1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/main-loop.h" 17 #include "qemu/timer.h" 18 #include "qemu/bitops.h" 19 #include "qemu/crc32c.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/exec-all.h" 22 #include <zlib.h> /* For crc32 */ 23 #include "hw/irq.h" 24 #include "sysemu/cpu-timers.h" 25 #include "sysemu/kvm.h" 26 #include "sysemu/tcg.h" 27 #include "qapi/error.h" 28 #include "qemu/guest-random.h" 29 #ifdef CONFIG_TCG 30 #include "semihosting/common-semi.h" 31 #endif 32 #include "cpregs.h" 33 34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 35 36 static void switch_mode(CPUARMState *env, int mode); 37 38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 39 { 40 assert(ri->fieldoffset); 41 if (cpreg_field_is_64bit(ri)) { 42 return CPREG_FIELD64(env, ri); 43 } else { 44 return CPREG_FIELD32(env, ri); 45 } 46 } 47 48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 49 { 50 assert(ri->fieldoffset); 51 if (cpreg_field_is_64bit(ri)) { 52 CPREG_FIELD64(env, ri) = value; 53 } else { 54 CPREG_FIELD32(env, ri) = value; 55 } 56 } 57 58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 return (char *)env + ri->fieldoffset; 61 } 62 63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 64 { 65 /* Raw read of a coprocessor register (as needed for migration, etc). */ 66 if (ri->type & ARM_CP_CONST) { 67 return ri->resetvalue; 68 } else if (ri->raw_readfn) { 69 return ri->raw_readfn(env, ri); 70 } else if (ri->readfn) { 71 return ri->readfn(env, ri); 72 } else { 73 return raw_read(env, ri); 74 } 75 } 76 77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 78 uint64_t v) 79 { 80 /* 81 * Raw write of a coprocessor register (as needed for migration, etc). 82 * Note that constant registers are treated as write-ignored; the 83 * caller should check for success by whether a readback gives the 84 * value written. 85 */ 86 if (ri->type & ARM_CP_CONST) { 87 return; 88 } else if (ri->raw_writefn) { 89 ri->raw_writefn(env, ri, v); 90 } else if (ri->writefn) { 91 ri->writefn(env, ri, v); 92 } else { 93 raw_write(env, ri, v); 94 } 95 } 96 97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 98 { 99 /* 100 * Return true if the regdef would cause an assertion if you called 101 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 102 * program bug for it not to have the NO_RAW flag). 103 * NB that returning false here doesn't necessarily mean that calling 104 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 105 * read/write access functions which are safe for raw use" from "has 106 * read/write access functions which have side effects but has forgotten 107 * to provide raw access functions". 108 * The tests here line up with the conditions in read/write_raw_cp_reg() 109 * and assertions in raw_read()/raw_write(). 110 */ 111 if ((ri->type & ARM_CP_CONST) || 112 ri->fieldoffset || 113 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 114 return false; 115 } 116 return true; 117 } 118 119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 120 { 121 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 122 int i; 123 bool ok = true; 124 125 for (i = 0; i < cpu->cpreg_array_len; i++) { 126 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 127 const ARMCPRegInfo *ri; 128 uint64_t newval; 129 130 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 131 if (!ri) { 132 ok = false; 133 continue; 134 } 135 if (ri->type & ARM_CP_NO_RAW) { 136 continue; 137 } 138 139 newval = read_raw_cp_reg(&cpu->env, ri); 140 if (kvm_sync) { 141 /* 142 * Only sync if the previous list->cpustate sync succeeded. 143 * Rather than tracking the success/failure state for every 144 * item in the list, we just recheck "does the raw write we must 145 * have made in write_list_to_cpustate() read back OK" here. 146 */ 147 uint64_t oldval = cpu->cpreg_values[i]; 148 149 if (oldval == newval) { 150 continue; 151 } 152 153 write_raw_cp_reg(&cpu->env, ri, oldval); 154 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 155 continue; 156 } 157 158 write_raw_cp_reg(&cpu->env, ri, newval); 159 } 160 cpu->cpreg_values[i] = newval; 161 } 162 return ok; 163 } 164 165 bool write_list_to_cpustate(ARMCPU *cpu) 166 { 167 int i; 168 bool ok = true; 169 170 for (i = 0; i < cpu->cpreg_array_len; i++) { 171 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 172 uint64_t v = cpu->cpreg_values[i]; 173 const ARMCPRegInfo *ri; 174 175 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 176 if (!ri) { 177 ok = false; 178 continue; 179 } 180 if (ri->type & ARM_CP_NO_RAW) { 181 continue; 182 } 183 /* 184 * Write value and confirm it reads back as written 185 * (to catch read-only registers and partially read-only 186 * registers where the incoming migration value doesn't match) 187 */ 188 write_raw_cp_reg(&cpu->env, ri, v); 189 if (read_raw_cp_reg(&cpu->env, ri) != v) { 190 ok = false; 191 } 192 } 193 return ok; 194 } 195 196 static void add_cpreg_to_list(gpointer key, gpointer opaque) 197 { 198 ARMCPU *cpu = opaque; 199 uint32_t regidx = (uintptr_t)key; 200 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 201 202 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 203 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 204 /* The value array need not be initialized at this point */ 205 cpu->cpreg_array_len++; 206 } 207 } 208 209 static void count_cpreg(gpointer key, gpointer opaque) 210 { 211 ARMCPU *cpu = opaque; 212 const ARMCPRegInfo *ri; 213 214 ri = g_hash_table_lookup(cpu->cp_regs, key); 215 216 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 217 cpu->cpreg_array_len++; 218 } 219 } 220 221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 222 { 223 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 224 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 225 226 if (aidx > bidx) { 227 return 1; 228 } 229 if (aidx < bidx) { 230 return -1; 231 } 232 return 0; 233 } 234 235 void init_cpreg_list(ARMCPU *cpu) 236 { 237 /* 238 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 239 * Note that we require cpreg_tuples[] to be sorted by key ID. 240 */ 241 GList *keys; 242 int arraylen; 243 244 keys = g_hash_table_get_keys(cpu->cp_regs); 245 keys = g_list_sort(keys, cpreg_key_compare); 246 247 cpu->cpreg_array_len = 0; 248 249 g_list_foreach(keys, count_cpreg, cpu); 250 251 arraylen = cpu->cpreg_array_len; 252 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 253 cpu->cpreg_values = g_new(uint64_t, arraylen); 254 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 257 cpu->cpreg_array_len = 0; 258 259 g_list_foreach(keys, add_cpreg_to_list, cpu); 260 261 assert(cpu->cpreg_array_len == arraylen); 262 263 g_list_free(keys); 264 } 265 266 /* 267 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 268 */ 269 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 270 const ARMCPRegInfo *ri, 271 bool isread) 272 { 273 if (!is_a64(env) && arm_current_el(env) == 3 && 274 arm_is_secure_below_el3(env)) { 275 return CP_ACCESS_TRAP_UNCATEGORIZED; 276 } 277 return CP_ACCESS_OK; 278 } 279 280 /* 281 * Some secure-only AArch32 registers trap to EL3 if used from 282 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 283 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 284 * We assume that the .access field is set to PL1_RW. 285 */ 286 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 287 const ARMCPRegInfo *ri, 288 bool isread) 289 { 290 if (arm_current_el(env) == 3) { 291 return CP_ACCESS_OK; 292 } 293 if (arm_is_secure_below_el3(env)) { 294 if (env->cp15.scr_el3 & SCR_EEL2) { 295 return CP_ACCESS_TRAP_EL2; 296 } 297 return CP_ACCESS_TRAP_EL3; 298 } 299 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 300 return CP_ACCESS_TRAP_UNCATEGORIZED; 301 } 302 303 /* 304 * Check for traps to performance monitor registers, which are controlled 305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 306 */ 307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 308 bool isread) 309 { 310 int el = arm_current_el(env); 311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 312 313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 314 return CP_ACCESS_TRAP_EL2; 315 } 316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 317 return CP_ACCESS_TRAP_EL3; 318 } 319 return CP_ACCESS_OK; 320 } 321 322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 323 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 324 bool isread) 325 { 326 if (arm_current_el(env) == 1) { 327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 328 if (arm_hcr_el2_eff(env) & trap) { 329 return CP_ACCESS_TRAP_EL2; 330 } 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 340 return CP_ACCESS_TRAP_EL2; 341 } 342 return CP_ACCESS_OK; 343 } 344 345 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 347 bool isread) 348 { 349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 350 return CP_ACCESS_TRAP_EL2; 351 } 352 return CP_ACCESS_OK; 353 } 354 355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 357 bool isread) 358 { 359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 360 return CP_ACCESS_TRAP_EL2; 361 } 362 return CP_ACCESS_OK; 363 } 364 365 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 366 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 367 bool isread) 368 { 369 if (arm_current_el(env) == 1 && 370 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 371 return CP_ACCESS_TRAP_EL2; 372 } 373 return CP_ACCESS_OK; 374 } 375 376 #ifdef TARGET_AARCH64 377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 378 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 379 bool isread) 380 { 381 if (arm_current_el(env) == 1 && 382 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 383 return CP_ACCESS_TRAP_EL2; 384 } 385 return CP_ACCESS_OK; 386 } 387 #endif 388 389 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 390 { 391 ARMCPU *cpu = env_archcpu(env); 392 393 raw_write(env, ri, value); 394 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 395 } 396 397 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 398 { 399 ARMCPU *cpu = env_archcpu(env); 400 401 if (raw_read(env, ri) != value) { 402 /* 403 * Unlike real hardware the qemu TLB uses virtual addresses, 404 * not modified virtual addresses, so this causes a TLB flush. 405 */ 406 tlb_flush(CPU(cpu)); 407 raw_write(env, ri, value); 408 } 409 } 410 411 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 412 uint64_t value) 413 { 414 ARMCPU *cpu = env_archcpu(env); 415 416 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 417 && !extended_addresses_enabled(env)) { 418 /* 419 * For VMSA (when not using the LPAE long descriptor page table 420 * format) this register includes the ASID, so do a TLB flush. 421 * For PMSA it is purely a process ID and no action is needed. 422 */ 423 tlb_flush(CPU(cpu)); 424 } 425 raw_write(env, ri, value); 426 } 427 428 static int alle1_tlbmask(CPUARMState *env) 429 { 430 /* 431 * Note that the 'ALL' scope must invalidate both stage 1 and 432 * stage 2 translations, whereas most other scopes only invalidate 433 * stage 1 translations. 434 */ 435 return (ARMMMUIdxBit_E10_1 | 436 ARMMMUIdxBit_E10_1_PAN | 437 ARMMMUIdxBit_E10_0 | 438 ARMMMUIdxBit_Stage2 | 439 ARMMMUIdxBit_Stage2_S); 440 } 441 442 443 /* IS variants of TLB operations must affect all cores */ 444 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 445 uint64_t value) 446 { 447 CPUState *cs = env_cpu(env); 448 449 tlb_flush_all_cpus_synced(cs); 450 } 451 452 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 453 uint64_t value) 454 { 455 CPUState *cs = env_cpu(env); 456 457 tlb_flush_all_cpus_synced(cs); 458 } 459 460 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 461 uint64_t value) 462 { 463 CPUState *cs = env_cpu(env); 464 465 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 466 } 467 468 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 469 uint64_t value) 470 { 471 CPUState *cs = env_cpu(env); 472 473 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 474 } 475 476 /* 477 * Non-IS variants of TLB operations are upgraded to 478 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 479 * force broadcast of these operations. 480 */ 481 static bool tlb_force_broadcast(CPUARMState *env) 482 { 483 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 484 } 485 486 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 487 uint64_t value) 488 { 489 /* Invalidate all (TLBIALL) */ 490 CPUState *cs = env_cpu(env); 491 492 if (tlb_force_broadcast(env)) { 493 tlb_flush_all_cpus_synced(cs); 494 } else { 495 tlb_flush(cs); 496 } 497 } 498 499 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 503 CPUState *cs = env_cpu(env); 504 505 value &= TARGET_PAGE_MASK; 506 if (tlb_force_broadcast(env)) { 507 tlb_flush_page_all_cpus_synced(cs, value); 508 } else { 509 tlb_flush_page(cs, value); 510 } 511 } 512 513 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 514 uint64_t value) 515 { 516 /* Invalidate by ASID (TLBIASID) */ 517 CPUState *cs = env_cpu(env); 518 519 if (tlb_force_broadcast(env)) { 520 tlb_flush_all_cpus_synced(cs); 521 } else { 522 tlb_flush(cs); 523 } 524 } 525 526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 527 uint64_t value) 528 { 529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 530 CPUState *cs = env_cpu(env); 531 532 value &= TARGET_PAGE_MASK; 533 if (tlb_force_broadcast(env)) { 534 tlb_flush_page_all_cpus_synced(cs, value); 535 } else { 536 tlb_flush_page(cs, value); 537 } 538 } 539 540 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 541 uint64_t value) 542 { 543 CPUState *cs = env_cpu(env); 544 545 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 546 } 547 548 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 549 uint64_t value) 550 { 551 CPUState *cs = env_cpu(env); 552 553 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 554 } 555 556 557 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 558 uint64_t value) 559 { 560 CPUState *cs = env_cpu(env); 561 562 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 563 } 564 565 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 566 uint64_t value) 567 { 568 CPUState *cs = env_cpu(env); 569 570 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 571 } 572 573 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 574 uint64_t value) 575 { 576 CPUState *cs = env_cpu(env); 577 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 578 579 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 580 } 581 582 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 583 uint64_t value) 584 { 585 CPUState *cs = env_cpu(env); 586 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 587 588 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 589 ARMMMUIdxBit_E2); 590 } 591 592 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 593 uint64_t value) 594 { 595 CPUState *cs = env_cpu(env); 596 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 597 598 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 599 } 600 601 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 602 uint64_t value) 603 { 604 CPUState *cs = env_cpu(env); 605 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 606 607 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 608 } 609 610 static const ARMCPRegInfo cp_reginfo[] = { 611 /* 612 * Define the secure and non-secure FCSE identifier CP registers 613 * separately because there is no secure bank in V8 (no _EL3). This allows 614 * the secure register to be properly reset and migrated. There is also no 615 * v8 EL1 version of the register so the non-secure instance stands alone. 616 */ 617 { .name = "FCSEIDR", 618 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 619 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 620 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 621 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 622 { .name = "FCSEIDR_S", 623 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 624 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 625 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 626 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 627 /* 628 * Define the secure and non-secure context identifier CP registers 629 * separately because there is no secure bank in V8 (no _EL3). This allows 630 * the secure register to be properly reset and migrated. In the 631 * non-secure case, the 32-bit register will have reset and migration 632 * disabled during registration as it is handled by the 64-bit instance. 633 */ 634 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 635 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 636 .access = PL1_RW, .accessfn = access_tvm_trvm, 637 .fgt = FGT_CONTEXTIDR_EL1, 638 .secure = ARM_CP_SECSTATE_NS, 639 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 640 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 641 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 642 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 643 .access = PL1_RW, .accessfn = access_tvm_trvm, 644 .secure = ARM_CP_SECSTATE_S, 645 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 646 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 647 }; 648 649 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 650 /* 651 * NB: Some of these registers exist in v8 but with more precise 652 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 653 */ 654 /* MMU Domain access control / MPU write buffer control */ 655 { .name = "DACR", 656 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 657 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 658 .writefn = dacr_write, .raw_writefn = raw_write, 659 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 660 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 661 /* 662 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 663 * For v6 and v5, these mappings are overly broad. 664 */ 665 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 666 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 667 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 668 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 669 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 670 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 671 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 672 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 673 /* Cache maintenance ops; some of this space may be overridden later. */ 674 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 675 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 676 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 677 }; 678 679 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 680 /* 681 * Not all pre-v6 cores implemented this WFI, so this is slightly 682 * over-broad. 683 */ 684 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 685 .access = PL1_W, .type = ARM_CP_WFI }, 686 }; 687 688 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 689 /* 690 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 691 * is UNPREDICTABLE; we choose to NOP as most implementations do). 