 } 10100 } 10101 10102 pstate_write(env, PSTATE_DAIF | new_mode); 10103 env->aarch64 = true; 10104 aarch64_restore_sp(env, new_el); 10105 helper_rebuild_hflags_a64(env, new_el); 10106 10107 env->pc = addr; 10108 10109 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10110 new_el, env->pc, pstate_read(env)); 10111 } 10112 10113 /* 10114 * Do semihosting call and set the appropriate return value. All the 10115 * permission and validity checks have been done at translate time. 10116 * 10117 * We only see semihosting exceptions in TCG only as they are not 10118 * trapped to the hypervisor in KVM. 10119 */ 10120 #ifdef CONFIG_TCG 10121 static void handle_semihosting(CPUState *cs) 10122 { 10123 ARMCPU *cpu = ARM_CPU(cs); 10124 CPUARMState *env = &cpu->env; 10125 10126 if (is_a64(env)) { 10127 qemu_log_mask(CPU_LOG_INT, 10128 "...handling as semihosting call 0x%" PRIx64 "\n", 10129 env->xregs[0]); 10130 env->xregs[0] = do_common_semihosting(cs); 10131 env->pc += 4; 10132 } else { 10133 qemu_log_mask(CPU_LOG_INT, 10134 "...handling as semihosting call 0x%x\n", 10135 env->regs[0]); 10136 env->regs[0] = do_common_semihosting(cs); 10137 env->regs[15] += env->thumb ? 2 : 4; 10138 } 10139 } 10140 #endif 10141 10142 /* Handle a CPU exception for A and R profile CPUs. 10143 * Do any appropriate logging, handle PSCI calls, and then hand off 10144 * to the AArch64-entry or AArch32-entry function depending on the 10145 * target exception level's register width. 10146 * 10147 * Note: this is used for both TCG (as the do_interrupt tcg op), 10148 * and KVM to re-inject guest debug exceptions, and to 10149 * inject a Synchronous-External-Abort. 10150 */ 10151 void arm_cpu_do_interrupt(CPUState *cs) 10152 { 10153 ARMCPU *cpu = ARM_CPU(cs); 10154 CPUARMState *env = &cpu->env; 10155 unsigned int new_el = env->exception.target_el; 10156 10157 assert(!arm_feature(env, ARM_FEATURE_M)); 10158 10159 arm_log_exception(cs); 10160 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10161 new_el); 10162 if (qemu_loglevel_mask(CPU_LOG_INT) 10163 && !excp_is_internal(cs->exception_index)) { 10164 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10165 syn_get_ec(env->exception.syndrome), 10166 env->exception.syndrome); 10167 } 10168 10169 if (arm_is_psci_call(cpu, cs->exception_index)) { 10170 arm_handle_psci_call(cpu); 10171 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10172 return; 10173 } 10174 10175 /* 10176 * Semihosting semantics depend on the register width of the code 10177 * that caused the exception, not the target exception level, so 10178 * must be handled here. 10179 */ 10180 #ifdef CONFIG_TCG 10181 if (cs->exception_index == EXCP_SEMIHOST) { 10182 handle_semihosting(cs); 10183 return; 10184 } 10185 #endif 10186 10187 /* Hooks may change global state so BQL should be held, also the 10188 * BQL needs to be held for any modification of 10189 * cs->interrupt_request. 10190 */ 10191 g_assert(qemu_mutex_iothread_locked()); 10192 10193 arm_call_pre_el_change_hook(cpu); 10194 10195 assert(!excp_is_internal(cs->exception_index)); 10196 if (arm_el_is_aa64(env, new_el)) { 10197 arm_cpu_do_interrupt_aarch64(cs); 10198 } else { 10199 arm_cpu_do_interrupt_aarch32(cs); 10200 } 10201 10202 arm_call_el_change_hook(cpu); 10203 10204 if (!kvm_enabled()) { 10205 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10206 } 10207 } 10208 #endif /* !CONFIG_USER_ONLY */ 10209 10210 uint64_t arm_sctlr(CPUARMState *env, int el) 10211 { 10212 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10213 if (el == 0) { 10214 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10215 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10216 ? 2 : 1; 10217 } 10218 return env->cp15.sctlr_el[el]; 10219 } 10220 10221 /* Return the SCTLR value which controls this address translation regime */ 10222 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10223 { 10224 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10225 } 10226 10227 #ifndef CONFIG_USER_ONLY 10228 10229 /* Return true if the specified stage of address translation is disabled */ 10230 static inline bool regime_translation_disabled(CPUARMState *env, 10231 ARMMMUIdx mmu_idx) 10232 { 10233 uint64_t hcr_el2; 10234 10235 if (arm_feature(env, ARM_FEATURE_M)) { 10236 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10237 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10238 case R_V7M_MPU_CTRL_ENABLE_MASK: 10239 /* Enabled, but not for HardFault and NMI */ 10240 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10241 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10242 /* Enabled for all cases */ 10243 return false; 10244 case 0: 10245 default: 10246 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10247 * we warned about that in armv7m_nvic.c when the guest set it. 10248 */ 10249 return true; 10250 } 10251 } 10252 10253 hcr_el2 = arm_hcr_el2_eff(env); 10254 10255 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10256 /* HCR.DC means HCR.VM behaves as 1 */ 10257 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10258 } 10259 10260 if (hcr_el2 & HCR_TGE) { 10261 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10262 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10263 return true; 10264 } 10265 } 10266 10267 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10268 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10269 return true; 10270 } 10271 10272 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10273 } 10274 10275 static inline bool regime_translation_big_endian(CPUARMState *env, 10276 ARMMMUIdx mmu_idx) 10277 { 10278 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10279 } 10280 10281 /* Return the TTBR associated with this translation regime */ 10282 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10283 int ttbrn) 10284 { 10285 if (mmu_idx == ARMMMUIdx_Stage2) { 10286 return env->cp15.vttbr_el2; 10287 } 10288 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10289 return env->cp15.vsttbr_el2; 10290 } 10291 if (ttbrn == 0) { 10292 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10293 } else { 10294 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10295 } 10296 } 10297 10298 #endif /* !CONFIG_USER_ONLY */ 10299 10300 /* Convert a possible stage1+2 MMU index into the appropriate 10301 * stage 1 MMU index 10302 */ 10303 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10304 { 10305 switch (mmu_idx) { 10306 case ARMMMUIdx_SE10_0: 10307 return ARMMMUIdx_Stage1_SE0; 10308 case ARMMMUIdx_SE10_1: 10309 return ARMMMUIdx_Stage1_SE1; 10310 case ARMMMUIdx_SE10_1_PAN: 10311 return ARMMMUIdx_Stage1_SE1_PAN; 10312 case ARMMMUIdx_E10_0: 10313 return ARMMMUIdx_Stage1_E0; 10314 case ARMMMUIdx_E10_1: 10315 return ARMMMUIdx_Stage1_E1; 10316 case ARMMMUIdx_E10_1_PAN: 10317 return ARMMMUIdx_Stage1_E1_PAN; 10318 default: 10319 return mmu_idx; 10320 } 10321 } 10322 10323 /* Return true if the translation regime is using LPAE format page tables */ 10324 static inline bool regime_using_lpae_format(CPUARMState *env, 10325 ARMMMUIdx mmu_idx) 10326 { 10327 int el = regime_el(env, mmu_idx); 10328 if (el == 2 || arm_el_is_aa64(env, el)) { 10329 return true; 10330 } 10331 if (arm_feature(env, ARM_FEATURE_LPAE) 10332 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10333 return true; 10334 } 10335 return false; 10336 } 10337 10338 /* Returns true if the stage 1 translation regime is using LPAE format page 10339 * tables. Used when raising alignment exceptions, whose FSR changes depending 10340 * on whether the long or short descriptor format is in use. */ 10341 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10342 { 10343 mmu_idx = stage_1_mmu_idx(mmu_idx); 10344 10345 return regime_using_lpae_format(env, mmu_idx); 10346 } 10347 10348 #ifndef CONFIG_USER_ONLY 10349 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10350 { 10351 switch (mmu_idx) { 10352 case ARMMMUIdx_SE10_0: 10353 case ARMMMUIdx_E20_0: 10354 case ARMMMUIdx_SE20_0: 10355 case ARMMMUIdx_Stage1_E0: 10356 case ARMMMUIdx_Stage1_SE0: 10357 case ARMMMUIdx_MUser: 10358 case ARMMMUIdx_MSUser: 10359 case ARMMMUIdx_MUserNegPri: 10360 case ARMMMUIdx_MSUserNegPri: 10361 return true; 10362 default: 10363 return false; 10364 case ARMMMUIdx_E10_0: 10365 case ARMMMUIdx_E10_1: 10366 case ARMMMUIdx_E10_1_PAN: 10367 g_assert_not_reached(); 10368 } 10369 } 10370 10371 /* Translate section/page access permissions to page 10372 * R/W protection flags 10373 * 10374 * @env: CPUARMState 10375 * @mmu_idx: MMU index indicating required translation regime 10376 * @ap: The 3-bit access permissions (AP[2:0]) 10377 * @domain_prot: The 2-bit domain access permissions 10378 */ 10379 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10380 int ap, int domain_prot) 10381 { 10382 bool is_user = regime_is_user(env, mmu_idx); 10383 10384 if (domain_prot == 3) { 10385 return PAGE_READ | PAGE_WRITE; 10386 } 10387 10388 switch (ap) { 10389 case 0: 10390 if (arm_feature(env, ARM_FEATURE_V7)) { 10391 return 0; 10392 } 10393 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10394 case SCTLR_S: 10395 return is_user ? 0 : PAGE_READ; 10396 case SCTLR_R: 10397 return PAGE_READ; 10398 default: 10399 return 0; 10400 } 10401 case 1: 10402 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10403 case 2: 10404 if (is_user) { 10405 return PAGE_READ; 10406 } else { 10407 return PAGE_READ | PAGE_WRITE; 10408 } 10409 case 3: 10410 return PAGE_READ | PAGE_WRITE; 10411 case 4: /* Reserved. */ 10412 return 0; 10413 case 5: 10414 return is_user ? 0 : PAGE_READ; 10415 case 6: 10416 return PAGE_READ; 10417 case 7: 10418 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10419 return 0; 10420 } 10421 return PAGE_READ; 10422 default: 10423 g_assert_not_reached(); 10424 } 10425 } 10426 10427 /* Translate section/page access permissions to page 10428 * R/W protection flags. 10429 * 10430 * @ap: The 2-bit simple AP (AP[2:1]) 10431 * @is_user: TRUE if accessing from PL0 10432 */ 10433 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10434 { 10435 switch (ap) { 10436 case 0: 10437 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10438 case 1: 10439 return PAGE_READ | PAGE_WRITE; 10440 case 2: 10441 return is_user ? 0 : PAGE_READ; 10442 case 3: 10443 return PAGE_READ; 10444 default: 10445 g_assert_not_reached(); 10446 } 10447 } 10448 10449 static inline int 10450 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10451 { 10452 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10453 } 10454 10455 /* Translate S2 section/page access permissions to protection flags 10456 * 10457 * @env: CPUARMState 10458 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10459 * @xn: XN (execute-never) bits 10460 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10461 */ 10462 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10463 { 10464 int prot = 0; 10465 10466 if (s2ap & 1) { 10467 prot |= PAGE_READ; 10468 } 10469 if (s2ap & 2) { 10470 prot |= PAGE_WRITE; 10471 } 10472 10473 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10474 switch (xn) { 10475 case 0: 10476 prot |= PAGE_EXEC; 10477 break; 10478 case 1: 10479 if (s1_is_el0) { 10480 prot |= PAGE_EXEC; 10481 } 10482 break; 10483 case 2: 10484 break; 10485 case 3: 10486 if (!s1_is_el0) { 10487 prot |= PAGE_EXEC; 10488 } 10489 break; 10490 default: 10491 g_assert_not_reached(); 10492 } 10493 } else { 10494 if (!extract32(xn, 1, 1)) { 10495 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10496 prot |= PAGE_EXEC; 10497 } 10498 } 10499 } 10500 return prot; 10501 } 10502 10503 /* Translate section/page access permissions to protection flags 10504 * 10505 * @env: CPUARMState 10506 * @mmu_idx: MMU index indicating required translation regime 10507 * @is_aa64: TRUE if AArch64 10508 * @ap: The 2-bit simple AP (AP[2:1]) 10509 * @ns: NS (non-secure) bit 10510 * @xn: XN (execute-never) bit 10511 * @pxn: PXN (privileged execute-never) bit 10512 */ 10513 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10514 int ap, int ns, int xn, int pxn) 10515 { 10516 bool is_user = regime_is_user(env, mmu_idx); 10517 int prot_rw, user_rw; 10518 bool have_wxn; 10519 int wxn = 0; 10520 10521 assert(mmu_idx != ARMMMUIdx_Stage2); 10522 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10523 10524 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10525 if (is_user) { 10526 prot_rw = user_rw; 10527 } else { 10528 if (user_rw && regime_is_pan(env, mmu_idx)) { 10529 /* PAN forbids data accesses but doesn't affect insn fetch */ 10530 prot_rw = 0; 10531 } else { 10532 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10533 } 10534 } 10535 10536 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10537 return prot_rw; 10538 } 10539 10540 /* TODO have_wxn should be replaced with 10541 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10542 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10543 * compatible processors have EL2, which is required for [U]WXN. 10544 */ 10545 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10546 10547 if (have_wxn) { 10548 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10549 } 10550 10551 if (is_aa64) { 10552 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10553 xn = pxn || (user_rw & PAGE_WRITE); 10554 } 10555 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10556 switch (regime_el(env, mmu_idx)) { 10557 case 1: 10558 case 3: 10559 if (is_user) { 10560 xn = xn || !