1 #include "qemu/osdep.h" 2 #include "trace.h" 3 #include "cpu.h" 4 #include "internals.h" 5 #include "exec/gdbstub.h" 6 #include "exec/helper-proto.h" 7 #include "qemu/host-utils.h" 8 #include "sysemu/arch_init.h" 9 #include "sysemu/sysemu.h" 10 #include "qemu/bitops.h" 11 #include "qemu/crc32c.h" 12 #include "exec/exec-all.h" 13 #include "exec/cpu_ldst.h" 14 #include "arm_ldst.h" 15 #include <zlib.h> /* For crc32 */ 16 #include "exec/semihost.h" 17 #include "sysemu/kvm.h" 18 19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 20 21 #ifndef CONFIG_USER_ONLY 22 static bool get_phys_addr(CPUARMState *env, target_ulong address, 23 int access_type, ARMMMUIdx mmu_idx, 24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 25 target_ulong *page_size, uint32_t *fsr, 26 ARMMMUFaultInfo *fi); 27 28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 29 int access_type, ARMMMUIdx mmu_idx, 30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 31 target_ulong *page_size_ptr, uint32_t *fsr, 32 ARMMMUFaultInfo *fi); 33 34 /* Definitions for the PMCCNTR and PMCR registers */ 35 #define PMCRD 0x8 36 #define PMCRC 0x4 37 #define PMCRE 0x1 38 #endif 39 40 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 41 { 42 int nregs; 43 44 /* VFP data registers are always little-endian. */ 45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 46 if (reg < nregs) { 47 stfq_le_p(buf, env->vfp.regs[reg]); 48 return 8; 49 } 50 if (arm_feature(env, ARM_FEATURE_NEON)) { 51 /* Aliases for Q regs. */ 52 nregs += 16; 53 if (reg < nregs) { 54 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); 55 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); 56 return 16; 57 } 58 } 59 switch (reg - nregs) { 60 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 61 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 62 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 63 } 64 return 0; 65 } 66 67 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 68 { 69 int nregs; 70 71 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 72 if (reg < nregs) { 73 env->vfp.regs[reg] = ldfq_le_p(buf); 74 return 8; 75 } 76 if (arm_feature(env, ARM_FEATURE_NEON)) { 77 nregs += 16; 78 if (reg < nregs) { 79 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); 80 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); 81 return 16; 82 } 83 } 84 switch (reg - nregs) { 85 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 86 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 87 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 88 } 89 return 0; 90 } 91 92 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 93 { 94 switch (reg) { 95 case 0 ... 31: 96 /* 128 bit FP register */ 97 stfq_le_p(buf, env->vfp.regs[reg * 2]); 98 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); 99 return 16; 100 case 32: 101 /* FPSR */ 102 stl_p(buf, vfp_get_fpsr(env)); 103 return 4; 104 case 33: 105 /* FPCR */ 106 stl_p(buf, vfp_get_fpcr(env)); 107 return 4; 108 default: 109 return 0; 110 } 111 } 112 113 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 114 { 115 switch (reg) { 116 case 0 ... 31: 117 /* 128 bit FP register */ 118 env->vfp.regs[reg * 2] = ldfq_le_p(buf); 119 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); 120 return 16; 121 case 32: 122 /* FPSR */ 123 vfp_set_fpsr(env, ldl_p(buf)); 124 return 4; 125 case 33: 126 /* FPCR */ 127 vfp_set_fpcr(env, ldl_p(buf)); 128 return 4; 129 default: 130 return 0; 131 } 132 } 133 134 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 135 { 136 assert(ri->fieldoffset); 137 if (cpreg_field_is_64bit(ri)) { 138 return CPREG_FIELD64(env, ri); 139 } else { 140 return CPREG_FIELD32(env, ri); 141 } 142 } 143 144 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 145 uint64_t value) 146 { 147 assert(ri->fieldoffset); 148 if (cpreg_field_is_64bit(ri)) { 149 CPREG_FIELD64(env, ri) = value; 150 } else { 151 CPREG_FIELD32(env, ri) = value; 152 } 153 } 154 155 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 156 { 157 return (char *)env + ri->fieldoffset; 158 } 159 160 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 161 { 162 /* Raw read of a coprocessor register (as needed for migration, etc). */ 163 if (ri->type & ARM_CP_CONST) { 164 return ri->resetvalue; 165 } else if (ri->raw_readfn) { 166 return ri->raw_readfn(env, ri); 167 } else if (ri->readfn) { 168 return ri->readfn(env, ri); 169 } else { 170 return raw_read(env, ri); 171 } 172 } 173 174 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 175 uint64_t v) 176 { 177 /* Raw write of a coprocessor register (as needed for migration, etc). 178 * Note that constant registers are treated as write-ignored; the 179 * caller should check for success by whether a readback gives the 180 * value written. 181 */ 182 if (ri->type & ARM_CP_CONST) { 183 return; 184 } else if (ri->raw_writefn) { 185 ri->raw_writefn(env, ri, v); 186 } else if (ri->writefn) { 187 ri->writefn(env, ri, v); 188 } else { 189 raw_write(env, ri, v); 190 } 191 } 192 193 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 194 { 195 /* Return true if the regdef would cause an assertion if you called 196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 197 * program bug for it not to have the NO_RAW flag). 198 * NB that returning false here doesn't necessarily mean that calling 199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 200 * read/write access functions which are safe for raw use" from "has 201 * read/write access functions which have side effects but has forgotten 202 * to provide raw access functions". 203 * The tests here line up with the conditions in read/write_raw_cp_reg() 204 * and assertions in raw_read()/raw_write(). 205 */ 206 if ((ri->type & ARM_CP_CONST) || 207 ri->fieldoffset || 208 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 209 return false; 210 } 211 return true; 212 } 213 214 bool write_cpustate_to_list(ARMCPU *cpu) 215 { 216 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 217 int i; 218 bool ok = true; 219 220 for (i = 0; i < cpu->cpreg_array_len; i++) { 221 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 222 const ARMCPRegInfo *ri; 223 224 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 225 if (!ri) { 226 ok = false; 227 continue; 228 } 229 if (ri->type & ARM_CP_NO_RAW) { 230 continue; 231 } 232 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 233 } 234 return ok; 235 } 236 237 bool write_list_to_cpustate(ARMCPU *cpu) 238 { 239 int i; 240 bool ok = true; 241 242 for (i = 0; i < cpu->cpreg_array_len; i++) { 243 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 244 uint64_t v = cpu->cpreg_values[i]; 245 const ARMCPRegInfo *ri; 246 247 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 248 if (!ri) { 249 ok = false; 250 continue; 251 } 252 if (ri->type & ARM_CP_NO_RAW) { 253 continue; 254 } 255 /* Write value and confirm it reads back as written 256 * (to catch read-only registers and partially read-only 257 * registers where the incoming migration value doesn't match) 258 */ 259 write_raw_cp_reg(&cpu->env, ri, v); 260 if (read_raw_cp_reg(&cpu->env, ri) != v) { 261 ok = false; 262 } 263 } 264 return ok; 265 } 266 267 static void add_cpreg_to_list(gpointer key, gpointer opaque) 268 { 269 ARMCPU *cpu = opaque; 270 uint64_t regidx; 271 const ARMCPRegInfo *ri; 272 273 regidx = *(uint32_t *)key; 274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 275 276 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 277 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 278 /* The value array need not be initialized at this point */ 279 cpu->cpreg_array_len++; 280 } 281 } 282 283 static void count_cpreg(gpointer key, gpointer opaque) 284 { 285 ARMCPU *cpu = opaque; 286 uint64_t regidx; 287 const ARMCPRegInfo *ri; 288 289 regidx = *(uint32_t *)key; 290 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 291 292 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 293 cpu->cpreg_array_len++; 294 } 295 } 296 297 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 298 { 299 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 300 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 301 302 if (aidx > bidx) { 303 return 1; 304 } 305 if (aidx < bidx) { 306 return -1; 307 } 308 return 0; 309 } 310 311 void init_cpreg_list(ARMCPU *cpu) 312 { 313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 314 * Note that we require cpreg_tuples[] to be sorted by key ID. 315 */ 316 GList *keys; 317 int arraylen; 318 319 keys = g_hash_table_get_keys(cpu->cp_regs); 320 keys = g_list_sort(keys, cpreg_key_compare); 321 322 cpu->cpreg_array_len = 0; 323 324 g_list_foreach(keys, count_cpreg, cpu); 325 326 arraylen = cpu->cpreg_array_len; 327 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 328 cpu->cpreg_values = g_new(uint64_t, arraylen); 329 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 330 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 331 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 332 cpu->cpreg_array_len = 0; 333 334 g_list_foreach(keys, add_cpreg_to_list, cpu); 335 336 assert(cpu->cpreg_array_len == arraylen); 337 338 g_list_free(keys); 339 } 340 341 /* 342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 344 * 345 * access_el3_aa32ns: Used to check AArch32 register views. 346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 347 */ 348 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 349 const ARMCPRegInfo *ri, 350 bool isread) 351 { 352 bool secure = arm_is_secure_below_el3(env); 353 354 assert(!arm_el_is_aa64(env, 3)); 355 if (secure) { 356 return CP_ACCESS_TRAP_UNCATEGORIZED; 357 } 358 return CP_ACCESS_OK; 359 } 360 361 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 362 const ARMCPRegInfo *ri, 363 bool isread) 364 { 365 if (!arm_el_is_aa64(env, 3)) { 366 return access_el3_aa32ns(env, ri, isread); 367 } 368 return CP_ACCESS_OK; 369 } 370 371 /* Some secure-only AArch32 registers trap to EL3 if used from 372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 374 * We assume that the .access field is set to PL1_RW. 375 */ 376 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 377 const ARMCPRegInfo *ri, 378 bool isread) 379 { 380 if (arm_current_el(env) == 3) { 381 return CP_ACCESS_OK; 382 } 383 if (arm_is_secure_below_el3(env)) { 384 return CP_ACCESS_TRAP_EL3; 385 } 386 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 387 return CP_ACCESS_TRAP_UNCATEGORIZED; 388 } 389 390 /* Check for traps to "powerdown debug" registers, which are controlled 391 * by MDCR.TDOSA 392 */ 393 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 394 bool isread) 395 { 396 int el = arm_current_el(env); 397 398 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) 399 && !arm_is_secure_below_el3(env)) { 400 return CP_ACCESS_TRAP_EL2; 401 } 402 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 403 return CP_ACCESS_TRAP_EL3; 404 } 405 return CP_ACCESS_OK; 406 } 407 408 /* Check for traps to "debug ROM" registers, which are controlled 409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 410 */ 411 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 412 bool isread) 413 { 414 int el = arm_current_el(env); 415 416 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) 417 && !arm_is_secure_below_el3(env)) { 418 return CP_ACCESS_TRAP_EL2; 419 } 420 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 421 return CP_ACCESS_TRAP_EL3; 422 } 423 return CP_ACCESS_OK; 424 } 425 426 /* Check for traps to general debug registers, which are controlled 427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 428 */ 429 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 430 bool isread) 431 { 432 int el = arm_current_el(env); 433 434 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) 435 && !arm_is_secure_below_el3(env)) { 436 return CP_ACCESS_TRAP_EL2; 437 } 438 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 439 return CP_ACCESS_TRAP_EL3; 440 } 441 return CP_ACCESS_OK; 442 } 443 444 /* Check for traps to performance monitor registers, which are controlled 445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 446 */ 447 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 448 bool isread) 449 { 450 int el = arm_current_el(env); 451 452 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 453 && !arm_is_secure_below_el3(env)) { 454 return CP_ACCESS_TRAP_EL2; 455 } 456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 457 return CP_ACCESS_TRAP_EL3; 458 } 459 return CP_ACCESS_OK; 460 } 461 462 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 463 { 464 ARMCPU *cpu = arm_env_get_cpu(env); 465 466 raw_write(env, ri, value); 467 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 468 } 469 470 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 471 { 472 ARMCPU *cpu = arm_env_get_cpu(env); 473 474 if (raw_read(env, ri) != value) { 475 /* Unlike real hardware the qemu TLB uses virtual addresses, 476 * not modified virtual addresses, so this causes a TLB flush. 477 */ 478 tlb_flush(CPU(cpu)); 479 raw_write(env, ri, value); 480 } 481 } 482 483 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 484 uint64_t value) 485 { 486 ARMCPU *cpu = arm_env_get_cpu(env); 487 488 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU) 489 && !extended_addresses_enabled(env)) { 490 /* For VMSA (when not using the LPAE long descriptor page table 491 * format) this register includes the ASID, so do a TLB flush. 492 * For PMSA it is purely a process ID and no action is needed. 493 */ 494 tlb_flush(CPU(cpu)); 495 } 496 raw_write(env, ri, value); 497 } 498 499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 /* Invalidate all (TLBIALL) */ 503 ARMCPU *cpu = arm_env_get_cpu(env); 504 505 tlb_flush(CPU(cpu)); 506 } 507 508 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 509 uint64_t value) 510 { 511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 512 ARMCPU *cpu = arm_env_get_cpu(env); 513 514 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 515 } 516 517 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 518 uint64_t value) 519 { 520 /* Invalidate by ASID (TLBIASID) */ 521 ARMCPU *cpu = arm_env_get_cpu(env); 522 523 tlb_flush(CPU(cpu)); 524 } 525 526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 527 uint64_t value) 528 { 529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 530 ARMCPU *cpu = arm_env_get_cpu(env); 531 532 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 533 } 534 535 /* IS variants of TLB operations must affect all cores */ 536 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 537 uint64_t value) 538 { 539 CPUState *cs = ENV_GET_CPU(env); 540 541 tlb_flush_all_cpus_synced(cs); 542 } 543 544 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 545 uint64_t value) 546 { 547 CPUState *cs = ENV_GET_CPU(env); 548 549 tlb_flush_all_cpus_synced(cs); 550 } 551 552 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 553 uint64_t value) 554 { 555 CPUState *cs = ENV_GET_CPU(env); 556 557 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 558 } 559 560 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 561 uint64_t value) 562 { 563 CPUState *cs = ENV_GET_CPU(env); 564 565 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 566 } 567 568 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 569 uint64_t value) 570 { 571 CPUState *cs = ENV_GET_CPU(env); 572 573 tlb_flush_by_mmuidx(cs, 574 (1 << ARMMMUIdx_S12NSE1) | 575 (1 << ARMMMUIdx_S12NSE0) | 576 (1 << ARMMMUIdx_S2NS)); 577 } 578 579 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 580 uint64_t value) 581 { 582 CPUState *cs = ENV_GET_CPU(env); 583 584 tlb_flush_by_mmuidx_all_cpus_synced(cs, 585 (1 << ARMMMUIdx_S12NSE1) | 586 (1 << ARMMMUIdx_S12NSE0) | 587 (1 << ARMMMUIdx_S2NS)); 588 } 589 590 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 591 uint64_t value) 592 { 593 /* Invalidate by IPA. This has to invalidate any structures that 594 * contain only stage 2 translation information, but does not need 595 * to apply to structures that contain combined stage 1 and stage 2 596 * translation information. 597 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 598 */ 599 CPUState *cs = ENV_GET_CPU(env); 600 uint64_t pageaddr; 601 602 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 603 return; 604 } 605 606 pageaddr = sextract64(value << 12, 0, 40); 607 608 tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S2NS)); 609 } 610 611 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 612 uint64_t value) 613 { 614 CPUState *cs = ENV_GET_CPU(env); 615 uint64_t pageaddr; 616 617 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 618 return; 619 } 620 621 pageaddr = sextract64(value << 12, 0, 40); 622 623 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 624 (1 << ARMMMUIdx_S2NS)); 625 } 626 627 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 628 uint64_t value) 629 { 630 CPUState *cs = ENV_GET_CPU(env); 631 632 tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E2)); 633 } 634 635 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 636 uint64_t value) 637 { 638 CPUState *cs = ENV_GET_CPU(env); 639 640 tlb_flush_by_mmuidx_all_cpus_synced(cs, (1 << ARMMMUIdx_S1E2)); 641 } 642 643 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 644 uint64_t value) 645 { 646 CPUState *cs = ENV_GET_CPU(env); 647 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 648 649 tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E2)); 650 } 651 652 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 653 uint64_t value) 654 { 655 CPUState *cs = ENV_GET_CPU(env); 656 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 657 658 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 659 (1 << ARMMMUIdx_S1E2)); 660 } 661 662 static const ARMCPRegInfo cp_reginfo[] = { 663 /* Define the secure and non-secure FCSE identifier CP registers 664 * separately because there is no secure bank in V8 (no _EL3). This allows 665 * the secure register to be properly reset and migrated. There is also no 666 * v8 EL1 version of the register so the non-secure instance stands alone. 667 */ 668 { .name = "FCSEIDR(NS)", 669 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 670 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 671 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 672 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 673 { .name = "FCSEIDR(S)", 674 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 675 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 676 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 677 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 678 /* Define the secure and non-secure context identifier CP registers 679 * separately because there is no secure bank in V8 (no _EL3). This allows 680 * the secure register to be properly reset and migrated. In the 681 * non-secure case, the 32-bit register will have reset and migration 682 * disabled during registration as it is handled by the 64-bit instance. 683 */ 684 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 685 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 686 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 687 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 688 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 689 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, 690 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 691 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 692 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 693 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 694 REGINFO_SENTINEL 695 }; 696 697 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 698 /* NB: Some of these registers exist in v8 but with more precise 699 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 700 */ 701 /* MMU Domain access control / MPU write buffer control */ 702 { .name = "DACR", 703 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 704 .access = PL1_RW, .resetvalue = 0, 705 .writefn = dacr_write, .raw_writefn = raw_write, 706 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 707 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 708 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 709 * For v6 and v5, these mappings are overly broad. 710 */ 711 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 712 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 713 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 714 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 715 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 716 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 717 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 718 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 719 /* Cache maintenance ops; some of this space may be overridden later. */ 720 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 721 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 722 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 723 REGINFO_SENTINEL 724 }; 725 726 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 727 /* Not all pre-v6 cores implemented this WFI, so this is slightly 728 * over-broad. 729 */ 730 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 731 .access = PL1_W, .type = ARM_CP_WFI }, 732 REGINFO_SENTINEL 733 }; 734 735 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 736 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 737 * is UNPREDICTABLE; we choose to NOP as most implementations do). 738 */ 739 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 740 .access = PL1_W, .type = ARM_CP_WFI }, 741 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 742 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 743 * OMAPCP will override this space. 744 */ 745 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 746 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 747 .resetvalue = 0 }, 748 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 749 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 750 .resetvalue = 0 }, 751 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 752 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 753 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 754 .resetvalue = 0 }, 755 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 756 * implementing it as RAZ means the "debug architecture version" bits 757 * will read as a reserved value, which should cause Linux to not try 758 * to use the debug hardware. 759 */ 760 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 761 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 762 /* MMU TLB control. Note that the wildcarding means we cover not just 763 * the unified TLB ops but also the dside/iside/inner-shareable variants. 764 */ 765 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 766 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 767 .type = ARM_CP_NO_RAW }, 768 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 769 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 770 .type = ARM_CP_NO_RAW }, 771 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 772 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 773 .type = ARM_CP_NO_RAW }, 774 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 775 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 776 .type = ARM_CP_NO_RAW }, 777 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 778 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 779 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 780 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 781 REGINFO_SENTINEL 782 }; 783 784 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 785 uint64_t value) 786 { 787 uint32_t mask = 0; 788 789 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 790 if (!arm_feature(env, ARM_FEATURE_V8)) { 791 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 792 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 793 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 794 */ 795 if (arm_feature(env, ARM_FEATURE_VFP)) { 796 /* VFP coprocessor: cp10 & cp11 [23:20] */ 797 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 798 799 if (!arm_feature(env, ARM_FEATURE_NEON)) { 800 /* ASEDIS [31] bit is RAO/WI */ 801 value |= (1 << 31); 802 } 803 804 /* VFPv3 and upwards with NEON implement 32 double precision 805 * registers (D0-D31). 806 */ 807 if (!arm_feature(env, ARM_FEATURE_NEON) || 808 !arm_feature(env, ARM_FEATURE_VFP3)) { 809 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 810 value |= (1 << 30); 811 } 812 } 813 value &= mask; 814 } 815 env->cp15.cpacr_el1 = value; 816 } 817 818 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 819 bool isread) 820 { 821 if (arm_feature(env, ARM_FEATURE_V8)) { 822 /* Check if CPACR accesses are to be trapped to EL2 */ 823 if (arm_current_el(env) == 1 && 824 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 825 return CP_ACCESS_TRAP_EL2; 826 /* Check if CPACR accesses are to be trapped to EL3 */ 827 } else if (arm_current_el(env) < 3 && 828 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 829 return CP_ACCESS_TRAP_EL3; 830 } 831 } 832 833 return CP_ACCESS_OK; 834 } 835 836 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 837 bool isread) 838 { 839 /* Check if CPTR accesses are set to trap to EL3 */ 840 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 841 return CP_ACCESS_TRAP_EL3; 842 } 843 844 return CP_ACCESS_OK; 845 } 846 847 static const ARMCPRegInfo v6_cp_reginfo[] = { 848 /* prefetch by MVA in v6, NOP in v7 */ 849 { .name = "MVA_prefetch", 850 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 851 .access = PL1_W, .type = ARM_CP_NOP }, 852 /* We need to break the TB after ISB to execute self-modifying code 853 * correctly and also to take any pending interrupts immediately. 854 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 855 */ 856 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 857 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 858 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 859 .access = PL0_W, .type = ARM_CP_NOP }, 860 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 861 .access = PL0_W, .type = ARM_CP_NOP }, 862 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 863 .access = PL1_RW, 864 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 865 offsetof(CPUARMState, cp15.ifar_ns) }, 866 .resetvalue = 0, }, 867 /* Watchpoint Fault Address Register : should actually only be present 868 * for 1136, 1176, 11MPCore. 869 */ 870 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 871 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 872 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 873 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 875 .resetvalue = 0, .writefn = cpacr_write }, 876 REGINFO_SENTINEL 877 }; 878 879 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 880 bool isread) 881 { 882 /* Performance monitor registers user accessibility is controlled 883 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 884 * trapping to EL2 or EL3 for other accesses. 885 */ 886 int el = arm_current_el(env); 887 888 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 889 return CP_ACCESS_TRAP; 890 } 891 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 892 && !arm_is_secure_below_el3(env)) { 893 return CP_ACCESS_TRAP_EL2; 894 } 895 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 896 return CP_ACCESS_TRAP_EL3; 897 } 898 899 return CP_ACCESS_OK; 900 } 901 902 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 903 const ARMCPRegInfo *ri, 904 bool isread) 905 { 906 /* ER: event counter read trap control */ 907 if (arm_feature(env, ARM_FEATURE_V8) 908 && arm_current_el(env) == 0 909 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 910 && isread) { 911 return CP_ACCESS_OK; 912 } 913 914 return pmreg_access(env, ri, isread); 915 } 916 917 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 918 const ARMCPRegInfo *ri, 919 bool isread) 920 { 921 /* SW: software increment write trap control */ 922 if (arm_feature(env, ARM_FEATURE_V8) 923 && arm_current_el(env) == 0 924 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 925 && !isread) { 926 return CP_ACCESS_OK; 927 } 928 929 return pmreg_access(env, ri, isread); 930 } 931 932 #ifndef CONFIG_USER_ONLY 933 934 static CPAccessResult pmreg_access_selr(CPUARMState *env, 935 const ARMCPRegInfo *ri, 936 bool isread) 937 { 938 /* ER: event counter read trap control */ 939 if (arm_feature(env, ARM_FEATURE_V8) 940 && arm_current_el(env) == 0 941 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 942 return CP_ACCESS_OK; 943 } 944 945 return pmreg_access(env, ri, isread); 946 } 947 948 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 949 const ARMCPRegInfo *ri, 950 bool isread) 951 { 952 /* CR: cycle counter read trap control */ 953 if (arm_feature(env, ARM_FEATURE_V8) 954 && arm_current_el(env) == 0 955 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 956 && isread) { 957 return CP_ACCESS_OK; 958 } 959 960 return pmreg_access(env, ri, isread); 961 } 962 963 static inline bool arm_ccnt_enabled(CPUARMState *env) 964 { 965 /* This does not support checking PMCCFILTR_EL0 register */ 966 967 if (!(env->cp15.c9_pmcr & PMCRE)) { 968 return false; 969 } 970 971 return true; 972 } 973 974 void pmccntr_sync(CPUARMState *env) 975 { 976 uint64_t temp_ticks; 977 978 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 979 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 980 981 if (env->cp15.c9_pmcr & PMCRD) { 982 /* Increment once every 64 processor clock cycles */ 983 temp_ticks /= 64; 984 } 985 986 if (arm_ccnt_enabled(env)) { 987 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 988 } 989 } 990 991 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 992 uint64_t value) 993 { 994 pmccntr_sync(env); 995 996 if (value & PMCRC) { 997 /* The counter has been reset */ 998 env->cp15.c15_ccnt = 0; 999 } 1000 1001 /* only the DP, X, D and E bits are writable */ 1002 env->cp15.c9_pmcr &= ~0x39; 1003 env->cp15.c9_pmcr |= (value & 0x39); 1004 1005 pmccntr_sync(env); 1006 } 1007 1008 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1009 { 1010 uint64_t total_ticks; 1011 1012 if (!arm_ccnt_enabled(env)) { 1013 /* Counter is disabled, do not change value */ 1014 return env->cp15.c15_ccnt; 1015 } 1016 1017 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1018 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1019 1020 if (env->cp15.c9_pmcr & PMCRD) { 1021 /* Increment once every 64 processor clock cycles */ 1022 total_ticks /= 64; 1023 } 1024 return total_ticks - env->cp15.c15_ccnt; 1025 } 1026 1027 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1028 uint64_t value) 1029 { 1030 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1031 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1032 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1033 * accessed. 1034 */ 1035 env->cp15.c9_pmselr = value & 0x1f; 1036 } 1037 1038 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1039 uint64_t value) 1040 { 1041 uint64_t total_ticks; 1042 1043 if (!arm_ccnt_enabled(env)) { 1044 /* Counter is disabled, set the absolute value */ 1045 env->cp15.c15_ccnt = value; 1046 return; 1047 } 1048 1049 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1050 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1051 1052 if (env->cp15.c9_pmcr & PMCRD) { 1053 /* Increment once every 64 processor clock cycles */ 1054 total_ticks /= 64; 1055 } 1056 env->cp15.c15_ccnt = total_ticks - value; 1057 } 1058 1059 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1060 uint64_t value) 1061 { 1062 uint64_t cur_val = pmccntr_read(env, NULL); 1063 1064 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1065 } 1066 1067 #else /* CONFIG_USER_ONLY */ 1068 1069 void pmccntr_sync(CPUARMState *env) 1070 { 1071 } 1072 1073 #endif 1074 1075 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1076 uint64_t value) 1077 { 1078 pmccntr_sync(env); 1079 env->cp15.pmccfiltr_el0 = value & 0x7E000000; 1080 pmccntr_sync(env); 1081 } 1082 1083 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1084 uint64_t value) 1085 { 1086 value &= (1 << 31); 1087 env->cp15.c9_pmcnten |= value; 1088 } 1089 1090 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1091 uint64_t value) 1092 { 1093 value &= (1 << 31); 1094 env->cp15.c9_pmcnten &= ~value; 1095 } 1096 1097 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1098 uint64_t value) 1099 { 1100 env->cp15.c9_pmovsr &= ~value; 1101 } 1102 1103 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1104 uint64_t value) 1105 { 1106 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1107 * PMSELR value is equal to or greater than the number of implemented 1108 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1109 */ 1110 if (env->cp15.c9_pmselr == 0x1f) { 1111 pmccfiltr_write(env, ri, value); 1112 } 1113 } 1114 1115 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1116 { 1117 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1118 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). 1119 */ 1120 if (env->cp15.c9_pmselr == 0x1f) { 1121 return env->cp15.pmccfiltr_el0; 1122 } else { 1123 return 0; 1124 } 1125 } 1126 1127 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1128 uint64_t value) 1129 { 1130 if (arm_feature(env, ARM_FEATURE_V8)) { 1131 env->cp15.c9_pmuserenr = value & 0xf; 1132 } else { 1133 env->cp15.c9_pmuserenr = value & 1; 1134 } 1135 } 1136 1137 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1138 uint64_t value) 1139 { 1140 /* We have no event counters so only the C bit can be changed */ 1141 value &= (1 << 31); 1142 env->cp15.c9_pminten |= value; 1143 } 1144 1145 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1146 uint64_t value) 1147 { 1148 value &= (1 << 31); 1149 env->cp15.c9_pminten &= ~value; 1150 } 1151 1152 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1153 uint64_t value) 1154 { 1155 /* Note that even though the AArch64 view of this register has bits 1156 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1157 * architectural requirements for bits which are RES0 only in some 1158 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1159 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1160 */ 1161 raw_write(env, ri, value & ~0x1FULL); 1162 } 1163 1164 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1165 { 1166 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1167 * For bits that vary between AArch32/64, code needs to check the 1168 * current execution mode before directly using the feature bit. 1169 */ 1170 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1171 1172 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1173 valid_mask &= ~SCR_HCE; 1174 1175 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1176 * supported if EL2 exists. The bit is UNK/SBZP when 1177 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1178 * when EL2 is unavailable. 1179 * On ARMv8, this bit is always available. 1180 */ 1181 if (arm_feature(env, ARM_FEATURE_V7) && 1182 !arm_feature(env, ARM_FEATURE_V8)) { 1183 valid_mask &= ~SCR_SMD; 1184 } 1185 } 1186 1187 /* Clear all-context RES0 bits. */ 1188 value &= valid_mask; 1189 raw_write(env, ri, value); 1190 } 1191 1192 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1193 { 1194 ARMCPU *cpu = arm_env_get_cpu(env); 1195 1196 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1197 * bank 1198 */ 1199 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1200 ri->secure & ARM_CP_SECSTATE_S); 1201 1202 return cpu->ccsidr[index]; 1203 } 1204 1205 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1206 uint64_t value) 1207 { 1208 raw_write(env, ri, value & 0xf); 1209 } 1210 1211 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1212 { 1213 CPUState *cs = ENV_GET_CPU(env); 1214 uint64_t ret = 0; 1215 1216 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1217 ret |= CPSR_I; 1218 } 1219 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1220 ret |= CPSR_F; 1221 } 1222 /* External aborts are not possible in QEMU so A bit is always clear */ 1223 return ret; 1224 } 1225 1226 static const ARMCPRegInfo v7_cp_reginfo[] = { 1227 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1228 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1229 .access = PL1_W, .type = ARM_CP_NOP }, 1230 /* Performance monitors are implementation defined in v7, 1231 * but with an ARM recommended set of registers, which we 1232 * follow (although we don't actually implement any counters) 1233 * 1234 * Performance registers fall into three categories: 1235 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1236 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1237 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1238 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1239 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1240 */ 1241 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1242 .access = PL0_RW, .type = ARM_CP_ALIAS, 1243 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1244 .writefn = pmcntenset_write, 1245 .accessfn = pmreg_access, 1246 .raw_writefn = raw_write }, 1247 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1248 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1249 .access = PL0_RW, .accessfn = pmreg_access, 1250 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1251 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1252 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1253 .access = PL0_RW, 1254 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1255 .accessfn = pmreg_access, 1256 .writefn = pmcntenclr_write, 1257 .type = ARM_CP_ALIAS }, 1258 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1259 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1260 .access = PL0_RW, .accessfn = pmreg_access, 1261 .type = ARM_CP_ALIAS, 1262 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1263 .writefn = pmcntenclr_write }, 1264 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1265 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1266 .accessfn = pmreg_access, 1267 .writefn = pmovsr_write, 1268 .raw_writefn = raw_write }, 1269 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1270 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1271 .access = PL0_RW, .accessfn = pmreg_access, 1272 .type = ARM_CP_ALIAS, 1273 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1274 .writefn = pmovsr_write, 1275 .raw_writefn = raw_write }, 1276 /* Unimplemented so WI. */ 1277 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1278 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, 1279 #ifndef CONFIG_USER_ONLY 1280 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1281 .access = PL0_RW, .type = ARM_CP_ALIAS, 1282 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1283 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1284 .raw_writefn = raw_write}, 1285 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1286 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1287 .access = PL0_RW, .accessfn = pmreg_access_selr, 1288 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1289 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1290 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1291 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, 1292 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1293 .accessfn = pmreg_access_ccntr }, 1294 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1295 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1296 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1297 .type = ARM_CP_IO, 1298 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1299 #endif 1300 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1301 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1302 .writefn = pmccfiltr_write, 1303 .access = PL0_RW, .accessfn = pmreg_access, 1304 .type = ARM_CP_IO, 1305 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1306 .resetvalue = 0, }, 1307 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1308 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1309 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1310 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1311 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1312 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1313 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1314 /* Unimplemented, RAZ/WI. */ 1315 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1316 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1317 .accessfn = pmreg_access_xevcntr }, 1318 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1319 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1320 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1321 .resetvalue = 0, 1322 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1323 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1324 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1325 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1326 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1327 .resetvalue = 0, 1328 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1329 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1330 .access = PL1_RW, .accessfn = access_tpm, 1331 .type = ARM_CP_ALIAS, 1332 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1333 .resetvalue = 0, 1334 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1335 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1336 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1337 .access = PL1_RW, .accessfn = access_tpm, 1338 .type = ARM_CP_IO, 1339 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1340 .writefn = pmintenset_write, .raw_writefn = raw_write, 1341 .resetvalue = 0x0 }, 1342 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1343 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1344 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1345 .writefn = pmintenclr_write, }, 1346 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1347 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1348 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1349 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1350 .writefn = pmintenclr_write }, 1351 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1352 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1353 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1354 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1355 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1356 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1357 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1358 offsetof(CPUARMState, cp15.csselr_ns) } }, 1359 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1360 * just RAZ for all cores: 1361 */ 1362 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1363 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1364 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1365 /* Auxiliary fault status registers: these also are IMPDEF, and we 1366 * choose to RAZ/WI for all cores. 