692 */ 693 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 694 .access = PL1_W, .type = ARM_CP_WFI }, 695 /* 696 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 697 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 698 * OMAPCP will override this space. 699 */ 700 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 701 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 702 .resetvalue = 0 }, 703 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 704 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 705 .resetvalue = 0 }, 706 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 707 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 708 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 709 .resetvalue = 0 }, 710 /* 711 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 712 * implementing it as RAZ means the "debug architecture version" bits 713 * will read as a reserved value, which should cause Linux to not try 714 * to use the debug hardware. 715 */ 716 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 717 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 718 /* 719 * MMU TLB control. Note that the wildcarding means we cover not just 720 * the unified TLB ops but also the dside/iside/inner-shareable variants. 721 */ 722 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 723 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 724 .type = ARM_CP_NO_RAW }, 725 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 726 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 727 .type = ARM_CP_NO_RAW }, 728 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 729 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 730 .type = ARM_CP_NO_RAW }, 731 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 732 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 733 .type = ARM_CP_NO_RAW }, 734 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 735 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 736 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 737 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 738 }; 739 740 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 741 uint64_t value) 742 { 743 uint32_t mask = 0; 744 745 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 746 if (!arm_feature(env, ARM_FEATURE_V8)) { 747 /* 748 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 749 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 750 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 751 */ 752 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 753 /* VFP coprocessor: cp10 & cp11 [23:20] */ 754 mask |= R_CPACR_ASEDIS_MASK | 755 R_CPACR_D32DIS_MASK | 756 R_CPACR_CP11_MASK | 757 R_CPACR_CP10_MASK; 758 759 if (!arm_feature(env, ARM_FEATURE_NEON)) { 760 /* ASEDIS [31] bit is RAO/WI */ 761 value |= R_CPACR_ASEDIS_MASK; 762 } 763 764 /* 765 * VFPv3 and upwards with NEON implement 32 double precision 766 * registers (D0-D31). 767 */ 768 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 769 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 770 value |= R_CPACR_D32DIS_MASK; 771 } 772 } 773 value &= mask; 774 } 775 776 /* 777 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 778 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 779 */ 780 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 781 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 782 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 783 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 784 } 785 786 env->cp15.cpacr_el1 = value; 787 } 788 789 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 790 { 791 /* 792 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 793 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 794 */ 795 uint64_t value = env->cp15.cpacr_el1; 796 797 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 798 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 799 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 800 } 801 return value; 802 } 803 804 805 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 806 { 807 /* 808 * Call cpacr_write() so that we reset with the correct RAO bits set 809 * for our CPU features. 810 */ 811 cpacr_write(env, ri, 0); 812 } 813 814 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 815 bool isread) 816 { 817 if (arm_feature(env, ARM_FEATURE_V8)) { 818 /* Check if CPACR accesses are to be trapped to EL2 */ 819 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 820 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 821 return CP_ACCESS_TRAP_EL2; 822 /* Check if CPACR accesses are to be trapped to EL3 */ 823 } else if (arm_current_el(env) < 3 && 824 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 825 return CP_ACCESS_TRAP_EL3; 826 } 827 } 828 829 return CP_ACCESS_OK; 830 } 831 832 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 833 bool isread) 834 { 835 /* Check if CPTR accesses are set to trap to EL3 */ 836 if (arm_current_el(env) == 2 && 837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 838 return CP_ACCESS_TRAP_EL3; 839 } 840 841 return CP_ACCESS_OK; 842 } 843 844 static const ARMCPRegInfo v6_cp_reginfo[] = { 845 /* prefetch by MVA in v6, NOP in v7 */ 846 { .name = "MVA_prefetch", 847 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 848 .access = PL1_W, .type = ARM_CP_NOP }, 849 /* 850 * We need to break the TB after ISB to execute self-modifying code 851 * correctly and also to take any pending interrupts immediately. 852 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 853 */ 854 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 855 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 856 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 857 .access = PL0_W, .type = ARM_CP_NOP }, 858 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 859 .access = PL0_W, .type = ARM_CP_NOP }, 860 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 861 .access = PL1_RW, .accessfn = access_tvm_trvm, 862 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 863 offsetof(CPUARMState, cp15.ifar_ns) }, 864 .resetvalue = 0, }, 865 /* 866 * Watchpoint Fault Address Register : should actually only be present 867 * for 1136, 1176, 11MPCore. 868 */ 869 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 870 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 871 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 872 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 873 .fgt = FGT_CPACR_EL1, 874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 875 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 876 }; 877 878 typedef struct pm_event { 879 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 880 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 881 bool (*supported)(CPUARMState *); 882 /* 883 * Retrieve the current count of the underlying event. The programmed 884 * counters hold a difference from the return value from this function 885 */ 886 uint64_t (*get_count)(CPUARMState *); 887 /* 888 * Return how many nanoseconds it will take (at a minimum) for count events 889 * to occur. A negative value indicates the counter will never overflow, or 890 * that the counter has otherwise arranged for the overflow bit to be set 891 * and the PMU interrupt to be raised on overflow. 892 */ 893 int64_t (*ns_per_count)(uint64_t); 894 } pm_event; 895 896 static bool event_always_supported(CPUARMState *env) 897 { 898 return true; 899 } 900 901 static uint64_t swinc_get_count(CPUARMState *env) 902 { 903 /* 904 * SW_INCR events are written directly to the pmevcntr's by writes to 905 * PMSWINC, so there is no underlying count maintained by the PMU itself 906 */ 907 return 0; 908 } 909 910 static int64_t swinc_ns_per(uint64_t ignored) 911 { 912 return -1; 913 } 914 915 /* 916 * Return the underlying cycle count for the PMU cycle counters. If we're in 917 * usermode, simply return 0. 918 */ 919 static uint64_t cycles_get_count(CPUARMState *env) 920 { 921 #ifndef CONFIG_USER_ONLY 922 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 923 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 924 #else 925 return cpu_get_host_ticks(); 926 #endif 927 } 928 929 #ifndef CONFIG_USER_ONLY 930 static int64_t cycles_ns_per(uint64_t cycles) 931 { 932 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 933 } 934 935 static bool instructions_supported(CPUARMState *env) 936 { 937 return icount_enabled() == 1; /* Precise instruction counting */ 938 } 939 940 static uint64_t instructions_get_count(CPUARMState *env) 941 { 942 return (uint64_t)icount_get_raw(); 943 } 944 945 static int64_t instructions_ns_per(uint64_t icount) 946 { 947 return icount_to_ns((int64_t)icount); 948 } 949 #endif 950 951 static bool pmuv3p1_events_supported(CPUARMState *env) 952 { 953 /* For events which are supported in any v8.1 PMU */ 954 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 955 } 956 957 static bool pmuv3p4_events_supported(CPUARMState *env) 958 { 959 /* For events which are supported in any v8.1 PMU */ 960 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 961 } 962 963 static uint64_t zero_event_get_count(CPUARMState *env) 964 { 965 /* For events which on QEMU never fire, so their count is always zero */ 966 return 0; 967 } 968 969 static int64_t zero_event_ns_per(uint64_t cycles) 970 { 971 /* An event which never fires can never overflow */ 972 return -1; 973 } 974 975 static const pm_event pm_events[] = { 976 { .number = 0x000, /* SW_INCR */ 977 .supported = event_always_supported, 978 .get_count = swinc_get_count, 979 .ns_per_count = swinc_ns_per, 980 }, 981 #ifndef CONFIG_USER_ONLY 982 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 983 .supported = instructions_supported, 984 .get_count = instructions_get_count, 985 .ns_per_count = instructions_ns_per, 986 }, 987 { .number = 0x011, /* CPU_CYCLES, Cycle */ 988 .supported = event_always_supported, 989 .get_count = cycles_get_count, 990 .ns_per_count = cycles_ns_per, 991 }, 992 #endif 993 { .number = 0x023, /* STALL_FRONTEND */ 994 .supported = pmuv3p1_events_supported, 995 .get_count = zero_event_get_count, 996 .ns_per_count = zero_event_ns_per, 997 }, 998 { .number = 0x024, /* STALL_BACKEND */ 999 .supported = pmuv3p1_events_supported, 1000 .get_count = zero_event_get_count, 1001 .ns_per_count = zero_event_ns_per, 1002 }, 1003 { .number = 0x03c, /* STALL */ 1004 .supported = pmuv3p4_events_supported, 1005 .get_count = zero_event_get_count, 1006 .ns_per_count = zero_event_ns_per, 1007 }, 1008 }; 1009 1010 /* 1011 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1012 * events (i.e. the statistical profiling extension), this implementation 1013 * should first be updated to something sparse instead of the current 1014 * supported_event_map[] array. 1015 */ 1016 #define MAX_EVENT_ID 0x3c 1017 #define UNSUPPORTED_EVENT UINT16_MAX 1018 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1019 1020 /* 1021 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1022 * of ARM event numbers to indices in our pm_events array. 1023 * 1024 * Note: Events in the 0x40XX range are not currently supported. 1025 */ 1026 void pmu_init(ARMCPU *cpu) 1027 { 1028 unsigned int i; 1029 1030 /* 1031 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1032 * events to them 1033 */ 1034 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1035 supported_event_map[i] = UNSUPPORTED_EVENT; 1036 } 1037 cpu->pmceid0 = 0; 1038 cpu->pmceid1 = 0; 1039 1040 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1041 const pm_event *cnt = &pm_events[i]; 1042 assert(cnt->number <= MAX_EVENT_ID); 1043 /* We do not currently support events in the 0x40xx range */ 1044 assert(cnt->number <= 0x3f); 1045 1046 if (cnt->supported(&cpu->env)) { 1047 supported_event_map[cnt->number] = i; 1048 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1049 if (cnt->number & 0x20) { 1050 cpu->pmceid1 |= event_mask; 1051 } else { 1052 cpu->pmceid0 |= event_mask; 1053 } 1054 } 1055 } 1056 } 1057 1058 /* 1059 * Check at runtime whether a PMU event is supported for the current machine 1060 */ 1061 static bool event_supported(uint16_t number) 1062 { 1063 if (number > MAX_EVENT_ID) { 1064 return false; 1065 } 1066 return supported_event_map[number] != UNSUPPORTED_EVENT; 1067 } 1068 1069 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1070 bool isread) 1071 { 1072 /* 1073 * Performance monitor registers user accessibility is controlled 1074 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1075 * trapping to EL2 or EL3 for other accesses. 1076 */ 1077 int el = arm_current_el(env); 1078 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1079 1080 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1081 return CP_ACCESS_TRAP; 1082 } 1083 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1084 return CP_ACCESS_TRAP_EL2; 1085 } 1086 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1087 return CP_ACCESS_TRAP_EL3; 1088 } 1089 1090 return CP_ACCESS_OK; 1091 } 1092 1093 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1094 const ARMCPRegInfo *ri, 1095 bool isread) 1096 { 1097 /* ER: event counter read trap control */ 1098 if (arm_feature(env, ARM_FEATURE_V8) 1099 && arm_current_el(env) == 0 1100 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1101 && isread) { 1102 return CP_ACCESS_OK; 1103 } 1104 1105 return pmreg_access(env, ri, isread); 1106 } 1107 1108 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1109 const ARMCPRegInfo *ri, 1110 bool isread) 1111 { 1112 /* SW: software increment write trap control */ 1113 if (arm_feature(env, ARM_FEATURE_V8) 1114 && arm_current_el(env) == 0 1115 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1116 && !isread) { 1117 return CP_ACCESS_OK; 1118 } 1119 1120 return pmreg_access(env, ri, isread); 1121 } 1122 1123 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1124 const ARMCPRegInfo *ri, 1125 bool isread) 1126 { 1127 /* ER: event counter read trap control */ 1128 if (arm_feature(env, ARM_FEATURE_V8) 1129 && arm_current_el(env) == 0 1130 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1131 return CP_ACCESS_OK; 1132 } 1133 1134 return pmreg_access(env, ri, isread); 1135 } 1136 1137 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1138 const ARMCPRegInfo *ri, 1139 bool isread) 1140 { 1141 /* CR: cycle counter read trap control */ 1142 if (arm_feature(env, ARM_FEATURE_V8) 1143 && arm_current_el(env) == 0 1144 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1145 && isread) { 1146 return CP_ACCESS_OK; 1147 } 1148 1149 return pmreg_access(env, ri, isread); 1150 } 1151 1152 /* 1153 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1154 * We use these to decide whether we need to wrap a write to MDCR_EL2 1155 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1156 */ 1157 #define MDCR_EL2_PMU_ENABLE_BITS \ 1158 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1159 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1160 1161 /* 1162 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1163 * the current EL, security state, and register configuration. 1164 */ 1165 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1166 { 1167 uint64_t filter; 1168 bool e, p, u, nsk, nsu, nsh, m; 1169 bool enabled, prohibited = false, filtered; 1170 bool secure = arm_is_secure(env); 1171 int el = arm_current_el(env); 1172 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1173 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1174 1175 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1176 return false; 1177 } 1178 1179 if (!arm_feature(env, ARM_FEATURE_EL2) || 1180 (counter < hpmn || counter == 31)) { 1181 e = env->cp15.c9_pmcr & PMCRE; 1182 } else { 1183 e = mdcr_el2 & MDCR_HPME; 1184 } 1185 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1186 1187 /* Is event counting prohibited? */ 1188 if (el == 2 && (counter < hpmn || counter == 31)) { 1189 prohibited = mdcr_el2 & MDCR_HPMD; 1190 } 1191 if (secure) { 1192 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1193 } 1194 1195 if (counter == 31) { 1196 /* 1197 * The cycle counter defaults to running. PMCR.DP says "disable 1198 * the cycle counter when event counting is prohibited". 1199 * Some MDCR bits disable the cycle counter specifically. 1200 */ 1201 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1202 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1203 if (secure) { 1204 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1205 } 1206 if (el == 2) { 1207 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1208 } 1209 } 1210 } 1211 1212 if (counter == 31) { 1213 filter = env->cp15.pmccfiltr_el0; 1214 } else { 1215 filter = env->cp15.c14_pmevtyper[counter]; 1216 } 1217 1218 p = filter & PMXEVTYPER_P; 1219 u = filter & PMXEVTYPER_U; 1220 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1221 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1222 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1223 m = arm_el_is_aa64(env, 1) && 1224 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1225 1226 if (el == 0) { 1227 filtered = secure ? u : u != nsu; 1228 } else if (el == 1) { 1229 filtered = secure ? p : p != nsk; 1230 } else if (el == 2) { 1231 filtered = !nsh; 1232 } else { /* EL3 */ 1233 filtered = m != p; 1234 } 1235 1236 if (counter != 31) { 1237 /* 1238 * If not checking PMCCNTR, ensure the counter is setup to an event we 1239 * support 1240 */ 1241 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1242 if (!event_supported(event)) { 1243 return false; 1244 } 1245 } 1246 1247 return enabled && !prohibited && !filtered; 1248 } 1249 1250 static void pmu_update_irq(CPUARMState *env) 1251 { 1252 ARMCPU *cpu = env_archcpu(env); 1253 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1254 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1255 } 1256 1257 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1258 { 1259 /* 1260 * Return true if the clock divider is enabled and the cycle counter 1261 * is supposed to tick only once every 64 clock cycles. This is 1262 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1263 * (64-bit) cycle counter PMCR.D has no effect. 1264 */ 1265 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1266 } 1267 1268 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1269 { 1270 /* Return true if the specified event counter is configured to be 64 bit */ 1271 1272 /* This isn't intended to be used with the cycle counter */ 1273 assert(counter < 31); 1274 1275 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1276 return false; 1277 } 1278 1279 if (arm_feature(env, ARM_FEATURE_EL2)) { 1280 /* 1281 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1282 * current security state, so we don't use arm_mdcr_el2_eff() here. 1283 */ 1284 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1285 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1286 1287 if (counter >= hpmn) { 1288 return hlp; 1289 } 1290 } 1291 return env->cp15.c9_pmcr & PMCRLP; 1292 } 1293 1294 /* 1295 * Ensure c15_ccnt is the guest-visible count so that operations such as 1296 * enabling/disabling the counter or filtering, modifying the count itself, 1297 * etc. can be done logically. This is essentially a no-op if the counter is 1298 * not enabled at the time of the call. 1299 */ 1300 static void pmccntr_op_start(CPUARMState *env) 1301 { 1302 uint64_t cycles = cycles_get_count(env); 1303 1304 if (pmu_counter_enabled(env, 31)) { 1305 uint64_t eff_cycles = cycles; 1306 if (pmccntr_clockdiv_enabled(env)) { 1307 eff_cycles /= 64; 1308 } 1309 1310 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1311 1312 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1313 1ull << 63 : 1ull << 31; 1314 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1315 env->cp15.c9_pmovsr |= (1ULL << 31); 1316 pmu_update_irq(env); 1317 } 1318 1319 env->cp15.c15_ccnt = new_pmccntr; 1320 } 1321 env->cp15.c15_ccnt_delta = cycles; 1322 } 1323 1324 /* 1325 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1326 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1327 * pmccntr_op_start. 