(user_rw & PAGE_READ); 10561 } else { 10562 int uwxn = 0; 10563 if (have_wxn) { 10564 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10565 } 10566 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10567 (uwxn && (user_rw & PAGE_WRITE)); 10568 } 10569 break; 10570 case 2: 10571 break; 10572 } 10573 } else { 10574 xn = wxn = 0; 10575 } 10576 10577 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10578 return prot_rw; 10579 } 10580 return prot_rw | PAGE_EXEC; 10581 } 10582 10583 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10584 uint32_t *table, uint32_t address) 10585 { 10586 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10587 TCR *tcr = regime_tcr(env, mmu_idx); 10588 10589 if (address & tcr->mask) { 10590 if (tcr->raw_tcr & TTBCR_PD1) { 10591 /* Translation table walk disabled for TTBR1 */ 10592 return false; 10593 } 10594 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10595 } else { 10596 if (tcr->raw_tcr & TTBCR_PD0) { 10597 /* Translation table walk disabled for TTBR0 */ 10598 return false; 10599 } 10600 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10601 } 10602 *table |= (address >> 18) & 0x3ffc; 10603 return true; 10604 } 10605 10606 /* Translate a S1 pagetable walk through S2 if needed. */ 10607 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10608 hwaddr addr, bool *is_secure, 10609 ARMMMUFaultInfo *fi) 10610 { 10611 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10612 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10613 target_ulong s2size; 10614 hwaddr s2pa; 10615 int s2prot; 10616 int ret; 10617 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10618 : ARMMMUIdx_Stage2; 10619 ARMCacheAttrs cacheattrs = {}; 10620 MemTxAttrs txattrs = {}; 10621 10622 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10623 &s2pa, &txattrs, &s2prot, &s2size, fi, 10624 &cacheattrs); 10625 if (ret) { 10626 assert(fi->type != ARMFault_None); 10627 fi->s2addr = addr; 10628 fi->stage2 = true; 10629 fi->s1ptw = true; 10630 fi->s1ns = !*is_secure; 10631 return ~0; 10632 } 10633 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10634 (cacheattrs.attrs & 0xf0) == 0) { 10635 /* 10636 * PTW set and S1 walk touched S2 Device memory: 10637 * generate Permission fault. 10638 */ 10639 fi->type = ARMFault_Permission; 10640 fi->s2addr = addr; 10641 fi->stage2 = true; 10642 fi->s1ptw = true; 10643 fi->s1ns = !*is_secure; 10644 return ~0; 10645 } 10646 10647 if (arm_is_secure_below_el3(env)) { 10648 /* Check if page table walk is to secure or non-secure PA space. */ 10649 if (*is_secure) { 10650 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10651 } else { 10652 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10653 } 10654 } else { 10655 assert(!*is_secure); 10656 } 10657 10658 addr = s2pa; 10659 } 10660 return addr; 10661 } 10662 10663 /* All loads done in the course of a page table walk go through here. */ 10664 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10665 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10666 { 10667 ARMCPU *cpu = ARM_CPU(cs); 10668 CPUARMState *env = &cpu->env; 10669 MemTxAttrs attrs = {}; 10670 MemTxResult result = MEMTX_OK; 10671 AddressSpace *as; 10672 uint32_t data; 10673 10674 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10675 attrs.secure = is_secure; 10676 as = arm_addressspace(cs, attrs); 10677 if (fi->s1ptw) { 10678 return 0; 10679 } 10680 if (regime_translation_big_endian(env, mmu_idx)) { 10681 data = address_space_ldl_be(as, addr, attrs, &result); 10682 } else { 10683 data = address_space_ldl_le(as, addr, attrs, &result); 10684 } 10685 if (result == MEMTX_OK) { 10686 return data; 10687 } 10688 fi->type = ARMFault_SyncExternalOnWalk; 10689 fi->ea = arm_extabort_type(result); 10690 return 0; 10691 } 10692 10693 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10694 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10695 { 10696 ARMCPU *cpu = ARM_CPU(cs); 10697 CPUARMState *env = &cpu->env; 10698 MemTxAttrs attrs = {}; 10699 MemTxResult result = MEMTX_OK; 10700 AddressSpace *as; 10701 uint64_t data; 10702 10703 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10704 attrs.secure = is_secure; 10705 as = arm_addressspace(cs, attrs); 10706 if (fi->s1ptw) { 10707 return 0; 10708 } 10709 if (regime_translation_big_endian(env, mmu_idx)) { 10710 data = address_space_ldq_be(as, addr, attrs, &result); 10711 } else { 10712 data = address_space_ldq_le(as, addr, attrs, &result); 10713 } 10714 if (result == MEMTX_OK) { 10715 return data; 10716 } 10717 fi->type = ARMFault_SyncExternalOnWalk; 10718 fi->ea = arm_extabort_type(result); 10719 return 0; 10720 } 10721 10722 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10723 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10724 hwaddr *phys_ptr, int *prot, 10725 target_ulong *page_size, 10726 ARMMMUFaultInfo *fi) 10727 { 10728 CPUState *cs = env_cpu(env); 10729 int level = 1; 10730 uint32_t table; 10731 uint32_t desc; 10732 int type; 10733 int ap; 10734 int domain = 0; 10735 int domain_prot; 10736 hwaddr phys_addr; 10737 uint32_t dacr; 10738 10739 /* Pagetable walk. */ 10740 /* Lookup l1 descriptor. */ 10741 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10742 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10743 fi->type = ARMFault_Translation; 10744 goto do_fault; 10745 } 10746 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10747 mmu_idx, fi); 10748 if (fi->type != ARMFault_None) { 10749 goto do_fault; 10750 } 10751 type = (desc & 3); 10752 domain = (desc >> 5) & 0x0f; 10753 if (regime_el(env, mmu_idx) == 1) { 10754 dacr = env->cp15.dacr_ns; 10755 } else { 10756 dacr = env->cp15.dacr_s; 10757 } 10758 domain_prot = (dacr >> (domain * 2)) & 3; 10759 if (type == 0) { 10760 /* Section translation fault. */ 10761 fi->type = ARMFault_Translation; 10762 goto do_fault; 10763 } 10764 if (type != 2) { 10765 level = 2; 10766 } 10767 if (domain_prot == 0 || domain_prot == 2) { 10768 fi->type = ARMFault_Domain; 10769 goto do_fault; 10770 } 10771 if (type == 2) { 10772 /* 1Mb section. */ 10773 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10774 ap = (desc >> 10) & 3; 10775 *page_size = 1024 * 1024; 10776 } else { 10777 /* Lookup l2 entry. */ 10778 if (type == 1) { 10779 /* Coarse pagetable. */ 10780 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10781 } else { 10782 /* Fine pagetable. */ 10783 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10784 } 10785 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10786 mmu_idx, fi); 10787 if (fi->type != ARMFault_None) { 10788 goto do_fault; 10789 } 10790 switch (desc & 3) { 10791 case 0: /* Page translation fault. */ 10792 fi->type = ARMFault_Translation; 10793 goto do_fault; 10794 case 1: /* 64k page. */ 10795 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10796 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10797 *page_size = 0x10000; 10798 break; 10799 case 2: /* 4k page. */ 10800 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10801 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10802 *page_size = 0x1000; 10803 break; 10804 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10805 if (type == 1) { 10806 /* ARMv6/XScale extended small page format */ 10807 if (arm_feature(env, ARM_FEATURE_XSCALE) 10808 || arm_feature(env, ARM_FEATURE_V6)) { 10809 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10810 *page_size = 0x1000; 10811 } else { 10812 /* UNPREDICTABLE in ARMv5; we choose to take a 10813 * page translation fault. 10814 */ 10815 fi->type = ARMFault_Translation; 10816 goto do_fault; 10817 } 10818 } else { 10819 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10820 *page_size = 0x400; 10821 } 10822 ap = (desc >> 4) & 3; 10823 break; 10824 default: 10825 /* Never happens, but compiler isn't smart enough to tell. */ 10826 abort(); 10827 } 10828 } 10829 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10830 *prot |= *prot ? PAGE_EXEC : 0; 10831 if (!(*prot & (1 << access_type))) { 10832 /* Access permission fault. */ 10833 fi->type = ARMFault_Permission; 10834 goto do_fault; 10835 } 10836 *phys_ptr = phys_addr; 10837 return false; 10838 do_fault: 10839 fi->domain = domain; 10840 fi->level = level; 10841 return true; 10842 } 10843 10844 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10845 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10846 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10847 target_ulong *page_size, ARMMMUFaultInfo *fi) 10848 { 10849 CPUState *cs = env_cpu(env); 10850 ARMCPU *cpu = env_archcpu(env); 10851 int level = 1; 10852 uint32_t table; 10853 uint32_t desc; 10854 uint32_t xn; 10855 uint32_t pxn = 0; 10856 int type; 10857 int ap; 10858 int domain = 0; 10859 int domain_prot; 10860 hwaddr phys_addr; 10861 uint32_t dacr; 10862 bool ns; 10863 10864 /* Pagetable walk. */ 10865 /* Lookup l1 descriptor. */ 10866 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10867 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10868 fi->type = ARMFault_Translation; 10869 goto do_fault; 10870 } 10871 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10872 mmu_idx, fi); 10873 if (fi->type != ARMFault_None) { 10874 goto do_fault; 10875 } 10876 type = (desc & 3); 10877 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10878 /* Section translation fault, or attempt to use the encoding 10879 * which is Reserved on implementations without PXN. 10880 */ 10881 fi->type = ARMFault_Translation; 10882 goto do_fault; 10883 } 10884 if ((type == 1) || !(desc & (1 << 18))) { 10885 /* Page or Section. */ 10886 domain = (desc >> 5) & 0x0f; 10887 } 10888 if (regime_el(env, mmu_idx) == 1) { 10889 dacr = env->cp15.dacr_ns; 10890 } else { 10891 dacr = env->cp15.dacr_s; 10892 } 10893 if (type == 1) { 10894 level = 2; 10895 } 10896 domain_prot = (dacr >> (domain * 2)) & 3; 10897 if (domain_prot == 0 || domain_prot == 2) { 10898 /* Section or Page domain fault */ 10899 fi->type = ARMFault_Domain; 10900 goto do_fault; 10901 } 10902 if (type != 1) { 10903 if (desc & (1 << 18)) { 10904 /* Supersection. */ 10905 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10906 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10907 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10908 *page_size = 0x1000000; 10909 } else { 10910 /* Section. */ 10911 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10912 *page_size = 0x100000; 10913 } 10914 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10915 xn = desc & (1 << 4); 10916 pxn = desc & 1; 10917 ns = extract32(desc, 19, 1); 10918 } else { 10919 if (cpu_isar_feature(aa32_pxn, cpu)) { 10920 pxn = (desc >> 2) & 1; 10921 } 10922 ns = extract32(desc, 3, 1); 10923 /* Lookup l2 entry. */ 10924 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10925 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10926 mmu_idx, fi); 10927 if (fi->type != ARMFault_None) { 10928 goto do_fault; 10929 } 10930 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10931 switch (desc & 3) { 10932 case 0: /* Page translation fault. */ 10933 fi->type = ARMFault_Translation; 10934 goto do_fault; 10935 case 1: /* 64k page. */ 10936 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10937 xn = desc & (1 << 15); 10938 *page_size = 0x10000; 10939 break; 10940 case 2: case 3: /* 4k page. */ 10941 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10942 xn = desc & 1; 10943 *page_size = 0x1000; 10944 break; 10945 default: 10946 /* Never happens, but compiler isn't smart enough to tell. */ 10947 abort(); 10948 } 10949 } 10950 if (domain_prot == 3) { 10951 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10952 } else { 10953 if (pxn && !regime_is_user(env, mmu_idx)) { 10954 xn = 1; 10955 } 10956 if (xn && access_type == MMU_INST_FETCH) { 10957 fi->type = ARMFault_Permission; 10958 goto do_fault; 10959 } 10960 10961 if (arm_feature(env, ARM_FEATURE_V6K) && 10962 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10963 /* The simplified model uses AP[0] as an access control bit. */ 10964 if ((ap & 1) == 0) { 10965 /* Access flag fault. */ 10966 fi->type = ARMFault_AccessFlag; 10967 goto do_fault; 10968 } 10969 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10970 } else { 10971 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10972 } 10973 if (*prot && !xn) { 10974 *prot |= PAGE_EXEC; 10975 } 10976 if (!(*prot & (1 << access_type))) { 10977 /* Access permission fault. */ 10978 fi->type = ARMFault_Permission; 10979 goto do_fault; 10980 } 10981 } 10982 if (ns) { 10983 /* The NS bit will (as required by the architecture) have no effect if 10984 * the CPU doesn't support TZ or this is a non-secure translation 10985 * regime, because the attribute will already be non-secure. 10986 */ 10987 attrs->secure = false; 10988 } 10989 *phys_ptr = phys_addr; 10990 return false; 10991 do_fault: 10992 fi->domain = domain; 10993 fi->level = level; 10994 return true; 10995 } 10996 10997 /* 10998 * check_s2_mmu_setup 10999 * @cpu: ARMCPU 11000 * @is_aa64: True if the translation regime is in AArch64 state 11001 * @startlevel: Suggested starting level 11002 * @inputsize: Bitsize of IPAs 11003 * @stride: Page-table stride (See the ARM ARM) 11004 * 11005 * Returns true if the suggested S2 translation parameters are OK and 11006 * false otherwise. 11007 */ 11008 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11009 int inputsize, int stride, int outputsize) 11010 { 11011 const int grainsize = stride + 3; 11012 int startsizecheck; 11013 11014 /* 11015 * Negative levels are usually not allowed... 11016 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which 11017 * begins with level -1. Note that previous feature tests will have 11018 * eliminated this combination if it is not enabled. 11019 */ 11020 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { 11021 return false; 11022 } 11023 11024 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11025 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11026 return false; 11027 } 11028 11029 if (is_aa64) { 11030 switch (stride) { 11031 case 13: /* 64KB Pages. */ 11032 if (level == 0 || (level == 1 && outputsize <= 42)) { 11033 return false; 11034 } 11035 break; 11036 case 11: /* 16KB Pages. */ 11037 if (level == 0 || (level == 1 && outputsize <= 40)) { 11038 return false; 11039 } 11040 break; 11041 case 9: /* 4KB Pages. */ 11042 if (level == 0 && outputsize <= 42) { 11043 return false; 11044 } 11045 break; 11046 default: 11047 g_assert_not_reached(); 11048 } 11049 11050 /* Inputsize checks. */ 11051 if (inputsize > outputsize && 11052 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 11053 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11054 return false; 11055 } 11056 } else { 11057 /* AArch32 only supports 4KB pages. Assert on that. */ 11058 assert(stride == 9); 11059 11060 if (level == 0) { 11061 return false; 11062 } 11063 } 11064 return true; 11065 } 11066 11067 /* Translate from the 4-bit stage 2 representation of 11068 * memory attributes (without cache-allocation hints) to 11069 * the 8-bit representation of the stage 1 MAIR registers 11070 * (which includes allocation hints). 