1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "exec/helper-proto.h" 15 #include "qemu/main-loop.h" 16 #include "qemu/timer.h" 17 #include "qemu/bitops.h" 18 #include "qemu/crc32c.h" 19 #include "qemu/qemu-print.h" 20 #include "exec/exec-all.h" 21 #include <zlib.h> /* For crc32 */ 22 #include "hw/irq.h" 23 #include "sysemu/cpu-timers.h" 24 #include "sysemu/kvm.h" 25 #include "sysemu/tcg.h" 26 #include "qapi/error.h" 27 #include "qemu/guest-random.h" 28 #ifdef CONFIG_TCG 29 #include "semihosting/common-semi.h" 30 #endif 31 #include "cpregs.h" 32 33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 34 35 static void switch_mode(CPUARMState *env, int mode); 36 37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 38 { 39 assert(ri->fieldoffset); 40 if (cpreg_field_is_64bit(ri)) { 41 return CPREG_FIELD64(env, ri); 42 } else { 43 return CPREG_FIELD32(env, ri); 44 } 45 } 46 47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 48 { 49 assert(ri->fieldoffset); 50 if (cpreg_field_is_64bit(ri)) { 51 CPREG_FIELD64(env, ri) = value; 52 } else { 53 CPREG_FIELD32(env, ri) = value; 54 } 55 } 56 57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 58 { 59 return (char *)env + ri->fieldoffset; 60 } 61 62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 63 { 64 /* Raw read of a coprocessor register (as needed for migration, etc). */ 65 if (ri->type & ARM_CP_CONST) { 66 return ri->resetvalue; 67 } else if (ri->raw_readfn) { 68 return ri->raw_readfn(env, ri); 69 } else if (ri->readfn) { 70 return ri->readfn(env, ri); 71 } else { 72 return raw_read(env, ri); 73 } 74 } 75 76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 77 uint64_t v) 78 { 79 /* 80 * Raw write of a coprocessor register (as needed for migration, etc). 81 * Note that constant registers are treated as write-ignored; the 82 * caller should check for success by whether a readback gives the 83 * value written. 84 */ 85 if (ri->type & ARM_CP_CONST) { 86 return; 87 } else if (ri->raw_writefn) { 88 ri->raw_writefn(env, ri, v); 89 } else if (ri->writefn) { 90 ri->writefn(env, ri, v); 91 } else { 92 raw_write(env, ri, v); 93 } 94 } 95 96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 97 { 98 /* 99 * Return true if the regdef would cause an assertion if you called 100 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 101 * program bug for it not to have the NO_RAW flag). 102 * NB that returning false here doesn't necessarily mean that calling 103 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 104 * read/write access functions which are safe for raw use" from "has 105 * read/write access functions which have side effects but has forgotten 106 * to provide raw access functions". 107 * The tests here line up with the conditions in read/write_raw_cp_reg() 108 * and assertions in raw_read()/raw_write(). 109 */ 110 if ((ri->type & ARM_CP_CONST) || 111 ri->fieldoffset || 112 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 113 return false; 114 } 115 return true; 116 } 117 118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 119 { 120 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 121 int i; 122 bool ok = true; 123 124 for (i = 0; i < cpu->cpreg_array_len; i++) { 125 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 126 const ARMCPRegInfo *ri; 127 uint64_t newval; 128 129 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 130 if (!ri) { 131 ok = false; 132 continue; 133 } 134 if (ri->type & ARM_CP_NO_RAW) { 135 continue; 136 } 137 138 newval = read_raw_cp_reg(&cpu->env, ri); 139 if (kvm_sync) { 140 /* 141 * Only sync if the previous list->cpustate sync succeeded. 142 * Rather than tracking the success/failure state for every 143 * item in the list, we just recheck "does the raw write we must 144 * have made in write_list_to_cpustate() read back OK" here. 145 */ 146 uint64_t oldval = cpu->cpreg_values[i]; 147 148 if (oldval == newval) { 149 continue; 150 } 151 152 write_raw_cp_reg(&cpu->env, ri, oldval); 153 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 154 continue; 155 } 156 157 write_raw_cp_reg(&cpu->env, ri, newval); 158 } 159 cpu->cpreg_values[i] = newval; 160 } 161 return ok; 162 } 163 164 bool write_list_to_cpustate(ARMCPU *cpu) 165 { 166 int i; 167 bool ok = true; 168 169 for (i = 0; i < cpu->cpreg_array_len; i++) { 170 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 171 uint64_t v = cpu->cpreg_values[i]; 172 const ARMCPRegInfo *ri; 173 174 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 175 if (!ri) { 176 ok = false; 177 continue; 178 } 179 if (ri->type & ARM_CP_NO_RAW) { 180 continue; 181 } 182 /* 183 * Write value and confirm it reads back as written 184 * (to catch read-only registers and partially read-only 185 * registers where the incoming migration value doesn't match) 186 */ 187 write_raw_cp_reg(&cpu->env, ri, v); 188 if (read_raw_cp_reg(&cpu->env, ri) != v) { 189 ok = false; 190 } 191 } 192 return ok; 193 } 194 195 static void add_cpreg_to_list(gpointer key, gpointer opaque) 196 { 197 ARMCPU *cpu = opaque; 198 uint32_t regidx = (uintptr_t)key; 199 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 200 201 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 202 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 203 /* The value array need not be initialized at this point */ 204 cpu->cpreg_array_len++; 205 } 206 } 207 208 static void count_cpreg(gpointer key, gpointer opaque) 209 { 210 ARMCPU *cpu = opaque; 211 const ARMCPRegInfo *ri; 212 213 ri = g_hash_table_lookup(cpu->cp_regs, key); 214 215 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 216 cpu->cpreg_array_len++; 217 } 218 } 219 220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 221 { 222 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 223 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 224 225 if (aidx > bidx) { 226 return 1; 227 } 228 if (aidx < bidx) { 229 return -1; 230 } 231 return 0; 232 } 233 234 void init_cpreg_list(ARMCPU *cpu) 235 { 236 /* 237 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 238 * Note that we require cpreg_tuples[] to be sorted by key ID. 239 */ 240 GList *keys; 241 int arraylen; 242 243 keys = g_hash_table_get_keys(cpu->cp_regs); 244 keys = g_list_sort(keys, cpreg_key_compare); 245 246 cpu->cpreg_array_len = 0; 247 248 g_list_foreach(keys, count_cpreg, cpu); 249 250 arraylen = cpu->cpreg_array_len; 251 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 252 cpu->cpreg_values = g_new(uint64_t, arraylen); 253 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 256 cpu->cpreg_array_len = 0; 257 258 g_list_foreach(keys, add_cpreg_to_list, cpu); 259 260 assert(cpu->cpreg_array_len == arraylen); 261 262 g_list_free(keys); 263 } 264 265 /* 266 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 267 */ 268 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 269 const ARMCPRegInfo *ri, 270 bool isread) 271 { 272 if (!is_a64(env) && arm_current_el(env) == 3 && 273 arm_is_secure_below_el3(env)) { 274 return CP_ACCESS_TRAP_UNCATEGORIZED; 275 } 276 return CP_ACCESS_OK; 277 } 278 279 /* 280 * Some secure-only AArch32 registers trap to EL3 if used from 281 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 282 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 283 * We assume that the .access field is set to PL1_RW. 284 */ 285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 286 const ARMCPRegInfo *ri, 287 bool isread) 288 { 289 if (arm_current_el(env) == 3) { 290 return CP_ACCESS_OK; 291 } 292 if (arm_is_secure_below_el3(env)) { 293 if (env->cp15.scr_el3 & SCR_EEL2) { 294 return CP_ACCESS_TRAP_EL2; 295 } 296 return CP_ACCESS_TRAP_EL3; 297 } 298 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 299 return CP_ACCESS_TRAP_UNCATEGORIZED; 300 } 301 302 /* 303 * Check for traps to performance monitor registers, which are controlled 304 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 305 */ 306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 307 bool isread) 308 { 309 int el = arm_current_el(env); 310 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 311 312 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 313 return CP_ACCESS_TRAP_EL2; 314 } 315 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 316 return CP_ACCESS_TRAP_EL3; 317 } 318 return CP_ACCESS_OK; 319 } 320 321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 323 bool isread) 324 { 325 if (arm_current_el(env) == 1) { 326 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 327 if (arm_hcr_el2_eff(env) & trap) { 328 return CP_ACCESS_TRAP_EL2; 329 } 330 } 331 return CP_ACCESS_OK; 332 } 333 334 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 336 bool isread) 337 { 338 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 339 return CP_ACCESS_TRAP_EL2; 340 } 341 return CP_ACCESS_OK; 342 } 343 344 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 346 bool isread) 347 { 348 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 349 return CP_ACCESS_TRAP_EL2; 350 } 351 return CP_ACCESS_OK; 352 } 353 354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 356 bool isread) 357 { 358 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 359 return CP_ACCESS_TRAP_EL2; 360 } 361 return CP_ACCESS_OK; 362 } 363 364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 366 bool isread) 367 { 368 if (arm_current_el(env) == 1 && 369 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 370 return CP_ACCESS_TRAP_EL2; 371 } 372 return CP_ACCESS_OK; 373 } 374 375 #ifdef TARGET_AARCH64 376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 378 bool isread) 379 { 380 if (arm_current_el(env) == 1 && 381 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 382 return CP_ACCESS_TRAP_EL2; 383 } 384 return CP_ACCESS_OK; 385 } 386 #endif 387 388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 389 { 390 ARMCPU *cpu = env_archcpu(env); 391 392 raw_write(env, ri, value); 393 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 394 } 395 396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 397 { 398 ARMCPU *cpu = env_archcpu(env); 399 400 if (raw_read(env, ri) != value) { 401 /* 402 * Unlike real hardware the qemu TLB uses virtual addresses, 403 * not modified virtual addresses, so this causes a TLB flush. 404 */ 405 tlb_flush(CPU(cpu)); 406 raw_write(env, ri, value); 407 } 408 } 409 410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 411 uint64_t value) 412 { 413 ARMCPU *cpu = env_archcpu(env); 414 415 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 416 && !extended_addresses_enabled(env)) { 417 /* 418 * For VMSA (when not using the LPAE long descriptor page table 419 * format) this register includes the ASID, so do a TLB flush. 420 * For PMSA it is purely a process ID and no action is needed. 421 */ 422 tlb_flush(CPU(cpu)); 423 } 424 raw_write(env, ri, value); 425 } 426 427 static int alle1_tlbmask(CPUARMState *env) 428 { 429 /* 430 * Note that the 'ALL' scope must invalidate both stage 1 and 431 * stage 2 translations, whereas most other scopes only invalidate 432 * stage 1 translations. 433 */ 434 return (ARMMMUIdxBit_E10_1 | 435 ARMMMUIdxBit_E10_1_PAN | 436 ARMMMUIdxBit_E10_0 | 437 ARMMMUIdxBit_Stage2 | 438 ARMMMUIdxBit_Stage2_S); 439 } 440 441 442 /* IS variants of TLB operations must affect all cores */ 443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 444 uint64_t value) 445 { 446 CPUState *cs = env_cpu(env); 447 448 tlb_flush_all_cpus_synced(cs); 449 } 450 451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 452 uint64_t value) 453 { 454 CPUState *cs = env_cpu(env); 455 456 tlb_flush_all_cpus_synced(cs); 457 } 458 459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 460 uint64_t value) 461 { 462 CPUState *cs = env_cpu(env); 463 464 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 465 } 466 467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 468 uint64_t value) 469 { 470 CPUState *cs = env_cpu(env); 471 472 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 473 } 474 475 /* 476 * Non-IS variants of TLB operations are upgraded to 477 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 478 * force broadcast of these operations. 479 */ 480 static bool tlb_force_broadcast(CPUARMState *env) 481 { 482 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 483 } 484 485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 486 uint64_t value) 487 { 488 /* Invalidate all (TLBIALL) */ 489 CPUState *cs = env_cpu(env); 490 491 if (tlb_force_broadcast(env)) { 492 tlb_flush_all_cpus_synced(cs); 493 } else { 494 tlb_flush(cs); 495 } 496 } 497 498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 499 uint64_t value) 500 { 501 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 502 CPUState *cs = env_cpu(env); 503 504 value &= TARGET_PAGE_MASK; 505 if (tlb_force_broadcast(env)) { 506 tlb_flush_page_all_cpus_synced(cs, value); 507 } else { 508 tlb_flush_page(cs, value); 509 } 510 } 511 512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 /* Invalidate by ASID (TLBIASID) */ 516 CPUState *cs = env_cpu(env); 517 518 if (tlb_force_broadcast(env)) { 519 tlb_flush_all_cpus_synced(cs); 520 } else { 521 tlb_flush(cs); 522 } 523 } 524 525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 526 uint64_t value) 527 { 528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 529 CPUState *cs = env_cpu(env); 530 531 value &= TARGET_PAGE_MASK; 532 if (tlb_force_broadcast(env)) { 533 tlb_flush_page_all_cpus_synced(cs, value); 534 } else { 535 tlb_flush_page(cs, value); 536 } 537 } 538 539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 CPUState *cs = env_cpu(env); 543 544 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 545 } 546 547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 548 uint64_t value) 549 { 550 CPUState *cs = env_cpu(env); 551 552 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 553 } 554 555 556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *cs = env_cpu(env); 560 561 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 562 } 563 564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 565 uint64_t value) 566 { 567 CPUState *cs = env_cpu(env); 568 569 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 570 } 571 572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 573 uint64_t value) 574 { 575 CPUState *cs = env_cpu(env); 576 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 577 578 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 579 } 580 581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 582 uint64_t value) 583 { 584 CPUState *cs = env_cpu(env); 585 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 586 587 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 588 ARMMMUIdxBit_E2); 589 } 590 591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 592 uint64_t value) 593 { 594 CPUState *cs = env_cpu(env); 595 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 596 597 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 598 } 599 600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 601 uint64_t value) 602 { 603 CPUState *cs = env_cpu(env); 604 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 605 606 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 607 } 608 609 static const ARMCPRegInfo cp_reginfo[] = { 610 /* 611 * Define the secure and non-secure FCSE identifier CP registers 612 * separately because there is no secure bank in V8 (no _EL3). This allows 613 * the secure register to be properly reset and migrated. There is also no 614 * v8 EL1 version of the register so the non-secure instance stands alone. 615 */ 616 { .name = "FCSEIDR", 617 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 618 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 619 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 620 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 621 { .name = "FCSEIDR_S", 622 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 623 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 624 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 625 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 626 /* 627 * Define the secure and non-secure context identifier CP registers 628 * separately because there is no secure bank in V8 (no _EL3). This allows 629 * the secure register to be properly reset and migrated. In the 630 * non-secure case, the 32-bit register will have reset and migration 631 * disabled during registration as it is handled by the 64-bit instance. 632 */ 633 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 634 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 635 .access = PL1_RW, .accessfn = access_tvm_trvm, 636 .fgt = FGT_CONTEXTIDR_EL1, 637 .secure = ARM_CP_SECSTATE_NS, 638 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 639 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 640 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 641 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 642 .access = PL1_RW, .accessfn = access_tvm_trvm, 643 .secure = ARM_CP_SECSTATE_S, 644 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 645 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 646 }; 647 648 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 649 /* 650 * NB: Some of these registers exist in v8 but with more precise 651 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 652 */ 653 /* MMU Domain access control / MPU write buffer control */ 654 { .name = "DACR", 655 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 656 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 657 .writefn = dacr_write, .raw_writefn = raw_write, 658 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 659 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 660 /* 661 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 662 * For v6 and v5, these mappings are overly broad. 663 */ 664 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 665 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 666 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 667 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 668 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 669 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 670 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 671 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 672 /* Cache maintenance ops; some of this space may be overridden later. */ 673 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 674 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 675 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 676 }; 677 678 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 679 /* 680 * Not all pre-v6 cores implemented this WFI, so this is slightly 681 * over-broad. 682 */ 683 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 684 .access = PL1_W, .type = ARM_CP_WFI }, 685 }; 686 687 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 688 /* 689 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 690 * is UNPREDICTABLE; we choose to NOP as most implementations do). 691 */ 692 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 693 .access = PL1_W, .type = ARM_CP_WFI }, 694 /* 695 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 696 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 697 * OMAPCP will override this space. 698 */ 699 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 700 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 701 .resetvalue = 0 }, 702 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 703 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 704 .resetvalue = 0 }, 705 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 706 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 707 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 708 .resetvalue = 0 }, 709 /* 710 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 711 * implementing it as RAZ means the "debug architecture version" bits 712 * will read as a reserved value, which should cause Linux to not try 713 * to use the debug hardware. 714 */ 715 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 716 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 717 /* 718 * MMU TLB control. Note that the wildcarding means we cover not just 719 * the unified TLB ops but also the dside/iside/inner-shareable variants. 720 */ 721 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 722 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 723 .type = ARM_CP_NO_RAW }, 724 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 725 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 726 .type = ARM_CP_NO_RAW }, 727 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 728 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 729 .type = ARM_CP_NO_RAW }, 730 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 731 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 732 .type = ARM_CP_NO_RAW }, 733 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 734 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 735 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 736 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 737 }; 738 739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 740 uint64_t value) 741 { 742 uint32_t mask = 0; 743 744 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 745 if (!arm_feature(env, ARM_FEATURE_V8)) { 746 /* 747 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 748 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 749 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 750 */ 751 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 752 /* VFP coprocessor: cp10 & cp11 [23:20] */ 753 mask |= R_CPACR_ASEDIS_MASK | 754 R_CPACR_D32DIS_MASK | 755 R_CPACR_CP11_MASK | 756 R_CPACR_CP10_MASK; 757 758 if (!arm_feature(env, ARM_FEATURE_NEON)) { 759 /* ASEDIS [31] bit is RAO/WI */ 760 value |= R_CPACR_ASEDIS_MASK; 761 } 762 763 /* 764 * VFPv3 and upwards with NEON implement 32 double precision 765 * registers (D0-D31). 766 */ 767 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 768 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 769 value |= R_CPACR_D32DIS_MASK; 770 } 771 } 772 value &= mask; 773 } 774 775 /* 776 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 777 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 778 */ 779 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 780 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 781 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 782 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 783 } 784 785 env->cp15.cpacr_el1 = value; 786 } 787 788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 789 { 790 /* 791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 793 */ 794 uint64_t value = env->cp15.cpacr_el1; 795 796 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 797 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 798 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 799 } 800 return value; 801 } 802 803 804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 805 { 806 /* 807 * Call cpacr_write() so that we reset with the correct RAO bits set 808 * for our CPU features. 809 */ 810 cpacr_write(env, ri, 0); 811 } 812 813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 814 bool isread) 815 { 816 if (arm_feature(env, ARM_FEATURE_V8)) { 817 /* Check if CPACR accesses are to be trapped to EL2 */ 818 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 819 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 820 return CP_ACCESS_TRAP_EL2; 821 /* Check if CPACR accesses are to be trapped to EL3 */ 822 } else if (arm_current_el(env) < 3 && 823 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 824 return CP_ACCESS_TRAP_EL3; 825 } 826 } 827 828 return CP_ACCESS_OK; 829 } 830 831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 832 bool isread) 833 { 834 /* Check if CPTR accesses are set to trap to EL3 */ 835 if (arm_current_el(env) == 2 && 836 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 837 return CP_ACCESS_TRAP_EL3; 838 } 839 840 return CP_ACCESS_OK; 841 } 842 843 static const ARMCPRegInfo v6_cp_reginfo[] = { 844 /* prefetch by MVA in v6, NOP in v7 */ 845 { .name = "MVA_prefetch", 846 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 847 .access = PL1_W, .type = ARM_CP_NOP }, 848 /* 849 * We need to break the TB after ISB to execute self-modifying code 850 * correctly and also to take any pending interrupts immediately. 851 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 852 */ 853 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 854 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 855 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 856 .access = PL0_W, .type = ARM_CP_NOP }, 857 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 858 .access = PL0_W, .type = ARM_CP_NOP }, 859 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 860 .access = PL1_RW, .accessfn = access_tvm_trvm, 861 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 862 offsetof(CPUARMState, cp15.ifar_ns) }, 863 .resetvalue = 0, }, 864 /* 865 * Watchpoint Fault Address Register : should actually only be present 866 * for 1136, 1176, 11MPCore. 867 */ 868 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 869 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 870 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 871 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 872 .fgt = FGT_CPACR_EL1, 873 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 874 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 875 }; 876 877 typedef struct pm_event { 878 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 879 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 880 bool (*supported)(CPUARMState *); 881 /* 882 * Retrieve the current count of the underlying event. The programmed 883 * counters hold a difference from the return value from this function 884 */ 885 uint64_t (*get_count)(CPUARMState *); 886 /* 887 * Return how many nanoseconds it will take (at a minimum) for count events 888 * to occur. A negative value indicates the counter will never overflow, or 889 * that the counter has otherwise arranged for the overflow bit to be set 890 * and the PMU interrupt to be raised on overflow. 891 */ 892 int64_t (*ns_per_count)(uint64_t); 893 } pm_event; 894 895 static bool event_always_supported(CPUARMState *env) 896 { 897 return true; 898 } 899 900 static uint64_t swinc_get_count(CPUARMState *env) 901 { 902 /* 903 * SW_INCR events are written directly to the pmevcntr's by writes to 904 * PMSWINC, so there is no underlying count maintained by the PMU itself 905 */ 906 return 0; 907 } 908 909 static int64_t swinc_ns_per(uint64_t ignored) 910 { 911 return -1; 912 } 913 914 /* 915 * Return the underlying cycle count for the PMU cycle counters. If we're in 916 * usermode, simply return 0. 917 */ 918 static uint64_t cycles_get_count(CPUARMState *env) 919 { 920 #ifndef CONFIG_USER_ONLY 921 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 922 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 923 #else 924 return cpu_get_host_ticks(); 925 #endif 926 } 927 928 #ifndef CONFIG_USER_ONLY 929 static int64_t cycles_ns_per(uint64_t cycles) 930 { 931 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 932 } 933 934 static bool instructions_supported(CPUARMState *env) 935 { 936 return icount_enabled() == 1; /* Precise instruction counting */ 937 } 938 939 static uint64_t instructions_get_count(CPUARMState *env) 940 { 941 return (uint64_t)icount_get_raw(); 942 } 943 944 static int64_t instructions_ns_per(uint64_t icount) 945 { 946 return icount_to_ns((int64_t)icount); 947 } 948 #endif 949 950 static bool pmuv3p1_events_supported(CPUARMState *env) 951 { 952 /* For events which are supported in any v8.1 PMU */ 953 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 954 } 955 956 static bool pmuv3p4_events_supported(CPUARMState *env) 957 { 958 /* For events which are supported in any v8.1 PMU */ 959 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 960 } 961 962 static uint64_t zero_event_get_count(CPUARMState *env) 963 { 964 /* For events which on QEMU never fire, so their count is always zero */ 965 return 0; 966 } 967 968 static int64_t zero_event_ns_per(uint64_t cycles) 969 { 970 /* An event which never fires can never overflow */ 971 return -1; 972 } 973 974 static const pm_event pm_events[] = { 975 { .number = 0x000, /* SW_INCR */ 976 .supported = event_always_supported, 977 .get_count = swinc_get_count, 978 .ns_per_count = swinc_ns_per, 979 }, 980 #ifndef CONFIG_USER_ONLY 981 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 982 .supported = instructions_supported, 983 .get_count = instructions_get_count, 984 .ns_per_count = instructions_ns_per, 985 }, 986 { .number = 0x011, /* CPU_CYCLES, Cycle */ 987 .supported = event_always_supported, 988 .get_count = cycles_get_count, 989 .ns_per_count = cycles_ns_per, 990 }, 991 #endif 992 { .number = 0x023, /* STALL_FRONTEND */ 993 .supported = pmuv3p1_events_supported, 994 .get_count = zero_event_get_count, 995 .ns_per_count = zero_event_ns_per, 996 }, 997 { .number = 0x024, /* STALL_BACKEND */ 998 .supported = pmuv3p1_events_supported, 999 .get_count = zero_event_get_count, 1000 .ns_per_count = zero_event_ns_per, 1001 }, 1002 { .number = 0x03c, /* STALL */ 1003 .supported = pmuv3p4_events_supported, 1004 .get_count = zero_event_get_count, 1005 .ns_per_count = zero_event_ns_per, 1006 }, 1007 }; 1008 1009 /* 1010 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1011 * events (i.e. the statistical profiling extension), this implementation 1012 * should first be updated to something sparse instead of the current 1013 * supported_event_map[] array. 1014 */ 1015 #define MAX_EVENT_ID 0x3c 1016 #define UNSUPPORTED_EVENT UINT16_MAX 1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1018 1019 /* 1020 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1021 * of ARM event numbers to indices in our pm_events array. 1022 * 1023 * Note: Events in the 0x40XX range are not currently supported. 1024 */ 1025 void pmu_init(ARMCPU *cpu) 1026 { 1027 unsigned int i; 1028 1029 /* 1030 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1031 * events to them 1032 */ 1033 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1034 supported_event_map[i] = UNSUPPORTED_EVENT; 1035 } 1036 cpu->pmceid0 = 0; 1037 cpu->pmceid1 = 0; 1038 1039 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1040 const pm_event *cnt = &pm_events[i]; 1041 assert(cnt->number <= MAX_EVENT_ID); 1042 /* We do not currently support events in the 0x40xx range */ 1043 assert(cnt->number <= 0x3f); 1044 1045 if (cnt->supported(&cpu->env)) { 1046 supported_event_map[cnt->number] = i; 1047 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1048 if (cnt->number & 0x20) { 1049 cpu->pmceid1 |= event_mask; 1050 } else { 1051 cpu->pmceid0 |= event_mask; 1052 } 1053 } 1054 } 1055 } 1056 1057 /* 1058 * Check at runtime whether a PMU event is supported for the current machine 1059 */ 1060 static bool event_supported(uint16_t number) 1061 { 1062 if (number > MAX_EVENT_ID) { 1063 return false; 1064 } 1065 return supported_event_map[number] != UNSUPPORTED_EVENT; 1066 } 1067 1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1069 bool isread) 1070 { 1071 /* 1072 * Performance monitor registers user accessibility is controlled 1073 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1074 * trapping to EL2 or EL3 for other accesses. 1075 */ 1076 int el = arm_current_el(env); 1077 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1078 1079 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1080 return CP_ACCESS_TRAP; 1081 } 1082 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1083 return CP_ACCESS_TRAP_EL2; 1084 } 1085 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1086 return CP_ACCESS_TRAP_EL3; 1087 } 1088 1089 return CP_ACCESS_OK; 1090 } 1091 1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1093 const ARMCPRegInfo *ri, 1094 bool isread) 1095 { 1096 /* ER: event counter read trap control */ 1097 if (arm_feature(env, ARM_FEATURE_V8) 1098 && arm_current_el(env) == 0 1099 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1100 && isread) { 1101 return CP_ACCESS_OK; 1102 } 1103 1104 return pmreg_access(env, ri, isread); 1105 } 1106 1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1108 const ARMCPRegInfo *ri, 1109 bool isread) 1110 { 1111 /* SW: software increment write trap control */ 1112 if (arm_feature(env, ARM_FEATURE_V8) 1113 && arm_current_el(env) == 0 1114 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1115 && !isread) { 1116 return CP_ACCESS_OK; 1117 } 1118 1119 return pmreg_access(env, ri, isread); 1120 } 1121 1122 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1123 const ARMCPRegInfo *ri, 1124 bool isread) 1125 { 1126 /* ER: event counter read trap control */ 1127 if (arm_feature(env, ARM_FEATURE_V8) 1128 && arm_current_el(env) == 0 1129 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1130 return CP_ACCESS_OK; 1131 } 1132 1133 return pmreg_access(env, ri, isread); 1134 } 1135 1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1137 const ARMCPRegInfo *ri, 1138 bool isread) 1139 { 1140 /* CR: cycle counter read trap control */ 1141 if (arm_feature(env, ARM_FEATURE_V8) 1142 && arm_current_el(env) == 0 1143 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1144 && isread) { 1145 return CP_ACCESS_OK; 1146 } 1147 1148 return pmreg_access(env, ri, isread); 1149 } 1150 1151 /* 1152 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1153 * We use these to decide whether we need to wrap a write to MDCR_EL2 1154 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1155 */ 1156 #define MDCR_EL2_PMU_ENABLE_BITS \ 1157 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1159 1160 /* 1161 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1162 * the current EL, security state, and register configuration. 1163 */ 1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1165 { 1166 uint64_t filter; 1167 bool e, p, u, nsk, nsu, nsh, m; 1168 bool enabled, prohibited = false, filtered; 1169 bool secure = arm_is_secure(env); 1170 int el = arm_current_el(env); 1171 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1172 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1173 1174 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1175 return false; 1176 } 1177 1178 if (!arm_feature(env, ARM_FEATURE_EL2) || 1179 (counter < hpmn || counter == 31)) { 1180 e = env->cp15.c9_pmcr & PMCRE; 1181 } else { 1182 e = mdcr_el2 & MDCR_HPME; 1183 } 1184 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1185 1186 /* Is event counting prohibited? */ 1187 if (el == 2 && (counter < hpmn || counter == 31)) { 1188 prohibited = mdcr_el2 & MDCR_HPMD; 1189 } 1190 if (secure) { 1191 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1192 } 1193 1194 if (counter == 31) { 1195 /* 1196 * The cycle counter defaults to running. PMCR.DP says "disable 1197 * the cycle counter when event counting is prohibited". 1198 * Some MDCR bits disable the cycle counter specifically. 1199 */ 1200 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1201 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1202 if (secure) { 1203 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1204 } 1205 if (el == 2) { 1206 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1207 } 1208 } 1209 } 1210 1211 if (counter == 31) { 1212 filter = env->cp15.pmccfiltr_el0; 1213 } else { 1214 filter = env->cp15.c14_pmevtyper[counter]; 1215 } 1216 1217 p = filter & PMXEVTYPER_P; 1218 u = filter & PMXEVTYPER_U; 1219 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1220 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1221 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1222 m = arm_el_is_aa64(env, 1) && 1223 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1224 1225 if (el == 0) { 1226 filtered = secure ? u : u != nsu; 1227 } else if (el == 1) { 1228 filtered = secure ? p : p != nsk; 1229 } else if (el == 2) { 1230 filtered = !nsh; 1231 } else { /* EL3 */ 1232 filtered = m != p; 1233 } 1234 1235 if (counter != 31) { 1236 /* 1237 * If not checking PMCCNTR, ensure the counter is setup to an event we 1238 * support 1239 */ 1240 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1241 if (!event_supported(event)) { 1242 return false; 1243 } 1244 } 1245 1246 return enabled && !prohibited && !filtered; 1247 } 1248 1249 static void pmu_update_irq(CPUARMState *env) 1250 { 1251 ARMCPU *cpu = env_archcpu(env); 1252 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1253 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1254 } 1255 1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1257 { 1258 /* 1259 * Return true if the clock divider is enabled and the cycle counter 1260 * is supposed to tick only once every 64 clock cycles. This is 1261 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1262 * (64-bit) cycle counter PMCR.D has no effect. 1263 */ 1264 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1265 } 1266 1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1268 { 1269 /* Return true if the specified event counter is configured to be 64 bit */ 1270 1271 /* This isn't intended to be used with the cycle counter */ 1272 assert(counter < 31); 1273 1274 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1275 return false; 1276 } 1277 1278 if (arm_feature(env, ARM_FEATURE_EL2)) { 1279 /* 1280 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1281 * current security state, so we don't use arm_mdcr_el2_eff() here. 1282 */ 1283 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1284 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1285 1286 if (hpmn != 0 && counter >= hpmn) { 1287 return hlp; 1288 } 1289 } 1290 return env->cp15.c9_pmcr & PMCRLP; 1291 } 1292 1293 /* 1294 * Ensure c15_ccnt is the guest-visible count so that operations such as 1295 * enabling/disabling the counter or filtering, modifying the count itself, 1296 * etc. can be done logically. This is essentially a no-op if the counter is 1297 * not enabled at the time of the call. 1298 */ 1299 static void pmccntr_op_start(CPUARMState *env) 1300 { 1301 uint64_t cycles = cycles_get_count(env); 1302 1303 if (pmu_counter_enabled(env, 31)) { 1304 uint64_t eff_cycles = cycles; 1305 if (pmccntr_clockdiv_enabled(env)) { 1306 eff_cycles /= 64; 1307 } 1308 1309 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1310 1311 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1312 1ull << 63 : 1ull << 31; 1313 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1314 env->cp15.c9_pmovsr |= (1ULL << 31); 1315 pmu_update_irq(env); 1316 } 1317 1318 env->cp15.c15_ccnt = new_pmccntr; 1319 } 1320 env->cp15.c15_ccnt_delta = cycles; 1321 } 1322 1323 /* 1324 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1325 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1326 * pmccntr_op_start. 1327 */ 1328 static void pmccntr_op_finish(CPUARMState *env) 1329 { 1330 if (pmu_counter_enabled(env, 31)) { 1331 #ifndef CONFIG_USER_ONLY 1332 /* Calculate when the counter will next overflow */ 1333 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1334 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1335 remaining_cycles = (uint32_t)remaining_cycles; 1336 } 1337 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1338 1339 if (overflow_in > 0) { 1340 int64_t overflow_at; 1341 1342 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1343 overflow_in, &overflow_at)) { 1344 ARMCPU *cpu = env_archcpu(env); 1345 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1346 } 1347 } 1348 #endif 1349 1350 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1351 if (pmccntr_clockdiv_enabled(env)) { 1352 prev_cycles /= 64; 1353 } 1354 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1355 } 1356 } 1357 1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1359 { 1360 1361 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1362 uint64_t count = 0; 1363 if (event_supported(event)) { 1364 uint16_t event_idx = supported_event_map[event]; 1365 count = pm_events[event_idx].get_count(env); 1366 } 1367 1368 if (pmu_counter_enabled(env, counter)) { 1369 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1370 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1371 1ULL << 63 : 1ULL << 31; 1372 1373 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1374 env->cp15.c9_pmovsr |= (1 << counter); 1375 pmu_update_irq(env); 1376 } 1377 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1378 } 1379 env->cp15.c14_pmevcntr_delta[counter] = count; 1380 } 1381 1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1383 { 1384 if (pmu_counter_enabled(env, counter)) { 1385 #ifndef CONFIG_USER_ONLY 1386 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1387 uint16_t event_idx = supported_event_map[event]; 1388 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1389 int64_t overflow_in; 1390 1391 if (!pmevcntr_is_64_bit(env, counter)) { 1392 delta = (uint32_t)delta; 1393 } 1394 overflow_in = pm_events[event_idx].ns_per_count(delta); 1395 1396 if (overflow_in > 0) { 1397 int64_t overflow_at; 1398 1399 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1400 overflow_in, &overflow_at)) { 1401 ARMCPU *cpu = env_archcpu(env); 1402 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1403 } 1404 } 1405 #endif 1406 1407 env->cp15.c14_pmevcntr_delta[counter] -= 1408 env->cp15.c14_pmevcntr[counter]; 1409 } 1410 } 1411 1412 void pmu_op_start(CPUARMState *env) 1413 { 1414 unsigned int i; 1415 pmccntr_op_start(env); 1416 for (i = 0; i < pmu_num_counters(env); i++) { 1417 pmevcntr_op_start(env, i); 1418 } 1419 } 1420 1421 void pmu_op_finish(CPUARMState *env) 1422 { 1423 unsigned int i; 1424 pmccntr_op_finish(env); 1425 for (i = 0; i < pmu_num_counters(env); i++) { 1426 pmevcntr_op_finish(env, i); 1427 } 1428 } 1429 1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1431 { 1432 pmu_op_start(&cpu->env); 1433 } 1434 1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1436 { 1437 pmu_op_finish(&cpu->env); 1438 } 1439 1440 void arm_pmu_timer_cb(void *opaque) 1441 { 1442 ARMCPU *cpu = opaque; 1443 1444 /* 1445 * Update all the counter values based on the current underlying counts, 1446 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1447 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1448 * counter may expire. 1449 */ 1450 pmu_op_start(&cpu->env); 1451 pmu_op_finish(&cpu->env); 1452 } 1453 1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1455 uint64_t value) 1456 { 1457 pmu_op_start(env); 1458 1459 if (value & PMCRC) { 1460 /* The counter has been reset */ 1461 env->cp15.c15_ccnt = 0; 1462 } 1463 1464 if (value & PMCRP) { 1465 unsigned int i; 1466 for (i = 0; i < pmu_num_counters(env); i++) { 1467 env->cp15.c14_pmevcntr[i] = 0; 1468 } 1469 } 1470 1471 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1472 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1473 1474 pmu_op_finish(env); 1475 } 1476 1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1478 uint64_t value) 1479 { 1480 unsigned int i; 1481 uint64_t overflow_mask, new_pmswinc; 1482 1483 for (i = 0; i < pmu_num_counters(env); i++) { 1484 /* Increment a counter's count iff: */ 1485 if ((value & (1 << i)) && /* counter's bit is set */ 1486 /* counter is enabled and not filtered */ 1487 pmu_counter_enabled(env, i) && 1488 /* counter is SW_INCR */ 1489 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1490 pmevcntr_op_start(env, i); 1491 1492 /* 1493 * Detect if this write causes an overflow since we can't predict 1494 * PMSWINC overflows like we can for other events 1495 */ 1496 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1497 1498 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1499 1ULL << 63 : 1ULL << 31; 1500 1501 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1502 env->cp15.c9_pmovsr |= (1 << i); 1503 pmu_update_irq(env); 1504 } 1505 1506 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1507 1508 pmevcntr_op_finish(env, i); 1509 } 1510 } 1511 } 1512 1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1514 { 1515 uint64_t ret; 1516 pmccntr_op_start(env); 1517 ret = env->cp15.c15_ccnt; 1518 pmccntr_op_finish(env); 1519 return ret; 1520 } 1521 1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 /* 1526 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1527 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1528 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1529 * accessed. 1530 */ 1531 env->cp15.c9_pmselr = value & 0x1f; 1532 } 1533 1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1535 uint64_t value) 1536 { 1537 pmccntr_op_start(env); 1538 env->cp15.c15_ccnt = value; 1539 pmccntr_op_finish(env); 1540 } 1541 1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1543 uint64_t value) 1544 { 1545 uint64_t cur_val = pmccntr_read(env, NULL); 1546 1547 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1548 } 1549 1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1551 uint64_t value) 1552 { 1553 pmccntr_op_start(env); 1554 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1555 pmccntr_op_finish(env); 1556 } 1557 1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1559 uint64_t value) 1560 { 1561 pmccntr_op_start(env); 1562 /* M is not accessible from AArch32 */ 1563 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1564 (value & PMCCFILTR); 1565 pmccntr_op_finish(env); 1566 } 1567 1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1569 { 1570 /* M is not visible in AArch32 */ 1571 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1572 } 1573 1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1575 uint64_t value) 1576 { 1577 pmu_op_start(env); 1578 value &= pmu_counter_mask(env); 1579 env->cp15.c9_pmcnten |= value; 1580 pmu_op_finish(env); 1581 } 1582 1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1584 uint64_t value) 1585 { 1586 pmu_op_start(env); 1587 value &= pmu_counter_mask(env); 1588 env->cp15.c9_pmcnten &= ~value; 1589 pmu_op_finish(env); 1590 } 1591 1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1593 uint64_t value) 1594 { 1595 value &= pmu_counter_mask(env); 1596 env->cp15.c9_pmovsr &= ~value; 1597 pmu_update_irq(env); 1598 } 1599 1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1601 uint64_t value) 1602 { 1603 value &= pmu_counter_mask(env); 1604 env->cp15.c9_pmovsr |= value; 1605 pmu_update_irq(env); 1606 } 1607 1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1609 uint64_t value, const uint8_t counter) 1610 { 1611 if (counter == 31) { 1612 pmccfiltr_write(env, ri, value); 1613 } else if (counter < pmu_num_counters(env)) { 1614 pmevcntr_op_start(env, counter); 1615 1616 /* 1617 * If this counter's event type is changing, store the current 1618 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1619 * pmevcntr_op_finish has the correct baseline when it converts back to 1620 * a delta. 1621 */ 1622 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1623 PMXEVTYPER_EVTCOUNT; 1624 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1625 if (old_event != new_event) { 1626 uint64_t count = 0; 1627 if (event_supported(new_event)) { 1628 uint16_t event_idx = supported_event_map[new_event]; 1629 count = pm_events[event_idx].get_count(env); 1630 } 1631 env->cp15.c14_pmevcntr_delta[counter] = count; 1632 } 1633 1634 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1635 pmevcntr_op_finish(env, counter); 1636 } 1637 /* 1638 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1639 * PMSELR value is equal to or greater than the number of implemented 1640 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1641 */ 1642 } 1643 1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1645 const uint8_t counter) 1646 { 1647 if (counter == 31) { 1648 return env->cp15.pmccfiltr_el0; 1649 } else if (counter < pmu_num_counters(env)) { 1650 return env->cp15.c14_pmevtyper[counter]; 1651 } else { 1652 /* 1653 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1654 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1655 */ 1656 return 0; 1657 } 1658 } 1659 1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1661 uint64_t value) 1662 { 1663 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1664 pmevtyper_write(env, ri, value, counter); 1665 } 1666 1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1668 uint64_t value) 1669 { 1670 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1671 env->cp15.c14_pmevtyper[counter] = value; 1672 1673 /* 1674 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1675 * pmu_op_finish calls when loading saved state for a migration. Because 1676 * we're potentially updating the type of event here, the value written to 1677 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1678 * different counter type. Therefore, we need to set this value to the 1679 * current count for the counter type we're writing so that pmu_op_finish 1680 * has the correct count for its calculation. 1681 */ 1682 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1683 if (event_supported(event)) { 1684 uint16_t event_idx = supported_event_map[event]; 1685 env->cp15.c14_pmevcntr_delta[counter] = 1686 pm_events[event_idx].get_count(env); 1687 } 1688 } 1689 1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1691 { 1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1693 return pmevtyper_read(env, ri, counter); 1694 } 1695 1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1697 uint64_t value) 1698 { 1699 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1700 } 1701 1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1703 { 1704 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1705 } 1706 1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1708 uint64_t value, uint8_t counter) 1709 { 1710 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1711 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1712 value &= MAKE_64BIT_MASK(0, 32); 1713 } 1714 if (counter < pmu_num_counters(env)) { 1715 pmevcntr_op_start(env, counter); 1716 env->cp15.c14_pmevcntr[counter] = value; 1717 pmevcntr_op_finish(env, counter); 1718 } 1719 /* 1720 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1721 * are CONSTRAINED UNPREDICTABLE. 1722 */ 1723 } 1724 1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint8_t counter) 1727 { 1728 if (counter < pmu_num_counters(env)) { 1729 uint64_t ret; 1730 pmevcntr_op_start(env, counter); 1731 ret = env->cp15.c14_pmevcntr[counter]; 1732 pmevcntr_op_finish(env, counter); 1733 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1734 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1735 ret &= MAKE_64BIT_MASK(0, 32); 1736 } 1737 return ret; 1738 } else { 1739 /* 1740 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1741 * are CONSTRAINED UNPREDICTABLE. 