1328 */ 1329 static void pmccntr_op_finish(CPUARMState *env) 1330 { 1331 if (pmu_counter_enabled(env, 31)) { 1332 #ifndef CONFIG_USER_ONLY 1333 /* Calculate when the counter will next overflow */ 1334 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1335 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1336 remaining_cycles = (uint32_t)remaining_cycles; 1337 } 1338 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1339 1340 if (overflow_in > 0) { 1341 int64_t overflow_at; 1342 1343 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1344 overflow_in, &overflow_at)) { 1345 ARMCPU *cpu = env_archcpu(env); 1346 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1347 } 1348 } 1349 #endif 1350 1351 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1352 if (pmccntr_clockdiv_enabled(env)) { 1353 prev_cycles /= 64; 1354 } 1355 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1356 } 1357 } 1358 1359 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1360 { 1361 1362 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1363 uint64_t count = 0; 1364 if (event_supported(event)) { 1365 uint16_t event_idx = supported_event_map[event]; 1366 count = pm_events[event_idx].get_count(env); 1367 } 1368 1369 if (pmu_counter_enabled(env, counter)) { 1370 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1371 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1372 1ULL << 63 : 1ULL << 31; 1373 1374 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1375 env->cp15.c9_pmovsr |= (1 << counter); 1376 pmu_update_irq(env); 1377 } 1378 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1379 } 1380 env->cp15.c14_pmevcntr_delta[counter] = count; 1381 } 1382 1383 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1384 { 1385 if (pmu_counter_enabled(env, counter)) { 1386 #ifndef CONFIG_USER_ONLY 1387 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1388 uint16_t event_idx = supported_event_map[event]; 1389 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1390 int64_t overflow_in; 1391 1392 if (!pmevcntr_is_64_bit(env, counter)) { 1393 delta = (uint32_t)delta; 1394 } 1395 overflow_in = pm_events[event_idx].ns_per_count(delta); 1396 1397 if (overflow_in > 0) { 1398 int64_t overflow_at; 1399 1400 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1401 overflow_in, &overflow_at)) { 1402 ARMCPU *cpu = env_archcpu(env); 1403 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1404 } 1405 } 1406 #endif 1407 1408 env->cp15.c14_pmevcntr_delta[counter] -= 1409 env->cp15.c14_pmevcntr[counter]; 1410 } 1411 } 1412 1413 void pmu_op_start(CPUARMState *env) 1414 { 1415 unsigned int i; 1416 pmccntr_op_start(env); 1417 for (i = 0; i < pmu_num_counters(env); i++) { 1418 pmevcntr_op_start(env, i); 1419 } 1420 } 1421 1422 void pmu_op_finish(CPUARMState *env) 1423 { 1424 unsigned int i; 1425 pmccntr_op_finish(env); 1426 for (i = 0; i < pmu_num_counters(env); i++) { 1427 pmevcntr_op_finish(env, i); 1428 } 1429 } 1430 1431 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1432 { 1433 pmu_op_start(&cpu->env); 1434 } 1435 1436 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1437 { 1438 pmu_op_finish(&cpu->env); 1439 } 1440 1441 void arm_pmu_timer_cb(void *opaque) 1442 { 1443 ARMCPU *cpu = opaque; 1444 1445 /* 1446 * Update all the counter values based on the current underlying counts, 1447 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1448 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1449 * counter may expire. 1450 */ 1451 pmu_op_start(&cpu->env); 1452 pmu_op_finish(&cpu->env); 1453 } 1454 1455 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1456 uint64_t value) 1457 { 1458 pmu_op_start(env); 1459 1460 if (value & PMCRC) { 1461 /* The counter has been reset */ 1462 env->cp15.c15_ccnt = 0; 1463 } 1464 1465 if (value & PMCRP) { 1466 unsigned int i; 1467 for (i = 0; i < pmu_num_counters(env); i++) { 1468 env->cp15.c14_pmevcntr[i] = 0; 1469 } 1470 } 1471 1472 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1473 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1474 1475 pmu_op_finish(env); 1476 } 1477 1478 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1479 uint64_t value) 1480 { 1481 unsigned int i; 1482 uint64_t overflow_mask, new_pmswinc; 1483 1484 for (i = 0; i < pmu_num_counters(env); i++) { 1485 /* Increment a counter's count iff: */ 1486 if ((value & (1 << i)) && /* counter's bit is set */ 1487 /* counter is enabled and not filtered */ 1488 pmu_counter_enabled(env, i) && 1489 /* counter is SW_INCR */ 1490 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1491 pmevcntr_op_start(env, i); 1492 1493 /* 1494 * Detect if this write causes an overflow since we can't predict 1495 * PMSWINC overflows like we can for other events 1496 */ 1497 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1498 1499 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1500 1ULL << 63 : 1ULL << 31; 1501 1502 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1503 env->cp15.c9_pmovsr |= (1 << i); 1504 pmu_update_irq(env); 1505 } 1506 1507 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1508 1509 pmevcntr_op_finish(env, i); 1510 } 1511 } 1512 } 1513 1514 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1515 { 1516 uint64_t ret; 1517 pmccntr_op_start(env); 1518 ret = env->cp15.c15_ccnt; 1519 pmccntr_op_finish(env); 1520 return ret; 1521 } 1522 1523 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1524 uint64_t value) 1525 { 1526 /* 1527 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1528 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1529 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1530 * accessed. 1531 */ 1532 env->cp15.c9_pmselr = value & 0x1f; 1533 } 1534 1535 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1536 uint64_t value) 1537 { 1538 pmccntr_op_start(env); 1539 env->cp15.c15_ccnt = value; 1540 pmccntr_op_finish(env); 1541 } 1542 1543 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1544 uint64_t value) 1545 { 1546 uint64_t cur_val = pmccntr_read(env, NULL); 1547 1548 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1549 } 1550 1551 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1552 uint64_t value) 1553 { 1554 pmccntr_op_start(env); 1555 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1556 pmccntr_op_finish(env); 1557 } 1558 1559 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1560 uint64_t value) 1561 { 1562 pmccntr_op_start(env); 1563 /* M is not accessible from AArch32 */ 1564 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1565 (value & PMCCFILTR); 1566 pmccntr_op_finish(env); 1567 } 1568 1569 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1570 { 1571 /* M is not visible in AArch32 */ 1572 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1573 } 1574 1575 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1576 uint64_t value) 1577 { 1578 pmu_op_start(env); 1579 value &= pmu_counter_mask(env); 1580 env->cp15.c9_pmcnten |= value; 1581 pmu_op_finish(env); 1582 } 1583 1584 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1585 uint64_t value) 1586 { 1587 pmu_op_start(env); 1588 value &= pmu_counter_mask(env); 1589 env->cp15.c9_pmcnten &= ~value; 1590 pmu_op_finish(env); 1591 } 1592 1593 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1594 uint64_t value) 1595 { 1596 value &= pmu_counter_mask(env); 1597 env->cp15.c9_pmovsr &= ~value; 1598 pmu_update_irq(env); 1599 } 1600 1601 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1602 uint64_t value) 1603 { 1604 value &= pmu_counter_mask(env); 1605 env->cp15.c9_pmovsr |= value; 1606 pmu_update_irq(env); 1607 } 1608 1609 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1610 uint64_t value, const uint8_t counter) 1611 { 1612 if (counter == 31) { 1613 pmccfiltr_write(env, ri, value); 1614 } else if (counter < pmu_num_counters(env)) { 1615 pmevcntr_op_start(env, counter); 1616 1617 /* 1618 * If this counter's event type is changing, store the current 1619 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1620 * pmevcntr_op_finish has the correct baseline when it converts back to 1621 * a delta. 1622 */ 1623 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1624 PMXEVTYPER_EVTCOUNT; 1625 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1626 if (old_event != new_event) { 1627 uint64_t count = 0; 1628 if (event_supported(new_event)) { 1629 uint16_t event_idx = supported_event_map[new_event]; 1630 count = pm_events[event_idx].get_count(env); 1631 } 1632 env->cp15.c14_pmevcntr_delta[counter] = count; 1633 } 1634 1635 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1636 pmevcntr_op_finish(env, counter); 1637 } 1638 /* 1639 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1640 * PMSELR value is equal to or greater than the number of implemented 1641 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1642 */ 1643 } 1644 1645 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1646 const uint8_t counter) 1647 { 1648 if (counter == 31) { 1649 return env->cp15.pmccfiltr_el0; 1650 } else if (counter < pmu_num_counters(env)) { 1651 return env->cp15.c14_pmevtyper[counter]; 1652 } else { 1653 /* 1654 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1655 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1656 */ 1657 return 0; 1658 } 1659 } 1660 1661 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1662 uint64_t value) 1663 { 1664 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1665 pmevtyper_write(env, ri, value, counter); 1666 } 1667 1668 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1669 uint64_t value) 1670 { 1671 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1672 env->cp15.c14_pmevtyper[counter] = value; 1673 1674 /* 1675 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1676 * pmu_op_finish calls when loading saved state for a migration. Because 1677 * we're potentially updating the type of event here, the value written to 1678 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1679 * different counter type. Therefore, we need to set this value to the 1680 * current count for the counter type we're writing so that pmu_op_finish 1681 * has the correct count for its calculation. 1682 */ 1683 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1684 if (event_supported(event)) { 1685 uint16_t event_idx = supported_event_map[event]; 1686 env->cp15.c14_pmevcntr_delta[counter] = 1687 pm_events[event_idx].get_count(env); 1688 } 1689 } 1690 1691 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1692 { 1693 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1694 return pmevtyper_read(env, ri, counter); 1695 } 1696 1697 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1698 uint64_t value) 1699 { 1700 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1701 } 1702 1703 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1704 { 1705 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1706 } 1707 1708 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1709 uint64_t value, uint8_t counter) 1710 { 1711 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1712 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1713 value &= MAKE_64BIT_MASK(0, 32); 1714 } 1715 if (counter < pmu_num_counters(env)) { 1716 pmevcntr_op_start(env, counter); 1717 env->cp15.c14_pmevcntr[counter] = value; 1718 pmevcntr_op_finish(env, counter); 1719 } 1720 /* 1721 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1722 * are CONSTRAINED UNPREDICTABLE. 1723 */ 1724 } 1725 1726 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1727 uint8_t counter) 1728 { 1729 if (counter < pmu_num_counters(env)) { 1730 uint64_t ret; 1731 pmevcntr_op_start(env, counter); 1732 ret = env->cp15.c14_pmevcntr[counter]; 1733 pmevcntr_op_finish(env, counter); 1734 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1735 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1736 ret &= MAKE_64BIT_MASK(0, 32); 1737 } 1738 return ret; 1739 } else { 1740 /* 1741 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1742 * are CONSTRAINED UNPREDICTABLE. 1743 */ 1744 return 0; 1745 } 1746 } 1747 1748 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1749 uint64_t value) 1750 { 1751 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1752 pmevcntr_write(env, ri, value, counter); 1753 } 1754 1755 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1756 { 1757 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1758 return pmevcntr_read(env, ri, counter); 1759 } 1760 1761 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1762 uint64_t value) 1763 { 1764 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1765 assert(counter < pmu_num_counters(env)); 1766 env->cp15.c14_pmevcntr[counter] = value; 1767 pmevcntr_write(env, ri, value, counter); 1768 } 1769 1770 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1771 { 1772 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1773 assert(counter < pmu_num_counters(env)); 1774 return env->cp15.c14_pmevcntr[counter]; 1775 } 1776 1777 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1778 uint64_t value) 1779 { 1780 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1781 } 1782 1783 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1784 { 1785 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1786 } 1787 1788 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1789 uint64_t value) 1790 { 1791 if (arm_feature(env, ARM_FEATURE_V8)) { 1792 env->cp15.c9_pmuserenr = value & 0xf; 1793 } else { 1794 env->cp15.c9_pmuserenr = value & 1; 1795 } 1796 } 1797 1798 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1799 uint64_t value) 1800 { 1801 /* We have no event counters so only the C bit can be changed */ 1802 value &= pmu_counter_mask(env); 1803 env->cp15.c9_pminten |= value; 1804 pmu_update_irq(env); 1805 } 1806 1807 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1808 uint64_t value) 1809 { 1810 value &= pmu_counter_mask(env); 1811 env->cp15.c9_pminten &= ~value; 1812 pmu_update_irq(env); 1813 } 1814 1815 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1816 uint64_t value) 1817 { 1818 /* 1819 * Note that even though the AArch64 view of this register has bits 1820 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1821 * architectural requirements for bits which are RES0 only in some 1822 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1823 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1824 */ 1825 raw_write(env, ri, value & ~0x1FULL); 1826 } 1827 1828 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1829 { 1830 /* Begin with base v8.0 state. */ 1831 uint64_t valid_mask = 0x3fff; 1832 ARMCPU *cpu = env_archcpu(env); 1833 uint64_t changed; 1834 1835 /* 1836 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1837 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1838 * Instead, choose the format based on the mode of EL3. 1839 */ 1840 if (arm_el_is_aa64(env, 3)) { 1841 value |= SCR_FW | SCR_AW; /* RES1 */ 1842 valid_mask &= ~SCR_NET; /* RES0 */ 1843 1844 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1845 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1846 value |= SCR_RW; /* RAO/WI */ 1847 } 1848 if (cpu_isar_feature(aa64_ras, cpu)) { 1849 valid_mask |= SCR_TERR; 1850 } 1851 if (cpu_isar_feature(aa64_lor, cpu)) { 1852 valid_mask |= SCR_TLOR; 1853 } 1854 if (cpu_isar_feature(aa64_pauth, cpu)) { 1855 valid_mask |= SCR_API | SCR_APK; 1856 } 1857 if (cpu_isar_feature(aa64_sel2, cpu)) { 1858 valid_mask |= SCR_EEL2; 1859 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1860 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1861 value |= SCR_NS; 1862 } 1863 if (cpu_isar_feature(aa64_mte, cpu)) { 1864 valid_mask |= SCR_ATA; 1865 } 1866 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1867 valid_mask |= SCR_ENSCXT; 1868 } 1869 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1870 valid_mask |= SCR_EASE | SCR_NMEA; 1871 } 1872 if (cpu_isar_feature(aa64_sme, cpu)) { 1873 valid_mask |= SCR_ENTP2; 1874 } 1875 if (cpu_isar_feature(aa64_hcx, cpu)) { 1876 valid_mask |= SCR_HXEN; 1877 } 1878 if (cpu_isar_feature(aa64_fgt, cpu)) { 1879 valid_mask |= SCR_FGTEN; 1880 } 1881 if (cpu_isar_feature(aa64_rme, cpu)) { 1882 valid_mask |= SCR_NSE | SCR_GPF; 1883 } 1884 } else { 1885 valid_mask &= ~(SCR_RW | SCR_ST); 1886 if (cpu_isar_feature(aa32_ras, cpu)) { 1887 valid_mask |= SCR_TERR; 1888 } 1889 } 1890 1891 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1892 valid_mask &= ~SCR_HCE; 1893 1894 /* 1895 * On ARMv7, SMD (or SCD as it is called in v7) is only 1896 * supported if EL2 exists. The bit is UNK/SBZP when 1897 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1898 * when EL2 is unavailable. 1899 * On ARMv8, this bit is always available. 1900 */ 1901 if (arm_feature(env, ARM_FEATURE_V7) && 1902 !arm_feature(env, ARM_FEATURE_V8)) { 1903 valid_mask &= ~SCR_SMD; 1904 } 1905 } 1906 1907 /* Clear all-context RES0 bits. */ 1908 value &= valid_mask; 1909 changed = env->cp15.scr_el3 ^ value; 1910 env->cp15.scr_el3 = value; 1911 1912 /* 1913 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1914 * we must invalidate all TLBs below EL3. 