11071 * 11072 * ref: shared/translation/attrs/S2AttrDecode() 11073 * .../S2ConvertAttrsHints() 11074 */ 11075 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11076 { 11077 uint8_t hiattr = extract32(s2attrs, 2, 2); 11078 uint8_t loattr = extract32(s2attrs, 0, 2); 11079 uint8_t hihint = 0, lohint = 0; 11080 11081 if (hiattr != 0) { /* normal memory */ 11082 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11083 hiattr = loattr = 1; /* non-cacheable */ 11084 } else { 11085 if (hiattr != 1) { /* Write-through or write-back */ 11086 hihint = 3; /* RW allocate */ 11087 } 11088 if (loattr != 1) { /* Write-through or write-back */ 11089 lohint = 3; /* RW allocate */ 11090 } 11091 } 11092 } 11093 11094 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11095 } 11096 #endif /* !CONFIG_USER_ONLY */ 11097 11098 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 11099 static const uint8_t pamax_map[] = { 11100 [0] = 32, 11101 [1] = 36, 11102 [2] = 40, 11103 [3] = 42, 11104 [4] = 44, 11105 [5] = 48, 11106 [6] = 52, 11107 }; 11108 11109 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 11110 unsigned int arm_pamax(ARMCPU *cpu) 11111 { 11112 unsigned int parange = 11113 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11114 11115 /* 11116 * id_aa64mmfr0 is a read-only register so values outside of the 11117 * supported mappings can be considered an implementation error. 11118 */ 11119 assert(parange < ARRAY_SIZE(pamax_map)); 11120 return pamax_map[parange]; 11121 } 11122 11123 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11124 { 11125 if (regime_has_2_ranges(mmu_idx)) { 11126 return extract64(tcr, 37, 2); 11127 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11128 return 0; /* VTCR_EL2 */ 11129 } else { 11130 /* Replicate the single TBI bit so we always have 2 bits. */ 11131 return extract32(tcr, 20, 1) * 3; 11132 } 11133 } 11134 11135 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11136 { 11137 if (regime_has_2_ranges(mmu_idx)) { 11138 return extract64(tcr, 51, 2); 11139 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11140 return 0; /* VTCR_EL2 */ 11141 } else { 11142 /* Replicate the single TBID bit so we always have 2 bits. */ 11143 return extract32(tcr, 29, 1) * 3; 11144 } 11145 } 11146 11147 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11148 { 11149 if (regime_has_2_ranges(mmu_idx)) { 11150 return extract64(tcr, 57, 2); 11151 } else { 11152 /* Replicate the single TCMA bit so we always have 2 bits. */ 11153 return extract32(tcr, 30, 1) * 3; 11154 } 11155 } 11156 11157 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11158 ARMMMUIdx mmu_idx, bool data) 11159 { 11160 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11161 bool epd, hpd, using16k, using64k, tsz_oob, ds; 11162 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11163 ARMCPU *cpu = env_archcpu(env); 11164 11165 if (!regime_has_2_ranges(mmu_idx)) { 11166 select = 0; 11167 tsz = extract32(tcr, 0, 6); 11168 using64k = extract32(tcr, 14, 1); 11169 using16k = extract32(tcr, 15, 1); 11170 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11171 /* VTCR_EL2 */ 11172 hpd = false; 11173 } else { 11174 hpd = extract32(tcr, 24, 1); 11175 } 11176 epd = false; 11177 sh = extract32(tcr, 12, 2); 11178 ps = extract32(tcr, 16, 3); 11179 ds = extract64(tcr, 32, 1); 11180 } else { 11181 /* 11182 * Bit 55 is always between the two regions, and is canonical for 11183 * determining if address tagging is enabled. 11184 */ 11185 select = extract64(va, 55, 1); 11186 if (!select) { 11187 tsz = extract32(tcr, 0, 6); 11188 epd = extract32(tcr, 7, 1); 11189 sh = extract32(tcr, 12, 2); 11190 using64k = extract32(tcr, 14, 1); 11191 using16k = extract32(tcr, 15, 1); 11192 hpd = extract64(tcr, 41, 1); 11193 } else { 11194 int tg = extract32(tcr, 30, 2); 11195 using16k = tg == 1; 11196 using64k = tg == 3; 11197 tsz = extract32(tcr, 16, 6); 11198 epd = extract32(tcr, 23, 1); 11199 sh = extract32(tcr, 28, 2); 11200 hpd = extract64(tcr, 42, 1); 11201 } 11202 ps = extract64(tcr, 32, 3); 11203 ds = extract64(tcr, 59, 1); 11204 } 11205 11206 if (cpu_isar_feature(aa64_st, cpu)) { 11207 max_tsz = 48 - using64k; 11208 } else { 11209 max_tsz = 39; 11210 } 11211 11212 /* 11213 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11214 * adjust the effective value of DS, as documented. 11215 */ 11216 min_tsz = 16; 11217 if (using64k) { 11218 if (cpu_isar_feature(aa64_lva, cpu)) { 11219 min_tsz = 12; 11220 } 11221 ds = false; 11222 } else if (ds) { 11223 switch (mmu_idx) { 11224 case ARMMMUIdx_Stage2: 11225 case ARMMMUIdx_Stage2_S: 11226 if (using16k) { 11227 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11228 } else { 11229 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11230 } 11231 break; 11232 default: 11233 if (using16k) { 11234 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11235 } else { 11236 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11237 } 11238 break; 11239 } 11240 if (ds) { 11241 min_tsz = 12; 11242 } 11243 } 11244 11245 if (tsz > max_tsz) { 11246 tsz = max_tsz; 11247 tsz_oob = true; 11248 } else if (tsz < min_tsz) { 11249 tsz = min_tsz; 11250 tsz_oob = true; 11251 } else { 11252 tsz_oob = false; 11253 } 11254 11255 /* Present TBI as a composite with TBID. */ 11256 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11257 if (!data) { 11258 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11259 } 11260 tbi = (tbi >> select) & 1; 11261 11262 return (ARMVAParameters) { 11263 .tsz = tsz, 11264 .ps = ps, 11265 .sh = sh, 11266 .select = select, 11267 .tbi = tbi, 11268 .epd = epd, 11269 .hpd = hpd, 11270 .using16k = using16k, 11271 .using64k = using64k, 11272 .tsz_oob = tsz_oob, 11273 .ds = ds, 11274 }; 11275 } 11276 11277 #ifndef CONFIG_USER_ONLY 11278 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11279 ARMMMUIdx mmu_idx) 11280 { 11281 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11282 uint32_t el = regime_el(env, mmu_idx); 11283 int select, tsz; 11284 bool epd, hpd; 11285 11286 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11287 11288 if (mmu_idx == ARMMMUIdx_Stage2) { 11289 /* VTCR */ 11290 bool sext = extract32(tcr, 4, 1); 11291 bool sign = extract32(tcr, 3, 1); 11292 11293 /* 11294 * If the sign-extend bit is not the same as t0sz[3], the result 11295 * is unpredictable. Flag this as a guest error. 11296 */ 11297 if (sign != sext) { 11298 qemu_log_mask(LOG_GUEST_ERROR, 11299 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11300 } 11301 tsz = sextract32(tcr, 0, 4) + 8; 11302 select = 0; 11303 hpd = false; 11304 epd = false; 11305 } else if (el == 2) { 11306 /* HTCR */ 11307 tsz = extract32(tcr, 0, 3); 11308 select = 0; 11309 hpd = extract64(tcr, 24, 1); 11310 epd = false; 11311 } else { 11312 int t0sz = extract32(tcr, 0, 3); 11313 int t1sz = extract32(tcr, 16, 3); 11314 11315 if (t1sz == 0) { 11316 select = va > (0xffffffffu >> t0sz); 11317 } else { 11318 /* Note that we will detect errors later. */ 11319 select = va >= ~(0xffffffffu >> t1sz); 11320 } 11321 if (!select) { 11322 tsz = t0sz; 11323 epd = extract32(tcr, 7, 1); 11324 hpd = extract64(tcr, 41, 1); 11325 } else { 11326 tsz = t1sz; 11327 epd = extract32(tcr, 23, 1); 11328 hpd = extract64(tcr, 42, 1); 11329 } 11330 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11331 hpd &= extract32(tcr, 6, 1); 11332 } 11333 11334 return (ARMVAParameters) { 11335 .tsz = tsz, 11336 .select = select, 11337 .epd = epd, 11338 .hpd = hpd, 11339 }; 11340 } 11341 11342 /** 11343 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11344 * 11345 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11346 * prot and page_size may not be filled in, and the populated fsr value provides 11347 * information on why the translation aborted, in the format of a long-format 11348 * DFSR/IFSR fault register, with the following caveats: 11349 * * the WnR bit is never set (the caller must do this). 11350 * 11351 * @env: CPUARMState 11352 * @address: virtual address to get physical address for 11353 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11354 * @mmu_idx: MMU index indicating required translation regime 11355 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11356 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11357 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11358 * @phys_ptr: set to the physical address corresponding to the virtual address 11359 * @attrs: set to the memory transaction attributes to use 11360 * @prot: set to the permissions for the page containing phys_ptr 11361 * @page_size_ptr: set to the size of the page containing phys_ptr 11362 * @fi: set to fault info if the translation fails 11363 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11364 */ 11365 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11366 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11367 bool s1_is_el0, 11368 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11369 target_ulong *page_size_ptr, 11370 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11371 { 11372 ARMCPU *cpu = env_archcpu(env); 11373 CPUState *cs = CPU(cpu); 11374 /* Read an LPAE long-descriptor translation table. */ 11375 ARMFaultType fault_type = ARMFault_Translation; 11376 uint32_t level; 11377 ARMVAParameters param; 11378 uint64_t ttbr; 11379 hwaddr descaddr, indexmask, indexmask_grainsize; 11380 uint32_t tableattrs; 11381 target_ulong page_size; 11382 uint32_t attrs; 11383 int32_t stride; 11384 int addrsize, inputsize, outputsize; 11385 TCR *tcr = regime_tcr(env, mmu_idx); 11386 int ap, ns, xn, pxn; 11387 uint32_t el = regime_el(env, mmu_idx); 11388 uint64_t descaddrmask; 11389 bool aarch64 = arm_el_is_aa64(env, el); 11390 bool guarded = false; 11391 11392 /* TODO: This code does not support shareability levels. */ 11393 if (aarch64) { 11394 int ps; 11395 11396 param = aa64_va_parameters(env, address, mmu_idx, 11397 access_type != MMU_INST_FETCH); 11398 level = 0; 11399 11400 /* 11401 * If TxSZ is programmed to a value larger than the maximum, 11402 * or smaller than the effective minimum, it is IMPLEMENTATION 11403 * DEFINED whether we behave as if the field were programmed 11404 * within bounds, or if a level 0 Translation fault is generated. 11405 * 11406 * With FEAT_LVA, fault on less than minimum becomes required, 11407 * so our choice is to always raise the fault. 11408 */ 11409 if (param.tsz_oob) { 11410 fault_type = ARMFault_Translation; 11411 goto do_fault; 11412 } 11413 11414 addrsize = 64 - 8 * param.tbi; 11415 inputsize = 64 - param.tsz; 11416 11417 /* 11418 * Bound PS by PARANGE to find the effective output address size. 11419 * ID_AA64MMFR0 is a read-only register so values outside of the 11420 * supported mappings can be considered an implementation error. 11421 */ 11422 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11423 ps = MIN(ps, param.ps); 11424 assert(ps < ARRAY_SIZE(pamax_map)); 11425 outputsize = pamax_map[ps]; 11426 } else { 11427 param = aa32_va_parameters(env, address, mmu_idx); 11428 level = 1; 11429 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11430 inputsize = addrsize - param.tsz; 11431 outputsize = 40; 11432 } 11433 11434 /* 11435 * We determined the region when collecting the parameters, but we 11436 * have not yet validated that the address is valid for the region. 11437 * Extract the top bits and verify that they all match select. 11438 * 11439 * For aa32, if inputsize == addrsize, then we have selected the 11440 * region by exclusion in aa32_va_parameters and there is no more 11441 * validation to do here. 11442 */ 11443 if (inputsize < addrsize) { 11444 target_ulong top_bits = sextract64(address, inputsize, 11445 addrsize - inputsize); 11446 if (-top_bits != param.select) { 11447 /* The gap between the two regions is a Translation fault */ 11448 fault_type = ARMFault_Translation; 11449 goto do_fault; 11450 } 11451 } 11452 11453 if (param.using64k) { 11454 stride = 13; 11455 } else if (param.using16k) { 11456 stride = 11; 11457 } else { 11458 stride = 9; 11459 } 11460 11461 /* Note that QEMU ignores shareability and cacheability attributes, 11462 * so we don't need to do anything with the SH, ORGN, IRGN fields 11463 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11464 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11465 * implement any ASID-like capability so we can ignore it (instead 11466 * we will always flush the TLB any time the ASID is changed). 11467 */ 11468 ttbr = regime_ttbr(env, mmu_idx, param.select); 11469 11470 /* Here we should have set up all the parameters for the translation: 11471 * inputsize, ttbr, epd, stride, tbi 11472 */ 11473 11474 if (param.epd) { 11475 /* Translation table walk disabled => Translation fault on TLB miss 11476 * Note: This is always 0 on 64-bit EL2 and EL3. 11477 */ 11478 goto do_fault; 11479 } 11480 11481 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11482 /* The starting level depends on the virtual address size (which can 11483 * be up to 48 bits) and the translation granule size. It indicates 11484 * the number of strides (stride bits at a time) needed to 11485 * consume the bits of the input address. In the pseudocode this is: 11486 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11487 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11488 * our 'stride + 3' and 'stride' is our 'stride'. 