1742 */ 1743 return 0; 1744 } 1745 } 1746 1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1748 uint64_t value) 1749 { 1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1751 pmevcntr_write(env, ri, value, counter); 1752 } 1753 1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1755 { 1756 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1757 return pmevcntr_read(env, ri, counter); 1758 } 1759 1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1761 uint64_t value) 1762 { 1763 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1764 assert(counter < pmu_num_counters(env)); 1765 env->cp15.c14_pmevcntr[counter] = value; 1766 pmevcntr_write(env, ri, value, counter); 1767 } 1768 1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1770 { 1771 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1772 assert(counter < pmu_num_counters(env)); 1773 return env->cp15.c14_pmevcntr[counter]; 1774 } 1775 1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1777 uint64_t value) 1778 { 1779 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1780 } 1781 1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1783 { 1784 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1785 } 1786 1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1788 uint64_t value) 1789 { 1790 if (arm_feature(env, ARM_FEATURE_V8)) { 1791 env->cp15.c9_pmuserenr = value & 0xf; 1792 } else { 1793 env->cp15.c9_pmuserenr = value & 1; 1794 } 1795 } 1796 1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1798 uint64_t value) 1799 { 1800 /* We have no event counters so only the C bit can be changed */ 1801 value &= pmu_counter_mask(env); 1802 env->cp15.c9_pminten |= value; 1803 pmu_update_irq(env); 1804 } 1805 1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1807 uint64_t value) 1808 { 1809 value &= pmu_counter_mask(env); 1810 env->cp15.c9_pminten &= ~value; 1811 pmu_update_irq(env); 1812 } 1813 1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1815 uint64_t value) 1816 { 1817 /* 1818 * Note that even though the AArch64 view of this register has bits 1819 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1820 * architectural requirements for bits which are RES0 only in some 1821 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1822 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1823 */ 1824 raw_write(env, ri, value & ~0x1FULL); 1825 } 1826 1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1828 { 1829 /* Begin with base v8.0 state. */ 1830 uint64_t valid_mask = 0x3fff; 1831 ARMCPU *cpu = env_archcpu(env); 1832 uint64_t changed; 1833 1834 /* 1835 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1836 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1837 * Instead, choose the format based on the mode of EL3. 1838 */ 1839 if (arm_el_is_aa64(env, 3)) { 1840 value |= SCR_FW | SCR_AW; /* RES1 */ 1841 valid_mask &= ~SCR_NET; /* RES0 */ 1842 1843 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1844 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1845 value |= SCR_RW; /* RAO/WI */ 1846 } 1847 if (cpu_isar_feature(aa64_ras, cpu)) { 1848 valid_mask |= SCR_TERR; 1849 } 1850 if (cpu_isar_feature(aa64_lor, cpu)) { 1851 valid_mask |= SCR_TLOR; 1852 } 1853 if (cpu_isar_feature(aa64_pauth, cpu)) { 1854 valid_mask |= SCR_API | SCR_APK; 1855 } 1856 if (cpu_isar_feature(aa64_sel2, cpu)) { 1857 valid_mask |= SCR_EEL2; 1858 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1859 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1860 value |= SCR_NS; 1861 } 1862 if (cpu_isar_feature(aa64_mte, cpu)) { 1863 valid_mask |= SCR_ATA; 1864 } 1865 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1866 valid_mask |= SCR_ENSCXT; 1867 } 1868 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1869 valid_mask |= SCR_EASE | SCR_NMEA; 1870 } 1871 if (cpu_isar_feature(aa64_sme, cpu)) { 1872 valid_mask |= SCR_ENTP2; 1873 } 1874 if (cpu_isar_feature(aa64_hcx, cpu)) { 1875 valid_mask |= SCR_HXEN; 1876 } 1877 if (cpu_isar_feature(aa64_fgt, cpu)) { 1878 valid_mask |= SCR_FGTEN; 1879 } 1880 if (cpu_isar_feature(aa64_rme, cpu)) { 1881 valid_mask |= SCR_NSE | SCR_GPF; 1882 } 1883 } else { 1884 valid_mask &= ~(SCR_RW | SCR_ST); 1885 if (cpu_isar_feature(aa32_ras, cpu)) { 1886 valid_mask |= SCR_TERR; 1887 } 1888 } 1889 1890 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1891 valid_mask &= ~SCR_HCE; 1892 1893 /* 1894 * On ARMv7, SMD (or SCD as it is called in v7) is only 1895 * supported if EL2 exists. The bit is UNK/SBZP when 1896 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1897 * when EL2 is unavailable. 1898 * On ARMv8, this bit is always available. 1899 */ 1900 if (arm_feature(env, ARM_FEATURE_V7) && 1901 !arm_feature(env, ARM_FEATURE_V8)) { 1902 valid_mask &= ~SCR_SMD; 1903 } 1904 } 1905 1906 /* Clear all-context RES0 bits. */ 1907 value &= valid_mask; 1908 changed = env->cp15.scr_el3 ^ value; 1909 env->cp15.scr_el3 = value; 1910 1911 /* 1912 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1913 * we must invalidate all TLBs below EL3. 1914 */ 1915 if (changed & (SCR_NS | SCR_NSE)) { 1916 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1917 ARMMMUIdxBit_E20_0 | 1918 ARMMMUIdxBit_E10_1 | 1919 ARMMMUIdxBit_E20_2 | 1920 ARMMMUIdxBit_E10_1_PAN | 1921 ARMMMUIdxBit_E20_2_PAN | 1922 ARMMMUIdxBit_E2)); 1923 } 1924 } 1925 1926 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1927 { 1928 /* 1929 * scr_write will set the RES1 bits on an AArch64-only CPU. 1930 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1931 */ 1932 scr_write(env, ri, 0); 1933 } 1934 1935 static CPAccessResult access_tid4(CPUARMState *env, 1936 const ARMCPRegInfo *ri, 1937 bool isread) 1938 { 1939 if (arm_current_el(env) == 1 && 1940 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1941 return CP_ACCESS_TRAP_EL2; 1942 } 1943 1944 return CP_ACCESS_OK; 1945 } 1946 1947 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1948 { 1949 ARMCPU *cpu = env_archcpu(env); 1950 1951 /* 1952 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1953 * bank 1954 */ 1955 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1956 ri->secure & ARM_CP_SECSTATE_S); 1957 1958 return cpu->ccsidr[index]; 1959 } 1960 1961 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1962 uint64_t value) 1963 { 1964 raw_write(env, ri, value & 0xf); 1965 } 1966 1967 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1968 { 1969 CPUState *cs = env_cpu(env); 1970 bool el1 = arm_current_el(env) == 1; 1971 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1972 uint64_t ret = 0; 1973 1974 if (hcr_el2 & HCR_IMO) { 1975 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1976 ret |= CPSR_I; 1977 } 1978 } else { 1979 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1980 ret |= CPSR_I; 1981 } 1982 } 1983 1984 if (hcr_el2 & HCR_FMO) { 1985 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1986 ret |= CPSR_F; 1987 } 1988 } else { 1989 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1990 ret |= CPSR_F; 1991 } 1992 } 1993 1994 if (hcr_el2 & HCR_AMO) { 1995 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1996 ret |= CPSR_A; 1997 } 1998 } 1999 2000 return ret; 2001 } 2002 2003 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2004 bool isread) 2005 { 2006 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2007 return CP_ACCESS_TRAP_EL2; 2008 } 2009 2010 return CP_ACCESS_OK; 2011 } 2012 2013 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2014 bool isread) 2015 { 2016 if (arm_feature(env, ARM_FEATURE_V8)) { 2017 return access_aa64_tid1(env, ri, isread); 2018 } 2019 2020 return CP_ACCESS_OK; 2021 } 2022 2023 static const ARMCPRegInfo v7_cp_reginfo[] = { 2024 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2025 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2026 .access = PL1_W, .type = ARM_CP_NOP }, 2027 /* 2028 * Performance monitors are implementation defined in v7, 2029 * but with an ARM recommended set of registers, which we 2030 * follow. 2031 * 2032 * Performance registers fall into three categories: 2033 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2034 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2035 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2036 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2037 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2038 */ 2039 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2040 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2041 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2042 .writefn = pmcntenset_write, 2043 .accessfn = pmreg_access, 2044 .fgt = FGT_PMCNTEN, 2045 .raw_writefn = raw_write }, 2046 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2047 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2048 .access = PL0_RW, .accessfn = pmreg_access, 2049 .fgt = FGT_PMCNTEN, 2050 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2051 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2052 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2053 .access = PL0_RW, 2054 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2055 .accessfn = pmreg_access, 2056 .fgt = FGT_PMCNTEN, 2057 .writefn = pmcntenclr_write, 2058 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2059 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2060 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2061 .access = PL0_RW, .accessfn = pmreg_access, 2062 .fgt = FGT_PMCNTEN, 2063 .type = ARM_CP_ALIAS | ARM_CP_IO, 2064 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2065 .writefn = pmcntenclr_write }, 2066 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2067 .access = PL0_RW, .type = ARM_CP_IO, 2068 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2069 .accessfn = pmreg_access, 2070 .fgt = FGT_PMOVS, 2071 .writefn = pmovsr_write, 2072 .raw_writefn = raw_write }, 2073 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2074 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2075 .access = PL0_RW, .accessfn = pmreg_access, 2076 .fgt = FGT_PMOVS, 2077 .type = ARM_CP_ALIAS | ARM_CP_IO, 2078 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2079 .writefn = pmovsr_write, 2080 .raw_writefn = raw_write }, 2081 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2082 .access = PL0_W, .accessfn = pmreg_access_swinc, 2083 .fgt = FGT_PMSWINC_EL0, 2084 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2085 .writefn = pmswinc_write }, 2086 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2087 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2088 .access = PL0_W, .accessfn = pmreg_access_swinc, 2089 .fgt = FGT_PMSWINC_EL0, 2090 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2091 .writefn = pmswinc_write }, 2092 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2093 .access = PL0_RW, .type = ARM_CP_ALIAS, 2094 .fgt = FGT_PMSELR_EL0, 2095 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2096 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2097 .raw_writefn = raw_write}, 2098 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2099 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2100 .access = PL0_RW, .accessfn = pmreg_access_selr, 2101 .fgt = FGT_PMSELR_EL0, 2102 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2103 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2104 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2105 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2106 .fgt = FGT_PMCCNTR_EL0, 2107 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2108 .accessfn = pmreg_access_ccntr }, 2109 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2110 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2111 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2112 .fgt = FGT_PMCCNTR_EL0, 2113 .type = ARM_CP_IO, 2114 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2115 .readfn = pmccntr_read, .writefn = pmccntr_write, 2116 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2117 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2118 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2119 .access = PL0_RW, .accessfn = pmreg_access, 2120 .fgt = FGT_PMCCFILTR_EL0, 2121 .type = ARM_CP_ALIAS | ARM_CP_IO, 2122 .resetvalue = 0, }, 2123 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2125 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2126 .access = PL0_RW, .accessfn = pmreg_access, 2127 .fgt = FGT_PMCCFILTR_EL0, 2128 .type = ARM_CP_IO, 2129 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2130 .resetvalue = 0, }, 2131 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2132 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2133 .accessfn = pmreg_access, 2134 .fgt = FGT_PMEVTYPERN_EL0, 2135 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2136 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2137 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2138 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2139 .accessfn = pmreg_access, 2140 .fgt = FGT_PMEVTYPERN_EL0, 2141 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2142 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2143 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2144 .accessfn = pmreg_access_xevcntr, 2145 .fgt = FGT_PMEVCNTRN_EL0, 2146 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2147 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2148 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2149 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2150 .accessfn = pmreg_access_xevcntr, 2151 .fgt = FGT_PMEVCNTRN_EL0, 2152 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2153 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2154 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2155 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2156 .resetvalue = 0, 2157 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2158 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2159 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2160 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2161 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2162 .resetvalue = 0, 2163 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2164 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2165 .access = PL1_RW, .accessfn = access_tpm, 2166 .fgt = FGT_PMINTEN, 2167 .type = ARM_CP_ALIAS | ARM_CP_IO, 2168 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2169 .resetvalue = 0, 2170 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2171 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2172 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2173 .access = PL1_RW, .accessfn = access_tpm, 2174 .fgt = FGT_PMINTEN, 2175 .type = ARM_CP_IO, 2176 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2177 .writefn = pmintenset_write, .raw_writefn = raw_write, 2178 .resetvalue = 0x0 }, 2179 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2180 .access = PL1_RW, .accessfn = access_tpm, 2181 .fgt = FGT_PMINTEN, 2182 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2183 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2184 .writefn = pmintenclr_write, }, 2185 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2186 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2187 .access = PL1_RW, .accessfn = access_tpm, 2188 .fgt = FGT_PMINTEN, 2189 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2190 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2191 .writefn = pmintenclr_write }, 2192 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2193 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2194 .access = PL1_R, 2195 .accessfn = access_tid4, 2196 .fgt = FGT_CCSIDR_EL1, 2197 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2198 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2199 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2200 .access = PL1_RW, 2201 .accessfn = access_tid4, 2202 .fgt = FGT_CSSELR_EL1, 2203 .writefn = csselr_write, .resetvalue = 0, 2204 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2205 offsetof(CPUARMState, cp15.csselr_ns) } }, 2206 /* 2207 * Auxiliary ID register: this actually has an IMPDEF value but for now 2208 * just RAZ for all cores: 2209 */ 2210 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2211 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2212 .access = PL1_R, .type = ARM_CP_CONST, 2213 .accessfn = access_aa64_tid1, 2214 .fgt = FGT_AIDR_EL1, 2215 .resetvalue = 0 }, 2216 /* 2217 * Auxiliary fault status registers: these also are IMPDEF, and we 2218 * choose to RAZ/WI for all cores. 2219 */ 2220 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2221 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2222 .access = PL1_RW, .accessfn = access_tvm_trvm, 2223 .fgt = FGT_AFSR0_EL1, 2224 .type = ARM_CP_CONST, .resetvalue = 0 }, 2225 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2226 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2227 .access = PL1_RW, .accessfn = access_tvm_trvm, 2228 .fgt = FGT_AFSR1_EL1, 2229 .type = ARM_CP_CONST, .resetvalue = 0 }, 2230 /* 2231 * MAIR can just read-as-written because we don't implement caches 2232 * and so don't need to care about memory attributes. 2233 */ 2234 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2235 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2236 .access = PL1_RW, .accessfn = access_tvm_trvm, 2237 .fgt = FGT_MAIR_EL1, 2238 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2239 .resetvalue = 0 }, 2240 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2241 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2242 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2243 .resetvalue = 0 }, 2244 /* 2245 * For non-long-descriptor page tables these are PRRR and NMRR; 2246 * regardless they still act as reads-as-written for QEMU. 2247 */ 2248 /* 2249 * MAIR0/1 are defined separately from their 64-bit counterpart which 2250 * allows them to assign the correct fieldoffset based on the endianness 2251 * handled in the field definitions. 2252 */ 2253 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2254 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2255 .access = PL1_RW, .accessfn = access_tvm_trvm, 2256 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2257 offsetof(CPUARMState, cp15.mair0_ns) }, 2258 .resetfn = arm_cp_reset_ignore }, 2259 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2260 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2261 .access = PL1_RW, .accessfn = access_tvm_trvm, 2262 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2263 offsetof(CPUARMState, cp15.mair1_ns) }, 2264 .resetfn = arm_cp_reset_ignore }, 2265 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2266 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2267 .fgt = FGT_ISR_EL1, 2268 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2269 /* 32 bit ITLB invalidates */ 2270 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2271 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2272 .writefn = tlbiall_write }, 2273 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2274 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2275 .writefn = tlbimva_write }, 2276 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2277 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2278 .writefn = tlbiasid_write }, 2279 /* 32 bit DTLB invalidates */ 2280 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2281 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2282 .writefn = tlbiall_write }, 2283 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2284 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2285 .writefn = tlbimva_write }, 2286 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2287 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2288 .writefn = tlbiasid_write }, 2289 /* 32 bit TLB invalidates */ 2290 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2291 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2292 .writefn = tlbiall_write }, 2293 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2294 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2295 .writefn = tlbimva_write }, 2296 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2297 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2298 .writefn = tlbiasid_write }, 2299 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2300 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2301 .writefn = tlbimvaa_write }, 2302 }; 2303 2304 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2305 /* 32 bit TLB invalidates, Inner Shareable */ 2306 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2307 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2308 .writefn = tlbiall_is_write }, 2309 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2310 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2311 .writefn = tlbimva_is_write }, 2312 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2313 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2314 .writefn = tlbiasid_is_write }, 2315 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2316 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2317 .writefn = tlbimvaa_is_write }, 2318 }; 2319 2320 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2321 /* PMOVSSET is not implemented in v7 before v7ve */ 2322 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2323 .access = PL0_RW, .accessfn = pmreg_access, 2324 .fgt = FGT_PMOVS, 2325 .type = ARM_CP_ALIAS | ARM_CP_IO, 2326 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2327 .writefn = pmovsset_write, 2328 .raw_writefn = raw_write }, 2329 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2330 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2331 .access = PL0_RW, .accessfn = pmreg_access, 2332 .fgt = FGT_PMOVS, 2333 .type = ARM_CP_ALIAS | ARM_CP_IO, 2334 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2335 .writefn = pmovsset_write, 2336 .raw_writefn = raw_write }, 2337 }; 2338 2339 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2340 uint64_t value) 2341 { 2342 value &= 1; 2343 env->teecr = value; 2344 } 2345 2346 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2347 bool isread) 2348 { 2349 /* 2350 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2351 * at all, so we don't need to check whether we're v8A. 2352 */ 2353 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2354 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2355 return CP_ACCESS_TRAP_EL2; 2356 } 2357 return CP_ACCESS_OK; 2358 } 2359 2360 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2361 bool isread) 2362 { 2363 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2364 return CP_ACCESS_TRAP; 2365 } 2366 return teecr_access(env, ri, isread); 2367 } 2368 2369 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2370 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2371 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2372 .resetvalue = 0, 2373 .writefn = teecr_write, .accessfn = teecr_access }, 2374 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2375 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2376 .accessfn = teehbr_access, .resetvalue = 0 }, 2377 }; 2378 2379 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2380 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2381 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2382 .access = PL0_RW, 2383 .fgt = FGT_TPIDR_EL0, 2384 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2385 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2386 .access = PL0_RW, 2387 .fgt = FGT_TPIDR_EL0, 2388 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2389 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2390 .resetfn = arm_cp_reset_ignore }, 2391 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2392 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2393 .access = PL0_R | PL1_W, 2394 .fgt = FGT_TPIDRRO_EL0, 2395 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2396 .resetvalue = 0}, 2397 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2398 .access = PL0_R | PL1_W, 2399 .fgt = FGT_TPIDRRO_EL0, 2400 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2401 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2402 .resetfn = arm_cp_reset_ignore }, 2403 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2404 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2405 .access = PL1_RW, 2406 .fgt = FGT_TPIDR_EL1, 2407 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2408 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2409 .access = PL1_RW, 2410 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2411 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2412 .resetvalue = 0 }, 2413 }; 2414 2415 #ifndef CONFIG_USER_ONLY 2416 2417 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2418 bool isread) 2419 { 2420 /* 2421 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2422 * Writable only at the highest implemented exception level. 2423 */ 2424 int el = arm_current_el(env); 2425 uint64_t hcr; 2426 uint32_t cntkctl; 2427 2428 switch (el) { 2429 case 0: 2430 hcr = arm_hcr_el2_eff(env); 2431 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2432 cntkctl = env->cp15.cnthctl_el2; 2433 } else { 2434 cntkctl = env->cp15.c14_cntkctl; 2435 } 2436 if (!extract32(cntkctl, 0, 2)) { 2437 return CP_ACCESS_TRAP; 2438 } 2439 break; 2440 case 1: 2441 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2442 arm_is_secure_below_el3(env)) { 2443 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2444 return CP_ACCESS_TRAP_UNCATEGORIZED; 2445 } 2446 break; 2447 case 2: 2448 case 3: 2449 break; 2450 } 2451 2452 if (!isread && el < arm_highest_el(env)) { 2453 return CP_ACCESS_TRAP_UNCATEGORIZED; 2454 } 2455 2456 return CP_ACCESS_OK; 2457 } 2458 2459 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2460 bool isread) 2461 { 2462 unsigned int cur_el = arm_current_el(env); 2463 bool has_el2 = arm_is_el2_enabled(env); 2464 uint64_t hcr = arm_hcr_el2_eff(env); 2465 2466 switch (cur_el) { 2467 case 0: 2468 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2469 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2470 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2471 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2472 } 2473 2474 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2475 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2476 return CP_ACCESS_TRAP; 2477 } 2478 2479 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2480 if (hcr & HCR_E2H) { 2481 if (timeridx == GTIMER_PHYS && 2482 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2483 return CP_ACCESS_TRAP_EL2; 2484 } 2485 } else { 2486 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2487 if (has_el2 && timeridx == GTIMER_PHYS && 2488 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2489 return CP_ACCESS_TRAP_EL2; 2490 } 2491 } 2492 break; 2493 2494 case 1: 2495 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2496 if (has_el2 && timeridx == GTIMER_PHYS && 2497 (hcr & HCR_E2H 2498 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2499 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2500 return CP_ACCESS_TRAP_EL2; 2501 } 2502 break; 2503 } 2504 return CP_ACCESS_OK; 2505 } 2506 2507 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2508 bool isread) 2509 { 2510 unsigned int cur_el = arm_current_el(env); 2511 bool has_el2 = arm_is_el2_enabled(env); 2512 uint64_t hcr = arm_hcr_el2_eff(env); 2513 2514 switch (cur_el) { 2515 case 0: 2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2517 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2518 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2519 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2520 } 2521 2522 /* 2523 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2524 * EL0 if EL0[PV]TEN is zero. 2525 */ 2526 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2527 return CP_ACCESS_TRAP; 2528 } 2529 /* fall through */ 2530 2531 case 1: 2532 if (has_el2 && timeridx == GTIMER_PHYS) { 2533 if (hcr & HCR_E2H) { 2534 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2535 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2536 return CP_ACCESS_TRAP_EL2; 2537 } 2538 } else { 2539 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2540 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2541 return CP_ACCESS_TRAP_EL2; 2542 } 2543 } 2544 } 2545 break; 2546 } 2547 return CP_ACCESS_OK; 2548 } 2549 2550 static CPAccessResult gt_pct_access(CPUARMState *env, 2551 const ARMCPRegInfo *ri, 2552 bool isread) 2553 { 2554 return gt_counter_access(env, GTIMER_PHYS, isread); 2555 } 2556 2557 static CPAccessResult gt_vct_access(CPUARMState *env, 2558 const ARMCPRegInfo *ri, 2559 bool isread) 2560 { 2561 return gt_counter_access(env, GTIMER_VIRT, isread); 2562 } 2563 2564 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2565 bool isread) 2566 { 2567 return gt_timer_access(env, GTIMER_PHYS, isread); 2568 } 2569 2570 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2571 bool isread) 2572 { 2573 return gt_timer_access(env, GTIMER_VIRT, isread); 2574 } 2575 2576 static CPAccessResult gt_stimer_access(CPUARMState *env, 2577 const ARMCPRegInfo *ri, 2578 bool isread) 2579 { 2580 /* 2581 * The AArch64 register view of the secure physical timer is 2582 * always accessible from EL3, and configurably accessible from 2583 * Secure EL1. 2584 */ 2585 switch (arm_current_el(env)) { 2586 case 1: 2587 if (!arm_is_secure(env)) { 2588 return CP_ACCESS_TRAP; 2589 } 2590 if (!(env->cp15.scr_el3 & SCR_ST)) { 2591 return CP_ACCESS_TRAP_EL3; 2592 } 2593 return CP_ACCESS_OK; 2594 case 0: 2595 case 2: 2596 return CP_ACCESS_TRAP; 2597 case 3: 2598 return CP_ACCESS_OK; 2599 default: 2600 g_assert_not_reached(); 2601 } 2602 } 2603 2604 static uint64_t gt_get_countervalue(CPUARMState *env) 2605 { 2606 ARMCPU *cpu = env_archcpu(env); 2607 2608 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2609 } 2610 2611 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2612 { 2613 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2614 2615 if (gt->ctl & 1) { 2616 /* 2617 * Timer enabled: calculate and set current ISTATUS, irq, and 2618 * reset timer to when ISTATUS next has to change 2619 */ 2620 uint64_t offset = timeridx == GTIMER_VIRT ? 2621 cpu->env.cp15.cntvoff_el2 : 0; 2622 uint64_t count = gt_get_countervalue(&cpu->env); 2623 /* Note that this must be unsigned 64 bit arithmetic: */ 2624 int istatus = count - offset >= gt->cval; 2625 uint64_t nexttick; 2626 int irqstate; 2627 2628 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2629 2630 irqstate = (istatus && !(gt->ctl & 2)); 2631 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2632 2633 if (istatus) { 2634 /* Next transition is when count rolls back over to zero */ 2635 nexttick = UINT64_MAX; 2636 } else { 2637 /* Next transition is when we hit cval */ 2638 nexttick = gt->cval + offset; 2639 } 2640 /* 2641 * Note that the desired next expiry time might be beyond the 2642 * signed-64-bit range of a QEMUTimer -- in this case we just 2643 * set the timer for as far in the future as possible. When the 2644 * timer expires we will reset the timer for any remaining period. 2645 */ 2646 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2647 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2648 } else { 2649 timer_mod(cpu->gt_timer[timeridx], nexttick); 2650 } 2651 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2652 } else { 2653 /* Timer disabled: ISTATUS and timer output always clear */ 2654 gt->ctl &= ~4; 2655 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2656 timer_del(cpu->gt_timer[timeridx]); 2657 trace_arm_gt_recalc_disabled(timeridx); 2658 } 2659 } 2660 2661 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2662 int timeridx) 2663 { 2664 ARMCPU *cpu = env_archcpu(env); 2665 2666 timer_del(cpu->gt_timer[timeridx]); 2667 } 2668 2669 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2670 { 2671 return gt_get_countervalue(env); 2672 } 2673 2674 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2675 { 2676 uint64_t hcr; 2677 2678 switch (arm_current_el(env)) { 2679 case 2: 2680 hcr = arm_hcr_el2_eff(env); 2681 if (hcr & HCR_E2H) { 2682 return 0; 2683 } 2684 break; 2685 case 0: 2686 hcr = arm_hcr_el2_eff(env); 2687 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2688 return 0; 2689 } 2690 break; 2691 } 2692 2693 return env->cp15.cntvoff_el2; 2694 } 2695 2696 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2697 { 2698 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2699 } 2700 2701 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2702 int timeridx, 2703 uint64_t value) 2704 { 2705 trace_arm_gt_cval_write(timeridx, value); 2706 env->cp15.c14_timer[timeridx].cval = value; 2707 gt_recalc_timer(env_archcpu(env), timeridx); 2708 } 2709 2710 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2711 int timeridx) 2712 { 2713 uint64_t offset = 0; 2714 2715 switch (timeridx) { 2716 case GTIMER_VIRT: 2717 case GTIMER_HYPVIRT: 2718 offset = gt_virt_cnt_offset(env); 2719 break; 2720 } 2721 2722 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2723 (gt_get_countervalue(env) - offset)); 2724 } 2725 2726 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2727 int timeridx, 2728 uint64_t value) 2729 { 2730 uint64_t offset = 0; 2731 2732 switch (timeridx) { 2733 case GTIMER_VIRT: 2734 case GTIMER_HYPVIRT: 2735 offset = gt_virt_cnt_offset(env); 2736 break; 2737 } 2738 2739 trace_arm_gt_tval_write(timeridx, value); 2740 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2741 sextract64(value, 0, 32); 2742 gt_recalc_timer(env_archcpu(env), timeridx); 2743 } 2744 2745 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2746 int timeridx, 2747 uint64_t value) 2748 { 2749 ARMCPU *cpu = env_archcpu(env); 2750 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2751 2752 trace_arm_gt_ctl_write(timeridx, value); 2753 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2754 if ((oldval ^ value) & 1) { 2755 /* Enable toggled */ 2756 gt_recalc_timer(cpu, timeridx); 2757 } else if ((oldval ^ value) & 2) { 2758 /* 2759 * IMASK toggled: don't need to recalculate, 2760 * just set the interrupt line based on ISTATUS 2761 */ 2762 int irqstate = (oldval & 4) && !(value & 2); 2763 2764 trace_arm_gt_imask_toggle(timeridx, irqstate); 2765 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2766 } 2767 } 2768 2769 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2770 { 2771 gt_timer_reset(env, ri, GTIMER_PHYS); 2772 } 2773 2774 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2775 uint64_t value) 2776 { 2777 gt_cval_write(env, ri, GTIMER_PHYS, value); 2778 } 2779 2780 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2781 { 2782 return gt_tval_read(env, ri, GTIMER_PHYS); 2783 } 2784 2785 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2786 uint64_t value) 2787 { 2788 gt_tval_write(env, ri, GTIMER_PHYS, value); 2789 } 2790 2791 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2792 uint64_t value) 2793 { 2794 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2795 } 2796 2797 static int gt_phys_redir_timeridx(CPUARMState *env) 2798 { 2799 switch (arm_mmu_idx(env)) { 2800 case ARMMMUIdx_E20_0: 2801 case ARMMMUIdx_E20_2: 2802 case ARMMMUIdx_E20_2_PAN: 2803 return GTIMER_HYP; 2804 default: 2805 return GTIMER_PHYS; 2806 } 2807 } 2808 2809 static int gt_virt_redir_timeridx(CPUARMState *env) 2810 { 2811 switch (arm_mmu_idx(env)) { 2812 case ARMMMUIdx_E20_0: 2813 case ARMMMUIdx_E20_2: 2814 case ARMMMUIdx_E20_2_PAN: 2815 return GTIMER_HYPVIRT; 2816 default: 2817 return GTIMER_VIRT; 2818 } 2819 } 2820 2821 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2822 const ARMCPRegInfo *ri) 2823 { 2824 int timeridx = gt_phys_redir_timeridx(env); 2825 return env->cp15.c14_timer[timeridx].cval; 2826 } 2827 2828 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2829 uint64_t value) 2830 { 2831 int timeridx = gt_phys_redir_timeridx(env); 2832 gt_cval_write(env, ri, timeridx, value); 2833 } 2834 2835 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2836 const ARMCPRegInfo *ri) 2837 { 2838 int timeridx = gt_phys_redir_timeridx(env); 2839 return gt_tval_read(env, ri, timeridx); 2840 } 2841 2842 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2843 uint64_t value) 2844 { 2845 int timeridx = gt_phys_redir_timeridx(env); 2846 gt_tval_write(env, ri, timeridx, value); 2847 } 2848 2849 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2850 const ARMCPRegInfo *ri) 2851 { 2852 int timeridx = gt_phys_redir_timeridx(env); 2853 return env->cp15.c14_timer[timeridx].ctl; 2854 } 2855 2856 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2857 uint64_t value) 2858 { 2859 int timeridx = gt_phys_redir_timeridx(env); 2860 gt_ctl_write(env, ri, timeridx, value); 2861 } 2862 2863 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2864 { 2865 gt_timer_reset(env, ri, GTIMER_VIRT); 2866 } 2867 2868 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2869 uint64_t value) 2870 { 2871 gt_cval_write(env, ri, GTIMER_VIRT, value); 2872 } 2873 2874 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2875 { 2876 return gt_tval_read(env, ri, GTIMER_VIRT); 2877 } 2878 2879 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2880 uint64_t value) 2881 { 2882 gt_tval_write(env, ri, GTIMER_VIRT, value); 2883 } 2884 2885 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2886 uint64_t value) 2887 { 2888 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2889 } 2890 2891 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2892 uint64_t value) 2893 { 2894 ARMCPU *cpu = env_archcpu(env); 2895 2896 trace_arm_gt_cntvoff_write(value); 2897 raw_write(env, ri, value); 2898 gt_recalc_timer(cpu, GTIMER_VIRT); 2899 } 2900 2901 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2902 const ARMCPRegInfo *ri) 2903 { 2904 int timeridx = gt_virt_redir_timeridx(env); 2905 return env->cp15.c14_timer[timeridx].cval; 2906 } 2907 2908 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2909 uint64_t value) 2910 { 2911 int timeridx = gt_virt_redir_timeridx(env); 2912 gt_cval_write(env, ri, timeridx, value); 2913 } 2914 2915 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2916 const ARMCPRegInfo *ri) 2917 { 2918 int timeridx = gt_virt_redir_timeridx(env); 2919 return gt_tval_read(env, ri, timeridx); 2920 } 2921 2922 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2923 uint64_t value) 2924 { 2925 int timeridx = gt_virt_redir_timeridx(env); 2926 gt_tval_write(env, ri, timeridx, value); 2927 } 2928 2929 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2930 const ARMCPRegInfo *ri) 2931 { 2932 int timeridx = gt_virt_redir_timeridx(env); 2933 return env->cp15.c14_timer[timeridx].ctl; 2934 } 2935 2936 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2937 uint64_t value) 2938 { 2939 int timeridx = gt_virt_redir_timeridx(env); 2940 gt_ctl_write(env, ri, timeridx, value); 2941 } 2942 2943 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2944 { 2945 gt_timer_reset(env, ri, GTIMER_HYP); 2946 } 2947 2948 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2949 uint64_t value) 2950 { 2951 gt_cval_write(env, ri, GTIMER_HYP, value); 2952 } 2953 2954 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2955 { 2956 return gt_tval_read(env, ri, GTIMER_HYP); 2957 } 2958 2959 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2960 uint64_t value) 2961 { 2962 gt_tval_write(env, ri, GTIMER_HYP, value); 2963 } 2964 2965 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2966 uint64_t value) 2967 { 2968 gt_ctl_write(env, ri, GTIMER_HYP, value); 2969 } 2970 2971 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2972 { 2973 gt_timer_reset(env, ri, GTIMER_SEC); 2974 } 2975 2976 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2977 uint64_t value) 2978 { 2979 gt_cval_write(env, ri, GTIMER_SEC, value); 2980 } 2981 2982 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2983 { 2984 return gt_tval_read(env, ri, GTIMER_SEC); 2985 } 2986 2987 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2988 uint64_t value) 2989 { 2990 gt_tval_write(env, ri, GTIMER_SEC, value); 2991 } 2992 2993 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2994 uint64_t value) 2995 { 2996 gt_ctl_write(env, ri, GTIMER_SEC, value); 2997 } 2998 2999 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3000 { 3001 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3002 } 3003 3004 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3005 uint64_t value) 3006 { 3007 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3008 } 3009 3010 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3011 { 3012 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3013 } 3014 3015 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3016 uint64_t value) 3017 { 3018 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3019 } 3020 3021 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3022 uint64_t value) 3023 { 3024 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3025 } 3026 3027 void arm_gt_ptimer_cb(void *opaque) 3028 { 3029 ARMCPU *cpu = opaque; 3030 3031 gt_recalc_timer(cpu, GTIMER_PHYS); 3032 } 3033 3034 void arm_gt_vtimer_cb(void *opaque) 3035 { 3036 ARMCPU *cpu = opaque; 3037 3038 gt_recalc_timer(cpu, GTIMER_VIRT); 3039 } 3040 3041 void arm_gt_htimer_cb(void *opaque) 3042 { 3043 ARMCPU *cpu = opaque; 3044 3045 gt_recalc_timer(cpu, GTIMER_HYP); 3046 } 3047 3048 void arm_gt_stimer_cb(void *opaque) 3049 { 3050 ARMCPU *cpu = opaque; 3051 3052 gt_recalc_timer(cpu, GTIMER_SEC); 3053 } 3054 3055 void arm_gt_hvtimer_cb(void *opaque) 3056 { 3057 ARMCPU *cpu = opaque; 3058 3059 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3060 } 3061 3062 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3063 { 3064 ARMCPU *cpu = env_archcpu(env); 3065 3066 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3067 } 3068 3069 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3070 /* 3071 * Note that CNTFRQ is purely reads-as-written for the benefit 3072 * of software; writing it doesn't actually change the timer frequency. 3073 * Our reset value matches the fixed frequency we implement the timer at. 3074 */ 3075 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3076 .type = ARM_CP_ALIAS, 3077 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3078 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3079 }, 3080 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3081 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3082 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3083 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3084 .resetfn = arm_gt_cntfrq_reset, 3085 }, 3086 /* overall control: mostly access permissions */ 3087 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3088 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3089 .access = PL1_RW, 3090 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3091 .resetvalue = 0, 3092 }, 3093 /* per-timer control */ 3094 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3095 .secure = ARM_CP_SECSTATE_NS, 3096 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3097 .accessfn = gt_ptimer_access, 3098 .fieldoffset = offsetoflow32(CPUARMState, 3099 cp15.c14_timer[GTIMER_PHYS].ctl), 3100 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3101 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3102 }, 3103 { .name = "CNTP_CTL_S", 3104 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3105 .secure = ARM_CP_SECSTATE_S, 3106 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3107 .accessfn = gt_ptimer_access, 3108 .fieldoffset = offsetoflow32(CPUARMState, 3109 cp15.c14_timer[GTIMER_SEC].ctl), 3110 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3111 }, 3112 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3113 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3114 .type = ARM_CP_IO, .access = PL0_RW, 3115 .accessfn = gt_ptimer_access, 3116 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3117 .resetvalue = 0, 3118 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3119 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3120 }, 3121 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3122 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3123 .accessfn = gt_vtimer_access, 3124 .fieldoffset = offsetoflow32(CPUARMState, 3125 cp15.c14_timer[GTIMER_VIRT].ctl), 3126 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3127 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3128 }, 3129 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3130 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3131 .type = ARM_CP_IO, .access = PL0_RW, 3132 .accessfn = gt_vtimer_access, 3133 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3134 .resetvalue = 0, 3135 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3136 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3137 }, 3138 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3139 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3140 .secure = ARM_CP_SECSTATE_NS, 3141 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3142 .accessfn = gt_ptimer_access, 3143 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3144 }, 3145 { .name = "CNTP_TVAL_S", 3146 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3147 .secure = ARM_CP_SECSTATE_S, 3148 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3149 .accessfn = gt_ptimer_access, 3150 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3151 }, 3152 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3153 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3154 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3155 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3156 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3157 }, 3158 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3159 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3160 .accessfn = gt_vtimer_access, 3161 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3162 }, 3163 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3164 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3165 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3166 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3167 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3168 }, 3169 /* The counter itself */ 3170 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3171 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3172 .accessfn = gt_pct_access, 3173 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3174 }, 3175 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3176 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3177 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3178 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3179 }, 3180 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3181 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3182 .accessfn = gt_vct_access, 3183 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3184 }, 3185 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3186 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3187 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3188 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3189 }, 3190 /* Comparison value, indicating when the timer goes off */ 3191 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3192 .secure = ARM_CP_SECSTATE_NS, 3193 .access = PL0_RW, 3194 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3195 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3196 .accessfn = gt_ptimer_access, 3197 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3198 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3199 }, 3200 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3201 .secure = ARM_CP_SECSTATE_S, 3202 .access = PL0_RW, 3203 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3204 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3205 .accessfn = gt_ptimer_access, 3206 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3207 }, 3208 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3209 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3210 .access = PL0_RW, 3211 .type = ARM_CP_IO, 3212 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3213 .resetvalue = 0, .accessfn = gt_ptimer_access, 3214 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3215 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3216 }, 3217 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3218 .access = PL0_RW, 3219 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3220 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3221 .accessfn = gt_vtimer_access, 3222 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3223 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3224 }, 3225 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3226 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3227 .access = PL0_RW, 3228 .type = ARM_CP_IO, 3229 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3230 .resetvalue = 0, .accessfn = gt_vtimer_access, 3231 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3232 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3233 }, 3234 /* 3235 * Secure timer -- this is actually restricted to only EL3 3236 * and configurably Secure-EL1 via the accessfn. 3237 */ 3238 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3239 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3240 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3241 .accessfn = gt_stimer_access, 3242 .readfn = gt_sec_tval_read, 3243 .writefn = gt_sec_tval_write, 3244 .resetfn = gt_sec_timer_reset, 3245 }, 3246 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3247 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3248 .type = ARM_CP_IO, .access = PL1_RW, 3249 .accessfn = gt_stimer_access, 3250 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3251 .resetvalue = 0, 3252 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3253 }, 3254 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3255 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3256 .type = ARM_CP_IO, .access = PL1_RW, 3257 .accessfn = gt_stimer_access, 3258 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3259 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3260 }, 3261 }; 3262 3263 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3264 bool isread) 3265 { 3266 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3267 return CP_ACCESS_TRAP; 3268 } 3269 return CP_ACCESS_OK; 3270 } 3271 3272 #else 3273 3274 /* 3275 * In user-mode most of the generic timer registers are inaccessible 3276 * however modern kernels (4.12+) allow access to cntvct_el0 3277 */ 3278 3279 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3280 { 3281 ARMCPU *cpu = env_archcpu(env); 3282 3283 /* 3284 * Currently we have no support for QEMUTimer in linux-user so we 3285 * can't call gt_get_countervalue(env), instead we directly 3286 * call the lower level functions. 3287 */ 3288 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3289 } 3290 3291 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3292 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3293 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3294 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3295 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3296 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3297 }, 3298 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3299 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3300 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3301 .readfn = gt_virt_cnt_read, 3302 }, 3303 }; 3304 3305 #endif 3306 3307 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3308 { 3309 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3310 raw_write(env, ri, value); 3311 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3312 raw_write(env, ri, value & 0xfffff6ff); 3313 } else { 3314 raw_write(env, ri, value & 0xfffff1ff); 3315 } 3316 } 3317 3318 #ifndef CONFIG_USER_ONLY 3319 /* get_phys_addr() isn't present for user-mode-only targets */ 3320 3321 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3322 bool isread) 3323 { 3324 if (ri->opc2 & 4) { 3325 /* 3326 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3327 * Secure EL1 (which can only happen if EL3 is AArch64). 