1915 */ 1916 if (changed & (SCR_NS | SCR_NSE)) { 1917 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1918 ARMMMUIdxBit_E20_0 | 1919 ARMMMUIdxBit_E10_1 | 1920 ARMMMUIdxBit_E20_2 | 1921 ARMMMUIdxBit_E10_1_PAN | 1922 ARMMMUIdxBit_E20_2_PAN | 1923 ARMMMUIdxBit_E2)); 1924 } 1925 } 1926 1927 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1928 { 1929 /* 1930 * scr_write will set the RES1 bits on an AArch64-only CPU. 1931 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1932 */ 1933 scr_write(env, ri, 0); 1934 } 1935 1936 static CPAccessResult access_tid4(CPUARMState *env, 1937 const ARMCPRegInfo *ri, 1938 bool isread) 1939 { 1940 if (arm_current_el(env) == 1 && 1941 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1942 return CP_ACCESS_TRAP_EL2; 1943 } 1944 1945 return CP_ACCESS_OK; 1946 } 1947 1948 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1949 { 1950 ARMCPU *cpu = env_archcpu(env); 1951 1952 /* 1953 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1954 * bank 1955 */ 1956 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1957 ri->secure & ARM_CP_SECSTATE_S); 1958 1959 return cpu->ccsidr[index]; 1960 } 1961 1962 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1963 uint64_t value) 1964 { 1965 raw_write(env, ri, value & 0xf); 1966 } 1967 1968 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1969 { 1970 CPUState *cs = env_cpu(env); 1971 bool el1 = arm_current_el(env) == 1; 1972 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1973 uint64_t ret = 0; 1974 1975 if (hcr_el2 & HCR_IMO) { 1976 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1977 ret |= CPSR_I; 1978 } 1979 } else { 1980 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1981 ret |= CPSR_I; 1982 } 1983 } 1984 1985 if (hcr_el2 & HCR_FMO) { 1986 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1987 ret |= CPSR_F; 1988 } 1989 } else { 1990 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1991 ret |= CPSR_F; 1992 } 1993 } 1994 1995 if (hcr_el2 & HCR_AMO) { 1996 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1997 ret |= CPSR_A; 1998 } 1999 } 2000 2001 return ret; 2002 } 2003 2004 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2005 bool isread) 2006 { 2007 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2008 return CP_ACCESS_TRAP_EL2; 2009 } 2010 2011 return CP_ACCESS_OK; 2012 } 2013 2014 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2015 bool isread) 2016 { 2017 if (arm_feature(env, ARM_FEATURE_V8)) { 2018 return access_aa64_tid1(env, ri, isread); 2019 } 2020 2021 return CP_ACCESS_OK; 2022 } 2023 2024 static const ARMCPRegInfo v7_cp_reginfo[] = { 2025 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2026 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2027 .access = PL1_W, .type = ARM_CP_NOP }, 2028 /* 2029 * Performance monitors are implementation defined in v7, 2030 * but with an ARM recommended set of registers, which we 2031 * follow. 2032 * 2033 * Performance registers fall into three categories: 2034 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2035 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2036 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2037 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2038 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2039 */ 2040 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2041 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2042 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2043 .writefn = pmcntenset_write, 2044 .accessfn = pmreg_access, 2045 .fgt = FGT_PMCNTEN, 2046 .raw_writefn = raw_write }, 2047 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2048 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2049 .access = PL0_RW, .accessfn = pmreg_access, 2050 .fgt = FGT_PMCNTEN, 2051 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2052 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2053 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2054 .access = PL0_RW, 2055 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2056 .accessfn = pmreg_access, 2057 .fgt = FGT_PMCNTEN, 2058 .writefn = pmcntenclr_write, 2059 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2060 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2061 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2062 .access = PL0_RW, .accessfn = pmreg_access, 2063 .fgt = FGT_PMCNTEN, 2064 .type = ARM_CP_ALIAS | ARM_CP_IO, 2065 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2066 .writefn = pmcntenclr_write }, 2067 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2068 .access = PL0_RW, .type = ARM_CP_IO, 2069 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2070 .accessfn = pmreg_access, 2071 .fgt = FGT_PMOVS, 2072 .writefn = pmovsr_write, 2073 .raw_writefn = raw_write }, 2074 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2075 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2076 .access = PL0_RW, .accessfn = pmreg_access, 2077 .fgt = FGT_PMOVS, 2078 .type = ARM_CP_ALIAS | ARM_CP_IO, 2079 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2080 .writefn = pmovsr_write, 2081 .raw_writefn = raw_write }, 2082 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2083 .access = PL0_W, .accessfn = pmreg_access_swinc, 2084 .fgt = FGT_PMSWINC_EL0, 2085 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2086 .writefn = pmswinc_write }, 2087 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2088 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2089 .access = PL0_W, .accessfn = pmreg_access_swinc, 2090 .fgt = FGT_PMSWINC_EL0, 2091 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2092 .writefn = pmswinc_write }, 2093 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2094 .access = PL0_RW, .type = ARM_CP_ALIAS, 2095 .fgt = FGT_PMSELR_EL0, 2096 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2097 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2098 .raw_writefn = raw_write}, 2099 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2100 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2101 .access = PL0_RW, .accessfn = pmreg_access_selr, 2102 .fgt = FGT_PMSELR_EL0, 2103 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2104 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2105 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2106 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2107 .fgt = FGT_PMCCNTR_EL0, 2108 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2109 .accessfn = pmreg_access_ccntr }, 2110 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2111 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2112 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2113 .fgt = FGT_PMCCNTR_EL0, 2114 .type = ARM_CP_IO, 2115 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2116 .readfn = pmccntr_read, .writefn = pmccntr_write, 2117 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2118 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2119 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2120 .access = PL0_RW, .accessfn = pmreg_access, 2121 .fgt = FGT_PMCCFILTR_EL0, 2122 .type = ARM_CP_ALIAS | ARM_CP_IO, 2123 .resetvalue = 0, }, 2124 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2126 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2127 .access = PL0_RW, .accessfn = pmreg_access, 2128 .fgt = FGT_PMCCFILTR_EL0, 2129 .type = ARM_CP_IO, 2130 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2131 .resetvalue = 0, }, 2132 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2133 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2134 .accessfn = pmreg_access, 2135 .fgt = FGT_PMEVTYPERN_EL0, 2136 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2137 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2138 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2139 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2140 .accessfn = pmreg_access, 2141 .fgt = FGT_PMEVTYPERN_EL0, 2142 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2143 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2144 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2145 .accessfn = pmreg_access_xevcntr, 2146 .fgt = FGT_PMEVCNTRN_EL0, 2147 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2148 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2149 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2150 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2151 .accessfn = pmreg_access_xevcntr, 2152 .fgt = FGT_PMEVCNTRN_EL0, 2153 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2154 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2155 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2156 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2157 .resetvalue = 0, 2158 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2159 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2160 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2161 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2162 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2163 .resetvalue = 0, 2164 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2165 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2166 .access = PL1_RW, .accessfn = access_tpm, 2167 .fgt = FGT_PMINTEN, 2168 .type = ARM_CP_ALIAS | ARM_CP_IO, 2169 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2170 .resetvalue = 0, 2171 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2172 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2173 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2174 .access = PL1_RW, .accessfn = access_tpm, 2175 .fgt = FGT_PMINTEN, 2176 .type = ARM_CP_IO, 2177 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2178 .writefn = pmintenset_write, .raw_writefn = raw_write, 2179 .resetvalue = 0x0 }, 2180 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2181 .access = PL1_RW, .accessfn = access_tpm, 2182 .fgt = FGT_PMINTEN, 2183 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2185 .writefn = pmintenclr_write, }, 2186 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2187 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2188 .access = PL1_RW, .accessfn = access_tpm, 2189 .fgt = FGT_PMINTEN, 2190 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2191 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2192 .writefn = pmintenclr_write }, 2193 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2194 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2195 .access = PL1_R, 2196 .accessfn = access_tid4, 2197 .fgt = FGT_CCSIDR_EL1, 2198 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2199 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2200 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2201 .access = PL1_RW, 2202 .accessfn = access_tid4, 2203 .fgt = FGT_CSSELR_EL1, 2204 .writefn = csselr_write, .resetvalue = 0, 2205 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2206 offsetof(CPUARMState, cp15.csselr_ns) } }, 2207 /* 2208 * Auxiliary ID register: this actually has an IMPDEF value but for now 2209 * just RAZ for all cores: 2210 */ 2211 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2212 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2213 .access = PL1_R, .type = ARM_CP_CONST, 2214 .accessfn = access_aa64_tid1, 2215 .fgt = FGT_AIDR_EL1, 2216 .resetvalue = 0 }, 2217 /* 2218 * Auxiliary fault status registers: these also are IMPDEF, and we 2219 * choose to RAZ/WI for all cores. 2220 */ 2221 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2222 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2223 .access = PL1_RW, .accessfn = access_tvm_trvm, 2224 .fgt = FGT_AFSR0_EL1, 2225 .type = ARM_CP_CONST, .resetvalue = 0 }, 2226 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2227 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2228 .access = PL1_RW, .accessfn = access_tvm_trvm, 2229 .fgt = FGT_AFSR1_EL1, 2230 .type = ARM_CP_CONST, .resetvalue = 0 }, 2231 /* 2232 * MAIR can just read-as-written because we don't implement caches 2233 * and so don't need to care about memory attributes. 2234 */ 2235 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2236 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2237 .access = PL1_RW, .accessfn = access_tvm_trvm, 2238 .fgt = FGT_MAIR_EL1, 2239 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2240 .resetvalue = 0 }, 2241 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2242 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2243 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2244 .resetvalue = 0 }, 2245 /* 2246 * For non-long-descriptor page tables these are PRRR and NMRR; 2247 * regardless they still act as reads-as-written for QEMU. 2248 */ 2249 /* 2250 * MAIR0/1 are defined separately from their 64-bit counterpart which 2251 * allows them to assign the correct fieldoffset based on the endianness 2252 * handled in the field definitions. 2253 */ 2254 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2255 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2256 .access = PL1_RW, .accessfn = access_tvm_trvm, 2257 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2258 offsetof(CPUARMState, cp15.mair0_ns) }, 2259 .resetfn = arm_cp_reset_ignore }, 2260 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2261 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2262 .access = PL1_RW, .accessfn = access_tvm_trvm, 2263 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2264 offsetof(CPUARMState, cp15.mair1_ns) }, 2265 .resetfn = arm_cp_reset_ignore }, 2266 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2267 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2268 .fgt = FGT_ISR_EL1, 2269 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2270 /* 32 bit ITLB invalidates */ 2271 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2272 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2273 .writefn = tlbiall_write }, 2274 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2275 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2276 .writefn = tlbimva_write }, 2277 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2278 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2279 .writefn = tlbiasid_write }, 2280 /* 32 bit DTLB invalidates */ 2281 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2282 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2283 .writefn = tlbiall_write }, 2284 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2285 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2286 .writefn = tlbimva_write }, 2287 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2288 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2289 .writefn = tlbiasid_write }, 2290 /* 32 bit TLB invalidates */ 2291 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2292 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2293 .writefn = tlbiall_write }, 2294 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2295 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2296 .writefn = tlbimva_write }, 2297 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2298 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2299 .writefn = tlbiasid_write }, 2300 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2301 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2302 .writefn = tlbimvaa_write }, 2303 }; 2304 2305 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2306 /* 32 bit TLB invalidates, Inner Shareable */ 2307 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2308 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2309 .writefn = tlbiall_is_write }, 2310 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2311 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2312 .writefn = tlbimva_is_write }, 2313 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2314 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2315 .writefn = tlbiasid_is_write }, 2316 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2317 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2318 .writefn = tlbimvaa_is_write }, 2319 }; 2320 2321 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2322 /* PMOVSSET is not implemented in v7 before v7ve */ 2323 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2324 .access = PL0_RW, .accessfn = pmreg_access, 2325 .fgt = FGT_PMOVS, 2326 .type = ARM_CP_ALIAS | ARM_CP_IO, 2327 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2328 .writefn = pmovsset_write, 2329 .raw_writefn = raw_write }, 2330 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2331 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2332 .access = PL0_RW, .accessfn = pmreg_access, 2333 .fgt = FGT_PMOVS, 2334 .type = ARM_CP_ALIAS | ARM_CP_IO, 2335 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2336 .writefn = pmovsset_write, 2337 .raw_writefn = raw_write }, 2338 }; 2339 2340 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2341 uint64_t value) 2342 { 2343 value &= 1; 2344 env->teecr = value; 2345 } 2346 2347 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2348 bool isread) 2349 { 2350 /* 2351 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2352 * at all, so we don't need to check whether we're v8A. 2353 */ 2354 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2355 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2356 return CP_ACCESS_TRAP_EL2; 2357 } 2358 return CP_ACCESS_OK; 2359 } 2360 2361 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2362 bool isread) 2363 { 2364 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2365 return CP_ACCESS_TRAP; 2366 } 2367 return teecr_access(env, ri, isread); 2368 } 2369 2370 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2371 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2372 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2373 .resetvalue = 0, 2374 .writefn = teecr_write, .accessfn = teecr_access }, 2375 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2376 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2377 .accessfn = teehbr_access, .resetvalue = 0 }, 2378 }; 2379 2380 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2381 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2382 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2383 .access = PL0_RW, 2384 .fgt = FGT_TPIDR_EL0, 2385 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2386 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2387 .access = PL0_RW, 2388 .fgt = FGT_TPIDR_EL0, 2389 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2390 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2391 .resetfn = arm_cp_reset_ignore }, 2392 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2393 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2394 .access = PL0_R | PL1_W, 2395 .fgt = FGT_TPIDRRO_EL0, 2396 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2397 .resetvalue = 0}, 2398 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2399 .access = PL0_R | PL1_W, 2400 .fgt = FGT_TPIDRRO_EL0, 2401 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2402 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2403 .resetfn = arm_cp_reset_ignore }, 2404 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2405 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2406 .access = PL1_RW, 2407 .fgt = FGT_TPIDR_EL1, 2408 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2409 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2410 .access = PL1_RW, 2411 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2412 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2413 .resetvalue = 0 }, 2414 }; 2415 2416 #ifndef CONFIG_USER_ONLY 2417 2418 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2419 bool isread) 2420 { 2421 /* 2422 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2423 * Writable only at the highest implemented exception level. 