1367 */ 1368 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1369 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1370 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1371 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1372 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1373 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1374 /* MAIR can just read-as-written because we don't implement caches 1375 * and so don't need to care about memory attributes. 1376 */ 1377 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1378 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1379 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1380 .resetvalue = 0 }, 1381 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1382 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1383 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1384 .resetvalue = 0 }, 1385 /* For non-long-descriptor page tables these are PRRR and NMRR; 1386 * regardless they still act as reads-as-written for QEMU. 1387 */ 1388 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1389 * allows them to assign the correct fieldoffset based on the endianness 1390 * handled in the field definitions. 1391 */ 1392 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1393 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1394 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1395 offsetof(CPUARMState, cp15.mair0_ns) }, 1396 .resetfn = arm_cp_reset_ignore }, 1397 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1398 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1399 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1400 offsetof(CPUARMState, cp15.mair1_ns) }, 1401 .resetfn = arm_cp_reset_ignore }, 1402 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1403 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1404 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1405 /* 32 bit ITLB invalidates */ 1406 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1407 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1408 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1409 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1410 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1411 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1412 /* 32 bit DTLB invalidates */ 1413 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1414 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1415 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1416 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1417 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1418 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1419 /* 32 bit TLB invalidates */ 1420 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1421 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1422 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1423 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1424 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1425 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1426 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1427 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1428 REGINFO_SENTINEL 1429 }; 1430 1431 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1432 /* 32 bit TLB invalidates, Inner Shareable */ 1433 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1434 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1435 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1437 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1438 .type = ARM_CP_NO_RAW, .access = PL1_W, 1439 .writefn = tlbiasid_is_write }, 1440 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1441 .type = ARM_CP_NO_RAW, .access = PL1_W, 1442 .writefn = tlbimvaa_is_write }, 1443 REGINFO_SENTINEL 1444 }; 1445 1446 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1447 uint64_t value) 1448 { 1449 value &= 1; 1450 env->teecr = value; 1451 } 1452 1453 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1454 bool isread) 1455 { 1456 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1457 return CP_ACCESS_TRAP; 1458 } 1459 return CP_ACCESS_OK; 1460 } 1461 1462 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1463 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1464 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1465 .resetvalue = 0, 1466 .writefn = teecr_write }, 1467 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1468 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1469 .accessfn = teehbr_access, .resetvalue = 0 }, 1470 REGINFO_SENTINEL 1471 }; 1472 1473 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1474 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1475 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1476 .access = PL0_RW, 1477 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1478 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1479 .access = PL0_RW, 1480 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1481 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1482 .resetfn = arm_cp_reset_ignore }, 1483 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1484 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1485 .access = PL0_R|PL1_W, 1486 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1487 .resetvalue = 0}, 1488 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1489 .access = PL0_R|PL1_W, 1490 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1491 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1492 .resetfn = arm_cp_reset_ignore }, 1493 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1494 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1495 .access = PL1_RW, 1496 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1497 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1498 .access = PL1_RW, 1499 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1500 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1501 .resetvalue = 0 }, 1502 REGINFO_SENTINEL 1503 }; 1504 1505 #ifndef CONFIG_USER_ONLY 1506 1507 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1508 bool isread) 1509 { 1510 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1511 * Writable only at the highest implemented exception level. 1512 */ 1513 int el = arm_current_el(env); 1514 1515 switch (el) { 1516 case 0: 1517 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1518 return CP_ACCESS_TRAP; 1519 } 1520 break; 1521 case 1: 1522 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1523 arm_is_secure_below_el3(env)) { 1524 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1525 return CP_ACCESS_TRAP_UNCATEGORIZED; 1526 } 1527 break; 1528 case 2: 1529 case 3: 1530 break; 1531 } 1532 1533 if (!isread && el < arm_highest_el(env)) { 1534 return CP_ACCESS_TRAP_UNCATEGORIZED; 1535 } 1536 1537 return CP_ACCESS_OK; 1538 } 1539 1540 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1541 bool isread) 1542 { 1543 unsigned int cur_el = arm_current_el(env); 1544 bool secure = arm_is_secure(env); 1545 1546 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1547 if (cur_el == 0 && 1548 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1549 return CP_ACCESS_TRAP; 1550 } 1551 1552 if (arm_feature(env, ARM_FEATURE_EL2) && 1553 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1554 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1555 return CP_ACCESS_TRAP_EL2; 1556 } 1557 return CP_ACCESS_OK; 1558 } 1559 1560 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1561 bool isread) 1562 { 1563 unsigned int cur_el = arm_current_el(env); 1564 bool secure = arm_is_secure(env); 1565 1566 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1567 * EL0[PV]TEN is zero. 1568 */ 1569 if (cur_el == 0 && 1570 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1571 return CP_ACCESS_TRAP; 1572 } 1573 1574 if (arm_feature(env, ARM_FEATURE_EL2) && 1575 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1576 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1577 return CP_ACCESS_TRAP_EL2; 1578 } 1579 return CP_ACCESS_OK; 1580 } 1581 1582 static CPAccessResult gt_pct_access(CPUARMState *env, 1583 const ARMCPRegInfo *ri, 1584 bool isread) 1585 { 1586 return gt_counter_access(env, GTIMER_PHYS, isread); 1587 } 1588 1589 static CPAccessResult gt_vct_access(CPUARMState *env, 1590 const ARMCPRegInfo *ri, 1591 bool isread) 1592 { 1593 return gt_counter_access(env, GTIMER_VIRT, isread); 1594 } 1595 1596 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1597 bool isread) 1598 { 1599 return gt_timer_access(env, GTIMER_PHYS, isread); 1600 } 1601 1602 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1603 bool isread) 1604 { 1605 return gt_timer_access(env, GTIMER_VIRT, isread); 1606 } 1607 1608 static CPAccessResult gt_stimer_access(CPUARMState *env, 1609 const ARMCPRegInfo *ri, 1610 bool isread) 1611 { 1612 /* The AArch64 register view of the secure physical timer is 1613 * always accessible from EL3, and configurably accessible from 1614 * Secure EL1. 1615 */ 1616 switch (arm_current_el(env)) { 1617 case 1: 1618 if (!arm_is_secure(env)) { 1619 return CP_ACCESS_TRAP; 1620 } 1621 if (!(env->cp15.scr_el3 & SCR_ST)) { 1622 return CP_ACCESS_TRAP_EL3; 1623 } 1624 return CP_ACCESS_OK; 1625 case 0: 1626 case 2: 1627 return CP_ACCESS_TRAP; 1628 case 3: 1629 return CP_ACCESS_OK; 1630 default: 1631 g_assert_not_reached(); 1632 } 1633 } 1634 1635 static uint64_t gt_get_countervalue(CPUARMState *env) 1636 { 1637 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1638 } 1639 1640 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1641 { 1642 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1643 1644 if (gt->ctl & 1) { 1645 /* Timer enabled: calculate and set current ISTATUS, irq, and 1646 * reset timer to when ISTATUS next has to change 1647 */ 1648 uint64_t offset = timeridx == GTIMER_VIRT ? 1649 cpu->env.cp15.cntvoff_el2 : 0; 1650 uint64_t count = gt_get_countervalue(&cpu->env); 1651 /* Note that this must be unsigned 64 bit arithmetic: */ 1652 int istatus = count - offset >= gt->cval; 1653 uint64_t nexttick; 1654 int irqstate; 1655 1656 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1657 1658 irqstate = (istatus && !(gt->ctl & 2)); 1659 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1660 1661 if (istatus) { 1662 /* Next transition is when count rolls back over to zero */ 1663 nexttick = UINT64_MAX; 1664 } else { 1665 /* Next transition is when we hit cval */ 1666 nexttick = gt->cval + offset; 1667 } 1668 /* Note that the desired next expiry time might be beyond the 1669 * signed-64-bit range of a QEMUTimer -- in this case we just 1670 * set the timer for as far in the future as possible. When the 1671 * timer expires we will reset the timer for any remaining period. 1672 */ 1673 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1674 nexttick = INT64_MAX / GTIMER_SCALE; 1675 } 1676 timer_mod(cpu->gt_timer[timeridx], nexttick); 1677 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1678 } else { 1679 /* Timer disabled: ISTATUS and timer output always clear */ 1680 gt->ctl &= ~4; 1681 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1682 timer_del(cpu->gt_timer[timeridx]); 1683 trace_arm_gt_recalc_disabled(timeridx); 1684 } 1685 } 1686 1687 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1688 int timeridx) 1689 { 1690 ARMCPU *cpu = arm_env_get_cpu(env); 1691 1692 timer_del(cpu->gt_timer[timeridx]); 1693 } 1694 1695 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1696 { 1697 return gt_get_countervalue(env); 1698 } 1699 1700 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1701 { 1702 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1703 } 1704 1705 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1706 int timeridx, 1707 uint64_t value) 1708 { 1709 trace_arm_gt_cval_write(timeridx, value); 1710 env->cp15.c14_timer[timeridx].cval = value; 1711 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1712 } 1713 1714 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1715 int timeridx) 1716 { 1717 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1718 1719 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1720 (gt_get_countervalue(env) - offset)); 1721 } 1722 1723 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1724 int timeridx, 1725 uint64_t value) 1726 { 1727 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1728 1729 trace_arm_gt_tval_write(timeridx, value); 1730 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1731 sextract64(value, 0, 32); 1732 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1733 } 1734 1735 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1736 int timeridx, 1737 uint64_t value) 1738 { 1739 ARMCPU *cpu = arm_env_get_cpu(env); 1740 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1741 1742 trace_arm_gt_ctl_write(timeridx, value); 1743 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1744 if ((oldval ^ value) & 1) { 1745 /* Enable toggled */ 1746 gt_recalc_timer(cpu, timeridx); 1747 } else if ((oldval ^ value) & 2) { 1748 /* IMASK toggled: don't need to recalculate, 1749 * just set the interrupt line based on ISTATUS 1750 */ 1751 int irqstate = (oldval & 4) && !(value & 2); 1752 1753 trace_arm_gt_imask_toggle(timeridx, irqstate); 1754 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1755 } 1756 } 1757 1758 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1759 { 1760 gt_timer_reset(env, ri, GTIMER_PHYS); 1761 } 1762 1763 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1764 uint64_t value) 1765 { 1766 gt_cval_write(env, ri, GTIMER_PHYS, value); 1767 } 1768 1769 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1770 { 1771 return gt_tval_read(env, ri, GTIMER_PHYS); 1772 } 1773 1774 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1775 uint64_t value) 1776 { 1777 gt_tval_write(env, ri, GTIMER_PHYS, value); 1778 } 1779 1780 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1781 uint64_t value) 1782 { 1783 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1784 } 1785 1786 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1787 { 1788 gt_timer_reset(env, ri, GTIMER_VIRT); 1789 } 1790 1791 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1792 uint64_t value) 1793 { 1794 gt_cval_write(env, ri, GTIMER_VIRT, value); 1795 } 1796 1797 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1798 { 1799 return gt_tval_read(env, ri, GTIMER_VIRT); 1800 } 1801 1802 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1803 uint64_t value) 1804 { 1805 gt_tval_write(env, ri, GTIMER_VIRT, value); 1806 } 1807 1808 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1809 uint64_t value) 1810 { 1811 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1812 } 1813 1814 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1815 uint64_t value) 1816 { 1817 ARMCPU *cpu = arm_env_get_cpu(env); 1818 1819 trace_arm_gt_cntvoff_write(value); 1820 raw_write(env, ri, value); 1821 gt_recalc_timer(cpu, GTIMER_VIRT); 1822 } 1823 1824 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1825 { 1826 gt_timer_reset(env, ri, GTIMER_HYP); 1827 } 1828 1829 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1830 uint64_t value) 1831 { 1832 gt_cval_write(env, ri, GTIMER_HYP, value); 1833 } 1834 1835 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1836 { 1837 return gt_tval_read(env, ri, GTIMER_HYP); 1838 } 1839 1840 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1841 uint64_t value) 1842 { 1843 gt_tval_write(env, ri, GTIMER_HYP, value); 1844 } 1845 1846 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1847 uint64_t value) 1848 { 1849 gt_ctl_write(env, ri, GTIMER_HYP, value); 1850 } 1851 1852 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1853 { 1854 gt_timer_reset(env, ri, GTIMER_SEC); 1855 } 1856 1857 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1858 uint64_t value) 1859 { 1860 gt_cval_write(env, ri, GTIMER_SEC, value); 1861 } 1862 1863 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1864 { 1865 return gt_tval_read(env, ri, GTIMER_SEC); 1866 } 1867 1868 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1869 uint64_t value) 1870 { 1871 gt_tval_write(env, ri, GTIMER_SEC, value); 1872 } 1873 1874 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1875 uint64_t value) 1876 { 1877 gt_ctl_write(env, ri, GTIMER_SEC, value); 1878 } 1879 1880 void arm_gt_ptimer_cb(void *opaque) 1881 { 1882 ARMCPU *cpu = opaque; 1883 1884 gt_recalc_timer(cpu, GTIMER_PHYS); 1885 } 1886 1887 void arm_gt_vtimer_cb(void *opaque) 1888 { 1889 ARMCPU *cpu = opaque; 1890 1891 gt_recalc_timer(cpu, GTIMER_VIRT); 1892 } 1893 1894 void arm_gt_htimer_cb(void *opaque) 1895 { 1896 ARMCPU *cpu = opaque; 1897 1898 gt_recalc_timer(cpu, GTIMER_HYP); 1899 } 1900 1901 void arm_gt_stimer_cb(void *opaque) 1902 { 1903 ARMCPU *cpu = opaque; 1904 1905 gt_recalc_timer(cpu, GTIMER_SEC); 1906 } 1907 1908 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 1909 /* Note that CNTFRQ is purely reads-as-written for the benefit 1910 * of software; writing it doesn't actually change the timer frequency. 1911 * Our reset value matches the fixed frequency we implement the timer at. 1912 */ 1913 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 1914 .type = ARM_CP_ALIAS, 1915 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1916 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 1917 }, 1918 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 1919 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 1920 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1921 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 1922 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 1923 }, 1924 /* overall control: mostly access permissions */ 1925 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 1926 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 1927 .access = PL1_RW, 1928 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 1929 .resetvalue = 0, 1930 }, 1931 /* per-timer control */ 1932 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1933 .secure = ARM_CP_SECSTATE_NS, 1934 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1935 .accessfn = gt_ptimer_access, 1936 .fieldoffset = offsetoflow32(CPUARMState, 1937 cp15.c14_timer[GTIMER_PHYS].ctl), 1938 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1939 }, 1940 { .name = "CNTP_CTL(S)", 1941 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1942 .secure = ARM_CP_SECSTATE_S, 1943 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1944 .accessfn = gt_ptimer_access, 1945 .fieldoffset = offsetoflow32(CPUARMState, 1946 cp15.c14_timer[GTIMER_SEC].ctl), 1947 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 1948 }, 1949 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 1950 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 1951 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1952 .accessfn = gt_ptimer_access, 1953 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 1954 .resetvalue = 0, 1955 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1956 }, 1957 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 1958 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1959 .accessfn = gt_vtimer_access, 1960 .fieldoffset = offsetoflow32(CPUARMState, 1961 cp15.c14_timer[GTIMER_VIRT].ctl), 1962 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1963 }, 1964 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 1965 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 1966 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1967 .accessfn = gt_vtimer_access, 1968 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 1969 .resetvalue = 0, 1970 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1971 }, 1972 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 1973 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 1974 .secure = ARM_CP_SECSTATE_NS, 1975 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1976 .accessfn = gt_ptimer_access, 1977 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 1978 }, 1979 { .name = "CNTP_TVAL(S)", 1980 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 1981 .secure = ARM_CP_SECSTATE_S, 1982 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1983 .accessfn = gt_ptimer_access, 1984 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 1985 }, 1986 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 1987 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 1988 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1989 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 1990 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 1991 }, 1992 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 1993 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1994 .accessfn = gt_vtimer_access, 1995 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 1996 }, 1997 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 1998 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 1999 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2000 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2001 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2002 }, 2003 /* The counter itself */ 2004 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2005 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2006 .accessfn = gt_pct_access, 2007 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2008 }, 2009 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2010 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2011 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2012 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2013 }, 2014 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2015 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2016 .accessfn = gt_vct_access, 2017 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2018 }, 2019 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2020 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2021 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2022 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2023 }, 2024 /* Comparison value, indicating when the timer goes off */ 2025 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2026 .secure = ARM_CP_SECSTATE_NS, 2027 .access = PL1_RW | PL0_R, 2028 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2029 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2030 .accessfn = gt_ptimer_access, 2031 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2032 }, 2033 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, 2034 .secure = ARM_CP_SECSTATE_S, 2035 .access = PL1_RW | PL0_R, 2036 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2037 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2038 .accessfn = gt_ptimer_access, 2039 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2040 }, 2041 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2043 .access = PL1_RW | PL0_R, 2044 .type = ARM_CP_IO, 2045 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2046 .resetvalue = 0, .accessfn = gt_ptimer_access, 2047 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2048 }, 2049 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2050 .access = PL1_RW | PL0_R, 2051 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2052 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2053 .accessfn = gt_vtimer_access, 2054 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2055 }, 2056 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2057 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2058 .access = PL1_RW | PL0_R, 2059 .type = ARM_CP_IO, 2060 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2061 .resetvalue = 0, .accessfn = gt_vtimer_access, 2062 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2063 }, 2064 /* Secure timer -- this is actually restricted to only EL3 2065 * and configurably Secure-EL1 via the accessfn. 2066 */ 2067 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2068 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2069 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2070 .accessfn = gt_stimer_access, 2071 .readfn = gt_sec_tval_read, 2072 .writefn = gt_sec_tval_write, 2073 .resetfn = gt_sec_timer_reset, 2074 }, 2075 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2076 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2077 .type = ARM_CP_IO, .access = PL1_RW, 2078 .accessfn = gt_stimer_access, 2079 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2080 .resetvalue = 0, 2081 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2082 }, 2083 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2084 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2085 .type = ARM_CP_IO, .access = PL1_RW, 2086 .accessfn = gt_stimer_access, 2087 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2088 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2089 }, 2090 REGINFO_SENTINEL 2091 }; 2092 2093 #else 2094 /* In user-mode none of the generic timer registers are accessible, 2095 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, 2096 * so instead just don't register any of them. 2097 */ 2098 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2099 REGINFO_SENTINEL 2100 }; 2101 2102 #endif 2103 2104 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2105 { 2106 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2107 raw_write(env, ri, value); 2108 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2109 raw_write(env, ri, value & 0xfffff6ff); 2110 } else { 2111 raw_write(env, ri, value & 0xfffff1ff); 2112 } 2113 } 2114 2115 #ifndef CONFIG_USER_ONLY 2116 /* get_phys_addr() isn't present for user-mode-only targets */ 2117 2118 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2119 bool isread) 2120 { 2121 if (ri->opc2 & 4) { 2122 /* The ATS12NSO* operations must trap to EL3 if executed in 2123 * Secure EL1 (which can only happen if EL3 is AArch64). 2124 * They are simply UNDEF if executed from NS EL1. 2125 * They function normally from EL2 or EL3. 2126 */ 2127 if (arm_current_el(env) == 1) { 2128 if (arm_is_secure_below_el3(env)) { 2129 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2130 } 2131 return CP_ACCESS_TRAP_UNCATEGORIZED; 2132 } 2133 } 2134 return CP_ACCESS_OK; 2135 } 2136 2137 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2138 int access_type, ARMMMUIdx mmu_idx) 2139 { 2140 hwaddr phys_addr; 2141 target_ulong page_size; 2142 int prot; 2143 uint32_t fsr; 2144 bool ret; 2145 uint64_t par64; 2146 MemTxAttrs attrs = {}; 2147 ARMMMUFaultInfo fi = {}; 2148 2149 ret = get_phys_addr(env, value, access_type, mmu_idx, 2150 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi); 2151 if (extended_addresses_enabled(env)) { 2152 /* fsr is a DFSR/IFSR value for the long descriptor 2153 * translation table format, but with WnR always clear. 2154 * Convert it to a 64-bit PAR. 2155 */ 2156 par64 = (1 << 11); /* LPAE bit always set */ 2157 if (!ret) { 2158 par64 |= phys_addr & ~0xfffULL; 2159 if (!attrs.secure) { 2160 par64 |= (1 << 9); /* NS */ 2161 } 2162 /* We don't set the ATTR or SH fields in the PAR. */ 2163 } else { 2164 par64 |= 1; /* F */ 2165 par64 |= (fsr & 0x3f) << 1; /* FS */ 2166 /* Note that S2WLK and FSTAGE are always zero, because we don't 2167 * implement virtualization and therefore there can't be a stage 2 2168 * fault. 2169 */ 2170 } 2171 } else { 2172 /* fsr is a DFSR/IFSR value for the short descriptor 2173 * translation table format (with WnR always clear). 2174 * Convert it to a 32-bit PAR. 2175 */ 2176 if (!ret) { 2177 /* We do not set any attribute bits in the PAR */ 2178 if (page_size == (1 << 24) 2179 && arm_feature(env, ARM_FEATURE_V7)) { 2180 par64 = (phys_addr & 0xff000000) | (1 << 1); 2181 } else { 2182 par64 = phys_addr & 0xfffff000; 2183 } 2184 if (!attrs.secure) { 2185 par64 |= (1 << 9); /* NS */ 2186 } 2187 } else { 2188 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2189 ((fsr & 0xf) << 1) | 1; 2190 } 2191 } 2192 return par64; 2193 } 2194 2195 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2196 { 2197 int access_type = ri->opc2 & 1; 2198 uint64_t par64; 2199 ARMMMUIdx mmu_idx; 2200 int el = arm_current_el(env); 2201 bool secure = arm_is_secure_below_el3(env); 2202 2203 switch (ri->opc2 & 6) { 2204 case 0: 2205 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2206 switch (el) { 2207 case 3: 2208 mmu_idx = ARMMMUIdx_S1E3; 2209 break; 2210 case 2: 2211 mmu_idx = ARMMMUIdx_S1NSE1; 2212 break; 2213 case 1: 2214 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2215 break; 2216 default: 2217 g_assert_not_reached(); 2218 } 2219 break; 2220 case 2: 2221 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2222 switch (el) { 2223 case 3: 2224 mmu_idx = ARMMMUIdx_S1SE0; 2225 break; 2226 case 2: 2227 mmu_idx = ARMMMUIdx_S1NSE0; 2228 break; 2229 case 1: 2230 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2231 break; 2232 default: 2233 g_assert_not_reached(); 2234 } 2235 break; 2236 case 4: 2237 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2238 mmu_idx = ARMMMUIdx_S12NSE1; 2239 break; 2240 case 6: 2241 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2242 mmu_idx = ARMMMUIdx_S12NSE0; 2243 break; 2244 default: 2245 g_assert_not_reached(); 2246 } 2247 2248 par64 = do_ats_write(env, value, access_type, mmu_idx); 2249 2250 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2251 } 2252 2253 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2254 uint64_t value) 2255 { 2256 int access_type = ri->opc2 & 1; 2257 uint64_t par64; 2258 2259 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); 2260 2261 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2262 } 2263 2264 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2265 bool isread) 2266 { 2267 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2268 return CP_ACCESS_TRAP; 2269 } 2270 return CP_ACCESS_OK; 2271 } 2272 2273 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2274 uint64_t value) 2275 { 2276 int access_type = ri->opc2 & 1; 2277 ARMMMUIdx mmu_idx; 2278 int secure = arm_is_secure_below_el3(env); 2279 2280 switch (ri->opc2 & 6) { 2281 case 0: 2282 switch (ri->opc1) { 2283 case 0: /* AT S1E1R, AT S1E1W */ 2284 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2285 break; 2286 case 4: /* AT S1E2R, AT S1E2W */ 2287 mmu_idx = ARMMMUIdx_S1E2; 2288 break; 2289 case 6: /* AT S1E3R, AT S1E3W */ 2290 mmu_idx = ARMMMUIdx_S1E3; 2291 break; 2292 default: 2293 g_assert_not_reached(); 2294 } 2295 break; 2296 case 2: /* AT S1E0R, AT S1E0W */ 2297 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2298 break; 2299 case 4: /* AT S12E1R, AT S12E1W */ 2300 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2301 break; 2302 case 6: /* AT S12E0R, AT S12E0W */ 2303 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2304 break; 2305 default: 2306 g_assert_not_reached(); 2307 } 2308 2309 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2310 } 2311 #endif 2312 2313 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2314 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2315 .access = PL1_RW, .resetvalue = 0, 2316 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2317 offsetoflow32(CPUARMState, cp15.par_ns) }, 2318 .writefn = par_write }, 2319 #ifndef CONFIG_USER_ONLY 2320 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2321 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2322 .access = PL1_W, .accessfn = ats_access, 2323 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2324 #endif 2325 REGINFO_SENTINEL 2326 }; 2327 2328 /* Return basic MPU access permission bits. */ 2329 static uint32_t simple_mpu_ap_bits(uint32_t val) 2330 { 2331 uint32_t ret; 2332 uint32_t mask; 2333 int i; 2334 ret = 0; 2335 mask = 3; 2336 for (i = 0; i < 16; i += 2) { 2337 ret |= (val >> i) & mask; 2338 mask <<= 2; 2339 } 2340 return ret; 2341 } 2342 2343 /* Pad basic MPU access permission bits to extended format. */ 2344 static uint32_t extended_mpu_ap_bits(uint32_t val) 2345 { 2346 uint32_t ret; 2347 uint32_t mask; 2348 int i; 2349 ret = 0; 2350 mask = 3; 2351 for (i = 0; i < 16; i += 2) { 2352 ret |= (val & mask) << i; 2353 mask <<= 2; 2354 } 2355 return ret; 2356 } 2357 2358 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2359 uint64_t value) 2360 { 2361 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2362 } 2363 2364 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2365 { 2366 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2367 } 2368 2369 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2370 uint64_t value) 2371 { 2372 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2373 } 2374 2375 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2376 { 2377 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2378 } 2379 2380 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2381 { 2382 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2383 2384 if (!u32p) { 2385 return 0; 2386 } 2387 2388 u32p += env->cp15.c6_rgnr; 2389 return *u32p; 2390 } 2391 2392 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2393 uint64_t value) 2394 { 2395 ARMCPU *cpu = arm_env_get_cpu(env); 2396 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2397 2398 if (!u32p) { 2399 return; 2400 } 2401 2402 u32p += env->cp15.c6_rgnr; 2403 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2404 *u32p = value; 2405 } 2406 2407 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2408 { 2409 ARMCPU *cpu = arm_env_get_cpu(env); 2410 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2411 2412 if (!u32p) { 2413 return; 2414 } 2415 2416 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion); 2417 } 2418 2419 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2420 uint64_t value) 2421 { 2422 ARMCPU *cpu = arm_env_get_cpu(env); 2423 uint32_t nrgs = cpu->pmsav7_dregion; 2424 2425 if (value >= nrgs) { 2426 qemu_log_mask(LOG_GUEST_ERROR, 2427 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2428 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2429 return; 2430 } 2431 2432 raw_write(env, ri, value); 2433 } 2434 2435 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2436 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2437 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2438 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2439 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, 2440 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2441 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2442 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2443 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, 2444 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2445 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2446 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2447 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, 2448 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2449 .access = PL1_RW, 2450 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr), 2451 .writefn = pmsav7_rgnr_write }, 2452 REGINFO_SENTINEL 2453 }; 2454 2455 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2456 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2457 .access = PL1_RW, .type = ARM_CP_ALIAS, 2458 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2459 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2460 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2461 .access = PL1_RW, .type = ARM_CP_ALIAS, 2462 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2463 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2464 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2465 .access = PL1_RW, 2466 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2467 .resetvalue = 0, }, 2468 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2469 .access = PL1_RW, 2470 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2471 .resetvalue = 0, }, 2472 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2473 .access = PL1_RW, 2474 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2475 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2476 .access = PL1_RW, 2477 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2478 /* Protection region base and size registers */ 2479 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2480 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2481 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2482 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2483 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2484 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2485 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2486 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2487 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2488 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2489 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2490 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2491 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2492 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2493 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2494 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2495 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2496 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2497 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2498 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2499 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2500 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2501 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2502 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2503 REGINFO_SENTINEL 2504 }; 2505 2506 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2507 uint64_t value) 2508 { 2509 TCR *tcr = raw_ptr(env, ri); 2510 int maskshift = extract32(value, 0, 3); 2511 2512 if (!arm_feature(env, ARM_FEATURE_V8)) { 2513 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2514 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2515 * using Long-desciptor translation table format */ 2516 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2517 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2518 /* In an implementation that includes the Security Extensions 2519 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2520 * Short-descriptor translation table format. 2521 */ 2522 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2523 } else { 2524 value &= TTBCR_N; 2525 } 2526 } 2527 2528 /* Update the masks corresponding to the TCR bank being written 2529 * Note that we always calculate mask and base_mask, but 2530 * they are only used for short-descriptor tables (ie if EAE is 0); 2531 * for long-descriptor tables the TCR fields are used differently 2532 * and the mask and base_mask values are meaningless. 2533 */ 2534 tcr->raw_tcr = value; 2535 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2536 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2537 } 2538 2539 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2540 uint64_t value) 2541 { 2542 ARMCPU *cpu = arm_env_get_cpu(env); 2543 2544 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2545 /* With LPAE the TTBCR could result in a change of ASID 2546 * via the TTBCR.A1 bit, so do a TLB flush. 2547 */ 2548 tlb_flush(CPU(cpu)); 2549 } 2550 vmsa_ttbcr_raw_write(env, ri, value); 2551 } 2552 2553 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2554 { 2555 TCR *tcr = raw_ptr(env, ri); 2556 2557 /* Reset both the TCR as well as the masks corresponding to the bank of 2558 * the TCR being reset. 