11489 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11490 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11491 * = 4 - (inputsize - 4) / stride; 11492 */ 11493 level = 4 - (inputsize - 4) / stride; 11494 } else { 11495 /* For stage 2 translations the starting level is specified by the 11496 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11497 */ 11498 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11499 uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1); 11500 uint32_t startlevel; 11501 bool ok; 11502 11503 /* SL2 is RES0 unless DS=1 & 4kb granule. */ 11504 if (param.ds && stride == 9 && sl2) { 11505 if (sl0 != 0) { 11506 level = 0; 11507 fault_type = ARMFault_Translation; 11508 goto do_fault; 11509 } 11510 startlevel = -1; 11511 } else if (!aarch64 || stride == 9) { 11512 /* AArch32 or 4KB pages */ 11513 startlevel = 2 - sl0; 11514 11515 if (cpu_isar_feature(aa64_st, cpu)) { 11516 startlevel &= 3; 11517 } 11518 } else { 11519 /* 16KB or 64KB pages */ 11520 startlevel = 3 - sl0; 11521 } 11522 11523 /* Check that the starting level is valid. */ 11524 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11525 inputsize, stride, outputsize); 11526 if (!ok) { 11527 fault_type = ARMFault_Translation; 11528 goto do_fault; 11529 } 11530 level = startlevel; 11531 } 11532 11533 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 11534 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 11535 11536 /* Now we can extract the actual base address from the TTBR */ 11537 descaddr = extract64(ttbr, 0, 48); 11538 11539 /* 11540 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 11541 * 11542 * Otherwise, if the base address is out of range, raise AddressSizeFault. 11543 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 11544 * but we've just cleared the bits above 47, so simplify the test. 11545 */ 11546 if (outputsize > 48) { 11547 descaddr |= extract64(ttbr, 2, 4) << 48; 11548 } else if (descaddr >> outputsize) { 11549 level = 0; 11550 fault_type = ARMFault_AddressSize; 11551 goto do_fault; 11552 } 11553 11554 /* 11555 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11556 * and also to mask out CnP (bit 0) which could validly be non-zero. 11557 */ 11558 descaddr &= ~indexmask; 11559 11560 /* 11561 * For AArch32, the address field in the descriptor goes up to bit 39 11562 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 11563 * or an AddressSize fault is raised. So for v8 we extract those SBZ 11564 * bits as part of the address, which will be checked via outputsize. 11565 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 11566 * the highest bits of a 52-bit output are placed elsewhere. 11567 */ 11568 if (param.ds) { 11569 descaddrmask = MAKE_64BIT_MASK(0, 50); 11570 } else if (arm_feature(env, ARM_FEATURE_V8)) { 11571 descaddrmask = MAKE_64BIT_MASK(0, 48); 11572 } else { 11573 descaddrmask = MAKE_64BIT_MASK(0, 40); 11574 } 11575 descaddrmask &= ~indexmask_grainsize; 11576 11577 /* Secure accesses start with the page table in secure memory and 11578 * can be downgraded to non-secure at any step. Non-secure accesses 11579 * remain non-secure. We implement this by just ORing in the NSTable/NS 11580 * bits at each step. 11581 */ 11582 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11583 for (;;) { 11584 uint64_t descriptor; 11585 bool nstable; 11586 11587 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11588 descaddr &= ~7ULL; 11589 nstable = extract32(tableattrs, 4, 1); 11590 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11591 if (fi->type != ARMFault_None) { 11592 goto do_fault; 11593 } 11594 11595 if (!(descriptor & 1) || 11596 (!(descriptor & 2) && (level == 3))) { 11597 /* Invalid, or the Reserved level 3 encoding */ 11598 goto do_fault; 11599 } 11600 11601 descaddr = descriptor & descaddrmask; 11602 11603 /* 11604 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 11605 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 11606 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 11607 * raise AddressSizeFault. 11608 */ 11609 if (outputsize > 48) { 11610 if (param.ds) { 11611 descaddr |= extract64(descriptor, 8, 2) << 50; 11612 } else { 11613 descaddr |= extract64(descriptor, 12, 4) << 48; 11614 } 11615 } else if (descaddr >> outputsize) { 11616 fault_type = ARMFault_AddressSize; 11617 goto do_fault; 11618 } 11619 11620 if ((descriptor & 2) && (level < 3)) { 11621 /* Table entry. The top five bits are attributes which may 11622 * propagate down through lower levels of the table (and 11623 * which are all arranged so that 0 means "no effect", so 11624 * we can gather them up by ORing in the bits at each level). 11625 */ 11626 tableattrs |= extract64(descriptor, 59, 5); 11627 level++; 11628 indexmask = indexmask_grainsize; 11629 continue; 11630 } 11631 /* 11632 * Block entry at level 1 or 2, or page entry at level 3. 11633 * These are basically the same thing, although the number 11634 * of bits we pull in from the vaddr varies. Note that although 11635 * descaddrmask masks enough of the low bits of the descriptor 11636 * to give a correct page or table address, the address field 11637 * in a block descriptor is smaller; so we need to explicitly 11638 * clear the lower bits here before ORing in the low vaddr bits. 11639 */ 11640 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11641 descaddr &= ~(page_size - 1); 11642 descaddr |= (address & (page_size - 1)); 11643 /* Extract attributes from the descriptor */ 11644 attrs = extract64(descriptor, 2, 10) 11645 | (extract64(descriptor, 52, 12) << 10); 11646 11647 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11648 /* Stage 2 table descriptors do not include any attribute fields */ 11649 break; 11650 } 11651 /* Merge in attributes from table descriptors */ 11652 attrs |= nstable << 3; /* NS */ 11653 guarded = extract64(descriptor, 50, 1); /* GP */ 11654 if (param.hpd) { 11655 /* HPD disables all the table attributes except NSTable. */ 11656 break; 11657 } 11658 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11659 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11660 * means "force PL1 access only", which means forcing AP[1] to 0. 11661 */ 11662 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11663 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11664 break; 11665 } 11666 /* Here descaddr is the final physical address, and attributes 11667 * are all in attrs. 11668 */ 11669 fault_type = ARMFault_AccessFlag; 11670 if ((attrs & (1 << 8)) == 0) { 11671 /* Access flag */ 11672 goto do_fault; 11673 } 11674 11675 ap = extract32(attrs, 4, 2); 11676 11677 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11678 ns = mmu_idx == ARMMMUIdx_Stage2; 11679 xn = extract32(attrs, 11, 2); 11680 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11681 } else { 11682 ns = extract32(attrs, 3, 1); 11683 xn = extract32(attrs, 12, 1); 11684 pxn = extract32(attrs, 11, 1); 11685 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11686 } 11687 11688 fault_type = ARMFault_Permission; 11689 if (!(*prot & (1 << access_type))) { 11690 goto do_fault; 11691 } 11692 11693 if (ns) { 11694 /* The NS bit will (as required by the architecture) have no effect if 11695 * the CPU doesn't support TZ or this is a non-secure translation 11696 * regime, because the attribute will already be non-secure. 11697 */ 11698 txattrs->secure = false; 11699 } 11700 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11701 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11702 arm_tlb_bti_gp(txattrs) = true; 11703 } 11704 11705 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11706 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11707 } else { 11708 /* Index into MAIR registers for cache attributes */ 11709 uint8_t attrindx = extract32(attrs, 0, 3); 11710 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11711 assert(attrindx <= 7); 11712 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11713 } 11714 11715 /* 11716 * For FEAT_LPA2 and effective DS, the SH field in the attributes 11717 * was re-purposed for output address bits. The SH attribute in 11718 * that case comes from TCR_ELx, which we extracted earlier. 11719 */ 11720 if (param.ds) { 11721 cacheattrs->shareability = param.sh; 11722 } else { 11723 cacheattrs->shareability = extract32(attrs, 6, 2); 11724 } 11725 11726 *phys_ptr = descaddr; 11727 *page_size_ptr = page_size; 11728 return false; 11729 11730 do_fault: 11731 fi->type = fault_type; 11732 fi->level = level; 11733 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11734 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11735 mmu_idx == ARMMMUIdx_Stage2_S); 11736 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11737 return true; 11738 } 11739 11740 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11741 ARMMMUIdx mmu_idx, 11742 int32_t address, int *prot) 11743 { 11744 if (!arm_feature(env, ARM_FEATURE_M)) { 11745 *prot = PAGE_READ | PAGE_WRITE; 11746 switch (address) { 11747 case 0xF0000000 ... 0xFFFFFFFF: 11748 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11749 /* hivecs execing is ok */ 11750 *prot |= PAGE_EXEC; 11751 } 11752 break; 11753 case 0x00000000 ... 0x7FFFFFFF: 11754 *prot |= PAGE_EXEC; 11755 break; 11756 } 11757 } else { 11758 /* Default system address map for M profile cores. 11759 * The architecture specifies which regions are execute-never; 11760 * at the MPU level no other checks are defined. 11761 */ 11762 switch (address) { 11763 case 0x00000000 ... 0x1fffffff: /* ROM */ 11764 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11765 case 0x60000000 ... 0x7fffffff: /* RAM */ 11766 case 0x80000000 ... 0x9fffffff: /* RAM */ 11767 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11768 break; 11769 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11770 case 0xa0000000 ... 0xbfffffff: /* Device */ 11771 case 0xc0000000 ... 0xdfffffff: /* Device */ 11772 case 0xe0000000 ... 0xffffffff: /* System */ 11773 *prot = PAGE_READ | PAGE_WRITE; 11774 break; 11775 default: 11776 g_assert_not_reached(); 11777 } 11778 } 11779 } 11780 11781 static bool pmsav7_use_background_region(ARMCPU *cpu, 11782 ARMMMUIdx mmu_idx, bool is_user) 11783 { 11784 /* Return true if we should use the default memory map as a 11785 * "background" region if there are no hits against any MPU regions. 11786 */ 11787 CPUARMState *env = &cpu->env; 11788 11789 if (is_user) { 11790 return false; 11791 } 11792 11793 if (arm_feature(env, ARM_FEATURE_M)) { 11794 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11795 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11796 } else { 11797 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11798 } 11799 } 11800 11801 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11802 { 11803 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11804 return arm_feature(env, ARM_FEATURE_M) && 11805 extract32(address, 20, 12) == 0xe00; 11806 } 11807 11808 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11809 { 11810 /* True if address is in the M profile system region 11811 * 0xe0000000 - 0xffffffff 11812 */ 11813 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11814 } 11815 11816 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11817 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11818 hwaddr *phys_ptr, int *prot, 11819 target_ulong *page_size, 11820 ARMMMUFaultInfo *fi) 11821 { 11822 ARMCPU *cpu = env_archcpu(env); 11823 int n; 11824 bool is_user = regime_is_user(env, mmu_idx); 11825 11826 *phys_ptr = address; 11827 *page_size = TARGET_PAGE_SIZE; 11828 *prot = 0; 11829 11830 if (regime_translation_disabled(env, mmu_idx) || 11831 m_is_ppb_region(env, address)) { 11832 /* MPU disabled or M profile PPB access: use default memory map. 11833 * The other case which uses the default memory map in the 11834 * v7M ARM ARM pseudocode is exception vector reads from the vector 11835 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11836 * which always does a direct read using address_space_ldl(), rather 11837 * than going via this function, so we don't need to check that here. 11838 */ 11839 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11840 } else { /* MPU enabled */ 11841 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11842 /* region search */ 11843 uint32_t base = env->pmsav7.drbar[n]; 11844 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11845 uint32_t rmask; 11846 bool srdis = false; 11847 11848 if (!(env->pmsav7.drsr[n] & 0x1)) { 11849 continue; 11850 } 11851 11852 if (!rsize) { 11853 qemu_log_mask(LOG_GUEST_ERROR, 11854 "DRSR[%d]: Rsize field cannot be 0\n", n); 11855 continue; 11856 } 11857 rsize++; 11858 rmask = (1ull << rsize) - 1; 11859 11860 if (base & rmask) { 11861 qemu_log_mask(LOG_GUEST_ERROR, 11862 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11863 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11864 n, base, rmask); 11865 continue; 11866 } 11867 11868 if (address < base || address > base + rmask) { 11869 /* 11870 * Address not in this region. We must check whether the 11871 * region covers addresses in the same page as our address. 11872 * In that case we must not report a size that covers the 11873 * whole page for a subsequent hit against a different MPU 11874 * region or the background region, because it would result in 11875 * incorrect TLB hits for subsequent accesses to addresses that 11876 * are in this MPU region. 11877 */ 11878 if (ranges_overlap(base, rmask, 11879 address & TARGET_PAGE_MASK, 11880 TARGET_PAGE_SIZE)) { 11881 *page_size = 1; 11882 } 11883 continue; 11884 } 11885 11886 /* Region matched */ 11887 11888 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11889 int i, snd; 11890 uint32_t srdis_mask; 11891 11892 rsize -= 3; /* sub region size (power of 2) */ 11893 snd = ((address - base) >> rsize) & 0x7; 11894 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11895 11896 srdis_mask = srdis ? 