3328 * They are simply UNDEF if executed from NS EL1. 3329 * They function normally from EL2 or EL3. 3330 */ 3331 if (arm_current_el(env) == 1) { 3332 if (arm_is_secure_below_el3(env)) { 3333 if (env->cp15.scr_el3 & SCR_EEL2) { 3334 return CP_ACCESS_TRAP_EL2; 3335 } 3336 return CP_ACCESS_TRAP_EL3; 3337 } 3338 return CP_ACCESS_TRAP_UNCATEGORIZED; 3339 } 3340 } 3341 return CP_ACCESS_OK; 3342 } 3343 3344 #ifdef CONFIG_TCG 3345 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3346 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3347 bool is_secure) 3348 { 3349 bool ret; 3350 uint64_t par64; 3351 bool format64 = false; 3352 ARMMMUFaultInfo fi = {}; 3353 GetPhysAddrResult res = {}; 3354 3355 ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx, 3356 is_secure, &res, &fi); 3357 3358 /* 3359 * ATS operations only do S1 or S1+S2 translations, so we never 3360 * have to deal with the ARMCacheAttrs format for S2 only. 3361 */ 3362 assert(!res.cacheattrs.is_s2_format); 3363 3364 if (ret) { 3365 /* 3366 * Some kinds of translation fault must cause exceptions rather 3367 * than being reported in the PAR. 3368 */ 3369 int current_el = arm_current_el(env); 3370 int target_el; 3371 uint32_t syn, fsr, fsc; 3372 bool take_exc = false; 3373 3374 if (fi.s1ptw && current_el == 1 3375 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3376 /* 3377 * Synchronous stage 2 fault on an access made as part of the 3378 * translation table walk for AT S1E0* or AT S1E1* insn 3379 * executed from NS EL1. If this is a synchronous external abort 3380 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3381 * to EL3. Otherwise the fault is taken as an exception to EL2, 3382 * and HPFAR_EL2 holds the faulting IPA. 3383 */ 3384 if (fi.type == ARMFault_SyncExternalOnWalk && 3385 (env->cp15.scr_el3 & SCR_EA)) { 3386 target_el = 3; 3387 } else { 3388 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3389 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3390 env->cp15.hpfar_el2 |= HPFAR_NS; 3391 } 3392 target_el = 2; 3393 } 3394 take_exc = true; 3395 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3396 /* 3397 * Synchronous external aborts during a translation table walk 3398 * are taken as Data Abort exceptions. 3399 */ 3400 if (fi.stage2) { 3401 if (current_el == 3) { 3402 target_el = 3; 3403 } else { 3404 target_el = 2; 3405 } 3406 } else { 3407 target_el = exception_target_el(env); 3408 } 3409 take_exc = true; 3410 } 3411 3412 if (take_exc) { 3413 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3414 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3415 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3416 fsr = arm_fi_to_lfsc(&fi); 3417 fsc = extract32(fsr, 0, 6); 3418 } else { 3419 fsr = arm_fi_to_sfsc(&fi); 3420 fsc = 0x3f; 3421 } 3422 /* 3423 * Report exception with ESR indicating a fault due to a 3424 * translation table walk for a cache maintenance instruction. 3425 */ 3426 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3427 fi.ea, 1, fi.s1ptw, 1, fsc); 3428 env->exception.vaddress = value; 3429 env->exception.fsr = fsr; 3430 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3431 } 3432 } 3433 3434 if (is_a64(env)) { 3435 format64 = true; 3436 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3437 /* 3438 * ATS1Cxx: 3439 * * TTBCR.EAE determines whether the result is returned using the 3440 * 32-bit or the 64-bit PAR format 3441 * * Instructions executed in Hyp mode always use the 64bit format 3442 * 3443 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3444 * * The Non-secure TTBCR.EAE bit is set to 1 3445 * * The implementation includes EL2, and the value of HCR.VM is 1 3446 * 3447 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3448 * 3449 * ATS1Hx always uses the 64bit format. 3450 */ 3451 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3452 3453 if (arm_feature(env, ARM_FEATURE_EL2)) { 3454 if (mmu_idx == ARMMMUIdx_E10_0 || 3455 mmu_idx == ARMMMUIdx_E10_1 || 3456 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3457 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3458 } else { 3459 format64 |= arm_current_el(env) == 2; 3460 } 3461 } 3462 } 3463 3464 if (format64) { 3465 /* Create a 64-bit PAR */ 3466 par64 = (1 << 11); /* LPAE bit always set */ 3467 if (!ret) { 3468 par64 |= res.f.phys_addr & ~0xfffULL; 3469 if (!res.f.attrs.secure) { 3470 par64 |= (1 << 9); /* NS */ 3471 } 3472 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3473 par64 |= res.cacheattrs.shareability << 7; /* SH */ 3474 } else { 3475 uint32_t fsr = arm_fi_to_lfsc(&fi); 3476 3477 par64 |= 1; /* F */ 3478 par64 |= (fsr & 0x3f) << 1; /* FS */ 3479 if (fi.stage2) { 3480 par64 |= (1 << 9); /* S */ 3481 } 3482 if (fi.s1ptw) { 3483 par64 |= (1 << 8); /* PTW */ 3484 } 3485 } 3486 } else { 3487 /* 3488 * fsr is a DFSR/IFSR value for the short descriptor 3489 * translation table format (with WnR always clear). 3490 * Convert it to a 32-bit PAR. 3491 */ 3492 if (!ret) { 3493 /* We do not set any attribute bits in the PAR */ 3494 if (res.f.lg_page_size == 24 3495 && arm_feature(env, ARM_FEATURE_V7)) { 3496 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3497 } else { 3498 par64 = res.f.phys_addr & 0xfffff000; 3499 } 3500 if (!res.f.attrs.secure) { 3501 par64 |= (1 << 9); /* NS */ 3502 } 3503 } else { 3504 uint32_t fsr = arm_fi_to_sfsc(&fi); 3505 3506 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3507 ((fsr & 0xf) << 1) | 1; 3508 } 3509 } 3510 return par64; 3511 } 3512 #endif /* CONFIG_TCG */ 3513 3514 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3515 { 3516 #ifdef CONFIG_TCG 3517 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3518 uint64_t par64; 3519 ARMMMUIdx mmu_idx; 3520 int el = arm_current_el(env); 3521 bool secure = arm_is_secure_below_el3(env); 3522 3523 switch (ri->opc2 & 6) { 3524 case 0: 3525 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3526 switch (el) { 3527 case 3: 3528 mmu_idx = ARMMMUIdx_E3; 3529 secure = true; 3530 break; 3531 case 2: 3532 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3533 /* fall through */ 3534 case 1: 3535 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3536 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3537 } else { 3538 mmu_idx = ARMMMUIdx_Stage1_E1; 3539 } 3540 break; 3541 default: 3542 g_assert_not_reached(); 3543 } 3544 break; 3545 case 2: 3546 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3547 switch (el) { 3548 case 3: 3549 mmu_idx = ARMMMUIdx_E10_0; 3550 secure = true; 3551 break; 3552 case 2: 3553 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3554 mmu_idx = ARMMMUIdx_Stage1_E0; 3555 break; 3556 case 1: 3557 mmu_idx = ARMMMUIdx_Stage1_E0; 3558 break; 3559 default: 3560 g_assert_not_reached(); 3561 } 3562 break; 3563 case 4: 3564 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3565 mmu_idx = ARMMMUIdx_E10_1; 3566 secure = false; 3567 break; 3568 case 6: 3569 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3570 mmu_idx = ARMMMUIdx_E10_0; 3571 secure = false; 3572 break; 3573 default: 3574 g_assert_not_reached(); 3575 } 3576 3577 par64 = do_ats_write(env, value, access_type, mmu_idx, secure); 3578 3579 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3580 #else 3581 /* Handled by hardware accelerator. */ 3582 g_assert_not_reached(); 3583 #endif /* CONFIG_TCG */ 3584 } 3585 3586 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3587 uint64_t value) 3588 { 3589 #ifdef CONFIG_TCG 3590 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3591 uint64_t par64; 3592 3593 /* There is no SecureEL2 for AArch32. */ 3594 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false); 3595 3596 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3597 #else 3598 /* Handled by hardware accelerator. */ 3599 g_assert_not_reached(); 3600 #endif /* CONFIG_TCG */ 3601 } 3602 3603 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3604 bool isread) 3605 { 3606 if (arm_current_el(env) == 3 && 3607 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3608 return CP_ACCESS_TRAP; 3609 } 3610 return CP_ACCESS_OK; 3611 } 3612 3613 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3614 uint64_t value) 3615 { 3616 #ifdef CONFIG_TCG 3617 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3618 ARMMMUIdx mmu_idx; 3619 int secure = arm_is_secure_below_el3(env); 3620 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3621 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3622 3623 switch (ri->opc2 & 6) { 3624 case 0: 3625 switch (ri->opc1) { 3626 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3627 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3628 mmu_idx = regime_e20 ? 3629 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3630 } else { 3631 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3632 } 3633 break; 3634 case 4: /* AT S1E2R, AT S1E2W */ 3635 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3636 break; 3637 case 6: /* AT S1E3R, AT S1E3W */ 3638 mmu_idx = ARMMMUIdx_E3; 3639 secure = true; 3640 break; 3641 default: 3642 g_assert_not_reached(); 3643 } 3644 break; 3645 case 2: /* AT S1E0R, AT S1E0W */ 3646 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3647 break; 3648 case 4: /* AT S12E1R, AT S12E1W */ 3649 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3650 break; 3651 case 6: /* AT S12E0R, AT S12E0W */ 3652 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3653 break; 3654 default: 3655 g_assert_not_reached(); 3656 } 3657 3658 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3659 mmu_idx, secure); 3660 #else 3661 /* Handled by hardware accelerator. */ 3662 g_assert_not_reached(); 3663 #endif /* CONFIG_TCG */ 3664 } 3665 #endif 3666 3667 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3668 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3669 .access = PL1_RW, .resetvalue = 0, 3670 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3671 offsetoflow32(CPUARMState, cp15.par_ns) }, 3672 .writefn = par_write }, 3673 #ifndef CONFIG_USER_ONLY 3674 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3675 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3676 .access = PL1_W, .accessfn = ats_access, 3677 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3678 #endif 3679 }; 3680 3681 /* Return basic MPU access permission bits. */ 3682 static uint32_t simple_mpu_ap_bits(uint32_t val) 3683 { 3684 uint32_t ret; 3685 uint32_t mask; 3686 int i; 3687 ret = 0; 3688 mask = 3; 3689 for (i = 0; i < 16; i += 2) { 3690 ret |= (val >> i) & mask; 3691 mask <<= 2; 3692 } 3693 return ret; 3694 } 3695 3696 /* Pad basic MPU access permission bits to extended format. */ 3697 static uint32_t extended_mpu_ap_bits(uint32_t val) 3698 { 3699 uint32_t ret; 3700 uint32_t mask; 3701 int i; 3702 ret = 0; 3703 mask = 3; 3704 for (i = 0; i < 16; i += 2) { 3705 ret |= (val & mask) << i; 3706 mask <<= 2; 3707 } 3708 return ret; 3709 } 3710 3711 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3712 uint64_t value) 3713 { 3714 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3715 } 3716 3717 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3718 { 3719 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3720 } 3721 3722 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3723 uint64_t value) 3724 { 3725 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3726 } 3727 3728 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3729 { 3730 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3731 } 3732 3733 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3734 { 3735 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3736 3737 if (!u32p) { 3738 return 0; 3739 } 3740 3741 u32p += env->pmsav7.rnr[M_REG_NS]; 3742 return *u32p; 3743 } 3744 3745 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3746 uint64_t value) 3747 { 3748 ARMCPU *cpu = env_archcpu(env); 3749 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3750 3751 if (!u32p) { 3752 return; 3753 } 3754 3755 u32p += env->pmsav7.rnr[M_REG_NS]; 3756 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3757 *u32p = value; 3758 } 3759 3760 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3761 uint64_t value) 3762 { 3763 ARMCPU *cpu = env_archcpu(env); 3764 uint32_t nrgs = cpu->pmsav7_dregion; 3765 3766 if (value >= nrgs) { 3767 qemu_log_mask(LOG_GUEST_ERROR, 3768 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3769 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3770 return; 3771 } 3772 3773 raw_write(env, ri, value); 3774 } 3775 3776 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3777 uint64_t value) 3778 { 3779 ARMCPU *cpu = env_archcpu(env); 3780 3781 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3782 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3783 } 3784 3785 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3786 { 3787 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3788 } 3789 3790 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3791 uint64_t value) 3792 { 3793 ARMCPU *cpu = env_archcpu(env); 3794 3795 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3796 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3797 } 3798 3799 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3800 { 3801 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3802 } 3803 3804 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3805 uint64_t value) 3806 { 3807 ARMCPU *cpu = env_archcpu(env); 3808 3809 /* 3810 * Ignore writes that would select not implemented region. 3811 * This is architecturally UNPREDICTABLE. 3812 */ 3813 if (value >= cpu->pmsav7_dregion) { 3814 return; 3815 } 3816 3817 env->pmsav7.rnr[M_REG_NS] = value; 3818 } 3819 3820 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3821 uint64_t value) 3822 { 3823 ARMCPU *cpu = env_archcpu(env); 3824 3825 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3826 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3827 } 3828 3829 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3830 { 3831 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3832 } 3833 3834 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3835 uint64_t value) 3836 { 3837 ARMCPU *cpu = env_archcpu(env); 3838 3839 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3840 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3841 } 3842 3843 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3844 { 3845 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3846 } 3847 3848 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3849 uint64_t value) 3850 { 3851 uint32_t n; 3852 uint32_t bit; 3853 ARMCPU *cpu = env_archcpu(env); 3854 3855 /* Ignore writes to unimplemented regions */ 3856 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3857 value &= MAKE_64BIT_MASK(0, rmax); 3858 3859 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3860 3861 /* Register alias is only valid for first 32 indexes */ 3862 for (n = 0; n < rmax; ++n) { 3863 bit = extract32(value, n, 1); 3864 env->pmsav8.hprlar[n] = deposit32( 3865 env->pmsav8.hprlar[n], 0, 1, bit); 3866 } 3867 } 3868 3869 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3870 { 3871 uint32_t n; 3872 uint32_t result = 0x0; 3873 ARMCPU *cpu = env_archcpu(env); 3874 3875 /* Register alias is only valid for first 32 indexes */ 3876 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3877 if (env->pmsav8.hprlar[n] & 0x1) { 3878 result |= (0x1 << n); 3879 } 3880 } 3881 return result; 3882 } 3883 3884 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3885 uint64_t value) 3886 { 3887 ARMCPU *cpu = env_archcpu(env); 3888 3889 /* 3890 * Ignore writes that would select not implemented region. 3891 * This is architecturally UNPREDICTABLE. 3892 */ 3893 if (value >= cpu->pmsav8r_hdregion) { 3894 return; 3895 } 3896 3897 env->pmsav8.hprselr = value; 3898 } 3899 3900 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 3901 uint64_t value) 3902 { 3903 ARMCPU *cpu = env_archcpu(env); 3904 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3905 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3906 3907 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3908 3909 if (ri->opc1 & 4) { 3910 if (index >= cpu->pmsav8r_hdregion) { 3911 return; 3912 } 3913 if (ri->opc2 & 0x1) { 3914 env->pmsav8.hprlar[index] = value; 3915 } else { 3916 env->pmsav8.hprbar[index] = value; 3917 } 3918 } else { 3919 if (index >= cpu->pmsav7_dregion) { 3920 return; 3921 } 3922 if (ri->opc2 & 0x1) { 3923 env->pmsav8.rlar[M_REG_NS][index] = value; 3924 } else { 3925 env->pmsav8.rbar[M_REG_NS][index] = value; 3926 } 3927 } 3928 } 3929 3930 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 3931 { 3932 ARMCPU *cpu = env_archcpu(env); 3933 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3934 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3935 3936 if (ri->opc1 & 4) { 3937 if (index >= cpu->pmsav8r_hdregion) { 3938 return 0x0; 3939 } 3940 if (ri->opc2 & 0x1) { 3941 return env->pmsav8.hprlar[index]; 3942 } else { 3943 return env->pmsav8.hprbar[index]; 3944 } 3945 } else { 3946 if (index >= cpu->pmsav7_dregion) { 3947 return 0x0; 3948 } 3949 if (ri->opc2 & 0x1) { 3950 return env->pmsav8.rlar[M_REG_NS][index]; 3951 } else { 3952 return env->pmsav8.rbar[M_REG_NS][index]; 3953 } 3954 } 3955 } 3956 3957 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 3958 { .name = "PRBAR", 3959 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 3960 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3961 .accessfn = access_tvm_trvm, 3962 .readfn = prbar_read, .writefn = prbar_write }, 3963 { .name = "PRLAR", 3964 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 3965 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3966 .accessfn = access_tvm_trvm, 3967 .readfn = prlar_read, .writefn = prlar_write }, 3968 { .name = "PRSELR", .resetvalue = 0, 3969 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 3970 .access = PL1_RW, .accessfn = access_tvm_trvm, 3971 .writefn = prselr_write, 3972 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 3973 { .name = "HPRBAR", .resetvalue = 0, 3974 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 3975 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3976 .readfn = hprbar_read, .writefn = hprbar_write }, 3977 { .name = "HPRLAR", 3978 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 3979 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3980 .readfn = hprlar_read, .writefn = hprlar_write }, 3981 { .name = "HPRSELR", .resetvalue = 0, 3982 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 3983 .access = PL2_RW, 3984 .writefn = hprselr_write, 3985 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 3986 { .name = "HPRENR", 3987 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 3988 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3989 .readfn = hprenr_read, .writefn = hprenr_write }, 3990 }; 3991 3992 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3993 /* 3994 * Reset for all these registers is handled in arm_cpu_reset(), 3995 * because the PMSAv7 is also used by M-profile CPUs, which do 3996 * not register cpregs but still need the state to be reset. 3997 */ 3998 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3999 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4000 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4001 .readfn = pmsav7_read, .writefn = pmsav7_write, 4002 .resetfn = arm_cp_reset_ignore }, 4003 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4004 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4005 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4006 .readfn = pmsav7_read, .writefn = pmsav7_write, 4007 .resetfn = arm_cp_reset_ignore }, 4008 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4009 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4010 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4011 .readfn = pmsav7_read, .writefn = pmsav7_write, 4012 .resetfn = arm_cp_reset_ignore }, 4013 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4014 .access = PL1_RW, 4015 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4016 .writefn = pmsav7_rgnr_write, 4017 .resetfn = arm_cp_reset_ignore }, 4018 }; 4019 4020 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4021 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4022 .access = PL1_RW, .type = ARM_CP_ALIAS, 4023 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4024 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4025 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4026 .access = PL1_RW, .type = ARM_CP_ALIAS, 4027 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4028 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4029 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4030 .access = PL1_RW, 4031 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4032 .resetvalue = 0, }, 4033 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4034 .access = PL1_RW, 4035 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4036 .resetvalue = 0, }, 4037 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4038 .access = PL1_RW, 4039 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4040 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4041 .access = PL1_RW, 4042 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4043 /* Protection region base and size registers */ 4044 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4045 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4046 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4047 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4048 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4049 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4050 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4051 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4052 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4053 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4054 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4055 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4056 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4057 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4058 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4059 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4060 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4061 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4062 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4063 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4064 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4065 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4066 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4067 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4068 }; 4069 4070 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4071 uint64_t value) 4072 { 4073 ARMCPU *cpu = env_archcpu(env); 4074 4075 if (!arm_feature(env, ARM_FEATURE_V8)) { 4076 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4077 /* 4078 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4079 * using Long-descriptor translation table format 4080 */ 4081 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4082 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4083 /* 4084 * In an implementation that includes the Security Extensions 4085 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4086 * Short-descriptor translation table format. 4087 */ 4088 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4089 } else { 4090 value &= TTBCR_N; 4091 } 4092 } 4093 4094 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4095 /* 4096 * With LPAE the TTBCR could result in a change of ASID 4097 * via the TTBCR.A1 bit, so do a TLB flush. 4098 */ 4099 tlb_flush(CPU(cpu)); 4100 } 4101 raw_write(env, ri, value); 4102 } 4103 4104 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4105 uint64_t value) 4106 { 4107 ARMCPU *cpu = env_archcpu(env); 4108 4109 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4110 tlb_flush(CPU(cpu)); 4111 raw_write(env, ri, value); 4112 } 4113 4114 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4115 uint64_t value) 4116 { 4117 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4118 if (cpreg_field_is_64bit(ri) && 4119 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4120 ARMCPU *cpu = env_archcpu(env); 4121 tlb_flush(CPU(cpu)); 4122 } 4123 raw_write(env, ri, value); 4124 } 4125 4126 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4127 uint64_t value) 4128 { 4129 /* 4130 * If we are running with E2&0 regime, then an ASID is active. 4131 * Flush if that might be changing. Note we're not checking 4132 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4133 * holds the active ASID, only checking the field that might. 4134 */ 4135 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4136 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4137 uint16_t mask = ARMMMUIdxBit_E20_2 | 4138 ARMMMUIdxBit_E20_2_PAN | 4139 ARMMMUIdxBit_E20_0; 4140 tlb_flush_by_mmuidx(env_cpu(env), mask); 4141 } 4142 raw_write(env, ri, value); 4143 } 4144 4145 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4146 uint64_t value) 4147 { 4148 ARMCPU *cpu = env_archcpu(env); 4149 CPUState *cs = CPU(cpu); 4150 4151 /* 4152 * A change in VMID to the stage2 page table (Stage2) invalidates 4153 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4154 */ 4155 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4156 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4157 } 4158 raw_write(env, ri, value); 4159 } 4160 4161 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4162 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4163 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4164 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4165 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4166 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4167 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4168 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4169 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4170 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4171 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4172 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4173 offsetof(CPUARMState, cp15.dfar_ns) } }, 4174 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4175 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4176 .access = PL1_RW, .accessfn = access_tvm_trvm, 4177 .fgt = FGT_FAR_EL1, 4178 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4179 .resetvalue = 0, }, 4180 }; 4181 4182 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4183 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4184 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4185 .access = PL1_RW, .accessfn = access_tvm_trvm, 4186 .fgt = FGT_ESR_EL1, 4187 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4188 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4189 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4190 .access = PL1_RW, .accessfn = access_tvm_trvm, 4191 .fgt = FGT_TTBR0_EL1, 4192 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4193 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4194 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4195 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4196 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4197 .access = PL1_RW, .accessfn = access_tvm_trvm, 4198 .fgt = FGT_TTBR1_EL1, 4199 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4200 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4201 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4202 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4203 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4204 .access = PL1_RW, .accessfn = access_tvm_trvm, 4205 .fgt = FGT_TCR_EL1, 4206 .writefn = vmsa_tcr_el12_write, 4207 .raw_writefn = raw_write, 4208 .resetvalue = 0, 4209 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4210 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4211 .access = PL1_RW, .accessfn = access_tvm_trvm, 4212 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4213 .raw_writefn = raw_write, 4214 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4215 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4216 }; 4217 4218 /* 4219 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4220 * qemu tlbs nor adjusting cached masks. 4221 */ 4222 static const ARMCPRegInfo ttbcr2_reginfo = { 4223 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4224 .access = PL1_RW, .accessfn = access_tvm_trvm, 4225 .type = ARM_CP_ALIAS, 4226 .bank_fieldoffsets = { 4227 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4228 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4229 }, 4230 }; 4231 4232 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4233 uint64_t value) 4234 { 4235 env->cp15.c15_ticonfig = value & 0xe7; 4236 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4237 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4238 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4239 } 4240 4241 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4242 uint64_t value) 4243 { 4244 env->cp15.c15_threadid = value & 0xffff; 4245 } 4246 4247 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4248 uint64_t value) 4249 { 4250 /* Wait-for-interrupt (deprecated) */ 4251 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4252 } 4253 4254 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4255 uint64_t value) 4256 { 4257 /* 4258 * On OMAP there are registers indicating the max/min index of dcache lines 4259 * containing a dirty line; cache flush operations have to reset these. 4260 */ 4261 env->cp15.c15_i_max = 0x000; 4262 env->cp15.c15_i_min = 0xff0; 4263 } 4264 4265 static const ARMCPRegInfo omap_cp_reginfo[] = { 4266 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4267 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4268 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4269 .resetvalue = 0, }, 4270 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4271 .access = PL1_RW, .type = ARM_CP_NOP }, 4272 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4273 .access = PL1_RW, 4274 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4275 .writefn = omap_ticonfig_write }, 4276 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4277 .access = PL1_RW, 4278 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4279 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4280 .access = PL1_RW, .resetvalue = 0xff0, 4281 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4282 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4283 .access = PL1_RW, 4284 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4285 .writefn = omap_threadid_write }, 4286 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4287 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4288 .type = ARM_CP_NO_RAW, 4289 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4290 /* 4291 * TODO: Peripheral port remap register: 4292 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4293 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4294 * when MMU is off. 4295 */ 4296 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4297 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4298 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4299 .writefn = omap_cachemaint_write }, 4300 { .name = "C9", .cp = 15, .crn = 9, 4301 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4302 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4303 }; 4304 4305 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4306 uint64_t value) 4307 { 4308 env->cp15.c15_cpar = value & 0x3fff; 4309 } 4310 4311 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4312 { .name = "XSCALE_CPAR", 4313 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4314 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4315 .writefn = xscale_cpar_write, }, 4316 { .name = "XSCALE_AUXCR", 4317 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4318 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4319 .resetvalue = 0, }, 4320 /* 4321 * XScale specific cache-lockdown: since we have no cache we NOP these 4322 * and hope the guest does not really rely on cache behaviour. 4323 */ 4324 { .name = "XSCALE_LOCK_ICACHE_LINE", 4325 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4326 .access = PL1_W, .type = ARM_CP_NOP }, 4327 { .name = "XSCALE_UNLOCK_ICACHE", 4328 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4329 .access = PL1_W, .type = ARM_CP_NOP }, 4330 { .name = "XSCALE_DCACHE_LOCK", 4331 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4332 .access = PL1_RW, .type = ARM_CP_NOP }, 4333 { .name = "XSCALE_UNLOCK_DCACHE", 4334 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4335 .access = PL1_W, .type = ARM_CP_NOP }, 4336 }; 4337 4338 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4339 /* 4340 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4341 * implementation of this implementation-defined space. 4342 * Ideally this should eventually disappear in favour of actually 4343 * implementing the correct behaviour for all cores. 4344 */ 4345 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4346 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4347 .access = PL1_RW, 4348 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4349 .resetvalue = 0 }, 4350 }; 4351 4352 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4353 /* Cache status: RAZ because we have no cache so it's always clean */ 4354 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4355 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4356 .resetvalue = 0 }, 4357 }; 4358 4359 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4360 /* We never have a block transfer operation in progress */ 4361 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4362 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4363 .resetvalue = 0 }, 4364 /* The cache ops themselves: these all NOP for QEMU */ 4365 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4366 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4367 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4368 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4369 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4370 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4371 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4372 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4373 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4374 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4375 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4376 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4377 }; 4378 4379 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4380 /* 4381 * The cache test-and-clean instructions always return (1 << 30) 4382 * to indicate that there are no dirty cache lines. 4383 */ 4384 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4385 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4386 .resetvalue = (1 << 30) }, 4387 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4388 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4389 .resetvalue = (1 << 30) }, 4390 }; 4391 4392 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4393 /* Ignore ReadBuffer accesses */ 4394 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4395 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4396 .access = PL1_RW, .resetvalue = 0, 4397 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4398 }; 4399 4400 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4401 { 4402 unsigned int cur_el = arm_current_el(env); 4403 4404 if (arm_is_el2_enabled(env) && cur_el == 1) { 4405 return env->cp15.vpidr_el2; 4406 } 4407 return raw_read(env, ri); 4408 } 4409 4410 static uint64_t mpidr_read_val(CPUARMState *env) 4411 { 4412 ARMCPU *cpu = env_archcpu(env); 4413 uint64_t mpidr = cpu->mp_affinity; 4414 4415 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4416 mpidr |= (1U << 31); 4417 /* 4418 * Cores which are uniprocessor (non-coherent) 4419 * but still implement the MP extensions set 4420 * bit 30. (For instance, Cortex-R5). 4421 */ 4422 if (cpu->mp_is_up) { 4423 mpidr |= (1u << 30); 4424 } 4425 } 4426 return mpidr; 4427 } 4428 4429 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4430 { 4431 unsigned int cur_el = arm_current_el(env); 4432 4433 if (arm_is_el2_enabled(env) && cur_el == 1) { 4434 return env->cp15.vmpidr_el2; 4435 } 4436 return mpidr_read_val(env); 4437 } 4438 4439 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4440 /* NOP AMAIR0/1 */ 4441 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4442 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4443 .access = PL1_RW, .accessfn = access_tvm_trvm, 4444 .fgt = FGT_AMAIR_EL1, 4445 .type = ARM_CP_CONST, .resetvalue = 0 }, 4446 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4447 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4448 .access = PL1_RW, .accessfn = access_tvm_trvm, 4449 .type = ARM_CP_CONST, .resetvalue = 0 }, 4450 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4451 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4452 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4453 offsetof(CPUARMState, cp15.par_ns)} }, 4454 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4455 .access = PL1_RW, .accessfn = access_tvm_trvm, 4456 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4457 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4458 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4459 .writefn = vmsa_ttbr_write, }, 4460 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4461 .access = PL1_RW, .accessfn = access_tvm_trvm, 4462 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4463 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4464 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4465 .writefn = vmsa_ttbr_write, }, 4466 }; 4467 4468 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4469 { 4470 return vfp_get_fpcr(env); 4471 } 4472 4473 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4474 uint64_t value) 4475 { 4476 vfp_set_fpcr(env, value); 4477 } 4478 4479 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4480 { 4481 return vfp_get_fpsr(env); 4482 } 4483 4484 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4485 uint64_t value) 4486 { 4487 vfp_set_fpsr(env, value); 4488 } 4489 4490 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4491 bool isread) 4492 { 4493 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4494 return CP_ACCESS_TRAP; 4495 } 4496 return CP_ACCESS_OK; 4497 } 4498 4499 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4500 uint64_t value) 4501 { 4502 env->daif = value & PSTATE_DAIF; 4503 } 4504 4505 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4506 { 4507 return env->pstate & PSTATE_PAN; 4508 } 4509 4510 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4511 uint64_t value) 4512 { 4513 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4514 } 4515 4516 static const ARMCPRegInfo pan_reginfo = { 4517 .name = "PAN", .state = ARM_CP_STATE_AA64, 4518 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4519 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4520 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4521 }; 4522 4523 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4524 { 4525 return env->pstate & PSTATE_UAO; 4526 } 4527 4528 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4529 uint64_t value) 4530 { 4531 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4532 } 4533 4534 static const ARMCPRegInfo uao_reginfo = { 4535 .name = "UAO", .state = ARM_CP_STATE_AA64, 4536 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4537 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4538 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4539 }; 4540 4541 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4542 { 4543 return env->pstate & PSTATE_DIT; 4544 } 4545 4546 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4547 uint64_t value) 4548 { 4549 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4550 } 4551 4552 static const ARMCPRegInfo dit_reginfo = { 4553 .name = "DIT", .state = ARM_CP_STATE_AA64, 4554 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4555 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4556 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4557 }; 4558 4559 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4560 { 4561 return env->pstate & PSTATE_SSBS; 4562 } 4563 4564 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4565 uint64_t value) 4566 { 4567 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4568 } 4569 4570 static const ARMCPRegInfo ssbs_reginfo = { 4571 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4572 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4573 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4574 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4575 }; 4576 4577 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4578 const ARMCPRegInfo *ri, 4579 bool isread) 4580 { 4581 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4582 switch (arm_current_el(env)) { 4583 case 0: 4584 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4585 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4586 return CP_ACCESS_TRAP; 4587 } 4588 /* fall through */ 4589 case 1: 4590 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4591 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4592 return CP_ACCESS_TRAP_EL2; 4593 } 4594 break; 4595 } 4596 return CP_ACCESS_OK; 4597 } 4598 4599 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4600 { 4601 /* Cache invalidate/clean to Point of Unification... */ 4602 switch (arm_current_el(env)) { 4603 case 0: 4604 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4605 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4606 return CP_ACCESS_TRAP; 4607 } 4608 /* fall through */ 4609 case 1: 4610 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4611 if (arm_hcr_el2_eff(env) & hcrflags) { 4612 return CP_ACCESS_TRAP_EL2; 4613 } 4614 break; 4615 } 4616 return CP_ACCESS_OK; 4617 } 4618 4619 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4620 bool isread) 4621 { 4622 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4623 } 4624 4625 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4626 bool isread) 4627 { 4628 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4629 } 4630 4631 /* 4632 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4633 * Page D4-1736 (DDI0487A.b) 4634 */ 4635 4636 static int vae1_tlbmask(CPUARMState *env) 4637 { 4638 uint64_t hcr = arm_hcr_el2_eff(env); 4639 uint16_t mask; 4640 4641 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4642 mask = ARMMMUIdxBit_E20_2 | 4643 ARMMMUIdxBit_E20_2_PAN | 4644 ARMMMUIdxBit_E20_0; 4645 } else { 4646 mask = ARMMMUIdxBit_E10_1 | 4647 ARMMMUIdxBit_E10_1_PAN | 4648 ARMMMUIdxBit_E10_0; 4649 } 4650 return mask; 4651 } 4652 4653 /* Return 56 if TBI is enabled, 64 otherwise. */ 4654 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4655 uint64_t addr) 4656 { 4657 uint64_t tcr = regime_tcr(env, mmu_idx); 4658 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4659 int select = extract64(addr, 55, 1); 4660 4661 return (tbi >> select) & 1 ? 56 : 64; 4662 } 4663 4664 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4665 { 4666 uint64_t hcr = arm_hcr_el2_eff(env); 4667 ARMMMUIdx mmu_idx; 4668 4669 /* Only the regime of the mmu_idx below is significant. */ 4670 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4671 mmu_idx = ARMMMUIdx_E20_0; 4672 } else { 4673 mmu_idx = ARMMMUIdx_E10_0; 4674 } 4675 4676 return tlbbits_for_regime(env, mmu_idx, addr); 4677 } 4678 4679 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4680 uint64_t value) 4681 { 4682 CPUState *cs = env_cpu(env); 4683 int mask = vae1_tlbmask(env); 4684 4685 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4686 } 4687 4688 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4689 uint64_t value) 4690 { 4691 CPUState *cs = env_cpu(env); 4692 int mask = vae1_tlbmask(env); 4693 4694 if (tlb_force_broadcast(env)) { 4695 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4696 } else { 4697 tlb_flush_by_mmuidx(cs, mask); 4698 } 4699 } 4700 4701 static int e2_tlbmask(CPUARMState *env) 4702 { 4703 return (ARMMMUIdxBit_E20_0 | 4704 ARMMMUIdxBit_E20_2 | 4705 ARMMMUIdxBit_E20_2_PAN | 4706 ARMMMUIdxBit_E2); 4707 } 4708 4709 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4710 uint64_t value) 4711 { 4712 CPUState *cs = env_cpu(env); 4713 int mask = alle1_tlbmask(env); 4714 4715 tlb_flush_by_mmuidx(cs, mask); 4716 } 4717 4718 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4719 uint64_t value) 4720 { 4721 CPUState *cs = env_cpu(env); 4722 int mask = e2_tlbmask(env); 4723 4724 tlb_flush_by_mmuidx(cs, mask); 4725 } 4726 4727 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4728 uint64_t value) 4729 { 4730 ARMCPU *cpu = env_archcpu(env); 4731 CPUState *cs = CPU(cpu); 4732 4733 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4734 } 4735 4736 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4737 uint64_t value) 4738 { 4739 CPUState *cs = env_cpu(env); 4740 int mask = alle1_tlbmask(env); 4741 4742 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4743 } 4744 4745 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4746 uint64_t value) 4747 { 4748 CPUState *cs = env_cpu(env); 4749 int mask = e2_tlbmask(env); 4750 4751 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4752 } 4753 4754 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4755 uint64_t value) 4756 { 4757 CPUState *cs = env_cpu(env); 4758 4759 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4760 } 4761 4762 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4763 uint64_t value) 4764 { 4765 /* 4766 * Invalidate by VA, EL2 4767 * Currently handles both VAE2 and VALE2, since we don't support 4768 * flush-last-level-only. 4769 */ 4770 CPUState *cs = env_cpu(env); 4771 int mask = e2_tlbmask(env); 4772 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4773 4774 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4775 } 4776 4777 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4778 uint64_t value) 4779 { 4780 /* 4781 * Invalidate by VA, EL3 4782 * Currently handles both VAE3 and VALE3, since we don't support 4783 * flush-last-level-only. 4784 */ 4785 ARMCPU *cpu = env_archcpu(env); 4786 CPUState *cs = CPU(cpu); 4787 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4788 4789 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4790 } 4791 4792 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4793 uint64_t value) 4794 { 4795 CPUState *cs = env_cpu(env); 4796 int mask = vae1_tlbmask(env); 4797 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4798 int bits = vae1_tlbbits(env, pageaddr); 4799 4800 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4801 } 4802 4803 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4804 uint64_t value) 4805 { 4806 /* 4807 * Invalidate by VA, EL1&0 (AArch64 version). 4808 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4809 * since we don't support flush-for-specific-ASID-only or 4810 * flush-last-level-only. 4811 */ 4812 CPUState *cs = env_cpu(env); 4813 int mask = vae1_tlbmask(env); 4814 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4815 int bits = vae1_tlbbits(env, pageaddr); 4816 4817 if (tlb_force_broadcast(env)) { 4818 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4819 } else { 4820 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4821 } 4822 } 4823 4824 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4825 uint64_t value) 4826 { 4827 CPUState *cs = env_cpu(env); 4828 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4829 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr); 4830 4831 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4832 ARMMMUIdxBit_E2, bits); 4833 } 4834 4835 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4836 uint64_t value) 4837 { 4838 CPUState *cs = env_cpu(env); 4839 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4840 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4841 4842 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4843 ARMMMUIdxBit_E3, bits); 4844 } 4845 4846 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4847 { 4848 /* 4849 * The MSB of value is the NS field, which only applies if SEL2 4850 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4851 */ 4852 return (value >= 0 4853 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4854 && arm_is_secure_below_el3(env) 4855 ? ARMMMUIdxBit_Stage2_S 4856 : ARMMMUIdxBit_Stage2); 4857 } 4858 4859 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4860 uint64_t value) 4861 { 4862 CPUState *cs = env_cpu(env); 4863 int mask = ipas2e1_tlbmask(env, value); 4864 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4865 4866 if (tlb_force_broadcast(env)) { 4867 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4868 } else { 4869 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4870 } 4871 } 4872 4873 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4874 uint64_t value) 4875 { 4876 CPUState *cs = env_cpu(env); 4877 int mask = ipas2e1_tlbmask(env, value); 4878 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4879 4880 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4881 } 4882 4883 #ifdef TARGET_AARCH64 4884 typedef struct { 4885 uint64_t base; 4886 uint64_t length; 4887 } TLBIRange; 4888 4889 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4890 { 4891 /* 4892 * Note that the TLBI range TG field encoding differs from both 4893 * TG0 and TG1 encodings. 4894 */ 4895 switch (tg) { 4896 case 1: 4897 return Gran4K; 4898 case 2: 4899 return Gran16K; 4900 case 3: 4901 return Gran64K; 4902 default: 4903 return GranInvalid; 4904 } 4905 } 4906 4907 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4908 uint64_t value) 4909 { 4910 unsigned int page_size_granule, page_shift, num, scale, exponent; 4911 /* Extract one bit to represent the va selector in use. */ 4912 uint64_t select = sextract64(value, 36, 1); 4913 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 4914 TLBIRange ret = { }; 4915 ARMGranuleSize gran; 4916 4917 page_size_granule = extract64(value, 46, 2); 4918 gran = tlbi_range_tg_to_gran_size(page_size_granule); 4919 4920 /* The granule encoded in value must match the granule in use. */ 4921 if (gran != param.gran) { 4922 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4923 page_size_granule); 4924 return ret; 4925 } 4926 4927 page_shift = arm_granule_bits(gran); 4928 num = extract64(value, 39, 5); 4929 scale = extract64(value, 44, 2); 4930 exponent = (5 * scale) + 1; 4931 4932 ret.length = (num + 1) << (exponent + page_shift); 4933 4934 if (param.select) { 4935 ret.base = sextract64(value, 0, 37); 4936 } else { 4937 ret.base = extract64(value, 0, 37); 4938 } 4939 if (param.ds) { 4940 /* 4941 * With DS=1, BaseADDR is always shifted 16 so that it is able 4942 * to address all 52 va bits. The input address is perforce 4943 * aligned on a 64k boundary regardless of translation granule. 