2559 */ 2560 tcr->raw_tcr = 0; 2561 tcr->mask = 0; 2562 tcr->base_mask = 0xffffc000u; 2563 } 2564 2565 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2566 uint64_t value) 2567 { 2568 ARMCPU *cpu = arm_env_get_cpu(env); 2569 TCR *tcr = raw_ptr(env, ri); 2570 2571 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2572 tlb_flush(CPU(cpu)); 2573 tcr->raw_tcr = value; 2574 } 2575 2576 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2577 uint64_t value) 2578 { 2579 /* 64 bit accesses to the TTBRs can change the ASID and so we 2580 * must flush the TLB. 2581 */ 2582 if (cpreg_field_is_64bit(ri)) { 2583 ARMCPU *cpu = arm_env_get_cpu(env); 2584 2585 tlb_flush(CPU(cpu)); 2586 } 2587 raw_write(env, ri, value); 2588 } 2589 2590 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2591 uint64_t value) 2592 { 2593 ARMCPU *cpu = arm_env_get_cpu(env); 2594 CPUState *cs = CPU(cpu); 2595 2596 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2597 if (raw_read(env, ri) != value) { 2598 tlb_flush_by_mmuidx(cs, 2599 (1 << ARMMMUIdx_S12NSE1) | 2600 (1 << ARMMMUIdx_S12NSE0) | 2601 (1 << ARMMMUIdx_S2NS)); 2602 raw_write(env, ri, value); 2603 } 2604 } 2605 2606 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2607 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2608 .access = PL1_RW, .type = ARM_CP_ALIAS, 2609 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2610 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2611 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2612 .access = PL1_RW, .resetvalue = 0, 2613 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2614 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2615 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2616 .access = PL1_RW, .resetvalue = 0, 2617 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2618 offsetof(CPUARMState, cp15.dfar_ns) } }, 2619 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2620 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2621 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2622 .resetvalue = 0, }, 2623 REGINFO_SENTINEL 2624 }; 2625 2626 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2627 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2628 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2629 .access = PL1_RW, 2630 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2631 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2632 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2633 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2634 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2635 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2636 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2637 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2638 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2639 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2640 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2641 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2642 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2643 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2644 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2645 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2646 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2647 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2648 .raw_writefn = vmsa_ttbcr_raw_write, 2649 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2650 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2651 REGINFO_SENTINEL 2652 }; 2653 2654 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2655 uint64_t value) 2656 { 2657 env->cp15.c15_ticonfig = value & 0xe7; 2658 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2659 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2660 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2661 } 2662 2663 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2664 uint64_t value) 2665 { 2666 env->cp15.c15_threadid = value & 0xffff; 2667 } 2668 2669 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2670 uint64_t value) 2671 { 2672 /* Wait-for-interrupt (deprecated) */ 2673 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2674 } 2675 2676 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2677 uint64_t value) 2678 { 2679 /* On OMAP there are registers indicating the max/min index of dcache lines 2680 * containing a dirty line; cache flush operations have to reset these. 2681 */ 2682 env->cp15.c15_i_max = 0x000; 2683 env->cp15.c15_i_min = 0xff0; 2684 } 2685 2686 static const ARMCPRegInfo omap_cp_reginfo[] = { 2687 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2688 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2689 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2690 .resetvalue = 0, }, 2691 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2692 .access = PL1_RW, .type = ARM_CP_NOP }, 2693 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2694 .access = PL1_RW, 2695 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2696 .writefn = omap_ticonfig_write }, 2697 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2698 .access = PL1_RW, 2699 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2700 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2701 .access = PL1_RW, .resetvalue = 0xff0, 2702 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2703 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2704 .access = PL1_RW, 2705 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2706 .writefn = omap_threadid_write }, 2707 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2708 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2709 .type = ARM_CP_NO_RAW, 2710 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2711 /* TODO: Peripheral port remap register: 2712 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2713 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2714 * when MMU is off. 2715 */ 2716 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2717 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2718 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2719 .writefn = omap_cachemaint_write }, 2720 { .name = "C9", .cp = 15, .crn = 9, 2721 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2722 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2723 REGINFO_SENTINEL 2724 }; 2725 2726 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2727 uint64_t value) 2728 { 2729 env->cp15.c15_cpar = value & 0x3fff; 2730 } 2731 2732 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2733 { .name = "XSCALE_CPAR", 2734 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2735 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2736 .writefn = xscale_cpar_write, }, 2737 { .name = "XSCALE_AUXCR", 2738 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2739 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2740 .resetvalue = 0, }, 2741 /* XScale specific cache-lockdown: since we have no cache we NOP these 2742 * and hope the guest does not really rely on cache behaviour. 2743 */ 2744 { .name = "XSCALE_LOCK_ICACHE_LINE", 2745 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2746 .access = PL1_W, .type = ARM_CP_NOP }, 2747 { .name = "XSCALE_UNLOCK_ICACHE", 2748 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2749 .access = PL1_W, .type = ARM_CP_NOP }, 2750 { .name = "XSCALE_DCACHE_LOCK", 2751 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2752 .access = PL1_RW, .type = ARM_CP_NOP }, 2753 { .name = "XSCALE_UNLOCK_DCACHE", 2754 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2755 .access = PL1_W, .type = ARM_CP_NOP }, 2756 REGINFO_SENTINEL 2757 }; 2758 2759 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2760 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2761 * implementation of this implementation-defined space. 2762 * Ideally this should eventually disappear in favour of actually 2763 * implementing the correct behaviour for all cores. 2764 */ 2765 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2766 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2767 .access = PL1_RW, 2768 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2769 .resetvalue = 0 }, 2770 REGINFO_SENTINEL 2771 }; 2772 2773 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2774 /* Cache status: RAZ because we have no cache so it's always clean */ 2775 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2776 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2777 .resetvalue = 0 }, 2778 REGINFO_SENTINEL 2779 }; 2780 2781 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2782 /* We never have a a block transfer operation in progress */ 2783 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2784 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2785 .resetvalue = 0 }, 2786 /* The cache ops themselves: these all NOP for QEMU */ 2787 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2788 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2789 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2790 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2791 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2792 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2793 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2794 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2795 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2796 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2797 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2798 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2799 REGINFO_SENTINEL 2800 }; 2801 2802 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2803 /* The cache test-and-clean instructions always return (1 << 30) 2804 * to indicate that there are no dirty cache lines. 2805 */ 2806 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2807 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2808 .resetvalue = (1 << 30) }, 2809 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2810 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2811 .resetvalue = (1 << 30) }, 2812 REGINFO_SENTINEL 2813 }; 2814 2815 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2816 /* Ignore ReadBuffer accesses */ 2817 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 2818 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2819 .access = PL1_RW, .resetvalue = 0, 2820 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 2821 REGINFO_SENTINEL 2822 }; 2823 2824 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2825 { 2826 ARMCPU *cpu = arm_env_get_cpu(env); 2827 unsigned int cur_el = arm_current_el(env); 2828 bool secure = arm_is_secure(env); 2829 2830 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2831 return env->cp15.vpidr_el2; 2832 } 2833 return raw_read(env, ri); 2834 } 2835 2836 static uint64_t mpidr_read_val(CPUARMState *env) 2837 { 2838 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 2839 uint64_t mpidr = cpu->mp_affinity; 2840 2841 if (arm_feature(env, ARM_FEATURE_V7MP)) { 2842 mpidr |= (1U << 31); 2843 /* Cores which are uniprocessor (non-coherent) 2844 * but still implement the MP extensions set 2845 * bit 30. (For instance, Cortex-R5). 2846 */ 2847 if (cpu->mp_is_up) { 2848 mpidr |= (1u << 30); 2849 } 2850 } 2851 return mpidr; 2852 } 2853 2854 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2855 { 2856 unsigned int cur_el = arm_current_el(env); 2857 bool secure = arm_is_secure(env); 2858 2859 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2860 return env->cp15.vmpidr_el2; 2861 } 2862 return mpidr_read_val(env); 2863 } 2864 2865 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 2866 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 2867 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 2868 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 2869 REGINFO_SENTINEL 2870 }; 2871 2872 static const ARMCPRegInfo lpae_cp_reginfo[] = { 2873 /* NOP AMAIR0/1 */ 2874 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 2875 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 2876 .access = PL1_RW, .type = ARM_CP_CONST, 2877 .resetvalue = 0 }, 2878 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 2879 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 2880 .access = PL1_RW, .type = ARM_CP_CONST, 2881 .resetvalue = 0 }, 2882 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 2883 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 2884 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 2885 offsetof(CPUARMState, cp15.par_ns)} }, 2886 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 2887 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2888 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2889 offsetof(CPUARMState, cp15.ttbr0_ns) }, 2890 .writefn = vmsa_ttbr_write, }, 2891 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 2892 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2893 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2894 offsetof(CPUARMState, cp15.ttbr1_ns) }, 2895 .writefn = vmsa_ttbr_write, }, 2896 REGINFO_SENTINEL 2897 }; 2898 2899 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2900 { 2901 return vfp_get_fpcr(env); 2902 } 2903 2904 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2905 uint64_t value) 2906 { 2907 vfp_set_fpcr(env, value); 2908 } 2909 2910 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2911 { 2912 return vfp_get_fpsr(env); 2913 } 2914 2915 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2916 uint64_t value) 2917 { 2918 vfp_set_fpsr(env, value); 2919 } 2920 2921 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 2922 bool isread) 2923 { 2924 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 2925 return CP_ACCESS_TRAP; 2926 } 2927 return CP_ACCESS_OK; 2928 } 2929 2930 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 2931 uint64_t value) 2932 { 2933 env->daif = value & PSTATE_DAIF; 2934 } 2935 2936 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 2937 const ARMCPRegInfo *ri, 2938 bool isread) 2939 { 2940 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 2941 * SCTLR_EL1.UCI is set. 2942 */ 2943 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 2944 return CP_ACCESS_TRAP; 2945 } 2946 return CP_ACCESS_OK; 2947 } 2948 2949 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 2950 * Page D4-1736 (DDI0487A.b) 2951 */ 2952 2953 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2954 uint64_t value) 2955 { 2956 CPUState *cs = ENV_GET_CPU(env); 2957 2958 if (arm_is_secure_below_el3(env)) { 2959 tlb_flush_by_mmuidx(cs, 2960 (1 << ARMMMUIdx_S1SE1) | 2961 (1 << ARMMMUIdx_S1SE0)); 2962 } else { 2963 tlb_flush_by_mmuidx(cs, 2964 (1 << ARMMMUIdx_S12NSE1) | 2965 (1 << ARMMMUIdx_S12NSE0)); 2966 } 2967 } 2968 2969 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 2970 uint64_t value) 2971 { 2972 CPUState *cs = ENV_GET_CPU(env); 2973 bool sec = arm_is_secure_below_el3(env); 2974 2975 if (sec) { 2976 tlb_flush_by_mmuidx_all_cpus_synced(cs, 2977 (1 << ARMMMUIdx_S1SE1) | 2978 (1 << ARMMMUIdx_S1SE0)); 2979 } else { 2980 tlb_flush_by_mmuidx_all_cpus_synced(cs, 2981 (1 << ARMMMUIdx_S12NSE1) | 2982 (1 << ARMMMUIdx_S12NSE0)); 2983 } 2984 } 2985 2986 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2987 uint64_t value) 2988 { 2989 /* Note that the 'ALL' scope must invalidate both stage 1 and 2990 * stage 2 translations, whereas most other scopes only invalidate 2991 * stage 1 translations. 2992 */ 2993 ARMCPU *cpu = arm_env_get_cpu(env); 2994 CPUState *cs = CPU(cpu); 2995 2996 if (arm_is_secure_below_el3(env)) { 2997 tlb_flush_by_mmuidx(cs, 2998 (1 << ARMMMUIdx_S1SE1) | 2999 (1 << ARMMMUIdx_S1SE0)); 3000 } else { 3001 if (arm_feature(env, ARM_FEATURE_EL2)) { 3002 tlb_flush_by_mmuidx(cs, 3003 (1 << ARMMMUIdx_S12NSE1) | 3004 (1 << ARMMMUIdx_S12NSE0) | 3005 (1 << ARMMMUIdx_S2NS)); 3006 } else { 3007 tlb_flush_by_mmuidx(cs, 3008 (1 << ARMMMUIdx_S12NSE1) | 3009 (1 << ARMMMUIdx_S12NSE0)); 3010 } 3011 } 3012 } 3013 3014 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3015 uint64_t value) 3016 { 3017 ARMCPU *cpu = arm_env_get_cpu(env); 3018 CPUState *cs = CPU(cpu); 3019 3020 tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E2)); 3021 } 3022 3023 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3024 uint64_t value) 3025 { 3026 ARMCPU *cpu = arm_env_get_cpu(env); 3027 CPUState *cs = CPU(cpu); 3028 3029 tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E3)); 3030 } 3031 3032 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3033 uint64_t value) 3034 { 3035 /* Note that the 'ALL' scope must invalidate both stage 1 and 3036 * stage 2 translations, whereas most other scopes only invalidate 3037 * stage 1 translations. 3038 */ 3039 CPUState *cs = ENV_GET_CPU(env); 3040 bool sec = arm_is_secure_below_el3(env); 3041 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3042 3043 if (sec) { 3044 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3045 (1 << ARMMMUIdx_S1SE1) | 3046 (1 << ARMMMUIdx_S1SE0)); 3047 } else if (has_el2) { 3048 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3049 (1 << ARMMMUIdx_S12NSE1) | 3050 (1 << ARMMMUIdx_S12NSE0) | 3051 (1 << ARMMMUIdx_S2NS)); 3052 } else { 3053 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3054 (1 << ARMMMUIdx_S12NSE1) | 3055 (1 << ARMMMUIdx_S12NSE0)); 3056 } 3057 } 3058 3059 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3060 uint64_t value) 3061 { 3062 CPUState *cs = ENV_GET_CPU(env); 3063 3064 tlb_flush_by_mmuidx_all_cpus_synced(cs, (1 << ARMMMUIdx_S1E2)); 3065 } 3066 3067 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3068 uint64_t value) 3069 { 3070 CPUState *cs = ENV_GET_CPU(env); 3071 3072 tlb_flush_by_mmuidx_all_cpus_synced(cs, (1 << ARMMMUIdx_S1E3)); 3073 } 3074 3075 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3076 uint64_t value) 3077 { 3078 /* Invalidate by VA, EL1&0 (AArch64 version). 3079 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3080 * since we don't support flush-for-specific-ASID-only or 3081 * flush-last-level-only. 3082 */ 3083 ARMCPU *cpu = arm_env_get_cpu(env); 3084 CPUState *cs = CPU(cpu); 3085 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3086 3087 if (arm_is_secure_below_el3(env)) { 3088 tlb_flush_page_by_mmuidx(cs, pageaddr, 3089 (1 << ARMMMUIdx_S1SE1) | 3090 (1 << ARMMMUIdx_S1SE0)); 3091 } else { 3092 tlb_flush_page_by_mmuidx(cs, pageaddr, 3093 (1 << ARMMMUIdx_S12NSE1) | 3094 (1 << ARMMMUIdx_S12NSE0)); 3095 } 3096 } 3097 3098 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3099 uint64_t value) 3100 { 3101 /* Invalidate by VA, EL2 3102 * Currently handles both VAE2 and VALE2, since we don't support 3103 * flush-last-level-only. 3104 */ 3105 ARMCPU *cpu = arm_env_get_cpu(env); 3106 CPUState *cs = CPU(cpu); 3107 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3108 3109 tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E2)); 3110 } 3111 3112 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3113 uint64_t value) 3114 { 3115 /* Invalidate by VA, EL3 3116 * Currently handles both VAE3 and VALE3, since we don't support 3117 * flush-last-level-only. 3118 */ 3119 ARMCPU *cpu = arm_env_get_cpu(env); 3120 CPUState *cs = CPU(cpu); 3121 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3122 3123 tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E3)); 3124 } 3125 3126 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3127 uint64_t value) 3128 { 3129 ARMCPU *cpu = arm_env_get_cpu(env); 3130 CPUState *cs = CPU(cpu); 3131 bool sec = arm_is_secure_below_el3(env); 3132 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3133 3134 if (sec) { 3135 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3136 (1 << ARMMMUIdx_S1SE1) | 3137 (1 << ARMMMUIdx_S1SE0)); 3138 } else { 3139 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3140 (1 << ARMMMUIdx_S12NSE1) | 3141 (1 << ARMMMUIdx_S12NSE0)); 3142 } 3143 } 3144 3145 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3146 uint64_t value) 3147 { 3148 CPUState *cs = ENV_GET_CPU(env); 3149 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3150 3151 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3152 (1 << ARMMMUIdx_S1E2)); 3153 } 3154 3155 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3156 uint64_t value) 3157 { 3158 CPUState *cs = ENV_GET_CPU(env); 3159 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3160 3161 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3162 (1 << ARMMMUIdx_S1E3)); 3163 } 3164 3165 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3166 uint64_t value) 3167 { 3168 /* Invalidate by IPA. This has to invalidate any structures that 3169 * contain only stage 2 translation information, but does not need 3170 * to apply to structures that contain combined stage 1 and stage 2 3171 * translation information. 3172 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3173 */ 3174 ARMCPU *cpu = arm_env_get_cpu(env); 3175 CPUState *cs = CPU(cpu); 3176 uint64_t pageaddr; 3177 3178 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3179 return; 3180 } 3181 3182 pageaddr = sextract64(value << 12, 0, 48); 3183 3184 tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S2NS)); 3185 } 3186 3187 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3188 uint64_t value) 3189 { 3190 CPUState *cs = ENV_GET_CPU(env); 3191 uint64_t pageaddr; 3192 3193 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3194 return; 3195 } 3196 3197 pageaddr = sextract64(value << 12, 0, 48); 3198 3199 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3200 (1 << ARMMMUIdx_S2NS)); 3201 } 3202 3203 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3204 bool isread) 3205 { 3206 /* We don't implement EL2, so the only control on DC ZVA is the 3207 * bit in the SCTLR which can prohibit access for EL0. 3208 */ 3209 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3210 return CP_ACCESS_TRAP; 3211 } 3212 return CP_ACCESS_OK; 3213 } 3214 3215 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3216 { 3217 ARMCPU *cpu = arm_env_get_cpu(env); 3218 int dzp_bit = 1 << 4; 3219 3220 /* DZP indicates whether DC ZVA access is allowed */ 3221 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3222 dzp_bit = 0; 3223 } 3224 return cpu->dcz_blocksize | dzp_bit; 3225 } 3226 3227 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3228 bool isread) 3229 { 3230 if (!(env->pstate & PSTATE_SP)) { 3231 /* Access to SP_EL0 is undefined if it's being used as 3232 * the stack pointer. 3233 */ 3234 return CP_ACCESS_TRAP_UNCATEGORIZED; 3235 } 3236 return CP_ACCESS_OK; 3237 } 3238 3239 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3240 { 3241 return env->pstate & PSTATE_SP; 3242 } 3243 3244 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3245 { 3246 update_spsel(env, val); 3247 } 3248 3249 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3250 uint64_t value) 3251 { 3252 ARMCPU *cpu = arm_env_get_cpu(env); 3253 3254 if (raw_read(env, ri) == value) { 3255 /* Skip the TLB flush if nothing actually changed; Linux likes 3256 * to do a lot of pointless SCTLR writes. 3257 */ 3258 return; 3259 } 3260 3261 raw_write(env, ri, value); 3262 /* ??? Lots of these bits are not implemented. */ 3263 /* This may enable/disable the MMU, so do a TLB flush. */ 3264 tlb_flush(CPU(cpu)); 3265 } 3266 3267 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3268 bool isread) 3269 { 3270 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3271 return CP_ACCESS_TRAP_FP_EL2; 3272 } 3273 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3274 return CP_ACCESS_TRAP_FP_EL3; 3275 } 3276 return CP_ACCESS_OK; 3277 } 3278 3279 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3280 uint64_t value) 3281 { 3282 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3283 } 3284 3285 static const ARMCPRegInfo v8_cp_reginfo[] = { 3286 /* Minimal set of EL0-visible registers. This will need to be expanded 3287 * significantly for system emulation of AArch64 CPUs. 3288 */ 3289 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3290 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3291 .access = PL0_RW, .type = ARM_CP_NZCV }, 3292 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3293 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3294 .type = ARM_CP_NO_RAW, 3295 .access = PL0_RW, .accessfn = aa64_daif_access, 3296 .fieldoffset = offsetof(CPUARMState, daif), 3297 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3298 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3299 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3300 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3301 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3302 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3303 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3304 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3305 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3306 .access = PL0_R, .type = ARM_CP_NO_RAW, 3307 .readfn = aa64_dczid_read }, 3308 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3309 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3310 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3311 #ifndef CONFIG_USER_ONLY 3312 /* Avoid overhead of an access check that always passes in user-mode */ 3313 .accessfn = aa64_zva_access, 3314 #endif 3315 }, 3316 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3317 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3318 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3319 /* Cache ops: all NOPs since we don't emulate caches */ 3320 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3321 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3322 .access = PL1_W, .type = ARM_CP_NOP }, 3323 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3324 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3325 .access = PL1_W, .type = ARM_CP_NOP }, 3326 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3327 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3328 .access = PL0_W, .type = ARM_CP_NOP, 3329 .accessfn = aa64_cacheop_access }, 3330 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3331 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3332 .access = PL1_W, .type = ARM_CP_NOP }, 3333 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3334 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3335 .access = PL1_W, .type = ARM_CP_NOP }, 3336 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3337 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3338 .access = PL0_W, .type = ARM_CP_NOP, 3339 .accessfn = aa64_cacheop_access }, 3340 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3341 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3342 .access = PL1_W, .type = ARM_CP_NOP }, 3343 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3344 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3345 .access = PL0_W, .type = ARM_CP_NOP, 3346 .accessfn = aa64_cacheop_access }, 3347 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3348 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3349 .access = PL0_W, .type = ARM_CP_NOP, 3350 .accessfn = aa64_cacheop_access }, 3351 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3352 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3353 .access = PL1_W, .type = ARM_CP_NOP }, 3354 /* TLBI operations */ 3355 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3356 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3357 .access = PL1_W, .type = ARM_CP_NO_RAW, 3358 .writefn = tlbi_aa64_vmalle1is_write }, 3359 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3360 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3361 .access = PL1_W, .type = ARM_CP_NO_RAW, 3362 .writefn = tlbi_aa64_vae1is_write }, 3363 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3364 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3365 .access = PL1_W, .type = ARM_CP_NO_RAW, 3366 .writefn = tlbi_aa64_vmalle1is_write }, 3367 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3368 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3369 .access = PL1_W, .type = ARM_CP_NO_RAW, 3370 .writefn = tlbi_aa64_vae1is_write }, 3371 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3372 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3373 .access = PL1_W, .type = ARM_CP_NO_RAW, 3374 .writefn = tlbi_aa64_vae1is_write }, 3375 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3376 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3377 .access = PL1_W, .type = ARM_CP_NO_RAW, 3378 .writefn = tlbi_aa64_vae1is_write }, 3379 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3380 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3381 .access = PL1_W, .type = ARM_CP_NO_RAW, 3382 .writefn = tlbi_aa64_vmalle1_write }, 3383 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3384 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3385 .access = PL1_W, .type = ARM_CP_NO_RAW, 3386 .writefn = tlbi_aa64_vae1_write }, 3387 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3388 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3389 .access = PL1_W, .type = ARM_CP_NO_RAW, 3390 .writefn = tlbi_aa64_vmalle1_write }, 3391 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3392 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3393 .access = PL1_W, .type = ARM_CP_NO_RAW, 3394 .writefn = tlbi_aa64_vae1_write }, 3395 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3396 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3397 .access = PL1_W, .type = ARM_CP_NO_RAW, 3398 .writefn = tlbi_aa64_vae1_write }, 3399 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3400 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3401 .access = PL1_W, .type = ARM_CP_NO_RAW, 3402 .writefn = tlbi_aa64_vae1_write }, 3403 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3404 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3405 .access = PL2_W, .type = ARM_CP_NO_RAW, 3406 .writefn = tlbi_aa64_ipas2e1is_write }, 3407 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3408 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3409 .access = PL2_W, .type = ARM_CP_NO_RAW, 3410 .writefn = tlbi_aa64_ipas2e1is_write }, 3411 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3412 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3413 .access = PL2_W, .type = ARM_CP_NO_RAW, 3414 .writefn = tlbi_aa64_alle1is_write }, 3415 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3416 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3417 .access = PL2_W, .type = ARM_CP_NO_RAW, 3418 .writefn = tlbi_aa64_alle1is_write }, 3419 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3420 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3421 .access = PL2_W, .type = ARM_CP_NO_RAW, 3422 .writefn = tlbi_aa64_ipas2e1_write }, 3423 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3424 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3425 .access = PL2_W, .type = ARM_CP_NO_RAW, 3426 .writefn = tlbi_aa64_ipas2e1_write }, 3427 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3428 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3429 .access = PL2_W, .type = ARM_CP_NO_RAW, 3430 .writefn = tlbi_aa64_alle1_write }, 3431 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3432 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3433 .access = PL2_W, .type = ARM_CP_NO_RAW, 3434 .writefn = tlbi_aa64_alle1is_write }, 3435 #ifndef CONFIG_USER_ONLY 3436 /* 64 bit address translation operations */ 3437 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3438 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3439 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3440 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3441 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3442 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3443 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3444 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3445 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3446 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3447 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3448 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3449 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3450 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3451 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3452 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3453 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3454 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3455 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3456 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3457 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3458 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3459 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3460 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3461 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3462 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3463 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3464 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3465 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3466 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3467 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3468 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3469 .type = ARM_CP_ALIAS, 3470 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3471 .access = PL1_RW, .resetvalue = 0, 3472 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3473 .writefn = par_write }, 3474 #endif 3475 /* TLB invalidate last level of translation table walk */ 3476 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3477 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3478 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3479 .type = ARM_CP_NO_RAW, .access = PL1_W, 3480 .writefn = tlbimvaa_is_write }, 3481 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3482 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3483 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3484 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3485 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3486 .type = ARM_CP_NO_RAW, .access = PL2_W, 3487 .writefn = tlbimva_hyp_write }, 3488 { .name = "TLBIMVALHIS", 3489 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3490 .type = ARM_CP_NO_RAW, .access = PL2_W, 3491 .writefn = tlbimva_hyp_is_write }, 3492 { .name = "TLBIIPAS2", 3493 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3494 .type = ARM_CP_NO_RAW, .access = PL2_W, 3495 .writefn = tlbiipas2_write }, 3496 { .name = "TLBIIPAS2IS", 3497 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3498 .type = ARM_CP_NO_RAW, .access = PL2_W, 3499 .writefn = tlbiipas2_is_write }, 3500 { .name = "TLBIIPAS2L", 3501 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3502 .type = ARM_CP_NO_RAW, .access = PL2_W, 3503 .writefn = tlbiipas2_write }, 3504 { .name = "TLBIIPAS2LIS", 3505 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3506 .type = ARM_CP_NO_RAW, .access = PL2_W, 3507 .writefn = tlbiipas2_is_write }, 3508 /* 32 bit cache operations */ 3509 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3510 .type = ARM_CP_NOP, .access = PL1_W }, 3511 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3512 .type = ARM_CP_NOP, .access = PL1_W }, 3513 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3514 .type = ARM_CP_NOP, .access = PL1_W }, 3515 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3516 .type = ARM_CP_NOP, .access = PL1_W }, 3517 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3518 .type = ARM_CP_NOP, .access = PL1_W }, 3519 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3520 .type = ARM_CP_NOP, .access = PL1_W }, 3521 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3522 .type = ARM_CP_NOP, .access = PL1_W }, 3523 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3524 .type = ARM_CP_NOP, .access = PL1_W }, 3525 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3526 .type = ARM_CP_NOP, .access = PL1_W }, 3527 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3528 .type = ARM_CP_NOP, .access = PL1_W }, 3529 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3530 .type = ARM_CP_NOP, .access = PL1_W }, 3531 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3532 .type = ARM_CP_NOP, .access = PL1_W }, 3533 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3534 .type = ARM_CP_NOP, .access = PL1_W }, 3535 /* MMU Domain access control / MPU write buffer control */ 3536 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3537 .access = PL1_RW, .resetvalue = 0, 3538 .writefn = dacr_write, .raw_writefn = raw_write, 3539 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3540 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3541 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3542 .type = ARM_CP_ALIAS, 3543 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3544 .access = PL1_RW, 3545 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3546 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3547 .type = ARM_CP_ALIAS, 3548 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3549 .access = PL1_RW, 3550 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3551 /* We rely on the access checks not allowing the guest to write to the 3552 * state field when SPSel indicates that it's being used as the stack 3553 * pointer. 