0x3 : 0x0; 11897 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11898 /* This will check in groups of 2, 4 and then 8, whether 11899 * the subregion bits are consistent. rsize is incremented 11900 * back up to give the region size, considering consistent 11901 * adjacent subregions as one region. Stop testing if rsize 11902 * is already big enough for an entire QEMU page. 11903 */ 11904 int snd_rounded = snd & ~(i - 1); 11905 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11906 snd_rounded + 8, i); 11907 if (srdis_mask ^ srdis_multi) { 11908 break; 11909 } 11910 srdis_mask = (srdis_mask << i) | srdis_mask; 11911 rsize++; 11912 } 11913 } 11914 if (srdis) { 11915 continue; 11916 } 11917 if (rsize < TARGET_PAGE_BITS) { 11918 *page_size = 1 << rsize; 11919 } 11920 break; 11921 } 11922 11923 if (n == -1) { /* no hits */ 11924 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11925 /* background fault */ 11926 fi->type = ARMFault_Background; 11927 return true; 11928 } 11929 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11930 } else { /* a MPU hit! */ 11931 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11932 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11933 11934 if (m_is_system_region(env, address)) { 11935 /* System space is always execute never */ 11936 xn = 1; 11937 } 11938 11939 if (is_user) { /* User mode AP bit decoding */ 11940 switch (ap) { 11941 case 0: 11942 case 1: 11943 case 5: 11944 break; /* no access */ 11945 case 3: 11946 *prot |= PAGE_WRITE; 11947 /* fall through */ 11948 case 2: 11949 case 6: 11950 *prot |= PAGE_READ | PAGE_EXEC; 11951 break; 11952 case 7: 11953 /* for v7M, same as 6; for R profile a reserved value */ 11954 if (arm_feature(env, ARM_FEATURE_M)) { 11955 *prot |= PAGE_READ | PAGE_EXEC; 11956 break; 11957 } 11958 /* fall through */ 11959 default: 11960 qemu_log_mask(LOG_GUEST_ERROR, 11961 "DRACR[%d]: Bad value for AP bits: 0x%" 11962 PRIx32 "\n", n, ap); 11963 } 11964 } else { /* Priv. mode AP bits decoding */ 11965 switch (ap) { 11966 case 0: 11967 break; /* no access */ 11968 case 1: 11969 case 2: 11970 case 3: 11971 *prot |= PAGE_WRITE; 11972 /* fall through */ 11973 case 5: 11974 case 6: 11975 *prot |= PAGE_READ | PAGE_EXEC; 11976 break; 11977 case 7: 11978 /* for v7M, same as 6; for R profile a reserved value */ 11979 if (arm_feature(env, ARM_FEATURE_M)) { 11980 *prot |= PAGE_READ | PAGE_EXEC; 11981 break; 11982 } 11983 /* fall through */ 11984 default: 11985 qemu_log_mask(LOG_GUEST_ERROR, 11986 "DRACR[%d]: Bad value for AP bits: 0x%" 11987 PRIx32 "\n", n, ap); 11988 } 11989 } 11990 11991 /* execute never */ 11992 if (xn) { 11993 *prot &= ~PAGE_EXEC; 11994 } 11995 } 11996 } 11997 11998 fi->type = ARMFault_Permission; 11999 fi->level = 1; 12000 return !(*prot & (1 << access_type)); 12001 } 12002 12003 static bool v8m_is_sau_exempt(CPUARMState *env, 12004 uint32_t address, MMUAccessType access_type) 12005 { 12006 /* The architecture specifies that certain address ranges are 12007 * exempt from v8M SAU/IDAU checks. 12008 */ 12009 return 12010 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 12011 (address >= 0xe0000000 && address <= 0xe0002fff) || 12012 (address >= 0xe000e000 && address <= 0xe000efff) || 12013 (address >= 0xe002e000 && address <= 0xe002efff) || 12014 (address >= 0xe0040000 && address <= 0xe0041fff) || 12015 (address >= 0xe00ff000 && address <= 0xe00fffff); 12016 } 12017 12018 void v8m_security_lookup(CPUARMState *env, uint32_t address, 12019 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12020 V8M_SAttributes *sattrs) 12021 { 12022 /* Look up the security attributes for this address. Compare the 12023 * pseudocode SecurityCheck() function. 12024 * We assume the caller has zero-initialized *sattrs. 12025 */ 12026 ARMCPU *cpu = env_archcpu(env); 12027 int r; 12028 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12029 int idau_region = IREGION_NOTVALID; 12030 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12031 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12032 12033 if (cpu->idau) { 12034 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12035 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12036 12037 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12038 &idau_nsc); 12039 } 12040 12041 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12042 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12043 return; 12044 } 12045 12046 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12047 sattrs->ns = !regime_is_secure(env, mmu_idx); 12048 return; 12049 } 12050 12051 if (idau_region != IREGION_NOTVALID) { 12052 sattrs->irvalid = true; 12053 sattrs->iregion = idau_region; 12054 } 12055 12056 switch (env->sau.ctrl & 3) { 12057 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12058 break; 12059 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12060 sattrs->ns = true; 12061 break; 12062 default: /* SAU.ENABLE == 1 */ 12063 for (r = 0; r < cpu->sau_sregion; r++) { 12064 if (env->sau.rlar[r] & 1) { 12065 uint32_t base = env->sau.rbar[r] & ~0x1f; 12066 uint32_t limit = env->sau.rlar[r] | 0x1f; 12067 12068 if (base <= address && limit >= address) { 12069 if (base > addr_page_base || limit < addr_page_limit) { 12070 sattrs->subpage = true; 12071 } 12072 if (sattrs->srvalid) { 12073 /* If we hit in more than one region then we must report 12074 * as Secure, not NS-Callable, with no valid region 12075 * number info. 12076 */ 12077 sattrs->ns = false; 12078 sattrs->nsc = false; 12079 sattrs->sregion = 0; 12080 sattrs->srvalid = false; 12081 break; 12082 } else { 12083 if (env->sau.rlar[r] & 2) { 12084 sattrs->nsc = true; 12085 } else { 12086 sattrs->ns = true; 12087 } 12088 sattrs->srvalid = true; 12089 sattrs->sregion = r; 12090 } 12091 } else { 12092 /* 12093 * Address not in this region. We must check whether the 12094 * region covers addresses in the same page as our address. 12095 * In that case we must not report a size that covers the 12096 * whole page for a subsequent hit against a different MPU 12097 * region or the background region, because it would result 12098 * in incorrect TLB hits for subsequent accesses to 12099 * addresses that are in this MPU region. 12100 */ 12101 if (limit >= base && 12102 ranges_overlap(base, limit - base + 1, 12103 addr_page_base, 12104 TARGET_PAGE_SIZE)) { 12105 sattrs->subpage = true; 12106 } 12107 } 12108 } 12109 } 12110 break; 12111 } 12112 12113 /* 12114 * The IDAU will override the SAU lookup results if it specifies 12115 * higher security than the SAU does. 12116 */ 12117 if (!idau_ns) { 12118 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12119 sattrs->ns = false; 12120 sattrs->nsc = idau_nsc; 12121 } 12122 } 12123 } 12124 12125 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12126 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12127 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12128 int *prot, bool *is_subpage, 12129 ARMMMUFaultInfo *fi, uint32_t *mregion) 12130 { 12131 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12132 * that a full phys-to-virt translation does). 12133 * mregion is (if not NULL) set to the region number which matched, 12134 * or -1 if no region number is returned (MPU off, address did not 12135 * hit a region, address hit in multiple regions). 12136 * We set is_subpage to true if the region hit doesn't cover the 12137 * entire TARGET_PAGE the address is within. 12138 */ 12139 ARMCPU *cpu = env_archcpu(env); 12140 bool is_user = regime_is_user(env, mmu_idx); 12141 uint32_t secure = regime_is_secure(env, mmu_idx); 12142 int n; 12143 int matchregion = -1; 12144 bool hit = false; 12145 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12146 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12147 12148 *is_subpage = false; 12149 *phys_ptr = address; 12150 *prot = 0; 12151 if (mregion) { 12152 *mregion = -1; 12153 } 12154 12155 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12156 * was an exception vector read from the vector table (which is always 12157 * done using the default system address map), because those accesses 12158 * are done in arm_v7m_load_vector(), which always does a direct 12159 * read using address_space_ldl(), rather than going via this function. 12160 */ 12161 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12162 hit = true; 12163 } else if (m_is_ppb_region(env, address)) { 12164 hit = true; 12165 } else { 12166 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12167 hit = true; 12168 } 12169 12170 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12171 /* region search */ 12172 /* Note that the base address is bits [31:5] from the register 12173 * with bits [4:0] all zeroes, but the limit address is bits 12174 * [31:5] from the register with bits [4:0] all ones. 12175 */ 12176 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12177 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12178 12179 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12180 /* Region disabled */ 12181 continue; 12182 } 12183 12184 if (address < base || address > limit) { 12185 /* 12186 * Address not in this region. We must check whether the 12187 * region covers addresses in the same page as our address. 12188 * In that case we must not report a size that covers the 12189 * whole page for a subsequent hit against a different MPU 12190 * region or the background region, because it would result in 12191 * incorrect TLB hits for subsequent accesses to addresses that 12192 * are in this MPU region. 12193 */ 12194 if (limit >= base && 12195 ranges_overlap(base, limit - base + 1, 12196 addr_page_base, 12197 TARGET_PAGE_SIZE)) { 12198 *is_subpage = true; 12199 } 12200 continue; 12201 } 12202 12203 if (base > addr_page_base || limit < addr_page_limit) { 12204 *is_subpage = true; 12205 } 12206 12207 if (matchregion != -1) { 12208 /* Multiple regions match -- always a failure (unlike 12209 * PMSAv7 where highest-numbered-region wins) 12210 */ 12211 fi->type = ARMFault_Permission; 12212 fi->level = 1; 12213 return true; 12214 } 12215 12216 matchregion = n; 12217 hit = true; 12218 } 12219 } 12220 12221 if (!hit) { 12222 /* background fault */ 12223 fi->type = ARMFault_Background; 12224 return true; 12225 } 12226 12227 if (matchregion == -1) { 12228 /* hit using the background region */ 12229 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12230 } else { 12231 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12232 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12233 bool pxn = false; 12234 12235 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12236 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12237 } 12238 12239 if (m_is_system_region(env, address)) { 12240 /* System space is always execute never */ 12241 xn = 1; 12242 } 12243 12244 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12245 if (*prot && !xn && !(pxn && !is_user)) { 12246 *prot |= PAGE_EXEC; 12247 } 12248 /* We don't need to look the attribute up in the MAIR0/MAIR1 12249 * registers because that only tells us about cacheability. 12250 */ 12251 if (mregion) { 12252 *mregion = matchregion; 12253 } 12254 } 12255 12256 fi->type = ARMFault_Permission; 12257 fi->level = 1; 12258 return !(*prot & (1 << access_type)); 12259 } 12260 12261 12262 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12263 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12264 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12265 int *prot, target_ulong *page_size, 12266 ARMMMUFaultInfo *fi) 12267 { 12268 uint32_t secure = regime_is_secure(env, mmu_idx); 12269 V8M_SAttributes sattrs = {}; 12270 bool ret; 12271 bool mpu_is_subpage; 12272 12273 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12274 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12275 if (access_type == MMU_INST_FETCH) { 12276 /* Instruction fetches always use the MMU bank and the 12277 * transaction attribute determined by the fetch address, 12278 * regardless of CPU state. This is painful for QEMU 12279 * to handle, because it would mean we need to encode 12280 * into the mmu_idx not just the (user, negpri) information 12281 * for the current security state but also that for the 12282 * other security state, which would balloon the number 12283 * of mmu_idx values needed alarmingly. 12284 * Fortunately we can avoid this because it's not actually 12285 * possible to arbitrarily execute code from memory with 12286 * the wrong security attribute: it will always generate 12287 * an exception of some kind or another, apart from the 12288 * special case of an NS CPU executing an SG instruction 12289 * in S&NSC memory. So we always just fail the translation 12290 * here and sort things out in the exception handler 12291 * (including possibly emulating an SG instruction). 12292 */ 12293 if (sattrs.ns != !secure) { 12294 if (sattrs.nsc) { 12295 fi->type = ARMFault_QEMU_NSCExec; 12296 } else { 12297 fi->type = ARMFault_QEMU_SFault; 12298 } 12299 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12300 *phys_ptr = address; 12301 *prot = 0; 12302 return true; 12303 } 12304 } else { 12305 /* For data accesses we always use the MMU bank indicated 12306 * by the current CPU state, but the security attributes 12307 * might downgrade a secure access to nonsecure. 12308 */ 12309 if (sattrs.ns) { 12310 txattrs->secure = false; 12311 } else if (!secure) { 12312 /* NS access to S memory must fault. 12313 * Architecturally we should first check whether the 12314 * MPU information for this address indicates that we 12315 * are doing an unaligned access to Device memory, which 12316 * should generate a UsageFault instead. QEMU does not 12317 * currently check for that kind of unaligned access though. 12318 * If we added it we would need to do so as a special case 12319 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12320 */ 12321 fi->type = ARMFault_QEMU_SFault; 12322 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12323 *phys_ptr = address; 12324 *prot = 0; 12325 return true; 12326 } 12327 } 12328 } 12329 12330 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12331 txattrs, prot, &mpu_is_subpage, fi, NULL); 12332 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12333 return ret; 12334 } 12335 12336 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12337 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12338 hwaddr *phys_ptr, int *prot, 12339 ARMMMUFaultInfo *fi) 12340 { 12341 int n; 12342 uint32_t mask; 12343 uint32_t base; 12344 bool is_user = regime_is_user(env, mmu_idx); 12345 12346 if (regime_translation_disabled(env, mmu_idx)) { 12347 /* MPU disabled. */ 12348 *phys_ptr = address; 12349 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12350 return false; 12351 } 12352 12353 *phys_ptr = address; 12354 for (n = 7; n >= 0; n--) { 12355 base = env->cp15.c6_region[n]; 12356 if ((base & 1) == 0) { 12357 continue; 12358 } 12359 mask = 1 << ((base >> 1) & 0x1f); 12360 /* Keep this shift separate from the above to avoid an 12361 (undefined) << 32. */ 12362 mask = (mask << 1) - 1; 12363 if (((base ^ address) & ~mask) == 0) { 12364 break; 12365 } 12366 } 12367 if (n < 0) { 12368 fi->type = ARMFault_Background; 12369 return true; 12370 } 12371 12372 if (access_type == MMU_INST_FETCH) { 12373 mask = env->cp15.pmsav5_insn_ap; 12374 } else { 12375 mask = env->cp15.pmsav5_data_ap; 12376 } 12377 mask = (mask >> (n * 4)) & 0xf; 12378 switch (mask) { 12379 case 0: 12380 fi->type = ARMFault_Permission; 12381 fi->level = 1; 12382 return true; 12383 case 1: 12384 if (is_user) { 12385 fi->type = ARMFault_Permission; 12386 fi->level = 1; 12387 return true; 12388 } 12389 *prot = PAGE_READ | PAGE_WRITE; 12390 break; 12391 case 2: 12392 *prot = PAGE_READ; 12393 if (!is_user) { 12394 *prot |= PAGE_WRITE; 12395 } 12396 break; 12397 case 3: 12398 *prot = PAGE_READ | PAGE_WRITE; 12399 break; 12400 case 5: 12401 if (is_user) { 12402 fi->type = ARMFault_Permission; 12403 fi->level = 1; 12404 return true; 12405 } 12406 *prot = PAGE_READ; 12407 break; 12408 case 6: 12409 *prot = PAGE_READ; 12410 break; 12411 default: 12412 /* Bad permission. */ 12413 fi->type = ARMFault_Permission; 12414 fi->level = 1; 12415 return true; 12416 } 12417 *prot |= PAGE_EXEC; 12418 return false; 12419 } 12420 12421 /* Combine either inner or outer cacheability attributes for normal 12422 * memory, according to table D4-42 and pseudocode procedure 12423 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12424 * 12425 * NB: only stage 1 includes allocation hints (RW bits), leading to 12426 * some asymmetry. 