2424 */ 2425 int el = arm_current_el(env); 2426 uint64_t hcr; 2427 uint32_t cntkctl; 2428 2429 switch (el) { 2430 case 0: 2431 hcr = arm_hcr_el2_eff(env); 2432 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2433 cntkctl = env->cp15.cnthctl_el2; 2434 } else { 2435 cntkctl = env->cp15.c14_cntkctl; 2436 } 2437 if (!extract32(cntkctl, 0, 2)) { 2438 return CP_ACCESS_TRAP; 2439 } 2440 break; 2441 case 1: 2442 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2443 arm_is_secure_below_el3(env)) { 2444 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2445 return CP_ACCESS_TRAP_UNCATEGORIZED; 2446 } 2447 break; 2448 case 2: 2449 case 3: 2450 break; 2451 } 2452 2453 if (!isread && el < arm_highest_el(env)) { 2454 return CP_ACCESS_TRAP_UNCATEGORIZED; 2455 } 2456 2457 return CP_ACCESS_OK; 2458 } 2459 2460 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2461 bool isread) 2462 { 2463 unsigned int cur_el = arm_current_el(env); 2464 bool has_el2 = arm_is_el2_enabled(env); 2465 uint64_t hcr = arm_hcr_el2_eff(env); 2466 2467 switch (cur_el) { 2468 case 0: 2469 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2470 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2471 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2472 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2473 } 2474 2475 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2476 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2477 return CP_ACCESS_TRAP; 2478 } 2479 /* fall through */ 2480 case 1: 2481 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2482 if (has_el2 && timeridx == GTIMER_PHYS && 2483 (hcr & HCR_E2H 2484 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2485 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2486 return CP_ACCESS_TRAP_EL2; 2487 } 2488 break; 2489 } 2490 return CP_ACCESS_OK; 2491 } 2492 2493 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2494 bool isread) 2495 { 2496 unsigned int cur_el = arm_current_el(env); 2497 bool has_el2 = arm_is_el2_enabled(env); 2498 uint64_t hcr = arm_hcr_el2_eff(env); 2499 2500 switch (cur_el) { 2501 case 0: 2502 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2503 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2504 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2505 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2506 } 2507 2508 /* 2509 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2510 * EL0 if EL0[PV]TEN is zero. 2511 */ 2512 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2513 return CP_ACCESS_TRAP; 2514 } 2515 /* fall through */ 2516 2517 case 1: 2518 if (has_el2 && timeridx == GTIMER_PHYS) { 2519 if (hcr & HCR_E2H) { 2520 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2521 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2522 return CP_ACCESS_TRAP_EL2; 2523 } 2524 } else { 2525 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2526 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2527 return CP_ACCESS_TRAP_EL2; 2528 } 2529 } 2530 } 2531 break; 2532 } 2533 return CP_ACCESS_OK; 2534 } 2535 2536 static CPAccessResult gt_pct_access(CPUARMState *env, 2537 const ARMCPRegInfo *ri, 2538 bool isread) 2539 { 2540 return gt_counter_access(env, GTIMER_PHYS, isread); 2541 } 2542 2543 static CPAccessResult gt_vct_access(CPUARMState *env, 2544 const ARMCPRegInfo *ri, 2545 bool isread) 2546 { 2547 return gt_counter_access(env, GTIMER_VIRT, isread); 2548 } 2549 2550 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2551 bool isread) 2552 { 2553 return gt_timer_access(env, GTIMER_PHYS, isread); 2554 } 2555 2556 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2557 bool isread) 2558 { 2559 return gt_timer_access(env, GTIMER_VIRT, isread); 2560 } 2561 2562 static CPAccessResult gt_stimer_access(CPUARMState *env, 2563 const ARMCPRegInfo *ri, 2564 bool isread) 2565 { 2566 /* 2567 * The AArch64 register view of the secure physical timer is 2568 * always accessible from EL3, and configurably accessible from 2569 * Secure EL1. 2570 */ 2571 switch (arm_current_el(env)) { 2572 case 1: 2573 if (!arm_is_secure(env)) { 2574 return CP_ACCESS_TRAP; 2575 } 2576 if (!(env->cp15.scr_el3 & SCR_ST)) { 2577 return CP_ACCESS_TRAP_EL3; 2578 } 2579 return CP_ACCESS_OK; 2580 case 0: 2581 case 2: 2582 return CP_ACCESS_TRAP; 2583 case 3: 2584 return CP_ACCESS_OK; 2585 default: 2586 g_assert_not_reached(); 2587 } 2588 } 2589 2590 static uint64_t gt_get_countervalue(CPUARMState *env) 2591 { 2592 ARMCPU *cpu = env_archcpu(env); 2593 2594 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2595 } 2596 2597 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2598 { 2599 CPUARMState *env = &cpu->env; 2600 uint64_t cnthctl = env->cp15.cnthctl_el2; 2601 ARMSecuritySpace ss = arm_security_space(env); 2602 /* ISTATUS && !IMASK */ 2603 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2604 2605 /* 2606 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2607 * It is RES0 in Secure and NonSecure state. 2608 */ 2609 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2610 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) || 2611 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) { 2612 irqstate = 0; 2613 } 2614 2615 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2616 trace_arm_gt_update_irq(timeridx, irqstate); 2617 } 2618 2619 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2620 { 2621 /* 2622 * Changing security state between Root and Secure/NonSecure, which may 2623 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2624 * mask bits. Update the IRQ state accordingly. 2625 */ 2626 gt_update_irq(cpu, GTIMER_VIRT); 2627 gt_update_irq(cpu, GTIMER_PHYS); 2628 } 2629 2630 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2631 { 2632 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2633 2634 if (gt->ctl & 1) { 2635 /* 2636 * Timer enabled: calculate and set current ISTATUS, irq, and 2637 * reset timer to when ISTATUS next has to change 2638 */ 2639 uint64_t offset = timeridx == GTIMER_VIRT ? 2640 cpu->env.cp15.cntvoff_el2 : 0; 2641 uint64_t count = gt_get_countervalue(&cpu->env); 2642 /* Note that this must be unsigned 64 bit arithmetic: */ 2643 int istatus = count - offset >= gt->cval; 2644 uint64_t nexttick; 2645 2646 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2647 2648 if (istatus) { 2649 /* 2650 * Next transition is when (count - offset) rolls back over to 0. 2651 * If offset > count then this is when count == offset; 2652 * if offset <= count then this is when count == offset + 2^64 2653 * For the latter case we set nexttick to an "as far in future 2654 * as possible" value and let the code below handle it. 2655 */ 2656 if (offset > count) { 2657 nexttick = offset; 2658 } else { 2659 nexttick = UINT64_MAX; 2660 } 2661 } else { 2662 /* 2663 * Next transition is when (count - offset) == cval, i.e. 2664 * when count == (cval + offset). 2665 * If that would overflow, then again we set up the next interrupt 2666 * for "as far in the future as possible" for the code below. 2667 */ 2668 if (uadd64_overflow(gt->cval, offset, &nexttick)) { 2669 nexttick = UINT64_MAX; 2670 } 2671 } 2672 /* 2673 * Note that the desired next expiry time might be beyond the 2674 * signed-64-bit range of a QEMUTimer -- in this case we just 2675 * set the timer for as far in the future as possible. When the 2676 * timer expires we will reset the timer for any remaining period. 2677 */ 2678 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2679 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2680 } else { 2681 timer_mod(cpu->gt_timer[timeridx], nexttick); 2682 } 2683 trace_arm_gt_recalc(timeridx, nexttick); 2684 } else { 2685 /* Timer disabled: ISTATUS and timer output always clear */ 2686 gt->ctl &= ~4; 2687 timer_del(cpu->gt_timer[timeridx]); 2688 trace_arm_gt_recalc_disabled(timeridx); 2689 } 2690 gt_update_irq(cpu, timeridx); 2691 } 2692 2693 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2694 int timeridx) 2695 { 2696 ARMCPU *cpu = env_archcpu(env); 2697 2698 timer_del(cpu->gt_timer[timeridx]); 2699 } 2700 2701 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2702 { 2703 return gt_get_countervalue(env); 2704 } 2705 2706 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2707 { 2708 uint64_t hcr; 2709 2710 switch (arm_current_el(env)) { 2711 case 2: 2712 hcr = arm_hcr_el2_eff(env); 2713 if (hcr & HCR_E2H) { 2714 return 0; 2715 } 2716 break; 2717 case 0: 2718 hcr = arm_hcr_el2_eff(env); 2719 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2720 return 0; 2721 } 2722 break; 2723 } 2724 2725 return env->cp15.cntvoff_el2; 2726 } 2727 2728 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2729 { 2730 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2731 } 2732 2733 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2734 int timeridx, 2735 uint64_t value) 2736 { 2737 trace_arm_gt_cval_write(timeridx, value); 2738 env->cp15.c14_timer[timeridx].cval = value; 2739 gt_recalc_timer(env_archcpu(env), timeridx); 2740 } 2741 2742 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2743 int timeridx) 2744 { 2745 uint64_t offset = 0; 2746 2747 switch (timeridx) { 2748 case GTIMER_VIRT: 2749 case GTIMER_HYPVIRT: 2750 offset = gt_virt_cnt_offset(env); 2751 break; 2752 } 2753 2754 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2755 (gt_get_countervalue(env) - offset)); 2756 } 2757 2758 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2759 int timeridx, 2760 uint64_t value) 2761 { 2762 uint64_t offset = 0; 2763 2764 switch (timeridx) { 2765 case GTIMER_VIRT: 2766 case GTIMER_HYPVIRT: 2767 offset = gt_virt_cnt_offset(env); 2768 break; 2769 } 2770 2771 trace_arm_gt_tval_write(timeridx, value); 2772 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2773 sextract64(value, 0, 32); 2774 gt_recalc_timer(env_archcpu(env), timeridx); 2775 } 2776 2777 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2778 int timeridx, 2779 uint64_t value) 2780 { 2781 ARMCPU *cpu = env_archcpu(env); 2782 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2783 2784 trace_arm_gt_ctl_write(timeridx, value); 2785 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2786 if ((oldval ^ value) & 1) { 2787 /* Enable toggled */ 2788 gt_recalc_timer(cpu, timeridx); 2789 } else if ((oldval ^ value) & 2) { 2790 /* 2791 * IMASK toggled: don't need to recalculate, 2792 * just set the interrupt line based on ISTATUS 2793 */ 2794 trace_arm_gt_imask_toggle(timeridx); 2795 gt_update_irq(cpu, timeridx); 2796 } 2797 } 2798 2799 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2800 { 2801 gt_timer_reset(env, ri, GTIMER_PHYS); 2802 } 2803 2804 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2805 uint64_t value) 2806 { 2807 gt_cval_write(env, ri, GTIMER_PHYS, value); 2808 } 2809 2810 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2811 { 2812 return gt_tval_read(env, ri, GTIMER_PHYS); 2813 } 2814 2815 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2816 uint64_t value) 2817 { 2818 gt_tval_write(env, ri, GTIMER_PHYS, value); 2819 } 2820 2821 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2822 uint64_t value) 2823 { 2824 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2825 } 2826 2827 static int gt_phys_redir_timeridx(CPUARMState *env) 2828 { 2829 switch (arm_mmu_idx(env)) { 2830 case ARMMMUIdx_E20_0: 2831 case ARMMMUIdx_E20_2: 2832 case ARMMMUIdx_E20_2_PAN: 2833 return GTIMER_HYP; 2834 default: 2835 return GTIMER_PHYS; 2836 } 2837 } 2838 2839 static int gt_virt_redir_timeridx(CPUARMState *env) 2840 { 2841 switch (arm_mmu_idx(env)) { 2842 case ARMMMUIdx_E20_0: 2843 case ARMMMUIdx_E20_2: 2844 case ARMMMUIdx_E20_2_PAN: 2845 return GTIMER_HYPVIRT; 2846 default: 2847 return GTIMER_VIRT; 2848 } 2849 } 2850 2851 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2852 const ARMCPRegInfo *ri) 2853 { 2854 int timeridx = gt_phys_redir_timeridx(env); 2855 return env->cp15.c14_timer[timeridx].cval; 2856 } 2857 2858 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2859 uint64_t value) 2860 { 2861 int timeridx = gt_phys_redir_timeridx(env); 2862 gt_cval_write(env, ri, timeridx, value); 2863 } 2864 2865 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2866 const ARMCPRegInfo *ri) 2867 { 2868 int timeridx = gt_phys_redir_timeridx(env); 2869 return gt_tval_read(env, ri, timeridx); 2870 } 2871 2872 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2873 uint64_t value) 2874 { 2875 int timeridx = gt_phys_redir_timeridx(env); 2876 gt_tval_write(env, ri, timeridx, value); 2877 } 2878 2879 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2880 const ARMCPRegInfo *ri) 2881 { 2882 int timeridx = gt_phys_redir_timeridx(env); 2883 return env->cp15.c14_timer[timeridx].ctl; 2884 } 2885 2886 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2887 uint64_t value) 2888 { 2889 int timeridx = gt_phys_redir_timeridx(env); 2890 gt_ctl_write(env, ri, timeridx, value); 2891 } 2892 2893 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2894 { 2895 gt_timer_reset(env, ri, GTIMER_VIRT); 2896 } 2897 2898 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2899 uint64_t value) 2900 { 2901 gt_cval_write(env, ri, GTIMER_VIRT, value); 2902 } 2903 2904 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2905 { 2906 return gt_tval_read(env, ri, GTIMER_VIRT); 2907 } 2908 2909 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2910 uint64_t value) 2911 { 2912 gt_tval_write(env, ri, GTIMER_VIRT, value); 2913 } 2914 2915 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2916 uint64_t value) 2917 { 2918 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2919 } 2920 2921 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2922 uint64_t value) 2923 { 2924 ARMCPU *cpu = env_archcpu(env); 2925 uint32_t oldval = env->cp15.cnthctl_el2; 2926 2927 raw_write(env, ri, value); 2928 2929 if ((oldval ^ value) & CNTHCTL_CNTVMASK) { 2930 gt_update_irq(cpu, GTIMER_VIRT); 2931 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) { 2932 gt_update_irq(cpu, GTIMER_PHYS); 2933 } 2934 } 2935 2936 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2937 uint64_t value) 2938 { 2939 ARMCPU *cpu = env_archcpu(env); 2940 2941 trace_arm_gt_cntvoff_write(value); 2942 raw_write(env, ri, value); 2943 gt_recalc_timer(cpu, GTIMER_VIRT); 2944 } 2945 2946 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2947 const ARMCPRegInfo *ri) 2948 { 2949 int timeridx = gt_virt_redir_timeridx(env); 2950 return env->cp15.c14_timer[timeridx].cval; 2951 } 2952 2953 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2954 uint64_t value) 2955 { 2956 int timeridx = gt_virt_redir_timeridx(env); 2957 gt_cval_write(env, ri, timeridx, value); 2958 } 2959 2960 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2961 const ARMCPRegInfo *ri) 2962 { 2963 int timeridx = gt_virt_redir_timeridx(env); 2964 return gt_tval_read(env, ri, timeridx); 2965 } 2966 2967 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2968 uint64_t value) 2969 { 2970 int timeridx = gt_virt_redir_timeridx(env); 2971 gt_tval_write(env, ri, timeridx, value); 2972 } 2973 2974 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2975 const ARMCPRegInfo *ri) 2976 { 2977 int timeridx = gt_virt_redir_timeridx(env); 2978 return env->cp15.c14_timer[timeridx].ctl; 2979 } 2980 2981 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2982 uint64_t value) 2983 { 2984 int timeridx = gt_virt_redir_timeridx(env); 2985 gt_ctl_write(env, ri, timeridx, value); 2986 } 2987 2988 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2989 { 2990 gt_timer_reset(env, ri, GTIMER_HYP); 2991 } 2992 2993 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2994 uint64_t value) 2995 { 2996 gt_cval_write(env, ri, GTIMER_HYP, value); 2997 } 2998 2999 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3000 { 3001 return gt_tval_read(env, ri, GTIMER_HYP); 3002 } 3003 3004 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3005 uint64_t value) 3006 { 3007 gt_tval_write(env, ri, GTIMER_HYP, value); 3008 } 3009 3010 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3011 uint64_t value) 3012 { 3013 gt_ctl_write(env, ri, GTIMER_HYP, value); 3014 } 3015 3016 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3017 { 3018 gt_timer_reset(env, ri, GTIMER_SEC); 3019 } 3020 3021 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3022 uint64_t value) 3023 { 3024 gt_cval_write(env, ri, GTIMER_SEC, value); 3025 } 3026 3027 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3028 { 3029 return gt_tval_read(env, ri, GTIMER_SEC); 3030 } 3031 3032 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3033 uint64_t value) 3034 { 3035 gt_tval_write(env, ri, GTIMER_SEC, value); 3036 } 3037 3038 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3039 uint64_t value) 3040 { 3041 gt_ctl_write(env, ri, GTIMER_SEC, value); 3042 } 3043 3044 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3045 { 3046 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3047 } 3048 3049 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3050 uint64_t value) 3051 { 3052 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3053 } 3054 3055 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3056 { 3057 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3058 } 3059 3060 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3061 uint64_t value) 3062 { 3063 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3064 } 3065 3066 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3067 uint64_t value) 3068 { 3069 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3070 } 3071 3072 void arm_gt_ptimer_cb(void *opaque) 3073 { 3074 ARMCPU *cpu = opaque; 3075 3076 gt_recalc_timer(cpu, GTIMER_PHYS); 3077 } 3078 3079 void arm_gt_vtimer_cb(void *opaque) 3080 { 3081 ARMCPU *cpu = opaque; 3082 3083 gt_recalc_timer(cpu, GTIMER_VIRT); 3084 } 3085 3086 void arm_gt_htimer_cb(void *opaque) 3087 { 3088 ARMCPU *cpu = opaque; 3089 3090 gt_recalc_timer(cpu, GTIMER_HYP); 3091 } 3092 3093 void arm_gt_stimer_cb(void *opaque) 3094 { 3095 ARMCPU *cpu = opaque; 3096 3097 gt_recalc_timer(cpu, GTIMER_SEC); 3098 } 3099 3100 void arm_gt_hvtimer_cb(void *opaque) 3101 { 3102 ARMCPU *cpu = opaque; 3103 3104 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3105 } 3106 3107 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3108 { 3109 ARMCPU *cpu = env_archcpu(env); 3110 3111 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3112 } 3113 3114 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3115 /* 3116 * Note that CNTFRQ is purely reads-as-written for the benefit 3117 * of software; writing it doesn't actually change the timer frequency. 