3554 */ 3555 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3556 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3557 .access = PL1_RW, .accessfn = sp_el0_access, 3558 .type = ARM_CP_ALIAS, 3559 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3560 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3561 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3562 .access = PL2_RW, .type = ARM_CP_ALIAS, 3563 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3564 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3565 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3566 .type = ARM_CP_NO_RAW, 3567 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3568 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3569 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3570 .type = ARM_CP_ALIAS, 3571 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3572 .access = PL2_RW, .accessfn = fpexc32_access }, 3573 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3574 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3575 .access = PL2_RW, .resetvalue = 0, 3576 .writefn = dacr_write, .raw_writefn = raw_write, 3577 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3578 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3579 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3580 .access = PL2_RW, .resetvalue = 0, 3581 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3582 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3583 .type = ARM_CP_ALIAS, 3584 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3585 .access = PL2_RW, 3586 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3587 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3588 .type = ARM_CP_ALIAS, 3589 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3590 .access = PL2_RW, 3591 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3592 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3593 .type = ARM_CP_ALIAS, 3594 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3595 .access = PL2_RW, 3596 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3597 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3598 .type = ARM_CP_ALIAS, 3599 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3600 .access = PL2_RW, 3601 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3602 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3603 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3604 .resetvalue = 0, 3605 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3606 { .name = "SDCR", .type = ARM_CP_ALIAS, 3607 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3608 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3609 .writefn = sdcr_write, 3610 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3611 REGINFO_SENTINEL 3612 }; 3613 3614 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3615 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3616 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3617 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3618 .access = PL2_RW, 3619 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3620 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3621 .type = ARM_CP_NO_RAW, 3622 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3623 .access = PL2_RW, 3624 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3625 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3626 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3627 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3628 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3629 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3630 .access = PL2_RW, .type = ARM_CP_CONST, 3631 .resetvalue = 0 }, 3632 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3633 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3634 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3635 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3636 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3637 .access = PL2_RW, .type = ARM_CP_CONST, 3638 .resetvalue = 0 }, 3639 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3640 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3641 .access = PL2_RW, .type = ARM_CP_CONST, 3642 .resetvalue = 0 }, 3643 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3644 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3645 .access = PL2_RW, .type = ARM_CP_CONST, 3646 .resetvalue = 0 }, 3647 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3648 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3649 .access = PL2_RW, .type = ARM_CP_CONST, 3650 .resetvalue = 0 }, 3651 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3652 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3653 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3654 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3655 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3656 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3657 .type = ARM_CP_CONST, .resetvalue = 0 }, 3658 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3659 .cp = 15, .opc1 = 6, .crm = 2, 3660 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3661 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3662 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3663 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3664 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3665 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3666 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3667 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3668 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3669 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3670 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3671 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3672 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3673 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3674 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3675 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3676 .resetvalue = 0 }, 3677 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3678 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3679 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3680 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3681 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3682 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3683 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3684 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3685 .resetvalue = 0 }, 3686 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3687 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3688 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3689 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3690 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3691 .resetvalue = 0 }, 3692 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3693 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3694 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3695 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3696 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3697 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3698 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3699 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3700 .access = PL2_RW, .accessfn = access_tda, 3701 .type = ARM_CP_CONST, .resetvalue = 0 }, 3702 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3703 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3704 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3705 .type = ARM_CP_CONST, .resetvalue = 0 }, 3706 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3707 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3708 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3709 REGINFO_SENTINEL 3710 }; 3711 3712 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3713 { 3714 ARMCPU *cpu = arm_env_get_cpu(env); 3715 uint64_t valid_mask = HCR_MASK; 3716 3717 if (arm_feature(env, ARM_FEATURE_EL3)) { 3718 valid_mask &= ~HCR_HCD; 3719 } else { 3720 valid_mask &= ~HCR_TSC; 3721 } 3722 3723 /* Clear RES0 bits. */ 3724 value &= valid_mask; 3725 3726 /* These bits change the MMU setup: 3727 * HCR_VM enables stage 2 translation 3728 * HCR_PTW forbids certain page-table setups 3729 * HCR_DC Disables stage1 and enables stage2 translation 3730 */ 3731 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3732 tlb_flush(CPU(cpu)); 3733 } 3734 raw_write(env, ri, value); 3735 } 3736 3737 static const ARMCPRegInfo el2_cp_reginfo[] = { 3738 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3739 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3740 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3741 .writefn = hcr_write }, 3742 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 3743 .type = ARM_CP_ALIAS, 3744 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 3745 .access = PL2_RW, 3746 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 3747 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, 3748 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3749 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 3750 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, 3751 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3752 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 3753 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 3754 .type = ARM_CP_ALIAS, 3755 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 3756 .access = PL2_RW, 3757 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 3758 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3759 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3760 .access = PL2_RW, .writefn = vbar_write, 3761 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 3762 .resetvalue = 0 }, 3763 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 3764 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 3765 .access = PL3_RW, .type = ARM_CP_ALIAS, 3766 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 3767 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3768 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3769 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 3770 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 3771 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3772 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3773 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 3774 .resetvalue = 0 }, 3775 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3776 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3777 .access = PL2_RW, .type = ARM_CP_ALIAS, 3778 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 3779 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3780 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3781 .access = PL2_RW, .type = ARM_CP_CONST, 3782 .resetvalue = 0 }, 3783 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 3784 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3785 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3786 .access = PL2_RW, .type = ARM_CP_CONST, 3787 .resetvalue = 0 }, 3788 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3789 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3790 .access = PL2_RW, .type = ARM_CP_CONST, 3791 .resetvalue = 0 }, 3792 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3793 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3794 .access = PL2_RW, .type = ARM_CP_CONST, 3795 .resetvalue = 0 }, 3796 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3797 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3798 .access = PL2_RW, 3799 /* no .writefn needed as this can't cause an ASID change; 3800 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3801 */ 3802 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 3803 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 3804 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3805 .type = ARM_CP_ALIAS, 3806 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3807 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3808 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 3809 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3810 .access = PL2_RW, 3811 /* no .writefn needed as this can't cause an ASID change; 3812 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3813 */ 3814 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3815 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3816 .cp = 15, .opc1 = 6, .crm = 2, 3817 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3818 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3819 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 3820 .writefn = vttbr_write }, 3821 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3822 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3823 .access = PL2_RW, .writefn = vttbr_write, 3824 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 3825 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3826 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3827 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 3828 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 3829 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3830 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3831 .access = PL2_RW, .resetvalue = 0, 3832 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 3833 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3834 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3835 .access = PL2_RW, .resetvalue = 0, 3836 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3837 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3838 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3839 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3840 { .name = "TLBIALLNSNH", 3841 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3842 .type = ARM_CP_NO_RAW, .access = PL2_W, 3843 .writefn = tlbiall_nsnh_write }, 3844 { .name = "TLBIALLNSNHIS", 3845 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3846 .type = ARM_CP_NO_RAW, .access = PL2_W, 3847 .writefn = tlbiall_nsnh_is_write }, 3848 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3849 .type = ARM_CP_NO_RAW, .access = PL2_W, 3850 .writefn = tlbiall_hyp_write }, 3851 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3852 .type = ARM_CP_NO_RAW, .access = PL2_W, 3853 .writefn = tlbiall_hyp_is_write }, 3854 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3855 .type = ARM_CP_NO_RAW, .access = PL2_W, 3856 .writefn = tlbimva_hyp_write }, 3857 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3858 .type = ARM_CP_NO_RAW, .access = PL2_W, 3859 .writefn = tlbimva_hyp_is_write }, 3860 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 3861 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3862 .type = ARM_CP_NO_RAW, .access = PL2_W, 3863 .writefn = tlbi_aa64_alle2_write }, 3864 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 3865 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3866 .type = ARM_CP_NO_RAW, .access = PL2_W, 3867 .writefn = tlbi_aa64_vae2_write }, 3868 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 3869 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3870 .access = PL2_W, .type = ARM_CP_NO_RAW, 3871 .writefn = tlbi_aa64_vae2_write }, 3872 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 3873 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3874 .access = PL2_W, .type = ARM_CP_NO_RAW, 3875 .writefn = tlbi_aa64_alle2is_write }, 3876 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 3877 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3878 .type = ARM_CP_NO_RAW, .access = PL2_W, 3879 .writefn = tlbi_aa64_vae2is_write }, 3880 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 3881 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3882 .access = PL2_W, .type = ARM_CP_NO_RAW, 3883 .writefn = tlbi_aa64_vae2is_write }, 3884 #ifndef CONFIG_USER_ONLY 3885 /* Unlike the other EL2-related AT operations, these must 3886 * UNDEF from EL3 if EL2 is not implemented, which is why we 3887 * define them here rather than with the rest of the AT ops. 3888 */ 3889 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 3890 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3891 .access = PL2_W, .accessfn = at_s1e2_access, 3892 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3893 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 3894 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3895 .access = PL2_W, .accessfn = at_s1e2_access, 3896 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3897 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 3898 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 3899 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 3900 * to behave as if SCR.NS was 1. 3901 */ 3902 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3903 .access = PL2_W, 3904 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3905 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3906 .access = PL2_W, 3907 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3908 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3909 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3910 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 3911 * reset values as IMPDEF. We choose to reset to 3 to comply with 3912 * both ARMv7 and ARMv8. 3913 */ 3914 .access = PL2_RW, .resetvalue = 3, 3915 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 3916 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3917 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3918 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3919 .writefn = gt_cntvoff_write, 3920 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3921 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3922 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 3923 .writefn = gt_cntvoff_write, 3924 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3925 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3926 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3927 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3928 .type = ARM_CP_IO, .access = PL2_RW, 3929 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3930 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3931 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3932 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 3933 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3934 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3935 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3936 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 3937 .resetfn = gt_hyp_timer_reset, 3938 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 3939 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3940 .type = ARM_CP_IO, 3941 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3942 .access = PL2_RW, 3943 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 3944 .resetvalue = 0, 3945 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 3946 #endif 3947 /* The only field of MDCR_EL2 that has a defined architectural reset value 3948 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 3949 * don't impelment any PMU event counters, so using zero as a reset 3950 * value for MDCR_EL2 is okay 3951 */ 3952 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3953 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3954 .access = PL2_RW, .resetvalue = 0, 3955 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 3956 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 3957 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3958 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3959 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 3960 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 3961 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3962 .access = PL2_RW, 3963 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 3964 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3965 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3966 .access = PL2_RW, 3967 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 3968 REGINFO_SENTINEL 3969 }; 3970 3971 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 3972 bool isread) 3973 { 3974 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 3975 * At Secure EL1 it traps to EL3. 3976 */ 3977 if (arm_current_el(env) == 3) { 3978 return CP_ACCESS_OK; 3979 } 3980 if (arm_is_secure_below_el3(env)) { 3981 return CP_ACCESS_TRAP_EL3; 3982 } 3983 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 3984 if (isread) { 3985 return CP_ACCESS_OK; 3986 } 3987 return CP_ACCESS_TRAP_UNCATEGORIZED; 3988 } 3989 3990 static const ARMCPRegInfo el3_cp_reginfo[] = { 3991 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 3992 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 3993 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 3994 .resetvalue = 0, .writefn = scr_write }, 3995 { .name = "SCR", .type = ARM_CP_ALIAS, 3996 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 3997 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3998 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 3999 .writefn = scr_write }, 4000 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4001 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4002 .access = PL3_RW, .resetvalue = 0, 4003 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4004 { .name = "SDER", 4005 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4006 .access = PL3_RW, .resetvalue = 0, 4007 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4008 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4009 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4010 .writefn = vbar_write, .resetvalue = 0, 4011 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4012 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4013 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4014 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 4015 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4016 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4017 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4018 .access = PL3_RW, 4019 /* no .writefn needed as this can't cause an ASID change; 4020 * we must provide a .raw_writefn and .resetfn because we handle 4021 * reset and migration for the AArch32 TTBCR(S), which might be 4022 * using mask and base_mask. 4023 */ 4024 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4025 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4026 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4027 .type = ARM_CP_ALIAS, 4028 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4029 .access = PL3_RW, 4030 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4031 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4032 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4033 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4034 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4035 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4036 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4037 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4038 .type = ARM_CP_ALIAS, 4039 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4040 .access = PL3_RW, 4041 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4042 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4043 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4044 .access = PL3_RW, .writefn = vbar_write, 4045 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4046 .resetvalue = 0 }, 4047 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4048 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4049 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4050 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4051 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4052 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4053 .access = PL3_RW, .resetvalue = 0, 4054 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 4055 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 4056 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 4057 .access = PL3_RW, .type = ARM_CP_CONST, 4058 .resetvalue = 0 }, 4059 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 4060 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 4061 .access = PL3_RW, .type = ARM_CP_CONST, 4062 .resetvalue = 0 }, 4063 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4064 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4065 .access = PL3_RW, .type = ARM_CP_CONST, 4066 .resetvalue = 0 }, 4067 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4068 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4069 .access = PL3_W, .type = ARM_CP_NO_RAW, 4070 .writefn = tlbi_aa64_alle3is_write }, 4071 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4072 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4073 .access = PL3_W, .type = ARM_CP_NO_RAW, 4074 .writefn = tlbi_aa64_vae3is_write }, 4075 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4076 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4077 .access = PL3_W, .type = ARM_CP_NO_RAW, 4078 .writefn = tlbi_aa64_vae3is_write }, 4079 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4080 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4081 .access = PL3_W, .type = ARM_CP_NO_RAW, 4082 .writefn = tlbi_aa64_alle3_write }, 4083 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4084 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4085 .access = PL3_W, .type = ARM_CP_NO_RAW, 4086 .writefn = tlbi_aa64_vae3_write }, 4087 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4088 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4089 .access = PL3_W, .type = ARM_CP_NO_RAW, 4090 .writefn = tlbi_aa64_vae3_write }, 4091 REGINFO_SENTINEL 4092 }; 4093 4094 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4095 bool isread) 4096 { 4097 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4098 * but the AArch32 CTR has its own reginfo struct) 4099 */ 4100 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4101 return CP_ACCESS_TRAP; 4102 } 4103 return CP_ACCESS_OK; 4104 } 4105 4106 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4107 uint64_t value) 4108 { 4109 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4110 * read via a bit in OSLSR_EL1. 4111 */ 4112 int oslock; 4113 4114 if (ri->state == ARM_CP_STATE_AA32) { 4115 oslock = (value == 0xC5ACCE55); 4116 } else { 4117 oslock = value & 1; 4118 } 4119 4120 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4121 } 4122 4123 static const ARMCPRegInfo debug_cp_reginfo[] = { 4124 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4125 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4126 * unlike DBGDRAR it is never accessible from EL0. 4127 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4128 * accessor. 4129 */ 4130 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4131 .access = PL0_R, .accessfn = access_tdra, 4132 .type = ARM_CP_CONST, .resetvalue = 0 }, 4133 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4134 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4135 .access = PL1_R, .accessfn = access_tdra, 4136 .type = ARM_CP_CONST, .resetvalue = 0 }, 4137 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4138 .access = PL0_R, .accessfn = access_tdra, 4139 .type = ARM_CP_CONST, .resetvalue = 0 }, 4140 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4141 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4142 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4143 .access = PL1_RW, .accessfn = access_tda, 4144 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4145 .resetvalue = 0 }, 4146 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4147 * We don't implement the configurable EL0 access. 4148 */ 4149 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4150 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4151 .type = ARM_CP_ALIAS, 4152 .access = PL1_R, .accessfn = access_tda, 4153 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4154 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4155 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4156 .access = PL1_W, .type = ARM_CP_NO_RAW, 4157 .accessfn = access_tdosa, 4158 .writefn = oslar_write }, 4159 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4160 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4161 .access = PL1_R, .resetvalue = 10, 4162 .accessfn = access_tdosa, 4163 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4164 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4165 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4166 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4167 .access = PL1_RW, .accessfn = access_tdosa, 4168 .type = ARM_CP_NOP }, 4169 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4170 * implement vector catch debug events yet. 4171 */ 4172 { .name = "DBGVCR", 4173 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4174 .access = PL1_RW, .accessfn = access_tda, 4175 .type = ARM_CP_NOP }, 4176 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4177 * to save and restore a 32-bit guest's DBGVCR) 4178 */ 4179 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4180 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4181 .access = PL2_RW, .accessfn = access_tda, 4182 .type = ARM_CP_NOP }, 4183 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4184 * Channel but Linux may try to access this register. The 32-bit 4185 * alias is DBGDCCINT. 4186 */ 4187 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4188 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4189 .access = PL1_RW, .accessfn = access_tda, 4190 .type = ARM_CP_NOP }, 4191 REGINFO_SENTINEL 4192 }; 4193 4194 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4195 /* 64 bit access versions of the (dummy) debug registers */ 4196 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4197 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4198 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4199 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4200 REGINFO_SENTINEL 4201 }; 4202 4203 void hw_watchpoint_update(ARMCPU *cpu, int n) 4204 { 4205 CPUARMState *env = &cpu->env; 4206 vaddr len = 0; 4207 vaddr wvr = env->cp15.dbgwvr[n]; 4208 uint64_t wcr = env->cp15.dbgwcr[n]; 4209 int mask; 4210 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4211 4212 if (env->cpu_watchpoint[n]) { 4213 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4214 env->cpu_watchpoint[n] = NULL; 4215 } 4216 4217 if (!extract64(wcr, 0, 1)) { 4218 /* E bit clear : watchpoint disabled */ 4219 return; 4220 } 4221 4222 switch (extract64(wcr, 3, 2)) { 4223 case 0: 4224 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4225 return; 4226 case 1: 4227 flags |= BP_MEM_READ; 4228 break; 4229 case 2: 4230 flags |= BP_MEM_WRITE; 4231 break; 4232 case 3: 4233 flags |= BP_MEM_ACCESS; 4234 break; 4235 } 4236 4237 /* Attempts to use both MASK and BAS fields simultaneously are 4238 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4239 * thus generating a watchpoint for every byte in the masked region. 4240 */ 4241 mask = extract64(wcr, 24, 4); 4242 if (mask == 1 || mask == 2) { 4243 /* Reserved values of MASK; we must act as if the mask value was 4244 * some non-reserved value, or as if the watchpoint were disabled. 4245 * We choose the latter. 4246 */ 4247 return; 4248 } else if (mask) { 4249 /* Watchpoint covers an aligned area up to 2GB in size */ 4250 len = 1ULL << mask; 4251 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4252 * whether the watchpoint fires when the unmasked bits match; we opt 4253 * to generate the exceptions. 4254 */ 4255 wvr &= ~(len - 1); 4256 } else { 4257 /* Watchpoint covers bytes defined by the byte address select bits */ 4258 int bas = extract64(wcr, 5, 8); 4259 int basstart; 4260 4261 if (bas == 0) { 4262 /* This must act as if the watchpoint is disabled */ 4263 return; 4264 } 4265 4266 if (extract64(wvr, 2, 1)) { 4267 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4268 * ignored, and BAS[3:0] define which bytes to watch. 4269 */ 4270 bas &= 0xf; 4271 } 4272 /* The BAS bits are supposed to be programmed to indicate a contiguous 4273 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4274 * we fire for each byte in the word/doubleword addressed by the WVR. 4275 * We choose to ignore any non-zero bits after the first range of 1s. 4276 */ 4277 basstart = ctz32(bas); 4278 len = cto32(bas >> basstart); 4279 wvr += basstart; 4280 } 4281 4282 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4283 &env->cpu_watchpoint[n]); 4284 } 4285 4286 void hw_watchpoint_update_all(ARMCPU *cpu) 4287 { 4288 int i; 4289 CPUARMState *env = &cpu->env; 4290 4291 /* Completely clear out existing QEMU watchpoints and our array, to 4292 * avoid possible stale entries following migration load. 4293 */ 4294 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4295 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4296 4297 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4298 hw_watchpoint_update(cpu, i); 4299 } 4300 } 4301 4302 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4303 uint64_t value) 4304 { 4305 ARMCPU *cpu = arm_env_get_cpu(env); 4306 int i = ri->crm; 4307 4308 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4309 * register reads and behaves as if values written are sign extended. 4310 * Bits [1:0] are RES0. 4311 */ 4312 value = sextract64(value, 0, 49) & ~3ULL; 4313 4314 raw_write(env, ri, value); 4315 hw_watchpoint_update(cpu, i); 4316 } 4317 4318 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4319 uint64_t value) 4320 { 4321 ARMCPU *cpu = arm_env_get_cpu(env); 4322 int i = ri->crm; 4323 4324 raw_write(env, ri, value); 4325 hw_watchpoint_update(cpu, i); 4326 } 4327 4328 void hw_breakpoint_update(ARMCPU *cpu, int n) 4329 { 4330 CPUARMState *env = &cpu->env; 4331 uint64_t bvr = env->cp15.dbgbvr[n]; 4332 uint64_t bcr = env->cp15.dbgbcr[n]; 4333 vaddr addr; 4334 int bt; 4335 int flags = BP_CPU; 4336 4337 if (env->cpu_breakpoint[n]) { 4338 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4339 env->cpu_breakpoint[n] = NULL; 4340 } 4341 4342 if (!extract64(bcr, 0, 1)) { 4343 /* E bit clear : watchpoint disabled */ 4344 return; 4345 } 4346 4347 bt = extract64(bcr, 20, 4); 4348 4349 switch (bt) { 4350 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4351 case 5: /* linked address mismatch (reserved if AArch64) */ 4352 qemu_log_mask(LOG_UNIMP, 4353 "arm: address mismatch breakpoint types not implemented"); 4354 return; 4355 case 0: /* unlinked address match */ 4356 case 1: /* linked address match */ 4357 { 4358 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4359 * we behave as if the register was sign extended. Bits [1:0] are 4360 * RES0. The BAS field is used to allow setting breakpoints on 16 4361 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4362 * a bp will fire if the addresses covered by the bp and the addresses 4363 * covered by the insn overlap but the insn doesn't start at the 4364 * start of the bp address range. We choose to require the insn and 4365 * the bp to have the same address. The constraints on writing to 4366 * BAS enforced in dbgbcr_write mean we have only four cases: 4367 * 0b0000 => no breakpoint 4368 * 0b0011 => breakpoint on addr 4369 * 0b1100 => breakpoint on addr + 2 4370 * 0b1111 => breakpoint on addr 4371 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4372 */ 4373 int bas = extract64(bcr, 5, 4); 4374 addr = sextract64(bvr, 0, 49) & ~3ULL; 4375 if (bas == 0) { 4376 return; 4377 } 4378 if (bas == 0xc) { 4379 addr += 2; 4380 } 4381 break; 4382 } 4383 case 2: /* unlinked context ID match */ 4384 case 8: /* unlinked VMID match (reserved if no EL2) */ 4385 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4386 qemu_log_mask(LOG_UNIMP, 4387 "arm: unlinked context breakpoint types not implemented"); 4388 return; 4389 case 9: /* linked VMID match (reserved if no EL2) */ 4390 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4391 case 3: /* linked context ID match */ 4392 default: 4393 /* We must generate no events for Linked context matches (unless 4394 * they are linked to by some other bp/wp, which is handled in 4395 * updates for the linking bp/wp). We choose to also generate no events 4396 * for reserved values. 4397 */ 4398 return; 4399 } 4400 4401 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4402 } 4403 4404 void hw_breakpoint_update_all(ARMCPU *cpu) 4405 { 4406 int i; 4407 CPUARMState *env = &cpu->env; 4408 4409 /* Completely clear out existing QEMU breakpoints and our array, to 4410 * avoid possible stale entries following migration load. 4411 */ 4412 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4413 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4414 4415 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4416 hw_breakpoint_update(cpu, i); 4417 } 4418 } 4419 4420 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4421 uint64_t value) 4422 { 4423 ARMCPU *cpu = arm_env_get_cpu(env); 4424 int i = ri->crm; 4425 4426 raw_write(env, ri, value); 4427 hw_breakpoint_update(cpu, i); 4428 } 4429 4430 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4431 uint64_t value) 4432 { 4433 ARMCPU *cpu = arm_env_get_cpu(env); 4434 int i = ri->crm; 4435 4436 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4437 * copy of BAS[0]. 4438 */ 4439 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4440 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4441 4442 raw_write(env, ri, value); 4443 hw_breakpoint_update(cpu, i); 4444 } 4445 4446 static void define_debug_regs(ARMCPU *cpu) 4447 { 4448 /* Define v7 and v8 architectural debug registers. 4449 * These are just dummy implementations for now. 4450 */ 4451 int i; 4452 int wrps, brps, ctx_cmps; 4453 ARMCPRegInfo dbgdidr = { 4454 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4455 .access = PL0_R, .accessfn = access_tda, 4456 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4457 }; 4458 4459 /* Note that all these register fields hold "number of Xs minus 1". */ 4460 brps = extract32(cpu->dbgdidr, 24, 4); 4461 wrps = extract32(cpu->dbgdidr, 28, 4); 4462 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4463 4464 assert(ctx_cmps <= brps); 4465 4466 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4467 * of the debug registers such as number of breakpoints; 4468 * check that if they both exist then they agree. 4469 */ 4470 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4471 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4472 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4473 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4474 } 4475 4476 define_one_arm_cp_reg(cpu, &dbgdidr); 4477 define_arm_cp_regs(cpu, debug_cp_reginfo); 4478 4479 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4480 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4481 } 4482 4483 for (i = 0; i < brps + 1; i++) { 4484 ARMCPRegInfo dbgregs[] = { 4485 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4486 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4487 .access = PL1_RW, .accessfn = access_tda, 4488 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4489 .writefn = dbgbvr_write, .raw_writefn = raw_write 4490 }, 4491 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4492 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4493 .access = PL1_RW, .accessfn = access_tda, 4494 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4495 .writefn = dbgbcr_write, .raw_writefn = raw_write 4496 }, 4497 REGINFO_SENTINEL 4498 }; 4499 define_arm_cp_regs(cpu, dbgregs); 4500 } 4501 4502 for (i = 0; i < wrps + 1; i++) { 4503 ARMCPRegInfo dbgregs[] = { 4504 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4505 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4506 .access = PL1_RW, .accessfn = access_tda, 4507 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4508 .writefn = dbgwvr_write, .raw_writefn = raw_write 4509 }, 4510 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4511 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4512 .access = PL1_RW, .accessfn = access_tda, 4513 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4514 .writefn = dbgwcr_write, .raw_writefn = raw_write 4515 }, 4516 REGINFO_SENTINEL 4517 }; 4518 define_arm_cp_regs(cpu, dbgregs); 4519 } 4520 } 4521 4522 void register_cp_regs_for_features(ARMCPU *cpu) 4523 { 4524 /* Register all the coprocessor registers based on feature bits */ 4525 CPUARMState *env = &cpu->env; 4526 if (arm_feature(env, ARM_FEATURE_M)) { 4527 /* M profile has no coprocessor registers */ 4528 return; 4529 } 4530 4531 define_arm_cp_regs(cpu, cp_reginfo); 4532 if (!arm_feature(env, ARM_FEATURE_V8)) { 4533 /* Must go early as it is full of wildcards that may be 4534 * overridden by later definitions. 4535 */ 4536 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4537 } 4538 4539 if (arm_feature(env, ARM_FEATURE_V6)) { 4540 /* The ID registers all have impdef reset values */ 4541 ARMCPRegInfo v6_idregs[] = { 4542 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 4543 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4544 .access = PL1_R, .type = ARM_CP_CONST, 4545 .resetvalue = cpu->id_pfr0 }, 4546 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 4547 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 4548 .access = PL1_R, .type = ARM_CP_CONST, 4549 .resetvalue = cpu->id_pfr1 }, 4550 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 4551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 4552 .access = PL1_R, .type = ARM_CP_CONST, 4553 .resetvalue = cpu->id_dfr0 }, 4554 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 4555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 4556 .access = PL1_R, .type = ARM_CP_CONST, 4557 .resetvalue = cpu->id_afr0 }, 4558 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 4559 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 4560 .access = PL1_R, .type = ARM_CP_CONST, 4561 .resetvalue = cpu->id_mmfr0 }, 4562 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 4563 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 4564 .access = PL1_R, .type = ARM_CP_CONST, 4565 .resetvalue = cpu->id_mmfr1 }, 4566 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 4567 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 4568 .access = PL1_R, .type = ARM_CP_CONST, 4569 .resetvalue = cpu->id_mmfr2 }, 4570 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 4571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 4572 .access = PL1_R, .type = ARM_CP_CONST, 4573 .resetvalue = cpu->id_mmfr3 }, 4574 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 4575 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4576 .access = PL1_R, .type = ARM_CP_CONST, 4577 .resetvalue = cpu->id_isar0 }, 4578 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 4579 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 4580 .access = PL1_R, .type = ARM_CP_CONST, 4581 .resetvalue = cpu->id_isar1 }, 4582 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 4583 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4584 .access = PL1_R, .type = ARM_CP_CONST, 4585 .resetvalue = cpu->id_isar2 }, 4586 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 4587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 4588 .access = PL1_R, .type = ARM_CP_CONST, 4589 .resetvalue = cpu->id_isar3 }, 4590 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 4591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 4592 .access = PL1_R, .type = ARM_CP_CONST, 4593 .resetvalue = cpu->id_isar4 }, 4594 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 4595 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 4596 .access = PL1_R, .type = ARM_CP_CONST, 4597 .resetvalue = cpu->id_isar5 }, 4598 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 4599 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 4600 .access = PL1_R, .type = ARM_CP_CONST, 4601 .resetvalue = cpu->id_mmfr4 }, 4602 /* 7 is as yet unallocated and must RAZ */ 4603 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, 4604 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 4605 .access = PL1_R, .type = ARM_CP_CONST, 4606 .resetvalue = 0 }, 4607 REGINFO_SENTINEL 4608 }; 4609 define_arm_cp_regs(cpu, v6_idregs); 4610 define_arm_cp_regs(cpu, v6_cp_reginfo); 4611 } else { 4612 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 4613 } 4614 if (arm_feature(env, ARM_FEATURE_V6K)) { 4615 define_arm_cp_regs(cpu, v6k_cp_reginfo); 4616 } 4617 if (arm_feature(env, ARM_FEATURE_V7MP) && 4618 !arm_feature(env, ARM_FEATURE_MPU)) { 4619 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 4620 } 4621 if (arm_feature(env, ARM_FEATURE_V7)) { 4622 /* v7 performance monitor control register: same implementor 4623 * field as main ID register, and we implement only the cycle 4624 * count register. 4625 */ 4626 #ifndef CONFIG_USER_ONLY 4627 ARMCPRegInfo pmcr = { 4628 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 4629 .access = PL0_RW, 4630 .type = ARM_CP_IO | ARM_CP_ALIAS, 4631 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 4632 .accessfn = pmreg_access, .writefn = pmcr_write, 4633 .raw_writefn = raw_write, 4634 }; 4635 ARMCPRegInfo pmcr64 = { 4636 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 4637 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 4638 .access = PL0_RW, .accessfn = pmreg_access, 4639 .type = ARM_CP_IO, 4640 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 4641 .resetvalue = cpu->midr & 0xff000000, 4642 .writefn = pmcr_write, .raw_writefn = raw_write, 4643 }; 4644 define_one_arm_cp_reg(cpu, &pmcr); 4645 define_one_arm_cp_reg(cpu, &pmcr64); 4646 #endif 4647 ARMCPRegInfo clidr = { 4648 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 4649 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 4650 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 4651 }; 4652 define_one_arm_cp_reg(cpu, &clidr); 4653 define_arm_cp_regs(cpu, v7_cp_reginfo); 4654 define_debug_regs(cpu); 4655 } else { 4656 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 4657 } 4658 if (arm_feature(env, ARM_FEATURE_V8)) { 4659 /* AArch64 ID registers, which all have impdef reset values. 