4944 */ 4945 page_shift = 16; 4946 } 4947 ret.base <<= page_shift; 4948 4949 return ret; 4950 } 4951 4952 static void do_rvae_write(CPUARMState *env, uint64_t value, 4953 int idxmap, bool synced) 4954 { 4955 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4956 TLBIRange range; 4957 int bits; 4958 4959 range = tlbi_aa64_get_range(env, one_idx, value); 4960 bits = tlbbits_for_regime(env, one_idx, range.base); 4961 4962 if (synced) { 4963 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4964 range.base, 4965 range.length, 4966 idxmap, 4967 bits); 4968 } else { 4969 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4970 range.length, idxmap, bits); 4971 } 4972 } 4973 4974 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4975 const ARMCPRegInfo *ri, 4976 uint64_t value) 4977 { 4978 /* 4979 * Invalidate by VA range, EL1&0. 4980 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4981 * since we don't support flush-for-specific-ASID-only or 4982 * flush-last-level-only. 4983 */ 4984 4985 do_rvae_write(env, value, vae1_tlbmask(env), 4986 tlb_force_broadcast(env)); 4987 } 4988 4989 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4990 const ARMCPRegInfo *ri, 4991 uint64_t value) 4992 { 4993 /* 4994 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4995 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4996 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4997 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4998 * shareable specific flushes. 4999 */ 5000 5001 do_rvae_write(env, value, vae1_tlbmask(env), true); 5002 } 5003 5004 static int vae2_tlbmask(CPUARMState *env) 5005 { 5006 return ARMMMUIdxBit_E2; 5007 } 5008 5009 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5010 const ARMCPRegInfo *ri, 5011 uint64_t value) 5012 { 5013 /* 5014 * Invalidate by VA range, EL2. 5015 * Currently handles all of RVAE2 and RVALE2, 5016 * since we don't support flush-for-specific-ASID-only or 5017 * flush-last-level-only. 5018 */ 5019 5020 do_rvae_write(env, value, vae2_tlbmask(env), 5021 tlb_force_broadcast(env)); 5022 5023 5024 } 5025 5026 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5027 const ARMCPRegInfo *ri, 5028 uint64_t value) 5029 { 5030 /* 5031 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5032 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5033 * since we don't support flush-for-specific-ASID-only, 5034 * flush-last-level-only or inner/outer shareable specific flushes. 5035 */ 5036 5037 do_rvae_write(env, value, vae2_tlbmask(env), true); 5038 5039 } 5040 5041 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5042 const ARMCPRegInfo *ri, 5043 uint64_t value) 5044 { 5045 /* 5046 * Invalidate by VA range, EL3. 5047 * Currently handles all of RVAE3 and RVALE3, 5048 * since we don't support flush-for-specific-ASID-only or 5049 * flush-last-level-only. 5050 */ 5051 5052 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5053 } 5054 5055 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5056 const ARMCPRegInfo *ri, 5057 uint64_t value) 5058 { 5059 /* 5060 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5061 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5062 * since we don't support flush-for-specific-ASID-only, 5063 * flush-last-level-only or inner/outer specific flushes. 5064 */ 5065 5066 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5067 } 5068 5069 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5070 uint64_t value) 5071 { 5072 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5073 tlb_force_broadcast(env)); 5074 } 5075 5076 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5077 const ARMCPRegInfo *ri, 5078 uint64_t value) 5079 { 5080 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5081 } 5082 #endif 5083 5084 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5085 bool isread) 5086 { 5087 int cur_el = arm_current_el(env); 5088 5089 if (cur_el < 2) { 5090 uint64_t hcr = arm_hcr_el2_eff(env); 5091 5092 if (cur_el == 0) { 5093 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5094 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5095 return CP_ACCESS_TRAP_EL2; 5096 } 5097 } else { 5098 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5099 return CP_ACCESS_TRAP; 5100 } 5101 if (hcr & HCR_TDZ) { 5102 return CP_ACCESS_TRAP_EL2; 5103 } 5104 } 5105 } else if (hcr & HCR_TDZ) { 5106 return CP_ACCESS_TRAP_EL2; 5107 } 5108 } 5109 return CP_ACCESS_OK; 5110 } 5111 5112 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5113 { 5114 ARMCPU *cpu = env_archcpu(env); 5115 int dzp_bit = 1 << 4; 5116 5117 /* DZP indicates whether DC ZVA access is allowed */ 5118 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5119 dzp_bit = 0; 5120 } 5121 return cpu->dcz_blocksize | dzp_bit; 5122 } 5123 5124 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5125 bool isread) 5126 { 5127 if (!(env->pstate & PSTATE_SP)) { 5128 /* 5129 * Access to SP_EL0 is undefined if it's being used as 5130 * the stack pointer. 5131 */ 5132 return CP_ACCESS_TRAP_UNCATEGORIZED; 5133 } 5134 return CP_ACCESS_OK; 5135 } 5136 5137 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5138 { 5139 return env->pstate & PSTATE_SP; 5140 } 5141 5142 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5143 { 5144 update_spsel(env, val); 5145 } 5146 5147 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5148 uint64_t value) 5149 { 5150 ARMCPU *cpu = env_archcpu(env); 5151 5152 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5153 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5154 value &= ~SCTLR_M; 5155 } 5156 5157 /* ??? Lots of these bits are not implemented. */ 5158 5159 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5160 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5161 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5162 } else { 5163 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5164 SCTLR_ATA0 | SCTLR_ATA); 5165 } 5166 } 5167 5168 if (raw_read(env, ri) == value) { 5169 /* 5170 * Skip the TLB flush if nothing actually changed; Linux likes 5171 * to do a lot of pointless SCTLR writes. 5172 */ 5173 return; 5174 } 5175 5176 raw_write(env, ri, value); 5177 5178 /* This may enable/disable the MMU, so do a TLB flush. */ 5179 tlb_flush(CPU(cpu)); 5180 5181 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5182 /* 5183 * Normally we would always end the TB on an SCTLR write; see the 5184 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5185 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5186 * of hflags from the translator, so do it here. 5187 */ 5188 arm_rebuild_hflags(env); 5189 } 5190 } 5191 5192 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5193 uint64_t value) 5194 { 5195 /* 5196 * Some MDCR_EL3 bits affect whether PMU counters are running: 5197 * if we are trying to change any of those then we must 5198 * bracket this update with PMU start/finish calls. 5199 */ 5200 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5201 5202 if (pmu_op) { 5203 pmu_op_start(env); 5204 } 5205 env->cp15.mdcr_el3 = value; 5206 if (pmu_op) { 5207 pmu_op_finish(env); 5208 } 5209 } 5210 5211 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5212 uint64_t value) 5213 { 5214 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5215 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5216 } 5217 5218 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5219 uint64_t value) 5220 { 5221 /* 5222 * Some MDCR_EL2 bits affect whether PMU counters are running: 5223 * if we are trying to change any of those then we must 5224 * bracket this update with PMU start/finish calls. 5225 */ 5226 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5227 5228 if (pmu_op) { 5229 pmu_op_start(env); 5230 } 5231 env->cp15.mdcr_el2 = value; 5232 if (pmu_op) { 5233 pmu_op_finish(env); 5234 } 5235 } 5236 5237 static const ARMCPRegInfo v8_cp_reginfo[] = { 5238 /* 5239 * Minimal set of EL0-visible registers. This will need to be expanded 5240 * significantly for system emulation of AArch64 CPUs. 5241 */ 5242 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5243 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5244 .access = PL0_RW, .type = ARM_CP_NZCV }, 5245 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5246 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5247 .type = ARM_CP_NO_RAW, 5248 .access = PL0_RW, .accessfn = aa64_daif_access, 5249 .fieldoffset = offsetof(CPUARMState, daif), 5250 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5251 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5252 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5253 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5254 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5255 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5256 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5257 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5258 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5259 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5260 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5261 .access = PL0_R, .type = ARM_CP_NO_RAW, 5262 .fgt = FGT_DCZID_EL0, 5263 .readfn = aa64_dczid_read }, 5264 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5265 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5266 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5267 #ifndef CONFIG_USER_ONLY 5268 /* Avoid overhead of an access check that always passes in user-mode */ 5269 .accessfn = aa64_zva_access, 5270 .fgt = FGT_DCZVA, 5271 #endif 5272 }, 5273 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5274 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5275 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5276 /* Cache ops: all NOPs since we don't emulate caches */ 5277 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5278 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5279 .access = PL1_W, .type = ARM_CP_NOP, 5280 .fgt = FGT_ICIALLUIS, 5281 .accessfn = access_ticab }, 5282 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5283 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5284 .access = PL1_W, .type = ARM_CP_NOP, 5285 .fgt = FGT_ICIALLU, 5286 .accessfn = access_tocu }, 5287 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5288 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5289 .access = PL0_W, .type = ARM_CP_NOP, 5290 .fgt = FGT_ICIVAU, 5291 .accessfn = access_tocu }, 5292 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5293 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5294 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5295 .fgt = FGT_DCIVAC, 5296 .type = ARM_CP_NOP }, 5297 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5298 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5299 .fgt = FGT_DCISW, 5300 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5301 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5302 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5303 .access = PL0_W, .type = ARM_CP_NOP, 5304 .fgt = FGT_DCCVAC, 5305 .accessfn = aa64_cacheop_poc_access }, 5306 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5307 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5308 .fgt = FGT_DCCSW, 5309 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5310 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5311 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5312 .access = PL0_W, .type = ARM_CP_NOP, 5313 .fgt = FGT_DCCVAU, 5314 .accessfn = access_tocu }, 5315 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5316 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5317 .access = PL0_W, .type = ARM_CP_NOP, 5318 .fgt = FGT_DCCIVAC, 5319 .accessfn = aa64_cacheop_poc_access }, 5320 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5321 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5322 .fgt = FGT_DCCISW, 5323 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5324 /* TLBI operations */ 5325 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5326 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5327 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5328 .fgt = FGT_TLBIVMALLE1IS, 5329 .writefn = tlbi_aa64_vmalle1is_write }, 5330 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5331 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5332 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5333 .fgt = FGT_TLBIVAE1IS, 5334 .writefn = tlbi_aa64_vae1is_write }, 5335 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5336 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5337 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5338 .fgt = FGT_TLBIASIDE1IS, 5339 .writefn = tlbi_aa64_vmalle1is_write }, 5340 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5341 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5342 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5343 .fgt = FGT_TLBIVAAE1IS, 5344 .writefn = tlbi_aa64_vae1is_write }, 5345 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5346 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5347 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5348 .fgt = FGT_TLBIVALE1IS, 5349 .writefn = tlbi_aa64_vae1is_write }, 5350 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5351 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5352 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5353 .fgt = FGT_TLBIVAALE1IS, 5354 .writefn = tlbi_aa64_vae1is_write }, 5355 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5356 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5357 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5358 .fgt = FGT_TLBIVMALLE1, 5359 .writefn = tlbi_aa64_vmalle1_write }, 5360 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5361 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5362 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5363 .fgt = FGT_TLBIVAE1, 5364 .writefn = tlbi_aa64_vae1_write }, 5365 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5366 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5367 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5368 .fgt = FGT_TLBIASIDE1, 5369 .writefn = tlbi_aa64_vmalle1_write }, 5370 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5371 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5372 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5373 .fgt = FGT_TLBIVAAE1, 5374 .writefn = tlbi_aa64_vae1_write }, 5375 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5376 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5377 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5378 .fgt = FGT_TLBIVALE1, 5379 .writefn = tlbi_aa64_vae1_write }, 5380 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5381 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5382 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5383 .fgt = FGT_TLBIVAALE1, 5384 .writefn = tlbi_aa64_vae1_write }, 5385 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5386 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5387 .access = PL2_W, .type = ARM_CP_NO_RAW, 5388 .writefn = tlbi_aa64_ipas2e1is_write }, 5389 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5390 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5391 .access = PL2_W, .type = ARM_CP_NO_RAW, 5392 .writefn = tlbi_aa64_ipas2e1is_write }, 5393 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5394 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5395 .access = PL2_W, .type = ARM_CP_NO_RAW, 5396 .writefn = tlbi_aa64_alle1is_write }, 5397 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5398 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5399 .access = PL2_W, .type = ARM_CP_NO_RAW, 5400 .writefn = tlbi_aa64_alle1is_write }, 5401 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5402 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5403 .access = PL2_W, .type = ARM_CP_NO_RAW, 5404 .writefn = tlbi_aa64_ipas2e1_write }, 5405 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5406 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5407 .access = PL2_W, .type = ARM_CP_NO_RAW, 5408 .writefn = tlbi_aa64_ipas2e1_write }, 5409 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5410 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5411 .access = PL2_W, .type = ARM_CP_NO_RAW, 5412 .writefn = tlbi_aa64_alle1_write }, 5413 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5414 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5415 .access = PL2_W, .type = ARM_CP_NO_RAW, 5416 .writefn = tlbi_aa64_alle1is_write }, 5417 #ifndef CONFIG_USER_ONLY 5418 /* 64 bit address translation operations */ 5419 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5420 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5421 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5422 .fgt = FGT_ATS1E1R, 5423 .writefn = ats_write64 }, 5424 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5425 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5426 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5427 .fgt = FGT_ATS1E1W, 5428 .writefn = ats_write64 }, 5429 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5430 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5431 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5432 .fgt = FGT_ATS1E0R, 5433 .writefn = ats_write64 }, 5434 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5435 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5436 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5437 .fgt = FGT_ATS1E0W, 5438 .writefn = ats_write64 }, 5439 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5440 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5441 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5442 .writefn = ats_write64 }, 5443 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5444 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5445 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5446 .writefn = ats_write64 }, 5447 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5448 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5449 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5450 .writefn = ats_write64 }, 5451 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5452 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5453 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5454 .writefn = ats_write64 }, 5455 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5456 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5457 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5458 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5459 .writefn = ats_write64 }, 5460 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5461 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5462 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5463 .writefn = ats_write64 }, 5464 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5465 .type = ARM_CP_ALIAS, 5466 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5467 .access = PL1_RW, .resetvalue = 0, 5468 .fgt = FGT_PAR_EL1, 5469 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5470 .writefn = par_write }, 5471 #endif 5472 /* TLB invalidate last level of translation table walk */ 5473 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5474 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5475 .writefn = tlbimva_is_write }, 5476 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5477 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5478 .writefn = tlbimvaa_is_write }, 5479 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5480 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5481 .writefn = tlbimva_write }, 5482 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5483 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5484 .writefn = tlbimvaa_write }, 5485 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5486 .type = ARM_CP_NO_RAW, .access = PL2_W, 5487 .writefn = tlbimva_hyp_write }, 5488 { .name = "TLBIMVALHIS", 5489 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5490 .type = ARM_CP_NO_RAW, .access = PL2_W, 5491 .writefn = tlbimva_hyp_is_write }, 5492 { .name = "TLBIIPAS2", 5493 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5494 .type = ARM_CP_NO_RAW, .access = PL2_W, 5495 .writefn = tlbiipas2_hyp_write }, 5496 { .name = "TLBIIPAS2IS", 5497 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5498 .type = ARM_CP_NO_RAW, .access = PL2_W, 5499 .writefn = tlbiipas2is_hyp_write }, 5500 { .name = "TLBIIPAS2L", 5501 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5502 .type = ARM_CP_NO_RAW, .access = PL2_W, 5503 .writefn = tlbiipas2_hyp_write }, 5504 { .name = "TLBIIPAS2LIS", 5505 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5506 .type = ARM_CP_NO_RAW, .access = PL2_W, 5507 .writefn = tlbiipas2is_hyp_write }, 5508 /* 32 bit cache operations */ 5509 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5510 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5511 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5512 .type = ARM_CP_NOP, .access = PL1_W }, 5513 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5514 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5515 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5516 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5517 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5518 .type = ARM_CP_NOP, .access = PL1_W }, 5519 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5520 .type = ARM_CP_NOP, .access = PL1_W }, 5521 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5522 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5523 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5524 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5525 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5526 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5527 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5528 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5529 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5530 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5531 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5532 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5533 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5534 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5535 /* MMU Domain access control / MPU write buffer control */ 5536 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5537 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5538 .writefn = dacr_write, .raw_writefn = raw_write, 5539 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5540 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5541 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5542 .type = ARM_CP_ALIAS, 5543 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5544 .access = PL1_RW, 5545 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5546 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5547 .type = ARM_CP_ALIAS, 5548 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5549 .access = PL1_RW, 5550 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5551 /* 5552 * We rely on the access checks not allowing the guest to write to the 5553 * state field when SPSel indicates that it's being used as the stack 5554 * pointer. 5555 */ 5556 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5557 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5558 .access = PL1_RW, .accessfn = sp_el0_access, 5559 .type = ARM_CP_ALIAS, 5560 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5561 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5562 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5563 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5564 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5565 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5566 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5567 .type = ARM_CP_NO_RAW, 5568 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5569 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5570 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5571 .access = PL2_RW, 5572 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5573 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5574 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5575 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5576 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5577 .writefn = dacr_write, .raw_writefn = raw_write, 5578 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5579 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5580 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5581 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5582 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5583 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5584 .type = ARM_CP_ALIAS, 5585 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5586 .access = PL2_RW, 5587 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5588 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5589 .type = ARM_CP_ALIAS, 5590 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5591 .access = PL2_RW, 5592 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5593 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5594 .type = ARM_CP_ALIAS, 5595 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5596 .access = PL2_RW, 5597 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5598 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5599 .type = ARM_CP_ALIAS, 5600 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5601 .access = PL2_RW, 5602 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5603 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5604 .type = ARM_CP_IO, 5605 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5606 .resetvalue = 0, 5607 .access = PL3_RW, 5608 .writefn = mdcr_el3_write, 5609 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5610 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5611 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5612 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5613 .writefn = sdcr_write, 5614 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5615 }; 5616 5617 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5618 { 5619 ARMCPU *cpu = env_archcpu(env); 5620 5621 if (arm_feature(env, ARM_FEATURE_V8)) { 5622 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5623 } else { 5624 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5625 } 5626 5627 if (arm_feature(env, ARM_FEATURE_EL3)) { 5628 valid_mask &= ~HCR_HCD; 5629 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5630 /* 5631 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5632 * However, if we're using the SMC PSCI conduit then QEMU is 5633 * effectively acting like EL3 firmware and so the guest at 5634 * EL2 should retain the ability to prevent EL1 from being 5635 * able to make SMC calls into the ersatz firmware, so in 5636 * that case HCR.TSC should be read/write. 5637 */ 5638 valid_mask &= ~HCR_TSC; 5639 } 5640 5641 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5642 if (cpu_isar_feature(aa64_vh, cpu)) { 5643 valid_mask |= HCR_E2H; 5644 } 5645 if (cpu_isar_feature(aa64_ras, cpu)) { 5646 valid_mask |= HCR_TERR | HCR_TEA; 5647 } 5648 if (cpu_isar_feature(aa64_lor, cpu)) { 5649 valid_mask |= HCR_TLOR; 5650 } 5651 if (cpu_isar_feature(aa64_pauth, cpu)) { 5652 valid_mask |= HCR_API | HCR_APK; 5653 } 5654 if (cpu_isar_feature(aa64_mte, cpu)) { 5655 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5656 } 5657 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5658 valid_mask |= HCR_ENSCXT; 5659 } 5660 if (cpu_isar_feature(aa64_fwb, cpu)) { 5661 valid_mask |= HCR_FWB; 5662 } 5663 if (cpu_isar_feature(aa64_rme, cpu)) { 5664 valid_mask |= HCR_GPF; 5665 } 5666 } 5667 5668 if (cpu_isar_feature(any_evt, cpu)) { 5669 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5670 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5671 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5672 } 5673 5674 /* Clear RES0 bits. */ 5675 value &= valid_mask; 5676 5677 /* 5678 * These bits change the MMU setup: 5679 * HCR_VM enables stage 2 translation 5680 * HCR_PTW forbids certain page-table setups 5681 * HCR_DC disables stage1 and enables stage2 translation 5682 * HCR_DCT enables tagging on (disabled) stage1 translation 5683 * HCR_FWB changes the interpretation of stage2 descriptor bits 5684 */ 5685 if ((env->cp15.hcr_el2 ^ value) & 5686 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5687 tlb_flush(CPU(cpu)); 5688 } 5689 env->cp15.hcr_el2 = value; 5690 5691 /* 5692 * Updates to VI and VF require us to update the status of 5693 * virtual interrupts, which are the logical OR of these bits 5694 * and the state of the input lines from the GIC. (This requires 5695 * that we have the iothread lock, which is done by marking the 5696 * reginfo structs as ARM_CP_IO.) 5697 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5698 * possible for it to be taken immediately, because VIRQ and 5699 * VFIQ are masked unless running at EL0 or EL1, and HCR 5700 * can only be written at EL2. 5701 */ 5702 g_assert(qemu_mutex_iothread_locked()); 5703 arm_cpu_update_virq(cpu); 5704 arm_cpu_update_vfiq(cpu); 5705 arm_cpu_update_vserr(cpu); 5706 } 5707 5708 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5709 { 5710 do_hcr_write(env, value, 0); 5711 } 5712 5713 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5714 uint64_t value) 5715 { 5716 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5717 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5718 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5719 } 5720 5721 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5722 uint64_t value) 5723 { 5724 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5725 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5726 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5727 } 5728 5729 /* 5730 * Return the effective value of HCR_EL2, at the given security state. 5731 * Bits that are not included here: 5732 * RW (read from SCR_EL3.RW as needed) 5733 */ 5734 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure) 5735 { 5736 uint64_t ret = env->cp15.hcr_el2; 5737 5738 if (!arm_is_el2_enabled_secstate(env, secure)) { 5739 /* 5740 * "This register has no effect if EL2 is not enabled in the 5741 * current Security state". This is ARMv8.4-SecEL2 speak for 5742 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5743 * 5744 * Prior to that, the language was "In an implementation that 5745 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5746 * as if this field is 0 for all purposes other than a direct 5747 * read or write access of HCR_EL2". With lots of enumeration 5748 * on a per-field basis. In current QEMU, this is condition 5749 * is arm_is_secure_below_el3. 5750 * 5751 * Since the v8.4 language applies to the entire register, and 5752 * appears to be backward compatible, use that. 5753 */ 5754 return 0; 5755 } 5756 5757 /* 5758 * For a cpu that supports both aarch64 and aarch32, we can set bits 5759 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5760 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5761 */ 5762 if (!arm_el_is_aa64(env, 2)) { 5763 uint64_t aa32_valid; 5764 5765 /* 5766 * These bits are up-to-date as of ARMv8.6. 5767 * For HCR, it's easiest to list just the 2 bits that are invalid. 5768 * For HCR2, list those that are valid. 5769 */ 5770 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5771 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5772 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5773 ret &= aa32_valid; 5774 } 5775 5776 if (ret & HCR_TGE) { 5777 /* These bits are up-to-date as of ARMv8.6. */ 5778 if (ret & HCR_E2H) { 5779 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5780 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5781 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5782 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5783 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5784 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5785 } else { 5786 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5787 } 5788 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5789 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5790 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5791 HCR_TLOR); 5792 } 5793 5794 return ret; 5795 } 5796 5797 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5798 { 5799 if (arm_feature(env, ARM_FEATURE_M)) { 5800 return 0; 5801 } 5802 return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env)); 5803 } 5804 5805 /* 5806 * Corresponds to ARM pseudocode function ELIsInHost(). 5807 */ 5808 bool el_is_in_host(CPUARMState *env, int el) 5809 { 5810 uint64_t mask; 5811 5812 /* 5813 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5814 * Perform the simplest bit tests first, and validate EL2 afterward. 5815 */ 5816 if (el & 1) { 5817 return false; /* EL1 or EL3 */ 5818 } 5819 5820 /* 5821 * Note that hcr_write() checks isar_feature_aa64_vh(), 5822 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5823 */ 5824 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5825 if ((env->cp15.hcr_el2 & mask) != mask) { 5826 return false; 5827 } 5828 5829 /* TGE and/or E2H set: double check those bits are currently legal. */ 5830 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5831 } 5832 5833 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5834 uint64_t value) 5835 { 5836 uint64_t valid_mask = 0; 5837 5838 /* No features adding bits to HCRX are implemented. */ 5839 5840 /* Clear RES0 bits. */ 5841 env->cp15.hcrx_el2 = value & valid_mask; 5842 } 5843 5844 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5845 bool isread) 5846 { 5847 if (arm_current_el(env) < 3 5848 && arm_feature(env, ARM_FEATURE_EL3) 5849 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5850 return CP_ACCESS_TRAP_EL3; 5851 } 5852 return CP_ACCESS_OK; 5853 } 5854 5855 static const ARMCPRegInfo hcrx_el2_reginfo = { 5856 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5857 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5858 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5859 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5860 }; 5861 5862 /* Return the effective value of HCRX_EL2. */ 5863 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5864 { 5865 /* 5866 * The bits in this register behave as 0 for all purposes other than 5867 * direct reads of the register if: 5868 * - EL2 is not enabled in the current security state, 5869 * - SCR_EL3.HXEn is 0. 5870 */ 5871 if (!arm_is_el2_enabled(env) 5872 || (arm_feature(env, ARM_FEATURE_EL3) 5873 && !(env->cp15.scr_el3 & SCR_HXEN))) { 5874 return 0; 5875 } 5876 return env->cp15.hcrx_el2; 5877 } 5878 5879 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5880 uint64_t value) 5881 { 5882 /* 5883 * For A-profile AArch32 EL3, if NSACR.CP10 5884 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5885 */ 5886 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5887 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5888 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5889 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5890 } 5891 env->cp15.cptr_el[2] = value; 5892 } 5893 5894 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5895 { 5896 /* 5897 * For A-profile AArch32 EL3, if NSACR.CP10 5898 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5899 */ 5900 uint64_t value = env->cp15.cptr_el[2]; 5901 5902 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5903 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5904 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5905 } 5906 return value; 5907 } 5908 5909 static const ARMCPRegInfo el2_cp_reginfo[] = { 5910 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5911 .type = ARM_CP_IO, 5912 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5913 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5914 .writefn = hcr_write }, 5915 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5916 .type = ARM_CP_ALIAS | ARM_CP_IO, 5917 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5918 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5919 .writefn = hcr_writelow }, 5920 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5921 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5922 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5923 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5924 .type = ARM_CP_ALIAS, 5925 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5926 .access = PL2_RW, 5927 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5928 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5929 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5930 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5931 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5932 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5933 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5934 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5935 .type = ARM_CP_ALIAS, 5936 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5937 .access = PL2_RW, 5938 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5939 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5940 .type = ARM_CP_ALIAS, 5941 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5942 .access = PL2_RW, 5943 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5944 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5945 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5946 .access = PL2_RW, .writefn = vbar_write, 5947 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5948 .resetvalue = 0 }, 5949 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5950 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5951 .access = PL3_RW, .type = ARM_CP_ALIAS, 5952 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5953 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5954 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5955 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5956 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5957 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5958 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5959 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5960 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5961 .resetvalue = 0 }, 5962 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5963 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5964 .access = PL2_RW, .type = ARM_CP_ALIAS, 5965 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5966 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5967 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5968 .access = PL2_RW, .type = ARM_CP_CONST, 5969 .resetvalue = 0 }, 5970 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5971 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5972 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5973 .access = PL2_RW, .type = ARM_CP_CONST, 5974 .resetvalue = 0 }, 5975 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5976 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5977 .access = PL2_RW, .type = ARM_CP_CONST, 5978 .resetvalue = 0 }, 5979 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5980 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5981 .access = PL2_RW, .type = ARM_CP_CONST, 5982 .resetvalue = 0 }, 5983 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5984 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5985 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5986 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5987 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5988 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5989 .type = ARM_CP_ALIAS, 5990 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5991 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5992 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5993 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5994 .access = PL2_RW, 5995 /* no .writefn needed as this can't cause an ASID change */ 5996 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5997 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5998 .cp = 15, .opc1 = 6, .crm = 2, 5999 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6000 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6001 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 6002 .writefn = vttbr_write }, 6003 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 6004 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 6005 .access = PL2_RW, .writefn = vttbr_write, 6006 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 6007 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 6008 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6009 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6010 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6011 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6012 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6013 .access = PL2_RW, .resetvalue = 0, 6014 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6015 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6016 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6017 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 6018 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6019 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6020 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6021 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6022 { .name = "TLBIALLNSNH", 6023 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6024 .type = ARM_CP_NO_RAW, .access = PL2_W, 6025 .writefn = tlbiall_nsnh_write }, 6026 { .name = "TLBIALLNSNHIS", 6027 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6028 .type = ARM_CP_NO_RAW, .access = PL2_W, 6029 .writefn = tlbiall_nsnh_is_write }, 6030 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6031 .type = ARM_CP_NO_RAW, .access = PL2_W, 6032 .writefn = tlbiall_hyp_write }, 6033 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6034 .type = ARM_CP_NO_RAW, .access = PL2_W, 6035 .writefn = tlbiall_hyp_is_write }, 6036 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6037 .type = ARM_CP_NO_RAW, .access = PL2_W, 6038 .writefn = tlbimva_hyp_write }, 6039 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6040 .type = ARM_CP_NO_RAW, .access = PL2_W, 6041 .writefn = tlbimva_hyp_is_write }, 6042 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6043 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6044 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6045 .writefn = tlbi_aa64_alle2_write }, 6046 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6047 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6048 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6049 .writefn = tlbi_aa64_vae2_write }, 6050 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6051 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6052 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6053 .writefn = tlbi_aa64_vae2_write }, 6054 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6055 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6056 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6057 .writefn = tlbi_aa64_alle2is_write }, 6058 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6059 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6060 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6061 .writefn = tlbi_aa64_vae2is_write }, 6062 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6063 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6064 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6065 .writefn = tlbi_aa64_vae2is_write }, 6066 #ifndef CONFIG_USER_ONLY 6067 /* 6068 * Unlike the other EL2-related AT operations, these must 6069 * UNDEF from EL3 if EL2 is not implemented, which is why we 6070 * define them here rather than with the rest of the AT ops. 6071 */ 6072 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6073 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6074 .access = PL2_W, .accessfn = at_s1e2_access, 6075 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6076 .writefn = ats_write64 }, 6077 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6078 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6079 .access = PL2_W, .accessfn = at_s1e2_access, 6080 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6081 .writefn = ats_write64 }, 6082 /* 6083 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6084 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6085 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6086 * to behave as if SCR.NS was 1. 6087 */ 6088 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6089 .access = PL2_W, 6090 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6091 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6092 .access = PL2_W, 6093 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6094 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6095 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6096 /* 6097 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6098 * reset values as IMPDEF. We choose to reset to 3 to comply with 6099 * both ARMv7 and ARMv8. 6100 */ 6101 .access = PL2_RW, .resetvalue = 3, 6102 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6103 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6104 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6105 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6106 .writefn = gt_cntvoff_write, 6107 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6108 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6109 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6110 .writefn = gt_cntvoff_write, 6111 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6112 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6113 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6114 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6115 .type = ARM_CP_IO, .access = PL2_RW, 6116 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6117 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6118 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6119 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6120 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6121 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6122 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6123 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6124 .resetfn = gt_hyp_timer_reset, 6125 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6126 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6127 .type = ARM_CP_IO, 6128 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6129 .access = PL2_RW, 6130 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6131 .resetvalue = 0, 6132 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6133 #endif 6134 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6135 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6136 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6137 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6138 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6139 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6140 .access = PL2_RW, 6141 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6142 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6143 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6144 .access = PL2_RW, 6145 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6146 }; 6147 6148 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6149 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6150 .type = ARM_CP_ALIAS | ARM_CP_IO, 6151 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6152 .access = PL2_RW, 6153 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6154 .writefn = hcr_writehigh }, 6155 }; 6156 6157 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6158 bool isread) 6159 { 6160 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6161 return CP_ACCESS_OK; 6162 } 6163 return CP_ACCESS_TRAP_UNCATEGORIZED; 6164 } 6165 6166 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6167 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6168 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6169 .access = PL2_RW, .accessfn = sel2_access, 6170 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6171 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6172 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6173 .access = PL2_RW, .accessfn = sel2_access, 6174 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6175 }; 6176 6177 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6178 bool isread) 6179 { 6180 /* 6181 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6182 * At Secure EL1 it traps to EL3 or EL2. 