12427 */ 12428 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12429 { 12430 if (s1 == 4 || s2 == 4) { 12431 /* non-cacheable has precedence */ 12432 return 4; 12433 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12434 /* stage 1 write-through takes precedence */ 12435 return s1; 12436 } else if (extract32(s2, 2, 2) == 2) { 12437 /* stage 2 write-through takes precedence, but the allocation hint 12438 * is still taken from stage 1 12439 */ 12440 return (2 << 2) | extract32(s1, 0, 2); 12441 } else { /* write-back */ 12442 return s1; 12443 } 12444 } 12445 12446 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12447 * and CombineS1S2Desc() 12448 * 12449 * @s1: Attributes from stage 1 walk 12450 * @s2: Attributes from stage 2 walk 12451 */ 12452 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12453 { 12454 uint8_t s1lo, s2lo, s1hi, s2hi; 12455 ARMCacheAttrs ret; 12456 bool tagged = false; 12457 12458 if (s1.attrs == 0xf0) { 12459 tagged = true; 12460 s1.attrs = 0xff; 12461 } 12462 12463 s1lo = extract32(s1.attrs, 0, 4); 12464 s2lo = extract32(s2.attrs, 0, 4); 12465 s1hi = extract32(s1.attrs, 4, 4); 12466 s2hi = extract32(s2.attrs, 4, 4); 12467 12468 /* Combine shareability attributes (table D4-43) */ 12469 if (s1.shareability == 2 || s2.shareability == 2) { 12470 /* if either are outer-shareable, the result is outer-shareable */ 12471 ret.shareability = 2; 12472 } else if (s1.shareability == 3 || s2.shareability == 3) { 12473 /* if either are inner-shareable, the result is inner-shareable */ 12474 ret.shareability = 3; 12475 } else { 12476 /* both non-shareable */ 12477 ret.shareability = 0; 12478 } 12479 12480 /* Combine memory type and cacheability attributes */ 12481 if (s1hi == 0 || s2hi == 0) { 12482 /* Device has precedence over normal */ 12483 if (s1lo == 0 || s2lo == 0) { 12484 /* nGnRnE has precedence over anything */ 12485 ret.attrs = 0; 12486 } else if (s1lo == 4 || s2lo == 4) { 12487 /* non-Reordering has precedence over Reordering */ 12488 ret.attrs = 4; /* nGnRE */ 12489 } else if (s1lo == 8 || s2lo == 8) { 12490 /* non-Gathering has precedence over Gathering */ 12491 ret.attrs = 8; /* nGRE */ 12492 } else { 12493 ret.attrs = 0xc; /* GRE */ 12494 } 12495 12496 /* Any location for which the resultant memory type is any 12497 * type of Device memory is always treated as Outer Shareable. 12498 */ 12499 ret.shareability = 2; 12500 } else { /* Normal memory */ 12501 /* Outer/inner cacheability combine independently */ 12502 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12503 | combine_cacheattr_nibble(s1lo, s2lo); 12504 12505 if (ret.attrs == 0x44) { 12506 /* Any location for which the resultant memory type is Normal 12507 * Inner Non-cacheable, Outer Non-cacheable is always treated 12508 * as Outer Shareable. 12509 */ 12510 ret.shareability = 2; 12511 } 12512 } 12513 12514 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12515 if (tagged && ret.attrs == 0xff) { 12516 ret.attrs = 0xf0; 12517 } 12518 12519 return ret; 12520 } 12521 12522 12523 /* get_phys_addr - get the physical address for this virtual address 12524 * 12525 * Find the physical address corresponding to the given virtual address, 12526 * by doing a translation table walk on MMU based systems or using the 12527 * MPU state on MPU based systems. 12528 * 12529 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12530 * prot and page_size may not be filled in, and the populated fsr value provides 12531 * information on why the translation aborted, in the format of a 12532 * DFSR/IFSR fault register, with the following caveats: 12533 * * we honour the short vs long DFSR format differences. 12534 * * the WnR bit is never set (the caller must do this). 12535 * * for PSMAv5 based systems we don't bother to return a full FSR format 12536 * value. 12537 * 12538 * @env: CPUARMState 12539 * @address: virtual address to get physical address for 12540 * @access_type: 0 for read, 1 for write, 2 for execute 12541 * @mmu_idx: MMU index indicating required translation regime 12542 * @phys_ptr: set to the physical address corresponding to the virtual address 12543 * @attrs: set to the memory transaction attributes to use 12544 * @prot: set to the permissions for the page containing phys_ptr 12545 * @page_size: set to the size of the page containing phys_ptr 12546 * @fi: set to fault info if the translation fails 12547 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12548 */ 12549 bool get_phys_addr(CPUARMState *env, target_ulong address, 12550 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12551 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12552 target_ulong *page_size, 12553 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12554 { 12555 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12556 12557 if (mmu_idx != s1_mmu_idx) { 12558 /* Call ourselves recursively to do the stage 1 and then stage 2 12559 * translations if mmu_idx is a two-stage regime. 12560 */ 12561 if (arm_feature(env, ARM_FEATURE_EL2)) { 12562 hwaddr ipa; 12563 int s2_prot; 12564 int ret; 12565 bool ipa_secure; 12566 ARMCacheAttrs cacheattrs2 = {}; 12567 ARMMMUIdx s2_mmu_idx; 12568 bool is_el0; 12569 12570 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12571 attrs, prot, page_size, fi, cacheattrs); 12572 12573 /* If S1 fails or S2 is disabled, return early. */ 12574 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12575 *phys_ptr = ipa; 12576 return ret; 12577 } 12578 12579 ipa_secure = attrs->secure; 12580 if (arm_is_secure_below_el3(env)) { 12581 if (ipa_secure) { 12582 attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 12583 } else { 12584 attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 12585 } 12586 } else { 12587 assert(!ipa_secure); 12588 } 12589 12590 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12591 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12592 12593 /* S1 is done. Now do S2 translation. */ 12594 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12595 phys_ptr, attrs, &s2_prot, 12596 page_size, fi, &cacheattrs2); 12597 fi->s2addr = ipa; 12598 /* Combine the S1 and S2 perms. */ 12599 *prot &= s2_prot; 12600 12601 /* If S2 fails, return early. */ 12602 if (ret) { 12603 return ret; 12604 } 12605 12606 /* Combine the S1 and S2 cache attributes. */ 12607 if (arm_hcr_el2_eff(env) & HCR_DC) { 12608 /* 12609 * HCR.DC forces the first stage attributes to 12610 * Normal Non-Shareable, 12611 * Inner Write-Back Read-Allocate Write-Allocate, 12612 * Outer Write-Back Read-Allocate Write-Allocate. 12613 * Do not overwrite Tagged within attrs. 12614 */ 12615 if (cacheattrs->attrs != 0xf0) { 12616 cacheattrs->attrs = 0xff; 12617 } 12618 cacheattrs->shareability = 0; 12619 } 12620 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12621 12622 /* Check if IPA translates to secure or non-secure PA space. */ 12623 if (arm_is_secure_below_el3(env)) { 12624 if (ipa_secure) { 12625 attrs->secure = 12626 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12627 } else { 12628 attrs->secure = 12629 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12630 || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW))); 12631 } 12632 } 12633 return 0; 12634 } else { 12635 /* 12636 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12637 */ 12638 mmu_idx = stage_1_mmu_idx(mmu_idx); 12639 } 12640 } 12641 12642 /* The page table entries may downgrade secure to non-secure, but 12643 * cannot upgrade an non-secure translation regime's attributes 12644 * to secure. 12645 */ 12646 attrs->secure = regime_is_secure(env, mmu_idx); 12647 attrs->user = regime_is_user(env, mmu_idx); 12648 12649 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12650 * In v7 and earlier it affects all stage 1 translations. 12651 */ 12652 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12653 && !arm_feature(env, ARM_FEATURE_V8)) { 12654 if (regime_el(env, mmu_idx) == 3) { 12655 address += env->cp15.fcseidr_s; 12656 } else { 12657 address += env->cp15.fcseidr_ns; 12658 } 12659 } 12660 12661 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12662 bool ret; 12663 *page_size = TARGET_PAGE_SIZE; 12664 12665 if (arm_feature(env, ARM_FEATURE_V8)) { 12666 /* PMSAv8 */ 12667 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12668 phys_ptr, attrs, prot, page_size, fi); 12669 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12670 /* PMSAv7 */ 12671 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12672 phys_ptr, prot, page_size, fi); 12673 } else { 12674 /* Pre-v7 MPU */ 12675 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12676 phys_ptr, prot, fi); 12677 } 12678 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12679 " mmu_idx %u -> %s (prot %c%c%c)\n", 12680 access_type == MMU_DATA_LOAD ? "reading" : 12681 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12682 (uint32_t)address, mmu_idx, 12683 ret ? "Miss" : "Hit", 12684 *prot & PAGE_READ ? 'r' : '-', 12685 *prot & PAGE_WRITE ? 'w' : '-', 12686 *prot & PAGE_EXEC ? 'x' : '-'); 12687 12688 return ret; 12689 } 12690 12691 /* Definitely a real MMU, not an MPU */ 12692 12693 if (regime_translation_disabled(env, mmu_idx)) { 12694 uint64_t hcr; 12695 uint8_t memattr; 12696 12697 /* 12698 * MMU disabled. S1 addresses within aa64 translation regimes are 12699 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12700 */ 12701 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12702 int r_el = regime_el(env, mmu_idx); 12703 if (arm_el_is_aa64(env, r_el)) { 12704 int pamax = arm_pamax(env_archcpu(env)); 12705 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12706 int addrtop, tbi; 12707 12708 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12709 if (access_type == MMU_INST_FETCH) { 12710 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12711 } 12712 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12713 addrtop = (tbi ? 55 : 63); 12714 12715 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12716 fi->type = ARMFault_AddressSize; 12717 fi->level = 0; 12718 fi->stage2 = false; 12719 return 1; 12720 } 12721 12722 /* 12723 * When TBI is disabled, we've just validated that all of the 12724 * bits above PAMax are zero, so logically we only need to 12725 * clear the top byte for TBI. But it's clearer to follow 12726 * the pseudocode set of addrdesc.paddress. 12727 */ 12728 address = extract64(address, 0, 52); 12729 } 12730 } 12731 *phys_ptr = address; 12732 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12733 *page_size = TARGET_PAGE_SIZE; 12734 12735 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12736 hcr = arm_hcr_el2_eff(env); 12737 cacheattrs->shareability = 0; 12738 if (hcr & HCR_DC) { 12739 if (hcr & HCR_DCT) { 12740 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12741 } else { 12742 memattr = 0xff; /* Normal, WB, RWA */ 12743 } 12744 } else if (access_type == MMU_INST_FETCH) { 12745 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12746 memattr = 0xee; /* Normal, WT, RA, NT */ 12747 } else { 12748 memattr = 0x44; /* Normal, NC, No */ 12749 } 12750 cacheattrs->shareability = 2; /* outer sharable */ 12751 } else { 12752 memattr = 0x00; /* Device, nGnRnE */ 12753 } 12754 cacheattrs->attrs = memattr; 12755 return 0; 12756 } 12757 12758 if (regime_using_lpae_format(env, mmu_idx)) { 12759 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12760 phys_ptr, attrs, prot, page_size, 12761 fi, cacheattrs); 12762 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12763 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12764 phys_ptr, attrs, prot, page_size, fi); 12765 } else { 12766 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12767 phys_ptr, prot, page_size, fi); 12768 } 12769 } 12770 12771 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12772 MemTxAttrs *attrs) 12773 { 12774 ARMCPU *cpu = ARM_CPU(cs); 12775 CPUARMState *env = &cpu->env; 12776 hwaddr phys_addr; 12777 target_ulong page_size; 12778 int prot; 12779 bool ret; 12780 ARMMMUFaultInfo fi = {}; 12781 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12782 ARMCacheAttrs cacheattrs = {}; 12783 12784 *attrs = (MemTxAttrs) {}; 12785 12786 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12787 attrs, &prot, &page_size, &fi, &cacheattrs); 12788 12789 if (ret) { 12790 return -1; 12791 } 12792 return phys_addr; 12793 } 12794 12795 #endif 12796 12797 /* Note that signed overflow is undefined in C. The following routines are 12798 careful to use unsigned types where modulo arithmetic is required. 