4660 * Note that within the ID register ranges the unused slots 4661 * must all RAZ, not UNDEF; future architecture versions may 4662 * define new registers here. 4663 */ 4664 ARMCPRegInfo v8_idregs[] = { 4665 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 4666 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 4667 .access = PL1_R, .type = ARM_CP_CONST, 4668 .resetvalue = cpu->id_aa64pfr0 }, 4669 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 4670 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 4671 .access = PL1_R, .type = ARM_CP_CONST, 4672 .resetvalue = cpu->id_aa64pfr1}, 4673 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4674 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 4675 .access = PL1_R, .type = ARM_CP_CONST, 4676 .resetvalue = 0 }, 4677 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4678 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 4679 .access = PL1_R, .type = ARM_CP_CONST, 4680 .resetvalue = 0 }, 4681 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4682 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 4683 .access = PL1_R, .type = ARM_CP_CONST, 4684 .resetvalue = 0 }, 4685 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4686 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 4687 .access = PL1_R, .type = ARM_CP_CONST, 4688 .resetvalue = 0 }, 4689 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 4691 .access = PL1_R, .type = ARM_CP_CONST, 4692 .resetvalue = 0 }, 4693 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4694 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 4695 .access = PL1_R, .type = ARM_CP_CONST, 4696 .resetvalue = 0 }, 4697 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 4698 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 4699 .access = PL1_R, .type = ARM_CP_CONST, 4700 .resetvalue = cpu->id_aa64dfr0 }, 4701 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 4702 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 4703 .access = PL1_R, .type = ARM_CP_CONST, 4704 .resetvalue = cpu->id_aa64dfr1 }, 4705 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4706 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 4707 .access = PL1_R, .type = ARM_CP_CONST, 4708 .resetvalue = 0 }, 4709 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4710 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 4711 .access = PL1_R, .type = ARM_CP_CONST, 4712 .resetvalue = 0 }, 4713 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 4714 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 4715 .access = PL1_R, .type = ARM_CP_CONST, 4716 .resetvalue = cpu->id_aa64afr0 }, 4717 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 4718 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 4719 .access = PL1_R, .type = ARM_CP_CONST, 4720 .resetvalue = cpu->id_aa64afr1 }, 4721 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 4723 .access = PL1_R, .type = ARM_CP_CONST, 4724 .resetvalue = 0 }, 4725 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4726 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 4727 .access = PL1_R, .type = ARM_CP_CONST, 4728 .resetvalue = 0 }, 4729 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 4730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 4731 .access = PL1_R, .type = ARM_CP_CONST, 4732 .resetvalue = cpu->id_aa64isar0 }, 4733 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 4734 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 4735 .access = PL1_R, .type = ARM_CP_CONST, 4736 .resetvalue = cpu->id_aa64isar1 }, 4737 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4738 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 4739 .access = PL1_R, .type = ARM_CP_CONST, 4740 .resetvalue = 0 }, 4741 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 4743 .access = PL1_R, .type = ARM_CP_CONST, 4744 .resetvalue = 0 }, 4745 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4746 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 4747 .access = PL1_R, .type = ARM_CP_CONST, 4748 .resetvalue = 0 }, 4749 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 4751 .access = PL1_R, .type = ARM_CP_CONST, 4752 .resetvalue = 0 }, 4753 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4754 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 4755 .access = PL1_R, .type = ARM_CP_CONST, 4756 .resetvalue = 0 }, 4757 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4758 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 4759 .access = PL1_R, .type = ARM_CP_CONST, 4760 .resetvalue = 0 }, 4761 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 4762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4763 .access = PL1_R, .type = ARM_CP_CONST, 4764 .resetvalue = cpu->id_aa64mmfr0 }, 4765 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 4766 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 4767 .access = PL1_R, .type = ARM_CP_CONST, 4768 .resetvalue = cpu->id_aa64mmfr1 }, 4769 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 4771 .access = PL1_R, .type = ARM_CP_CONST, 4772 .resetvalue = 0 }, 4773 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4774 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 4775 .access = PL1_R, .type = ARM_CP_CONST, 4776 .resetvalue = 0 }, 4777 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4778 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 4779 .access = PL1_R, .type = ARM_CP_CONST, 4780 .resetvalue = 0 }, 4781 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 4783 .access = PL1_R, .type = ARM_CP_CONST, 4784 .resetvalue = 0 }, 4785 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4786 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 4787 .access = PL1_R, .type = ARM_CP_CONST, 4788 .resetvalue = 0 }, 4789 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 4791 .access = PL1_R, .type = ARM_CP_CONST, 4792 .resetvalue = 0 }, 4793 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 4794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 4795 .access = PL1_R, .type = ARM_CP_CONST, 4796 .resetvalue = cpu->mvfr0 }, 4797 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 4798 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 4799 .access = PL1_R, .type = ARM_CP_CONST, 4800 .resetvalue = cpu->mvfr1 }, 4801 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 4802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 4803 .access = PL1_R, .type = ARM_CP_CONST, 4804 .resetvalue = cpu->mvfr2 }, 4805 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 4807 .access = PL1_R, .type = ARM_CP_CONST, 4808 .resetvalue = 0 }, 4809 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 4811 .access = PL1_R, .type = ARM_CP_CONST, 4812 .resetvalue = 0 }, 4813 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4814 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 4815 .access = PL1_R, .type = ARM_CP_CONST, 4816 .resetvalue = 0 }, 4817 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4818 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 4819 .access = PL1_R, .type = ARM_CP_CONST, 4820 .resetvalue = 0 }, 4821 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 4823 .access = PL1_R, .type = ARM_CP_CONST, 4824 .resetvalue = 0 }, 4825 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 4826 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 4827 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4828 .resetvalue = cpu->pmceid0 }, 4829 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 4830 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 4831 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4832 .resetvalue = cpu->pmceid0 }, 4833 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 4834 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 4835 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4836 .resetvalue = cpu->pmceid1 }, 4837 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 4838 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 4839 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4840 .resetvalue = cpu->pmceid1 }, 4841 REGINFO_SENTINEL 4842 }; 4843 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 4844 if (!arm_feature(env, ARM_FEATURE_EL3) && 4845 !arm_feature(env, ARM_FEATURE_EL2)) { 4846 ARMCPRegInfo rvbar = { 4847 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4849 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 4850 }; 4851 define_one_arm_cp_reg(cpu, &rvbar); 4852 } 4853 define_arm_cp_regs(cpu, v8_idregs); 4854 define_arm_cp_regs(cpu, v8_cp_reginfo); 4855 } 4856 if (arm_feature(env, ARM_FEATURE_EL2)) { 4857 uint64_t vmpidr_def = mpidr_read_val(env); 4858 ARMCPRegInfo vpidr_regs[] = { 4859 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 4860 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4861 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4862 .resetvalue = cpu->midr, 4863 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4864 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 4865 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4866 .access = PL2_RW, .resetvalue = cpu->midr, 4867 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4868 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 4869 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4870 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4871 .resetvalue = vmpidr_def, 4872 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4873 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 4874 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4875 .access = PL2_RW, 4876 .resetvalue = vmpidr_def, 4877 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4878 REGINFO_SENTINEL 4879 }; 4880 define_arm_cp_regs(cpu, vpidr_regs); 4881 define_arm_cp_regs(cpu, el2_cp_reginfo); 4882 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 4883 if (!arm_feature(env, ARM_FEATURE_EL3)) { 4884 ARMCPRegInfo rvbar = { 4885 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 4886 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 4887 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 4888 }; 4889 define_one_arm_cp_reg(cpu, &rvbar); 4890 } 4891 } else { 4892 /* If EL2 is missing but higher ELs are enabled, we need to 4893 * register the no_el2 reginfos. 4894 */ 4895 if (arm_feature(env, ARM_FEATURE_EL3)) { 4896 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 4897 * of MIDR_EL1 and MPIDR_EL1. 4898 */ 4899 ARMCPRegInfo vpidr_regs[] = { 4900 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4901 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4902 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4903 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 4904 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4905 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4906 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4907 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4908 .type = ARM_CP_NO_RAW, 4909 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 4910 REGINFO_SENTINEL 4911 }; 4912 define_arm_cp_regs(cpu, vpidr_regs); 4913 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 4914 } 4915 } 4916 if (arm_feature(env, ARM_FEATURE_EL3)) { 4917 define_arm_cp_regs(cpu, el3_cp_reginfo); 4918 ARMCPRegInfo el3_regs[] = { 4919 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 4920 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 4921 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 4922 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 4923 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 4924 .access = PL3_RW, 4925 .raw_writefn = raw_write, .writefn = sctlr_write, 4926 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 4927 .resetvalue = cpu->reset_sctlr }, 4928 REGINFO_SENTINEL 4929 }; 4930 4931 define_arm_cp_regs(cpu, el3_regs); 4932 } 4933 /* The behaviour of NSACR is sufficiently various that we don't 4934 * try to describe it in a single reginfo: 4935 * if EL3 is 64 bit, then trap to EL3 from S EL1, 4936 * reads as constant 0xc00 from NS EL1 and NS EL2 4937 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 4938 * if v7 without EL3, register doesn't exist 4939 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 4940 */ 4941 if (arm_feature(env, ARM_FEATURE_EL3)) { 4942 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 4943 ARMCPRegInfo nsacr = { 4944 .name = "NSACR", .type = ARM_CP_CONST, 4945 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4946 .access = PL1_RW, .accessfn = nsacr_access, 4947 .resetvalue = 0xc00 4948 }; 4949 define_one_arm_cp_reg(cpu, &nsacr); 4950 } else { 4951 ARMCPRegInfo nsacr = { 4952 .name = "NSACR", 4953 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4954 .access = PL3_RW | PL1_R, 4955 .resetvalue = 0, 4956 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 4957 }; 4958 define_one_arm_cp_reg(cpu, &nsacr); 4959 } 4960 } else { 4961 if (arm_feature(env, ARM_FEATURE_V8)) { 4962 ARMCPRegInfo nsacr = { 4963 .name = "NSACR", .type = ARM_CP_CONST, 4964 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4965 .access = PL1_R, 4966 .resetvalue = 0xc00 4967 }; 4968 define_one_arm_cp_reg(cpu, &nsacr); 4969 } 4970 } 4971 4972 if (arm_feature(env, ARM_FEATURE_MPU)) { 4973 if (arm_feature(env, ARM_FEATURE_V6)) { 4974 /* PMSAv6 not implemented */ 4975 assert(arm_feature(env, ARM_FEATURE_V7)); 4976 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 4977 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 4978 } else { 4979 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 4980 } 4981 } else { 4982 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 4983 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 4984 } 4985 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 4986 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 4987 } 4988 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 4989 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 4990 } 4991 if (arm_feature(env, ARM_FEATURE_VAPA)) { 4992 define_arm_cp_regs(cpu, vapa_cp_reginfo); 4993 } 4994 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 4995 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 4996 } 4997 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 4998 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 4999 } 5000 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 5001 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 5002 } 5003 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 5004 define_arm_cp_regs(cpu, omap_cp_reginfo); 5005 } 5006 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 5007 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 5008 } 5009 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5010 define_arm_cp_regs(cpu, xscale_cp_reginfo); 5011 } 5012 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 5013 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 5014 } 5015 if (arm_feature(env, ARM_FEATURE_LPAE)) { 5016 define_arm_cp_regs(cpu, lpae_cp_reginfo); 5017 } 5018 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 5019 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 5020 * be read-only (ie write causes UNDEF exception). 5021 */ 5022 { 5023 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 5024 /* Pre-v8 MIDR space. 5025 * Note that the MIDR isn't a simple constant register because 5026 * of the TI925 behaviour where writes to another register can 5027 * cause the MIDR value to change. 5028 * 5029 * Unimplemented registers in the c15 0 0 0 space default to 5030 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 5031 * and friends override accordingly. 5032 */ 5033 { .name = "MIDR", 5034 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 5035 .access = PL1_R, .resetvalue = cpu->midr, 5036 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 5037 .readfn = midr_read, 5038 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5039 .type = ARM_CP_OVERRIDE }, 5040 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 5041 { .name = "DUMMY", 5042 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 5043 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5044 { .name = "DUMMY", 5045 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 5046 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5047 { .name = "DUMMY", 5048 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 5049 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5050 { .name = "DUMMY", 5051 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 5052 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5053 { .name = "DUMMY", 5054 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 5055 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5056 REGINFO_SENTINEL 5057 }; 5058 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 5059 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 5060 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 5061 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 5062 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5063 .readfn = midr_read }, 5064 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 5065 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5066 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5067 .access = PL1_R, .resetvalue = cpu->midr }, 5068 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5069 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 5070 .access = PL1_R, .resetvalue = cpu->midr }, 5071 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 5072 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 5073 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 5074 REGINFO_SENTINEL 5075 }; 5076 ARMCPRegInfo id_cp_reginfo[] = { 5077 /* These are common to v8 and pre-v8 */ 5078 { .name = "CTR", 5079 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 5080 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5081 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 5082 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 5083 .access = PL0_R, .accessfn = ctr_el0_access, 5084 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5085 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 5086 { .name = "TCMTR", 5087 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 5088 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5089 REGINFO_SENTINEL 5090 }; 5091 /* TLBTR is specific to VMSA */ 5092 ARMCPRegInfo id_tlbtr_reginfo = { 5093 .name = "TLBTR", 5094 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 5095 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 5096 }; 5097 /* MPUIR is specific to PMSA V6+ */ 5098 ARMCPRegInfo id_mpuir_reginfo = { 5099 .name = "MPUIR", 5100 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5101 .access = PL1_R, .type = ARM_CP_CONST, 5102 .resetvalue = cpu->pmsav7_dregion << 8 5103 }; 5104 ARMCPRegInfo crn0_wi_reginfo = { 5105 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5106 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5107 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5108 }; 5109 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5110 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5111 ARMCPRegInfo *r; 5112 /* Register the blanket "writes ignored" value first to cover the 5113 * whole space. Then update the specific ID registers to allow write 5114 * access, so that they ignore writes rather than causing them to 5115 * UNDEF. 5116 */ 5117 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5118 for (r = id_pre_v8_midr_cp_reginfo; 5119 r->type != ARM_CP_SENTINEL; r++) { 5120 r->access = PL1_RW; 5121 } 5122 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5123 r->access = PL1_RW; 5124 } 5125 id_tlbtr_reginfo.access = PL1_RW; 5126 id_tlbtr_reginfo.access = PL1_RW; 5127 } 5128 if (arm_feature(env, ARM_FEATURE_V8)) { 5129 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5130 } else { 5131 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5132 } 5133 define_arm_cp_regs(cpu, id_cp_reginfo); 5134 if (!arm_feature(env, ARM_FEATURE_MPU)) { 5135 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5136 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5137 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5138 } 5139 } 5140 5141 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5142 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5143 } 5144 5145 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5146 ARMCPRegInfo auxcr_reginfo[] = { 5147 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5148 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5149 .access = PL1_RW, .type = ARM_CP_CONST, 5150 .resetvalue = cpu->reset_auxcr }, 5151 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5152 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5153 .access = PL2_RW, .type = ARM_CP_CONST, 5154 .resetvalue = 0 }, 5155 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5156 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5157 .access = PL3_RW, .type = ARM_CP_CONST, 5158 .resetvalue = 0 }, 5159 REGINFO_SENTINEL 5160 }; 5161 define_arm_cp_regs(cpu, auxcr_reginfo); 5162 } 5163 5164 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5165 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5166 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5167 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5168 | extract64(cpu->reset_cbar, 32, 12); 5169 ARMCPRegInfo cbar_reginfo[] = { 5170 { .name = "CBAR", 5171 .type = ARM_CP_CONST, 5172 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5173 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5174 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5175 .type = ARM_CP_CONST, 5176 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5177 .access = PL1_R, .resetvalue = cbar32 }, 5178 REGINFO_SENTINEL 5179 }; 5180 /* We don't implement a r/w 64 bit CBAR currently */ 5181 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5182 define_arm_cp_regs(cpu, cbar_reginfo); 5183 } else { 5184 ARMCPRegInfo cbar = { 5185 .name = "CBAR", 5186 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5187 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5188 .fieldoffset = offsetof(CPUARMState, 5189 cp15.c15_config_base_address) 5190 }; 5191 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5192 cbar.access = PL1_R; 5193 cbar.fieldoffset = 0; 5194 cbar.type = ARM_CP_CONST; 5195 } 5196 define_one_arm_cp_reg(cpu, &cbar); 5197 } 5198 } 5199 5200 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5201 ARMCPRegInfo vbar_cp_reginfo[] = { 5202 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5203 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5204 .access = PL1_RW, .writefn = vbar_write, 5205 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5206 offsetof(CPUARMState, cp15.vbar_ns) }, 5207 .resetvalue = 0 }, 5208 REGINFO_SENTINEL 5209 }; 5210 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5211 } 5212 5213 /* Generic registers whose values depend on the implementation */ 5214 { 5215 ARMCPRegInfo sctlr = { 5216 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5217 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5218 .access = PL1_RW, 5219 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5220 offsetof(CPUARMState, cp15.sctlr_ns) }, 5221 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5222 .raw_writefn = raw_write, 5223 }; 5224 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5225 /* Normally we would always end the TB on an SCTLR write, but Linux 5226 * arch/arm/mach-pxa/sleep.S expects two instructions following 5227 * an MMU enable to execute from cache. Imitate this behaviour. 5228 */ 5229 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5230 } 5231 define_one_arm_cp_reg(cpu, &sctlr); 5232 } 5233 } 5234 5235 ARMCPU *cpu_arm_init(const char *cpu_model) 5236 { 5237 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); 5238 } 5239 5240 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5241 { 5242 CPUState *cs = CPU(cpu); 5243 CPUARMState *env = &cpu->env; 5244 5245 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5246 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5247 aarch64_fpu_gdb_set_reg, 5248 34, "aarch64-fpu.xml", 0); 5249 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5250 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5251 51, "arm-neon.xml", 0); 5252 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5253 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5254 35, "arm-vfp3.xml", 0); 5255 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5256 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5257 19, "arm-vfp.xml", 0); 5258 } 5259 } 5260 5261 /* Sort alphabetically by type name, except for "any". */ 5262 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5263 { 5264 ObjectClass *class_a = (ObjectClass *)a; 5265 ObjectClass *class_b = (ObjectClass *)b; 5266 const char *name_a, *name_b; 5267 5268 name_a = object_class_get_name(class_a); 5269 name_b = object_class_get_name(class_b); 5270 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5271 return 1; 5272 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5273 return -1; 5274 } else { 5275 return strcmp(name_a, name_b); 5276 } 5277 } 5278 5279 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5280 { 5281 ObjectClass *oc = data; 5282 CPUListState *s = user_data; 5283 const char *typename; 5284 char *name; 5285 5286 typename = object_class_get_name(oc); 5287 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5288 (*s->cpu_fprintf)(s->file, " %s\n", 5289 name); 5290 g_free(name); 5291 } 5292 5293 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5294 { 5295 CPUListState s = { 5296 .file = f, 5297 .cpu_fprintf = cpu_fprintf, 5298 }; 5299 GSList *list; 5300 5301 list = object_class_get_list(TYPE_ARM_CPU, false); 5302 list = g_slist_sort(list, arm_cpu_list_compare); 5303 (*cpu_fprintf)(f, "Available CPUs:\n"); 5304 g_slist_foreach(list, arm_cpu_list_entry, &s); 5305 g_slist_free(list); 5306 #ifdef CONFIG_KVM 5307 /* The 'host' CPU type is dynamically registered only if KVM is 5308 * enabled, so we have to special-case it here: 5309 */ 5310 (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); 5311 #endif 5312 } 5313 5314 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5315 { 5316 ObjectClass *oc = data; 5317 CpuDefinitionInfoList **cpu_list = user_data; 5318 CpuDefinitionInfoList *entry; 5319 CpuDefinitionInfo *info; 5320 const char *typename; 5321 5322 typename = object_class_get_name(oc); 5323 info = g_malloc0(sizeof(*info)); 5324 info->name = g_strndup(typename, 5325 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5326 info->q_typename = g_strdup(typename); 5327 5328 entry = g_malloc0(sizeof(*entry)); 5329 entry->value = info; 5330 entry->next = *cpu_list; 5331 *cpu_list = entry; 5332 } 5333 5334 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5335 { 5336 CpuDefinitionInfoList *cpu_list = NULL; 5337 GSList *list; 5338 5339 list = object_class_get_list(TYPE_ARM_CPU, false); 5340 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5341 g_slist_free(list); 5342 5343 return cpu_list; 5344 } 5345 5346 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5347 void *opaque, int state, int secstate, 5348 int crm, int opc1, int opc2) 5349 { 5350 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5351 * add a single reginfo struct to the hash table. 5352 */ 5353 uint32_t *key = g_new(uint32_t, 1); 5354 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5355 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5356 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5357 5358 /* Reset the secure state to the specific incoming state. This is 5359 * necessary as the register may have been defined with both states. 5360 */ 5361 r2->secure = secstate; 5362 5363 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5364 /* Register is banked (using both entries in array). 5365 * Overwriting fieldoffset as the array is only used to define 5366 * banked registers but later only fieldoffset is used. 5367 */ 5368 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5369 } 5370 5371 if (state == ARM_CP_STATE_AA32) { 5372 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5373 /* If the register is banked then we don't need to migrate or 5374 * reset the 32-bit instance in certain cases: 5375 * 5376 * 1) If the register has both 32-bit and 64-bit instances then we 5377 * can count on the 64-bit instance taking care of the 5378 * non-secure bank. 5379 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5380 * taking care of the secure bank. This requires that separate 5381 * 32 and 64-bit definitions are provided. 5382 */ 5383 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5384 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5385 r2->type |= ARM_CP_ALIAS; 5386 } 5387 } else if ((secstate != r->secure) && !ns) { 5388 /* The register is not banked so we only want to allow migration of 5389 * the non-secure instance. 5390 */ 5391 r2->type |= ARM_CP_ALIAS; 5392 } 5393 5394 if (r->state == ARM_CP_STATE_BOTH) { 5395 /* We assume it is a cp15 register if the .cp field is left unset. 5396 */ 5397 if (r2->cp == 0) { 5398 r2->cp = 15; 5399 } 5400 5401 #ifdef HOST_WORDS_BIGENDIAN 5402 if (r2->fieldoffset) { 5403 r2->fieldoffset += sizeof(uint32_t); 5404 } 5405 #endif 5406 } 5407 } 5408 if (state == ARM_CP_STATE_AA64) { 5409 /* To allow abbreviation of ARMCPRegInfo 5410 * definitions, we treat cp == 0 as equivalent to 5411 * the value for "standard guest-visible sysreg". 5412 * STATE_BOTH definitions are also always "standard 5413 * sysreg" in their AArch64 view (the .cp value may 5414 * be non-zero for the benefit of the AArch32 view). 5415 */ 5416 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5417 r2->cp = CP_REG_ARM64_SYSREG_CP; 5418 } 5419 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5420 r2->opc0, opc1, opc2); 5421 } else { 5422 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5423 } 5424 if (opaque) { 5425 r2->opaque = opaque; 5426 } 5427 /* reginfo passed to helpers is correct for the actual access, 5428 * and is never ARM_CP_STATE_BOTH: 5429 */ 5430 r2->state = state; 5431 /* Make sure reginfo passed to helpers for wildcarded regs 5432 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5433 */ 5434 r2->crm = crm; 5435 r2->opc1 = opc1; 5436 r2->opc2 = opc2; 5437 /* By convention, for wildcarded registers only the first 5438 * entry is used for migration; the others are marked as 5439 * ALIAS so we don't try to transfer the register 5440 * multiple times. Special registers (ie NOP/WFI) are 5441 * never migratable and not even raw-accessible. 5442 */ 5443 if ((r->type & ARM_CP_SPECIAL)) { 5444 r2->type |= ARM_CP_NO_RAW; 5445 } 5446 if (((r->crm == CP_ANY) && crm != 0) || 5447 ((r->opc1 == CP_ANY) && opc1 != 0) || 5448 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5449 r2->type |= ARM_CP_ALIAS; 5450 } 5451 5452 /* Check that raw accesses are either forbidden or handled. Note that 5453 * we can't assert this earlier because the setup of fieldoffset for 5454 * banked registers has to be done first. 5455 */ 5456 if (!(r2->type & ARM_CP_NO_RAW)) { 5457 assert(!raw_accessors_invalid(r2)); 5458 } 5459 5460 /* Overriding of an existing definition must be explicitly 5461 * requested. 5462 */ 5463 if (!(r->type & ARM_CP_OVERRIDE)) { 5464 ARMCPRegInfo *oldreg; 5465 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5466 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5467 fprintf(stderr, "Register redefined: cp=%d %d bit " 5468 "crn=%d crm=%d opc1=%d opc2=%d, " 5469 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5470 r2->crn, r2->crm, r2->opc1, r2->opc2, 5471 oldreg->name, r2->name); 5472 g_assert_not_reached(); 5473 } 5474 } 5475 g_hash_table_insert(cpu->cp_regs, key, r2); 5476 } 5477 5478 5479 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5480 const ARMCPRegInfo *r, void *opaque) 5481 { 5482 /* Define implementations of coprocessor registers. 5483 * We store these in a hashtable because typically 5484 * there are less than 150 registers in a space which 5485 * is 16*16*16*8*8 = 262144 in size. 5486 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5487 * If a register is defined twice then the second definition is 5488 * used, so this can be used to define some generic registers and 5489 * then override them with implementation specific variations. 5490 * At least one of the original and the second definition should 5491 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5492 * against accidental use. 5493 * 5494 * The state field defines whether the register is to be 5495 * visible in the AArch32 or AArch64 execution state. If the 5496 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5497 * reginfo structure for the AArch32 view, which sees the lower 5498 * 32 bits of the 64 bit register. 5499 * 5500 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5501 * be wildcarded. AArch64 registers are always considered to be 64 5502 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5503 * the register, if any. 5504 */ 5505 int crm, opc1, opc2, state; 5506 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5507 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5508 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 5509 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 5510 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 5511 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 5512 /* 64 bit registers have only CRm and Opc1 fields */ 5513 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 5514 /* op0 only exists in the AArch64 encodings */ 5515 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 5516 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 5517 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 5518 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 5519 * encodes a minimum access level for the register. We roll this 5520 * runtime check into our general permission check code, so check 5521 * here that the reginfo's specified permissions are strict enough 5522 * to encompass the generic architectural permission check. 5523 */ 5524 if (r->state != ARM_CP_STATE_AA32) { 5525 int mask = 0; 5526 switch (r->opc1) { 5527 case 0: case 1: case 2: 5528 /* min_EL EL1 */ 5529 mask = PL1_RW; 5530 break; 5531 case 3: 5532 /* min_EL EL0 */ 5533 mask = PL0_RW; 5534 break; 5535 case 4: 5536 /* min_EL EL2 */ 5537 mask = PL2_RW; 5538 break; 5539 case 5: 5540 /* unallocated encoding, so not possible */ 5541 assert(false); 5542 break; 5543 case 6: 5544 /* min_EL EL3 */ 5545 mask = PL3_RW; 5546 break; 5547 case 7: 5548 /* min_EL EL1, secure mode only (we don't check the latter) */ 5549 mask = PL1_RW; 5550 break; 5551 default: 5552 /* broken reginfo with out-of-range opc1 */ 5553 assert(false); 5554 break; 5555 } 5556 /* assert our permissions are not too lax (stricter is fine) */ 5557 assert((r->access & ~mask) == 0); 5558 } 5559 5560 /* Check that the register definition has enough info to handle 5561 * reads and writes if they are permitted. 5562 */ 5563 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 5564 if (r->access & PL3_R) { 5565 assert((r->fieldoffset || 5566 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5567 r->readfn); 5568 } 5569 if (r->access & PL3_W) { 5570 assert((r->fieldoffset || 5571 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5572 r->writefn); 5573 } 5574 } 5575 /* Bad type field probably means missing sentinel at end of reg list */ 5576 assert(cptype_valid(r->type)); 5577 for (crm = crmmin; crm <= crmmax; crm++) { 5578 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 5579 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 5580 for (state = ARM_CP_STATE_AA32; 5581 state <= ARM_CP_STATE_AA64; state++) { 5582 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 5583 continue; 5584 } 5585 if (state == ARM_CP_STATE_AA32) { 5586 /* Under AArch32 CP registers can be common 5587 * (same for secure and non-secure world) or banked. 5588 */ 5589 switch (r->secure) { 5590 case ARM_CP_SECSTATE_S: 5591 case ARM_CP_SECSTATE_NS: 5592 add_cpreg_to_hashtable(cpu, r, opaque, state, 5593 r->secure, crm, opc1, opc2); 5594 break; 5595 default: 5596 add_cpreg_to_hashtable(cpu, r, opaque, state, 5597 ARM_CP_SECSTATE_S, 5598 crm, opc1, opc2); 5599 add_cpreg_to_hashtable(cpu, r, opaque, state, 5600 ARM_CP_SECSTATE_NS, 5601 crm, opc1, opc2); 5602 break; 5603 } 5604 } else { 5605 /* AArch64 registers get mapped to non-secure instance 5606 * of AArch32 */ 5607 add_cpreg_to_hashtable(cpu, r, opaque, state, 5608 ARM_CP_SECSTATE_NS, 5609 crm, opc1, opc2); 5610 } 5611 } 5612 } 5613 } 5614 } 5615 } 5616 5617 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 5618 const ARMCPRegInfo *regs, void *opaque) 5619 { 5620 /* Define a whole list of registers */ 5621 const ARMCPRegInfo *r; 5622 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 5623 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 5624 } 5625 } 5626 5627 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 5628 { 5629 return g_hash_table_lookup(cpregs, &encoded_cp); 5630 } 5631 5632 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 5633 uint64_t value) 5634 { 5635 /* Helper coprocessor write function for write-ignore registers */ 5636 } 5637 5638 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 5639 { 5640 /* Helper coprocessor write function for read-as-zero registers */ 5641 return 0; 5642 } 5643 5644 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 5645 { 5646 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 5647 } 5648 5649 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 5650 { 5651 /* Return true if it is not valid for us to switch to 5652 * this CPU mode (ie all the UNPREDICTABLE cases in 5653 * the ARM ARM CPSRWriteByInstr pseudocode). 5654 */ 5655 5656 /* Changes to or from Hyp via MSR and CPS are illegal. */ 5657 if (write_type == CPSRWriteByInstr && 5658 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 5659 mode == ARM_CPU_MODE_HYP)) { 5660 return 1; 5661 } 5662 5663 switch (mode) { 5664 case ARM_CPU_MODE_USR: 5665 return 0; 5666 case ARM_CPU_MODE_SYS: 5667 case ARM_CPU_MODE_SVC: 5668 case ARM_CPU_MODE_ABT: 5669 case ARM_CPU_MODE_UND: 5670 case ARM_CPU_MODE_IRQ: 5671 case ARM_CPU_MODE_FIQ: 5672 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 5673 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 5674 */ 5675 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 5676 * and CPS are treated as illegal mode changes. 5677 */ 5678 if (write_type == CPSRWriteByInstr && 5679 (env->cp15.hcr_el2 & HCR_TGE) && 5680 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 5681 !arm_is_secure_below_el3(env)) { 5682 return 1; 5683 } 5684 return 0; 5685 case ARM_CPU_MODE_HYP: 5686 return !arm_feature(env, ARM_FEATURE_EL2) 5687 || arm_current_el(env) < 2 || arm_is_secure(env); 5688 case ARM_CPU_MODE_MON: 5689 return arm_current_el(env) < 3; 5690 default: 5691 return 1; 5692 } 5693 } 5694 5695 uint32_t cpsr_read(CPUARMState *env) 5696 { 5697 int ZF; 5698 ZF = (env->ZF == 0); 5699 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 5700 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 5701 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 5702 | ((env->condexec_bits & 0xfc) << 8) 5703 | (env->GE << 16) | (env->daif & CPSR_AIF); 5704 } 5705 5706 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 5707 CPSRWriteType write_type) 5708 { 5709 uint32_t changed_daif; 5710 5711 if (mask & CPSR_NZCV) { 5712 env->ZF = (~val) & CPSR_Z; 5713 env->NF = val; 5714 env->CF = (val >> 29) & 1; 5715 env->VF = (val << 3) & 0x80000000; 5716 } 5717 if (mask & CPSR_Q) 5718 env->QF = ((val & CPSR_Q) != 0); 5719 if (mask & CPSR_T) 5720 env->thumb = ((val & CPSR_T) != 0); 5721 if (mask & CPSR_IT_0_1) { 5722 env->condexec_bits &= ~3; 5723 env->condexec_bits |= (val >> 25) & 3; 5724 } 5725 if (mask & CPSR_IT_2_7) { 5726 env->condexec_bits &= 3; 5727 env->condexec_bits |= (val >> 8) & 0xfc; 5728 } 5729 if (mask & CPSR_GE) { 5730 env->GE = (val >> 16) & 0xf; 5731 } 5732 5733 /* In a V7 implementation that includes the security extensions but does 5734 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 5735 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 5736 * bits respectively. 5737 * 5738 * In a V8 implementation, it is permitted for privileged software to 5739 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 5740 */ 5741 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 5742 arm_feature(env, ARM_FEATURE_EL3) && 5743 !arm_feature(env, ARM_FEATURE_EL2) && 5744 !arm_is_secure(env)) { 5745 5746 changed_daif = (env->daif ^ val) & mask; 5747 5748 if (changed_daif & CPSR_A) { 5749 /* Check to see if we are allowed to change the masking of async 5750 * abort exceptions from a non-secure state. 5751 */ 5752 if (!(env->cp15.scr_el3 & SCR_AW)) { 5753 qemu_log_mask(LOG_GUEST_ERROR, 5754 "Ignoring attempt to switch CPSR_A flag from " 5755 "non-secure world with SCR.AW bit clear\n"); 5756 mask &= ~CPSR_A; 5757 } 5758 } 5759 5760 if (changed_daif & CPSR_F) { 5761 /* Check to see if we are allowed to change the masking of FIQ 5762 * exceptions from a non-secure state. 5763 */ 5764 if (!