6183 */ 6184 if (arm_current_el(env) == 3) { 6185 return CP_ACCESS_OK; 6186 } 6187 if (arm_is_secure_below_el3(env)) { 6188 if (env->cp15.scr_el3 & SCR_EEL2) { 6189 return CP_ACCESS_TRAP_EL2; 6190 } 6191 return CP_ACCESS_TRAP_EL3; 6192 } 6193 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6194 if (isread) { 6195 return CP_ACCESS_OK; 6196 } 6197 return CP_ACCESS_TRAP_UNCATEGORIZED; 6198 } 6199 6200 static const ARMCPRegInfo el3_cp_reginfo[] = { 6201 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6202 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6203 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6204 .resetfn = scr_reset, .writefn = scr_write }, 6205 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6206 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6207 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6208 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6209 .writefn = scr_write }, 6210 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6211 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6212 .access = PL3_RW, .resetvalue = 0, 6213 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6214 { .name = "SDER", 6215 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6216 .access = PL3_RW, .resetvalue = 0, 6217 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6218 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6219 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6220 .writefn = vbar_write, .resetvalue = 0, 6221 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6222 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6223 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6224 .access = PL3_RW, .resetvalue = 0, 6225 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6226 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6227 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6228 .access = PL3_RW, 6229 /* no .writefn needed as this can't cause an ASID change */ 6230 .resetvalue = 0, 6231 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6232 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6233 .type = ARM_CP_ALIAS, 6234 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6235 .access = PL3_RW, 6236 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6237 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6238 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6239 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6240 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6241 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6242 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6243 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6244 .type = ARM_CP_ALIAS, 6245 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6246 .access = PL3_RW, 6247 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6248 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6249 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6250 .access = PL3_RW, .writefn = vbar_write, 6251 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6252 .resetvalue = 0 }, 6253 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6254 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6255 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6256 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6257 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6258 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6259 .access = PL3_RW, .resetvalue = 0, 6260 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6261 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6262 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6263 .access = PL3_RW, .type = ARM_CP_CONST, 6264 .resetvalue = 0 }, 6265 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6266 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6267 .access = PL3_RW, .type = ARM_CP_CONST, 6268 .resetvalue = 0 }, 6269 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6270 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6271 .access = PL3_RW, .type = ARM_CP_CONST, 6272 .resetvalue = 0 }, 6273 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6274 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6275 .access = PL3_W, .type = ARM_CP_NO_RAW, 6276 .writefn = tlbi_aa64_alle3is_write }, 6277 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6278 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6279 .access = PL3_W, .type = ARM_CP_NO_RAW, 6280 .writefn = tlbi_aa64_vae3is_write }, 6281 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6282 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6283 .access = PL3_W, .type = ARM_CP_NO_RAW, 6284 .writefn = tlbi_aa64_vae3is_write }, 6285 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6286 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6287 .access = PL3_W, .type = ARM_CP_NO_RAW, 6288 .writefn = tlbi_aa64_alle3_write }, 6289 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6290 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6291 .access = PL3_W, .type = ARM_CP_NO_RAW, 6292 .writefn = tlbi_aa64_vae3_write }, 6293 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6294 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6295 .access = PL3_W, .type = ARM_CP_NO_RAW, 6296 .writefn = tlbi_aa64_vae3_write }, 6297 }; 6298 6299 #ifndef CONFIG_USER_ONLY 6300 /* Test if system register redirection is to occur in the current state. */ 6301 static bool redirect_for_e2h(CPUARMState *env) 6302 { 6303 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6304 } 6305 6306 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6307 { 6308 CPReadFn *readfn; 6309 6310 if (redirect_for_e2h(env)) { 6311 /* Switch to the saved EL2 version of the register. */ 6312 ri = ri->opaque; 6313 readfn = ri->readfn; 6314 } else { 6315 readfn = ri->orig_readfn; 6316 } 6317 if (readfn == NULL) { 6318 readfn = raw_read; 6319 } 6320 return readfn(env, ri); 6321 } 6322 6323 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6324 uint64_t value) 6325 { 6326 CPWriteFn *writefn; 6327 6328 if (redirect_for_e2h(env)) { 6329 /* Switch to the saved EL2 version of the register. */ 6330 ri = ri->opaque; 6331 writefn = ri->writefn; 6332 } else { 6333 writefn = ri->orig_writefn; 6334 } 6335 if (writefn == NULL) { 6336 writefn = raw_write; 6337 } 6338 writefn(env, ri, value); 6339 } 6340 6341 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6342 { 6343 struct E2HAlias { 6344 uint32_t src_key, dst_key, new_key; 6345 const char *src_name, *dst_name, *new_name; 6346 bool (*feature)(const ARMISARegisters *id); 6347 }; 6348 6349 #define K(op0, op1, crn, crm, op2) \ 6350 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6351 6352 static const struct E2HAlias aliases[] = { 6353 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6354 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6355 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6356 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6357 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6358 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6359 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6360 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6361 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6362 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6363 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6364 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6365 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6366 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6367 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6368 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6369 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6370 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6371 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6372 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6373 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6374 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6375 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6376 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6377 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6378 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6379 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6380 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6381 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6382 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6383 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6384 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6385 6386 /* 6387 * Note that redirection of ZCR is mentioned in the description 6388 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6389 * not in the summary table. 6390 */ 6391 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6392 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6393 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6394 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6395 6396 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6397 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6398 6399 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6400 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6401 isar_feature_aa64_scxtnum }, 6402 6403 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6404 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6405 }; 6406 #undef K 6407 6408 size_t i; 6409 6410 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6411 const struct E2HAlias *a = &aliases[i]; 6412 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6413 bool ok; 6414 6415 if (a->feature && !a->feature(&cpu->isar)) { 6416 continue; 6417 } 6418 6419 src_reg = g_hash_table_lookup(cpu->cp_regs, 6420 (gpointer)(uintptr_t)a->src_key); 6421 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6422 (gpointer)(uintptr_t)a->dst_key); 6423 g_assert(src_reg != NULL); 6424 g_assert(dst_reg != NULL); 6425 6426 /* Cross-compare names to detect typos in the keys. */ 6427 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6428 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6429 6430 /* None of the core system registers use opaque; we will. */ 6431 g_assert(src_reg->opaque == NULL); 6432 6433 /* Create alias before redirection so we dup the right data. */ 6434 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6435 6436 new_reg->name = a->new_name; 6437 new_reg->type |= ARM_CP_ALIAS; 6438 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6439 new_reg->access &= PL2_RW | PL3_RW; 6440 6441 ok = g_hash_table_insert(cpu->cp_regs, 6442 (gpointer)(uintptr_t)a->new_key, new_reg); 6443 g_assert(ok); 6444 6445 src_reg->opaque = dst_reg; 6446 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6447 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6448 if (!src_reg->raw_readfn) { 6449 src_reg->raw_readfn = raw_read; 6450 } 6451 if (!src_reg->raw_writefn) { 6452 src_reg->raw_writefn = raw_write; 6453 } 6454 src_reg->readfn = el2_e2h_read; 6455 src_reg->writefn = el2_e2h_write; 6456 } 6457 } 6458 #endif 6459 6460 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6461 bool isread) 6462 { 6463 int cur_el = arm_current_el(env); 6464 6465 if (cur_el < 2) { 6466 uint64_t hcr = arm_hcr_el2_eff(env); 6467 6468 if (cur_el == 0) { 6469 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6470 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6471 return CP_ACCESS_TRAP_EL2; 6472 } 6473 } else { 6474 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6475 return CP_ACCESS_TRAP; 6476 } 6477 if (hcr & HCR_TID2) { 6478 return CP_ACCESS_TRAP_EL2; 6479 } 6480 } 6481 } else if (hcr & HCR_TID2) { 6482 return CP_ACCESS_TRAP_EL2; 6483 } 6484 } 6485 6486 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6487 return CP_ACCESS_TRAP_EL2; 6488 } 6489 6490 return CP_ACCESS_OK; 6491 } 6492 6493 /* 6494 * Check for traps to RAS registers, which are controlled 6495 * by HCR_EL2.TERR and SCR_EL3.TERR. 6496 */ 6497 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6498 bool isread) 6499 { 6500 int el = arm_current_el(env); 6501 6502 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6503 return CP_ACCESS_TRAP_EL2; 6504 } 6505 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6506 return CP_ACCESS_TRAP_EL3; 6507 } 6508 return CP_ACCESS_OK; 6509 } 6510 6511 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6512 { 6513 int el = arm_current_el(env); 6514 6515 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6516 return env->cp15.vdisr_el2; 6517 } 6518 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6519 return 0; /* RAZ/WI */ 6520 } 6521 return env->cp15.disr_el1; 6522 } 6523 6524 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6525 { 6526 int el = arm_current_el(env); 6527 6528 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6529 env->cp15.vdisr_el2 = val; 6530 return; 6531 } 6532 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6533 return; /* RAZ/WI */ 6534 } 6535 env->cp15.disr_el1 = val; 6536 } 6537 6538 /* 6539 * Minimal RAS implementation with no Error Records. 6540 * Which means that all of the Error Record registers: 6541 * ERXADDR_EL1 6542 * ERXCTLR_EL1 6543 * ERXFR_EL1 6544 * ERXMISC0_EL1 6545 * ERXMISC1_EL1 6546 * ERXMISC2_EL1 6547 * ERXMISC3_EL1 6548 * ERXPFGCDN_EL1 (RASv1p1) 6549 * ERXPFGCTL_EL1 (RASv1p1) 6550 * ERXPFGF_EL1 (RASv1p1) 6551 * ERXSTATUS_EL1 6552 * and 6553 * ERRSELR_EL1 6554 * may generate UNDEFINED, which is the effect we get by not 6555 * listing them at all. 6556 * 6557 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6558 * is higher priority than FGT-to-EL2 so we do not need to list them 6559 * in order to check for an FGT. 6560 */ 6561 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6562 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6563 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6564 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6565 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6566 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6567 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6568 .access = PL1_R, .accessfn = access_terr, 6569 .fgt = FGT_ERRIDR_EL1, 6570 .type = ARM_CP_CONST, .resetvalue = 0 }, 6571 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6572 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6573 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6574 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6575 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6576 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6577 }; 6578 6579 /* 6580 * Return the exception level to which exceptions should be taken 6581 * via SVEAccessTrap. This excludes the check for whether the exception 6582 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6583 * be found by testing 0 < fp_exception_el < sve_exception_el. 6584 * 6585 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6586 * pseudocode does *not* separate out the FP trap checks, but has them 6587 * all in one function. 6588 */ 6589 int sve_exception_el(CPUARMState *env, int el) 6590 { 6591 #ifndef CONFIG_USER_ONLY 6592 if (el <= 1 && !el_is_in_host(env, el)) { 6593 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6594 case 1: 6595 if (el != 0) { 6596 break; 6597 } 6598 /* fall through */ 6599 case 0: 6600 case 2: 6601 return 1; 6602 } 6603 } 6604 6605 if (el <= 2 && arm_is_el2_enabled(env)) { 6606 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6607 if (env->cp15.hcr_el2 & HCR_E2H) { 6608 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6609 case 1: 6610 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6611 break; 6612 } 6613 /* fall through */ 6614 case 0: 6615 case 2: 6616 return 2; 6617 } 6618 } else { 6619 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6620 return 2; 6621 } 6622 } 6623 } 6624 6625 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6626 if (arm_feature(env, ARM_FEATURE_EL3) 6627 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6628 return 3; 6629 } 6630 #endif 6631 return 0; 6632 } 6633 6634 /* 6635 * Return the exception level to which exceptions should be taken for SME. 6636 * C.f. the ARM pseudocode function CheckSMEAccess. 6637 */ 6638 int sme_exception_el(CPUARMState *env, int el) 6639 { 6640 #ifndef CONFIG_USER_ONLY 6641 if (el <= 1 && !el_is_in_host(env, el)) { 6642 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6643 case 1: 6644 if (el != 0) { 6645 break; 6646 } 6647 /* fall through */ 6648 case 0: 6649 case 2: 6650 return 1; 6651 } 6652 } 6653 6654 if (el <= 2 && arm_is_el2_enabled(env)) { 6655 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6656 if (env->cp15.hcr_el2 & HCR_E2H) { 6657 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6658 case 1: 6659 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6660 break; 6661 } 6662 /* fall through */ 6663 case 0: 6664 case 2: 6665 return 2; 6666 } 6667 } else { 6668 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6669 return 2; 6670 } 6671 } 6672 } 6673 6674 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6675 if (arm_feature(env, ARM_FEATURE_EL3) 6676 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6677 return 3; 6678 } 6679 #endif 6680 return 0; 6681 } 6682 6683 /* 6684 * Given that SVE is enabled, return the vector length for EL. 6685 */ 6686 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6687 { 6688 ARMCPU *cpu = env_archcpu(env); 6689 uint64_t *cr = env->vfp.zcr_el; 6690 uint32_t map = cpu->sve_vq.map; 6691 uint32_t len = ARM_MAX_VQ - 1; 6692 6693 if (sm) { 6694 cr = env->vfp.smcr_el; 6695 map = cpu->sme_vq.map; 6696 } 6697 6698 if (el <= 1 && !el_is_in_host(env, el)) { 6699 len = MIN(len, 0xf & (uint32_t)cr[1]); 6700 } 6701 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6702 len = MIN(len, 0xf & (uint32_t)cr[2]); 6703 } 6704 if (arm_feature(env, ARM_FEATURE_EL3)) { 6705 len = MIN(len, 0xf & (uint32_t)cr[3]); 6706 } 6707 6708 map &= MAKE_64BIT_MASK(0, len + 1); 6709 if (map != 0) { 6710 return 31 - clz32(map); 6711 } 6712 6713 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6714 assert(sm); 6715 return ctz32(cpu->sme_vq.map); 6716 } 6717 6718 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6719 { 6720 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6721 } 6722 6723 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6724 uint64_t value) 6725 { 6726 int cur_el = arm_current_el(env); 6727 int old_len = sve_vqm1_for_el(env, cur_el); 6728 int new_len; 6729 6730 /* Bits other than [3:0] are RAZ/WI. */ 6731 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6732 raw_write(env, ri, value & 0xf); 6733 6734 /* 6735 * Because we arrived here, we know both FP and SVE are enabled; 6736 * otherwise we would have trapped access to the ZCR_ELn register. 6737 */ 6738 new_len = sve_vqm1_for_el(env, cur_el); 6739 if (new_len < old_len) { 6740 aarch64_sve_narrow_vq(env, new_len + 1); 6741 } 6742 } 6743 6744 static const ARMCPRegInfo zcr_reginfo[] = { 6745 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6746 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6747 .access = PL1_RW, .type = ARM_CP_SVE, 6748 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6749 .writefn = zcr_write, .raw_writefn = raw_write }, 6750 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6751 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6752 .access = PL2_RW, .type = ARM_CP_SVE, 6753 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6754 .writefn = zcr_write, .raw_writefn = raw_write }, 6755 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6756 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6757 .access = PL3_RW, .type = ARM_CP_SVE, 6758 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6759 .writefn = zcr_write, .raw_writefn = raw_write }, 6760 }; 6761 6762 #ifdef TARGET_AARCH64 6763 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6764 bool isread) 6765 { 6766 int el = arm_current_el(env); 6767 6768 if (el == 0) { 6769 uint64_t sctlr = arm_sctlr(env, el); 6770 if (!(sctlr & SCTLR_EnTP2)) { 6771 return CP_ACCESS_TRAP; 6772 } 6773 } 6774 /* TODO: FEAT_FGT */ 6775 if (el < 3 6776 && arm_feature(env, ARM_FEATURE_EL3) 6777 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6778 return CP_ACCESS_TRAP_EL3; 6779 } 6780 return CP_ACCESS_OK; 6781 } 6782 6783 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6784 bool isread) 6785 { 6786 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6787 if (arm_current_el(env) < 3 6788 && arm_feature(env, ARM_FEATURE_EL3) 6789 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6790 return CP_ACCESS_TRAP_EL3; 6791 } 6792 return CP_ACCESS_OK; 6793 } 6794 6795 /* ResetSVEState */ 6796 static void arm_reset_sve_state(CPUARMState *env) 6797 { 6798 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6799 /* Recall that FFR is stored as pregs[16]. */ 6800 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6801 vfp_set_fpcr(env, 0x0800009f); 6802 } 6803 6804 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6805 { 6806 uint64_t change = (env->svcr ^ new) & mask; 6807 6808 if (change == 0) { 6809 return; 6810 } 6811 env->svcr ^= change; 6812 6813 if (change & R_SVCR_SM_MASK) { 6814 arm_reset_sve_state(env); 6815 } 6816 6817 /* 6818 * ResetSMEState. 6819 * 6820 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6821 * on enable: while disabled, the storage is inaccessible and the 6822 * value does not matter. We're not saving the storage in vmstate 6823 * when disabled either. 6824 */ 6825 if (change & new & R_SVCR_ZA_MASK) { 6826 memset(env->zarray, 0, sizeof(env->zarray)); 6827 } 6828 6829 if (tcg_enabled()) { 6830 arm_rebuild_hflags(env); 6831 } 6832 } 6833 6834 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6835 uint64_t value) 6836 { 6837 aarch64_set_svcr(env, value, -1); 6838 } 6839 6840 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6841 uint64_t value) 6842 { 6843 int cur_el = arm_current_el(env); 6844 int old_len = sve_vqm1_for_el(env, cur_el); 6845 int new_len; 6846 6847 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6848 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6849 raw_write(env, ri, value); 6850 6851 /* 6852 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6853 * when SVL is widened (old values kept, or zeros). Choose to keep the 6854 * current values for simplicity. But for QEMU internals, we must still 6855 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6856 * above aarch64_sve_narrow_vq. 6857 */ 6858 new_len = sve_vqm1_for_el(env, cur_el); 6859 if (new_len < old_len) { 6860 aarch64_sve_narrow_vq(env, new_len + 1); 6861 } 6862 } 6863 6864 static const ARMCPRegInfo sme_reginfo[] = { 6865 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6866 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6867 .access = PL0_RW, .accessfn = access_tpidr2, 6868 .fgt = FGT_NTPIDR2_EL0, 6869 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6870 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6871 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6872 .access = PL0_RW, .type = ARM_CP_SME, 6873 .fieldoffset = offsetof(CPUARMState, svcr), 6874 .writefn = svcr_write, .raw_writefn = raw_write }, 6875 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6876 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6877 .access = PL1_RW, .type = ARM_CP_SME, 6878 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6879 .writefn = smcr_write, .raw_writefn = raw_write }, 6880 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6881 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6882 .access = PL2_RW, .type = ARM_CP_SME, 6883 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6884 .writefn = smcr_write, .raw_writefn = raw_write }, 6885 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6886 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6887 .access = PL3_RW, .type = ARM_CP_SME, 6888 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6889 .writefn = smcr_write, .raw_writefn = raw_write }, 6890 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6891 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6892 .access = PL1_R, .accessfn = access_aa64_tid1, 6893 /* 6894 * IMPLEMENTOR = 0 (software) 6895 * REVISION = 0 (implementation defined) 6896 * SMPS = 0 (no streaming execution priority in QEMU) 6897 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6898 */ 6899 .type = ARM_CP_CONST, .resetvalue = 0, }, 6900 /* 6901 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6902 */ 6903 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6904 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6905 .access = PL1_RW, .accessfn = access_esm, 6906 .fgt = FGT_NSMPRI_EL1, 6907 .type = ARM_CP_CONST, .resetvalue = 0 }, 6908 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6909 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6910 .access = PL2_RW, .accessfn = access_esm, 6911 .type = ARM_CP_CONST, .resetvalue = 0 }, 6912 }; 6913 6914 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri, 6915 uint64_t value) 6916 { 6917 CPUState *cs = env_cpu(env); 6918 6919 tlb_flush(cs); 6920 } 6921 6922 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6923 uint64_t value) 6924 { 6925 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 6926 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 6927 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 6928 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 6929 6930 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 6931 } 6932 6933 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 6934 { 6935 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 6936 env_archcpu(env)->reset_l0gptsz); 6937 } 6938 6939 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri, 6940 uint64_t value) 6941 { 6942 CPUState *cs = env_cpu(env); 6943 6944 tlb_flush_all_cpus_synced(cs); 6945 } 6946 6947 static const ARMCPRegInfo rme_reginfo[] = { 6948 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 6949 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 6950 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 6951 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 6952 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 6953 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 6954 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 6955 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 6956 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 6957 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 6958 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64, 6959 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4, 6960 .access = PL3_W, .type = ARM_CP_NO_RAW, 6961 .writefn = tlbi_aa64_paall_write }, 6962 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64, 6963 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4, 6964 .access = PL3_W, .type = ARM_CP_NO_RAW, 6965 .writefn = tlbi_aa64_paallos_write }, 6966 /* 6967 * QEMU does not have a way to invalidate by physical address, thus 6968 * invalidating a range of physical addresses is accomplished by 6969 * flushing all tlb entries in the outer sharable domain, 6970 * just like PAALLOS. 6971 */ 6972 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64, 6973 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7, 6974 .access = PL3_W, .type = ARM_CP_NO_RAW, 6975 .writefn = tlbi_aa64_paallos_write }, 6976 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64, 6977 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3, 6978 .access = PL3_W, .type = ARM_CP_NO_RAW, 6979 .writefn = tlbi_aa64_paallos_write }, 6980 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 6981 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 6982 .access = PL3_W, .type = ARM_CP_NOP }, 6983 }; 6984 6985 static const ARMCPRegInfo rme_mte_reginfo[] = { 6986 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 6987 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 6988 .access = PL3_W, .type = ARM_CP_NOP }, 6989 }; 6990 #endif /* TARGET_AARCH64 */ 6991 6992 static void define_pmu_regs(ARMCPU *cpu) 6993 { 6994 /* 6995 * v7 performance monitor control register: same implementor 6996 * field as main ID register, and we implement four counters in 6997 * addition to the cycle count register. 6998 */ 6999 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 7000 ARMCPRegInfo pmcr = { 7001 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 7002 .access = PL0_RW, 7003 .fgt = FGT_PMCR_EL0, 7004 .type = ARM_CP_IO | ARM_CP_ALIAS, 7005 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 7006 .accessfn = pmreg_access, .writefn = pmcr_write, 7007 .raw_writefn = raw_write, 7008 }; 7009 ARMCPRegInfo pmcr64 = { 7010 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 7011 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 7012 .access = PL0_RW, .accessfn = pmreg_access, 7013 .fgt = FGT_PMCR_EL0, 7014 .type = ARM_CP_IO, 7015 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 7016 .resetvalue = cpu->isar.reset_pmcr_el0, 7017 .writefn = pmcr_write, .raw_writefn = raw_write, 7018 }; 7019 7020 define_one_arm_cp_reg(cpu, &pmcr); 7021 define_one_arm_cp_reg(cpu, &pmcr64); 7022 for (i = 0; i < pmcrn; i++) { 7023 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 7024 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 7025 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 7026 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 7027 ARMCPRegInfo pmev_regs[] = { 7028 { .name = pmevcntr_name, .cp = 15, .crn = 14, 7029 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7030 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7031 .fgt = FGT_PMEVCNTRN_EL0, 7032 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7033 .accessfn = pmreg_access_xevcntr }, 7034 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 7035 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 7036 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 7037 .type = ARM_CP_IO, 7038 .fgt = FGT_PMEVCNTRN_EL0, 7039 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7040 .raw_readfn = pmevcntr_rawread, 7041 .raw_writefn = pmevcntr_rawwrite }, 7042 { .name = pmevtyper_name, .cp = 15, .crn = 14, 7043 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7044 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7045 .fgt = FGT_PMEVTYPERN_EL0, 7046 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7047 .accessfn = pmreg_access }, 7048 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 7049 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 7050 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 7051 .fgt = FGT_PMEVTYPERN_EL0, 7052 .type = ARM_CP_IO, 7053 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7054 .raw_writefn = pmevtyper_rawwrite }, 7055 }; 7056 define_arm_cp_regs(cpu, pmev_regs); 7057 g_free(pmevcntr_name); 7058 g_free(pmevcntr_el0_name); 7059 g_free(pmevtyper_name); 7060 g_free(pmevtyper_el0_name); 7061 } 7062 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7063 ARMCPRegInfo v81_pmu_regs[] = { 7064 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7065 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7066 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7067 .fgt = FGT_PMCEIDN_EL0, 7068 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7069 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7070 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7071 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7072 .fgt = FGT_PMCEIDN_EL0, 7073 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7074 }; 7075 define_arm_cp_regs(cpu, v81_pmu_regs); 7076 } 7077 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7078 static const ARMCPRegInfo v84_pmmir = { 7079 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7080 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7081 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7082 .fgt = FGT_PMMIR_EL1, 7083 .resetvalue = 0 7084 }; 7085 define_one_arm_cp_reg(cpu, &v84_pmmir); 7086 } 7087 } 7088 7089 #ifndef CONFIG_USER_ONLY 7090 /* 7091 * We don't know until after realize whether there's a GICv3 7092 * attached, and that is what registers the gicv3 sysregs. 7093 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7094 * at runtime. 7095 */ 7096 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7097 { 7098 ARMCPU *cpu = env_archcpu(env); 7099 uint64_t pfr1 = cpu->isar.id_pfr1; 7100 7101 if (env->gicv3state) { 7102 pfr1 |= 1 << 28; 7103 } 7104 return pfr1; 7105 } 7106 7107 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7108 { 7109 ARMCPU *cpu = env_archcpu(env); 7110 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7111 7112 if (env->gicv3state) { 7113 pfr0 |= 1 << 24; 7114 } 7115 return pfr0; 7116 } 7117 #endif 7118 7119 /* 7120 * Shared logic between LORID and the rest of the LOR* registers. 7121 * Secure state exclusion has already been dealt with. 7122 */ 7123 static CPAccessResult access_lor_ns(CPUARMState *env, 7124 const ARMCPRegInfo *ri, bool isread) 7125 { 7126 int el = arm_current_el(env); 7127 7128 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7129 return CP_ACCESS_TRAP_EL2; 7130 } 7131 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7132 return CP_ACCESS_TRAP_EL3; 7133 } 7134 return CP_ACCESS_OK; 7135 } 7136 7137 static CPAccessResult access_lor_other(CPUARMState *env, 7138 const ARMCPRegInfo *ri, bool isread) 7139 { 7140 if (arm_is_secure_below_el3(env)) { 7141 /* Access denied in secure mode. */ 7142 return CP_ACCESS_TRAP; 7143 } 7144 return access_lor_ns(env, ri, isread); 7145 } 7146 7147 /* 7148 * A trivial implementation of ARMv8.1-LOR leaves all of these 7149 * registers fixed at 0, which indicates that there are zero 7150 * supported Limited Ordering regions. 7151 */ 7152 static const ARMCPRegInfo lor_reginfo[] = { 7153 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7154 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7155 .access = PL1_RW, .accessfn = access_lor_other, 7156 .fgt = FGT_LORSA_EL1, 7157 .type = ARM_CP_CONST, .resetvalue = 0 }, 7158 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7159 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7160 .access = PL1_RW, .accessfn = access_lor_other, 7161 .fgt = FGT_LOREA_EL1, 7162 .type = ARM_CP_CONST, .resetvalue = 0 }, 7163 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7164 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7165 .access = PL1_RW, .accessfn = access_lor_other, 7166 .fgt = FGT_LORN_EL1, 7167 .type = ARM_CP_CONST, .resetvalue = 0 }, 7168 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7169 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7170 .access = PL1_RW, .accessfn = access_lor_other, 7171 .fgt = FGT_LORC_EL1, 7172 .type = ARM_CP_CONST, .resetvalue = 0 }, 7173 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7174 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7175 .access = PL1_R, .accessfn = access_lor_ns, 7176 .fgt = FGT_LORID_EL1, 7177 .type = ARM_CP_CONST, .resetvalue = 0 }, 7178 }; 7179 7180 #ifdef TARGET_AARCH64 7181 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7182 bool isread) 7183 { 7184 int el = arm_current_el(env); 7185 7186 if (el < 2 && 7187 arm_is_el2_enabled(env) && 7188 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7189 return CP_ACCESS_TRAP_EL2; 7190 } 7191 if (el < 3 && 7192 arm_feature(env, ARM_FEATURE_EL3) && 7193 !(env->cp15.scr_el3 & SCR_APK)) { 7194 return CP_ACCESS_TRAP_EL3; 7195 } 7196 return CP_ACCESS_OK; 7197 } 7198 7199 static const ARMCPRegInfo pauth_reginfo[] = { 7200 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7201 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7202 .access = PL1_RW, .accessfn = access_pauth, 7203 .fgt = FGT_APDAKEY, 7204 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7205 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7206 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7207 .access = PL1_RW, .accessfn = access_pauth, 7208 .fgt = FGT_APDAKEY, 7209 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7210 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7211 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7212 .access = PL1_RW, .accessfn = access_pauth, 7213 .fgt = FGT_APDBKEY, 7214 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7215 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7216 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7217 .access = PL1_RW, .accessfn = access_pauth, 7218 .fgt = FGT_APDBKEY, 7219 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7220 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7221 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7222 .access = PL1_RW, .accessfn = access_pauth, 7223 .fgt = FGT_APGAKEY, 7224 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7225 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7226 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7227 .access = PL1_RW, .accessfn = access_pauth, 7228 .fgt = FGT_APGAKEY, 7229 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7230 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7231 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7232 .access = PL1_RW, .accessfn = access_pauth, 7233 .fgt = FGT_APIAKEY, 7234 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7235 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7236 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7237 .access = PL1_RW, .accessfn = access_pauth, 7238 .fgt = FGT_APIAKEY, 7239 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7240 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7241 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7242 .access = PL1_RW, .accessfn = access_pauth, 7243 .fgt = FGT_APIBKEY, 7244 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7245 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7246 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7247 .access = PL1_RW, .accessfn = access_pauth, 7248 .fgt = FGT_APIBKEY, 7249 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7250 }; 7251 7252 static const ARMCPRegInfo tlbirange_reginfo[] = { 7253 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7254 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7255 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7256 .fgt = FGT_TLBIRVAE1IS, 7257 .writefn = tlbi_aa64_rvae1is_write }, 7258 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7259 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7260 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7261 .fgt = FGT_TLBIRVAAE1IS, 7262 .writefn = tlbi_aa64_rvae1is_write }, 7263 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7264 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7265 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7266 .fgt = FGT_TLBIRVALE1IS, 7267 .writefn = tlbi_aa64_rvae1is_write }, 7268 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7269 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7270 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7271 .fgt = FGT_TLBIRVAALE1IS, 7272 .writefn = tlbi_aa64_rvae1is_write }, 7273 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7274 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7275 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7276 .fgt = FGT_TLBIRVAE1OS, 7277 .writefn = tlbi_aa64_rvae1is_write }, 7278 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7279 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7280 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7281 .fgt = FGT_TLBIRVAAE1OS, 7282 .writefn = tlbi_aa64_rvae1is_write }, 7283 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7284 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7285 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7286 .fgt = FGT_TLBIRVALE1OS, 7287 .writefn = tlbi_aa64_rvae1is_write }, 7288 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7289 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7290 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7291 .fgt = FGT_TLBIRVAALE1OS, 7292 .writefn = tlbi_aa64_rvae1is_write }, 7293 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7294 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7295 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7296 .fgt = FGT_TLBIRVAE1, 7297 .writefn = tlbi_aa64_rvae1_write }, 7298 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7299 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7300 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7301 .fgt = FGT_TLBIRVAAE1, 7302 .writefn = tlbi_aa64_rvae1_write }, 7303 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7304 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7305 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7306 .fgt = FGT_TLBIRVALE1, 7307 .writefn = tlbi_aa64_rvae1_write }, 7308 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7309 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7310 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7311 .fgt = FGT_TLBIRVAALE1, 7312 .writefn = tlbi_aa64_rvae1_write }, 7313 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7314 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7315 .access = PL2_W, .type = ARM_CP_NO_RAW, 7316 .writefn = tlbi_aa64_ripas2e1is_write }, 7317 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7318 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7319 .access = PL2_W, .type = ARM_CP_NO_RAW, 7320 .writefn = tlbi_aa64_ripas2e1is_write }, 7321 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7322 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7323 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7324 .writefn = tlbi_aa64_rvae2is_write }, 7325 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7326 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7327 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7328 .writefn = tlbi_aa64_rvae2is_write }, 7329 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7330 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7331 .access = PL2_W, .type = ARM_CP_NO_RAW, 7332 .writefn = tlbi_aa64_ripas2e1_write }, 7333 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7334 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7335 .access = PL2_W, .type = ARM_CP_NO_RAW, 7336 .writefn = tlbi_aa64_ripas2e1_write }, 7337 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7338 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7339 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7340 .writefn = tlbi_aa64_rvae2is_write }, 7341 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7342 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7343 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7344 .writefn = tlbi_aa64_rvae2is_write }, 7345 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7346 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7347 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7348 .writefn = tlbi_aa64_rvae2_write }, 7349 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7350 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7351 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7352 .writefn = tlbi_aa64_rvae2_write }, 7353 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7354 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7355 .access = PL3_W, .type = ARM_CP_NO_RAW, 7356 .writefn = tlbi_aa64_rvae3is_write }, 7357 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7358 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7359 .access = PL3_W, .type = ARM_CP_NO_RAW, 7360 .writefn = tlbi_aa64_rvae3is_write }, 7361 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7362 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7363 .access = PL3_W, .type = ARM_CP_NO_RAW, 7364 .writefn = tlbi_aa64_rvae3is_write }, 7365 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7366 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7367 .access = PL3_W, .type = ARM_CP_NO_RAW, 7368 .writefn = tlbi_aa64_rvae3is_write }, 7369 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7370 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7371 .access = PL3_W, .type = ARM_CP_NO_RAW, 7372 .writefn = tlbi_aa64_rvae3_write }, 7373 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7374 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7375 .access = PL3_W, .type = ARM_CP_NO_RAW, 7376 .writefn = tlbi_aa64_rvae3_write }, 7377 }; 7378 7379 static const ARMCPRegInfo tlbios_reginfo[] = { 7380 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7381 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7382 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7383 .fgt = FGT_TLBIVMALLE1OS, 7384 .writefn = tlbi_aa64_vmalle1is_write }, 7385 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7386 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7387 .fgt = FGT_TLBIVAE1OS, 7388 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7389 .writefn = tlbi_aa64_vae1is_write }, 7390 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7391 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7392 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7393 .fgt = FGT_TLBIASIDE1OS, 7394 .writefn = tlbi_aa64_vmalle1is_write }, 7395 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7396 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7397 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7398 .fgt = FGT_TLBIVAAE1OS, 7399 .writefn = tlbi_aa64_vae1is_write }, 7400 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7401 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7402 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7403 .fgt = FGT_TLBIVALE1OS, 7404 .writefn = tlbi_aa64_vae1is_write }, 7405 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7406 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7407 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7408 .fgt = FGT_TLBIVAALE1OS, 7409 .writefn = tlbi_aa64_vae1is_write }, 7410 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7411 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7412 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7413 .writefn = tlbi_aa64_alle2is_write }, 7414 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7415 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7416 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7417 .writefn = tlbi_aa64_vae2is_write }, 7418 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7419 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7420 .access = PL2_W, .type = ARM_CP_NO_RAW, 7421 .writefn = tlbi_aa64_alle1is_write }, 7422 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7423 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7424 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7425 .writefn = tlbi_aa64_vae2is_write }, 7426 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7427 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7428 .access = PL2_W, .type = ARM_CP_NO_RAW, 7429 .writefn = tlbi_aa64_alle1is_write }, 7430 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7431 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7432 .access = PL2_W, .type = ARM_CP_NOP }, 7433 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7434 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7435 .access = PL2_W, .type = ARM_CP_NOP }, 7436 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7437 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7438 .access = PL2_W, .type = ARM_CP_NOP }, 7439 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7440 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7441 .access = PL2_W, .type = ARM_CP_NOP }, 7442 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7443 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7444 .access = PL3_W, .type = ARM_CP_NO_RAW, 7445 .writefn = tlbi_aa64_alle3is_write }, 7446 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7447 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7448 .access = PL3_W, .type = ARM_CP_NO_RAW, 7449 .writefn = tlbi_aa64_vae3is_write }, 7450 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7451 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7452 .access = PL3_W, .type = ARM_CP_NO_RAW, 7453 .writefn = tlbi_aa64_vae3is_write }, 7454 }; 7455 7456 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7457 { 7458 Error *err = NULL; 7459 uint64_t ret; 7460 7461 /* Success sets NZCV = 0000. */ 7462 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7463 7464 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7465 /* 7466 * ??? Failed, for unknown reasons in the crypto subsystem. 7467 * The best we can do is log the reason and return the 7468 * timed-out indication to the guest. There is no reason 7469 * we know to expect this failure to be transitory, so the 7470 * guest may well hang retrying the operation. 7471 */ 7472 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7473 ri->name, error_get_pretty(err)); 7474 error_free(err); 7475 7476 env->ZF = 0; /* NZCF = 0100 */ 7477 return 0; 7478 } 7479 return ret; 7480 } 7481 7482 /* We do not support re-seeding, so the two registers operate the same. */ 7483 static const ARMCPRegInfo rndr_reginfo[] = { 7484 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7485 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7486 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7487 .access = PL0_R, .readfn = rndr_readfn }, 7488 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7489 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7490 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7491 .access = PL0_R, .readfn = rndr_readfn }, 7492 }; 7493 7494 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7495 uint64_t value) 7496 { 7497 ARMCPU *cpu = env_archcpu(env); 7498 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7499 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7500 uint64_t vaddr_in = (uint64_t) value; 7501 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7502 void *haddr; 7503 int mem_idx = cpu_mmu_index(env, false); 7504 7505 /* This won't be crossing page boundaries */ 7506 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7507 if (haddr) { 7508 #ifndef CONFIG_USER_ONLY 7509 7510 ram_addr_t offset; 7511 MemoryRegion *mr; 7512 7513 /* RCU lock is already being held */ 7514 mr = memory_region_from_host(haddr, &offset); 7515 7516 if (mr) { 7517 memory_region_writeback(mr, offset, dline_size); 7518 } 7519 #endif /*CONFIG_USER_ONLY*/ 7520 } 7521 } 7522 7523 static const ARMCPRegInfo dcpop_reg[] = { 7524 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7525 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7526 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7527 .fgt = FGT_DCCVAP, 7528 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7529 }; 7530 7531 static const ARMCPRegInfo dcpodp_reg[] = { 7532 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7533 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7534 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7535 .fgt = FGT_DCCVADP, 7536 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7537 }; 7538 7539 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7540 bool isread) 7541 { 7542 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7543 return CP_ACCESS_TRAP_EL2; 7544 } 7545 7546 return CP_ACCESS_OK; 7547 } 7548 7549 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7550 bool isread) 7551 { 7552 int el = arm_current_el(env); 7553 7554 if (el < 2 && arm_is_el2_enabled(env)) { 7555 uint64_t hcr = arm_hcr_el2_eff(env); 7556 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7557 return CP_ACCESS_TRAP_EL2; 7558 } 7559 } 7560 if (el < 3 && 7561 arm_feature(env, ARM_FEATURE_EL3) && 7562 !