12799 Failure to do so _will_ break on newer gcc. */ 12800 12801 /* Signed saturating arithmetic. */ 12802 12803 /* Perform 16-bit signed saturating addition. */ 12804 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12805 { 12806 uint16_t res; 12807 12808 res = a + b; 12809 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12810 if (a & 0x8000) 12811 res = 0x8000; 12812 else 12813 res = 0x7fff; 12814 } 12815 return res; 12816 } 12817 12818 /* Perform 8-bit signed saturating addition. */ 12819 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12820 { 12821 uint8_t res; 12822 12823 res = a + b; 12824 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12825 if (a & 0x80) 12826 res = 0x80; 12827 else 12828 res = 0x7f; 12829 } 12830 return res; 12831 } 12832 12833 /* Perform 16-bit signed saturating subtraction. */ 12834 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12835 { 12836 uint16_t res; 12837 12838 res = a - b; 12839 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12840 if (a & 0x8000) 12841 res = 0x8000; 12842 else 12843 res = 0x7fff; 12844 } 12845 return res; 12846 } 12847 12848 /* Perform 8-bit signed saturating subtraction. */ 12849 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12850 { 12851 uint8_t res; 12852 12853 res = a - b; 12854 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12855 if (a & 0x80) 12856 res = 0x80; 12857 else 12858 res = 0x7f; 12859 } 12860 return res; 12861 } 12862 12863 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12864 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12865 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12866 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12867 #define PFX q 12868 12869 #include "op_addsub.h" 12870 12871 /* Unsigned saturating arithmetic. */ 12872 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12873 { 12874 uint16_t res; 12875 res = a + b; 12876 if (res < a) 12877 res = 0xffff; 12878 return res; 12879 } 12880 12881 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12882 { 12883 if (a > b) 12884 return a - b; 12885 else 12886 return 0; 12887 } 12888 12889 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12890 { 12891 uint8_t res; 12892 res = a + b; 12893 if (res < a) 12894 res = 0xff; 12895 return res; 12896 } 12897 12898 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12899 { 12900 if (a > b) 12901 return a - b; 12902 else 12903 return 0; 12904 } 12905 12906 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12907 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12908 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12909 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12910 #define PFX uq 12911 12912 #include "op_addsub.h" 12913 12914 /* Signed modulo arithmetic. */ 12915 #define SARITH16(a, b, n, op) do { \ 12916 int32_t sum; \ 12917 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12918 RESULT(sum, n, 16); \ 12919 if (sum >= 0) \ 12920 ge |= 3 << (n * 2); \ 12921 } while(0) 12922 12923 #define SARITH8(a, b, n, op) do { \ 12924 int32_t sum; \ 12925 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12926 RESULT(sum, n, 8); \ 12927 if (sum >= 0) \ 12928 ge |= 1 << n; \ 12929 } while(0) 12930 12931 12932 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12933 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12934 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12935 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12936 #define PFX s 12937 #define ARITH_GE 12938 12939 #include "op_addsub.h" 12940 12941 /* Unsigned modulo arithmetic. */ 12942 #define ADD16(a, b, n) do { \ 12943 uint32_t sum; \ 12944 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12945 RESULT(sum, n, 16); \ 12946 if ((sum >> 16) == 1) \ 12947 ge |= 3 << (n * 2); \ 12948 } while(0) 12949 12950 #define ADD8(a, b, n) do { \ 12951 uint32_t sum; \ 12952 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12953 RESULT(sum, n, 8); \ 12954 if ((sum >> 8) == 1) \ 12955 ge |= 1 << n; \ 12956 } while(0) 12957 12958 #define SUB16(a, b, n) do { \ 12959 uint32_t sum; \ 12960 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12961 RESULT(sum, n, 16); \ 12962 if ((sum >> 16) == 0) \ 12963 ge |= 3 << (n * 2); \ 12964 } while(0) 12965 12966 #define SUB8(a, b, n) do { \ 12967 uint32_t sum; \ 12968 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12969 RESULT(sum, n, 8); \ 12970 if ((sum >> 8) == 0) \ 12971 ge |= 1 << n; \ 12972 } while(0) 12973 12974 #define PFX u 12975 #define ARITH_GE 12976 12977 #include "op_addsub.h" 12978 12979 /* Halved signed arithmetic. */ 12980 #define ADD16(a, b, n) \ 12981 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12982 #define SUB16(a, b, n) \ 12983 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12984 #define ADD8(a, b, n) \ 12985 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12986 #define SUB8(a, b, n) \ 12987 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12988 #define PFX sh 12989 12990 #include "op_addsub.h" 12991 12992 /* Halved unsigned arithmetic. */ 12993 #define ADD16(a, b, n) \ 12994 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12995 #define SUB16(a, b, n) \ 12996 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12997 #define ADD8(a, b, n) \ 12998 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12999 #define SUB8(a, b, n) \ 13000 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13001 #define PFX uh 13002 13003 #include "op_addsub.h" 13004 13005 static inline uint8_t do_usad(uint8_t a, uint8_t b) 13006 { 13007 if (a > b) 13008 return a - b; 13009 else 13010 return b - a; 13011 } 13012 13013 /* Unsigned sum of absolute byte differences. */ 13014 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 13015 { 13016 uint32_t sum; 13017 sum = do_usad(a, b); 13018 sum += do_usad(a >> 8, b >> 8); 13019 sum += do_usad(a >> 16, b >> 16); 13020 sum += do_usad(a >> 24, b >> 24); 13021 return sum; 13022 } 13023 13024 /* For ARMv6 SEL instruction. */ 13025 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13026 { 13027 uint32_t mask; 13028 13029 mask = 0; 13030 if (flags & 1) 13031 mask |= 0xff; 13032 if (flags & 2) 13033 mask |= 0xff00; 13034 if (flags & 4) 13035 mask |= 0xff0000; 13036 if (flags & 8) 13037 mask |= 0xff000000; 13038 return (a & mask) | (b & ~mask); 13039 } 13040 13041 /* CRC helpers. 13042 * The upper bytes of val (above the number specified by 'bytes') must have 13043 * been zeroed out by the caller. 13044 */ 13045 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13046 { 13047 uint8_t buf[4]; 13048 13049 stl_le_p(buf, val); 13050 13051 /* zlib crc32 converts the accumulator and output to one's complement. */ 13052 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13053 } 13054 13055 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13056 { 13057 uint8_t buf[4]; 13058 13059 stl_le_p(buf, val); 13060 13061 /* Linux crc32c converts the output to one's complement. */ 13062 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13063 } 13064 13065 /* Return the exception level to which FP-disabled exceptions should 13066 * be taken, or 0 if FP is enabled. 13067 */ 13068 int fp_exception_el(CPUARMState *env, int cur_el) 13069 { 13070 #ifndef CONFIG_USER_ONLY 13071 uint64_t hcr_el2; 13072 13073 /* CPACR and the CPTR registers don't exist before v6, so FP is 13074 * always accessible 13075 */ 13076 if (!arm_feature(env, ARM_FEATURE_V6)) { 13077 return 0; 13078 } 13079 13080 if (arm_feature(env, ARM_FEATURE_M)) { 13081 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13082 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13083 return 1; 13084 } 13085 13086 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13087 if (!extract32(env->v7m.nsacr, 10, 1)) { 13088 /* FP insns cause a NOCP UsageFault taken to Secure */ 13089 return 3; 13090 } 13091 } 13092 13093 return 0; 13094 } 13095 13096 hcr_el2 = arm_hcr_el2_eff(env); 13097 13098 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13099 * 0, 2 : trap EL0 and EL1/PL1 accesses 13100 * 1 : trap only EL0 accesses 13101 * 3 : trap no accesses 13102 * This register is ignored if E2H+TGE are both set. 13103 */ 13104 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13105 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13106 13107 switch (fpen) { 13108 case 0: 13109 case 2: 13110 if (cur_el == 0 || cur_el == 1) { 13111 /* Trap to PL1, which might be EL1 or EL3 */ 13112 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13113 return 3; 13114 } 13115 return 1; 13116 } 13117 if (cur_el == 3 && !is_a64(env)) { 13118 /* Secure PL1 running at EL3 */ 13119 return 3; 13120 } 13121 break; 13122 case 1: 13123 if (cur_el == 0) { 13124 return 1; 13125 } 13126 break; 13127 case 3: 13128 break; 13129 } 13130 } 13131 13132 /* 13133 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13134 * to control non-secure access to the FPU. It doesn't have any 13135 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13136 */ 13137 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13138 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13139 if (!extract32(env->cp15.nsacr, 10, 1)) { 13140 /* FP insns act as UNDEF */ 13141 return cur_el == 2 ? 2 : 1; 13142 } 13143 } 13144 13145 /* 13146 * CPTR_EL2 is present in v7VE or v8, and changes format 13147 * with HCR_EL2.E2H (regardless of TGE). 13148 */ 13149 if (cur_el <= 2) { 13150 if (hcr_el2 & HCR_E2H) { 13151 /* Check CPTR_EL2.FPEN. */ 13152 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 13153 case 1: 13154 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 13155 break; 13156 } 13157 /* fall through */ 13158 case 0: 13159 case 2: 13160 return 2; 13161 } 13162 } else if (arm_is_el2_enabled(env)) { 13163 if (env->cp15.cptr_el[2] & CPTR_TFP) { 13164 return 2; 13165 } 13166 } 13167 } 13168 13169 /* CPTR_EL3 : present in v8 */ 13170 if (env->cp15.cptr_el[3] & CPTR_TFP) { 13171 /* Trap all FP ops to EL3 */ 13172 return 3; 13173 } 13174 #endif 13175 return 0; 13176 } 13177 13178 /* Return the exception level we're running at if this is our mmu_idx */ 13179 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13180 { 13181 if (mmu_idx & ARM_MMU_IDX_M) { 13182 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13183 } 13184 13185 switch (mmu_idx) { 13186 case ARMMMUIdx_E10_0: 13187 case ARMMMUIdx_E20_0: 13188 case ARMMMUIdx_SE10_0: 13189 case ARMMMUIdx_SE20_0: 13190 return 0; 13191 case ARMMMUIdx_E10_1: 13192 case ARMMMUIdx_E10_1_PAN: 13193 case ARMMMUIdx_SE10_1: 13194 case ARMMMUIdx_SE10_1_PAN: 13195 return 1; 13196 case ARMMMUIdx_E2: 13197 case ARMMMUIdx_E20_2: 13198 case ARMMMUIdx_E20_2_PAN: 13199 case ARMMMUIdx_SE2: 13200 case ARMMMUIdx_SE20_2: 13201 case ARMMMUIdx_SE20_2_PAN: 13202 return 2; 13203 case ARMMMUIdx_SE3: 13204 return 3; 13205 default: 13206 g_assert_not_reached(); 13207 } 13208 } 13209 13210 #ifndef CONFIG_TCG 13211 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13212 { 13213 g_assert_not_reached(); 13214 } 13215 #endif 13216 13217 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13218 { 13219 ARMMMUIdx idx; 13220 uint64_t hcr; 13221 13222 if (arm_feature(env, ARM_FEATURE_M)) { 13223 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13224 } 13225 13226 /* See ARM pseudo-function ELIsInHost. */ 13227 switch (el) { 13228 case 0: 13229 hcr = arm_hcr_el2_eff(env); 13230 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13231 idx = ARMMMUIdx_E20_0; 13232 } else { 13233 idx = ARMMMUIdx_E10_0; 13234 } 13235 break; 13236 case 1: 13237 if (env->pstate & PSTATE_PAN) { 13238 idx = ARMMMUIdx_E10_1_PAN; 13239 } else { 13240 idx = ARMMMUIdx_E10_1; 13241 } 13242 break; 13243 case 2: 13244 /* Note that TGE does not apply at EL2. */ 13245 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13246 if (env->pstate & PSTATE_PAN) { 13247 idx = ARMMMUIdx_E20_2_PAN; 13248 } else { 13249 idx = ARMMMUIdx_E20_2; 13250 } 13251 } else { 13252 idx = ARMMMUIdx_E2; 13253 } 13254 break; 13255 case 3: 13256 return ARMMMUIdx_SE3; 13257 default: 13258 g_assert_not_reached(); 13259 } 13260 13261 if (arm_is_secure_below_el3(env)) { 13262 idx &= ~ARM_MMU_IDX_A_NS; 13263 } 13264 13265 return idx; 13266 } 13267 13268 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13269 { 13270 return arm_mmu_idx_el(env, arm_current_el(env)); 13271 } 13272 13273 #ifndef CONFIG_USER_ONLY 13274 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13275 { 13276 return stage_1_mmu_idx(arm_mmu_idx(env)); 13277 } 13278 #endif 13279 13280 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13281 ARMMMUIdx mmu_idx, 13282 CPUARMTBFlags flags) 13283 { 13284 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13285 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13286 13287 if (arm_singlestep_active(env)) { 13288 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13289 } 13290 return flags; 13291 } 13292 13293 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13294 ARMMMUIdx mmu_idx, 13295 CPUARMTBFlags flags) 13296 { 13297 bool sctlr_b = arm_sctlr_b(env); 13298 13299 if (sctlr_b) { 13300 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13301 } 13302 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13303 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13304 } 13305 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13306 13307 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13308 } 13309 13310 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13311 ARMMMUIdx mmu_idx) 13312 { 13313 CPUARMTBFlags flags = {}; 13314 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13315 13316 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13317 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13318 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13319 } 13320 13321 if (arm_v7m_is_handler_mode(env)) { 13322 DP_TBFLAG_M32(flags, HANDLER, 1); 13323 } 13324 13325 /* 13326 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13327 * is suppressing them because the requested execution priority 13328 * is less than 0. 