3118 * Our reset value matches the fixed frequency we implement the timer at. 3119 */ 3120 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3121 .type = ARM_CP_ALIAS, 3122 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3123 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3124 }, 3125 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3126 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3127 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3128 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3129 .resetfn = arm_gt_cntfrq_reset, 3130 }, 3131 /* overall control: mostly access permissions */ 3132 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3133 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3134 .access = PL1_RW, 3135 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3136 .resetvalue = 0, 3137 }, 3138 /* per-timer control */ 3139 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3140 .secure = ARM_CP_SECSTATE_NS, 3141 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3142 .accessfn = gt_ptimer_access, 3143 .fieldoffset = offsetoflow32(CPUARMState, 3144 cp15.c14_timer[GTIMER_PHYS].ctl), 3145 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3146 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3147 }, 3148 { .name = "CNTP_CTL_S", 3149 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3150 .secure = ARM_CP_SECSTATE_S, 3151 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3152 .accessfn = gt_ptimer_access, 3153 .fieldoffset = offsetoflow32(CPUARMState, 3154 cp15.c14_timer[GTIMER_SEC].ctl), 3155 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3156 }, 3157 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3158 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3159 .type = ARM_CP_IO, .access = PL0_RW, 3160 .accessfn = gt_ptimer_access, 3161 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3162 .resetvalue = 0, 3163 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3164 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3165 }, 3166 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3167 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3168 .accessfn = gt_vtimer_access, 3169 .fieldoffset = offsetoflow32(CPUARMState, 3170 cp15.c14_timer[GTIMER_VIRT].ctl), 3171 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3172 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3173 }, 3174 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3175 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3176 .type = ARM_CP_IO, .access = PL0_RW, 3177 .accessfn = gt_vtimer_access, 3178 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3179 .resetvalue = 0, 3180 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3181 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3182 }, 3183 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3184 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3185 .secure = ARM_CP_SECSTATE_NS, 3186 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3187 .accessfn = gt_ptimer_access, 3188 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3189 }, 3190 { .name = "CNTP_TVAL_S", 3191 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3192 .secure = ARM_CP_SECSTATE_S, 3193 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3194 .accessfn = gt_ptimer_access, 3195 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3196 }, 3197 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3198 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3199 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3200 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3201 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3202 }, 3203 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3204 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3205 .accessfn = gt_vtimer_access, 3206 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3207 }, 3208 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3209 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3210 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3211 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3212 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3213 }, 3214 /* The counter itself */ 3215 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3216 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3217 .accessfn = gt_pct_access, 3218 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3219 }, 3220 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3221 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3222 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3223 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3224 }, 3225 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3226 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3227 .accessfn = gt_vct_access, 3228 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3229 }, 3230 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3231 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3232 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3233 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3234 }, 3235 /* Comparison value, indicating when the timer goes off */ 3236 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3237 .secure = ARM_CP_SECSTATE_NS, 3238 .access = PL0_RW, 3239 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3240 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3241 .accessfn = gt_ptimer_access, 3242 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3243 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3244 }, 3245 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3246 .secure = ARM_CP_SECSTATE_S, 3247 .access = PL0_RW, 3248 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3249 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3250 .accessfn = gt_ptimer_access, 3251 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3252 }, 3253 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3254 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3255 .access = PL0_RW, 3256 .type = ARM_CP_IO, 3257 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3258 .resetvalue = 0, .accessfn = gt_ptimer_access, 3259 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3260 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3261 }, 3262 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3263 .access = PL0_RW, 3264 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3265 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3266 .accessfn = gt_vtimer_access, 3267 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3268 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3269 }, 3270 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3271 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3272 .access = PL0_RW, 3273 .type = ARM_CP_IO, 3274 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3275 .resetvalue = 0, .accessfn = gt_vtimer_access, 3276 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3277 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3278 }, 3279 /* 3280 * Secure timer -- this is actually restricted to only EL3 3281 * and configurably Secure-EL1 via the accessfn. 3282 */ 3283 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3284 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3285 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3286 .accessfn = gt_stimer_access, 3287 .readfn = gt_sec_tval_read, 3288 .writefn = gt_sec_tval_write, 3289 .resetfn = gt_sec_timer_reset, 3290 }, 3291 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3292 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3293 .type = ARM_CP_IO, .access = PL1_RW, 3294 .accessfn = gt_stimer_access, 3295 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3296 .resetvalue = 0, 3297 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3298 }, 3299 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3300 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3301 .type = ARM_CP_IO, .access = PL1_RW, 3302 .accessfn = gt_stimer_access, 3303 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3304 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3305 }, 3306 }; 3307 3308 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3309 bool isread) 3310 { 3311 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3312 return CP_ACCESS_TRAP; 3313 } 3314 return CP_ACCESS_OK; 3315 } 3316 3317 #else 3318 3319 /* 3320 * In user-mode most of the generic timer registers are inaccessible 3321 * however modern kernels (4.12+) allow access to cntvct_el0 3322 */ 3323 3324 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3325 { 3326 ARMCPU *cpu = env_archcpu(env); 3327 3328 /* 3329 * Currently we have no support for QEMUTimer in linux-user so we 3330 * can't call gt_get_countervalue(env), instead we directly 3331 * call the lower level functions. 3332 */ 3333 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3334 } 3335 3336 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3337 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3338 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3339 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3340 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3341 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3342 }, 3343 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3344 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3345 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3346 .readfn = gt_virt_cnt_read, 3347 }, 3348 }; 3349 3350 #endif 3351 3352 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3353 { 3354 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3355 raw_write(env, ri, value); 3356 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3357 raw_write(env, ri, value & 0xfffff6ff); 3358 } else { 3359 raw_write(env, ri, value & 0xfffff1ff); 3360 } 3361 } 3362 3363 #ifndef CONFIG_USER_ONLY 3364 /* get_phys_addr() isn't present for user-mode-only targets */ 3365 3366 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3367 bool isread) 3368 { 3369 if (ri->opc2 & 4) { 3370 /* 3371 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3372 * Secure EL1 (which can only happen if EL3 is AArch64). 3373 * They are simply UNDEF if executed from NS EL1. 3374 * They function normally from EL2 or EL3. 3375 */ 3376 if (arm_current_el(env) == 1) { 3377 if (arm_is_secure_below_el3(env)) { 3378 if (env->cp15.scr_el3 & SCR_EEL2) { 3379 return CP_ACCESS_TRAP_EL2; 3380 } 3381 return CP_ACCESS_TRAP_EL3; 3382 } 3383 return CP_ACCESS_TRAP_UNCATEGORIZED; 3384 } 3385 } 3386 return CP_ACCESS_OK; 3387 } 3388 3389 #ifdef CONFIG_TCG 3390 static int par_el1_shareability(GetPhysAddrResult *res) 3391 { 3392 /* 3393 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3394 * memory -- see pseudocode PAREncodeShareability(). 3395 */ 3396 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3397 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3398 return 2; 3399 } 3400 return res->cacheattrs.shareability; 3401 } 3402 3403 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3404 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3405 ARMSecuritySpace ss) 3406 { 3407 bool ret; 3408 uint64_t par64; 3409 bool format64 = false; 3410 ARMMMUFaultInfo fi = {}; 3411 GetPhysAddrResult res = {}; 3412 3413 /* 3414 * I_MXTJT: Granule protection checks are not performed on the final address 3415 * of a successful translation. 3416 */ 3417 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss, 3418 &res, &fi); 3419 3420 /* 3421 * ATS operations only do S1 or S1+S2 translations, so we never 3422 * have to deal with the ARMCacheAttrs format for S2 only. 3423 */ 3424 assert(!res.cacheattrs.is_s2_format); 3425 3426 if (ret) { 3427 /* 3428 * Some kinds of translation fault must cause exceptions rather 3429 * than being reported in the PAR. 3430 */ 3431 int current_el = arm_current_el(env); 3432 int target_el; 3433 uint32_t syn, fsr, fsc; 3434 bool take_exc = false; 3435 3436 if (fi.s1ptw && current_el == 1 3437 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3438 /* 3439 * Synchronous stage 2 fault on an access made as part of the 3440 * translation table walk for AT S1E0* or AT S1E1* insn 3441 * executed from NS EL1. If this is a synchronous external abort 3442 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3443 * to EL3. Otherwise the fault is taken as an exception to EL2, 3444 * and HPFAR_EL2 holds the faulting IPA. 3445 */ 3446 if (fi.type == ARMFault_SyncExternalOnWalk && 3447 (env->cp15.scr_el3 & SCR_EA)) { 3448 target_el = 3; 3449 } else { 3450 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3451 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3452 env->cp15.hpfar_el2 |= HPFAR_NS; 3453 } 3454 target_el = 2; 3455 } 3456 take_exc = true; 3457 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3458 /* 3459 * Synchronous external aborts during a translation table walk 3460 * are taken as Data Abort exceptions. 3461 */ 3462 if (fi.stage2) { 3463 if (current_el == 3) { 3464 target_el = 3; 3465 } else { 3466 target_el = 2; 3467 } 3468 } else { 3469 target_el = exception_target_el(env); 3470 } 3471 take_exc = true; 3472 } 3473 3474 if (take_exc) { 3475 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3476 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3477 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3478 fsr = arm_fi_to_lfsc(&fi); 3479 fsc = extract32(fsr, 0, 6); 3480 } else { 3481 fsr = arm_fi_to_sfsc(&fi); 3482 fsc = 0x3f; 3483 } 3484 /* 3485 * Report exception with ESR indicating a fault due to a 3486 * translation table walk for a cache maintenance instruction. 3487 */ 3488 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3489 fi.ea, 1, fi.s1ptw, 1, fsc); 3490 env->exception.vaddress = value; 3491 env->exception.fsr = fsr; 3492 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3493 } 3494 } 3495 3496 if (is_a64(env)) { 3497 format64 = true; 3498 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3499 /* 3500 * ATS1Cxx: 3501 * * TTBCR.EAE determines whether the result is returned using the 3502 * 32-bit or the 64-bit PAR format 3503 * * Instructions executed in Hyp mode always use the 64bit format 3504 * 3505 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3506 * * The Non-secure TTBCR.EAE bit is set to 1 3507 * * The implementation includes EL2, and the value of HCR.VM is 1 3508 * 3509 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3510 * 3511 * ATS1Hx always uses the 64bit format. 3512 */ 3513 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3514 3515 if (arm_feature(env, ARM_FEATURE_EL2)) { 3516 if (mmu_idx == ARMMMUIdx_E10_0 || 3517 mmu_idx == ARMMMUIdx_E10_1 || 3518 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3519 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3520 } else { 3521 format64 |= arm_current_el(env) == 2; 3522 } 3523 } 3524 } 3525 3526 if (format64) { 3527 /* Create a 64-bit PAR */ 3528 par64 = (1 << 11); /* LPAE bit always set */ 3529 if (!ret) { 3530 par64 |= res.f.phys_addr & ~0xfffULL; 3531 if (!res.f.attrs.secure) { 3532 par64 |= (1 << 9); /* NS */ 3533 } 3534 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3535 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3536 } else { 3537 uint32_t fsr = arm_fi_to_lfsc(&fi); 3538 3539 par64 |= 1; /* F */ 3540 par64 |= (fsr & 0x3f) << 1; /* FS */ 3541 if (fi.stage2) { 3542 par64 |= (1 << 9); /* S */ 3543 } 3544 if (fi.s1ptw) { 3545 par64 |= (1 << 8); /* PTW */ 3546 } 3547 } 3548 } else { 3549 /* 3550 * fsr is a DFSR/IFSR value for the short descriptor 3551 * translation table format (with WnR always clear). 3552 * Convert it to a 32-bit PAR. 3553 */ 3554 if (!ret) { 3555 /* We do not set any attribute bits in the PAR */ 3556 if (res.f.lg_page_size == 24 3557 && arm_feature(env, ARM_FEATURE_V7)) { 3558 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3559 } else { 3560 par64 = res.f.phys_addr & 0xfffff000; 3561 } 3562 if (!res.f.attrs.secure) { 3563 par64 |= (1 << 9); /* NS */ 3564 } 3565 } else { 3566 uint32_t fsr = arm_fi_to_sfsc(&fi); 3567 3568 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3569 ((fsr & 0xf) << 1) | 1; 3570 } 3571 } 3572 return par64; 3573 } 3574 #endif /* CONFIG_TCG */ 3575 3576 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3577 { 3578 #ifdef CONFIG_TCG 3579 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3580 uint64_t par64; 3581 ARMMMUIdx mmu_idx; 3582 int el = arm_current_el(env); 3583 ARMSecuritySpace ss = arm_security_space(env); 3584 3585 switch (ri->opc2 & 6) { 3586 case 0: 3587 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3588 switch (el) { 3589 case 3: 3590 mmu_idx = ARMMMUIdx_E3; 3591 break; 3592 case 2: 3593 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3594 /* fall through */ 3595 case 1: 3596 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3597 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3598 } else { 3599 mmu_idx = ARMMMUIdx_Stage1_E1; 3600 } 3601 break; 3602 default: 3603 g_assert_not_reached(); 3604 } 3605 break; 3606 case 2: 3607 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3608 switch (el) { 3609 case 3: 3610 mmu_idx = ARMMMUIdx_E10_0; 3611 break; 3612 case 2: 3613 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3614 mmu_idx = ARMMMUIdx_Stage1_E0; 3615 break; 3616 case 1: 3617 mmu_idx = ARMMMUIdx_Stage1_E0; 3618 break; 3619 default: 3620 g_assert_not_reached(); 3621 } 3622 break; 3623 case 4: 3624 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3625 mmu_idx = ARMMMUIdx_E10_1; 3626 ss = ARMSS_NonSecure; 3627 break; 3628 case 6: 3629 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3630 mmu_idx = ARMMMUIdx_E10_0; 3631 ss = ARMSS_NonSecure; 3632 break; 3633 default: 3634 g_assert_not_reached(); 3635 } 3636 3637 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3638 3639 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3640 #else 3641 /* Handled by hardware accelerator. */ 3642 g_assert_not_reached(); 3643 #endif /* CONFIG_TCG */ 3644 } 3645 3646 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3647 uint64_t value) 3648 { 3649 #ifdef CONFIG_TCG 3650 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3651 uint64_t par64; 3652 3653 /* There is no SecureEL2 for AArch32. */ 3654 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3655 ARMSS_NonSecure); 3656 3657 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3658 #else 3659 /* Handled by hardware accelerator. */ 3660 g_assert_not_reached(); 3661 #endif /* CONFIG_TCG */ 3662 } 3663 3664 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3665 bool isread) 3666 { 3667 /* 3668 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3669 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3670 * only happen when executing at EL3 because that combination also causes an 3671 * illegal exception return. We don't need to check FEAT_RME either, because 3672 * scr_write() ensures that the NSE bit is not set otherwise. 3673 */ 3674 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3675 return CP_ACCESS_TRAP; 3676 } 3677 return CP_ACCESS_OK; 3678 } 3679 3680 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3681 bool isread) 3682 { 3683 if (arm_current_el(env) == 3 && 3684 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3685 return CP_ACCESS_TRAP; 3686 } 3687 return at_e012_access(env, ri, isread); 3688 } 3689 3690 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3691 uint64_t value) 3692 { 3693 #ifdef CONFIG_TCG 3694 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3695 ARMMMUIdx mmu_idx; 3696 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3697 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3698 3699 switch (ri->opc2 & 6) { 3700 case 0: 3701 switch (ri->opc1) { 3702 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3703 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3704 mmu_idx = regime_e20 ? 