(env->cp15.scr_el3 & SCR_ATA)) { 7563 return CP_ACCESS_TRAP_EL3; 7564 } 7565 return CP_ACCESS_OK; 7566 } 7567 7568 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7569 { 7570 return env->pstate & PSTATE_TCO; 7571 } 7572 7573 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7574 { 7575 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7576 } 7577 7578 static const ARMCPRegInfo mte_reginfo[] = { 7579 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7580 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7581 .access = PL1_RW, .accessfn = access_mte, 7582 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7583 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7584 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7585 .access = PL1_RW, .accessfn = access_mte, 7586 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7587 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7588 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7589 .access = PL2_RW, .accessfn = access_mte, 7590 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7591 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7592 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7593 .access = PL3_RW, 7594 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7595 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7596 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7597 .access = PL1_RW, .accessfn = access_mte, 7598 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7599 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7600 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7601 .access = PL1_RW, .accessfn = access_mte, 7602 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7603 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7604 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7605 .access = PL1_R, .accessfn = access_aa64_tid5, 7606 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7607 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7608 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7609 .type = ARM_CP_NO_RAW, 7610 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7611 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7612 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7613 .type = ARM_CP_NOP, .access = PL1_W, 7614 .fgt = FGT_DCIVAC, 7615 .accessfn = aa64_cacheop_poc_access }, 7616 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7617 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7618 .fgt = FGT_DCISW, 7619 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7620 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7621 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7622 .type = ARM_CP_NOP, .access = PL1_W, 7623 .fgt = FGT_DCIVAC, 7624 .accessfn = aa64_cacheop_poc_access }, 7625 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7626 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7627 .fgt = FGT_DCISW, 7628 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7629 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7630 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7631 .fgt = FGT_DCCSW, 7632 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7633 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7634 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7635 .fgt = FGT_DCCSW, 7636 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7637 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7638 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7639 .fgt = FGT_DCCISW, 7640 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7641 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7642 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7643 .fgt = FGT_DCCISW, 7644 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7645 }; 7646 7647 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7648 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7649 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7650 .type = ARM_CP_CONST, .access = PL0_RW, }, 7651 }; 7652 7653 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7654 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7655 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7656 .type = ARM_CP_NOP, .access = PL0_W, 7657 .fgt = FGT_DCCVAC, 7658 .accessfn = aa64_cacheop_poc_access }, 7659 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7660 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7661 .type = ARM_CP_NOP, .access = PL0_W, 7662 .fgt = FGT_DCCVAC, 7663 .accessfn = aa64_cacheop_poc_access }, 7664 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7665 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7666 .type = ARM_CP_NOP, .access = PL0_W, 7667 .fgt = FGT_DCCVAP, 7668 .accessfn = aa64_cacheop_poc_access }, 7669 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7670 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7671 .type = ARM_CP_NOP, .access = PL0_W, 7672 .fgt = FGT_DCCVAP, 7673 .accessfn = aa64_cacheop_poc_access }, 7674 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7675 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7676 .type = ARM_CP_NOP, .access = PL0_W, 7677 .fgt = FGT_DCCVADP, 7678 .accessfn = aa64_cacheop_poc_access }, 7679 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7680 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7681 .type = ARM_CP_NOP, .access = PL0_W, 7682 .fgt = FGT_DCCVADP, 7683 .accessfn = aa64_cacheop_poc_access }, 7684 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7685 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7686 .type = ARM_CP_NOP, .access = PL0_W, 7687 .fgt = FGT_DCCIVAC, 7688 .accessfn = aa64_cacheop_poc_access }, 7689 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7690 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7691 .type = ARM_CP_NOP, .access = PL0_W, 7692 .fgt = FGT_DCCIVAC, 7693 .accessfn = aa64_cacheop_poc_access }, 7694 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7695 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7696 .access = PL0_W, .type = ARM_CP_DC_GVA, 7697 #ifndef CONFIG_USER_ONLY 7698 /* Avoid overhead of an access check that always passes in user-mode */ 7699 .accessfn = aa64_zva_access, 7700 .fgt = FGT_DCZVA, 7701 #endif 7702 }, 7703 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7704 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7705 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7706 #ifndef CONFIG_USER_ONLY 7707 /* Avoid overhead of an access check that always passes in user-mode */ 7708 .accessfn = aa64_zva_access, 7709 .fgt = FGT_DCZVA, 7710 #endif 7711 }, 7712 }; 7713 7714 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7715 bool isread) 7716 { 7717 uint64_t hcr = arm_hcr_el2_eff(env); 7718 int el = arm_current_el(env); 7719 7720 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7721 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7722 if (hcr & HCR_TGE) { 7723 return CP_ACCESS_TRAP_EL2; 7724 } 7725 return CP_ACCESS_TRAP; 7726 } 7727 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7728 return CP_ACCESS_TRAP_EL2; 7729 } 7730 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7731 return CP_ACCESS_TRAP_EL2; 7732 } 7733 if (el < 3 7734 && arm_feature(env, ARM_FEATURE_EL3) 7735 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7736 return CP_ACCESS_TRAP_EL3; 7737 } 7738 return CP_ACCESS_OK; 7739 } 7740 7741 static const ARMCPRegInfo scxtnum_reginfo[] = { 7742 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7743 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7744 .access = PL0_RW, .accessfn = access_scxtnum, 7745 .fgt = FGT_SCXTNUM_EL0, 7746 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7747 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7748 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7749 .access = PL1_RW, .accessfn = access_scxtnum, 7750 .fgt = FGT_SCXTNUM_EL1, 7751 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7752 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7753 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7754 .access = PL2_RW, .accessfn = access_scxtnum, 7755 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7756 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7757 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7758 .access = PL3_RW, 7759 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7760 }; 7761 7762 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7763 bool isread) 7764 { 7765 if (arm_current_el(env) == 2 && 7766 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7767 return CP_ACCESS_TRAP_EL3; 7768 } 7769 return CP_ACCESS_OK; 7770 } 7771 7772 static const ARMCPRegInfo fgt_reginfo[] = { 7773 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7774 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7775 .access = PL2_RW, .accessfn = access_fgt, 7776 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7777 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7778 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7779 .access = PL2_RW, .accessfn = access_fgt, 7780 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7781 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7782 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7783 .access = PL2_RW, .accessfn = access_fgt, 7784 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7785 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7786 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7787 .access = PL2_RW, .accessfn = access_fgt, 7788 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7789 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7790 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7791 .access = PL2_RW, .accessfn = access_fgt, 7792 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7793 }; 7794 #endif /* TARGET_AARCH64 */ 7795 7796 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7797 bool isread) 7798 { 7799 int el = arm_current_el(env); 7800 7801 if (el == 0) { 7802 uint64_t sctlr = arm_sctlr(env, el); 7803 if (!(sctlr & SCTLR_EnRCTX)) { 7804 return CP_ACCESS_TRAP; 7805 } 7806 } else if (el == 1) { 7807 uint64_t hcr = arm_hcr_el2_eff(env); 7808 if (hcr & HCR_NV) { 7809 return CP_ACCESS_TRAP_EL2; 7810 } 7811 } 7812 return CP_ACCESS_OK; 7813 } 7814 7815 static const ARMCPRegInfo predinv_reginfo[] = { 7816 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7817 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7818 .fgt = FGT_CFPRCTX, 7819 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7820 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7821 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7822 .fgt = FGT_DVPRCTX, 7823 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7824 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7825 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7826 .fgt = FGT_CPPRCTX, 7827 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7828 /* 7829 * Note the AArch32 opcodes have a different OPC1. 7830 */ 7831 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7832 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7833 .fgt = FGT_CFPRCTX, 7834 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7835 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7836 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7837 .fgt = FGT_DVPRCTX, 7838 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7839 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7840 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7841 .fgt = FGT_CPPRCTX, 7842 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7843 }; 7844 7845 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7846 { 7847 /* Read the high 32 bits of the current CCSIDR */ 7848 return extract64(ccsidr_read(env, ri), 32, 32); 7849 } 7850 7851 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7852 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7853 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7854 .access = PL1_R, 7855 .accessfn = access_tid4, 7856 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7857 }; 7858 7859 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7860 bool isread) 7861 { 7862 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7863 return CP_ACCESS_TRAP_EL2; 7864 } 7865 7866 return CP_ACCESS_OK; 7867 } 7868 7869 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7870 bool isread) 7871 { 7872 if (arm_feature(env, ARM_FEATURE_V8)) { 7873 return access_aa64_tid3(env, ri, isread); 7874 } 7875 7876 return CP_ACCESS_OK; 7877 } 7878 7879 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7880 bool isread) 7881 { 7882 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7883 return CP_ACCESS_TRAP_EL2; 7884 } 7885 7886 return CP_ACCESS_OK; 7887 } 7888 7889 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7890 const ARMCPRegInfo *ri, bool isread) 7891 { 7892 /* 7893 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7894 * in v7A, not in v8A. 7895 */ 7896 if (!arm_feature(env, ARM_FEATURE_V8) && 7897 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7898 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7899 return CP_ACCESS_TRAP_EL2; 7900 } 7901 return CP_ACCESS_OK; 7902 } 7903 7904 static const ARMCPRegInfo jazelle_regs[] = { 7905 { .name = "JIDR", 7906 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7907 .access = PL1_R, .accessfn = access_jazelle, 7908 .type = ARM_CP_CONST, .resetvalue = 0 }, 7909 { .name = "JOSCR", 7910 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7911 .accessfn = access_joscr_jmcr, 7912 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7913 { .name = "JMCR", 7914 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7915 .accessfn = access_joscr_jmcr, 7916 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7917 }; 7918 7919 static const ARMCPRegInfo contextidr_el2 = { 7920 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7921 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7922 .access = PL2_RW, 7923 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7924 }; 7925 7926 static const ARMCPRegInfo vhe_reginfo[] = { 7927 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7928 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7929 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7930 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7931 #ifndef CONFIG_USER_ONLY 7932 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7933 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7934 .fieldoffset = 7935 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7936 .type = ARM_CP_IO, .access = PL2_RW, 7937 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7938 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7939 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7940 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7941 .resetfn = gt_hv_timer_reset, 7942 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7943 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7944 .type = ARM_CP_IO, 7945 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7946 .access = PL2_RW, 7947 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7948 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7949 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7950 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7951 .type = ARM_CP_IO | ARM_CP_ALIAS, 7952 .access = PL2_RW, .accessfn = e2h_access, 7953 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7954 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7955 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7956 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7957 .type = ARM_CP_IO | ARM_CP_ALIAS, 7958 .access = PL2_RW, .accessfn = e2h_access, 7959 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7960 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7961 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7962 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7963 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7964 .access = PL2_RW, .accessfn = e2h_access, 7965 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7966 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7967 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7968 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7969 .access = PL2_RW, .accessfn = e2h_access, 7970 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7971 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7972 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7973 .type = ARM_CP_IO | ARM_CP_ALIAS, 7974 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7975 .access = PL2_RW, .accessfn = e2h_access, 7976 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7977 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7978 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7979 .type = ARM_CP_IO | ARM_CP_ALIAS, 7980 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7981 .access = PL2_RW, .accessfn = e2h_access, 7982 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7983 #endif 7984 }; 7985 7986 #ifndef CONFIG_USER_ONLY 7987 static const ARMCPRegInfo ats1e1_reginfo[] = { 7988 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 7989 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7990 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7991 .fgt = FGT_ATS1E1RP, 7992 .writefn = ats_write64 }, 7993 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 7994 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7995 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7996 .fgt = FGT_ATS1E1WP, 7997 .writefn = ats_write64 }, 7998 }; 7999 8000 static const ARMCPRegInfo ats1cp_reginfo[] = { 8001 { .name = "ATS1CPRP", 8002 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8003 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8004 .writefn = ats_write }, 8005 { .name = "ATS1CPWP", 8006 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8007 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8008 .writefn = ats_write }, 8009 }; 8010 #endif 8011 8012 /* 8013 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 8014 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 8015 * is non-zero, which is never for ARMv7, optionally in ARMv8 8016 * and mandatorily for ARMv8.2 and up. 8017 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 8018 * implementation is RAZ/WI we can ignore this detail, as we 8019 * do for ACTLR. 8020 */ 8021 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 8022 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 8023 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 8024 .access = PL1_RW, .accessfn = access_tacr, 8025 .type = ARM_CP_CONST, .resetvalue = 0 }, 8026 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 8027 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 8028 .access = PL2_RW, .type = ARM_CP_CONST, 8029 .resetvalue = 0 }, 8030 }; 8031 8032 void register_cp_regs_for_features(ARMCPU *cpu) 8033 { 8034 /* Register all the coprocessor registers based on feature bits */ 8035 CPUARMState *env = &cpu->env; 8036 if (arm_feature(env, ARM_FEATURE_M)) { 8037 /* M profile has no coprocessor registers */ 8038 return; 8039 } 8040 8041 define_arm_cp_regs(cpu, cp_reginfo); 8042 if (!arm_feature(env, ARM_FEATURE_V8)) { 8043 /* 8044 * Must go early as it is full of wildcards that may be 8045 * overridden by later definitions. 8046 */ 8047 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 8048 } 8049 8050 if (arm_feature(env, ARM_FEATURE_V6)) { 8051 /* The ID registers all have impdef reset values */ 8052 ARMCPRegInfo v6_idregs[] = { 8053 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 8054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 8055 .access = PL1_R, .type = ARM_CP_CONST, 8056 .accessfn = access_aa32_tid3, 8057 .resetvalue = cpu->isar.id_pfr0 }, 8058 /* 8059 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 8060 * the value of the GIC field until after we define these regs. 8061 */ 8062 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8063 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8064 .access = PL1_R, .type = ARM_CP_NO_RAW, 8065 .accessfn = access_aa32_tid3, 8066 #ifdef CONFIG_USER_ONLY 8067 .type = ARM_CP_CONST, 8068 .resetvalue = cpu->isar.id_pfr1, 8069 #else 8070 .type = ARM_CP_NO_RAW, 8071 .accessfn = access_aa32_tid3, 8072 .readfn = id_pfr1_read, 8073 .writefn = arm_cp_write_ignore 8074 #endif 8075 }, 8076 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8077 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8078 .access = PL1_R, .type = ARM_CP_CONST, 8079 .accessfn = access_aa32_tid3, 8080 .resetvalue = cpu->isar.id_dfr0 }, 8081 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8082 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8083 .access = PL1_R, .type = ARM_CP_CONST, 8084 .accessfn = access_aa32_tid3, 8085 .resetvalue = cpu->id_afr0 }, 8086 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8087 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8088 .access = PL1_R, .type = ARM_CP_CONST, 8089 .accessfn = access_aa32_tid3, 8090 .resetvalue = cpu->isar.id_mmfr0 }, 8091 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8092 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8093 .access = PL1_R, .type = ARM_CP_CONST, 8094 .accessfn = access_aa32_tid3, 8095 .resetvalue = cpu->isar.id_mmfr1 }, 8096 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8097 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8098 .access = PL1_R, .type = ARM_CP_CONST, 8099 .accessfn = access_aa32_tid3, 8100 .resetvalue = cpu->isar.id_mmfr2 }, 8101 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8102 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8103 .access = PL1_R, .type = ARM_CP_CONST, 8104 .accessfn = access_aa32_tid3, 8105 .resetvalue = cpu->isar.id_mmfr3 }, 8106 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8107 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8108 .access = PL1_R, .type = ARM_CP_CONST, 8109 .accessfn = access_aa32_tid3, 8110 .resetvalue = cpu->isar.id_isar0 }, 8111 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8112 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8113 .access = PL1_R, .type = ARM_CP_CONST, 8114 .accessfn = access_aa32_tid3, 8115 .resetvalue = cpu->isar.id_isar1 }, 8116 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8117 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8118 .access = PL1_R, .type = ARM_CP_CONST, 8119 .accessfn = access_aa32_tid3, 8120 .resetvalue = cpu->isar.id_isar2 }, 8121 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8122 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8123 .access = PL1_R, .type = ARM_CP_CONST, 8124 .accessfn = access_aa32_tid3, 8125 .resetvalue = cpu->isar.id_isar3 }, 8126 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8127 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8128 .access = PL1_R, .type = ARM_CP_CONST, 8129 .accessfn = access_aa32_tid3, 8130 .resetvalue = cpu->isar.id_isar4 }, 8131 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8132 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8133 .access = PL1_R, .type = ARM_CP_CONST, 8134 .accessfn = access_aa32_tid3, 8135 .resetvalue = cpu->isar.id_isar5 }, 8136 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8137 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8138 .access = PL1_R, .type = ARM_CP_CONST, 8139 .accessfn = access_aa32_tid3, 8140 .resetvalue = cpu->isar.id_mmfr4 }, 8141 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8142 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8143 .access = PL1_R, .type = ARM_CP_CONST, 8144 .accessfn = access_aa32_tid3, 8145 .resetvalue = cpu->isar.id_isar6 }, 8146 }; 8147 define_arm_cp_regs(cpu, v6_idregs); 8148 define_arm_cp_regs(cpu, v6_cp_reginfo); 8149 } else { 8150 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8151 } 8152 if (arm_feature(env, ARM_FEATURE_V6K)) { 8153 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8154 } 8155 if (arm_feature(env, ARM_FEATURE_V7MP) && 8156 !arm_feature(env, ARM_FEATURE_PMSA)) { 8157 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8158 } 8159 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8160 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8161 } 8162 if (arm_feature(env, ARM_FEATURE_V7)) { 8163 ARMCPRegInfo clidr = { 8164 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8165 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8166 .access = PL1_R, .type = ARM_CP_CONST, 8167 .accessfn = access_tid4, 8168 .fgt = FGT_CLIDR_EL1, 8169 .resetvalue = cpu->clidr 8170 }; 8171 define_one_arm_cp_reg(cpu, &clidr); 8172 define_arm_cp_regs(cpu, v7_cp_reginfo); 8173 define_debug_regs(cpu); 8174 define_pmu_regs(cpu); 8175 } else { 8176 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8177 } 8178 if (arm_feature(env, ARM_FEATURE_V8)) { 8179 /* 8180 * v8 ID registers, which all have impdef reset values. 8181 * Note that within the ID register ranges the unused slots 8182 * must all RAZ, not UNDEF; future architecture versions may 8183 * define new registers here. 8184 * ID registers which are AArch64 views of the AArch32 ID registers 8185 * which already existed in v6 and v7 are handled elsewhere, 8186 * in v6_idregs[]. 8187 */ 8188 int i; 8189 ARMCPRegInfo v8_idregs[] = { 8190 /* 8191 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8192 * emulation because we don't know the right value for the 8193 * GIC field until after we define these regs. 8194 */ 8195 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8196 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8197 .access = PL1_R, 8198 #ifdef CONFIG_USER_ONLY 8199 .type = ARM_CP_CONST, 8200 .resetvalue = cpu->isar.id_aa64pfr0 8201 #else 8202 .type = ARM_CP_NO_RAW, 8203 .accessfn = access_aa64_tid3, 8204 .readfn = id_aa64pfr0_read, 8205 .writefn = arm_cp_write_ignore 8206 #endif 8207 }, 8208 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8209 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8210 .access = PL1_R, .type = ARM_CP_CONST, 8211 .accessfn = access_aa64_tid3, 8212 .resetvalue = cpu->isar.id_aa64pfr1}, 8213 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8214 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8215 .access = PL1_R, .type = ARM_CP_CONST, 8216 .accessfn = access_aa64_tid3, 8217 .resetvalue = 0 }, 8218 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8219 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8220 .access = PL1_R, .type = ARM_CP_CONST, 8221 .accessfn = access_aa64_tid3, 8222 .resetvalue = 0 }, 8223 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8224 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8225 .access = PL1_R, .type = ARM_CP_CONST, 8226 .accessfn = access_aa64_tid3, 8227 .resetvalue = cpu->isar.id_aa64zfr0 }, 8228 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8229 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8230 .access = PL1_R, .type = ARM_CP_CONST, 8231 .accessfn = access_aa64_tid3, 8232 .resetvalue = cpu->isar.id_aa64smfr0 }, 8233 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8234 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8235 .access = PL1_R, .type = ARM_CP_CONST, 8236 .accessfn = access_aa64_tid3, 8237 .resetvalue = 0 }, 8238 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8239 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8240 .access = PL1_R, .type = ARM_CP_CONST, 8241 .accessfn = access_aa64_tid3, 8242 .resetvalue = 0 }, 8243 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8244 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8245 .access = PL1_R, .type = ARM_CP_CONST, 8246 .accessfn = access_aa64_tid3, 8247 .resetvalue = cpu->isar.id_aa64dfr0 }, 8248 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8249 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8250 .access = PL1_R, .type = ARM_CP_CONST, 8251 .accessfn = access_aa64_tid3, 8252 .resetvalue = cpu->isar.id_aa64dfr1 }, 8253 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8254 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8255 .access = PL1_R, .type = ARM_CP_CONST, 8256 .accessfn = access_aa64_tid3, 8257 .resetvalue = 0 }, 8258 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8259 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8260 .access = PL1_R, .type = ARM_CP_CONST, 8261 .accessfn = access_aa64_tid3, 8262 .resetvalue = 0 }, 8263 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8264 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8265 .access = PL1_R, .type = ARM_CP_CONST, 8266 .accessfn = access_aa64_tid3, 8267 .resetvalue = cpu->id_aa64afr0 }, 8268 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8269 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8270 .access = PL1_R, .type = ARM_CP_CONST, 8271 .accessfn = access_aa64_tid3, 8272 .resetvalue = cpu->id_aa64afr1 }, 8273 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8274 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8275 .access = PL1_R, .type = ARM_CP_CONST, 8276 .accessfn = access_aa64_tid3, 8277 .resetvalue = 0 }, 8278 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8279 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8280 .access = PL1_R, .type = ARM_CP_CONST, 8281 .accessfn = access_aa64_tid3, 8282 .resetvalue = 0 }, 8283 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8284 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8285 .access = PL1_R, .type = ARM_CP_CONST, 8286 .accessfn = access_aa64_tid3, 8287 .resetvalue = cpu->isar.id_aa64isar0 }, 8288 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8289 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8290 .access = PL1_R, .type = ARM_CP_CONST, 8291 .accessfn = access_aa64_tid3, 8292 .resetvalue = cpu->isar.id_aa64isar1 }, 8293 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8294 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8295 .access = PL1_R, .type = ARM_CP_CONST, 8296 .accessfn = access_aa64_tid3, 8297 .resetvalue = 0 }, 8298 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8299 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8300 .access = PL1_R, .type = ARM_CP_CONST, 8301 .accessfn = access_aa64_tid3, 8302 .resetvalue = 0 }, 8303 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8304 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8305 .access = PL1_R, .type = ARM_CP_CONST, 8306 .accessfn = access_aa64_tid3, 8307 .resetvalue = 0 }, 8308 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8309 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8310 .access = PL1_R, .type = ARM_CP_CONST, 8311 .accessfn = access_aa64_tid3, 8312 .resetvalue = 0 }, 8313 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8314 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8315 .access = PL1_R, .type = ARM_CP_CONST, 8316 .accessfn = access_aa64_tid3, 8317 .resetvalue = 0 }, 8318 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8319 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8320 .access = PL1_R, .type = ARM_CP_CONST, 8321 .accessfn = access_aa64_tid3, 8322 .resetvalue = 0 }, 8323 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8324 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8325 .access = PL1_R, .type = ARM_CP_CONST, 8326 .accessfn = access_aa64_tid3, 8327 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8328 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8329 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8330 .access = PL1_R, .type = ARM_CP_CONST, 8331 .accessfn = access_aa64_tid3, 8332 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8333 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8334 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8335 .access = PL1_R, .type = ARM_CP_CONST, 8336 .accessfn = access_aa64_tid3, 8337 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8338 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8339 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8340 .access = PL1_R, .type = ARM_CP_CONST, 8341 .accessfn = access_aa64_tid3, 8342 .resetvalue = 0 }, 8343 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8344 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8345 .access = PL1_R, .type = ARM_CP_CONST, 8346 .accessfn = access_aa64_tid3, 8347 .resetvalue = 0 }, 8348 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8349 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8350 .access = PL1_R, .type = ARM_CP_CONST, 8351 .accessfn = access_aa64_tid3, 8352 .resetvalue = 0 }, 8353 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8354 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8355 .access = PL1_R, .type = ARM_CP_CONST, 8356 .accessfn = access_aa64_tid3, 8357 .resetvalue = 0 }, 8358 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8359 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8360 .access = PL1_R, .type = ARM_CP_CONST, 8361 .accessfn = access_aa64_tid3, 8362 .resetvalue = 0 }, 8363 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8364 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8365 .access = PL1_R, .type = ARM_CP_CONST, 8366 .accessfn = access_aa64_tid3, 8367 .resetvalue = cpu->isar.mvfr0 }, 8368 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8369 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8370 .access = PL1_R, .type = ARM_CP_CONST, 8371 .accessfn = access_aa64_tid3, 8372 .resetvalue = cpu->isar.mvfr1 }, 8373 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8374 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8375 .access = PL1_R, .type = ARM_CP_CONST, 8376 .accessfn = access_aa64_tid3, 8377 .resetvalue = cpu->isar.mvfr2 }, 8378 /* 8379 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8380 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8381 * as RAZ, since it is in the "reserved for future ID 8382 * registers, RAZ" part of the AArch32 encoding space. 8383 */ 8384 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8385 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8386 .access = PL1_R, .type = ARM_CP_CONST, 8387 .accessfn = access_aa64_tid3, 8388 .resetvalue = 0 }, 8389 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8390 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8391 .access = PL1_R, .type = ARM_CP_CONST, 8392 .accessfn = access_aa64_tid3, 8393 .resetvalue = 0 }, 8394 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8395 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8396 .access = PL1_R, .type = ARM_CP_CONST, 8397 .accessfn = access_aa64_tid3, 8398 .resetvalue = 0 }, 8399 /* 8400 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8401 * they're also RAZ for AArch64, and in v8 are gradually 8402 * being filled with AArch64-view-of-AArch32-ID-register 8403 * for new ID registers. 8404 */ 8405 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8406 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8407 .access = PL1_R, .type = ARM_CP_CONST, 8408 .accessfn = access_aa64_tid3, 8409 .resetvalue = 0 }, 8410 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8411 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8412 .access = PL1_R, .type = ARM_CP_CONST, 8413 .accessfn = access_aa64_tid3, 8414 .resetvalue = cpu->isar.id_pfr2 }, 8415 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8416 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8417 .access = PL1_R, .type = ARM_CP_CONST, 8418 .accessfn = access_aa64_tid3, 8419 .resetvalue = cpu->isar.id_dfr1 }, 8420 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8421 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8422 .access = PL1_R, .type = ARM_CP_CONST, 8423 .accessfn = access_aa64_tid3, 8424 .resetvalue = cpu->isar.id_mmfr5 }, 8425 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8426 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8427 .access = PL1_R, .type = ARM_CP_CONST, 8428 .accessfn = access_aa64_tid3, 8429 .resetvalue = 0 }, 8430 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8431 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8432 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8433 .fgt = FGT_PMCEIDN_EL0, 8434 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8435 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8436 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8437 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8438 .fgt = FGT_PMCEIDN_EL0, 8439 .resetvalue = cpu->pmceid0 }, 8440 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8441 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8442 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8443 .fgt = FGT_PMCEIDN_EL0, 8444 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8445 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8446 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8447 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8448 .fgt = FGT_PMCEIDN_EL0, 8449 .resetvalue = cpu->pmceid1 }, 8450 }; 8451 #ifdef CONFIG_USER_ONLY 8452 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8453 { .name = "ID_AA64PFR0_EL1", 8454 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8455 R_ID_AA64PFR0_ADVSIMD_MASK | 8456 R_ID_AA64PFR0_SVE_MASK | 8457 R_ID_AA64PFR0_DIT_MASK, 8458 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8459 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8460 { .name = "ID_AA64PFR1_EL1", 8461 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8462 R_ID_AA64PFR1_SSBS_MASK | 8463 R_ID_AA64PFR1_MTE_MASK | 8464 R_ID_AA64PFR1_SME_MASK }, 8465 { .name = "ID_AA64PFR*_EL1_RESERVED", 8466 .is_glob = true }, 8467 { .name = "ID_AA64ZFR0_EL1", 8468 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8469 R_ID_AA64ZFR0_AES_MASK | 8470 R_ID_AA64ZFR0_BITPERM_MASK | 8471 R_ID_AA64ZFR0_BFLOAT16_MASK | 8472 R_ID_AA64ZFR0_SHA3_MASK | 8473 R_ID_AA64ZFR0_SM4_MASK | 8474 R_ID_AA64ZFR0_I8MM_MASK | 8475 R_ID_AA64ZFR0_F32MM_MASK | 8476 R_ID_AA64ZFR0_F64MM_MASK }, 8477 { .name = "ID_AA64SMFR0_EL1", 8478 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8479 R_ID_AA64SMFR0_B16F32_MASK | 8480 R_ID_AA64SMFR0_F16F32_MASK | 8481 R_ID_AA64SMFR0_I8I32_MASK | 8482 R_ID_AA64SMFR0_F64F64_MASK | 8483 R_ID_AA64SMFR0_I16I64_MASK | 8484 R_ID_AA64SMFR0_FA64_MASK }, 8485 { .name = "ID_AA64MMFR0_EL1", 8486 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8487 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8488 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8489 { .name = "ID_AA64MMFR1_EL1", 8490 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8491 { .name = "ID_AA64MMFR2_EL1", 8492 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8493 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8494 .is_glob = true }, 8495 { .name = "ID_AA64DFR0_EL1", 8496 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8497 { .name = "ID_AA64DFR1_EL1" }, 8498 { .name = "ID_AA64DFR*_EL1_RESERVED", 8499 .is_glob = true }, 8500 { .name = "ID_AA64AFR*", 8501 .is_glob = true }, 8502 { .name = "ID_AA64ISAR0_EL1", 8503 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8504 R_ID_AA64ISAR0_SHA1_MASK | 8505 R_ID_AA64ISAR0_SHA2_MASK | 8506 R_ID_AA64ISAR0_CRC32_MASK | 8507 R_ID_AA64ISAR0_ATOMIC_MASK | 8508 R_ID_AA64ISAR0_RDM_MASK | 8509 R_ID_AA64ISAR0_SHA3_MASK | 8510 R_ID_AA64ISAR0_SM3_MASK | 8511 R_ID_AA64ISAR0_SM4_MASK | 8512 R_ID_AA64ISAR0_DP_MASK | 8513 R_ID_AA64ISAR0_FHM_MASK | 8514 R_ID_AA64ISAR0_TS_MASK | 8515 R_ID_AA64ISAR0_RNDR_MASK }, 8516 { .name = "ID_AA64ISAR1_EL1", 8517 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8518 R_ID_AA64ISAR1_APA_MASK | 8519 R_ID_AA64ISAR1_API_MASK | 8520 R_ID_AA64ISAR1_JSCVT_MASK | 8521 R_ID_AA64ISAR1_FCMA_MASK | 8522 R_ID_AA64ISAR1_LRCPC_MASK | 8523 R_ID_AA64ISAR1_GPA_MASK | 8524 R_ID_AA64ISAR1_GPI_MASK | 8525 R_ID_AA64ISAR1_FRINTTS_MASK | 8526 R_ID_AA64ISAR1_SB_MASK | 8527 R_ID_AA64ISAR1_BF16_MASK | 8528 R_ID_AA64ISAR1_DGH_MASK | 8529 R_ID_AA64ISAR1_I8MM_MASK }, 8530 { .name = "ID_AA64ISAR2_EL1", 8531 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8532 R_ID_AA64ISAR2_RPRES_MASK | 8533 R_ID_AA64ISAR2_GPA3_MASK | 8534 R_ID_AA64ISAR2_APA3_MASK }, 8535 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8536 .is_glob = true }, 8537 }; 8538 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8539 #endif 8540 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 8541 if (!arm_feature(env, ARM_FEATURE_EL3) && 8542 !arm_feature(env, ARM_FEATURE_EL2)) { 8543 ARMCPRegInfo rvbar = { 8544 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8545 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8546 .access = PL1_R, 8547 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8548 }; 8549 define_one_arm_cp_reg(cpu, &rvbar); 8550 } 8551 define_arm_cp_regs(cpu, v8_idregs); 8552 define_arm_cp_regs(cpu, v8_cp_reginfo); 8553 8554 for (i = 4; i < 16; i++) { 8555 /* 8556 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8557 * For pre-v8 cores there are RAZ patterns for these in 8558 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8559 * v8 extends the "must RAZ" part of the ID register space 8560 * to also cover c0, 0, c{8-15}, {0-7}. 8561 * These are STATE_AA32 because in the AArch64 sysreg space 8562 * c4-c7 is where the AArch64 ID registers live (and we've 8563 * already defined those in v8_idregs[]), and c8-c15 are not 8564 * "must RAZ" for AArch64. 8565 */ 8566 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8567 ARMCPRegInfo v8_aa32_raz_idregs = { 8568 .name = name, 8569 .state = ARM_CP_STATE_AA32, 8570 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8571 .access = PL1_R, .type = ARM_CP_CONST, 8572 .accessfn = access_aa64_tid3, 8573 .resetvalue = 0 }; 8574 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8575 } 8576 } 8577 8578 /* 8579 * Register the base EL2 cpregs. 8580 * Pre v8, these registers are implemented only as part of the 8581 * Virtualization Extensions (EL2 present). Beginning with v8, 8582 * if EL2 is missing but EL3 is enabled, mostly these become 8583 * RES0 from EL3, with some specific exceptions. 8584 */ 8585 if (arm_feature(env, ARM_FEATURE_EL2) 8586 || (arm_feature(env, ARM_FEATURE_EL3) 8587 && arm_feature(env, ARM_FEATURE_V8))) { 8588 uint64_t vmpidr_def = mpidr_read_val(env); 8589 ARMCPRegInfo vpidr_regs[] = { 8590 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8591 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8592 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8593 .resetvalue = cpu->midr, 8594 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8595 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8596 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8597 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8598 .access = PL2_RW, .resetvalue = cpu->midr, 8599 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8600 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8601 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8602 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8603 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8604 .resetvalue = vmpidr_def, 8605 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8606 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8607 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8608 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8609 .access = PL2_RW, .resetvalue = vmpidr_def, 8610 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8611 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8612 }; 8613 /* 8614 * The only field of MDCR_EL2 that has a defined architectural reset 8615 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8616 */ 8617 ARMCPRegInfo mdcr_el2 = { 8618 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8619 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8620 .writefn = mdcr_el2_write, 8621 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8622 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8623 }; 8624 define_one_arm_cp_reg(cpu, &mdcr_el2); 8625 define_arm_cp_regs(cpu, vpidr_regs); 8626 define_arm_cp_regs(cpu, el2_cp_reginfo); 8627 if (arm_feature(env, ARM_FEATURE_V8)) { 8628 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8629 } 8630 if (cpu_isar_feature(aa64_sel2, cpu)) { 8631 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8632 } 8633 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8634 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8635 ARMCPRegInfo rvbar[] = { 8636 { 8637 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8638 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8639 .access = PL2_R, 8640 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8641 }, 8642 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8643 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8644 .access = PL2_R, 8645 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8646 }, 8647 }; 8648 define_arm_cp_regs(cpu, rvbar); 8649 } 8650 } 8651 8652 /* Register the base EL3 cpregs. */ 8653 if (arm_feature(env, ARM_FEATURE_EL3)) { 8654 define_arm_cp_regs(cpu, el3_cp_reginfo); 8655 ARMCPRegInfo el3_regs[] = { 8656 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8657 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8658 .access = PL3_R, 8659 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8660 }, 8661 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8662 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8663 .access = PL3_RW, 8664 .raw_writefn = raw_write, .writefn = sctlr_write, 8665 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8666 .resetvalue = cpu->reset_sctlr }, 8667 }; 8668 8669 define_arm_cp_regs(cpu, el3_regs); 8670 } 8671 /* 8672 * The behaviour of NSACR is sufficiently various that we don't 8673 * try to describe it in a single reginfo: 8674 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8675 * reads as constant 0xc00 from NS EL1 and NS EL2 8676 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8677 * if v7 without EL3, register doesn't exist 8678 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8679 */ 8680 if (arm_feature(env, ARM_FEATURE_EL3)) { 8681 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8682 static const ARMCPRegInfo nsacr = { 8683 .name = "NSACR", .type = ARM_CP_CONST, 8684 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8685 .access = PL1_RW, .accessfn = nsacr_access, 8686 .resetvalue = 0xc00 8687 }; 8688 define_one_arm_cp_reg(cpu, &nsacr); 8689 } else { 8690 static const ARMCPRegInfo nsacr = { 8691 .name = "NSACR", 8692 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8693 .access = PL3_RW | PL1_R, 8694 .resetvalue = 0, 8695 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8696 }; 8697 define_one_arm_cp_reg(cpu, &nsacr); 8698 } 8699 } else { 8700 if (arm_feature(env, ARM_FEATURE_V8)) { 8701 static const ARMCPRegInfo nsacr = { 8702 .name = "NSACR", .type = ARM_CP_CONST, 8703 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8704 .access = PL1_R, 8705 .resetvalue = 0xc00 8706 }; 8707 define_one_arm_cp_reg(cpu, &nsacr); 8708 } 8709 } 8710 8711 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8712 if (arm_feature(env, ARM_FEATURE_V6)) { 8713 /* PMSAv6 not implemented */ 8714 assert(arm_feature(env, ARM_FEATURE_V7)); 8715 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8716 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8717 } else { 8718 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8719 } 8720 } else { 8721 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8722 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8723 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8724 if (cpu_isar_feature(aa32_hpd, cpu)) { 8725 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8726 } 8727 } 8728 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8729 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8730 } 8731 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8732 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8733 } 8734 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8735 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8736 } 8737 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8738 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8739 } 8740 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8741 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8742 } 8743 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8744 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8745 } 8746 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8747 define_arm_cp_regs(cpu, omap_cp_reginfo); 8748 } 8749 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8750 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8751 } 8752 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8753 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8754 } 8755 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8756 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8757 } 8758 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8759 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8760 } 8761 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8762 define_arm_cp_regs(cpu, jazelle_regs); 8763 } 8764 /* 8765 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8766 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8767 * be read-only (ie write causes UNDEF exception). 8768 */ 8769 { 8770 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8771 /* 8772 * Pre-v8 MIDR space. 8773 * Note that the MIDR isn't a simple constant register because 8774 * of the TI925 behaviour where writes to another register can 8775 * cause the MIDR value to change. 8776 * 8777 * Unimplemented registers in the c15 0 0 0 space default to 8778 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8779 * and friends override accordingly. 8780 */ 8781 { .name = "MIDR", 8782 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8783 .access = PL1_R, .resetvalue = cpu->midr, 8784 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8785 .readfn = midr_read, 8786 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8787 .type = ARM_CP_OVERRIDE }, 8788 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8789 { .name = "DUMMY", 8790 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8791 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8792 { .name = "DUMMY", 8793 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8794 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8795 { .name = "DUMMY", 8796 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8797 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8798 { .name = "DUMMY", 8799 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8800 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8801 { .name = "DUMMY", 8802 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8803 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8804 }; 8805 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8806 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8808 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8809 .fgt = FGT_MIDR_EL1, 8810 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8811 .readfn = midr_read }, 8812 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8813 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8814 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8815 .access = PL1_R, .resetvalue = cpu->midr }, 8816 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8817 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8818 .access = PL1_R, 8819 .accessfn = access_aa64_tid1, 8820 .fgt = FGT_REVIDR_EL1, 8821 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8822 }; 8823 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 8824 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8825 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8826 .access = PL1_R, .resetvalue = cpu->midr 8827 }; 8828 ARMCPRegInfo id_cp_reginfo[] = { 8829 /* These are common to v8 and pre-v8 */ 8830 { .name = "CTR", 8831 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8832 .access = PL1_R, .accessfn = ctr_el0_access, 8833 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8834 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8835 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8836 .access = PL0_R, .accessfn = ctr_el0_access, 8837 .fgt = FGT_CTR_EL0, 8838 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8839 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8840 { .name = "TCMTR", 8841 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8842 .access = PL1_R, 8843 .accessfn = access_aa32_tid1, 8844 .type = ARM_CP_CONST, .resetvalue = 0 }, 8845 }; 8846 /* TLBTR is specific to VMSA */ 8847 ARMCPRegInfo id_tlbtr_reginfo = { 8848 .name = "TLBTR", 8849 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8850 .access = PL1_R, 8851 .accessfn = access_aa32_tid1, 8852 .type = ARM_CP_CONST, .resetvalue = 0, 8853 }; 8854 /* MPUIR is specific to PMSA V6+ */ 8855 ARMCPRegInfo id_mpuir_reginfo = { 8856 .name = "MPUIR", 8857 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8858 .access = PL1_R, .type = ARM_CP_CONST, 8859 .resetvalue = cpu->pmsav7_dregion << 8 8860 }; 8861 /* HMPUIR is specific to PMSA V8 */ 8862 ARMCPRegInfo id_hmpuir_reginfo = { 8863 .name = "HMPUIR", 8864 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 8865 .access = PL2_R, .type = ARM_CP_CONST, 8866 .resetvalue = cpu->pmsav8r_hdregion 8867 }; 8868 static const ARMCPRegInfo crn0_wi_reginfo = { 8869 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8870 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8871 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8872 }; 8873 #ifdef CONFIG_USER_ONLY 8874 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8875 { .name = "MIDR_EL1", 8876 .exported_bits = R_MIDR_EL1_REVISION_MASK | 8877 R_MIDR_EL1_PARTNUM_MASK | 8878 R_MIDR_EL1_ARCHITECTURE_MASK | 8879 R_MIDR_EL1_VARIANT_MASK | 8880 R_MIDR_EL1_IMPLEMENTER_MASK }, 8881 { .name = "REVIDR_EL1" }, 8882 }; 8883 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8884 #endif 8885 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8886 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8887 size_t i; 8888 /* 8889 * Register the blanket "writes ignored" value first to cover the 8890 * whole space. Then update the specific ID registers to allow write 8891 * access, so that they ignore writes rather than causing them to 8892 * UNDEF. 