(env->cp15.scr_el3 & SCR_FW)) { 5765 qemu_log_mask(LOG_GUEST_ERROR, 5766 "Ignoring attempt to switch CPSR_F flag from " 5767 "non-secure world with SCR.FW bit clear\n"); 5768 mask &= ~CPSR_F; 5769 } 5770 5771 /* Check whether non-maskable FIQ (NMFI) support is enabled. 5772 * If this bit is set software is not allowed to mask 5773 * FIQs, but is allowed to set CPSR_F to 0. 5774 */ 5775 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 5776 (val & CPSR_F)) { 5777 qemu_log_mask(LOG_GUEST_ERROR, 5778 "Ignoring attempt to enable CPSR_F flag " 5779 "(non-maskable FIQ [NMFI] support enabled)\n"); 5780 mask &= ~CPSR_F; 5781 } 5782 } 5783 } 5784 5785 env->daif &= ~(CPSR_AIF & mask); 5786 env->daif |= val & CPSR_AIF & mask; 5787 5788 if (write_type != CPSRWriteRaw && 5789 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 5790 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 5791 /* Note that we can only get here in USR mode if this is a 5792 * gdb stub write; for this case we follow the architectural 5793 * behaviour for guest writes in USR mode of ignoring an attempt 5794 * to switch mode. (Those are caught by translate.c for writes 5795 * triggered by guest instructions.) 5796 */ 5797 mask &= ~CPSR_M; 5798 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 5799 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 5800 * v7, and has defined behaviour in v8: 5801 * + leave CPSR.M untouched 5802 * + allow changes to the other CPSR fields 5803 * + set PSTATE.IL 5804 * For user changes via the GDB stub, we don't set PSTATE.IL, 5805 * as this would be unnecessarily harsh for a user error. 5806 */ 5807 mask &= ~CPSR_M; 5808 if (write_type != CPSRWriteByGDBStub && 5809 arm_feature(env, ARM_FEATURE_V8)) { 5810 mask |= CPSR_IL; 5811 val |= CPSR_IL; 5812 } 5813 } else { 5814 switch_mode(env, val & CPSR_M); 5815 } 5816 } 5817 mask &= ~CACHED_CPSR_BITS; 5818 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 5819 } 5820 5821 /* Sign/zero extend */ 5822 uint32_t HELPER(sxtb16)(uint32_t x) 5823 { 5824 uint32_t res; 5825 res = (uint16_t)(int8_t)x; 5826 res |= (uint32_t)(int8_t)(x >> 16) << 16; 5827 return res; 5828 } 5829 5830 uint32_t HELPER(uxtb16)(uint32_t x) 5831 { 5832 uint32_t res; 5833 res = (uint16_t)(uint8_t)x; 5834 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 5835 return res; 5836 } 5837 5838 int32_t HELPER(sdiv)(int32_t num, int32_t den) 5839 { 5840 if (den == 0) 5841 return 0; 5842 if (num == INT_MIN && den == -1) 5843 return INT_MIN; 5844 return num / den; 5845 } 5846 5847 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 5848 { 5849 if (den == 0) 5850 return 0; 5851 return num / den; 5852 } 5853 5854 uint32_t HELPER(rbit)(uint32_t x) 5855 { 5856 return revbit32(x); 5857 } 5858 5859 #if defined(CONFIG_USER_ONLY) 5860 5861 /* These should probably raise undefined insn exceptions. */ 5862 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 5863 { 5864 ARMCPU *cpu = arm_env_get_cpu(env); 5865 5866 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 5867 } 5868 5869 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 5870 { 5871 ARMCPU *cpu = arm_env_get_cpu(env); 5872 5873 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 5874 return 0; 5875 } 5876 5877 void switch_mode(CPUARMState *env, int mode) 5878 { 5879 ARMCPU *cpu = arm_env_get_cpu(env); 5880 5881 if (mode != ARM_CPU_MODE_USR) { 5882 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 5883 } 5884 } 5885 5886 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 5887 uint32_t cur_el, bool secure) 5888 { 5889 return 1; 5890 } 5891 5892 void aarch64_sync_64_to_32(CPUARMState *env) 5893 { 5894 g_assert_not_reached(); 5895 } 5896 5897 #else 5898 5899 void switch_mode(CPUARMState *env, int mode) 5900 { 5901 int old_mode; 5902 int i; 5903 5904 old_mode = env->uncached_cpsr & CPSR_M; 5905 if (mode == old_mode) 5906 return; 5907 5908 if (old_mode == ARM_CPU_MODE_FIQ) { 5909 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 5910 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 5911 } else if (mode == ARM_CPU_MODE_FIQ) { 5912 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 5913 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 5914 } 5915 5916 i = bank_number(old_mode); 5917 env->banked_r13[i] = env->regs[13]; 5918 env->banked_r14[i] = env->regs[14]; 5919 env->banked_spsr[i] = env->spsr; 5920 5921 i = bank_number(mode); 5922 env->regs[13] = env->banked_r13[i]; 5923 env->regs[14] = env->banked_r14[i]; 5924 env->spsr = env->banked_spsr[i]; 5925 } 5926 5927 /* Physical Interrupt Target EL Lookup Table 5928 * 5929 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 5930 * 5931 * The below multi-dimensional table is used for looking up the target 5932 * exception level given numerous condition criteria. Specifically, the 5933 * target EL is based on SCR and HCR routing controls as well as the 5934 * currently executing EL and secure state. 5935 * 5936 * Dimensions: 5937 * target_el_table[2][2][2][2][2][4] 5938 * | | | | | +--- Current EL 5939 * | | | | +------ Non-secure(0)/Secure(1) 5940 * | | | +--------- HCR mask override 5941 * | | +------------ SCR exec state control 5942 * | +--------------- SCR mask override 5943 * +------------------ 32-bit(0)/64-bit(1) EL3 5944 * 5945 * The table values are as such: 5946 * 0-3 = EL0-EL3 5947 * -1 = Cannot occur 5948 * 5949 * The ARM ARM target EL table includes entries indicating that an "exception 5950 * is not taken". The two cases where this is applicable are: 5951 * 1) An exception is taken from EL3 but the SCR does not have the exception 5952 * routed to EL3. 5953 * 2) An exception is taken from EL2 but the HCR does not have the exception 5954 * routed to EL2. 5955 * In these two cases, the below table contain a target of EL1. This value is 5956 * returned as it is expected that the consumer of the table data will check 5957 * for "target EL >= current EL" to ensure the exception is not taken. 5958 * 5959 * SCR HCR 5960 * 64 EA AMO From 5961 * BIT IRQ IMO Non-secure Secure 5962 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 5963 */ 5964 static const int8_t target_el_table[2][2][2][2][2][4] = { 5965 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 5966 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 5967 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 5968 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 5969 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 5970 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 5971 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 5972 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 5973 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 5974 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 5975 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 5976 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 5977 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 5978 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 5979 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 5980 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 5981 }; 5982 5983 /* 5984 * Determine the target EL for physical exceptions 5985 */ 5986 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 5987 uint32_t cur_el, bool secure) 5988 { 5989 CPUARMState *env = cs->env_ptr; 5990 int rw; 5991 int scr; 5992 int hcr; 5993 int target_el; 5994 /* Is the highest EL AArch64? */ 5995 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 5996 5997 if (arm_feature(env, ARM_FEATURE_EL3)) { 5998 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 5999 } else { 6000 /* Either EL2 is the highest EL (and so the EL2 register width 6001 * is given by is64); or there is no EL2 or EL3, in which case 6002 * the value of 'rw' does not affect the table lookup anyway. 6003 */ 6004 rw = is64; 6005 } 6006 6007 switch (excp_idx) { 6008 case EXCP_IRQ: 6009 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 6010 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); 6011 break; 6012 case EXCP_FIQ: 6013 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 6014 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); 6015 break; 6016 default: 6017 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 6018 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); 6019 break; 6020 }; 6021 6022 /* If HCR.TGE is set then HCR is treated as being 1 */ 6023 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 6024 6025 /* Perform a table-lookup for the target EL given the current state */ 6026 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 6027 6028 assert(target_el > 0); 6029 6030 return target_el; 6031 } 6032 6033 static void v7m_push(CPUARMState *env, uint32_t val) 6034 { 6035 CPUState *cs = CPU(arm_env_get_cpu(env)); 6036 6037 env->regs[13] -= 4; 6038 stl_phys(cs->as, env->regs[13], val); 6039 } 6040 6041 static uint32_t v7m_pop(CPUARMState *env) 6042 { 6043 CPUState *cs = CPU(arm_env_get_cpu(env)); 6044 uint32_t val; 6045 6046 val = ldl_phys(cs->as, env->regs[13]); 6047 env->regs[13] += 4; 6048 return val; 6049 } 6050 6051 /* Switch to V7M main or process stack pointer. */ 6052 static void switch_v7m_sp(CPUARMState *env, bool new_spsel) 6053 { 6054 uint32_t tmp; 6055 bool old_spsel = env->v7m.control & R_V7M_CONTROL_SPSEL_MASK; 6056 6057 if (old_spsel != new_spsel) { 6058 tmp = env->v7m.other_sp; 6059 env->v7m.other_sp = env->regs[13]; 6060 env->regs[13] = tmp; 6061 6062 env->v7m.control = deposit32(env->v7m.control, 6063 R_V7M_CONTROL_SPSEL_SHIFT, 6064 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 6065 } 6066 } 6067 6068 static uint32_t arm_v7m_load_vector(ARMCPU *cpu) 6069 { 6070 CPUState *cs = CPU(cpu); 6071 CPUARMState *env = &cpu->env; 6072 MemTxResult result; 6073 hwaddr vec = env->v7m.vecbase + env->v7m.exception * 4; 6074 uint32_t addr; 6075 6076 addr = address_space_ldl(cs->as, vec, 6077 MEMTXATTRS_UNSPECIFIED, &result); 6078 if (result != MEMTX_OK) { 6079 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL, 6080 * which would then be immediately followed by our failing to load 6081 * the entry vector for that HardFault, which is a Lockup case. 6082 * Since we don't model Lockup, we just report this guest error 6083 * via cpu_abort(). 6084 */ 6085 cpu_abort(cs, "Failed to read from exception vector table " 6086 "entry %08x\n", (unsigned)vec); 6087 } 6088 return addr; 6089 } 6090 6091 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr) 6092 { 6093 /* Do the "take the exception" parts of exception entry, 6094 * but not the pushing of state to the stack. This is 6095 * similar to the pseudocode ExceptionTaken() function. 6096 */ 6097 CPUARMState *env = &cpu->env; 6098 uint32_t addr; 6099 6100 armv7m_nvic_acknowledge_irq(env->nvic); 6101 switch_v7m_sp(env, 0); 6102 /* Clear IT bits */ 6103 env->condexec_bits = 0; 6104 env->regs[14] = lr; 6105 addr = arm_v7m_load_vector(cpu); 6106 env->regs[15] = addr & 0xfffffffe; 6107 env->thumb = addr & 1; 6108 } 6109 6110 static void v7m_push_stack(ARMCPU *cpu) 6111 { 6112 /* Do the "set up stack frame" part of exception entry, 6113 * similar to pseudocode PushStack(). 6114 */ 6115 CPUARMState *env = &cpu->env; 6116 uint32_t xpsr = xpsr_read(env); 6117 6118 /* Align stack pointer if the guest wants that */ 6119 if ((env->regs[13] & 4) && (env->v7m.ccr & R_V7M_CCR_STKALIGN_MASK)) { 6120 env->regs[13] -= 4; 6121 xpsr |= 0x200; 6122 } 6123 /* Switch to the handler mode. */ 6124 v7m_push(env, xpsr); 6125 v7m_push(env, env->regs[15]); 6126 v7m_push(env, env->regs[14]); 6127 v7m_push(env, env->regs[12]); 6128 v7m_push(env, env->regs[3]); 6129 v7m_push(env, env->regs[2]); 6130 v7m_push(env, env->regs[1]); 6131 v7m_push(env, env->regs[0]); 6132 } 6133 6134 static void do_v7m_exception_exit(ARMCPU *cpu) 6135 { 6136 CPUARMState *env = &cpu->env; 6137 uint32_t type; 6138 uint32_t xpsr; 6139 bool ufault = false; 6140 bool return_to_sp_process = false; 6141 bool return_to_handler = false; 6142 bool rettobase = false; 6143 6144 /* We can only get here from an EXCP_EXCEPTION_EXIT, and 6145 * arm_v7m_do_unassigned_access() enforces the architectural rule 6146 * that jumps to magic addresses don't have magic behaviour unless 6147 * we're in Handler mode (compare pseudocode BXWritePC()). 6148 */ 6149 assert(env->v7m.exception != 0); 6150 6151 /* In the spec pseudocode ExceptionReturn() is called directly 6152 * from BXWritePC() and gets the full target PC value including 6153 * bit zero. In QEMU's implementation we treat it as a normal 6154 * jump-to-register (which is then caught later on), and so split 6155 * the target value up between env->regs[15] and env->thumb in 6156 * gen_bx(). Reconstitute it. 6157 */ 6158 type = env->regs[15]; 6159 if (env->thumb) { 6160 type |= 1; 6161 } 6162 6163 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 6164 " previous exception %d\n", 6165 type, env->v7m.exception); 6166 6167 if (extract32(type, 5, 23) != extract32(-1, 5, 23)) { 6168 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 6169 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", type); 6170 } 6171 6172 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 6173 /* Auto-clear FAULTMASK on return from other than NMI */ 6174 env->daif &= ~PSTATE_F; 6175 } 6176 6177 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception)) { 6178 case -1: 6179 /* attempt to exit an exception that isn't active */ 6180 ufault = true; 6181 break; 6182 case 0: 6183 /* still an irq active now */ 6184 break; 6185 case 1: 6186 /* we returned to base exception level, no nesting. 6187 * (In the pseudocode this is written using "NestedActivation != 1" 6188 * where we have 'rettobase == false'.) 6189 */ 6190 rettobase = true; 6191 break; 6192 default: 6193 g_assert_not_reached(); 6194 } 6195 6196 switch (type & 0xf) { 6197 case 1: /* Return to Handler */ 6198 return_to_handler = true; 6199 break; 6200 case 13: /* Return to Thread using Process stack */ 6201 return_to_sp_process = true; 6202 /* fall through */ 6203 case 9: /* Return to Thread using Main stack */ 6204 if (!rettobase && 6205 !(env->v7m.ccr & R_V7M_CCR_NONBASETHRDENA_MASK)) { 6206 ufault = true; 6207 } 6208 break; 6209 default: 6210 ufault = true; 6211 } 6212 6213 if (ufault) { 6214 /* Bad exception return: instead of popping the exception 6215 * stack, directly take a usage fault on the current stack. 6216 */ 6217 env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK; 6218 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); 6219 v7m_exception_taken(cpu, type | 0xf0000000); 6220 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 6221 "stackframe: failed exception return integrity check\n"); 6222 return; 6223 } 6224 6225 /* Switch to the target stack. */ 6226 switch_v7m_sp(env, return_to_sp_process); 6227 /* Pop registers. */ 6228 env->regs[0] = v7m_pop(env); 6229 env->regs[1] = v7m_pop(env); 6230 env->regs[2] = v7m_pop(env); 6231 env->regs[3] = v7m_pop(env); 6232 env->regs[12] = v7m_pop(env); 6233 env->regs[14] = v7m_pop(env); 6234 env->regs[15] = v7m_pop(env); 6235 if (env->regs[15] & 1) { 6236 qemu_log_mask(LOG_GUEST_ERROR, 6237 "M profile return from interrupt with misaligned " 6238 "PC is UNPREDICTABLE\n"); 6239 /* Actual hardware seems to ignore the lsbit, and there are several 6240 * RTOSes out there which incorrectly assume the r15 in the stack 6241 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value. 6242 */ 6243 env->regs[15] &= ~1U; 6244 } 6245 xpsr = v7m_pop(env); 6246 xpsr_write(env, xpsr, 0xfffffdff); 6247 /* Undo stack alignment. */ 6248 if (xpsr & 0x200) 6249 env->regs[13] |= 4; 6250 6251 /* The restored xPSR exception field will be zero if we're 6252 * resuming in Thread mode. If that doesn't match what the 6253 * exception return type specified then this is a UsageFault. 6254 */ 6255 if (return_to_handler == (env->v7m.exception == 0)) { 6256 /* Take an INVPC UsageFault by pushing the stack again. */ 6257 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); 6258 env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK; 6259 v7m_push_stack(cpu); 6260 v7m_exception_taken(cpu, type | 0xf0000000); 6261 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 6262 "failed exception return integrity check\n"); 6263 return; 6264 } 6265 6266 /* Otherwise, we have a successful exception exit. */ 6267 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 6268 } 6269 6270 static void arm_log_exception(int idx) 6271 { 6272 if (qemu_loglevel_mask(CPU_LOG_INT)) { 6273 const char *exc = NULL; 6274 6275 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 6276 exc = excnames[idx]; 6277 } 6278 if (!exc) { 6279 exc = "unknown"; 6280 } 6281 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 6282 } 6283 } 6284 6285 void arm_v7m_cpu_do_interrupt(CPUState *cs) 6286 { 6287 ARMCPU *cpu = ARM_CPU(cs); 6288 CPUARMState *env = &cpu->env; 6289 uint32_t lr; 6290 6291 arm_log_exception(cs->exception_index); 6292 6293 lr = 0xfffffff1; 6294 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) { 6295 lr |= 4; 6296 } 6297 if (env->v7m.exception == 0) 6298 lr |= 8; 6299 6300 /* For exceptions we just mark as pending on the NVIC, and let that 6301 handle it. */ 6302 switch (cs->exception_index) { 6303 case EXCP_UDEF: 6304 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); 6305 env->v7m.cfsr |= R_V7M_CFSR_UNDEFINSTR_MASK; 6306 break; 6307 case EXCP_NOCP: 6308 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); 6309 env->v7m.cfsr |= R_V7M_CFSR_NOCP_MASK; 6310 break; 6311 case EXCP_INVSTATE: 6312 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); 6313 env->v7m.cfsr |= R_V7M_CFSR_INVSTATE_MASK; 6314 break; 6315 case EXCP_SWI: 6316 /* The PC already points to the next instruction. */ 6317 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); 6318 break; 6319 case EXCP_PREFETCH_ABORT: 6320 case EXCP_DATA_ABORT: 6321 /* TODO: if we implemented the MPU registers, this is where we 6322 * should set the MMFAR, etc from exception.fsr and exception.vaddress. 6323 */ 6324 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); 6325 break; 6326 case EXCP_BKPT: 6327 if (semihosting_enabled()) { 6328 int nr; 6329 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 6330 if (nr == 0xab) { 6331 env->regs[15] += 2; 6332 qemu_log_mask(CPU_LOG_INT, 6333 "...handling as semihosting call 0x%x\n", 6334 env->regs[0]); 6335 env->regs[0] = do_arm_semihosting(env); 6336 return; 6337 } 6338 } 6339 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); 6340 break; 6341 case EXCP_IRQ: 6342 break; 6343 case EXCP_EXCEPTION_EXIT: 6344 do_v7m_exception_exit(cpu); 6345 return; 6346 default: 6347 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 6348 return; /* Never happens. Keep compiler happy. */ 6349 } 6350 6351 v7m_push_stack(cpu); 6352 v7m_exception_taken(cpu, lr); 6353 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception); 6354 } 6355 6356 /* Function used to synchronize QEMU's AArch64 register set with AArch32 6357 * register set. This is necessary when switching between AArch32 and AArch64 6358 * execution state. 6359 */ 6360 void aarch64_sync_32_to_64(CPUARMState *env) 6361 { 6362 int i; 6363 uint32_t mode = env->uncached_cpsr & CPSR_M; 6364 6365 /* We can blanket copy R[0:7] to X[0:7] */ 6366 for (i = 0; i < 8; i++) { 6367 env->xregs[i] = env->regs[i]; 6368 } 6369 6370 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 6371 * Otherwise, they come from the banked user regs. 6372 */ 6373 if (mode == ARM_CPU_MODE_FIQ) { 6374 for (i = 8; i < 13; i++) { 6375 env->xregs[i] = env->usr_regs[i - 8]; 6376 } 6377 } else { 6378 for (i = 8; i < 13; i++) { 6379 env->xregs[i] = env->regs[i]; 6380 } 6381 } 6382 6383 /* Registers x13-x23 are the various mode SP and FP registers. Registers 6384 * r13 and r14 are only copied if we are in that mode, otherwise we copy 6385 * from the mode banked register. 6386 */ 6387 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 6388 env->xregs[13] = env->regs[13]; 6389 env->xregs[14] = env->regs[14]; 6390 } else { 6391 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 6392 /* HYP is an exception in that it is copied from r14 */ 6393 if (mode == ARM_CPU_MODE_HYP) { 6394 env->xregs[14] = env->regs[14]; 6395 } else { 6396 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 6397 } 6398 } 6399 6400 if (mode == ARM_CPU_MODE_HYP) { 6401 env->xregs[15] = env->regs[13]; 6402 } else { 6403 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 6404 } 6405 6406 if (mode == ARM_CPU_MODE_IRQ) { 6407 env->xregs[16] = env->regs[14]; 6408 env->xregs[17] = env->regs[13]; 6409 } else { 6410 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 6411 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 6412 } 6413 6414 if (mode == ARM_CPU_MODE_SVC) { 6415 env->xregs[18] = env->regs[14]; 6416 env->xregs[19] = env->regs[13]; 6417 } else { 6418 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 6419 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 6420 } 6421 6422 if (mode == ARM_CPU_MODE_ABT) { 6423 env->xregs[20] = env->regs[14]; 6424 env->xregs[21] = env->regs[13]; 6425 } else { 6426 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 6427 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 6428 } 6429 6430 if (mode == ARM_CPU_MODE_UND) { 6431 env->xregs[22] = env->regs[14]; 6432 env->xregs[23] = env->regs[13]; 6433 } else { 6434 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 6435 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 6436 } 6437 6438 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 6439 * mode, then we can copy from r8-r14. Otherwise, we copy from the 6440 * FIQ bank for r8-r14. 6441 */ 6442 if (mode == ARM_CPU_MODE_FIQ) { 6443 for (i = 24; i < 31; i++) { 6444 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 6445 } 6446 } else { 6447 for (i = 24; i < 29; i++) { 6448 env->xregs[i] = env->fiq_regs[i - 24]; 6449 } 6450 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 6451 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 6452 } 6453 6454 env->pc = env->regs[15]; 6455 } 6456 6457 /* Function used to synchronize QEMU's AArch32 register set with AArch64 6458 * register set. This is necessary when switching between AArch32 and AArch64 6459 * execution state. 6460 */ 6461 void aarch64_sync_64_to_32(CPUARMState *env) 6462 { 6463 int i; 6464 uint32_t mode = env->uncached_cpsr & CPSR_M; 6465 6466 /* We can blanket copy X[0:7] to R[0:7] */ 6467 for (i = 0; i < 8; i++) { 6468 env->regs[i] = env->xregs[i]; 6469 } 6470 6471 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 6472 * Otherwise, we copy x8-x12 into the banked user regs. 6473 */ 6474 if (mode == ARM_CPU_MODE_FIQ) { 6475 for (i = 8; i < 13; i++) { 6476 env->usr_regs[i - 8] = env->xregs[i]; 6477 } 6478 } else { 6479 for (i = 8; i < 13; i++) { 6480 env->regs[i] = env->xregs[i]; 6481 } 6482 } 6483 6484 /* Registers r13 & r14 depend on the current mode. 6485 * If we are in a given mode, we copy the corresponding x registers to r13 6486 * and r14. Otherwise, we copy the x register to the banked r13 and r14 6487 * for the mode. 6488 */ 6489 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 6490 env->regs[13] = env->xregs[13]; 6491 env->regs[14] = env->xregs[14]; 6492 } else { 6493 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 6494 6495 /* HYP is an exception in that it does not have its own banked r14 but 6496 * shares the USR r14 6497 */ 6498 if (mode == ARM_CPU_MODE_HYP) { 6499 env->regs[14] = env->xregs[14]; 6500 } else { 6501 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 6502 } 6503 } 6504 6505 if (mode == ARM_CPU_MODE_HYP) { 6506 env->regs[13] = env->xregs[15]; 6507 } else { 6508 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 6509 } 6510 6511 if (mode == ARM_CPU_MODE_IRQ) { 6512 env->regs[14] = env->xregs[16]; 6513 env->regs[13] = env->xregs[17]; 6514 } else { 6515 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 6516 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 6517 } 6518 6519 if (mode == ARM_CPU_MODE_SVC) { 6520 env->regs[14] = env->xregs[18]; 6521 env->regs[13] = env->xregs[19]; 6522 } else { 6523 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 6524 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 6525 } 6526 6527 if (mode == ARM_CPU_MODE_ABT) { 6528 env->regs[14] = env->xregs[20]; 6529 env->regs[13] = env->xregs[21]; 6530 } else { 6531 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 6532 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 6533 } 6534 6535 if (mode == ARM_CPU_MODE_UND) { 6536 env->regs[14] = env->xregs[22]; 6537 env->regs[13] = env->xregs[23]; 6538 } else { 6539 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 6540 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 6541 } 6542 6543 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 6544 * mode, then we can copy to r8-r14. Otherwise, we copy to the 6545 * FIQ bank for r8-r14. 6546 */ 6547 if (mode == ARM_CPU_MODE_FIQ) { 6548 for (i = 24; i < 31; i++) { 6549 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 6550 } 6551 } else { 6552 for (i = 24; i < 29; i++) { 6553 env->fiq_regs[i - 24] = env->xregs[i]; 6554 } 6555 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 6556 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 6557 } 6558 6559 env->regs[15] = env->pc; 6560 } 6561 6562 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 6563 { 6564 ARMCPU *cpu = ARM_CPU(cs); 6565 CPUARMState *env = &cpu->env; 6566 uint32_t addr; 6567 uint32_t mask; 6568 int new_mode; 6569 uint32_t offset; 6570 uint32_t moe; 6571 6572 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 6573 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { 6574 case EC_BREAKPOINT: 6575 case EC_BREAKPOINT_SAME_EL: 6576 moe = 1; 6577 break; 6578 case EC_WATCHPOINT: 6579 case EC_WATCHPOINT_SAME_EL: 6580 moe = 10; 6581 break; 6582 case EC_AA32_BKPT: 6583 moe = 3; 6584 break; 6585 case EC_VECTORCATCH: 6586 moe = 5; 6587 break; 6588 default: 6589 moe = 0; 6590 break; 6591 } 6592 6593 if (moe) { 6594 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 6595 } 6596 6597 /* TODO: Vectored interrupt controller. */ 6598 switch (cs->exception_index) { 6599 case EXCP_UDEF: 6600 new_mode = ARM_CPU_MODE_UND; 6601 addr = 0x04; 6602 mask = CPSR_I; 6603 if (env->thumb) 6604 offset = 2; 6605 else 6606 offset = 4; 6607 break; 6608 case EXCP_SWI: 6609 new_mode = ARM_CPU_MODE_SVC; 6610 addr = 0x08; 6611 mask = CPSR_I; 6612 /* The PC already points to the next instruction. */ 6613 offset = 0; 6614 break; 6615 case EXCP_BKPT: 6616 env->exception.fsr = 2; 6617 /* Fall through to prefetch abort. */ 6618 case EXCP_PREFETCH_ABORT: 6619 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 6620 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 6621 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 6622 env->exception.fsr, (uint32_t)env->exception.vaddress); 6623 new_mode = ARM_CPU_MODE_ABT; 6624 addr = 0x0c; 6625 mask = CPSR_A | CPSR_I; 6626 offset = 4; 6627 break; 6628 case EXCP_DATA_ABORT: 6629 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 6630 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 6631 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 6632 env->exception.fsr, 6633 (uint32_t)env->exception.vaddress); 6634 new_mode = ARM_CPU_MODE_ABT; 6635 addr = 0x10; 6636 mask = CPSR_A | CPSR_I; 6637 offset = 8; 6638 break; 6639 case EXCP_IRQ: 6640 new_mode = ARM_CPU_MODE_IRQ; 6641 addr = 0x18; 6642 /* Disable IRQ and imprecise data aborts. */ 6643 mask = CPSR_A | CPSR_I; 6644 offset = 4; 6645 if (env->cp15.scr_el3 & SCR_IRQ) { 6646 /* IRQ routed to monitor mode */ 6647 new_mode = ARM_CPU_MODE_MON; 6648 mask |= CPSR_F; 6649 } 6650 break; 6651 case EXCP_FIQ: 6652 new_mode = ARM_CPU_MODE_FIQ; 6653 addr = 0x1c; 6654 /* Disable FIQ, IRQ and imprecise data aborts. */ 6655 mask = CPSR_A | CPSR_I | CPSR_F; 6656 if (env->cp15.scr_el3 & SCR_FIQ) { 6657 /* FIQ routed to monitor mode */ 6658 new_mode = ARM_CPU_MODE_MON; 6659 } 6660 offset = 4; 6661 break; 6662 case EXCP_VIRQ: 6663 new_mode = ARM_CPU_MODE_IRQ; 6664 addr = 0x18; 6665 /* Disable IRQ and imprecise data aborts. */ 6666 mask = CPSR_A | CPSR_I; 6667 offset = 4; 6668 break; 6669 case EXCP_VFIQ: 6670 new_mode = ARM_CPU_MODE_FIQ; 6671 addr = 0x1c; 6672 /* Disable FIQ, IRQ and imprecise data aborts. */ 6673 mask = CPSR_A | CPSR_I | CPSR_F; 6674 offset = 4; 6675 break; 6676 case EXCP_SMC: 6677 new_mode = ARM_CPU_MODE_MON; 6678 addr = 0x08; 6679 mask = CPSR_A | CPSR_I | CPSR_F; 6680 offset = 0; 6681 break; 6682 default: 6683 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 6684 return; /* Never happens. Keep compiler happy. */ 6685 } 6686 6687 if (new_mode == ARM_CPU_MODE_MON) { 6688 addr += env->cp15.mvbar; 6689 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 6690 /* High vectors. When enabled, base address cannot be remapped. */ 6691 addr += 0xffff0000; 6692 } else { 6693 /* ARM v7 architectures provide a vector base address register to remap 6694 * the interrupt vector table. 6695 * This register is only followed in non-monitor mode, and is banked. 6696 * Note: only bits 31:5 are valid. 6697 */ 6698 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 6699 } 6700 6701 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 6702 env->cp15.scr_el3 &= ~SCR_NS; 6703 } 6704 6705 switch_mode (env, new_mode); 6706 /* For exceptions taken to AArch32 we must clear the SS bit in both 6707 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 6708 */ 6709 env->uncached_cpsr &= ~PSTATE_SS; 6710 env->spsr = cpsr_read(env); 6711 /* Clear IT bits. */ 6712 env->condexec_bits = 0; 6713 /* Switch to the new mode, and to the correct instruction set. */ 6714 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 6715 /* Set new mode endianness */ 6716 env->uncached_cpsr &= ~CPSR_E; 6717 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 6718 env->uncached_cpsr |= CPSR_E; 6719 } 6720 env->daif |= mask; 6721 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares 6722 * and we should just guard the thumb mode on V4 */ 6723 if (arm_feature(env, ARM_FEATURE_V4T)) { 6724 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 6725 } 6726 env->regs[14] = env->regs[15] + offset; 6727 env->regs[15] = addr; 6728 } 6729 6730 /* Handle exception entry to a target EL which is using AArch64 */ 6731 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 6732 { 6733 ARMCPU *cpu = ARM_CPU(cs); 6734 CPUARMState *env = &cpu->env; 6735 unsigned int new_el = env->exception.target_el; 6736 target_ulong addr = env->cp15.vbar_el[new_el]; 6737 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 6738 6739 if (arm_current_el(env) < new_el) { 6740 /* Entry vector offset depends on whether the implemented EL 6741 * immediately lower than the target level is using AArch32 or AArch64 6742 */ 6743 bool is_aa64; 6744 6745 switch (new_el) { 6746 case 3: 6747 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 6748 break; 6749 case 2: 6750 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 6751 break; 6752 case 1: 6753 is_aa64 = is_a64(env); 6754 break; 6755 default: 6756 g_assert_not_reached(); 6757 } 6758 6759 if (is_aa64) { 6760 addr += 0x400; 6761 } else { 6762 addr += 0x600; 6763 } 6764 } else if (pstate_read(env) & PSTATE_SP) { 6765 addr += 0x200; 6766 } 6767 6768 switch (cs->exception_index) { 6769 case EXCP_PREFETCH_ABORT: 6770 case EXCP_DATA_ABORT: 6771 env->cp15.far_el[new_el] = env->exception.vaddress; 6772 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 6773 env->cp15.far_el[new_el]); 6774 /* fall through */ 6775 case EXCP_BKPT: 6776 case EXCP_UDEF: 6777 case EXCP_SWI: 6778 case EXCP_HVC: 6779 case EXCP_HYP_TRAP: 6780 case EXCP_SMC: 6781 env->cp15.esr_el[new_el] = env->exception.syndrome; 6782 break; 6783 case EXCP_IRQ: 6784 case EXCP_VIRQ: 6785 addr += 0x80; 6786 break; 6787 case EXCP_FIQ: 6788 case EXCP_VFIQ: 6789 addr += 0x100; 6790 break; 6791 case EXCP_SEMIHOST: 6792 qemu_log_mask(CPU_LOG_INT, 6793 "...handling as semihosting call 0x%" PRIx64 "\n", 6794 env->xregs[0]); 6795 env->xregs[0] = do_arm_semihosting(env); 6796 return; 6797 default: 6798 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 6799 } 6800 6801 if (is_a64(env)) { 6802 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 6803 aarch64_save_sp(env, arm_current_el(env)); 6804 env->elr_el[new_el] = env->pc; 6805 } else { 6806 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 6807 env->elr_el[new_el] = env->regs[15]; 6808 6809 aarch64_sync_32_to_64(env); 6810 6811 env->condexec_bits = 0; 6812 } 6813 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 6814 env->elr_el[new_el]); 6815 6816 pstate_write(env, PSTATE_DAIF | new_mode); 6817 env->aarch64 = 1; 6818 aarch64_restore_sp(env, new_el); 6819 6820 env->pc = addr; 6821 6822 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 6823 new_el, env->pc, pstate_read(env)); 6824 } 6825 6826 static inline bool check_for_semihosting(CPUState *cs) 6827 { 6828 /* Check whether this exception is a semihosting call; if so 6829 * then handle it and return true; otherwise return false. 6830 */ 6831 ARMCPU *cpu = ARM_CPU(cs); 6832 CPUARMState *env = &cpu->env; 6833 6834 if (is_a64(env)) { 6835 if (cs->exception_index == EXCP_SEMIHOST) { 6836 /* This is always the 64-bit semihosting exception. 6837 * The "is this usermode" and "is semihosting enabled" 6838 * checks have been done at translate time. 6839 */ 6840 qemu_log_mask(CPU_LOG_INT, 6841 "...handling as semihosting call 0x%" PRIx64 "\n", 6842 env->xregs[0]); 6843 env->xregs[0] = do_arm_semihosting(env); 6844 return true; 6845 } 6846 return false; 6847 } else { 6848 uint32_t imm; 6849 6850 /* Only intercept calls from privileged modes, to provide some 6851 * semblance of security. 6852 */ 6853 if (cs->exception_index != EXCP_SEMIHOST && 6854 (!semihosting_enabled() || 6855 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 6856 return false; 6857 } 6858 6859 switch (cs->exception_index) { 6860 case EXCP_SEMIHOST: 6861 /* This is always a semihosting call; the "is this usermode" 6862 * and "is semihosting enabled" checks have been done at 6863 * translate time. 6864 */ 6865 break; 6866 case EXCP_SWI: 6867 /* Check for semihosting interrupt. */ 6868 if (env->thumb) { 6869 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 6870 & 0xff; 6871 if (imm == 0xab) { 6872 break; 6873 } 6874 } else { 6875 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 6876 & 0xffffff; 6877 if (imm == 0x123456) { 6878 break; 6879 } 6880 } 6881 return false; 6882 case EXCP_BKPT: 6883 /* See if this is a semihosting syscall. */ 6884 if (env->thumb) { 6885 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 6886 & 0xff; 6887 if (imm == 0xab) { 6888 env->regs[15] += 2; 6889 break; 6890 } 6891 } 6892 return false; 6893 default: 6894 return false; 6895 } 6896 6897 qemu_log_mask(CPU_LOG_INT, 6898 "...handling as semihosting call 0x%x\n", 6899 env->regs[0]); 6900 env->regs[0] = do_arm_semihosting(env); 6901 return true; 6902 } 6903 } 6904 6905 /* Handle a CPU exception for A and R profile CPUs. 6906 * Do any appropriate logging, handle PSCI calls, and then hand off 6907 * to the AArch64-entry or AArch32-entry function depending on the 6908 * target exception level's register width. 6909 */ 6910 void arm_cpu_do_interrupt(CPUState *cs) 6911 { 6912 ARMCPU *cpu = ARM_CPU(cs); 6913 CPUARMState *env = &cpu->env; 6914 unsigned int new_el = env->exception.target_el; 6915 6916 assert(!arm_feature(env, ARM_FEATURE_M)); 6917 6918 arm_log_exception(cs->exception_index); 6919 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 6920 new_el); 6921 if (qemu_loglevel_mask(CPU_LOG_INT) 6922 && !excp_is_internal(cs->exception_index)) { 6923 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 6924 env->exception.syndrome >> ARM_EL_EC_SHIFT, 6925 env->exception.syndrome); 6926 } 6927 6928 if (arm_is_psci_call(cpu, cs->exception_index)) { 6929 arm_handle_psci_call(cpu); 6930 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 6931 return; 6932 } 6933 6934 /* Semihosting semantics depend on the register width of the 6935 * code that caused the exception, not the target exception level, 6936 * so must be handled here. 6937 */ 6938 if (check_for_semihosting(cs)) { 6939 return; 6940 } 6941 6942 assert(!excp_is_internal(cs->exception_index)); 6943 if (arm_el_is_aa64(env, new_el)) { 6944 arm_cpu_do_interrupt_aarch64(cs); 6945 } else { 6946 arm_cpu_do_interrupt_aarch32(cs); 6947 } 6948 6949 /* Hooks may change global state so BQL should be held, also the 6950 * BQL needs to be held for any modification of 6951 * cs->interrupt_request. 6952 */ 6953 g_assert(qemu_mutex_iothread_locked()); 6954 6955 arm_call_el_change_hook(cpu); 6956 6957 if (!kvm_enabled()) { 6958 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 6959 } 6960 } 6961 6962 /* Return the exception level which controls this address translation regime */ 6963 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 6964 { 6965 switch (mmu_idx) { 6966 case ARMMMUIdx_S2NS: 6967 case ARMMMUIdx_S1E2: 6968 return 2; 6969 case ARMMMUIdx_S1E3: 6970 return 3; 6971 case ARMMMUIdx_S1SE0: 6972 return arm_el_is_aa64(env, 3) ? 1 : 3; 6973 case ARMMMUIdx_S1SE1: 6974 case ARMMMUIdx_S1NSE0: 6975 case ARMMMUIdx_S1NSE1: 6976 return 1; 6977 default: 6978 g_assert_not_reached(); 6979 } 6980 } 6981 6982 /* Return true if this address translation regime is secure */ 6983 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) 6984 { 6985 switch (mmu_idx) { 6986 case ARMMMUIdx_S12NSE0: 6987 case ARMMMUIdx_S12NSE1: 6988 case ARMMMUIdx_S1NSE0: 6989 case ARMMMUIdx_S1NSE1: 6990 case ARMMMUIdx_S1E2: 6991 case ARMMMUIdx_S2NS: 6992 return false; 6993 case ARMMMUIdx_S1E3: 6994 case ARMMMUIdx_S1SE0: 6995 case ARMMMUIdx_S1SE1: 6996 return true; 6997 default: 6998 g_assert_not_reached(); 6999 } 7000 } 7001 7002 /* Return the SCTLR value which controls this address translation regime */ 7003 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 7004 { 7005 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 7006 } 7007 7008 /* Return true if the specified stage of address translation is disabled */ 7009 static inline bool regime_translation_disabled(CPUARMState *env, 7010 ARMMMUIdx mmu_idx) 7011 { 7012 if (mmu_idx == ARMMMUIdx_S2NS) { 7013 return (env->cp15.hcr_el2 & HCR_VM) == 0; 7014 } 7015 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 7016 } 7017 7018 static inline bool regime_translation_big_endian(CPUARMState *env, 7019 ARMMMUIdx mmu_idx) 7020 { 7021 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 7022 } 7023 7024 /* Return the TCR controlling this translation regime */ 7025 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 7026 { 7027 if (mmu_idx == ARMMMUIdx_S2NS) { 7028 return &env->cp15.vtcr_el2; 7029 } 7030 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 7031 } 7032 7033 /* Returns TBI0 value for current regime el */ 7034 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 7035 { 7036 TCR *tcr; 7037 uint32_t el; 7038 7039 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 7040 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 7041 */ 7042 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 7043 mmu_idx += ARMMMUIdx_S1NSE0; 7044 } 7045 7046 tcr = regime_tcr(env, mmu_idx); 7047 el = regime_el(env, mmu_idx); 7048 7049 if (el > 1) { 7050 return extract64(tcr->raw_tcr, 20, 1); 7051 } else { 7052 return extract64(tcr->raw_tcr, 37, 1); 7053 } 7054 } 7055 7056 /* Returns TBI1 value for current regime el */ 7057 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 7058 { 7059 TCR *tcr; 7060 uint32_t el; 7061 7062 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 7063 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 7064 */ 7065 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 7066 mmu_idx += ARMMMUIdx_S1NSE0; 7067 } 7068 7069 tcr = regime_tcr(env, mmu_idx); 7070 el = regime_el(env, mmu_idx); 7071 7072 if (el > 1) { 7073 return 0; 7074 } else { 7075 return extract64(tcr->raw_tcr, 38, 1); 7076 } 7077 } 7078 7079 /* Return the TTBR associated with this translation regime */ 7080 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 7081 int ttbrn) 7082 { 7083 if (mmu_idx == ARMMMUIdx_S2NS) { 7084 return env->cp15.vttbr_el2; 7085 } 7086 if (ttbrn == 0) { 7087 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 7088 } else { 7089 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 7090 } 7091 } 7092 7093 /* Return true if the translation regime is using LPAE format page tables */ 7094 static inline bool regime_using_lpae_format(CPUARMState *env, 7095 ARMMMUIdx mmu_idx) 7096 { 7097 int el = regime_el(env, mmu_idx); 7098 if (el == 2 || arm_el_is_aa64(env, el)) { 7099 return true; 7100 } 7101 if (arm_feature(env, ARM_FEATURE_LPAE) 7102 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 7103 return true; 7104 } 7105 return false; 7106 } 7107 7108 /* Returns true if the stage 1 translation regime is using LPAE format page 7109 * tables. Used when raising alignment exceptions, whose FSR changes depending 7110 * on whether the long or short descriptor format is in use. */ 7111 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 7112 { 7113 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 7114 mmu_idx += ARMMMUIdx_S1NSE0; 7115 } 7116 7117 return regime_using_lpae_format(env, mmu_idx); 7118 } 7119 7120 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 7121 { 7122 switch (mmu_idx) { 7123 case ARMMMUIdx_S1SE0: 7124 case ARMMMUIdx_S1NSE0: 7125 return true; 7126 default: 7127 return false; 7128 case ARMMMUIdx_S12NSE0: 7129 case ARMMMUIdx_S12NSE1: 7130 g_assert_not_reached(); 7131 } 7132 } 7133 7134 /* Translate section/page access permissions to page 7135 * R/W protection flags 7136 * 7137 * @env: CPUARMState 7138 * @mmu_idx: MMU index indicating required translation regime 7139 * @ap: The 3-bit access permissions (AP[2:0]) 7140 * @domain_prot: The 2-bit domain access permissions 7141 */ 7142 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 7143 int ap, int domain_prot) 7144 { 7145 bool is_user = regime_is_user(env, mmu_idx); 7146 7147 if (domain_prot == 3) { 7148 return PAGE_READ | PAGE_WRITE; 7149 } 7150 7151 switch (ap) { 7152 case 0: 7153 if (arm_feature(env, ARM_FEATURE_V7)) { 7154 return 0; 7155 } 7156 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 7157 case SCTLR_S: 7158 return is_user ? 