3705 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3706 } else { 3707 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3708 } 3709 break; 3710 case 4: /* AT S1E2R, AT S1E2W */ 3711 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3712 break; 3713 case 6: /* AT S1E3R, AT S1E3W */ 3714 mmu_idx = ARMMMUIdx_E3; 3715 break; 3716 default: 3717 g_assert_not_reached(); 3718 } 3719 break; 3720 case 2: /* AT S1E0R, AT S1E0W */ 3721 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3722 break; 3723 case 4: /* AT S12E1R, AT S12E1W */ 3724 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3725 break; 3726 case 6: /* AT S12E0R, AT S12E0W */ 3727 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3728 break; 3729 default: 3730 g_assert_not_reached(); 3731 } 3732 3733 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3734 mmu_idx, arm_security_space(env)); 3735 #else 3736 /* Handled by hardware accelerator. */ 3737 g_assert_not_reached(); 3738 #endif /* CONFIG_TCG */ 3739 } 3740 #endif 3741 3742 /* Return basic MPU access permission bits. */ 3743 static uint32_t simple_mpu_ap_bits(uint32_t val) 3744 { 3745 uint32_t ret; 3746 uint32_t mask; 3747 int i; 3748 ret = 0; 3749 mask = 3; 3750 for (i = 0; i < 16; i += 2) { 3751 ret |= (val >> i) & mask; 3752 mask <<= 2; 3753 } 3754 return ret; 3755 } 3756 3757 /* Pad basic MPU access permission bits to extended format. */ 3758 static uint32_t extended_mpu_ap_bits(uint32_t val) 3759 { 3760 uint32_t ret; 3761 uint32_t mask; 3762 int i; 3763 ret = 0; 3764 mask = 3; 3765 for (i = 0; i < 16; i += 2) { 3766 ret |= (val & mask) << i; 3767 mask <<= 2; 3768 } 3769 return ret; 3770 } 3771 3772 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3773 uint64_t value) 3774 { 3775 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3776 } 3777 3778 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3779 { 3780 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3781 } 3782 3783 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3784 uint64_t value) 3785 { 3786 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3787 } 3788 3789 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3790 { 3791 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3792 } 3793 3794 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3795 { 3796 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3797 3798 if (!u32p) { 3799 return 0; 3800 } 3801 3802 u32p += env->pmsav7.rnr[M_REG_NS]; 3803 return *u32p; 3804 } 3805 3806 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3807 uint64_t value) 3808 { 3809 ARMCPU *cpu = env_archcpu(env); 3810 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3811 3812 if (!u32p) { 3813 return; 3814 } 3815 3816 u32p += env->pmsav7.rnr[M_REG_NS]; 3817 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3818 *u32p = value; 3819 } 3820 3821 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3822 uint64_t value) 3823 { 3824 ARMCPU *cpu = env_archcpu(env); 3825 uint32_t nrgs = cpu->pmsav7_dregion; 3826 3827 if (value >= nrgs) { 3828 qemu_log_mask(LOG_GUEST_ERROR, 3829 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3830 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3831 return; 3832 } 3833 3834 raw_write(env, ri, value); 3835 } 3836 3837 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3838 uint64_t value) 3839 { 3840 ARMCPU *cpu = env_archcpu(env); 3841 3842 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3843 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3844 } 3845 3846 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3847 { 3848 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3849 } 3850 3851 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3852 uint64_t value) 3853 { 3854 ARMCPU *cpu = env_archcpu(env); 3855 3856 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3857 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3858 } 3859 3860 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3861 { 3862 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3863 } 3864 3865 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3866 uint64_t value) 3867 { 3868 ARMCPU *cpu = env_archcpu(env); 3869 3870 /* 3871 * Ignore writes that would select not implemented region. 3872 * This is architecturally UNPREDICTABLE. 3873 */ 3874 if (value >= cpu->pmsav7_dregion) { 3875 return; 3876 } 3877 3878 env->pmsav7.rnr[M_REG_NS] = value; 3879 } 3880 3881 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3882 uint64_t value) 3883 { 3884 ARMCPU *cpu = env_archcpu(env); 3885 3886 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3887 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3888 } 3889 3890 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3891 { 3892 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3893 } 3894 3895 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3896 uint64_t value) 3897 { 3898 ARMCPU *cpu = env_archcpu(env); 3899 3900 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3901 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3902 } 3903 3904 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3905 { 3906 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3907 } 3908 3909 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3910 uint64_t value) 3911 { 3912 uint32_t n; 3913 uint32_t bit; 3914 ARMCPU *cpu = env_archcpu(env); 3915 3916 /* Ignore writes to unimplemented regions */ 3917 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3918 value &= MAKE_64BIT_MASK(0, rmax); 3919 3920 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3921 3922 /* Register alias is only valid for first 32 indexes */ 3923 for (n = 0; n < rmax; ++n) { 3924 bit = extract32(value, n, 1); 3925 env->pmsav8.hprlar[n] = deposit32( 3926 env->pmsav8.hprlar[n], 0, 1, bit); 3927 } 3928 } 3929 3930 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3931 { 3932 uint32_t n; 3933 uint32_t result = 0x0; 3934 ARMCPU *cpu = env_archcpu(env); 3935 3936 /* Register alias is only valid for first 32 indexes */ 3937 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3938 if (env->pmsav8.hprlar[n] & 0x1) { 3939 result |= (0x1 << n); 3940 } 3941 } 3942 return result; 3943 } 3944 3945 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3946 uint64_t value) 3947 { 3948 ARMCPU *cpu = env_archcpu(env); 3949 3950 /* 3951 * Ignore writes that would select not implemented region. 3952 * This is architecturally UNPREDICTABLE. 3953 */ 3954 if (value >= cpu->pmsav8r_hdregion) { 3955 return; 3956 } 3957 3958 env->pmsav8.hprselr = value; 3959 } 3960 3961 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 3962 uint64_t value) 3963 { 3964 ARMCPU *cpu = env_archcpu(env); 3965 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3966 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3967 3968 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3969 3970 if (ri->opc1 & 4) { 3971 if (index >= cpu->pmsav8r_hdregion) { 3972 return; 3973 } 3974 if (ri->opc2 & 0x1) { 3975 env->pmsav8.hprlar[index] = value; 3976 } else { 3977 env->pmsav8.hprbar[index] = value; 3978 } 3979 } else { 3980 if (index >= cpu->pmsav7_dregion) { 3981 return; 3982 } 3983 if (ri->opc2 & 0x1) { 3984 env->pmsav8.rlar[M_REG_NS][index] = value; 3985 } else { 3986 env->pmsav8.rbar[M_REG_NS][index] = value; 3987 } 3988 } 3989 } 3990 3991 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 3992 { 3993 ARMCPU *cpu = env_archcpu(env); 3994 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3995 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3996 3997 if (ri->opc1 & 4) { 3998 if (index >= cpu->pmsav8r_hdregion) { 3999 return 0x0; 4000 } 4001 if (ri->opc2 & 0x1) { 4002 return env->pmsav8.hprlar[index]; 4003 } else { 4004 return env->pmsav8.hprbar[index]; 4005 } 4006 } else { 4007 if (index >= cpu->pmsav7_dregion) { 4008 return 0x0; 4009 } 4010 if (ri->opc2 & 0x1) { 4011 return env->pmsav8.rlar[M_REG_NS][index]; 4012 } else { 4013 return env->pmsav8.rbar[M_REG_NS][index]; 4014 } 4015 } 4016 } 4017 4018 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4019 { .name = "PRBAR", 4020 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4021 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4022 .accessfn = access_tvm_trvm, 4023 .readfn = prbar_read, .writefn = prbar_write }, 4024 { .name = "PRLAR", 4025 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4026 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4027 .accessfn = access_tvm_trvm, 4028 .readfn = prlar_read, .writefn = prlar_write }, 4029 { .name = "PRSELR", .resetvalue = 0, 4030 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4031 .access = PL1_RW, .accessfn = access_tvm_trvm, 4032 .writefn = prselr_write, 4033 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4034 { .name = "HPRBAR", .resetvalue = 0, 4035 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4036 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4037 .readfn = hprbar_read, .writefn = hprbar_write }, 4038 { .name = "HPRLAR", 4039 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4040 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4041 .readfn = hprlar_read, .writefn = hprlar_write }, 4042 { .name = "HPRSELR", .resetvalue = 0, 4043 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4044 .access = PL2_RW, 4045 .writefn = hprselr_write, 4046 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4047 { .name = "HPRENR", 4048 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4049 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4050 .readfn = hprenr_read, .writefn = hprenr_write }, 4051 }; 4052 4053 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4054 /* 4055 * Reset for all these registers is handled in arm_cpu_reset(), 4056 * because the PMSAv7 is also used by M-profile CPUs, which do 4057 * not register cpregs but still need the state to be reset. 4058 */ 4059 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4060 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4061 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4062 .readfn = pmsav7_read, .writefn = pmsav7_write, 4063 .resetfn = arm_cp_reset_ignore }, 4064 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4065 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4066 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4067 .readfn = pmsav7_read, .writefn = pmsav7_write, 4068 .resetfn = arm_cp_reset_ignore }, 4069 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4070 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4071 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4072 .readfn = pmsav7_read, .writefn = pmsav7_write, 4073 .resetfn = arm_cp_reset_ignore }, 4074 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4075 .access = PL1_RW, 4076 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4077 .writefn = pmsav7_rgnr_write, 4078 .resetfn = arm_cp_reset_ignore }, 4079 }; 4080 4081 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4082 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4083 .access = PL1_RW, .type = ARM_CP_ALIAS, 4084 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4085 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4086 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4087 .access = PL1_RW, .type = ARM_CP_ALIAS, 4088 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4089 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4090 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4091 .access = PL1_RW, 4092 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4093 .resetvalue = 0, }, 4094 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4095 .access = PL1_RW, 4096 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4097 .resetvalue = 0, }, 4098 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4099 .access = PL1_RW, 4100 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4101 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4102 .access = PL1_RW, 4103 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4104 /* Protection region base and size registers */ 4105 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4106 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4107 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4108 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4109 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4110 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4111 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4112 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4113 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4114 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4115 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4116 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4117 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4118 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4119 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4120 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4121 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4122 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4123 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4124 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4125 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4126 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4127 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4128 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4129 }; 4130 4131 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4132 uint64_t value) 4133 { 4134 ARMCPU *cpu = env_archcpu(env); 4135 4136 if (!arm_feature(env, ARM_FEATURE_V8)) { 4137 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4138 /* 4139 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4140 * using Long-descriptor translation table format 4141 */ 4142 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4143 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4144 /* 4145 * In an implementation that includes the Security Extensions 4146 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4147 * Short-descriptor translation table format. 4148 */ 4149 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4150 } else { 4151 value &= TTBCR_N; 4152 } 4153 } 4154 4155 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4156 /* 4157 * With LPAE the TTBCR could result in a change of ASID 4158 * via the TTBCR.A1 bit, so do a TLB flush. 4159 */ 4160 tlb_flush(CPU(cpu)); 4161 } 4162 raw_write(env, ri, value); 4163 } 4164 4165 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4166 uint64_t value) 4167 { 4168 ARMCPU *cpu = env_archcpu(env); 4169 4170 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4171 tlb_flush(CPU(cpu)); 4172 raw_write(env, ri, value); 4173 } 4174 4175 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4176 uint64_t value) 4177 { 4178 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4179 if (cpreg_field_is_64bit(ri) && 4180 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4181 ARMCPU *cpu = env_archcpu(env); 4182 tlb_flush(CPU(cpu)); 4183 } 4184 raw_write(env, ri, value); 4185 } 4186 4187 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4188 uint64_t value) 4189 { 4190 /* 4191 * If we are running with E2&0 regime, then an ASID is active. 4192 * Flush if that might be changing. Note we're not checking 4193 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4194 * holds the active ASID, only checking the field that might. 4195 */ 4196 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4197 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4198 uint16_t mask = ARMMMUIdxBit_E20_2 | 4199 ARMMMUIdxBit_E20_2_PAN | 4200 ARMMMUIdxBit_E20_0; 4201 tlb_flush_by_mmuidx(env_cpu(env), mask); 4202 } 4203 raw_write(env, ri, value); 4204 } 4205 4206 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4207 uint64_t value) 4208 { 4209 ARMCPU *cpu = env_archcpu(env); 4210 CPUState *cs = CPU(cpu); 4211 4212 /* 4213 * A change in VMID to the stage2 page table (Stage2) invalidates 4214 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4215 */ 4216 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4217 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4218 } 4219 raw_write(env, ri, value); 4220 } 4221 4222 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4223 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4224 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4225 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4226 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4227 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4228 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4229 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4230 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4231 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4232 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4233 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4234 offsetof(CPUARMState, cp15.dfar_ns) } }, 4235 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4236 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4237 .access = PL1_RW, .accessfn = access_tvm_trvm, 4238 .fgt = FGT_FAR_EL1, 4239 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4240 .resetvalue = 0, }, 4241 }; 4242 4243 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4244 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4245 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4246 .access = PL1_RW, .accessfn = access_tvm_trvm, 4247 .fgt = FGT_ESR_EL1, 4248 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4249 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4250 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4251 .access = PL1_RW, .accessfn = access_tvm_trvm, 4252 .fgt = FGT_TTBR0_EL1, 4253 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4254 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4255 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4256 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4257 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4258 .access = PL1_RW, .accessfn = access_tvm_trvm, 4259 .fgt = FGT_TTBR1_EL1, 4260 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4261 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4262 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4263 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4264 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4265 .access = PL1_RW, .accessfn = access_tvm_trvm, 4266 .fgt = FGT_TCR_EL1, 4267 .writefn = vmsa_tcr_el12_write, 4268 .raw_writefn = raw_write, 4269 .resetvalue = 0, 4270 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4271 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4272 .access = PL1_RW, .accessfn = access_tvm_trvm, 4273 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4274 .raw_writefn = raw_write, 4275 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4276 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4277 }; 4278 4279 /* 4280 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4281 * qemu tlbs nor adjusting cached masks. 