8893 */ 8894 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8895 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8896 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8897 } 8898 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8899 id_cp_reginfo[i].access = PL1_RW; 8900 } 8901 id_mpuir_reginfo.access = PL1_RW; 8902 id_tlbtr_reginfo.access = PL1_RW; 8903 } 8904 if (arm_feature(env, ARM_FEATURE_V8)) { 8905 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8906 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8907 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 8908 } 8909 } else { 8910 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8911 } 8912 define_arm_cp_regs(cpu, id_cp_reginfo); 8913 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8914 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8915 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 8916 arm_feature(env, ARM_FEATURE_V8)) { 8917 uint32_t i = 0; 8918 char *tmp_string; 8919 8920 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8921 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 8922 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 8923 8924 /* Register alias is only valid for first 32 indexes */ 8925 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 8926 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8927 uint8_t opc1 = extract32(i, 4, 1); 8928 uint8_t opc2 = extract32(i, 0, 1) << 2; 8929 8930 tmp_string = g_strdup_printf("PRBAR%u", i); 8931 ARMCPRegInfo tmp_prbarn_reginfo = { 8932 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8933 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8934 .access = PL1_RW, .resetvalue = 0, 8935 .accessfn = access_tvm_trvm, 8936 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8937 }; 8938 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 8939 g_free(tmp_string); 8940 8941 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8942 tmp_string = g_strdup_printf("PRLAR%u", i); 8943 ARMCPRegInfo tmp_prlarn_reginfo = { 8944 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8945 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8946 .access = PL1_RW, .resetvalue = 0, 8947 .accessfn = access_tvm_trvm, 8948 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8949 }; 8950 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 8951 g_free(tmp_string); 8952 } 8953 8954 /* Register alias is only valid for first 32 indexes */ 8955 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 8956 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8957 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 8958 uint8_t opc2 = extract32(i, 0, 1) << 2; 8959 8960 tmp_string = g_strdup_printf("HPRBAR%u", i); 8961 ARMCPRegInfo tmp_hprbarn_reginfo = { 8962 .name = tmp_string, 8963 .type = ARM_CP_NO_RAW, 8964 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8965 .access = PL2_RW, .resetvalue = 0, 8966 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8967 }; 8968 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 8969 g_free(tmp_string); 8970 8971 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8972 tmp_string = g_strdup_printf("HPRLAR%u", i); 8973 ARMCPRegInfo tmp_hprlarn_reginfo = { 8974 .name = tmp_string, 8975 .type = ARM_CP_NO_RAW, 8976 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8977 .access = PL2_RW, .resetvalue = 0, 8978 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8979 }; 8980 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 8981 g_free(tmp_string); 8982 } 8983 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8984 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8985 } 8986 } 8987 8988 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8989 ARMCPRegInfo mpidr_cp_reginfo[] = { 8990 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8991 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8992 .fgt = FGT_MPIDR_EL1, 8993 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8994 }; 8995 #ifdef CONFIG_USER_ONLY 8996 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8997 { .name = "MPIDR_EL1", 8998 .fixed_bits = 0x0000000080000000 }, 8999 }; 9000 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 9001 #endif 9002 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 9003 } 9004 9005 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 9006 ARMCPRegInfo auxcr_reginfo[] = { 9007 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 9008 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 9009 .access = PL1_RW, .accessfn = access_tacr, 9010 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 9011 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 9012 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 9013 .access = PL2_RW, .type = ARM_CP_CONST, 9014 .resetvalue = 0 }, 9015 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 9016 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 9017 .access = PL3_RW, .type = ARM_CP_CONST, 9018 .resetvalue = 0 }, 9019 }; 9020 define_arm_cp_regs(cpu, auxcr_reginfo); 9021 if (cpu_isar_feature(aa32_ac2, cpu)) { 9022 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 9023 } 9024 } 9025 9026 if (arm_feature(env, ARM_FEATURE_CBAR)) { 9027 /* 9028 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 9029 * There are two flavours: 9030 * (1) older 32-bit only cores have a simple 32-bit CBAR 9031 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 9032 * 32-bit register visible to AArch32 at a different encoding 9033 * to the "flavour 1" register and with the bits rearranged to 9034 * be able to squash a 64-bit address into the 32-bit view. 9035 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 9036 * in future if we support AArch32-only configs of some of the 9037 * AArch64 cores we might need to add a specific feature flag 9038 * to indicate cores with "flavour 2" CBAR. 9039 */ 9040 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9041 /* 32 bit view is [31:18] 0...0 [43:32]. */ 9042 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 9043 | extract64(cpu->reset_cbar, 32, 12); 9044 ARMCPRegInfo cbar_reginfo[] = { 9045 { .name = "CBAR", 9046 .type = ARM_CP_CONST, 9047 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 9048 .access = PL1_R, .resetvalue = cbar32 }, 9049 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 9050 .type = ARM_CP_CONST, 9051 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 9052 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 9053 }; 9054 /* We don't implement a r/w 64 bit CBAR currently */ 9055 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 9056 define_arm_cp_regs(cpu, cbar_reginfo); 9057 } else { 9058 ARMCPRegInfo cbar = { 9059 .name = "CBAR", 9060 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 9061 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9062 .fieldoffset = offsetof(CPUARMState, 9063 cp15.c15_config_base_address) 9064 }; 9065 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9066 cbar.access = PL1_R; 9067 cbar.fieldoffset = 0; 9068 cbar.type = ARM_CP_CONST; 9069 } 9070 define_one_arm_cp_reg(cpu, &cbar); 9071 } 9072 } 9073 9074 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9075 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9076 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9077 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9078 .access = PL1_RW, .writefn = vbar_write, 9079 .fgt = FGT_VBAR_EL1, 9080 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9081 offsetof(CPUARMState, cp15.vbar_ns) }, 9082 .resetvalue = 0 }, 9083 }; 9084 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9085 } 9086 9087 /* Generic registers whose values depend on the implementation */ 9088 { 9089 ARMCPRegInfo sctlr = { 9090 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9091 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9092 .access = PL1_RW, .accessfn = access_tvm_trvm, 9093 .fgt = FGT_SCTLR_EL1, 9094 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9095 offsetof(CPUARMState, cp15.sctlr_ns) }, 9096 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9097 .raw_writefn = raw_write, 9098 }; 9099 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9100 /* 9101 * Normally we would always end the TB on an SCTLR write, but Linux 9102 * arch/arm/mach-pxa/sleep.S expects two instructions following 9103 * an MMU enable to execute from cache. Imitate this behaviour. 9104 */ 9105 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9106 } 9107 define_one_arm_cp_reg(cpu, &sctlr); 9108 9109 if (arm_feature(env, ARM_FEATURE_PMSA) && 9110 arm_feature(env, ARM_FEATURE_V8)) { 9111 ARMCPRegInfo vsctlr = { 9112 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9113 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9114 .access = PL2_RW, .resetvalue = 0x0, 9115 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9116 }; 9117 define_one_arm_cp_reg(cpu, &vsctlr); 9118 } 9119 } 9120 9121 if (cpu_isar_feature(aa64_lor, cpu)) { 9122 define_arm_cp_regs(cpu, lor_reginfo); 9123 } 9124 if (cpu_isar_feature(aa64_pan, cpu)) { 9125 define_one_arm_cp_reg(cpu, &pan_reginfo); 9126 } 9127 #ifndef CONFIG_USER_ONLY 9128 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9129 define_arm_cp_regs(cpu, ats1e1_reginfo); 9130 } 9131 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9132 define_arm_cp_regs(cpu, ats1cp_reginfo); 9133 } 9134 #endif 9135 if (cpu_isar_feature(aa64_uao, cpu)) { 9136 define_one_arm_cp_reg(cpu, &uao_reginfo); 9137 } 9138 9139 if (cpu_isar_feature(aa64_dit, cpu)) { 9140 define_one_arm_cp_reg(cpu, &dit_reginfo); 9141 } 9142 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9143 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9144 } 9145 if (cpu_isar_feature(any_ras, cpu)) { 9146 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9147 } 9148 9149 if (cpu_isar_feature(aa64_vh, cpu) || 9150 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9151 define_one_arm_cp_reg(cpu, &contextidr_el2); 9152 } 9153 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9154 define_arm_cp_regs(cpu, vhe_reginfo); 9155 } 9156 9157 if (cpu_isar_feature(aa64_sve, cpu)) { 9158 define_arm_cp_regs(cpu, zcr_reginfo); 9159 } 9160 9161 if (cpu_isar_feature(aa64_hcx, cpu)) { 9162 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9163 } 9164 9165 #ifdef TARGET_AARCH64 9166 if (cpu_isar_feature(aa64_sme, cpu)) { 9167 define_arm_cp_regs(cpu, sme_reginfo); 9168 } 9169 if (cpu_isar_feature(aa64_pauth, cpu)) { 9170 define_arm_cp_regs(cpu, pauth_reginfo); 9171 } 9172 if (cpu_isar_feature(aa64_rndr, cpu)) { 9173 define_arm_cp_regs(cpu, rndr_reginfo); 9174 } 9175 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9176 define_arm_cp_regs(cpu, tlbirange_reginfo); 9177 } 9178 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9179 define_arm_cp_regs(cpu, tlbios_reginfo); 9180 } 9181 /* Data Cache clean instructions up to PoP */ 9182 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9183 define_one_arm_cp_reg(cpu, dcpop_reg); 9184 9185 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9186 define_one_arm_cp_reg(cpu, dcpodp_reg); 9187 } 9188 } 9189 9190 /* 9191 * If full MTE is enabled, add all of the system registers. 9192 * If only "instructions available at EL0" are enabled, 9193 * then define only a RAZ/WI version of PSTATE.TCO. 9194 */ 9195 if (cpu_isar_feature(aa64_mte, cpu)) { 9196 define_arm_cp_regs(cpu, mte_reginfo); 9197 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9198 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9199 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9200 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9201 } 9202 9203 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9204 define_arm_cp_regs(cpu, scxtnum_reginfo); 9205 } 9206 9207 if (cpu_isar_feature(aa64_fgt, cpu)) { 9208 define_arm_cp_regs(cpu, fgt_reginfo); 9209 } 9210 9211 if (cpu_isar_feature(aa64_rme, cpu)) { 9212 define_arm_cp_regs(cpu, rme_reginfo); 9213 if (cpu_isar_feature(aa64_mte, cpu)) { 9214 define_arm_cp_regs(cpu, rme_mte_reginfo); 9215 } 9216 } 9217 #endif 9218 9219 if (cpu_isar_feature(any_predinv, cpu)) { 9220 define_arm_cp_regs(cpu, predinv_reginfo); 9221 } 9222 9223 if (cpu_isar_feature(any_ccidx, cpu)) { 9224 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9225 } 9226 9227 #ifndef CONFIG_USER_ONLY 9228 /* 9229 * Register redirections and aliases must be done last, 9230 * after the registers from the other extensions have been defined. 9231 */ 9232 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9233 define_arm_vh_e2h_redirects_aliases(cpu); 9234 } 9235 #endif 9236 } 9237 9238 /* Sort alphabetically by type name, except for "any". */ 9239 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 9240 { 9241 ObjectClass *class_a = (ObjectClass *)a; 9242 ObjectClass *class_b = (ObjectClass *)b; 9243 const char *name_a, *name_b; 9244 9245 name_a = object_class_get_name(class_a); 9246 name_b = object_class_get_name(class_b); 9247 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 9248 return 1; 9249 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 9250 return -1; 9251 } else { 9252 return strcmp(name_a, name_b); 9253 } 9254 } 9255 9256 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 9257 { 9258 ObjectClass *oc = data; 9259 CPUClass *cc = CPU_CLASS(oc); 9260 const char *typename; 9261 char *name; 9262 9263 typename = object_class_get_name(oc); 9264 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9265 if (cc->deprecation_note) { 9266 qemu_printf(" %s (deprecated)\n", name); 9267 } else { 9268 qemu_printf(" %s\n", name); 9269 } 9270 g_free(name); 9271 } 9272 9273 void arm_cpu_list(void) 9274 { 9275 GSList *list; 9276 9277 list = object_class_get_list(TYPE_ARM_CPU, false); 9278 list = g_slist_sort(list, arm_cpu_list_compare); 9279 qemu_printf("Available CPUs:\n"); 9280 g_slist_foreach(list, arm_cpu_list_entry, NULL); 9281 g_slist_free(list); 9282 } 9283 9284 /* 9285 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9286 * add a single reginfo struct to the hash table. 9287 */ 9288 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9289 void *opaque, CPState state, 9290 CPSecureState secstate, 9291 int crm, int opc1, int opc2, 9292 const char *name) 9293 { 9294 CPUARMState *env = &cpu->env; 9295 uint32_t key; 9296 ARMCPRegInfo *r2; 9297 bool is64 = r->type & ARM_CP_64BIT; 9298 bool ns = secstate & ARM_CP_SECSTATE_NS; 9299 int cp = r->cp; 9300 size_t name_len; 9301 bool make_const; 9302 9303 switch (state) { 9304 case ARM_CP_STATE_AA32: 9305 /* We assume it is a cp15 register if the .cp field is left unset. */ 9306 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9307 cp = 15; 9308 } 9309 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9310 break; 9311 case ARM_CP_STATE_AA64: 9312 /* 9313 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9314 * cp == 0 as equivalent to the value for "standard guest-visible 9315 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9316 * in their AArch64 view (the .cp value may be non-zero for the 9317 * benefit of the AArch32 view). 9318 */ 9319 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9320 cp = CP_REG_ARM64_SYSREG_CP; 9321 } 9322 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9323 break; 9324 default: 9325 g_assert_not_reached(); 9326 } 9327 9328 /* Overriding of an existing definition must be explicitly requested. */ 9329 if (!(r->type & ARM_CP_OVERRIDE)) { 9330 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9331 if (oldreg) { 9332 assert(oldreg->type & ARM_CP_OVERRIDE); 9333 } 9334 } 9335 9336 /* 9337 * Eliminate registers that are not present because the EL is missing. 9338 * Doing this here makes it easier to put all registers for a given 9339 * feature into the same ARMCPRegInfo array and define them all at once. 9340 */ 9341 make_const = false; 9342 if (arm_feature(env, ARM_FEATURE_EL3)) { 9343 /* 9344 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9345 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9346 */ 9347 int min_el = ctz32(r->access) / 2; 9348 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9349 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9350 return; 9351 } 9352 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9353 } 9354 } else { 9355 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9356 ? PL2_RW : PL1_RW); 9357 if ((r->access & max_el) == 0) { 9358 return; 9359 } 9360 } 9361 9362 /* Combine cpreg and name into one allocation. */ 9363 name_len = strlen(name) + 1; 9364 r2 = g_malloc(sizeof(*r2) + name_len); 9365 *r2 = *r; 9366 r2->name = memcpy(r2 + 1, name, name_len); 9367 9368 /* 9369 * Update fields to match the instantiation, overwiting wildcards 9370 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9371 */ 9372 r2->cp = cp; 9373 r2->crm = crm; 9374 r2->opc1 = opc1; 9375 r2->opc2 = opc2; 9376 r2->state = state; 9377 r2->secure = secstate; 9378 if (opaque) { 9379 r2->opaque = opaque; 9380 } 9381 9382 if (make_const) { 9383 /* This should not have been a very special register to begin. */ 9384 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9385 assert(old_special == 0 || old_special == ARM_CP_NOP); 9386 /* 9387 * Set the special function to CONST, retaining the other flags. 9388 * This is important for e.g. ARM_CP_SVE so that we still 9389 * take the SVE trap if CPTR_EL3.EZ == 0. 9390 */ 9391 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9392 /* 9393 * Usually, these registers become RES0, but there are a few 9394 * special cases like VPIDR_EL2 which have a constant non-zero 9395 * value with writes ignored. 9396 */ 9397 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9398 r2->resetvalue = 0; 9399 } 9400 /* 9401 * ARM_CP_CONST has precedence, so removing the callbacks and 9402 * offsets are not strictly necessary, but it is potentially 9403 * less confusing to debug later. 9404 */ 9405 r2->readfn = NULL; 9406 r2->writefn = NULL; 9407 r2->raw_readfn = NULL; 9408 r2->raw_writefn = NULL; 9409 r2->resetfn = NULL; 9410 r2->fieldoffset = 0; 9411 r2->bank_fieldoffsets[0] = 0; 9412 r2->bank_fieldoffsets[1] = 0; 9413 } else { 9414 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9415 9416 if (isbanked) { 9417 /* 9418 * Register is banked (using both entries in array). 9419 * Overwriting fieldoffset as the array is only used to define 9420 * banked registers but later only fieldoffset is used. 9421 */ 9422 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9423 } 9424 if (state == ARM_CP_STATE_AA32) { 9425 if (isbanked) { 9426 /* 9427 * If the register is banked then we don't need to migrate or 9428 * reset the 32-bit instance in certain cases: 9429 * 9430 * 1) If the register has both 32-bit and 64-bit instances 9431 * then we can count on the 64-bit instance taking care 9432 * of the non-secure bank. 9433 * 2) If ARMv8 is enabled then we can count on a 64-bit 9434 * version taking care of the secure bank. This requires 9435 * that separate 32 and 64-bit definitions are provided. 9436 */ 9437 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9438 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9439 r2->type |= ARM_CP_ALIAS; 9440 } 9441 } else if ((secstate != r->secure) && !ns) { 9442 /* 9443 * The register is not banked so we only want to allow 9444 * migration of the non-secure instance. 9445 */ 9446 r2->type |= ARM_CP_ALIAS; 9447 } 9448 9449 if (HOST_BIG_ENDIAN && 9450 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9451 r2->fieldoffset += sizeof(uint32_t); 9452 } 9453 } 9454 } 9455 9456 /* 9457 * By convention, for wildcarded registers only the first 9458 * entry is used for migration; the others are marked as 9459 * ALIAS so we don't try to transfer the register 9460 * multiple times. Special registers (ie NOP/WFI) are 9461 * never migratable and not even raw-accessible. 9462 */ 9463 if (r2->type & ARM_CP_SPECIAL_MASK) { 9464 r2->type |= ARM_CP_NO_RAW; 9465 } 9466 if (((r->crm == CP_ANY) && crm != 0) || 9467 ((r->opc1 == CP_ANY) && opc1 != 0) || 9468 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9469 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9470 } 9471 9472 /* 9473 * Check that raw accesses are either forbidden or handled. Note that 9474 * we can't assert this earlier because the setup of fieldoffset for 9475 * banked registers has to be done first. 9476 */ 9477 if (!(r2->type & ARM_CP_NO_RAW)) { 9478 assert(!raw_accessors_invalid(r2)); 9479 } 9480 9481 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9482 } 9483 9484 9485 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9486 const ARMCPRegInfo *r, void *opaque) 9487 { 9488 /* 9489 * Define implementations of coprocessor registers. 9490 * We store these in a hashtable because typically 9491 * there are less than 150 registers in a space which 9492 * is 16*16*16*8*8 = 262144 in size. 9493 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9494 * If a register is defined twice then the second definition is 9495 * used, so this can be used to define some generic registers and 9496 * then override them with implementation specific variations. 9497 * At least one of the original and the second definition should 9498 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9499 * against accidental use. 9500 * 9501 * The state field defines whether the register is to be 9502 * visible in the AArch32 or AArch64 execution state. If the 9503 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9504 * reginfo structure for the AArch32 view, which sees the lower 9505 * 32 bits of the 64 bit register. 9506 * 9507 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9508 * be wildcarded. AArch64 registers are always considered to be 64 9509 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9510 * the register, if any. 9511 */ 9512 int crm, opc1, opc2; 9513 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9514 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9515 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9516 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9517 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9518 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9519 CPState state; 9520 9521 /* 64 bit registers have only CRm and Opc1 fields */ 9522 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9523 /* op0 only exists in the AArch64 encodings */ 9524 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9525 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9526 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9527 /* 9528 * This API is only for Arm's system coprocessors (14 and 15) or 9529 * (M-profile or v7A-and-earlier only) for implementation defined 9530 * coprocessors in the range 0..7. Our decode assumes this, since 9531 * 8..13 can be used for other insns including VFP and Neon. See 9532 * valid_cp() in translate.c. Assert here that we haven't tried 9533 * to use an invalid coprocessor number. 9534 */ 9535 switch (r->state) { 9536 case ARM_CP_STATE_BOTH: 9537 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9538 if (r->cp == 0) { 9539 break; 9540 } 9541 /* fall through */ 9542 case ARM_CP_STATE_AA32: 9543 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9544 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9545 assert(r->cp >= 14 && r->cp <= 15); 9546 } else { 9547 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9548 } 9549 break; 9550 case ARM_CP_STATE_AA64: 9551 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9552 break; 9553 default: 9554 g_assert_not_reached(); 9555 } 9556 /* 9557 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9558 * encodes a minimum access level for the register. We roll this 9559 * runtime check into our general permission check code, so check 9560 * here that the reginfo's specified permissions are strict enough 9561 * to encompass the generic architectural permission check. 9562 */ 9563 if (r->state != ARM_CP_STATE_AA32) { 9564 CPAccessRights mask; 9565 switch (r->opc1) { 9566 case 0: 9567 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9568 mask = PL0U_R | PL1_RW; 9569 break; 9570 case 1: case 2: 9571 /* min_EL EL1 */ 9572 mask = PL1_RW; 9573 break; 9574 case 3: 9575 /* min_EL EL0 */ 9576 mask = PL0_RW; 9577 break; 9578 case 4: 9579 case 5: 9580 /* min_EL EL2 */ 9581 mask = PL2_RW; 9582 break; 9583 case 6: 9584 /* min_EL EL3 */ 9585 mask = PL3_RW; 9586 break; 9587 case 7: 9588 /* min_EL EL1, secure mode only (we don't check the latter) */ 9589 mask = PL1_RW; 9590 break; 9591 default: 9592 /* broken reginfo with out-of-range opc1 */ 9593 g_assert_not_reached(); 9594 } 9595 /* assert our permissions are not too lax (stricter is fine) */ 9596 assert((r->access & ~mask) == 0); 9597 } 9598 9599 /* 9600 * Check that the register definition has enough info to handle 9601 * reads and writes if they are permitted. 9602 */ 9603 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9604 if (r->access & PL3_R) { 9605 assert((r->fieldoffset || 9606 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9607 r->readfn); 9608 } 9609 if (r->access & PL3_W) { 9610 assert((r->fieldoffset || 9611 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9612 r->writefn); 9613 } 9614 } 9615 9616 for (crm = crmmin; crm <= crmmax; crm++) { 9617 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9618 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9619 for (state = ARM_CP_STATE_AA32; 9620 state <= ARM_CP_STATE_AA64; state++) { 9621 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9622 continue; 9623 } 9624 if (state == ARM_CP_STATE_AA32) { 9625 /* 9626 * Under AArch32 CP registers can be common 9627 * (same for secure and non-secure world) or banked. 9628 */ 9629 char *name; 9630 9631 switch (r->secure) { 9632 case ARM_CP_SECSTATE_S: 9633 case ARM_CP_SECSTATE_NS: 9634 add_cpreg_to_hashtable(cpu, r, opaque, state, 9635 r->secure, crm, opc1, opc2, 9636 r->name); 9637 break; 9638 case ARM_CP_SECSTATE_BOTH: 9639 name = g_strdup_printf("%s_S", r->name); 9640 add_cpreg_to_hashtable(cpu, r, opaque, state, 9641 ARM_CP_SECSTATE_S, 9642 crm, opc1, opc2, name); 9643 g_free(name); 9644 add_cpreg_to_hashtable(cpu, r, opaque, state, 9645 ARM_CP_SECSTATE_NS, 9646 crm, opc1, opc2, r->name); 9647 break; 9648 default: 9649 g_assert_not_reached(); 9650 } 9651 } else { 9652 /* 9653 * AArch64 registers get mapped to non-secure instance 9654 * of AArch32 9655 */ 9656 add_cpreg_to_hashtable(cpu, r, opaque, state, 9657 ARM_CP_SECSTATE_NS, 9658 crm, opc1, opc2, r->name); 9659 } 9660 } 9661 } 9662 } 9663 } 9664 } 9665 9666 /* Define a whole list of registers */ 9667 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9668 void *opaque, size_t len) 9669 { 9670 size_t i; 9671 for (i = 0; i < len; ++i) { 9672 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9673 } 9674 } 9675 9676 /* 9677 * Modify ARMCPRegInfo for access from userspace. 9678 * 9679 * This is a data driven modification directed by 9680 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9681 * user-space cannot alter any values and dynamic values pertaining to 9682 * execution state are hidden from user space view anyway. 9683 */ 9684 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9685 const ARMCPRegUserSpaceInfo *mods, 9686 size_t mods_len) 9687 { 9688 for (size_t mi = 0; mi < mods_len; ++mi) { 9689 const ARMCPRegUserSpaceInfo *m = mods + mi; 9690 GPatternSpec *pat = NULL; 9691 9692 if (m->is_glob) { 9693 pat = g_pattern_spec_new(m->name); 9694 } 9695 for (size_t ri = 0; ri < regs_len; ++ri) { 9696 ARMCPRegInfo *r = regs + ri; 9697 9698 if (pat && g_pattern_match_string(pat, r->name)) { 9699 r->type = ARM_CP_CONST; 9700 r->access = PL0U_R; 9701 r->resetvalue = 0; 9702 /* continue */ 9703 } else if (strcmp(r->name, m->name) == 0) { 9704 r->type = ARM_CP_CONST; 9705 r->access = PL0U_R; 9706 r->resetvalue &= m->exported_bits; 9707 r->resetvalue |= m->fixed_bits; 9708 break; 9709 } 9710 } 9711 if (pat) { 9712 g_pattern_spec_free(pat); 9713 } 9714 } 9715 } 9716 9717 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9718 { 9719 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9720 } 9721 9722 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9723 uint64_t value) 9724 { 9725 /* Helper coprocessor write function for write-ignore registers */ 9726 } 9727 9728 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9729 { 9730 /* Helper coprocessor write function for read-as-zero registers */ 9731 return 0; 9732 } 9733 9734 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9735 { 9736 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9737 } 9738 9739 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9740 { 9741 /* 9742 * Return true if it is not valid for us to switch to 9743 * this CPU mode (ie all the UNPREDICTABLE cases in 9744 * the ARM ARM CPSRWriteByInstr pseudocode). 9745 */ 9746 9747 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9748 if (write_type == CPSRWriteByInstr && 9749 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9750 mode == ARM_CPU_MODE_HYP)) { 9751 return 1; 9752 } 9753 9754 switch (mode) { 9755 case ARM_CPU_MODE_USR: 9756 return 0; 9757 case ARM_CPU_MODE_SYS: 9758 case ARM_CPU_MODE_SVC: 9759 case ARM_CPU_MODE_ABT: 9760 case ARM_CPU_MODE_UND: 9761 case ARM_CPU_MODE_IRQ: 9762 case ARM_CPU_MODE_FIQ: 9763 /* 9764 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9765 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9766 */ 9767 /* 9768 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9769 * and CPS are treated as illegal mode changes. 9770 */ 9771 if (write_type == CPSRWriteByInstr && 9772 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9773 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9774 return 1; 9775 } 9776 return 0; 9777 case ARM_CPU_MODE_HYP: 9778 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9779 case ARM_CPU_MODE_MON: 9780 return arm_current_el(env) < 3; 9781 default: 9782 return 1; 9783 } 9784 } 9785 9786 uint32_t cpsr_read(CPUARMState *env) 9787 { 9788 int ZF; 9789 ZF = (env->ZF == 0); 9790 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9791 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9792 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9793 | ((env->condexec_bits & 0xfc) << 8) 9794 | (env->GE << 16) | (env->daif & CPSR_AIF); 9795 } 9796 9797 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9798 CPSRWriteType write_type) 9799 { 9800 uint32_t changed_daif; 9801 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9802 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9803 9804 if (mask & CPSR_NZCV) { 9805 env->ZF = (~val) & CPSR_Z; 9806 env->NF = val; 9807 env->CF = (val >> 29) & 1; 9808 env->VF = (val << 3) & 0x80000000; 9809 } 9810 if (mask & CPSR_Q) { 9811 env->QF = ((val & CPSR_Q) != 0); 9812 } 9813 if (mask & CPSR_T) { 9814 env->thumb = ((val & CPSR_T) != 0); 9815 } 9816 if (mask & CPSR_IT_0_1) { 9817 env->condexec_bits &= ~3; 9818 env->condexec_bits |= (val >> 25) & 3; 9819 } 9820 if (mask & CPSR_IT_2_7) { 9821 env->condexec_bits &= 3; 9822 env->condexec_bits |= (val >> 8) & 0xfc; 9823 } 9824 if (mask & CPSR_GE) { 9825 env->GE = (val >> 16) & 0xf; 9826 } 9827 9828 /* 9829 * In a V7 implementation that includes the security extensions but does 9830 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9831 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9832 * bits respectively. 9833 * 9834 * In a V8 implementation, it is permitted for privileged software to 9835 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9836 */ 9837 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9838 arm_feature(env, ARM_FEATURE_EL3) && 9839 !arm_feature(env, ARM_FEATURE_EL2) && 9840 !arm_is_secure(env)) { 9841 9842 changed_daif = (env->daif ^ val) & mask; 9843 9844 if (changed_daif & CPSR_A) { 9845 /* 9846 * Check to see if we are allowed to change the masking of async 9847 * abort exceptions from a non-secure state. 9848 */ 9849 if (!(env->cp15.scr_el3 & SCR_AW)) { 9850 qemu_log_mask(LOG_GUEST_ERROR, 9851 "Ignoring attempt to switch CPSR_A flag from " 9852 "non-secure world with SCR.AW bit clear\n"); 9853 mask &= ~CPSR_A; 9854 } 9855 } 9856 9857 if (changed_daif & CPSR_F) { 9858 /* 9859 * Check to see if we are allowed to change the masking of FIQ 9860 * exceptions from a non-secure state. 9861 */ 9862 if (!(env->cp15.scr_el3 & SCR_FW)) { 9863 qemu_log_mask(LOG_GUEST_ERROR, 9864 "Ignoring attempt to switch CPSR_F flag from " 9865 "non-secure world with SCR.FW bit clear\n"); 9866 mask &= ~CPSR_F; 9867 } 9868 9869 /* 9870 * Check whether non-maskable FIQ (NMFI) support is enabled. 9871 * If this bit is set software is not allowed to mask 9872 * FIQs, but is allowed to set CPSR_F to 0. 9873 */ 9874 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9875 (val & CPSR_F)) { 9876 qemu_log_mask(LOG_GUEST_ERROR, 9877 "Ignoring attempt to enable CPSR_F flag " 9878 "(non-maskable FIQ [NMFI] support enabled)\n"); 9879 mask &= ~CPSR_F; 9880 } 9881 } 9882 } 9883 9884 env->daif &= ~(CPSR_AIF & mask); 9885 env->daif |= val & CPSR_AIF & mask; 9886 9887 if (write_type != CPSRWriteRaw && 9888 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9889 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9890 /* 9891 * Note that we can only get here in USR mode if this is a 9892 * gdb stub write; for this case we follow the architectural 9893 * behaviour for guest writes in USR mode of ignoring an attempt 9894 * to switch mode. (Those are caught by translate.c for writes 9895 * triggered by guest instructions.) 9896 */ 9897 mask &= ~CPSR_M; 9898 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9899 /* 9900 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9901 * v7, and has defined behaviour in v8: 9902 * + leave CPSR.M untouched 9903 * + allow changes to the other CPSR fields 9904 * + set PSTATE.IL 9905 * For user changes via the GDB stub, we don't set PSTATE.IL, 9906 * as this would be unnecessarily harsh for a user error. 9907 */ 9908 mask &= ~CPSR_M; 9909 if (write_type != CPSRWriteByGDBStub && 9910 arm_feature(env, ARM_FEATURE_V8)) { 9911 mask |= CPSR_IL; 9912 val |= CPSR_IL; 9913 } 9914 qemu_log_mask(LOG_GUEST_ERROR, 9915 "Illegal AArch32 mode switch attempt from %s to %s\n", 9916 aarch32_mode_name(env->uncached_cpsr), 9917 aarch32_mode_name(val)); 9918 } else { 9919 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9920 write_type == CPSRWriteExceptionReturn ? 9921 "Exception return from AArch32" : 9922 "AArch32 mode switch from", 9923 aarch32_mode_name(env->uncached_cpsr), 9924 aarch32_mode_name(val), env->regs[15]); 9925 switch_mode(env, val & CPSR_M); 9926 } 9927 } 9928 mask &= ~CACHED_CPSR_BITS; 9929 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9930 if (tcg_enabled() && rebuild_hflags) { 9931 arm_rebuild_hflags(env); 9932 } 9933 } 9934 9935 /* Sign/zero extend */ 9936 uint32_t HELPER(sxtb16)(uint32_t x) 9937 { 9938 uint32_t res; 9939 res = (uint16_t)(int8_t)x; 9940 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9941 return res; 9942 } 9943 9944 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9945 { 9946 /* 9947 * Take a division-by-zero exception if necessary; otherwise return 9948 * to get the usual non-trapping division behaviour (result of 0) 9949 */ 9950 if (arm_feature(env, ARM_FEATURE_M) 9951 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9952 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9953 } 9954 } 9955 9956 uint32_t HELPER(uxtb16)(uint32_t x) 9957 { 9958 uint32_t res; 9959 res = (uint16_t)(uint8_t)x; 9960 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9961 return res; 9962 } 9963 9964 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9965 { 9966 if (den == 0) { 9967 handle_possible_div0_trap(env, GETPC()); 9968 return 0; 9969 } 9970 if (num == INT_MIN && den == -1) { 9971 return INT_MIN; 9972 } 9973 return num / den; 9974 } 9975 9976 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9977 { 9978 if (den == 0) { 9979 handle_possible_div0_trap(env, GETPC()); 9980 return 0; 9981 } 9982 return num / den; 9983 } 9984 9985 uint32_t HELPER(rbit)(uint32_t x) 9986 { 9987 return revbit32(x); 9988 } 9989 9990 #ifdef CONFIG_USER_ONLY 9991 9992 static void switch_mode(CPUARMState *env, int mode) 9993 { 9994 ARMCPU *cpu = env_archcpu(env); 9995 9996 if (mode != ARM_CPU_MODE_USR) { 9997 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9998 } 9999 } 10000 10001 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10002 uint32_t cur_el, bool secure) 10003 { 10004 return 1; 10005 } 10006 10007 void aarch64_sync_64_to_32(CPUARMState *env) 10008 { 10009 g_assert_not_reached(); 10010 } 10011 10012 #else 10013 10014 static void switch_mode(CPUARMState *env, int mode) 10015 { 10016 int old_mode; 10017 int i; 10018 10019 old_mode = env->uncached_cpsr & CPSR_M; 10020 if (mode == old_mode) { 10021 return; 10022 } 10023 10024 if (old_mode == ARM_CPU_MODE_FIQ) { 10025 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10026 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 10027 } else if (mode == ARM_CPU_MODE_FIQ) { 10028 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10029 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 10030 } 10031 10032 i = bank_number(old_mode); 10033 env->banked_r13[i] = env->regs[13]; 10034 env->banked_spsr[i] = env->spsr; 10035 10036 i = bank_number(mode); 10037 env->regs[13] = env->banked_r13[i]; 10038 env->spsr = env->banked_spsr[i]; 10039 10040 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10041 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10042 } 10043 10044 /* 10045 * Physical Interrupt Target EL Lookup Table 10046 * 10047 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10048 * 10049 * The below multi-dimensional table is used for looking up the target 10050 * exception level given numerous condition criteria. Specifically, the 10051 * target EL is based on SCR and HCR routing controls as well as the 10052 * currently executing EL and secure state. 10053 * 10054 * Dimensions: 10055 * target_el_table[2][2][2][2][2][4] 10056 * | | | | | +--- Current EL 10057 * | | | | +------ Non-secure(0)/Secure(1) 10058 * | | | +--------- HCR mask override 10059 * | | +------------ SCR exec state control 10060 * | +--------------- SCR mask override 10061 * +------------------ 32-bit(0)/64-bit(1) EL3 10062 * 10063 * The table values are as such: 10064 * 0-3 = EL0-EL3 10065 * -1 = Cannot occur 10066 * 10067 * The ARM ARM target EL table includes entries indicating that an "exception 10068 * is not taken". The two cases where this is applicable are: 10069 * 1) An exception is taken from EL3 but the SCR does not have the exception 10070 * routed to EL3. 10071 * 2) An exception is taken from EL2 but the HCR does not have the exception 10072 * routed to EL2. 10073 * In these two cases, the below table contain a target of EL1. This value is 10074 * returned as it is expected that the consumer of the table data will check 10075 * for "target EL >= current EL" to ensure the exception is not taken. 10076 * 10077 * SCR HCR 10078 * 64 EA AMO From 10079 * BIT IRQ IMO Non-secure Secure 10080 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10081 */ 10082 static const int8_t target_el_table[2][2][2][2][2][4] = { 10083 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10084 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10085 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10086 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10087 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10088 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10089 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10090 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10091 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10092 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10093 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10094 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10095 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10096 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10097 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10098 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10099 }; 10100 10101 /* 10102 * Determine the target EL for physical exceptions 10103 */ 10104 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10105 uint32_t cur_el, bool secure) 10106 { 10107 CPUARMState *env = cs->env_ptr; 10108 bool rw; 10109 bool scr; 10110 bool hcr; 10111 int target_el; 10112 /* Is the highest EL AArch64? */ 10113 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10114 uint64_t hcr_el2; 10115 10116 if (arm_feature(env, ARM_FEATURE_EL3)) { 10117 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10118 } else { 10119 /* 10120 * Either EL2 is the highest EL (and so the EL2 register width 10121 * is given by is64); or there is no EL2 or EL3, in which case 10122 * the value of 'rw' does not affect the table lookup anyway. 10123 */ 10124 rw = is64; 10125 } 10126 10127 hcr_el2 = arm_hcr_el2_eff(env); 10128 switch (excp_idx) { 10129 case EXCP_IRQ: 10130 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10131 hcr = hcr_el2 & HCR_IMO; 10132 break; 10133 case EXCP_FIQ: 10134 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10135 hcr = hcr_el2 & HCR_FMO; 10136 break; 10137 default: 10138 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10139 hcr = hcr_el2 & HCR_AMO; 10140 break; 10141 }; 10142 10143 /* 10144 * For these purposes, TGE and AMO/IMO/FMO both force the 10145 * interrupt to EL2. Fold TGE into the bit extracted above. 10146 */ 10147 hcr |= (hcr_el2 & HCR_TGE) != 0; 10148 10149 /* Perform a table-lookup for the target EL given the current state */ 10150 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10151 10152 assert(target_el > 0); 10153 10154 return target_el; 10155 } 10156 10157 void arm_log_exception(CPUState *cs) 10158 { 10159 int idx = cs->exception_index; 10160 10161 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10162 const char *exc = NULL; 10163 static const char * const excnames[] = { 10164 [EXCP_UDEF] = "Undefined Instruction", 10165 [EXCP_SWI] = "SVC", 10166 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10167 [EXCP_DATA_ABORT] = "Data Abort", 10168 [EXCP_IRQ] = "IRQ", 10169 [EXCP_FIQ] = "FIQ", 10170 [EXCP_BKPT] = "Breakpoint", 10171 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10172 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10173 [EXCP_HVC] = "Hypervisor Call", 10174 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10175 [EXCP_SMC] = "Secure Monitor Call", 10176 [EXCP_VIRQ] = "Virtual IRQ", 10177 [EXCP_VFIQ] = "Virtual FIQ", 10178 [EXCP_SEMIHOST] = "Semihosting call", 10179 [EXCP_NOCP] = "v7M NOCP UsageFault", 10180 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10181 [EXCP_STKOF] = "v8M STKOF UsageFault", 10182 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10183 [EXCP_LSERR] = "v8M LSERR UsageFault", 10184 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10185 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10186 [EXCP_VSERR] = "Virtual SERR", 10187 [EXCP_GPC] = "Granule Protection Check", 10188 }; 10189 10190 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10191 exc = excnames[idx]; 10192 } 10193 if (!exc) { 10194 exc = "unknown"; 10195 } 10196 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10197 idx, exc, cs->cpu_index); 10198 } 10199 } 10200 10201 /* 10202 * Function used to synchronize QEMU's AArch64 register set with AArch32 10203 * register set. This is necessary when switching between AArch32 and AArch64 10204 * execution state. 10205 */ 10206 void aarch64_sync_32_to_64(CPUARMState *env) 10207 { 10208 int i; 10209 uint32_t mode = env->uncached_cpsr & CPSR_M; 10210 10211 /* We can blanket copy R[0:7] to X[0:7] */ 10212 for (i = 0; i < 8; i++) { 10213 env->xregs[i] = env->regs[i]; 10214 } 10215 10216 /* 10217 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10218 * Otherwise, they come from the banked user regs. 10219 */ 10220 if (mode == ARM_CPU_MODE_FIQ) { 10221 for (i = 8; i < 13; i++) { 10222 env->xregs[i] = env->usr_regs[i - 8]; 10223 } 10224 } else { 10225 for (i = 8; i < 13; i++) { 10226 env->xregs[i] = env->regs[i]; 10227 } 10228 } 10229 10230 /* 10231 * Registers x13-x23 are the various mode SP and FP registers. Registers 10232 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10233 * from the mode banked register. 10234 */ 10235 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10236 env->xregs[13] = env->regs[13]; 10237 env->xregs[14] = env->regs[14]; 10238 } else { 10239 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10240 /* HYP is an exception in that it is copied from r14 */ 10241 if (mode == ARM_CPU_MODE_HYP) { 10242 env->xregs[14] = env->regs[14]; 10243 } else { 10244 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10245 } 10246 } 10247 10248 if (mode == ARM_CPU_MODE_HYP) { 10249 env->xregs[15] = env->regs[13]; 10250 } else { 10251 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10252 } 10253 10254 if (mode == ARM_CPU_MODE_IRQ) { 10255 env->xregs[16] = env->regs[14]; 10256 env->xregs[17] = env->regs[13]; 10257 } else { 10258 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10259 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10260 } 10261 10262 if (mode == ARM_CPU_MODE_SVC) { 10263 env->xregs[18] = env->regs[14]; 10264 env->xregs[19] = env->regs[13]; 10265 } else { 10266 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10267 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10268 } 10269 10270 if (mode == ARM_CPU_MODE_ABT) { 10271 env->xregs[20] = env->regs[14]; 10272 env->xregs[21] = env->regs[13]; 10273 } else { 10274 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10275 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10276 } 10277 10278 if (mode == ARM_CPU_MODE_UND) { 10279 env->xregs[22] = env->regs[14]; 10280 env->xregs[23] = env->regs[13]; 10281 } else { 10282 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10283 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10284 } 10285 10286 /* 10287 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10288 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10289 * FIQ bank for r8-r14. 10290 */ 10291 if (mode == ARM_CPU_MODE_FIQ) { 10292 for (i = 24; i < 31; i++) { 10293 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10294 } 10295 } else { 10296 for (i = 24; i < 29; i++) { 10297 env->xregs[i] = env->fiq_regs[i - 24]; 10298 } 10299 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10300 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10301 } 10302 10303 env->pc = env->regs[15]; 10304 } 10305 10306 /* 10307 * Function used to synchronize QEMU's AArch32 register set with AArch64 10308 * register set. This is necessary when switching between AArch32 and AArch64 10309 * execution state. 10310 */ 10311 void aarch64_sync_64_to_32(CPUARMState *env) 10312 { 10313 int i; 10314 uint32_t mode = env->uncached_cpsr & CPSR_M; 10315 10316 /* We can blanket copy X[0:7] to R[0:7] */ 10317 for (i = 0; i < 8; i++) { 10318 env->regs[i] = env->xregs[i]; 10319 } 10320 10321 /* 10322 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10323 * Otherwise, we copy x8-x12 into the banked user regs. 10324 */ 10325 if (mode == ARM_CPU_MODE_FIQ) { 10326 for (i = 8; i < 13; i++) { 10327 env->usr_regs[i - 8] = env->xregs[i]; 10328 } 10329 } else { 10330 for (i = 8; i < 13; i++) { 10331 env->regs[i] = env->xregs[i]; 10332 } 10333 } 10334 10335 /* 10336 * Registers r13 & r14 depend on the current mode. 10337 * If we are in a given mode, we copy the corresponding x registers to r13 10338 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10339 * for the mode. 10340 */ 10341 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10342 env->regs[13] = env->xregs[13]; 10343 env->regs[14] = env->xregs[14]; 10344 } else { 10345 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10346 10347 /* 10348 * HYP is an exception in that it does not have its own banked r14 but 10349 * shares the USR r14 10350 */ 10351 if (mode == ARM_CPU_MODE_HYP) { 10352 env->regs[14] = env->xregs[14]; 10353 } else { 10354 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10355 } 10356 } 10357 10358 if (mode == ARM_CPU_MODE_HYP) { 10359 env->regs[13] = env->xregs[15]; 10360 } else { 10361 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10362 } 10363 10364 if (mode == ARM_CPU_MODE_IRQ) { 10365 env->regs[14] = env->xregs[16]; 10366 env->regs[13] = env->xregs[17]; 10367 } else { 10368 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10369 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10370 } 10371 10372 if (mode == ARM_CPU_MODE_SVC) { 10373 env->regs[14] = env->xregs[18]; 10374 env->regs[13] = env->xregs[19]; 10375 } else { 10376 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10377 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10378 } 10379 10380 if (mode == ARM_CPU_MODE_ABT) { 10381 env->regs[14] = env->xregs[20]; 10382 env->regs[13] = env->xregs[21]; 10383 } else { 10384 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10385 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10386 } 10387 10388 if (mode == ARM_CPU_MODE_UND) { 10389 env->regs[14] = env->xregs[22]; 10390 env->regs[13] = env->xregs[23]; 10391 } else { 10392 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10393 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10394 } 10395 10396 /* 10397 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10398 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10399 * FIQ bank for r8-r14. 