13329 */ 13330 if (arm_feature(env, ARM_FEATURE_V8) && 13331 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13332 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13333 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13334 } 13335 13336 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13337 } 13338 13339 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13340 { 13341 CPUARMTBFlags flags = {}; 13342 13343 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13344 return flags; 13345 } 13346 13347 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13348 ARMMMUIdx mmu_idx) 13349 { 13350 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13351 int el = arm_current_el(env); 13352 13353 if (arm_sctlr(env, el) & SCTLR_A) { 13354 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13355 } 13356 13357 if (arm_el_is_aa64(env, 1)) { 13358 DP_TBFLAG_A32(flags, VFPEN, 1); 13359 } 13360 13361 if (el < 2 && env->cp15.hstr_el2 && 13362 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13363 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13364 } 13365 13366 if (env->uncached_cpsr & CPSR_IL) { 13367 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13368 } 13369 13370 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13371 } 13372 13373 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13374 ARMMMUIdx mmu_idx) 13375 { 13376 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13377 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13378 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13379 uint64_t sctlr; 13380 int tbii, tbid; 13381 13382 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13383 13384 /* Get control bits for tagged addresses. */ 13385 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13386 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13387 13388 DP_TBFLAG_A64(flags, TBII, tbii); 13389 DP_TBFLAG_A64(flags, TBID, tbid); 13390 13391 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13392 int sve_el = sve_exception_el(env, el); 13393 uint32_t zcr_len; 13394 13395 /* 13396 * If SVE is disabled, but FP is enabled, 13397 * then the effective len is 0. 13398 */ 13399 if (sve_el != 0 && fp_el == 0) { 13400 zcr_len = 0; 13401 } else { 13402 zcr_len = sve_zcr_len_for_el(env, el); 13403 } 13404 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13405 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13406 } 13407 13408 sctlr = regime_sctlr(env, stage1); 13409 13410 if (sctlr & SCTLR_A) { 13411 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13412 } 13413 13414 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13415 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13416 } 13417 13418 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13419 /* 13420 * In order to save space in flags, we record only whether 13421 * pauth is "inactive", meaning all insns are implemented as 13422 * a nop, or "active" when some action must be performed. 13423 * The decision of which action to take is left to a helper. 13424 */ 13425 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13426 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13427 } 13428 } 13429 13430 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13431 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13432 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13433 DP_TBFLAG_A64(flags, BT, 1); 13434 } 13435 } 13436 13437 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13438 if (!(env->pstate & PSTATE_UAO)) { 13439 switch (mmu_idx) { 13440 case ARMMMUIdx_E10_1: 13441 case ARMMMUIdx_E10_1_PAN: 13442 case ARMMMUIdx_SE10_1: 13443 case ARMMMUIdx_SE10_1_PAN: 13444 /* TODO: ARMv8.3-NV */ 13445 DP_TBFLAG_A64(flags, UNPRIV, 1); 13446 break; 13447 case ARMMMUIdx_E20_2: 13448 case ARMMMUIdx_E20_2_PAN: 13449 case ARMMMUIdx_SE20_2: 13450 case ARMMMUIdx_SE20_2_PAN: 13451 /* 13452 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13453 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13454 */ 13455 if (env->cp15.hcr_el2 & HCR_TGE) { 13456 DP_TBFLAG_A64(flags, UNPRIV, 1); 13457 } 13458 break; 13459 default: 13460 break; 13461 } 13462 } 13463 13464 if (env->pstate & PSTATE_IL) { 13465 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13466 } 13467 13468 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13469 /* 13470 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13471 * if all accesses must be Unchecked: 13472 * 1) If no TBI, then there are no tags in the address to check, 13473 * 2) If Tag Check Override, then all accesses are Unchecked, 13474 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13475 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13476 */ 13477 if (allocation_tag_access_enabled(env, el, sctlr)) { 13478 DP_TBFLAG_A64(flags, ATA, 1); 13479 if (tbid 13480 && !(env->pstate & PSTATE_TCO) 13481 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13482 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13483 } 13484 } 13485 /* And again for unprivileged accesses, if required. */ 13486 if (EX_TBFLAG_A64(flags, UNPRIV) 13487 && tbid 13488 && !(env->pstate & PSTATE_TCO) 13489 && (sctlr & SCTLR_TCF0) 13490 && allocation_tag_access_enabled(env, 0, sctlr)) { 13491 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13492 } 13493 /* Cache TCMA as well as TBI. */ 13494 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13495 } 13496 13497 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13498 } 13499 13500 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13501 { 13502 int el = arm_current_el(env); 13503 int fp_el = fp_exception_el(env, el); 13504 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13505 13506 if (is_a64(env)) { 13507 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13508 } else if (arm_feature(env, ARM_FEATURE_M)) { 13509 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13510 } else { 13511 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13512 } 13513 } 13514 13515 void arm_rebuild_hflags(CPUARMState *env) 13516 { 13517 env->hflags = rebuild_hflags_internal(env); 13518 } 13519 13520 /* 13521 * If we have triggered a EL state change we can't rely on the 13522 * translator having passed it to us, we need to recompute. 13523 */ 13524 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13525 { 13526 int el = arm_current_el(env); 13527 int fp_el = fp_exception_el(env, el); 13528 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13529 13530 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13531 } 13532 13533 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13534 { 13535 int fp_el = fp_exception_el(env, el); 13536 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13537 13538 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13539 } 13540 13541 /* 13542 * If we have triggered a EL state change we can't rely on the 13543 * translator having passed it to us, we need to recompute. 13544 */ 13545 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13546 { 13547 int el = arm_current_el(env); 13548 int fp_el = fp_exception_el(env, el); 13549 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13550 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13551 } 13552 13553 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13554 { 13555 int fp_el = fp_exception_el(env, el); 13556 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13557 13558 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13559 } 13560 13561 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13562 { 13563 int fp_el = fp_exception_el(env, el); 13564 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13565 13566 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13567 } 13568 13569 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13570 { 13571 #ifdef CONFIG_DEBUG_TCG 13572 CPUARMTBFlags c = env->hflags; 13573 CPUARMTBFlags r = rebuild_hflags_internal(env); 13574 13575 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13576 fprintf(stderr, "TCG hflags mismatch " 13577 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13578 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13579 c.flags, c.flags2, r.flags, r.flags2); 13580 abort(); 13581 } 13582 #endif 13583 } 13584 13585 static bool mve_no_pred(CPUARMState *env) 13586 { 13587 /* 13588 * Return true if there is definitely no predication of MVE 13589 * instructions by VPR or LTPSIZE. (Returning false even if there 13590 * isn't any predication is OK; generated code will just be 13591 * a little worse.) 13592 * If the CPU does not implement MVE then this TB flag is always 0. 13593 * 13594 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13595 * logic in gen_update_fp_context() needs to be updated to match. 13596 * 13597 * We do not include the effect of the ECI bits here -- they are 13598 * tracked in other TB flags. This simplifies the logic for 13599 * "when did we emit code that changes the MVE_NO_PRED TB flag 13600 * and thus need to end the TB?". 13601 */ 13602 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13603 return false; 13604 } 13605 if (env->v7m.vpr) { 13606 return false; 13607 } 13608 if (env->v7m.ltpsize < 4) { 13609 return false; 13610 } 13611 return true; 13612 } 13613 13614 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13615 target_ulong *cs_base, uint32_t *pflags) 13616 { 13617 CPUARMTBFlags flags; 13618 13619 assert_hflags_rebuild_correctly(env); 13620 flags = env->hflags; 13621 13622 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13623 *pc = env->pc; 13624 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13625 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13626 } 13627 } else { 13628 *pc = env->regs[15]; 13629 13630 if (arm_feature(env, ARM_FEATURE_M)) { 13631 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13632 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13633 != env->v7m.secure) { 13634 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13635 } 13636 13637 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13638 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13639 (env->v7m.secure && 13640 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13641 /* 13642 * ASPEN is set, but FPCA/SFPA indicate that there is no 13643 * active FP context; we must create a new FP context before 13644 * executing any FP insn. 13645 */ 13646 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13647 } 13648 13649 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13650 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13651 DP_TBFLAG_M32(flags, LSPACT, 1); 13652 } 13653 13654 if (mve_no_pred(env)) { 13655 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13656 } 13657 } else { 13658 /* 13659 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13660 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13661 */ 13662 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13663 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13664 } else { 13665 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13666 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13667 } 13668 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13669 DP_TBFLAG_A32(flags, VFPEN, 1); 13670 } 13671 } 13672 13673 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13674 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13675 } 13676 13677 /* 13678 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13679 * states defined in the ARM ARM for software singlestep: 13680 * SS_ACTIVE PSTATE.SS State 13681 * 0 x Inactive (the TB flag for SS is always 0) 13682 * 1 0 Active-pending 13683 * 1 1 Active-not-pending 13684 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13685 */ 13686 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13687 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13688 } 13689 13690 *pflags = flags.flags; 13691 *cs_base = flags.flags2; 13692 } 13693 13694 #ifdef TARGET_AARCH64 13695 /* 13696 * The manual says that when SVE is enabled and VQ is widened the 13697 * implementation is allowed to zero the previously inaccessible 13698 * portion of the registers. The corollary to that is that when 13699 * SVE is enabled and VQ is narrowed we are also allowed to zero 13700 * the now inaccessible portion of the registers. 13701 * 13702 * The intent of this is that no predicate bit beyond VQ is ever set. 13703 * Which means that some operations on predicate registers themselves 13704 * may operate on full uint64_t or even unrolled across the maximum 13705 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13706 * may well be cheaper than conditionals to restrict the operation 13707 * to the relevant portion of a uint16_t[16]. 13708 */ 13709 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13710 { 13711 int i, j; 13712 uint64_t pmask; 13713 13714 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13715 assert(vq <= env_archcpu(env)->sve_max_vq); 13716 13717 /* Zap the high bits of the zregs. */ 13718 for (i = 0; i < 32; i++) { 13719 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13720 } 13721 13722 /* Zap the high bits of the pregs and ffr. */ 13723 pmask = 0; 13724 if (vq & 3) { 13725 pmask = ~(-1ULL << (16 * (vq & 3))); 13726 } 13727 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13728 for (i = 0; i < 17; ++i) { 13729 env->vfp.pregs[i].p[j] &= pmask; 13730 } 13731 pmask = 0; 13732 } 13733 } 13734 13735 /* 13736 * Notice a change in SVE vector size when changing EL. 13737 */ 13738 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13739 int new_el, bool el0_a64) 13740 { 13741 ARMCPU *cpu = env_archcpu(env); 13742 int old_len, new_len; 13743 bool old_a64, new_a64; 13744 13745 /* Nothing to do if no SVE. */ 13746 if (!cpu_isar_feature(aa64_sve, cpu)) { 13747 return; 13748 } 13749 13750 /* Nothing to do if FP is disabled in either EL. */ 13751 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13752 return; 13753 } 13754 13755 /* 13756 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13757 * at ELx, or not available because the EL is in AArch32 state, then 13758 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13759 * has an effective value of 0". 13760 * 13761 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13762 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13763 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13764 * we already have the correct register contents when encountering the 13765 * vq0->vq0 transition between EL0->EL1. 13766 */ 13767 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13768 old_len = (old_a64 && !sve_exception_el(env, old_el) 13769 ? sve_zcr_len_for_el(env, old_el) : 0); 13770 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13771 new_len = (new_a64 && !sve_exception_el(env, new_el) 13772 ? sve_zcr_len_for_el(env, new_el) : 0); 13773 13774 /* When changing vector length, clear inaccessible state. */ 13775 if (new_len < old_len) { 13776 aarch64_sve_narrow_vq(env, new_len + 1); 13777 } 13778 } 13779 #endif 13780