0 : PAGE_READ; 7159 case SCTLR_R: 7160 return PAGE_READ; 7161 default: 7162 return 0; 7163 } 7164 case 1: 7165 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 7166 case 2: 7167 if (is_user) { 7168 return PAGE_READ; 7169 } else { 7170 return PAGE_READ | PAGE_WRITE; 7171 } 7172 case 3: 7173 return PAGE_READ | PAGE_WRITE; 7174 case 4: /* Reserved. */ 7175 return 0; 7176 case 5: 7177 return is_user ? 0 : PAGE_READ; 7178 case 6: 7179 return PAGE_READ; 7180 case 7: 7181 if (!arm_feature(env, ARM_FEATURE_V6K)) { 7182 return 0; 7183 } 7184 return PAGE_READ; 7185 default: 7186 g_assert_not_reached(); 7187 } 7188 } 7189 7190 /* Translate section/page access permissions to page 7191 * R/W protection flags. 7192 * 7193 * @ap: The 2-bit simple AP (AP[2:1]) 7194 * @is_user: TRUE if accessing from PL0 7195 */ 7196 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 7197 { 7198 switch (ap) { 7199 case 0: 7200 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 7201 case 1: 7202 return PAGE_READ | PAGE_WRITE; 7203 case 2: 7204 return is_user ? 0 : PAGE_READ; 7205 case 3: 7206 return PAGE_READ; 7207 default: 7208 g_assert_not_reached(); 7209 } 7210 } 7211 7212 static inline int 7213 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 7214 { 7215 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 7216 } 7217 7218 /* Translate S2 section/page access permissions to protection flags 7219 * 7220 * @env: CPUARMState 7221 * @s2ap: The 2-bit stage2 access permissions (S2AP) 7222 * @xn: XN (execute-never) bit 7223 */ 7224 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 7225 { 7226 int prot = 0; 7227 7228 if (s2ap & 1) { 7229 prot |= PAGE_READ; 7230 } 7231 if (s2ap & 2) { 7232 prot |= PAGE_WRITE; 7233 } 7234 if (!xn) { 7235 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 7236 prot |= PAGE_EXEC; 7237 } 7238 } 7239 return prot; 7240 } 7241 7242 /* Translate section/page access permissions to protection flags 7243 * 7244 * @env: CPUARMState 7245 * @mmu_idx: MMU index indicating required translation regime 7246 * @is_aa64: TRUE if AArch64 7247 * @ap: The 2-bit simple AP (AP[2:1]) 7248 * @ns: NS (non-secure) bit 7249 * @xn: XN (execute-never) bit 7250 * @pxn: PXN (privileged execute-never) bit 7251 */ 7252 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 7253 int ap, int ns, int xn, int pxn) 7254 { 7255 bool is_user = regime_is_user(env, mmu_idx); 7256 int prot_rw, user_rw; 7257 bool have_wxn; 7258 int wxn = 0; 7259 7260 assert(mmu_idx != ARMMMUIdx_S2NS); 7261 7262 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 7263 if (is_user) { 7264 prot_rw = user_rw; 7265 } else { 7266 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 7267 } 7268 7269 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 7270 return prot_rw; 7271 } 7272 7273 /* TODO have_wxn should be replaced with 7274 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 7275 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 7276 * compatible processors have EL2, which is required for [U]WXN. 7277 */ 7278 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 7279 7280 if (have_wxn) { 7281 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 7282 } 7283 7284 if (is_aa64) { 7285 switch (regime_el(env, mmu_idx)) { 7286 case 1: 7287 if (!is_user) { 7288 xn = pxn || (user_rw & PAGE_WRITE); 7289 } 7290 break; 7291 case 2: 7292 case 3: 7293 break; 7294 } 7295 } else if (arm_feature(env, ARM_FEATURE_V7)) { 7296 switch (regime_el(env, mmu_idx)) { 7297 case 1: 7298 case 3: 7299 if (is_user) { 7300 xn = xn || !(user_rw & PAGE_READ); 7301 } else { 7302 int uwxn = 0; 7303 if (have_wxn) { 7304 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 7305 } 7306 xn = xn || !(prot_rw & PAGE_READ) || pxn || 7307 (uwxn && (user_rw & PAGE_WRITE)); 7308 } 7309 break; 7310 case 2: 7311 break; 7312 } 7313 } else { 7314 xn = wxn = 0; 7315 } 7316 7317 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 7318 return prot_rw; 7319 } 7320 return prot_rw | PAGE_EXEC; 7321 } 7322 7323 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 7324 uint32_t *table, uint32_t address) 7325 { 7326 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 7327 TCR *tcr = regime_tcr(env, mmu_idx); 7328 7329 if (address & tcr->mask) { 7330 if (tcr->raw_tcr & TTBCR_PD1) { 7331 /* Translation table walk disabled for TTBR1 */ 7332 return false; 7333 } 7334 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 7335 } else { 7336 if (tcr->raw_tcr & TTBCR_PD0) { 7337 /* Translation table walk disabled for TTBR0 */ 7338 return false; 7339 } 7340 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 7341 } 7342 *table |= (address >> 18) & 0x3ffc; 7343 return true; 7344 } 7345 7346 /* Translate a S1 pagetable walk through S2 if needed. */ 7347 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 7348 hwaddr addr, MemTxAttrs txattrs, 7349 uint32_t *fsr, 7350 ARMMMUFaultInfo *fi) 7351 { 7352 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 7353 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 7354 target_ulong s2size; 7355 hwaddr s2pa; 7356 int s2prot; 7357 int ret; 7358 7359 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 7360 &txattrs, &s2prot, &s2size, fsr, fi); 7361 if (ret) { 7362 fi->s2addr = addr; 7363 fi->stage2 = true; 7364 fi->s1ptw = true; 7365 return ~0; 7366 } 7367 addr = s2pa; 7368 } 7369 return addr; 7370 } 7371 7372 /* All loads done in the course of a page table walk go through here. 7373 * TODO: rather than ignoring errors from physical memory reads (which 7374 * are external aborts in ARM terminology) we should propagate this 7375 * error out so that we can turn it into a Data Abort if this walk 7376 * was being done for a CPU load/store or an address translation instruction 7377 * (but not if it was for a debug access). 7378 */ 7379 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 7380 ARMMMUIdx mmu_idx, uint32_t *fsr, 7381 ARMMMUFaultInfo *fi) 7382 { 7383 ARMCPU *cpu = ARM_CPU(cs); 7384 CPUARMState *env = &cpu->env; 7385 MemTxAttrs attrs = {}; 7386 AddressSpace *as; 7387 7388 attrs.secure = is_secure; 7389 as = arm_addressspace(cs, attrs); 7390 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); 7391 if (fi->s1ptw) { 7392 return 0; 7393 } 7394 if (regime_translation_big_endian(env, mmu_idx)) { 7395 return address_space_ldl_be(as, addr, attrs, NULL); 7396 } else { 7397 return address_space_ldl_le(as, addr, attrs, NULL); 7398 } 7399 } 7400 7401 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 7402 ARMMMUIdx mmu_idx, uint32_t *fsr, 7403 ARMMMUFaultInfo *fi) 7404 { 7405 ARMCPU *cpu = ARM_CPU(cs); 7406 CPUARMState *env = &cpu->env; 7407 MemTxAttrs attrs = {}; 7408 AddressSpace *as; 7409 7410 attrs.secure = is_secure; 7411 as = arm_addressspace(cs, attrs); 7412 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); 7413 if (fi->s1ptw) { 7414 return 0; 7415 } 7416 if (regime_translation_big_endian(env, mmu_idx)) { 7417 return address_space_ldq_be(as, addr, attrs, NULL); 7418 } else { 7419 return address_space_ldq_le(as, addr, attrs, NULL); 7420 } 7421 } 7422 7423 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 7424 int access_type, ARMMMUIdx mmu_idx, 7425 hwaddr *phys_ptr, int *prot, 7426 target_ulong *page_size, uint32_t *fsr, 7427 ARMMMUFaultInfo *fi) 7428 { 7429 CPUState *cs = CPU(arm_env_get_cpu(env)); 7430 int code; 7431 uint32_t table; 7432 uint32_t desc; 7433 int type; 7434 int ap; 7435 int domain = 0; 7436 int domain_prot; 7437 hwaddr phys_addr; 7438 uint32_t dacr; 7439 7440 /* Pagetable walk. */ 7441 /* Lookup l1 descriptor. */ 7442 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 7443 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 7444 code = 5; 7445 goto do_fault; 7446 } 7447 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 7448 mmu_idx, fsr, fi); 7449 type = (desc & 3); 7450 domain = (desc >> 5) & 0x0f; 7451 if (regime_el(env, mmu_idx) == 1) { 7452 dacr = env->cp15.dacr_ns; 7453 } else { 7454 dacr = env->cp15.dacr_s; 7455 } 7456 domain_prot = (dacr >> (domain * 2)) & 3; 7457 if (type == 0) { 7458 /* Section translation fault. */ 7459 code = 5; 7460 goto do_fault; 7461 } 7462 if (domain_prot == 0 || domain_prot == 2) { 7463 if (type == 2) 7464 code = 9; /* Section domain fault. */ 7465 else 7466 code = 11; /* Page domain fault. */ 7467 goto do_fault; 7468 } 7469 if (type == 2) { 7470 /* 1Mb section. */ 7471 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 7472 ap = (desc >> 10) & 3; 7473 code = 13; 7474 *page_size = 1024 * 1024; 7475 } else { 7476 /* Lookup l2 entry. */ 7477 if (type == 1) { 7478 /* Coarse pagetable. */ 7479 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 7480 } else { 7481 /* Fine pagetable. */ 7482 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 7483 } 7484 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 7485 mmu_idx, fsr, fi); 7486 switch (desc & 3) { 7487 case 0: /* Page translation fault. */ 7488 code = 7; 7489 goto do_fault; 7490 case 1: /* 64k page. */ 7491 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 7492 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 7493 *page_size = 0x10000; 7494 break; 7495 case 2: /* 4k page. */ 7496 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 7497 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 7498 *page_size = 0x1000; 7499 break; 7500 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 7501 if (type == 1) { 7502 /* ARMv6/XScale extended small page format */ 7503 if (arm_feature(env, ARM_FEATURE_XSCALE) 7504 || arm_feature(env, ARM_FEATURE_V6)) { 7505 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 7506 *page_size = 0x1000; 7507 } else { 7508 /* UNPREDICTABLE in ARMv5; we choose to take a 7509 * page translation fault. 7510 */ 7511 code = 7; 7512 goto do_fault; 7513 } 7514 } else { 7515 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 7516 *page_size = 0x400; 7517 } 7518 ap = (desc >> 4) & 3; 7519 break; 7520 default: 7521 /* Never happens, but compiler isn't smart enough to tell. */ 7522 abort(); 7523 } 7524 code = 15; 7525 } 7526 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 7527 *prot |= *prot ? PAGE_EXEC : 0; 7528 if (!(*prot & (1 << access_type))) { 7529 /* Access permission fault. */ 7530 goto do_fault; 7531 } 7532 *phys_ptr = phys_addr; 7533 return false; 7534 do_fault: 7535 *fsr = code | (domain << 4); 7536 return true; 7537 } 7538 7539 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 7540 int access_type, ARMMMUIdx mmu_idx, 7541 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 7542 target_ulong *page_size, uint32_t *fsr, 7543 ARMMMUFaultInfo *fi) 7544 { 7545 CPUState *cs = CPU(arm_env_get_cpu(env)); 7546 int code; 7547 uint32_t table; 7548 uint32_t desc; 7549 uint32_t xn; 7550 uint32_t pxn = 0; 7551 int type; 7552 int ap; 7553 int domain = 0; 7554 int domain_prot; 7555 hwaddr phys_addr; 7556 uint32_t dacr; 7557 bool ns; 7558 7559 /* Pagetable walk. */ 7560 /* Lookup l1 descriptor. */ 7561 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 7562 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 7563 code = 5; 7564 goto do_fault; 7565 } 7566 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 7567 mmu_idx, fsr, fi); 7568 type = (desc & 3); 7569 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 7570 /* Section translation fault, or attempt to use the encoding 7571 * which is Reserved on implementations without PXN. 7572 */ 7573 code = 5; 7574 goto do_fault; 7575 } 7576 if ((type == 1) || !(desc & (1 << 18))) { 7577 /* Page or Section. */ 7578 domain = (desc >> 5) & 0x0f; 7579 } 7580 if (regime_el(env, mmu_idx) == 1) { 7581 dacr = env->cp15.dacr_ns; 7582 } else { 7583 dacr = env->cp15.dacr_s; 7584 } 7585 domain_prot = (dacr >> (domain * 2)) & 3; 7586 if (domain_prot == 0 || domain_prot == 2) { 7587 if (type != 1) { 7588 code = 9; /* Section domain fault. */ 7589 } else { 7590 code = 11; /* Page domain fault. */ 7591 } 7592 goto do_fault; 7593 } 7594 if (type != 1) { 7595 if (desc & (1 << 18)) { 7596 /* Supersection. */ 7597 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 7598 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 7599 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 7600 *page_size = 0x1000000; 7601 } else { 7602 /* Section. */ 7603 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 7604 *page_size = 0x100000; 7605 } 7606 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 7607 xn = desc & (1 << 4); 7608 pxn = desc & 1; 7609 code = 13; 7610 ns = extract32(desc, 19, 1); 7611 } else { 7612 if (arm_feature(env, ARM_FEATURE_PXN)) { 7613 pxn = (desc >> 2) & 1; 7614 } 7615 ns = extract32(desc, 3, 1); 7616 /* Lookup l2 entry. */ 7617 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 7618 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 7619 mmu_idx, fsr, fi); 7620 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 7621 switch (desc & 3) { 7622 case 0: /* Page translation fault. */ 7623 code = 7; 7624 goto do_fault; 7625 case 1: /* 64k page. */ 7626 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 7627 xn = desc & (1 << 15); 7628 *page_size = 0x10000; 7629 break; 7630 case 2: case 3: /* 4k page. */ 7631 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 7632 xn = desc & 1; 7633 *page_size = 0x1000; 7634 break; 7635 default: 7636 /* Never happens, but compiler isn't smart enough to tell. */ 7637 abort(); 7638 } 7639 code = 15; 7640 } 7641 if (domain_prot == 3) { 7642 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 7643 } else { 7644 if (pxn && !regime_is_user(env, mmu_idx)) { 7645 xn = 1; 7646 } 7647 if (xn && access_type == 2) 7648 goto do_fault; 7649 7650 if (arm_feature(env, ARM_FEATURE_V6K) && 7651 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 7652 /* The simplified model uses AP[0] as an access control bit. */ 7653 if ((ap & 1) == 0) { 7654 /* Access flag fault. */ 7655 code = (code == 15) ? 6 : 3; 7656 goto do_fault; 7657 } 7658 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 7659 } else { 7660 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 7661 } 7662 if (*prot && !xn) { 7663 *prot |= PAGE_EXEC; 7664 } 7665 if (!(*prot & (1 << access_type))) { 7666 /* Access permission fault. */ 7667 goto do_fault; 7668 } 7669 } 7670 if (ns) { 7671 /* The NS bit will (as required by the architecture) have no effect if 7672 * the CPU doesn't support TZ or this is a non-secure translation 7673 * regime, because the attribute will already be non-secure. 7674 */ 7675 attrs->secure = false; 7676 } 7677 *phys_ptr = phys_addr; 7678 return false; 7679 do_fault: 7680 *fsr = code | (domain << 4); 7681 return true; 7682 } 7683 7684 /* Fault type for long-descriptor MMU fault reporting; this corresponds 7685 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. 7686 */ 7687 typedef enum { 7688 translation_fault = 1, 7689 access_fault = 2, 7690 permission_fault = 3, 7691 } MMUFaultType; 7692 7693 /* 7694 * check_s2_mmu_setup 7695 * @cpu: ARMCPU 7696 * @is_aa64: True if the translation regime is in AArch64 state 7697 * @startlevel: Suggested starting level 7698 * @inputsize: Bitsize of IPAs 7699 * @stride: Page-table stride (See the ARM ARM) 7700 * 7701 * Returns true if the suggested S2 translation parameters are OK and 7702 * false otherwise. 7703 */ 7704 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 7705 int inputsize, int stride) 7706 { 7707 const int grainsize = stride + 3; 7708 int startsizecheck; 7709 7710 /* Negative levels are never allowed. */ 7711 if (level < 0) { 7712 return false; 7713 } 7714 7715 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 7716 if (startsizecheck < 1 || startsizecheck > stride + 4) { 7717 return false; 7718 } 7719 7720 if (is_aa64) { 7721 CPUARMState *env = &cpu->env; 7722 unsigned int pamax = arm_pamax(cpu); 7723 7724 switch (stride) { 7725 case 13: /* 64KB Pages. */ 7726 if (level == 0 || (level == 1 && pamax <= 42)) { 7727 return false; 7728 } 7729 break; 7730 case 11: /* 16KB Pages. */ 7731 if (level == 0 || (level == 1 && pamax <= 40)) { 7732 return false; 7733 } 7734 break; 7735 case 9: /* 4KB Pages. */ 7736 if (level == 0 && pamax <= 42) { 7737 return false; 7738 } 7739 break; 7740 default: 7741 g_assert_not_reached(); 7742 } 7743 7744 /* Inputsize checks. */ 7745 if (inputsize > pamax && 7746 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 7747 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 7748 return false; 7749 } 7750 } else { 7751 /* AArch32 only supports 4KB pages. Assert on that. */ 7752 assert(stride == 9); 7753 7754 if (level == 0) { 7755 return false; 7756 } 7757 } 7758 return true; 7759 } 7760 7761 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 7762 int access_type, ARMMMUIdx mmu_idx, 7763 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 7764 target_ulong *page_size_ptr, uint32_t *fsr, 7765 ARMMMUFaultInfo *fi) 7766 { 7767 ARMCPU *cpu = arm_env_get_cpu(env); 7768 CPUState *cs = CPU(cpu); 7769 /* Read an LPAE long-descriptor translation table. */ 7770 MMUFaultType fault_type = translation_fault; 7771 uint32_t level; 7772 uint32_t epd = 0; 7773 int32_t t0sz, t1sz; 7774 uint32_t tg; 7775 uint64_t ttbr; 7776 int ttbr_select; 7777 hwaddr descaddr, indexmask, indexmask_grainsize; 7778 uint32_t tableattrs; 7779 target_ulong page_size; 7780 uint32_t attrs; 7781 int32_t stride = 9; 7782 int32_t addrsize; 7783 int inputsize; 7784 int32_t tbi = 0; 7785 TCR *tcr = regime_tcr(env, mmu_idx); 7786 int ap, ns, xn, pxn; 7787 uint32_t el = regime_el(env, mmu_idx); 7788 bool ttbr1_valid = true; 7789 uint64_t descaddrmask; 7790 bool aarch64 = arm_el_is_aa64(env, el); 7791 7792 /* TODO: 7793 * This code does not handle the different format TCR for VTCR_EL2. 7794 * This code also does not support shareability levels. 7795 * Attribute and permission bit handling should also be checked when adding 7796 * support for those page table walks. 7797 */ 7798 if (aarch64) { 7799 level = 0; 7800 addrsize = 64; 7801 if (el > 1) { 7802 if (mmu_idx != ARMMMUIdx_S2NS) { 7803 tbi = extract64(tcr->raw_tcr, 20, 1); 7804 } 7805 } else { 7806 if (extract64(address, 55, 1)) { 7807 tbi = extract64(tcr->raw_tcr, 38, 1); 7808 } else { 7809 tbi = extract64(tcr->raw_tcr, 37, 1); 7810 } 7811 } 7812 tbi *= 8; 7813 7814 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 7815 * invalid. 7816 */ 7817 if (el > 1) { 7818 ttbr1_valid = false; 7819 } 7820 } else { 7821 level = 1; 7822 addrsize = 32; 7823 /* There is no TTBR1 for EL2 */ 7824 if (el == 2) { 7825 ttbr1_valid = false; 7826 } 7827 } 7828 7829 /* Determine whether this address is in the region controlled by 7830 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 7831 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 7832 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 7833 */ 7834 if (aarch64) { 7835 /* AArch64 translation. */ 7836 t0sz = extract32(tcr->raw_tcr, 0, 6); 7837 t0sz = MIN(t0sz, 39); 7838 t0sz = MAX(t0sz, 16); 7839 } else if (mmu_idx != ARMMMUIdx_S2NS) { 7840 /* AArch32 stage 1 translation. */ 7841 t0sz = extract32(tcr->raw_tcr, 0, 3); 7842 } else { 7843 /* AArch32 stage 2 translation. */ 7844 bool sext = extract32(tcr->raw_tcr, 4, 1); 7845 bool sign = extract32(tcr->raw_tcr, 3, 1); 7846 /* Address size is 40-bit for a stage 2 translation, 7847 * and t0sz can be negative (from -8 to 7), 7848 * so we need to adjust it to use the TTBR selecting logic below. 7849 */ 7850 addrsize = 40; 7851 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 7852 7853 /* If the sign-extend bit is not the same as t0sz[3], the result 7854 * is unpredictable. Flag this as a guest error. */ 7855 if (sign != sext) { 7856 qemu_log_mask(LOG_GUEST_ERROR, 7857 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 7858 } 7859 } 7860 t1sz = extract32(tcr->raw_tcr, 16, 6); 7861 if (aarch64) { 7862 t1sz = MIN(t1sz, 39); 7863 t1sz = MAX(t1sz, 16); 7864 } 7865 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 7866 /* there is a ttbr0 region and we are in it (high bits all zero) */ 7867 ttbr_select = 0; 7868 } else if (ttbr1_valid && t1sz && 7869 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 7870 /* there is a ttbr1 region and we are in it (high bits all one) */ 7871 ttbr_select = 1; 7872 } else if (!t0sz) { 7873 /* ttbr0 region is "everything not in the ttbr1 region" */ 7874 ttbr_select = 0; 7875 } else if (!t1sz && ttbr1_valid) { 7876 /* ttbr1 region is "everything not in the ttbr0 region" */ 7877 ttbr_select = 1; 7878 } else { 7879 /* in the gap between the two regions, this is a Translation fault */ 7880 fault_type = translation_fault; 7881 goto do_fault; 7882 } 7883 7884 /* Note that QEMU ignores shareability and cacheability attributes, 7885 * so we don't need to do anything with the SH, ORGN, IRGN fields 7886 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 7887 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 7888 * implement any ASID-like capability so we can ignore it (instead 7889 * we will always flush the TLB any time the ASID is changed). 7890 */ 7891 if (ttbr_select == 0) { 7892 ttbr = regime_ttbr(env, mmu_idx, 0); 7893 if (el < 2) { 7894 epd = extract32(tcr->raw_tcr, 7, 1); 7895 } 7896 inputsize = addrsize - t0sz; 7897 7898 tg = extract32(tcr->raw_tcr, 14, 2); 7899 if (tg == 1) { /* 64KB pages */ 7900 stride = 13; 7901 } 7902 if (tg == 2) { /* 16KB pages */ 7903 stride = 11; 7904 } 7905 } else { 7906 /* We should only be here if TTBR1 is valid */ 7907 assert(ttbr1_valid); 7908 7909 ttbr = regime_ttbr(env, mmu_idx, 1); 7910 epd = extract32(tcr->raw_tcr, 23, 1); 7911 inputsize = addrsize - t1sz; 7912 7913 tg = extract32(tcr->raw_tcr, 30, 2); 7914 if (tg == 3) { /* 64KB pages */ 7915 stride = 13; 7916 } 7917 if (tg == 1) { /* 16KB pages */ 7918 stride = 11; 7919 } 7920 } 7921 7922 /* Here we should have set up all the parameters for the translation: 7923 * inputsize, ttbr, epd, stride, tbi 7924 */ 7925 7926 if (epd) { 7927 /* Translation table walk disabled => Translation fault on TLB miss 7928 * Note: This is always 0 on 64-bit EL2 and EL3. 7929 */ 7930 goto do_fault; 7931 } 7932 7933 if (mmu_idx != ARMMMUIdx_S2NS) { 7934 /* The starting level depends on the virtual address size (which can 7935 * be up to 48 bits) and the translation granule size. It indicates 7936 * the number of strides (stride bits at a time) needed to 7937 * consume the bits of the input address. In the pseudocode this is: 7938 * level = 4 - RoundUp((inputsize - grainsize) / stride) 7939 * where their 'inputsize' is our 'inputsize', 'grainsize' is 7940 * our 'stride + 3' and 'stride' is our 'stride'. 7941 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 7942 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 7943 * = 4 - (inputsize - 4) / stride; 7944 */ 7945 level = 4 - (inputsize - 4) / stride; 7946 } else { 7947 /* For stage 2 translations the starting level is specified by the 7948 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 7949 */ 7950 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 7951 uint32_t startlevel; 7952 bool ok; 7953 7954 if (!aarch64 || stride == 9) { 7955 /* AArch32 or 4KB pages */ 7956 startlevel = 2 - sl0; 7957 } else { 7958 /* 16KB or 64KB pages */ 7959 startlevel = 3 - sl0; 7960 } 7961 7962 /* Check that the starting level is valid. */ 7963 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 7964 inputsize, stride); 7965 if (!ok) { 7966 fault_type = translation_fault; 7967 goto do_fault; 7968 } 7969 level = startlevel; 7970 } 7971 7972 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 7973 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 7974 7975 /* Now we can extract the actual base address from the TTBR */ 7976 descaddr = extract64(ttbr, 0, 48); 7977 descaddr &= ~indexmask; 7978 7979 /* The address field in the descriptor goes up to bit 39 for ARMv7 7980 * but up to bit 47 for ARMv8, but we use the descaddrmask 7981 * up to bit 39 for AArch32, because we don't need other bits in that case 7982 * to construct next descriptor address (anyway they should be all zeroes). 7983 */ 7984 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 7985 ~indexmask_grainsize; 7986 7987 /* Secure accesses start with the page table in secure memory and 7988 * can be downgraded to non-secure at any step. Non-secure accesses 7989 * remain non-secure. We implement this by just ORing in the NSTable/NS 7990 * bits at each step. 7991 */ 7992 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 7993 for (;;) { 7994 uint64_t descriptor; 7995 bool nstable; 7996 7997 descaddr |= (address >> (stride * (4 - level))) & indexmask; 7998 descaddr &= ~7ULL; 7999 nstable = extract32(tableattrs, 4, 1); 8000 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi); 8001 if (fi->s1ptw) { 8002 goto do_fault; 8003 } 8004 8005 if (!(descriptor & 1) || 8006 (!(descriptor & 2) && (level == 3))) { 8007 /* Invalid, or the Reserved level 3 encoding */ 8008 goto do_fault; 8009 } 8010 descaddr = descriptor & descaddrmask; 8011 8012 if ((descriptor & 2) && (level < 3)) { 8013 /* Table entry. The top five bits are attributes which may 8014 * propagate down through lower levels of the table (and 8015 * which are all arranged so that 0 means "no effect", so 8016 * we can gather them up by ORing in the bits at each level). 8017 */ 8018 tableattrs |= extract64(descriptor, 59, 5); 8019 level++; 8020 indexmask = indexmask_grainsize; 8021 continue; 8022 } 8023 /* Block entry at level 1 or 2, or page entry at level 3. 8024 * These are basically the same thing, although the number 8025 * of bits we pull in from the vaddr varies. 8026 */ 8027 page_size = (1ULL << ((stride * (4 - level)) + 3)); 8028 descaddr |= (address & (page_size - 1)); 8029 /* Extract attributes from the descriptor */ 8030 attrs = extract64(descriptor, 2, 10) 8031 | (extract64(descriptor, 52, 12) << 10); 8032 8033 if (mmu_idx == ARMMMUIdx_S2NS) { 8034 /* Stage 2 table descriptors do not include any attribute fields */ 8035 break; 8036 } 8037 /* Merge in attributes from table descriptors */ 8038 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 8039 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 8040 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 8041 * means "force PL1 access only", which means forcing AP[1] to 0. 8042 */ 8043 if (extract32(tableattrs, 2, 1)) { 8044 attrs &= ~(1 << 4); 8045 } 8046 attrs |= nstable << 3; /* NS */ 8047 break; 8048 } 8049 /* Here descaddr is the final physical address, and attributes 8050 * are all in attrs. 8051 */ 8052 fault_type = access_fault; 8053 if ((attrs & (1 << 8)) == 0) { 8054 /* Access flag */ 8055 goto do_fault; 8056 } 8057 8058 ap = extract32(attrs, 4, 2); 8059 xn = extract32(attrs, 12, 1); 8060 8061 if (mmu_idx == ARMMMUIdx_S2NS) { 8062 ns = true; 8063 *prot = get_S2prot(env, ap, xn); 8064 } else { 8065 ns = extract32(attrs, 3, 1); 8066 pxn = extract32(attrs, 11, 1); 8067 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 8068 } 8069 8070 fault_type = permission_fault; 8071 if (!(*prot & (1 << access_type))) { 8072 goto do_fault; 8073 } 8074 8075 if (ns) { 8076 /* The NS bit will (as required by the architecture) have no effect if 8077 * the CPU doesn't support TZ or this is a non-secure translation 8078 * regime, because the attribute will already be non-secure. 8079 */ 8080 txattrs->secure = false; 8081 } 8082 *phys_ptr = descaddr; 8083 *page_size_ptr = page_size; 8084 return false; 8085 8086 do_fault: 8087 /* Long-descriptor format IFSR/DFSR value */ 8088 *fsr = (1 << 9) | (fault_type << 2) | level; 8089 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 8090 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 8091 return true; 8092 } 8093 8094 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 8095 ARMMMUIdx mmu_idx, 8096 int32_t address, int *prot) 8097 { 8098 *prot = PAGE_READ | PAGE_WRITE; 8099 switch (address) { 8100 case 0xF0000000 ... 0xFFFFFFFF: 8101 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */ 8102 *prot |= PAGE_EXEC; 8103 } 8104 break; 8105 case 0x00000000 ... 0x7FFFFFFF: 8106 *prot |= PAGE_EXEC; 8107 break; 8108 } 8109 8110 } 8111 8112 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 8113 int access_type, ARMMMUIdx mmu_idx, 8114 hwaddr *phys_ptr, int *prot, uint32_t *fsr) 8115 { 8116 ARMCPU *cpu = arm_env_get_cpu(env); 8117 int n; 8118 bool is_user = regime_is_user(env, mmu_idx); 8119 8120 *phys_ptr = address; 8121 *prot = 0; 8122 8123 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 8124 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 8125 } else { /* MPU enabled */ 8126 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 8127 /* region search */ 8128 uint32_t base = env->pmsav7.drbar[n]; 8129 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 8130 uint32_t rmask; 8131 bool srdis = false; 8132 8133 if (!(env->pmsav7.drsr[n] & 0x1)) { 8134 continue; 8135 } 8136 8137 if (!rsize) { 8138 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0"); 8139 continue; 8140 } 8141 rsize++; 8142 rmask = (1ull << rsize) - 1; 8143 8144 if (base & rmask) { 8145 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned " 8146 "to DRSR region size, mask = %" PRIx32, 8147 base, rmask); 8148 continue; 8149 } 8150 8151 if (address < base || address > base + rmask) { 8152 continue; 8153 } 8154 8155 /* Region matched */ 8156 8157 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 8158 int i, snd; 8159 uint32_t srdis_mask; 8160 8161 rsize -= 3; /* sub region size (power of 2) */ 8162 snd = ((address - base) >> rsize) & 0x7; 8163 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 8164 8165 srdis_mask = srdis ? 0x3 : 0x0; 8166 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 8167 /* This will check in groups of 2, 4 and then 8, whether 8168 * the subregion bits are consistent. rsize is incremented 8169 * back up to give the region size, considering consistent 8170 * adjacent subregions as one region. Stop testing if rsize 8171 * is already big enough for an entire QEMU page. 8172 */ 8173 int snd_rounded = snd & ~(i - 1); 8174 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 8175 snd_rounded + 8, i); 8176 if (srdis_mask ^ srdis_multi) { 8177 break; 8178 } 8179 srdis_mask = (srdis_mask << i) | srdis_mask; 8180 rsize++; 8181 } 8182 } 8183 if (rsize < TARGET_PAGE_BITS) { 8184 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region" 8185 "alignment of %" PRIu32 " bits. Minimum is %d\n", 8186 rsize, TARGET_PAGE_BITS); 8187 continue; 8188 } 8189 if (srdis) { 8190 continue; 8191 } 8192 break; 8193 } 8194 8195 if (n == -1) { /* no hits */ 8196 if (cpu->pmsav7_dregion && 8197 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) { 8198 /* background fault */ 8199 *fsr = 0; 8200 return true; 8201 } 8202 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 8203 } else { /* a MPU hit! */ 8204 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 8205 8206 if (is_user) { /* User mode AP bit decoding */ 8207 switch (ap) { 8208 case 0: 8209 case 1: 8210 case 5: 8211 break; /* no access */ 8212 case 3: 8213 *prot |= PAGE_WRITE; 8214 /* fall through */ 8215 case 2: 8216 case 6: 8217 *prot |= PAGE_READ | PAGE_EXEC; 8218 break; 8219 default: 8220 qemu_log_mask(LOG_GUEST_ERROR, 8221 "Bad value for AP bits in DRACR %" 8222 PRIx32 "\n", ap); 8223 } 8224 } else { /* Priv. mode AP bits decoding */ 8225 switch (ap) { 8226 case 0: 8227 break; /* no access */ 8228 case 1: 8229 case 2: 8230 case 3: 8231 *prot |= PAGE_WRITE; 8232 /* fall through */ 8233 case 5: 8234 case 6: 8235 *prot |= PAGE_READ | PAGE_EXEC; 8236 break; 8237 default: 8238 qemu_log_mask(LOG_GUEST_ERROR, 8239 "Bad value for AP bits in DRACR %" 8240 PRIx32 "\n", ap); 8241 } 8242 } 8243 8244 /* execute never */ 8245 if (env->pmsav7.dracr[n] & (1 << 12)) { 8246 *prot &= ~PAGE_EXEC; 8247 } 8248 } 8249 } 8250 8251 *fsr = 0x00d; /* Permission fault */ 8252 return !(*prot & (1 << access_type)); 8253 } 8254 8255 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 8256 int access_type, ARMMMUIdx mmu_idx, 8257 hwaddr *phys_ptr, int *prot, uint32_t *fsr) 8258 { 8259 int n; 8260 uint32_t mask; 8261 uint32_t base; 8262 bool is_user = regime_is_user(env, mmu_idx); 8263 8264 *phys_ptr = address; 8265 for (n = 7; n >= 0; n--) { 8266 base = env->cp15.c6_region[n]; 8267 if ((base & 1) == 0) { 8268 continue; 8269 } 8270 mask = 1 << ((base >> 1) & 0x1f); 8271 /* Keep this shift separate from the above to avoid an 8272 (undefined) << 32. */ 8273 mask = (mask << 1) - 1; 8274 if (((base ^ address) & ~mask) == 0) { 8275 break; 8276 } 8277 } 8278 if (n < 0) { 8279 *fsr = 2; 8280 return true; 8281 } 8282 8283 if (access_type == 2) { 8284 mask = env->cp15.pmsav5_insn_ap; 8285 } else { 8286 mask = env->cp15.pmsav5_data_ap; 8287 } 8288 mask = (mask >> (n * 4)) & 0xf; 8289 switch (mask) { 8290 case 0: 8291 *fsr = 1; 8292 return true; 8293 case 1: 8294 if (is_user) { 8295 *fsr = 1; 8296 return true; 8297 } 8298 *prot = PAGE_READ | PAGE_WRITE; 8299 break; 8300 case 2: 8301 *prot = PAGE_READ; 8302 if (!is_user) { 8303 *prot |= PAGE_WRITE; 8304 } 8305 break; 8306 case 3: 8307 *prot = PAGE_READ | PAGE_WRITE; 8308 break; 8309 case 5: 8310 if (is_user) { 8311 *fsr = 1; 8312 return true; 8313 } 8314 *prot = PAGE_READ; 8315 break; 8316 case 6: 8317 *prot = PAGE_READ; 8318 break; 8319 default: 8320 /* Bad permission. */ 8321 *fsr = 1; 8322 return true; 8323 } 8324 *prot |= PAGE_EXEC; 8325 return false; 8326 } 8327 8328 /* get_phys_addr - get the physical address for this virtual address 8329 * 8330 * Find the physical address corresponding to the given virtual address, 8331 * by doing a translation table walk on MMU based systems or using the 8332 * MPU state on MPU based systems. 8333 * 8334 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 8335 * prot and page_size may not be filled in, and the populated fsr value provides 8336 * information on why the translation aborted, in the format of a 8337 * DFSR/IFSR fault register, with the following caveats: 8338 * * we honour the short vs long DFSR format differences. 8339 * * the WnR bit is never set (the caller must do this). 8340 * * for PSMAv5 based systems we don't bother to return a full FSR format 8341 * value. 8342 * 8343 * @env: CPUARMState 8344 * @address: virtual address to get physical address for 8345 * @access_type: 0 for read, 1 for write, 2 for execute 8346 * @mmu_idx: MMU index indicating required translation regime 8347 * @phys_ptr: set to the physical address corresponding to the virtual address 8348 * @attrs: set to the memory transaction attributes to use 8349 * @prot: set to the permissions for the page containing phys_ptr 8350 * @page_size: set to the size of the page containing phys_ptr 8351 * @fsr: set to the DFSR/IFSR value on failure 8352 */ 8353 static bool get_phys_addr(CPUARMState *env, target_ulong address, 8354 int access_type, ARMMMUIdx mmu_idx, 8355 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 8356 target_ulong *page_size, uint32_t *fsr, 8357 ARMMMUFaultInfo *fi) 8358 { 8359 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8360 /* Call ourselves recursively to do the stage 1 and then stage 2 8361 * translations. 8362 */ 8363 if (arm_feature(env, ARM_FEATURE_EL2)) { 8364 hwaddr ipa; 8365 int s2_prot; 8366 int ret; 8367 8368 ret = get_phys_addr(env, address, access_type, 8369 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs, 8370 prot, page_size, fsr, fi); 8371 8372 /* If S1 fails or S2 is disabled, return early. */ 8373 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8374 *phys_ptr = ipa; 8375 return ret; 8376 } 8377 8378 /* S1 is done. Now do S2 translation. */ 8379 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 8380 phys_ptr, attrs, &s2_prot, 8381 page_size, fsr, fi); 8382 fi->s2addr = ipa; 8383 /* Combine the S1 and S2 perms. */ 8384 *prot &= s2_prot; 8385 return ret; 8386 } else { 8387 /* 8388 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 8389 */ 8390 mmu_idx += ARMMMUIdx_S1NSE0; 8391 } 8392 } 8393 8394 /* The page table entries may downgrade secure to non-secure, but 8395 * cannot upgrade an non-secure translation regime's attributes 8396 * to secure. 8397 */ 8398 attrs->secure = regime_is_secure(env, mmu_idx); 8399 attrs->user = regime_is_user(env, mmu_idx); 8400 8401 /* Fast Context Switch Extension. This doesn't exist at all in v8. 8402 * In v7 and earlier it affects all stage 1 translations. 8403 */ 8404 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 8405 && !arm_feature(env, ARM_FEATURE_V8)) { 8406 if (regime_el(env, mmu_idx) == 3) { 8407 address += env->cp15.fcseidr_s; 8408 } else { 8409 address += env->cp15.fcseidr_ns; 8410 } 8411 } 8412 8413 /* pmsav7 has special handling for when MPU is disabled so call it before 8414 * the common MMU/MPU disabled check below. 8415 */ 8416 if (arm_feature(env, ARM_FEATURE_MPU) && 8417 arm_feature(env, ARM_FEATURE_V7)) { 8418 *page_size = TARGET_PAGE_SIZE; 8419 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 8420 phys_ptr, prot, fsr); 8421 } 8422 8423 if (regime_translation_disabled(env, mmu_idx)) { 8424 /* MMU/MPU disabled. */ 8425 *phys_ptr = address; 8426 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 8427 *page_size = TARGET_PAGE_SIZE; 8428 return 0; 8429 } 8430 8431 if (arm_feature(env, ARM_FEATURE_MPU)) { 8432 /* Pre-v7 MPU */ 8433 *page_size = TARGET_PAGE_SIZE; 8434 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 8435 phys_ptr, prot, fsr); 8436 } 8437 8438 if (regime_using_lpae_format(env, mmu_idx)) { 8439 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, 8440 attrs, prot, page_size, fsr, fi); 8441 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 8442 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, 8443 attrs, prot, page_size, fsr, fi); 8444 } else { 8445 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, 8446 prot, page_size, fsr, fi); 8447 } 8448 } 8449 8450 /* Walk the page table and (if the mapping exists) add the page 8451 * to the TLB. Return false on success, or true on failure. Populate 8452 * fsr with ARM DFSR/IFSR fault register format value on failure. 8453 */ 8454 bool arm_tlb_fill(CPUState *cs, vaddr address, 8455 int access_type, int mmu_idx, uint32_t *fsr, 8456 ARMMMUFaultInfo *fi) 8457 { 8458 ARMCPU *cpu = ARM_CPU(cs); 8459 CPUARMState *env = &cpu->env; 8460 hwaddr phys_addr; 8461 target_ulong page_size; 8462 int prot; 8463 int ret; 8464 MemTxAttrs attrs = {}; 8465 8466 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr, 8467 &attrs, &prot, &page_size, fsr, fi); 8468 if (!ret) { 8469 /* Map a single [sub]page. */ 8470 phys_addr &= TARGET_PAGE_MASK; 8471 address &= TARGET_PAGE_MASK; 8472 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 8473 prot, mmu_idx, page_size); 8474 return 0; 8475 } 8476 8477 return ret; 8478 } 8479 8480 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 8481 MemTxAttrs *attrs) 8482 { 8483 ARMCPU *cpu = ARM_CPU(cs); 8484 CPUARMState *env = &cpu->env; 8485 hwaddr phys_addr; 8486 target_ulong page_size; 8487 int prot; 8488 bool ret; 8489 uint32_t fsr; 8490 ARMMMUFaultInfo fi = {}; 8491 8492 *attrs = (MemTxAttrs) {}; 8493 8494 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr, 8495 attrs, &prot, &page_size, &fsr, &fi); 8496 8497 if (ret) { 8498 return -1; 8499 } 8500 return phys_addr; 8501 } 8502 8503 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 8504 { 8505 uint32_t mask; 8506 unsigned el = arm_current_el(env); 8507 8508 /* First handle registers which unprivileged can read */ 8509 8510 switch (reg) { 8511 case 0 ... 7: /* xPSR sub-fields */ 8512 mask = 0; 8513 if ((reg & 1) && el) { 8514 mask |= 0x000001ff; /* IPSR (unpriv. reads as zero) */ 8515 } 8516 if (!(reg & 4)) { 8517 mask |= 0xf8000000; /* APSR */ 8518 } 8519 /* EPSR reads as zero */ 8520 return xpsr_read(env) & mask; 8521 break; 8522 case 20: /* CONTROL */ 8523 return env->v7m.control; 8524 } 8525 8526 if (el == 0) { 8527 return 0; /* unprivileged reads others as zero */ 8528 } 8529 8530 switch (reg) { 8531 case 8: /* MSP */ 8532 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ? 8533 env->v7m.other_sp : env->regs[13]; 8534 case 9: /* PSP */ 8535 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ? 8536 env->regs[13] : env->v7m.other_sp; 8537 case 16: /* PRIMASK */ 8538 return (env->daif & PSTATE_I) != 0; 8539 case 17: /* BASEPRI */ 8540 case 18: /* BASEPRI_MAX */ 8541 return env->v7m.basepri; 8542 case 19: /* FAULTMASK */ 8543 return (env->daif & PSTATE_F) != 0; 8544 default: 8545 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 8546 " register %d\n", reg); 8547 return 0; 8548 } 8549 } 8550 8551 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 8552 { 8553 /* We're passed bits [11..0] of the instruction; extract 8554 * SYSm and the mask bits. 8555 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 8556 * we choose to treat them as if the mask bits were valid. 