10400 */ 10401 if (mode == ARM_CPU_MODE_FIQ) { 10402 for (i = 24; i < 31; i++) { 10403 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10404 } 10405 } else { 10406 for (i = 24; i < 29; i++) { 10407 env->fiq_regs[i - 24] = env->xregs[i]; 10408 } 10409 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10410 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10411 } 10412 10413 env->regs[15] = env->pc; 10414 } 10415 10416 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10417 uint32_t mask, uint32_t offset, 10418 uint32_t newpc) 10419 { 10420 int new_el; 10421 10422 /* Change the CPU state so as to actually take the exception. */ 10423 switch_mode(env, new_mode); 10424 10425 /* 10426 * For exceptions taken to AArch32 we must clear the SS bit in both 10427 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10428 */ 10429 env->pstate &= ~PSTATE_SS; 10430 env->spsr = cpsr_read(env); 10431 /* Clear IT bits. */ 10432 env->condexec_bits = 0; 10433 /* Switch to the new mode, and to the correct instruction set. */ 10434 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10435 10436 /* This must be after mode switching. */ 10437 new_el = arm_current_el(env); 10438 10439 /* Set new mode endianness */ 10440 env->uncached_cpsr &= ~CPSR_E; 10441 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10442 env->uncached_cpsr |= CPSR_E; 10443 } 10444 /* J and IL must always be cleared for exception entry */ 10445 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10446 env->daif |= mask; 10447 10448 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10449 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10450 env->uncached_cpsr |= CPSR_SSBS; 10451 } else { 10452 env->uncached_cpsr &= ~CPSR_SSBS; 10453 } 10454 } 10455 10456 if (new_mode == ARM_CPU_MODE_HYP) { 10457 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10458 env->elr_el[2] = env->regs[15]; 10459 } else { 10460 /* CPSR.PAN is normally preserved preserved unless... */ 10461 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10462 switch (new_el) { 10463 case 3: 10464 if (!arm_is_secure_below_el3(env)) { 10465 /* ... the target is EL3, from non-secure state. */ 10466 env->uncached_cpsr &= ~CPSR_PAN; 10467 break; 10468 } 10469 /* ... the target is EL3, from secure state ... */ 10470 /* fall through */ 10471 case 1: 10472 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10473 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10474 env->uncached_cpsr |= CPSR_PAN; 10475 } 10476 break; 10477 } 10478 } 10479 /* 10480 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10481 * and we should just guard the thumb mode on V4 10482 */ 10483 if (arm_feature(env, ARM_FEATURE_V4T)) { 10484 env->thumb = 10485 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10486 } 10487 env->regs[14] = env->regs[15] + offset; 10488 } 10489 env->regs[15] = newpc; 10490 10491 if (tcg_enabled()) { 10492 arm_rebuild_hflags(env); 10493 } 10494 } 10495 10496 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10497 { 10498 /* 10499 * Handle exception entry to Hyp mode; this is sufficiently 10500 * different to entry to other AArch32 modes that we handle it 10501 * separately here. 10502 * 10503 * The vector table entry used is always the 0x14 Hyp mode entry point, 10504 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10505 * The offset applied to the preferred return address is always zero 10506 * (see DDI0487C.a section G1.12.3). 10507 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10508 */ 10509 uint32_t addr, mask; 10510 ARMCPU *cpu = ARM_CPU(cs); 10511 CPUARMState *env = &cpu->env; 10512 10513 switch (cs->exception_index) { 10514 case EXCP_UDEF: 10515 addr = 0x04; 10516 break; 10517 case EXCP_SWI: 10518 addr = 0x08; 10519 break; 10520 case EXCP_BKPT: 10521 /* Fall through to prefetch abort. */ 10522 case EXCP_PREFETCH_ABORT: 10523 env->cp15.ifar_s = env->exception.vaddress; 10524 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10525 (uint32_t)env->exception.vaddress); 10526 addr = 0x0c; 10527 break; 10528 case EXCP_DATA_ABORT: 10529 env->cp15.dfar_s = env->exception.vaddress; 10530 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10531 (uint32_t)env->exception.vaddress); 10532 addr = 0x10; 10533 break; 10534 case EXCP_IRQ: 10535 addr = 0x18; 10536 break; 10537 case EXCP_FIQ: 10538 addr = 0x1c; 10539 break; 10540 case EXCP_HVC: 10541 addr = 0x08; 10542 break; 10543 case EXCP_HYP_TRAP: 10544 addr = 0x14; 10545 break; 10546 default: 10547 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10548 } 10549 10550 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10551 if (!arm_feature(env, ARM_FEATURE_V8)) { 10552 /* 10553 * QEMU syndrome values are v8-style. v7 has the IL bit 10554 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10555 * If this is a v7 CPU, squash the IL bit in those cases. 10556 */ 10557 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10558 (cs->exception_index == EXCP_DATA_ABORT && 10559 !(env->exception.syndrome & ARM_EL_ISV)) || 10560 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10561 env->exception.syndrome &= ~ARM_EL_IL; 10562 } 10563 } 10564 env->cp15.esr_el[2] = env->exception.syndrome; 10565 } 10566 10567 if (arm_current_el(env) != 2 && addr < 0x14) { 10568 addr = 0x14; 10569 } 10570 10571 mask = 0; 10572 if (!(env->cp15.scr_el3 & SCR_EA)) { 10573 mask |= CPSR_A; 10574 } 10575 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10576 mask |= CPSR_I; 10577 } 10578 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10579 mask |= CPSR_F; 10580 } 10581 10582 addr += env->cp15.hvbar; 10583 10584 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10585 } 10586 10587 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10588 { 10589 ARMCPU *cpu = ARM_CPU(cs); 10590 CPUARMState *env = &cpu->env; 10591 uint32_t addr; 10592 uint32_t mask; 10593 int new_mode; 10594 uint32_t offset; 10595 uint32_t moe; 10596 10597 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10598 switch (syn_get_ec(env->exception.syndrome)) { 10599 case EC_BREAKPOINT: 10600 case EC_BREAKPOINT_SAME_EL: 10601 moe = 1; 10602 break; 10603 case EC_WATCHPOINT: 10604 case EC_WATCHPOINT_SAME_EL: 10605 moe = 10; 10606 break; 10607 case EC_AA32_BKPT: 10608 moe = 3; 10609 break; 10610 case EC_VECTORCATCH: 10611 moe = 5; 10612 break; 10613 default: 10614 moe = 0; 10615 break; 10616 } 10617 10618 if (moe) { 10619 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10620 } 10621 10622 if (env->exception.target_el == 2) { 10623 arm_cpu_do_interrupt_aarch32_hyp(cs); 10624 return; 10625 } 10626 10627 switch (cs->exception_index) { 10628 case EXCP_UDEF: 10629 new_mode = ARM_CPU_MODE_UND; 10630 addr = 0x04; 10631 mask = CPSR_I; 10632 if (env->thumb) { 10633 offset = 2; 10634 } else { 10635 offset = 4; 10636 } 10637 break; 10638 case EXCP_SWI: 10639 new_mode = ARM_CPU_MODE_SVC; 10640 addr = 0x08; 10641 mask = CPSR_I; 10642 /* The PC already points to the next instruction. */ 10643 offset = 0; 10644 break; 10645 case EXCP_BKPT: 10646 /* Fall through to prefetch abort. */ 10647 case EXCP_PREFETCH_ABORT: 10648 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10649 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10650 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10651 env->exception.fsr, (uint32_t)env->exception.vaddress); 10652 new_mode = ARM_CPU_MODE_ABT; 10653 addr = 0x0c; 10654 mask = CPSR_A | CPSR_I; 10655 offset = 4; 10656 break; 10657 case EXCP_DATA_ABORT: 10658 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10659 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10660 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10661 env->exception.fsr, 10662 (uint32_t)env->exception.vaddress); 10663 new_mode = ARM_CPU_MODE_ABT; 10664 addr = 0x10; 10665 mask = CPSR_A | CPSR_I; 10666 offset = 8; 10667 break; 10668 case EXCP_IRQ: 10669 new_mode = ARM_CPU_MODE_IRQ; 10670 addr = 0x18; 10671 /* Disable IRQ and imprecise data aborts. */ 10672 mask = CPSR_A | CPSR_I; 10673 offset = 4; 10674 if (env->cp15.scr_el3 & SCR_IRQ) { 10675 /* IRQ routed to monitor mode */ 10676 new_mode = ARM_CPU_MODE_MON; 10677 mask |= CPSR_F; 10678 } 10679 break; 10680 case EXCP_FIQ: 10681 new_mode = ARM_CPU_MODE_FIQ; 10682 addr = 0x1c; 10683 /* Disable FIQ, IRQ and imprecise data aborts. */ 10684 mask = CPSR_A | CPSR_I | CPSR_F; 10685 if (env->cp15.scr_el3 & SCR_FIQ) { 10686 /* FIQ routed to monitor mode */ 10687 new_mode = ARM_CPU_MODE_MON; 10688 } 10689 offset = 4; 10690 break; 10691 case EXCP_VIRQ: 10692 new_mode = ARM_CPU_MODE_IRQ; 10693 addr = 0x18; 10694 /* Disable IRQ and imprecise data aborts. */ 10695 mask = CPSR_A | CPSR_I; 10696 offset = 4; 10697 break; 10698 case EXCP_VFIQ: 10699 new_mode = ARM_CPU_MODE_FIQ; 10700 addr = 0x1c; 10701 /* Disable FIQ, IRQ and imprecise data aborts. */ 10702 mask = CPSR_A | CPSR_I | CPSR_F; 10703 offset = 4; 10704 break; 10705 case EXCP_VSERR: 10706 { 10707 /* 10708 * Note that this is reported as a data abort, but the DFAR 10709 * has an UNKNOWN value. Construct the SError syndrome from 10710 * AET and ExT fields. 10711 */ 10712 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10713 10714 if (extended_addresses_enabled(env)) { 10715 env->exception.fsr = arm_fi_to_lfsc(&fi); 10716 } else { 10717 env->exception.fsr = arm_fi_to_sfsc(&fi); 10718 } 10719 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10720 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10721 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10722 env->exception.fsr); 10723 10724 new_mode = ARM_CPU_MODE_ABT; 10725 addr = 0x10; 10726 mask = CPSR_A | CPSR_I; 10727 offset = 8; 10728 } 10729 break; 10730 case EXCP_SMC: 10731 new_mode = ARM_CPU_MODE_MON; 10732 addr = 0x08; 10733 mask = CPSR_A | CPSR_I | CPSR_F; 10734 offset = 0; 10735 break; 10736 default: 10737 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10738 return; /* Never happens. Keep compiler happy. */ 10739 } 10740 10741 if (new_mode == ARM_CPU_MODE_MON) { 10742 addr += env->cp15.mvbar; 10743 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10744 /* High vectors. When enabled, base address cannot be remapped. */ 10745 addr += 0xffff0000; 10746 } else { 10747 /* 10748 * ARM v7 architectures provide a vector base address register to remap 10749 * the interrupt vector table. 10750 * This register is only followed in non-monitor mode, and is banked. 10751 * Note: only bits 31:5 are valid. 10752 */ 10753 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10754 } 10755 10756 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10757 env->cp15.scr_el3 &= ~SCR_NS; 10758 } 10759 10760 take_aarch32_exception(env, new_mode, mask, offset, addr); 10761 } 10762 10763 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10764 { 10765 /* 10766 * Return the register number of the AArch64 view of the AArch32 10767 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10768 * be that of the AArch32 mode the exception came from. 10769 */ 10770 int mode = env->uncached_cpsr & CPSR_M; 10771 10772 switch (aarch32_reg) { 10773 case 0 ... 7: 10774 return aarch32_reg; 10775 case 8 ... 12: 10776 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10777 case 13: 10778 switch (mode) { 10779 case ARM_CPU_MODE_USR: 10780 case ARM_CPU_MODE_SYS: 10781 return 13; 10782 case ARM_CPU_MODE_HYP: 10783 return 15; 10784 case ARM_CPU_MODE_IRQ: 10785 return 17; 10786 case ARM_CPU_MODE_SVC: 10787 return 19; 10788 case ARM_CPU_MODE_ABT: 10789 return 21; 10790 case ARM_CPU_MODE_UND: 10791 return 23; 10792 case ARM_CPU_MODE_FIQ: 10793 return 29; 10794 default: 10795 g_assert_not_reached(); 10796 } 10797 case 14: 10798 switch (mode) { 10799 case ARM_CPU_MODE_USR: 10800 case ARM_CPU_MODE_SYS: 10801 case ARM_CPU_MODE_HYP: 10802 return 14; 10803 case ARM_CPU_MODE_IRQ: 10804 return 16; 10805 case ARM_CPU_MODE_SVC: 10806 return 18; 10807 case ARM_CPU_MODE_ABT: 10808 return 20; 10809 case ARM_CPU_MODE_UND: 10810 return 22; 10811 case ARM_CPU_MODE_FIQ: 10812 return 30; 10813 default: 10814 g_assert_not_reached(); 10815 } 10816 case 15: 10817 return 31; 10818 default: 10819 g_assert_not_reached(); 10820 } 10821 } 10822 10823 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10824 { 10825 uint32_t ret = cpsr_read(env); 10826 10827 /* Move DIT to the correct location for SPSR_ELx */ 10828 if (ret & CPSR_DIT) { 10829 ret &= ~CPSR_DIT; 10830 ret |= PSTATE_DIT; 10831 } 10832 /* Merge PSTATE.SS into SPSR_ELx */ 10833 ret |= env->pstate & PSTATE_SS; 10834 10835 return ret; 10836 } 10837 10838 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10839 { 10840 /* Return true if this syndrome value is a synchronous external abort */ 10841 switch (syn_get_ec(syndrome)) { 10842 case EC_INSNABORT: 10843 case EC_INSNABORT_SAME_EL: 10844 case EC_DATAABORT: 10845 case EC_DATAABORT_SAME_EL: 10846 /* Look at fault status code for all the synchronous ext abort cases */ 10847 switch (syndrome & 0x3f) { 10848 case 0x10: 10849 case 0x13: 10850 case 0x14: 10851 case 0x15: 10852 case 0x16: 10853 case 0x17: 10854 return true; 10855 default: 10856 return false; 10857 } 10858 default: 10859 return false; 10860 } 10861 } 10862 10863 /* Handle exception entry to a target EL which is using AArch64 */ 10864 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10865 { 10866 ARMCPU *cpu = ARM_CPU(cs); 10867 CPUARMState *env = &cpu->env; 10868 unsigned int new_el = env->exception.target_el; 10869 target_ulong addr = env->cp15.vbar_el[new_el]; 10870 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10871 unsigned int old_mode; 10872 unsigned int cur_el = arm_current_el(env); 10873 int rt; 10874 10875 if (tcg_enabled()) { 10876 /* 10877 * Note that new_el can never be 0. If cur_el is 0, then 10878 * el0_a64 is is_a64(), else el0_a64 is ignored. 10879 */ 10880 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10881 } 10882 10883 if (cur_el < new_el) { 10884 /* 10885 * Entry vector offset depends on whether the implemented EL 10886 * immediately lower than the target level is using AArch32 or AArch64 10887 */ 10888 bool is_aa64; 10889 uint64_t hcr; 10890 10891 switch (new_el) { 10892 case 3: 10893 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10894 break; 10895 case 2: 10896 hcr = arm_hcr_el2_eff(env); 10897 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10898 is_aa64 = (hcr & HCR_RW) != 0; 10899 break; 10900 } 10901 /* fall through */ 10902 case 1: 10903 is_aa64 = is_a64(env); 10904 break; 10905 default: 10906 g_assert_not_reached(); 10907 } 10908 10909 if (is_aa64) { 10910 addr += 0x400; 10911 } else { 10912 addr += 0x600; 10913 } 10914 } else if (pstate_read(env) & PSTATE_SP) { 10915 addr += 0x200; 10916 } 10917 10918 switch (cs->exception_index) { 10919 case EXCP_GPC: 10920 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 10921 env->cp15.mfar_el3); 10922 /* fall through */ 10923 case EXCP_PREFETCH_ABORT: 10924 case EXCP_DATA_ABORT: 10925 /* 10926 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10927 * to be taken to the SError vector entrypoint. 10928 */ 10929 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10930 syndrome_is_sync_extabt(env->exception.syndrome)) { 10931 addr += 0x180; 10932 } 10933 env->cp15.far_el[new_el] = env->exception.vaddress; 10934 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10935 env->cp15.far_el[new_el]); 10936 /* fall through */ 10937 case EXCP_BKPT: 10938 case EXCP_UDEF: 10939 case EXCP_SWI: 10940 case EXCP_HVC: 10941 case EXCP_HYP_TRAP: 10942 case EXCP_SMC: 10943 switch (syn_get_ec(env->exception.syndrome)) { 10944 case EC_ADVSIMDFPACCESSTRAP: 10945 /* 10946 * QEMU internal FP/SIMD syndromes from AArch32 include the 10947 * TA and coproc fields which are only exposed if the exception 10948 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10949 * AArch64 format syndrome. 10950 */ 10951 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10952 break; 10953 case EC_CP14RTTRAP: 10954 case EC_CP15RTTRAP: 10955 case EC_CP14DTTRAP: 10956 /* 10957 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10958 * the raw register field from the insn; when taking this to 10959 * AArch64 we must convert it to the AArch64 view of the register 10960 * number. Notice that we read a 4-bit AArch32 register number and 10961 * write back a 5-bit AArch64 one. 10962 */ 10963 rt = extract32(env->exception.syndrome, 5, 4); 10964 rt = aarch64_regnum(env, rt); 10965 env->exception.syndrome = deposit32(env->exception.syndrome, 10966 5, 5, rt); 10967 break; 10968 case EC_CP15RRTTRAP: 10969 case EC_CP14RRTTRAP: 10970 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10971 rt = extract32(env->exception.syndrome, 5, 4); 10972 rt = aarch64_regnum(env, rt); 10973 env->exception.syndrome = deposit32(env->exception.syndrome, 10974 5, 5, rt); 10975 rt = extract32(env->exception.syndrome, 10, 4); 10976 rt = aarch64_regnum(env, rt); 10977 env->exception.syndrome = deposit32(env->exception.syndrome, 10978 10, 5, rt); 10979 break; 10980 } 10981 env->cp15.esr_el[new_el] = env->exception.syndrome; 10982 break; 10983 case EXCP_IRQ: 10984 case EXCP_VIRQ: 10985 addr += 0x80; 10986 break; 10987 case EXCP_FIQ: 10988 case EXCP_VFIQ: 10989 addr += 0x100; 10990 break; 10991 case EXCP_VSERR: 10992 addr += 0x180; 10993 /* Construct the SError syndrome from IDS and ISS fields. */ 10994 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10995 env->cp15.esr_el[new_el] = env->exception.syndrome; 10996 break; 10997 default: 10998 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10999 } 11000 11001 if (is_a64(env)) { 11002 old_mode = pstate_read(env); 11003 aarch64_save_sp(env, arm_current_el(env)); 11004 env->elr_el[new_el] = env->pc; 11005 } else { 11006 old_mode = cpsr_read_for_spsr_elx(env); 11007 env->elr_el[new_el] = env->regs[15]; 11008 11009 aarch64_sync_32_to_64(env); 11010 11011 env->condexec_bits = 0; 11012 } 11013 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 11014 11015 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 11016 env->elr_el[new_el]); 11017 11018 if (cpu_isar_feature(aa64_pan, cpu)) { 11019 /* The value of PSTATE.PAN is normally preserved, except when ... */ 11020 new_mode |= old_mode & PSTATE_PAN; 11021 switch (new_el) { 11022 case 2: 11023 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 11024 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 11025 != (HCR_E2H | HCR_TGE)) { 11026 break; 11027 } 11028 /* fall through */ 11029 case 1: 11030 /* ... the target is EL1 ... */ 11031 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 11032 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 11033 new_mode |= PSTATE_PAN; 11034 } 11035 break; 11036 } 11037 } 11038 if (cpu_isar_feature(aa64_mte, cpu)) { 11039 new_mode |= PSTATE_TCO; 11040 } 11041 11042 if (cpu_isar_feature(aa64_ssbs, cpu)) { 11043 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11044 new_mode |= PSTATE_SSBS; 11045 } else { 11046 new_mode &= ~PSTATE_SSBS; 11047 } 11048 } 11049 11050 pstate_write(env, PSTATE_DAIF | new_mode); 11051 env->aarch64 = true; 11052 aarch64_restore_sp(env, new_el); 11053 11054 if (tcg_enabled()) { 11055 helper_rebuild_hflags_a64(env, new_el); 11056 } 11057 11058 env->pc = addr; 11059 11060 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11061 new_el, env->pc, pstate_read(env)); 11062 } 11063 11064 /* 11065 * Do semihosting call and set the appropriate return value. All the 11066 * permission and validity checks have been done at translate time. 11067 * 11068 * We only see semihosting exceptions in TCG only as they are not 11069 * trapped to the hypervisor in KVM. 11070 */ 11071 #ifdef CONFIG_TCG 11072 static void tcg_handle_semihosting(CPUState *cs) 11073 { 11074 ARMCPU *cpu = ARM_CPU(cs); 11075 CPUARMState *env = &cpu->env; 11076 11077 if (is_a64(env)) { 11078 qemu_log_mask(CPU_LOG_INT, 11079 "...handling as semihosting call 0x%" PRIx64 "\n", 11080 env->xregs[0]); 11081 do_common_semihosting(cs); 11082 env->pc += 4; 11083 } else { 11084 qemu_log_mask(CPU_LOG_INT, 11085 "...handling as semihosting call 0x%x\n", 11086 env->regs[0]); 11087 do_common_semihosting(cs); 11088 env->regs[15] += env->thumb ? 2 : 4; 11089 } 11090 } 11091 #endif 11092 11093 /* 11094 * Handle a CPU exception for A and R profile CPUs. 11095 * Do any appropriate logging, handle PSCI calls, and then hand off 11096 * to the AArch64-entry or AArch32-entry function depending on the 11097 * target exception level's register width. 11098 * 11099 * Note: this is used for both TCG (as the do_interrupt tcg op), 11100 * and KVM to re-inject guest debug exceptions, and to 11101 * inject a Synchronous-External-Abort. 11102 */ 11103 void arm_cpu_do_interrupt(CPUState *cs) 11104 { 11105 ARMCPU *cpu = ARM_CPU(cs); 11106 CPUARMState *env = &cpu->env; 11107 unsigned int new_el = env->exception.target_el; 11108 11109 assert(!arm_feature(env, ARM_FEATURE_M)); 11110 11111 arm_log_exception(cs); 11112 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11113 new_el); 11114 if (qemu_loglevel_mask(CPU_LOG_INT) 11115 && !excp_is_internal(cs->exception_index)) { 11116 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11117 syn_get_ec(env->exception.syndrome), 11118 env->exception.syndrome); 11119 } 11120 11121 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11122 arm_handle_psci_call(cpu); 11123 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11124 return; 11125 } 11126 11127 /* 11128 * Semihosting semantics depend on the register width of the code 11129 * that caused the exception, not the target exception level, so 11130 * must be handled here. 11131 */ 11132 #ifdef CONFIG_TCG 11133 if (cs->exception_index == EXCP_SEMIHOST) { 11134 tcg_handle_semihosting(cs); 11135 return; 11136 } 11137 #endif 11138 11139 /* 11140 * Hooks may change global state so BQL should be held, also the 11141 * BQL needs to be held for any modification of 11142 * cs->interrupt_request. 11143 */ 11144 g_assert(qemu_mutex_iothread_locked()); 11145 11146 arm_call_pre_el_change_hook(cpu); 11147 11148 assert(!excp_is_internal(cs->exception_index)); 11149 if (arm_el_is_aa64(env, new_el)) { 11150 arm_cpu_do_interrupt_aarch64(cs); 11151 } else { 11152 arm_cpu_do_interrupt_aarch32(cs); 11153 } 11154 11155 arm_call_el_change_hook(cpu); 11156 11157 if (!kvm_enabled()) { 11158 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11159 } 11160 } 11161 #endif /* !CONFIG_USER_ONLY */ 11162 11163 uint64_t arm_sctlr(CPUARMState *env, int el) 11164 { 11165 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11166 if (el == 0) { 11167 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11168 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11169 } 11170 return env->cp15.sctlr_el[el]; 11171 } 11172 11173 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11174 { 11175 if (regime_has_2_ranges(mmu_idx)) { 11176 return extract64(tcr, 37, 2); 11177 } else if (regime_is_stage2(mmu_idx)) { 11178 return 0; /* VTCR_EL2 */ 11179 } else { 11180 /* Replicate the single TBI bit so we always have 2 bits. */ 11181 return extract32(tcr, 20, 1) * 3; 11182 } 11183 } 11184 11185 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11186 { 11187 if (regime_has_2_ranges(mmu_idx)) { 11188 return extract64(tcr, 51, 2); 11189 } else if (regime_is_stage2(mmu_idx)) { 11190 return 0; /* VTCR_EL2 */ 11191 } else { 11192 /* Replicate the single TBID bit so we always have 2 bits. */ 11193 return extract32(tcr, 29, 1) * 3; 11194 } 11195 } 11196 11197 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11198 { 11199 if (regime_has_2_ranges(mmu_idx)) { 11200 return extract64(tcr, 57, 2); 11201 } else { 11202 /* Replicate the single TCMA bit so we always have 2 bits. */ 11203 return extract32(tcr, 30, 1) * 3; 11204 } 11205 } 11206 11207 static ARMGranuleSize tg0_to_gran_size(int tg) 11208 { 11209 switch (tg) { 11210 case 0: 11211 return Gran4K; 11212 case 1: 11213 return Gran64K; 11214 case 2: 11215 return Gran16K; 11216 default: 11217 return GranInvalid; 11218 } 11219 } 11220 11221 static ARMGranuleSize tg1_to_gran_size(int tg) 11222 { 11223 switch (tg) { 11224 case 1: 11225 return Gran16K; 11226 case 2: 11227 return Gran4K; 11228 case 3: 11229 return Gran64K; 11230 default: 11231 return GranInvalid; 11232 } 11233 } 11234 11235 static inline bool have4k(ARMCPU *cpu, bool stage2) 11236 { 11237 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11238 : cpu_isar_feature(aa64_tgran4, cpu); 11239 } 11240 11241 static inline bool have16k(ARMCPU *cpu, bool stage2) 11242 { 11243 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11244 : cpu_isar_feature(aa64_tgran16, cpu); 11245 } 11246 11247 static inline bool have64k(ARMCPU *cpu, bool stage2) 11248 { 11249 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11250 : cpu_isar_feature(aa64_tgran64, cpu); 11251 } 11252 11253 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11254 bool stage2) 11255 { 11256 switch (gran) { 11257 case Gran4K: 11258 if (have4k(cpu, stage2)) { 11259 return gran; 11260 } 11261 break; 11262 case Gran16K: 11263 if (have16k(cpu, stage2)) { 11264 return gran; 11265 } 11266 break; 11267 case Gran64K: 11268 if (have64k(cpu, stage2)) { 11269 return gran; 11270 } 11271 break; 11272 case GranInvalid: 11273 break; 11274 } 11275 /* 11276 * If the guest selects a granule size that isn't implemented, 11277 * the architecture requires that we behave as if it selected one 11278 * that is (with an IMPDEF choice of which one to pick). We choose 11279 * to implement the smallest supported granule size. 11280 */ 11281 if (have4k(cpu, stage2)) { 11282 return Gran4K; 11283 } 11284 if (have16k(cpu, stage2)) { 11285 return Gran16K; 11286 } 11287 assert(have64k(cpu, stage2)); 11288 return Gran64K; 11289 } 11290 11291 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11292 ARMMMUIdx mmu_idx, bool data, 11293 bool el1_is_aa32) 11294 { 11295 uint64_t tcr = regime_tcr(env, mmu_idx); 11296 bool epd, hpd, tsz_oob, ds, ha, hd; 11297 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11298 ARMGranuleSize gran; 11299 ARMCPU *cpu = env_archcpu(env); 11300 bool stage2 = regime_is_stage2(mmu_idx); 11301 11302 if (!regime_has_2_ranges(mmu_idx)) { 11303 select = 0; 11304 tsz = extract32(tcr, 0, 6); 11305 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11306 if (stage2) { 11307 /* VTCR_EL2 */ 11308 hpd = false; 11309 } else { 11310 hpd = extract32(tcr, 24, 1); 11311 } 11312 epd = false; 11313 sh = extract32(tcr, 12, 2); 11314 ps = extract32(tcr, 16, 3); 11315 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11316 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11317 ds = extract64(tcr, 32, 1); 11318 } else { 11319 bool e0pd; 11320 11321 /* 11322 * Bit 55 is always between the two regions, and is canonical for 11323 * determining if address tagging is enabled. 11324 */ 11325 select = extract64(va, 55, 1); 11326 if (!select) { 11327 tsz = extract32(tcr, 0, 6); 11328 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11329 epd = extract32(tcr, 7, 1); 11330 sh = extract32(tcr, 12, 2); 11331 hpd = extract64(tcr, 41, 1); 11332 e0pd = extract64(tcr, 55, 1); 11333 } else { 11334 tsz = extract32(tcr, 16, 6); 11335 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11336 epd = extract32(tcr, 23, 1); 11337 sh = extract32(tcr, 28, 2); 11338 hpd = extract64(tcr, 42, 1); 11339 e0pd = extract64(tcr, 56, 1); 11340 } 11341 ps = extract64(tcr, 32, 3); 11342 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11343 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11344 ds = extract64(tcr, 59, 1); 11345 11346 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11347 regime_is_user(env, mmu_idx)) { 11348 epd = true; 11349 } 11350 } 11351 11352 gran = sanitize_gran_size(cpu, gran, stage2); 11353 11354 if (cpu_isar_feature(aa64_st, cpu)) { 11355 max_tsz = 48 - (gran == Gran64K); 11356 } else { 11357 max_tsz = 39; 11358 } 11359 11360 /* 11361 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11362 * adjust the effective value of DS, as documented. 11363 */ 11364 min_tsz = 16; 11365 if (gran == Gran64K) { 11366 if (cpu_isar_feature(aa64_lva, cpu)) { 11367 min_tsz = 12; 11368 } 11369 ds = false; 11370 } else if (ds) { 11371 if (regime_is_stage2(mmu_idx)) { 11372 if (gran == Gran16K) { 11373 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11374 } else { 11375 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11376 } 11377 } else { 11378 if (gran == Gran16K) { 11379 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11380 } else { 11381 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11382 } 11383 } 11384 if (ds) { 11385 min_tsz = 12; 11386 } 11387 } 11388 11389 if (stage2 && el1_is_aa32) { 11390 /* 11391 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11392 * are loosened: a configured IPA of 40 bits is permitted even if 11393 * the implemented PA is less than that (and so a 40 bit IPA would 11394 * fault for an AArch64 EL1). See R_DTLMN. 11395 */ 11396 min_tsz = MIN(min_tsz, 24); 11397 } 11398 11399 if (tsz > max_tsz) { 11400 tsz = max_tsz; 11401 tsz_oob = true; 11402 } else if (tsz < min_tsz) { 11403 tsz = min_tsz; 11404 tsz_oob = true; 11405 } else { 11406 tsz_oob = false; 11407 } 11408 11409 /* Present TBI as a composite with TBID. */ 11410 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11411 if (!data) { 11412 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11413 } 11414 tbi = (tbi >> select) & 1; 11415 11416 return (ARMVAParameters) { 11417 .tsz = tsz, 11418 .ps = ps, 11419 .sh = sh, 11420 .select = select, 11421 .tbi = tbi, 11422 .epd = epd, 11423 .hpd = hpd, 11424 .tsz_oob = tsz_oob, 11425 .ds = ds, 11426 .ha = ha, 11427 .hd = ha && hd, 11428 .gran = gran, 11429 }; 11430 } 11431 11432 /* 11433 * Note that signed overflow is undefined in C. The following routines are 11434 * careful to use unsigned types where modulo arithmetic is required. 11435 * Failure to do so _will_ break on newer gcc. 11436 */ 11437 11438 /* Signed saturating arithmetic. */ 11439 11440 /* Perform 16-bit signed saturating addition. */ 11441 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11442 { 11443 uint16_t res; 11444 11445 res = a + b; 11446 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11447 if (a & 0x8000) { 11448 res = 0x8000; 11449 } else { 11450 res = 0x7fff; 11451 } 11452 } 11453 return res; 11454 } 11455 11456 /* Perform 8-bit signed saturating addition. */ 11457 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11458 { 11459 uint8_t res; 11460 11461 res = a + b; 11462 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11463 if (a & 0x80) { 11464 res = 0x80; 11465 } else { 11466 res = 0x7f; 11467 } 11468 } 11469 return res; 11470 } 11471 11472 /* Perform 16-bit signed saturating subtraction. */ 11473 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11474 { 11475 uint16_t res; 11476 11477 res = a - b; 11478 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11479 if (a & 0x8000) { 11480 res = 0x8000; 11481 } else { 11482 res = 0x7fff; 11483 } 11484 } 11485 return res; 11486 } 11487 11488 /* Perform 8-bit signed saturating subtraction. */ 11489 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11490 { 11491 uint8_t res; 11492 11493 res = a - b; 11494 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11495 if (a & 0x80) { 11496 res = 0x80; 11497 } else { 11498 res = 0x7f; 11499 } 11500 } 11501 return res; 11502 } 11503 11504 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11505 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11506 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11507 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11508 #define PFX q 11509 11510 #include "op_addsub.h" 11511 11512 /* Unsigned saturating arithmetic. */ 11513 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11514 { 11515 uint16_t res; 11516 res = a + b; 11517 if (res < a) { 11518 res = 0xffff; 11519 } 11520 return res; 11521 } 11522 11523 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11524 { 11525 if (a > b) { 11526 return a - b; 11527 } else { 11528 return 0; 11529 } 11530 } 11531 11532 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11533 { 11534 uint8_t res; 11535 res = a + b; 11536 if (res < a) { 11537 res = 0xff; 11538 } 11539 return res; 11540 } 11541 11542 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11543 { 11544 if (a > b) { 11545 return a - b; 11546 } else { 11547 return 0; 11548 } 11549 } 11550 11551 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11552 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11553 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11554 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11555 #define PFX uq 11556 11557 #include "op_addsub.h" 11558 11559 /* Signed modulo arithmetic. */ 11560 #define SARITH16(a, b, n, op) do { \ 11561 int32_t sum; \ 11562 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11563 RESULT(sum, n, 16); \ 11564 if (sum >= 0) \ 11565 ge |= 3 << (n * 2); \ 11566 } while (0) 11567 11568 #define SARITH8(a, b, n, op) do { \ 11569 int32_t sum; \ 11570 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11571 RESULT(sum, n, 8); \ 11572 if (sum >= 0) \ 11573 ge |= 1 << n; \ 11574 } while (0) 11575 11576 11577 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11578 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11579 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11580 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11581 #define PFX s 11582 #define ARITH_GE 11583 11584 #include "op_addsub.h" 11585 11586 /* Unsigned modulo arithmetic. */ 11587 #define ADD16(a, b, n) do { \ 11588 uint32_t sum; \ 11589 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11590 RESULT(sum, n, 16); \ 11591 if ((sum >> 16) == 1) \ 11592 ge |= 3 << (n * 2); \ 11593 } while (0) 11594 11595 #define ADD8(a, b, n) do { \ 11596 uint32_t sum; \ 11597 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11598 RESULT(sum, n, 8); \ 11599 if ((sum >> 8) == 1) \ 11600 ge |= 1 << n; \ 11601 } while (0) 11602 11603 #define SUB16(a, b, n) do { \ 11604 uint32_t sum; \ 11605 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11606 RESULT(sum, n, 16); \ 11607 if ((sum >> 16) == 0) \ 11608 ge |= 3 << (n * 2); \ 11609 } while (0) 11610 11611 #define SUB8(a, b, n) do { \ 11612 uint32_t sum; \ 11613 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11614 RESULT(sum, n, 8); \ 11615 if ((sum >> 8) == 0) \ 11616 ge |= 1 << n; \ 11617 } while (0) 11618 11619 #define PFX u 11620 #define ARITH_GE 11621 11622 #include "op_addsub.h" 11623 11624 /* Halved signed arithmetic. */ 11625 #define ADD16(a, b, n) \ 11626 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11627 #define SUB16(a, b, n) \ 11628 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11629 #define ADD8(a, b, n) \ 11630 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11631 #define SUB8(a, b, n) \ 11632 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11633 #define PFX sh 11634 11635 #include "op_addsub.h" 11636 11637 /* Halved unsigned arithmetic. */ 11638 #define ADD16(a, b, n) \ 11639 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11640 #define SUB16(a, b, n) \ 11641 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11642 #define ADD8(a, b, n) \ 11643 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11644 #define SUB8(a, b, n) \ 11645 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11646 #define PFX uh 11647 11648 #include "op_addsub.h" 11649 11650 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11651 { 11652 if (a > b) { 11653 return a - b; 11654 } else { 11655 return b - a; 11656 } 11657 } 11658 11659 /* Unsigned sum of absolute byte differences. */ 11660 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11661 { 11662 uint32_t sum; 11663 sum = do_usad(a, b); 11664 sum += do_usad(a >> 8, b >> 8); 11665 sum += do_usad(a >> 16, b >> 16); 11666 sum += do_usad(a >> 24, b >> 24); 11667 return sum; 11668 } 11669 11670 /* For ARMv6 SEL instruction. */ 11671 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11672 { 11673 uint32_t mask; 11674 11675 mask = 0; 11676 if (flags & 1) { 11677 mask |= 0xff; 11678 } 11679 if (flags & 2) { 11680 mask |= 0xff00; 11681 } 11682 if (flags & 4) { 11683 mask |= 0xff0000; 11684 } 11685 if (flags & 8) { 11686 mask |= 0xff000000; 11687 } 11688 return (a & mask) | (b & ~mask); 11689 } 11690 11691 /* 11692 * CRC helpers. 11693 * The upper bytes of val (above the number specified by 'bytes') must have 11694 * been zeroed out by the caller. 11695 */ 11696 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11697 { 11698 uint8_t buf[4]; 11699 11700 stl_le_p(buf, val); 11701 11702 /* zlib crc32 converts the accumulator and output to one's complement. */ 11703 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11704 } 11705 11706 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11707 { 11708 uint8_t buf[4]; 11709 11710 stl_le_p(buf, val); 11711 11712 /* Linux crc32c converts the output to one's complement. */ 11713 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11714 } 11715 11716 /* 11717 * Return the exception level to which FP-disabled exceptions should 11718 * be taken, or 0 if FP is enabled. 11719 */ 11720 int fp_exception_el(CPUARMState *env, int cur_el) 11721 { 11722 #ifndef CONFIG_USER_ONLY 11723 uint64_t hcr_el2; 11724 11725 /* 11726 * CPACR and the CPTR registers don't exist before v6, so FP is 11727 * always accessible 11728 */ 11729 if (!arm_feature(env, ARM_FEATURE_V6)) { 11730 return 0; 11731 } 11732 11733 if (arm_feature(env, ARM_FEATURE_M)) { 11734 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11735 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11736 return 1; 11737 } 11738 11739 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11740 if (!extract32(env->v7m.nsacr, 10, 1)) { 11741 /* FP insns cause a NOCP UsageFault taken to Secure */ 11742 return 3; 11743 } 11744 } 11745 11746 return 0; 11747 } 11748 11749 hcr_el2 = arm_hcr_el2_eff(env); 11750 11751 /* 11752 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11753 * 0, 2 : trap EL0 and EL1/PL1 accesses 11754 * 1 : trap only EL0 accesses 11755 * 3 : trap no accesses 11756 * This register is ignored if E2H+TGE are both set. 11757 */ 11758 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11759 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11760 11761 switch (fpen) { 11762 case 1: 11763 if (cur_el != 0) { 11764 break; 11765 } 11766 /* fall through */ 11767 case 0: 11768 case 2: 11769 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11770 if (!arm_el_is_aa64(env, 3) 11771 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11772 return 3; 11773 } 11774 if (cur_el <= 1) { 11775 return 1; 11776 } 11777 break; 11778 } 11779 } 11780 11781 /* 11782 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11783 * to control non-secure access to the FPU. It doesn't have any 11784 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11785 */ 11786 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11787 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11788 if (!extract32(env->cp15.nsacr, 10, 1)) { 11789 /* FP insns act as UNDEF */ 11790 return cur_el == 2 ? 2 : 1; 11791 } 11792 } 11793 11794 /* 11795 * CPTR_EL2 is present in v7VE or v8, and changes format 11796 * with HCR_EL2.E2H (regardless of TGE). 11797 */ 11798 if (cur_el <= 2) { 11799 if (hcr_el2 & HCR_E2H) { 11800 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11801 case 1: 11802 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11803 break; 11804 } 11805 /* fall through */ 11806 case 0: 11807 case 2: 11808 return 2; 11809 } 11810 } else if (arm_is_el2_enabled(env)) { 11811 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11812 return 2; 11813 } 11814 } 11815 } 11816 11817 /* CPTR_EL3 : present in v8 */ 11818 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11819 /* Trap all FP ops to EL3 */ 11820 return 3; 11821 } 11822 #endif 11823 return 0; 11824 } 11825 11826 /* Return the exception level we're running at if this is our mmu_idx */ 11827 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 11828 { 11829 if (mmu_idx & ARM_MMU_IDX_M) { 11830 return mmu_idx & ARM_MMU_IDX_M_PRIV; 11831 } 11832 11833 switch (mmu_idx) { 11834 case ARMMMUIdx_E10_0: 11835 case ARMMMUIdx_E20_0: 11836 return 0; 11837 case ARMMMUIdx_E10_1: 11838 case ARMMMUIdx_E10_1_PAN: 11839 return 1; 11840 case ARMMMUIdx_E2: 11841 case ARMMMUIdx_E20_2: 11842 case ARMMMUIdx_E20_2_PAN: 11843 return 2; 11844 case ARMMMUIdx_E3: 11845 return 3; 11846 default: 11847 g_assert_not_reached(); 11848 } 11849 } 11850 11851 #ifndef CONFIG_TCG 11852 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11853 { 11854 g_assert_not_reached(); 11855 } 11856 #endif 11857 11858 static bool arm_pan_enabled(CPUARMState *env) 11859 { 11860 if (is_a64(env)) { 11861 return env->pstate & PSTATE_PAN; 11862 } else { 11863 return env->uncached_cpsr & CPSR_PAN; 11864 } 11865 } 11866 11867 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11868 { 11869 ARMMMUIdx idx; 11870 uint64_t hcr; 11871 11872 if (arm_feature(env, ARM_FEATURE_M)) { 11873 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11874 } 11875 11876 /* See ARM pseudo-function ELIsInHost. */ 11877 switch (el) { 11878 case 0: 11879 hcr = arm_hcr_el2_eff(env); 11880 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11881 idx = ARMMMUIdx_E20_0; 11882 } else { 11883 idx = ARMMMUIdx_E10_0; 11884 } 11885 break; 11886 case 1: 11887 if (arm_pan_enabled(env)) { 11888 idx = ARMMMUIdx_E10_1_PAN; 11889 } else { 11890 idx = ARMMMUIdx_E10_1; 11891 } 11892 break; 11893 case 2: 11894 /* Note that TGE does not apply at EL2. */ 11895 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11896 if (arm_pan_enabled(env)) { 11897 idx = ARMMMUIdx_E20_2_PAN; 11898 } else { 11899 idx = ARMMMUIdx_E20_2; 11900 } 11901 } else { 11902 idx = ARMMMUIdx_E2; 11903 } 11904 break; 11905 case 3: 11906 return ARMMMUIdx_E3; 11907 default: 11908 g_assert_not_reached(); 11909 } 11910 11911 return idx; 11912 } 11913 11914 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11915 { 11916 return arm_mmu_idx_el(env, arm_current_el(env)); 11917 } 11918 11919 static bool mve_no_pred(CPUARMState *env) 11920 { 11921 /* 11922 * Return true if there is definitely no predication of MVE 11923 * instructions by VPR or LTPSIZE. (Returning false even if there 11924 * isn't any predication is OK; generated code will just be 11925 * a little worse.) 11926 * If the CPU does not implement MVE then this TB flag is always 0. 11927 * 11928 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11929 * logic in gen_update_fp_context() needs to be updated to match. 11930 * 11931 * We do not include the effect of the ECI bits here -- they are 11932 * tracked in other TB flags. This simplifies the logic for 11933 * "when did we emit code that changes the MVE_NO_PRED TB flag 11934 * and thus need to end the TB?". 11935 */ 11936 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11937 return false; 11938 } 11939 if (env->v7m.vpr) { 11940 return false; 11941 } 11942 if (env->v7m.ltpsize < 4) { 11943 return false; 11944 } 11945 return true; 11946 } 11947 11948 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11949 target_ulong *cs_base, uint32_t *pflags) 11950 { 11951 CPUARMTBFlags flags; 11952 11953 assert_hflags_rebuild_correctly(env); 11954 flags = env->hflags; 11955 11956 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11957 *pc = env->pc; 11958 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11959 DP_TBFLAG_A64(flags, BTYPE, env->btype); 11960 } 11961 } else { 11962 *pc = env->regs[15]; 11963 11964 if (arm_feature(env, ARM_FEATURE_M)) { 11965 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11966 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11967 != env->v7m.secure) { 11968 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 11969 } 11970 11971 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11972 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11973 (env->v7m.secure && 11974 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11975 /* 11976 * ASPEN is set, but FPCA/SFPA indicate that there is no 11977 * active FP context; we must create a new FP context before 11978 * executing any FP insn. 11979 */ 11980 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 11981 } 11982 11983 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11984 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11985 DP_TBFLAG_M32(flags, LSPACT, 1); 11986 } 11987 11988 if (mve_no_pred(env)) { 11989 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 11990 } 11991 } else { 11992 /* 11993 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11994 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11995 */ 11996 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11997 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 11998 } else { 11999 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12000 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12001 } 12002 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12003 DP_TBFLAG_A32(flags, VFPEN, 1); 12004 } 12005 } 12006 12007 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12008 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12009 } 12010 12011 /* 12012 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12013 * states defined in the ARM ARM for software singlestep: 12014 * SS_ACTIVE PSTATE.SS State 12015 * 0 x Inactive (the TB flag for SS is always 0) 12016 * 1 0 Active-pending 12017 * 1 1 Active-not-pending 12018 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12019 */ 12020 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12021 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12022 } 12023 12024 *pflags = flags.flags; 12025 *cs_base = flags.flags2; 12026 } 12027 12028 #ifdef TARGET_AARCH64 12029 /* 12030 * The manual says that when SVE is enabled and VQ is widened the 12031 * implementation is allowed to zero the previously inaccessible 12032 * portion of the registers. The corollary to that is that when 12033 * SVE is enabled and VQ is narrowed we are also allowed to zero 12034 * the now inaccessible portion of the registers. 12035 * 12036 * The intent of this is that no predicate bit beyond VQ is ever set. 12037 * Which means that some operations on predicate registers themselves 12038 * may operate on full uint64_t or even unrolled across the maximum 12039 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12040 * may well be cheaper than conditionals to restrict the operation 12041 * to the relevant portion of a uint16_t[16]. 12042 */ 12043 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12044 { 12045 int i, j; 12046 uint64_t pmask; 12047 12048 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12049 assert(vq <= env_archcpu(env)->sve_max_vq); 12050 12051 /* Zap the high bits of the zregs. */ 12052 for (i = 0; i < 32; i++) { 12053 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12054 } 12055 12056 /* Zap the high bits of the pregs and ffr. */ 12057 pmask = 0; 12058 if (vq & 3) { 12059 pmask = ~(-1ULL << (16 * (vq & 3))); 12060 } 12061 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12062 for (i = 0; i < 17; ++i) { 12063 env->vfp.pregs[i].p[j] &= pmask; 12064 } 12065 pmask = 0; 12066 } 12067 } 12068 12069 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12070 { 12071 int exc_el; 12072 12073 if (sm) { 12074 exc_el = sme_exception_el(env, el); 12075 } else { 12076 exc_el = sve_exception_el(env, el); 12077 } 12078 if (exc_el) { 12079 return 0; /* disabled */ 12080 } 12081 return sve_vqm1_for_el_sm(env, el, sm); 12082 } 12083 12084 /* 12085 * Notice a change in SVE vector size when changing EL. 12086 */ 12087 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12088 int new_el, bool el0_a64) 12089 { 12090 ARMCPU *cpu = env_archcpu(env); 12091 int old_len, new_len; 12092 bool old_a64, new_a64, sm; 12093 12094 /* Nothing to do if no SVE. */ 12095 if (!cpu_isar_feature(aa64_sve, cpu)) { 12096 return; 12097 } 12098 12099 /* Nothing to do if FP is disabled in either EL. */ 12100 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12101 return; 12102 } 12103 12104 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12105 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12106 12107 /* 12108 * Both AArch64.TakeException and AArch64.ExceptionReturn 12109 * invoke ResetSVEState when taking an exception from, or 12110 * returning to, AArch32 state when PSTATE.SM is enabled. 12111 */ 12112 sm = FIELD_EX64(env->svcr, SVCR, SM); 12113 if (old_a64 != new_a64 && sm) { 12114 arm_reset_sve_state(env); 12115 return; 12116 } 12117 12118 /* 12119 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12120 * at ELx, or not available because the EL is in AArch32 state, then 12121 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12122 * has an effective value of 0". 12123 * 12124 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12125 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12126 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12127 * we already have the correct register contents when encountering the 12128 * vq0->vq0 transition between EL0->EL1. 12129 */ 12130 old_len = new_len = 0; 12131 if (old_a64) { 12132 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12133 } 12134 if (new_a64) { 12135 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12136 } 12137 12138 /* When changing vector length, clear inaccessible state. */ 12139 if (new_len < old_len) { 12140 aarch64_sve_narrow_vq(env, new_len + 1); 12141 } 12142 } 12143 #endif 12144 12145 #ifndef CONFIG_USER_ONLY 12146 ARMSecuritySpace arm_security_space(CPUARMState *env) 12147 { 12148 if (arm_feature(env, ARM_FEATURE_M)) { 12149 return arm_secure_to_space(env->v7m.secure); 12150 } 12151 12152 /* 12153 * If EL3 is not supported then the secure state is implementation 12154 * defined, in which case QEMU defaults to non-secure. 12155 */ 12156 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12157 return ARMSS_NonSecure; 12158 } 12159 12160 /* Check for AArch64 EL3 or AArch32 Mon. */ 12161 if (is_a64(env)) { 12162 if (extract32(env->pstate, 2, 2) == 3) { 12163 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 12164 return ARMSS_Root; 12165 } else { 12166 return ARMSS_Secure; 12167 } 12168 } 12169 } else { 12170 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 12171 return ARMSS_Secure; 12172 } 12173 } 12174 12175 return arm_security_space_below_el3(env); 12176 } 12177 12178 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 12179 { 12180 assert(!arm_feature(env, ARM_FEATURE_M)); 12181 12182 /* 12183 * If EL3 is not supported then the secure state is implementation 12184 * defined, in which case QEMU defaults to non-secure. 12185 */ 12186 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12187 return ARMSS_NonSecure; 12188 } 12189 12190 /* 12191 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 12192 * Ignoring NSE when !NS retains consistency without having to 12193 * modify other predicates. 12194 */ 12195 if (!(env->cp15.scr_el3 & SCR_NS)) { 12196 return ARMSS_Secure; 12197 } else if (env->cp15.scr_el3 & SCR_NSE) { 12198 return ARMSS_Realm; 12199 } else { 12200 return ARMSS_NonSecure; 12201 } 12202 } 12203 #endif /* !CONFIG_USER_ONLY */ 12204