8557 * NB that the pseudocode 'mask' variable is bits [11..10], 8558 * whereas ours is [11..8]. 8559 */ 8560 uint32_t mask = extract32(maskreg, 8, 4); 8561 uint32_t reg = extract32(maskreg, 0, 8); 8562 8563 if (arm_current_el(env) == 0 && reg > 7) { 8564 /* only xPSR sub-fields may be written by unprivileged */ 8565 return; 8566 } 8567 8568 switch (reg) { 8569 case 0 ... 7: /* xPSR sub-fields */ 8570 /* only APSR is actually writable */ 8571 if (!(reg & 4)) { 8572 uint32_t apsrmask = 0; 8573 8574 if (mask & 8) { 8575 apsrmask |= 0xf8000000; /* APSR NZCVQ */ 8576 } 8577 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 8578 apsrmask |= 0x000f0000; /* APSR GE[3:0] */ 8579 } 8580 xpsr_write(env, val, apsrmask); 8581 } 8582 break; 8583 case 8: /* MSP */ 8584 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) { 8585 env->v7m.other_sp = val; 8586 } else { 8587 env->regs[13] = val; 8588 } 8589 break; 8590 case 9: /* PSP */ 8591 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) { 8592 env->regs[13] = val; 8593 } else { 8594 env->v7m.other_sp = val; 8595 } 8596 break; 8597 case 16: /* PRIMASK */ 8598 if (val & 1) { 8599 env->daif |= PSTATE_I; 8600 } else { 8601 env->daif &= ~PSTATE_I; 8602 } 8603 break; 8604 case 17: /* BASEPRI */ 8605 env->v7m.basepri = val & 0xff; 8606 break; 8607 case 18: /* BASEPRI_MAX */ 8608 val &= 0xff; 8609 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) 8610 env->v7m.basepri = val; 8611 break; 8612 case 19: /* FAULTMASK */ 8613 if (val & 1) { 8614 env->daif |= PSTATE_F; 8615 } else { 8616 env->daif &= ~PSTATE_F; 8617 } 8618 break; 8619 case 20: /* CONTROL */ 8620 switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 8621 env->v7m.control = val & (R_V7M_CONTROL_SPSEL_MASK | 8622 R_V7M_CONTROL_NPRIV_MASK); 8623 break; 8624 default: 8625 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 8626 " register %d\n", reg); 8627 return; 8628 } 8629 } 8630 8631 #endif 8632 8633 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 8634 { 8635 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 8636 * Note that we do not implement the (architecturally mandated) 8637 * alignment fault for attempts to use this on Device memory 8638 * (which matches the usual QEMU behaviour of not implementing either 8639 * alignment faults or any memory attribute handling). 8640 */ 8641 8642 ARMCPU *cpu = arm_env_get_cpu(env); 8643 uint64_t blocklen = 4 << cpu->dcz_blocksize; 8644 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 8645 8646 #ifndef CONFIG_USER_ONLY 8647 { 8648 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 8649 * the block size so we might have to do more than one TLB lookup. 8650 * We know that in fact for any v8 CPU the page size is at least 4K 8651 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 8652 * 1K as an artefact of legacy v5 subpage support being present in the 8653 * same QEMU executable. 8654 */ 8655 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 8656 void *hostaddr[maxidx]; 8657 int try, i; 8658 unsigned mmu_idx = cpu_mmu_index(env, false); 8659 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 8660 8661 for (try = 0; try < 2; try++) { 8662 8663 for (i = 0; i < maxidx; i++) { 8664 hostaddr[i] = tlb_vaddr_to_host(env, 8665 vaddr + TARGET_PAGE_SIZE * i, 8666 1, mmu_idx); 8667 if (!hostaddr[i]) { 8668 break; 8669 } 8670 } 8671 if (i == maxidx) { 8672 /* If it's all in the TLB it's fair game for just writing to; 8673 * we know we don't need to update dirty status, etc. 8674 */ 8675 for (i = 0; i < maxidx - 1; i++) { 8676 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 8677 } 8678 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 8679 return; 8680 } 8681 /* OK, try a store and see if we can populate the tlb. This 8682 * might cause an exception if the memory isn't writable, 8683 * in which case we will longjmp out of here. We must for 8684 * this purpose use the actual register value passed to us 8685 * so that we get the fault address right. 8686 */ 8687 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 8688 /* Now we can populate the other TLB entries, if any */ 8689 for (i = 0; i < maxidx; i++) { 8690 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 8691 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 8692 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 8693 } 8694 } 8695 } 8696 8697 /* Slow path (probably attempt to do this to an I/O device or 8698 * similar, or clearing of a block of code we have translations 8699 * cached for). Just do a series of byte writes as the architecture 8700 * demands. It's not worth trying to use a cpu_physical_memory_map(), 8701 * memset(), unmap() sequence here because: 8702 * + we'd need to account for the blocksize being larger than a page 8703 * + the direct-RAM access case is almost always going to be dealt 8704 * with in the fastpath code above, so there's no speed benefit 8705 * + we would have to deal with the map returning NULL because the 8706 * bounce buffer was in use 8707 */ 8708 for (i = 0; i < blocklen; i++) { 8709 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 8710 } 8711 } 8712 #else 8713 memset(g2h(vaddr), 0, blocklen); 8714 #endif 8715 } 8716 8717 /* Note that signed overflow is undefined in C. The following routines are 8718 careful to use unsigned types where modulo arithmetic is required. 8719 Failure to do so _will_ break on newer gcc. */ 8720 8721 /* Signed saturating arithmetic. */ 8722 8723 /* Perform 16-bit signed saturating addition. */ 8724 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 8725 { 8726 uint16_t res; 8727 8728 res = a + b; 8729 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 8730 if (a & 0x8000) 8731 res = 0x8000; 8732 else 8733 res = 0x7fff; 8734 } 8735 return res; 8736 } 8737 8738 /* Perform 8-bit signed saturating addition. */ 8739 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 8740 { 8741 uint8_t res; 8742 8743 res = a + b; 8744 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 8745 if (a & 0x80) 8746 res = 0x80; 8747 else 8748 res = 0x7f; 8749 } 8750 return res; 8751 } 8752 8753 /* Perform 16-bit signed saturating subtraction. */ 8754 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 8755 { 8756 uint16_t res; 8757 8758 res = a - b; 8759 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 8760 if (a & 0x8000) 8761 res = 0x8000; 8762 else 8763 res = 0x7fff; 8764 } 8765 return res; 8766 } 8767 8768 /* Perform 8-bit signed saturating subtraction. */ 8769 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 8770 { 8771 uint8_t res; 8772 8773 res = a - b; 8774 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 8775 if (a & 0x80) 8776 res = 0x80; 8777 else 8778 res = 0x7f; 8779 } 8780 return res; 8781 } 8782 8783 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 8784 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 8785 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 8786 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 8787 #define PFX q 8788 8789 #include "op_addsub.h" 8790 8791 /* Unsigned saturating arithmetic. */ 8792 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 8793 { 8794 uint16_t res; 8795 res = a + b; 8796 if (res < a) 8797 res = 0xffff; 8798 return res; 8799 } 8800 8801 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 8802 { 8803 if (a > b) 8804 return a - b; 8805 else 8806 return 0; 8807 } 8808 8809 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 8810 { 8811 uint8_t res; 8812 res = a + b; 8813 if (res < a) 8814 res = 0xff; 8815 return res; 8816 } 8817 8818 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 8819 { 8820 if (a > b) 8821 return a - b; 8822 else 8823 return 0; 8824 } 8825 8826 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 8827 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 8828 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 8829 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 8830 #define PFX uq 8831 8832 #include "op_addsub.h" 8833 8834 /* Signed modulo arithmetic. */ 8835 #define SARITH16(a, b, n, op) do { \ 8836 int32_t sum; \ 8837 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 8838 RESULT(sum, n, 16); \ 8839 if (sum >= 0) \ 8840 ge |= 3 << (n * 2); \ 8841 } while(0) 8842 8843 #define SARITH8(a, b, n, op) do { \ 8844 int32_t sum; \ 8845 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 8846 RESULT(sum, n, 8); \ 8847 if (sum >= 0) \ 8848 ge |= 1 << n; \ 8849 } while(0) 8850 8851 8852 #define ADD16(a, b, n) SARITH16(a, b, n, +) 8853 #define SUB16(a, b, n) SARITH16(a, b, n, -) 8854 #define ADD8(a, b, n) SARITH8(a, b, n, +) 8855 #define SUB8(a, b, n) SARITH8(a, b, n, -) 8856 #define PFX s 8857 #define ARITH_GE 8858 8859 #include "op_addsub.h" 8860 8861 /* Unsigned modulo arithmetic. */ 8862 #define ADD16(a, b, n) do { \ 8863 uint32_t sum; \ 8864 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 8865 RESULT(sum, n, 16); \ 8866 if ((sum >> 16) == 1) \ 8867 ge |= 3 << (n * 2); \ 8868 } while(0) 8869 8870 #define ADD8(a, b, n) do { \ 8871 uint32_t sum; \ 8872 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 8873 RESULT(sum, n, 8); \ 8874 if ((sum >> 8) == 1) \ 8875 ge |= 1 << n; \ 8876 } while(0) 8877 8878 #define SUB16(a, b, n) do { \ 8879 uint32_t sum; \ 8880 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 8881 RESULT(sum, n, 16); \ 8882 if ((sum >> 16) == 0) \ 8883 ge |= 3 << (n * 2); \ 8884 } while(0) 8885 8886 #define SUB8(a, b, n) do { \ 8887 uint32_t sum; \ 8888 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 8889 RESULT(sum, n, 8); \ 8890 if ((sum >> 8) == 0) \ 8891 ge |= 1 << n; \ 8892 } while(0) 8893 8894 #define PFX u 8895 #define ARITH_GE 8896 8897 #include "op_addsub.h" 8898 8899 /* Halved signed arithmetic. */ 8900 #define ADD16(a, b, n) \ 8901 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 8902 #define SUB16(a, b, n) \ 8903 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 8904 #define ADD8(a, b, n) \ 8905 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 8906 #define SUB8(a, b, n) \ 8907 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 8908 #define PFX sh 8909 8910 #include "op_addsub.h" 8911 8912 /* Halved unsigned arithmetic. */ 8913 #define ADD16(a, b, n) \ 8914 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 8915 #define SUB16(a, b, n) \ 8916 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 8917 #define ADD8(a, b, n) \ 8918 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 8919 #define SUB8(a, b, n) \ 8920 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 8921 #define PFX uh 8922 8923 #include "op_addsub.h" 8924 8925 static inline uint8_t do_usad(uint8_t a, uint8_t b) 8926 { 8927 if (a > b) 8928 return a - b; 8929 else 8930 return b - a; 8931 } 8932 8933 /* Unsigned sum of absolute byte differences. */ 8934 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 8935 { 8936 uint32_t sum; 8937 sum = do_usad(a, b); 8938 sum += do_usad(a >> 8, b >> 8); 8939 sum += do_usad(a >> 16, b >>16); 8940 sum += do_usad(a >> 24, b >> 24); 8941 return sum; 8942 } 8943 8944 /* For ARMv6 SEL instruction. */ 8945 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 8946 { 8947 uint32_t mask; 8948 8949 mask = 0; 8950 if (flags & 1) 8951 mask |= 0xff; 8952 if (flags & 2) 8953 mask |= 0xff00; 8954 if (flags & 4) 8955 mask |= 0xff0000; 8956 if (flags & 8) 8957 mask |= 0xff000000; 8958 return (a & mask) | (b & ~mask); 8959 } 8960 8961 /* VFP support. We follow the convention used for VFP instructions: 8962 Single precision routines have a "s" suffix, double precision a 8963 "d" suffix. */ 8964 8965 /* Convert host exception flags to vfp form. */ 8966 static inline int vfp_exceptbits_from_host(int host_bits) 8967 { 8968 int target_bits = 0; 8969 8970 if (host_bits & float_flag_invalid) 8971 target_bits |= 1; 8972 if (host_bits & float_flag_divbyzero) 8973 target_bits |= 2; 8974 if (host_bits & float_flag_overflow) 8975 target_bits |= 4; 8976 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 8977 target_bits |= 8; 8978 if (host_bits & float_flag_inexact) 8979 target_bits |= 0x10; 8980 if (host_bits & float_flag_input_denormal) 8981 target_bits |= 0x80; 8982 return target_bits; 8983 } 8984 8985 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 8986 { 8987 int i; 8988 uint32_t fpscr; 8989 8990 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 8991 | (env->vfp.vec_len << 16) 8992 | (env->vfp.vec_stride << 20); 8993 i = get_float_exception_flags(&env->vfp.fp_status); 8994 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 8995 fpscr |= vfp_exceptbits_from_host(i); 8996 return fpscr; 8997 } 8998 8999 uint32_t vfp_get_fpscr(CPUARMState *env) 9000 { 9001 return HELPER(vfp_get_fpscr)(env); 9002 } 9003 9004 /* Convert vfp exception flags to target form. */ 9005 static inline int vfp_exceptbits_to_host(int target_bits) 9006 { 9007 int host_bits = 0; 9008 9009 if (target_bits & 1) 9010 host_bits |= float_flag_invalid; 9011 if (target_bits & 2) 9012 host_bits |= float_flag_divbyzero; 9013 if (target_bits & 4) 9014 host_bits |= float_flag_overflow; 9015 if (target_bits & 8) 9016 host_bits |= float_flag_underflow; 9017 if (target_bits & 0x10) 9018 host_bits |= float_flag_inexact; 9019 if (target_bits & 0x80) 9020 host_bits |= float_flag_input_denormal; 9021 return host_bits; 9022 } 9023 9024 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 9025 { 9026 int i; 9027 uint32_t changed; 9028 9029 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 9030 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 9031 env->vfp.vec_len = (val >> 16) & 7; 9032 env->vfp.vec_stride = (val >> 20) & 3; 9033 9034 changed ^= val; 9035 if (changed & (3 << 22)) { 9036 i = (val >> 22) & 3; 9037 switch (i) { 9038 case FPROUNDING_TIEEVEN: 9039 i = float_round_nearest_even; 9040 break; 9041 case FPROUNDING_POSINF: 9042 i = float_round_up; 9043 break; 9044 case FPROUNDING_NEGINF: 9045 i = float_round_down; 9046 break; 9047 case FPROUNDING_ZERO: 9048 i = float_round_to_zero; 9049 break; 9050 } 9051 set_float_rounding_mode(i, &env->vfp.fp_status); 9052 } 9053 if (changed & (1 << 24)) { 9054 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 9055 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 9056 } 9057 if (changed & (1 << 25)) 9058 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); 9059 9060 i = vfp_exceptbits_to_host(val); 9061 set_float_exception_flags(i, &env->vfp.fp_status); 9062 set_float_exception_flags(0, &env->vfp.standard_fp_status); 9063 } 9064 9065 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 9066 { 9067 HELPER(vfp_set_fpscr)(env, val); 9068 } 9069 9070 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 9071 9072 #define VFP_BINOP(name) \ 9073 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 9074 { \ 9075 float_status *fpst = fpstp; \ 9076 return float32_ ## name(a, b, fpst); \ 9077 } \ 9078 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 9079 { \ 9080 float_status *fpst = fpstp; \ 9081 return float64_ ## name(a, b, fpst); \ 9082 } 9083 VFP_BINOP(add) 9084 VFP_BINOP(sub) 9085 VFP_BINOP(mul) 9086 VFP_BINOP(div) 9087 VFP_BINOP(min) 9088 VFP_BINOP(max) 9089 VFP_BINOP(minnum) 9090 VFP_BINOP(maxnum) 9091 #undef VFP_BINOP 9092 9093 float32 VFP_HELPER(neg, s)(float32 a) 9094 { 9095 return float32_chs(a); 9096 } 9097 9098 float64 VFP_HELPER(neg, d)(float64 a) 9099 { 9100 return float64_chs(a); 9101 } 9102 9103 float32 VFP_HELPER(abs, s)(float32 a) 9104 { 9105 return float32_abs(a); 9106 } 9107 9108 float64 VFP_HELPER(abs, d)(float64 a) 9109 { 9110 return float64_abs(a); 9111 } 9112 9113 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 9114 { 9115 return float32_sqrt(a, &env->vfp.fp_status); 9116 } 9117 9118 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 9119 { 9120 return float64_sqrt(a, &env->vfp.fp_status); 9121 } 9122 9123 /* XXX: check quiet/signaling case */ 9124 #define DO_VFP_cmp(p, type) \ 9125 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 9126 { \ 9127 uint32_t flags; \ 9128 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 9129 case 0: flags = 0x6; break; \ 9130 case -1: flags = 0x8; break; \ 9131 case 1: flags = 0x2; break; \ 9132 default: case 2: flags = 0x3; break; \ 9133 } \ 9134 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 9135 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 9136 } \ 9137 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 9138 { \ 9139 uint32_t flags; \ 9140 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 9141 case 0: flags = 0x6; break; \ 9142 case -1: flags = 0x8; break; \ 9143 case 1: flags = 0x2; break; \ 9144 default: case 2: flags = 0x3; break; \ 9145 } \ 9146 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 9147 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 9148 } 9149 DO_VFP_cmp(s, float32) 9150 DO_VFP_cmp(d, float64) 9151 #undef DO_VFP_cmp 9152 9153 /* Integer to float and float to integer conversions */ 9154 9155 #define CONV_ITOF(name, fsz, sign) \ 9156 float##fsz HELPER(name)(uint32_t x, void *fpstp) \ 9157 { \ 9158 float_status *fpst = fpstp; \ 9159 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 9160 } 9161 9162 #define CONV_FTOI(name, fsz, sign, round) \ 9163 uint32_t HELPER(name)(float##fsz x, void *fpstp) \ 9164 { \ 9165 float_status *fpst = fpstp; \ 9166 if (float##fsz##_is_any_nan(x)) { \ 9167 float_raise(float_flag_invalid, fpst); \ 9168 return 0; \ 9169 } \ 9170 return float##fsz##_to_##sign##int32##round(x, fpst); \ 9171 } 9172 9173 #define FLOAT_CONVS(name, p, fsz, sign) \ 9174 CONV_ITOF(vfp_##name##to##p, fsz, sign) \ 9175 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ 9176 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) 9177 9178 FLOAT_CONVS(si, s, 32, ) 9179 FLOAT_CONVS(si, d, 64, ) 9180 FLOAT_CONVS(ui, s, 32, u) 9181 FLOAT_CONVS(ui, d, 64, u) 9182 9183 #undef CONV_ITOF 9184 #undef CONV_FTOI 9185 #undef FLOAT_CONVS 9186 9187 /* floating point conversion */ 9188 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 9189 { 9190 float64 r = float32_to_float64(x, &env->vfp.fp_status); 9191 /* ARM requires that S<->D conversion of any kind of NaN generates 9192 * a quiet NaN by forcing the most significant frac bit to 1. 9193 */ 9194 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 9195 } 9196 9197 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 9198 { 9199 float32 r = float64_to_float32(x, &env->vfp.fp_status); 9200 /* ARM requires that S<->D conversion of any kind of NaN generates 9201 * a quiet NaN by forcing the most significant frac bit to 1. 9202 */ 9203 return float32_maybe_silence_nan(r, &env->vfp.fp_status); 9204 } 9205 9206 /* VFP3 fixed point conversion. */ 9207 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 9208 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 9209 void *fpstp) \ 9210 { \ 9211 float_status *fpst = fpstp; \ 9212 float##fsz tmp; \ 9213 tmp = itype##_to_##float##fsz(x, fpst); \ 9214 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ 9215 } 9216 9217 /* Notice that we want only input-denormal exception flags from the 9218 * scalbn operation: the other possible flags (overflow+inexact if 9219 * we overflow to infinity, output-denormal) aren't correct for the 9220 * complete scale-and-convert operation. 9221 */ 9222 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ 9223 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ 9224 uint32_t shift, \ 9225 void *fpstp) \ 9226 { \ 9227 float_status *fpst = fpstp; \ 9228 int old_exc_flags = get_float_exception_flags(fpst); \ 9229 float##fsz tmp; \ 9230 if (float##fsz##_is_any_nan(x)) { \ 9231 float_raise(float_flag_invalid, fpst); \ 9232 return 0; \ 9233 } \ 9234 tmp = float##fsz##_scalbn(x, shift, fpst); \ 9235 old_exc_flags |= get_float_exception_flags(fpst) \ 9236 & float_flag_input_denormal; \ 9237 set_float_exception_flags(old_exc_flags, fpst); \ 9238 return float##fsz##_to_##itype##round(tmp, fpst); \ 9239 } 9240 9241 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 9242 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 9243 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ 9244 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 9245 9246 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 9247 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 9248 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 9249 9250 VFP_CONV_FIX(sh, d, 64, 64, int16) 9251 VFP_CONV_FIX(sl, d, 64, 64, int32) 9252 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 9253 VFP_CONV_FIX(uh, d, 64, 64, uint16) 9254 VFP_CONV_FIX(ul, d, 64, 64, uint32) 9255 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 9256 VFP_CONV_FIX(sh, s, 32, 32, int16) 9257 VFP_CONV_FIX(sl, s, 32, 32, int32) 9258 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 9259 VFP_CONV_FIX(uh, s, 32, 32, uint16) 9260 VFP_CONV_FIX(ul, s, 32, 32, uint32) 9261 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 9262 #undef VFP_CONV_FIX 9263 #undef VFP_CONV_FIX_FLOAT 9264 #undef VFP_CONV_FLOAT_FIX_ROUND 9265 9266 /* Set the current fp rounding mode and return the old one. 9267 * The argument is a softfloat float_round_ value. 9268 */ 9269 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) 9270 { 9271 float_status *fp_status = &env->vfp.fp_status; 9272 9273 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 9274 set_float_rounding_mode(rmode, fp_status); 9275 9276 return prev_rmode; 9277 } 9278 9279 /* Set the current fp rounding mode in the standard fp status and return 9280 * the old one. This is for NEON instructions that need to change the 9281 * rounding mode but wish to use the standard FPSCR values for everything 9282 * else. Always set the rounding mode back to the correct value after 9283 * modifying it. 9284 * The argument is a softfloat float_round_ value. 9285 */ 9286 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 9287 { 9288 float_status *fp_status = &env->vfp.standard_fp_status; 9289 9290 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 9291 set_float_rounding_mode(rmode, fp_status); 9292 9293 return prev_rmode; 9294 } 9295 9296 /* Half precision conversions. */ 9297 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) 9298 { 9299 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 9300 float32 r = float16_to_float32(make_float16(a), ieee, s); 9301 if (ieee) { 9302 return float32_maybe_silence_nan(r, s); 9303 } 9304 return r; 9305 } 9306 9307 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) 9308 { 9309 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 9310 float16 r = float32_to_float16(a, ieee, s); 9311 if (ieee) { 9312 r = float16_maybe_silence_nan(r, s); 9313 } 9314 return float16_val(r); 9315 } 9316 9317 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 9318 { 9319 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); 9320 } 9321 9322 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 9323 { 9324 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); 9325 } 9326 9327 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 9328 { 9329 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); 9330 } 9331 9332 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 9333 { 9334 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); 9335 } 9336 9337 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) 9338 { 9339 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 9340 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); 9341 if (ieee) { 9342 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 9343 } 9344 return r; 9345 } 9346 9347 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) 9348 { 9349 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 9350 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); 9351 if (ieee) { 9352 r = float16_maybe_silence_nan(r, &env->vfp.fp_status); 9353 } 9354 return float16_val(r); 9355 } 9356 9357 #define float32_two make_float32(0x40000000) 9358 #define float32_three make_float32(0x40400000) 9359 #define float32_one_point_five make_float32(0x3fc00000) 9360 9361 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 9362 { 9363 float_status *s = &env->vfp.standard_fp_status; 9364 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 9365 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 9366 if (!(float32_is_zero(a) || float32_is_zero(b))) { 9367 float_raise(float_flag_input_denormal, s); 9368 } 9369 return float32_two; 9370 } 9371 return float32_sub(float32_two, float32_mul(a, b, s), s); 9372 } 9373 9374 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 9375 { 9376 float_status *s = &env->vfp.standard_fp_status; 9377 float32 product; 9378 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 9379 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 9380 if (!(float32_is_zero(a) || float32_is_zero(b))) { 9381 float_raise(float_flag_input_denormal, s); 9382 } 9383 return float32_one_point_five; 9384 } 9385 product = float32_mul(a, b, s); 9386 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 9387 } 9388 9389 /* NEON helpers. */ 9390 9391 /* Constants 256 and 512 are used in some helpers; we avoid relying on 9392 * int->float conversions at run-time. */ 9393 #define float64_256 make_float64(0x4070000000000000LL) 9394 #define float64_512 make_float64(0x4080000000000000LL) 9395 #define float32_maxnorm make_float32(0x7f7fffff) 9396 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 9397 9398 /* Reciprocal functions 9399 * 9400 * The algorithm that must be used to calculate the estimate 9401 * is specified by the ARM ARM, see FPRecipEstimate() 9402 */ 9403 9404 static float64 recip_estimate(float64 a, float_status *real_fp_status) 9405 { 9406 /* These calculations mustn't set any fp exception flags, 9407 * so we use a local copy of the fp_status. 9408 */ 9409 float_status dummy_status = *real_fp_status; 9410 float_status *s = &dummy_status; 9411 /* q = (int)(a * 512.0) */ 9412 float64 q = float64_mul(float64_512, a, s); 9413 int64_t q_int = float64_to_int64_round_to_zero(q, s); 9414 9415 /* r = 1.0 / (((double)q + 0.5) / 512.0) */ 9416 q = int64_to_float64(q_int, s); 9417 q = float64_add(q, float64_half, s); 9418 q = float64_div(q, float64_512, s); 9419 q = float64_div(float64_one, q, s); 9420 9421 /* s = (int)(256.0 * r + 0.5) */ 9422 q = float64_mul(q, float64_256, s); 9423 q = float64_add(q, float64_half, s); 9424 q_int = float64_to_int64_round_to_zero(q, s); 9425 9426 /* return (double)s / 256.0 */ 9427 return float64_div(int64_to_float64(q_int, s), float64_256, s); 9428 } 9429 9430 /* Common wrapper to call recip_estimate */ 9431 static float64 call_recip_estimate(float64 num, int off, float_status *fpst) 9432 { 9433 uint64_t val64 = float64_val(num); 9434 uint64_t frac = extract64(val64, 0, 52); 9435 int64_t exp = extract64(val64, 52, 11); 9436 uint64_t sbit; 9437 float64 scaled, estimate; 9438 9439 /* Generate the scaled number for the estimate function */ 9440 if (exp == 0) { 9441 if (extract64(frac, 51, 1) == 0) { 9442 exp = -1; 9443 frac = extract64(frac, 0, 50) << 2; 9444 } else { 9445 frac = extract64(frac, 0, 51) << 1; 9446 } 9447 } 9448 9449 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ 9450 scaled = make_float64((0x3feULL << 52) 9451 | extract64(frac, 44, 8) << 44); 9452 9453 estimate = recip_estimate(scaled, fpst); 9454 9455 /* Build new result */ 9456 val64 = float64_val(estimate); 9457 sbit = 0x8000000000000000ULL & val64; 9458 exp = off - exp; 9459 frac = extract64(val64, 0, 52); 9460 9461 if (exp == 0) { 9462 frac = 1ULL << 51 | extract64(frac, 1, 51); 9463 } else if (exp == -1) { 9464 frac = 1ULL << 50 | extract64(frac, 2, 50); 9465 exp = 0; 9466 } 9467 9468 return make_float64(sbit | (exp << 52) | frac); 9469 } 9470 9471 static bool round_to_inf(float_status *fpst, bool sign_bit) 9472 { 9473 switch (fpst->float_rounding_mode) { 9474 case float_round_nearest_even: /* Round to Nearest */ 9475 return true; 9476 case float_round_up: /* Round to +Inf */ 9477 return !sign_bit; 9478 case float_round_down: /* Round to -Inf */ 9479 return sign_bit; 9480 case float_round_to_zero: /* Round to Zero */ 9481 return false; 9482 } 9483 9484 g_assert_not_reached(); 9485 } 9486 9487 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 9488 { 9489 float_status *fpst = fpstp; 9490 float32 f32 = float32_squash_input_denormal(input, fpst); 9491 uint32_t f32_val = float32_val(f32); 9492 uint32_t f32_sbit = 0x80000000ULL & f32_val; 9493 int32_t f32_exp = extract32(f32_val, 23, 8); 9494 uint32_t f32_frac = extract32(f32_val, 0, 23); 9495 float64 f64, r64; 9496 uint64_t r64_val; 9497 int64_t r64_exp; 9498 uint64_t r64_frac; 9499 9500 if (float32_is_any_nan(f32)) { 9501 float32 nan = f32; 9502 if (float32_is_signaling_nan(f32, fpst)) { 9503 float_raise(float_flag_invalid, fpst); 9504 nan = float32_maybe_silence_nan(f32, fpst); 9505 } 9506 if (fpst->default_nan_mode) { 9507 nan = float32_default_nan(fpst); 9508 } 9509 return nan; 9510 } else if (float32_is_infinity(f32)) { 9511 return float32_set_sign(float32_zero, float32_is_neg(f32)); 9512 } else if (float32_is_zero(f32)) { 9513 float_raise(float_flag_divbyzero, fpst); 9514 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 9515 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { 9516 /* Abs(value) < 2.0^-128 */ 9517 float_raise(float_flag_overflow | float_flag_inexact, fpst); 9518 if (round_to_inf(fpst, f32_sbit)) { 9519 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 9520 } else { 9521 return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); 9522 } 9523 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 9524 float_raise(float_flag_underflow, fpst); 9525 return float32_set_sign(float32_zero, float32_is_neg(f32)); 9526 } 9527 9528 9529 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); 9530 r64 = call_recip_estimate(f64, 253, fpst); 9531 r64_val = float64_val(r64); 9532 r64_exp = extract64(r64_val, 52, 11); 9533 r64_frac = extract64(r64_val, 0, 52); 9534 9535 /* result = sign : result_exp<7:0> : fraction<51:29>; */ 9536 return make_float32(f32_sbit | 9537 (r64_exp & 0xff) << 23 | 9538 extract64(r64_frac, 29, 24)); 9539 } 9540 9541 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 9542 { 9543 float_status *fpst = fpstp; 9544 float64 f64 = float64_squash_input_denormal(input, fpst); 9545 uint64_t f64_val = float64_val(f64); 9546 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; 9547 int64_t f64_exp = extract64(f64_val, 52, 11); 9548 float64 r64; 9549 uint64_t r64_val; 9550 int64_t r64_exp; 9551 uint64_t r64_frac; 9552 9553 /* Deal with any special cases */ 9554 if (float64_is_any_nan(f64)) { 9555 float64 nan = f64; 9556 if (float64_is_signaling_nan(f64, fpst)) { 9557 float_raise(float_flag_invalid, fpst); 9558 nan = float64_maybe_silence_nan(f64, fpst); 9559 } 9560 if (fpst->default_nan_mode) { 9561 nan = float64_default_nan(fpst); 9562 } 9563 return nan; 9564 } else if (float64_is_infinity(f64)) { 9565 return float64_set_sign(float64_zero, float64_is_neg(f64)); 9566 } else if (float64_is_zero(f64)) { 9567 float_raise(float_flag_divbyzero, fpst); 9568 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 9569 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 9570 /* Abs(value) < 2.0^-1024 */ 9571 float_raise(float_flag_overflow | float_flag_inexact, fpst); 9572 if (round_to_inf(fpst, f64_sbit)) { 9573 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 9574 } else { 9575 return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); 9576 } 9577 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 9578 float_raise(float_flag_underflow, fpst); 9579 return float64_set_sign(float64_zero, float64_is_neg(f64)); 9580 } 9581 9582 r64 = call_recip_estimate(f64, 2045, fpst); 9583 r64_val = float64_val(r64); 9584 r64_exp = extract64(r64_val, 52, 11); 9585 r64_frac = extract64(r64_val, 0, 52); 9586 9587 /* result = sign : result_exp<10:0> : fraction<51:0> */ 9588 return make_float64(f64_sbit | 9589 ((r64_exp & 0x7ff) << 52) | 9590 r64_frac); 9591 } 9592 9593 /* The algorithm that must be used to calculate the estimate 9594 * is specified by the ARM ARM. 9595 */ 9596 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) 9597 { 9598 /* These calculations mustn't set any fp exception flags, 9599 * so we use a local copy of the fp_status. 9600 */ 9601 float_status dummy_status = *real_fp_status; 9602 float_status *s = &dummy_status; 9603 float64 q; 9604 int64_t q_int; 9605 9606 if (float64_lt(a, float64_half, s)) { 9607 /* range 0.25 <= a < 0.5 */ 9608 9609 /* a in units of 1/512 rounded down */ 9610 /* q0 = (int)(a * 512.0); */ 9611 q = float64_mul(float64_512, a, s); 9612 q_int = float64_to_int64_round_to_zero(q, s); 9613 9614 /* reciprocal root r */ 9615 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ 9616 q = int64_to_float64(q_int, s); 9617 q = float64_add(q, float64_half, s); 9618 q = float64_div(q, float64_512, s); 9619 q = float64_sqrt(q, s); 9620 q = float64_div(float64_one, q, s); 9621 } else { 9622 /* range 0.5 <= a < 1.0 */ 9623 9624 /* a in units of 1/256 rounded down */ 9625 /* q1 = (int)(a * 256.0); */ 9626 q = float64_mul(float64_256, a, s); 9627 int64_t q_int = float64_to_int64_round_to_zero(q, s); 9628 9629 /* reciprocal root r */ 9630 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ 9631 q = int64_to_float64(q_int, s); 9632 q = float64_add(q, float64_half, s); 9633 q = float64_div(q, float64_256, s); 9634 q = float64_sqrt(q, s); 9635 q = float64_div(float64_one, q, s); 9636 } 9637 /* r in units of 1/256 rounded to nearest */ 9638 /* s = (int)(256.0 * r + 0.5); */ 9639 9640 q = float64_mul(q, float64_256,s ); 9641 q = float64_add(q, float64_half, s); 9642 q_int = float64_to_int64_round_to_zero(q, s); 9643 9644 /* return (double)s / 256.0;*/ 9645 return float64_div(int64_to_float64(q_int, s), float64_256, s); 9646 } 9647 9648 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 9649 { 9650 float_status *s = fpstp; 9651 float32 f32 = float32_squash_input_denormal(input, s); 9652 uint32_t val = float32_val(f32); 9653 uint32_t f32_sbit = 0x80000000 & val; 9654 int32_t f32_exp = extract32(val, 23, 8); 9655 uint32_t f32_frac = extract32(val, 0, 23); 9656 uint64_t f64_frac; 9657 uint64_t val64; 9658 int result_exp; 9659 float64 f64; 9660 9661 if (float32_is_any_nan(f32)) { 9662 float32 nan = f32; 9663 if (float32_is_signaling_nan(f32, s)) { 9664 float_raise(float_flag_invalid, s); 9665 nan = float32_maybe_silence_nan(f32, s); 9666 } 9667 if (s->default_nan_mode) { 9668 nan = float32_default_nan(s); 9669 } 9670 return nan; 9671 } else if (float32_is_zero(f32)) { 9672 float_raise(float_flag_divbyzero, s); 9673 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 9674 } else if (float32_is_neg(f32)) { 9675 float_raise(float_flag_invalid, s); 9676 return float32_default_nan(s); 9677 } else if (float32_is_infinity(f32)) { 9678 return float32_zero; 9679 } 9680 9681 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 9682 * preserving the parity of the exponent. */ 9683 9684 f64_frac = ((uint64_t) f32_frac) << 29; 9685 if (f32_exp == 0) { 9686 while (extract64(f64_frac, 51, 1) == 0) { 9687 f64_frac = f64_frac << 1; 9688 f32_exp = f32_exp-1; 9689 } 9690 f64_frac = extract64(f64_frac, 0, 51) << 1; 9691 } 9692 9693 if (extract64(f32_exp, 0, 1) == 0) { 9694 f64 = make_float64(((uint64_t) f32_sbit) << 32 9695 | (0x3feULL << 52) 9696 | f64_frac); 9697 } else { 9698 f64 = make_float64(((uint64_t) f32_sbit) << 32 9699 | (0x3fdULL << 52) 9700 | f64_frac); 9701 } 9702 9703 result_exp = (380 - f32_exp) / 2; 9704 9705 f64 = recip_sqrt_estimate(f64, s); 9706 9707 val64 = float64_val(f64); 9708 9709 val = ((result_exp & 0xff) << 23) 9710 | ((val64 >> 29) & 0x7fffff); 9711 return make_float32(val); 9712 } 9713 9714 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 9715 { 9716 float_status *s = fpstp; 9717 float64 f64 = float64_squash_input_denormal(input, s); 9718 uint64_t val = float64_val(f64); 9719 uint64_t f64_sbit = 0x8000000000000000ULL & val; 9720 int64_t f64_exp = extract64(val, 52, 11); 9721 uint64_t f64_frac = extract64(val, 0, 52); 9722 int64_t result_exp; 9723 uint64_t result_frac; 9724 9725 if (float64_is_any_nan(f64)) { 9726 float64 nan = f64; 9727 if (float64_is_signaling_nan(f64, s)) { 9728 float_raise(float_flag_invalid, s); 9729 nan = float64_maybe_silence_nan(f64, s); 9730 } 9731 if (s->default_nan_mode) { 9732 nan = float64_default_nan(s); 9733 } 9734 return nan; 9735 } else if (float64_is_zero(f64)) { 9736 float_raise(float_flag_divbyzero, s); 9737 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 9738 } else if (float64_is_neg(f64)) { 9739 float_raise(float_flag_invalid, s); 9740 return float64_default_nan(s); 9741 } else if (float64_is_infinity(f64)) { 9742 return float64_zero; 9743 } 9744 9745 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 9746 * preserving the parity of the exponent. */ 9747 9748 if (f64_exp == 0) { 9749 while (extract64(f64_frac, 51, 1) == 0) { 9750 f64_frac = f64_frac << 1; 9751 f64_exp = f64_exp - 1; 9752 } 9753 f64_frac = extract64(f64_frac, 0, 51) << 1; 9754 } 9755 9756 if (extract64(f64_exp, 0, 1) == 0) { 9757 f64 = make_float64(f64_sbit 9758 | (0x3feULL << 52) 9759 | f64_frac); 9760 } else { 9761 f64 = make_float64(f64_sbit 9762 | (0x3fdULL << 52) 9763 | f64_frac); 9764 } 9765 9766 result_exp = (3068 - f64_exp) / 2; 9767 9768 f64 = recip_sqrt_estimate(f64, s); 9769 9770 result_frac = extract64(float64_val(f64), 0, 52); 9771 9772 return make_float64(f64_sbit | 9773 ((result_exp & 0x7ff) << 52) | 9774 result_frac); 9775 } 9776 9777 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 9778 { 9779 float_status *s = fpstp; 9780 float64 f64; 9781 9782 if ((a & 0x80000000) == 0) { 9783 return 0xffffffff; 9784 } 9785 9786 f64 = make_float64((0x3feULL << 52) 9787 | ((int64_t)(a & 0x7fffffff) << 21)); 9788 9789 f64 = recip_estimate(f64, s); 9790 9791 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 9792 } 9793 9794 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 9795 { 9796 float_status *fpst = fpstp; 9797 float64 f64; 9798 9799 if ((a & 0xc0000000) == 0) { 9800 return 0xffffffff; 9801 } 9802 9803 if (a & 0x80000000) { 9804 f64 = make_float64((0x3feULL << 52) 9805 | ((uint64_t)(a & 0x7fffffff) << 21)); 9806 } else { /* bits 31-30 == '01' */ 9807 f64 = make_float64((0x3fdULL << 52) 9808 | ((uint64_t)(a & 0x3fffffff) << 22)); 9809 } 9810 9811 f64 = recip_sqrt_estimate(f64, fpst); 9812 9813 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 9814 } 9815 9816 /* VFPv4 fused multiply-accumulate */ 9817 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 9818 { 9819 float_status *fpst = fpstp; 9820 return float32_muladd(a, b, c, 0, fpst); 9821 } 9822 9823 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 9824 { 9825 float_status *fpst = fpstp; 9826 return float64_muladd(a, b, c, 0, fpst); 9827 } 9828 9829 /* ARMv8 round to integral */ 9830 float32 HELPER(rints_exact)(float32 x, void *fp_status) 9831 { 9832 return float32_round_to_int(x, fp_status); 9833 } 9834 9835 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 9836 { 9837 return float64_round_to_int(x, fp_status); 9838 } 9839 9840 float32 HELPER(rints)(float32 x, void *fp_status) 9841 { 9842 int old_flags = get_float_exception_flags(fp_status), new_flags; 9843 float32 ret; 9844 9845 ret = float32_round_to_int(x, fp_status); 9846 9847 /* Suppress any inexact exceptions the conversion produced */ 9848 if (!(old_flags & float_flag_inexact)) { 9849 new_flags = get_float_exception_flags(fp_status); 9850 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 9851 } 9852 9853 return ret; 9854 } 9855 9856 float64 HELPER(rintd)(float64 x, void *fp_status) 9857 { 9858 int old_flags = get_float_exception_flags(fp_status), new_flags; 9859 float64 ret; 9860 9861 ret = float64_round_to_int(x, fp_status); 9862 9863 new_flags = get_float_exception_flags(fp_status); 9864 9865 /* Suppress any inexact exceptions the conversion produced */ 9866 if (!(old_flags & float_flag_inexact)) { 9867 new_flags = get_float_exception_flags(fp_status); 9868 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 9869 } 9870 9871 return ret; 9872 } 9873 9874 /* Convert ARM rounding mode to softfloat */ 9875 int arm_rmode_to_sf(int rmode) 9876 { 9877 switch (rmode) { 9878 case FPROUNDING_TIEAWAY: 9879 rmode = float_round_ties_away; 9880 break; 9881 case FPROUNDING_ODD: 9882 /* FIXME: add support for TIEAWAY and ODD */ 9883 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 9884 rmode); 9885 case FPROUNDING_TIEEVEN: 9886 default: 9887 rmode = float_round_nearest_even; 9888 break; 9889 case FPROUNDING_POSINF: 9890 rmode = float_round_up; 9891 break; 9892 case FPROUNDING_NEGINF: 9893 rmode = float_round_down; 9894 break; 9895 case FPROUNDING_ZERO: 9896 rmode = float_round_to_zero; 9897 break; 9898 } 9899 return rmode; 9900 } 9901 9902 /* CRC helpers. 9903 * The upper bytes of val (above the number specified by 'bytes') must have 9904 * been zeroed out by the caller. 9905 */ 9906 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 9907 { 9908 uint8_t buf[4]; 9909 9910 stl_le_p(buf, val); 9911 9912 /* zlib crc32 converts the accumulator and output to one's complement. */ 9913 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 9914 } 9915 9916 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 9917 { 9918 uint8_t buf[4]; 9919 9920 stl_le_p(buf, val); 9921 9922 /* Linux crc32c converts the output to one's complement. */ 9923 return crc32c(acc, buf, bytes) ^ 0xffffffff; 9924 } 9925