4282 */ 4283 static const ARMCPRegInfo ttbcr2_reginfo = { 4284 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4285 .access = PL1_RW, .accessfn = access_tvm_trvm, 4286 .type = ARM_CP_ALIAS, 4287 .bank_fieldoffsets = { 4288 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4289 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4290 }, 4291 }; 4292 4293 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4294 uint64_t value) 4295 { 4296 env->cp15.c15_ticonfig = value & 0xe7; 4297 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4298 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4299 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4300 } 4301 4302 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4303 uint64_t value) 4304 { 4305 env->cp15.c15_threadid = value & 0xffff; 4306 } 4307 4308 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4309 uint64_t value) 4310 { 4311 /* Wait-for-interrupt (deprecated) */ 4312 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4313 } 4314 4315 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4316 uint64_t value) 4317 { 4318 /* 4319 * On OMAP there are registers indicating the max/min index of dcache lines 4320 * containing a dirty line; cache flush operations have to reset these. 4321 */ 4322 env->cp15.c15_i_max = 0x000; 4323 env->cp15.c15_i_min = 0xff0; 4324 } 4325 4326 static const ARMCPRegInfo omap_cp_reginfo[] = { 4327 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4328 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4329 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4330 .resetvalue = 0, }, 4331 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4332 .access = PL1_RW, .type = ARM_CP_NOP }, 4333 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4334 .access = PL1_RW, 4335 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4336 .writefn = omap_ticonfig_write }, 4337 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4338 .access = PL1_RW, 4339 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4340 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4341 .access = PL1_RW, .resetvalue = 0xff0, 4342 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4343 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4344 .access = PL1_RW, 4345 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4346 .writefn = omap_threadid_write }, 4347 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4348 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4349 .type = ARM_CP_NO_RAW, 4350 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4351 /* 4352 * TODO: Peripheral port remap register: 4353 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4354 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4355 * when MMU is off. 4356 */ 4357 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4358 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4359 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4360 .writefn = omap_cachemaint_write }, 4361 { .name = "C9", .cp = 15, .crn = 9, 4362 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4363 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4364 }; 4365 4366 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4367 uint64_t value) 4368 { 4369 env->cp15.c15_cpar = value & 0x3fff; 4370 } 4371 4372 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4373 { .name = "XSCALE_CPAR", 4374 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4375 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4376 .writefn = xscale_cpar_write, }, 4377 { .name = "XSCALE_AUXCR", 4378 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4379 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4380 .resetvalue = 0, }, 4381 /* 4382 * XScale specific cache-lockdown: since we have no cache we NOP these 4383 * and hope the guest does not really rely on cache behaviour. 4384 */ 4385 { .name = "XSCALE_LOCK_ICACHE_LINE", 4386 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4387 .access = PL1_W, .type = ARM_CP_NOP }, 4388 { .name = "XSCALE_UNLOCK_ICACHE", 4389 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4390 .access = PL1_W, .type = ARM_CP_NOP }, 4391 { .name = "XSCALE_DCACHE_LOCK", 4392 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4393 .access = PL1_RW, .type = ARM_CP_NOP }, 4394 { .name = "XSCALE_UNLOCK_DCACHE", 4395 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4396 .access = PL1_W, .type = ARM_CP_NOP }, 4397 }; 4398 4399 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4400 /* 4401 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4402 * implementation of this implementation-defined space. 4403 * Ideally this should eventually disappear in favour of actually 4404 * implementing the correct behaviour for all cores. 4405 */ 4406 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4407 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4408 .access = PL1_RW, 4409 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4410 .resetvalue = 0 }, 4411 }; 4412 4413 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4414 /* Cache status: RAZ because we have no cache so it's always clean */ 4415 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4416 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4417 .resetvalue = 0 }, 4418 }; 4419 4420 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4421 /* We never have a block transfer operation in progress */ 4422 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4423 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4424 .resetvalue = 0 }, 4425 /* The cache ops themselves: these all NOP for QEMU */ 4426 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4427 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4428 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4429 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4430 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4431 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4432 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4433 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4434 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4435 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4436 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4437 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4438 }; 4439 4440 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4441 /* 4442 * The cache test-and-clean instructions always return (1 << 30) 4443 * to indicate that there are no dirty cache lines. 4444 */ 4445 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4446 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4447 .resetvalue = (1 << 30) }, 4448 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4449 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4450 .resetvalue = (1 << 30) }, 4451 }; 4452 4453 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4454 /* Ignore ReadBuffer accesses */ 4455 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4456 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4457 .access = PL1_RW, .resetvalue = 0, 4458 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4459 }; 4460 4461 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4462 { 4463 unsigned int cur_el = arm_current_el(env); 4464 4465 if (arm_is_el2_enabled(env) && cur_el == 1) { 4466 return env->cp15.vpidr_el2; 4467 } 4468 return raw_read(env, ri); 4469 } 4470 4471 static uint64_t mpidr_read_val(CPUARMState *env) 4472 { 4473 ARMCPU *cpu = env_archcpu(env); 4474 uint64_t mpidr = cpu->mp_affinity; 4475 4476 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4477 mpidr |= (1U << 31); 4478 /* 4479 * Cores which are uniprocessor (non-coherent) 4480 * but still implement the MP extensions set 4481 * bit 30. (For instance, Cortex-R5). 4482 */ 4483 if (cpu->mp_is_up) { 4484 mpidr |= (1u << 30); 4485 } 4486 } 4487 return mpidr; 4488 } 4489 4490 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4491 { 4492 unsigned int cur_el = arm_current_el(env); 4493 4494 if (arm_is_el2_enabled(env) && cur_el == 1) { 4495 return env->cp15.vmpidr_el2; 4496 } 4497 return mpidr_read_val(env); 4498 } 4499 4500 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4501 /* NOP AMAIR0/1 */ 4502 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4503 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4504 .access = PL1_RW, .accessfn = access_tvm_trvm, 4505 .fgt = FGT_AMAIR_EL1, 4506 .type = ARM_CP_CONST, .resetvalue = 0 }, 4507 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4508 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4509 .access = PL1_RW, .accessfn = access_tvm_trvm, 4510 .type = ARM_CP_CONST, .resetvalue = 0 }, 4511 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4512 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4513 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4514 offsetof(CPUARMState, cp15.par_ns)} }, 4515 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4516 .access = PL1_RW, .accessfn = access_tvm_trvm, 4517 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4518 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4519 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4520 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4521 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4522 .access = PL1_RW, .accessfn = access_tvm_trvm, 4523 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4524 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4525 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4526 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4527 }; 4528 4529 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4530 { 4531 return vfp_get_fpcr(env); 4532 } 4533 4534 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4535 uint64_t value) 4536 { 4537 vfp_set_fpcr(env, value); 4538 } 4539 4540 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4541 { 4542 return vfp_get_fpsr(env); 4543 } 4544 4545 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4546 uint64_t value) 4547 { 4548 vfp_set_fpsr(env, value); 4549 } 4550 4551 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4552 bool isread) 4553 { 4554 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4555 return CP_ACCESS_TRAP; 4556 } 4557 return CP_ACCESS_OK; 4558 } 4559 4560 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4561 uint64_t value) 4562 { 4563 env->daif = value & PSTATE_DAIF; 4564 } 4565 4566 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4567 { 4568 return env->pstate & PSTATE_PAN; 4569 } 4570 4571 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4572 uint64_t value) 4573 { 4574 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4575 } 4576 4577 static const ARMCPRegInfo pan_reginfo = { 4578 .name = "PAN", .state = ARM_CP_STATE_AA64, 4579 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4580 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4581 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4582 }; 4583 4584 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4585 { 4586 return env->pstate & PSTATE_UAO; 4587 } 4588 4589 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4590 uint64_t value) 4591 { 4592 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4593 } 4594 4595 static const ARMCPRegInfo uao_reginfo = { 4596 .name = "UAO", .state = ARM_CP_STATE_AA64, 4597 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4598 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4599 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4600 }; 4601 4602 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4603 { 4604 return env->pstate & PSTATE_DIT; 4605 } 4606 4607 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4608 uint64_t value) 4609 { 4610 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4611 } 4612 4613 static const ARMCPRegInfo dit_reginfo = { 4614 .name = "DIT", .state = ARM_CP_STATE_AA64, 4615 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4616 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4617 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4618 }; 4619 4620 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4621 { 4622 return env->pstate & PSTATE_SSBS; 4623 } 4624 4625 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4626 uint64_t value) 4627 { 4628 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4629 } 4630 4631 static const ARMCPRegInfo ssbs_reginfo = { 4632 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4633 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4634 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4635 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4636 }; 4637 4638 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4639 const ARMCPRegInfo *ri, 4640 bool isread) 4641 { 4642 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4643 switch (arm_current_el(env)) { 4644 case 0: 4645 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4646 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4647 return CP_ACCESS_TRAP; 4648 } 4649 /* fall through */ 4650 case 1: 4651 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4652 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4653 return CP_ACCESS_TRAP_EL2; 4654 } 4655 break; 4656 } 4657 return CP_ACCESS_OK; 4658 } 4659 4660 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4661 { 4662 /* Cache invalidate/clean to Point of Unification... */ 4663 switch (arm_current_el(env)) { 4664 case 0: 4665 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4666 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4667 return CP_ACCESS_TRAP; 4668 } 4669 /* fall through */ 4670 case 1: 4671 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4672 if (arm_hcr_el2_eff(env) & hcrflags) { 4673 return CP_ACCESS_TRAP_EL2; 4674 } 4675 break; 4676 } 4677 return CP_ACCESS_OK; 4678 } 4679 4680 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4681 bool isread) 4682 { 4683 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4684 } 4685 4686 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4687 bool isread) 4688 { 4689 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4690 } 4691 4692 /* 4693 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4694 * Page D4-1736 (DDI0487A.b) 4695 */ 4696 4697 static int vae1_tlbmask(CPUARMState *env) 4698 { 4699 uint64_t hcr = arm_hcr_el2_eff(env); 4700 uint16_t mask; 4701 4702 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4703 mask = ARMMMUIdxBit_E20_2 | 4704 ARMMMUIdxBit_E20_2_PAN | 4705 ARMMMUIdxBit_E20_0; 4706 } else { 4707 mask = ARMMMUIdxBit_E10_1 | 4708 ARMMMUIdxBit_E10_1_PAN | 4709 ARMMMUIdxBit_E10_0; 4710 } 4711 return mask; 4712 } 4713 4714 static int vae2_tlbmask(CPUARMState *env) 4715 { 4716 uint64_t hcr = arm_hcr_el2_eff(env); 4717 uint16_t mask; 4718 4719 if (hcr & HCR_E2H) { 4720 mask = ARMMMUIdxBit_E20_2 | 4721 ARMMMUIdxBit_E20_2_PAN | 4722 ARMMMUIdxBit_E20_0; 4723 } else { 4724 mask = ARMMMUIdxBit_E2; 4725 } 4726 return mask; 4727 } 4728 4729 /* Return 56 if TBI is enabled, 64 otherwise. */ 4730 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4731 uint64_t addr) 4732 { 4733 uint64_t tcr = regime_tcr(env, mmu_idx); 4734 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4735 int select = extract64(addr, 55, 1); 4736 4737 return (tbi >> select) & 1 ? 56 : 64; 4738 } 4739 4740 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4741 { 4742 uint64_t hcr = arm_hcr_el2_eff(env); 4743 ARMMMUIdx mmu_idx; 4744 4745 /* Only the regime of the mmu_idx below is significant. */ 4746 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4747 mmu_idx = ARMMMUIdx_E20_0; 4748 } else { 4749 mmu_idx = ARMMMUIdx_E10_0; 4750 } 4751 4752 return tlbbits_for_regime(env, mmu_idx, addr); 4753 } 4754 4755 static int vae2_tlbbits(CPUARMState *env, uint64_t addr) 4756 { 4757 uint64_t hcr = arm_hcr_el2_eff(env); 4758 ARMMMUIdx mmu_idx; 4759 4760 /* 4761 * Only the regime of the mmu_idx below is significant. 4762 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2 4763 * only has one. 4764 */ 4765 if (hcr & HCR_E2H) { 4766 mmu_idx = ARMMMUIdx_E20_2; 4767 } else { 4768 mmu_idx = ARMMMUIdx_E2; 4769 } 4770 4771 return tlbbits_for_regime(env, mmu_idx, addr); 4772 } 4773 4774 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4775 uint64_t value) 4776 { 4777 CPUState *cs = env_cpu(env); 4778 int mask = vae1_tlbmask(env); 4779 4780 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4781 } 4782 4783 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4784 uint64_t value) 4785 { 4786 CPUState *cs = env_cpu(env); 4787 int mask = vae1_tlbmask(env); 4788 4789 if (tlb_force_broadcast(env)) { 4790 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4791 } else { 4792 tlb_flush_by_mmuidx(cs, mask); 4793 } 4794 } 4795 4796 static int e2_tlbmask(CPUARMState *env) 4797 { 4798 return (ARMMMUIdxBit_E20_0 | 4799 ARMMMUIdxBit_E20_2 | 4800 ARMMMUIdxBit_E20_2_PAN | 4801 ARMMMUIdxBit_E2); 4802 } 4803 4804 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4805 uint64_t value) 4806 { 4807 CPUState *cs = env_cpu(env); 4808 int mask = alle1_tlbmask(env); 4809 4810 tlb_flush_by_mmuidx(cs, mask); 4811 } 4812 4813 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4814 uint64_t value) 4815 { 4816 CPUState *cs = env_cpu(env); 4817 int mask = e2_tlbmask(env); 4818 4819 tlb_flush_by_mmuidx(cs, mask); 4820 } 4821 4822 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4823 uint64_t value) 4824 { 4825 ARMCPU *cpu = env_archcpu(env); 4826 CPUState *cs = CPU(cpu); 4827 4828 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4829 } 4830 4831 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4832 uint64_t value) 4833 { 4834 CPUState *cs = env_cpu(env); 4835 int mask = alle1_tlbmask(env); 4836 4837 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4838 } 4839 4840 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4841 uint64_t value) 4842 { 4843 CPUState *cs = env_cpu(env); 4844 int mask = e2_tlbmask(env); 4845 4846 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4847 } 4848 4849 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4850 uint64_t value) 4851 { 4852 CPUState *cs = env_cpu(env); 4853 4854 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4855 } 4856 4857 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4858 uint64_t value) 4859 { 4860 /* 4861 * Invalidate by VA, EL2 4862 * Currently handles both VAE2 and VALE2, since we don't support 4863 * flush-last-level-only. 4864 */ 4865 CPUState *cs = env_cpu(env); 4866 int mask = vae2_tlbmask(env); 4867 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4868 int bits = vae2_tlbbits(env, pageaddr); 4869 4870 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4871 } 4872 4873 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4874 uint64_t value) 4875 { 4876 /* 4877 * Invalidate by VA, EL3 4878 * Currently handles both VAE3 and VALE3, since we don't support 4879 * flush-last-level-only. 4880 */ 4881 ARMCPU *cpu = env_archcpu(env); 4882 CPUState *cs = CPU(cpu); 4883 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4884 4885 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4886 } 4887 4888 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4889 uint64_t value) 4890 { 4891 CPUState *cs = env_cpu(env); 4892 int mask = vae1_tlbmask(env); 4893 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4894 int bits = vae1_tlbbits(env, pageaddr); 4895 4896 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4897 } 4898 4899 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4900 uint64_t value) 4901 { 4902 /* 4903 * Invalidate by VA, EL1&0 (AArch64 version). 4904 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4905 * since we don't support flush-for-specific-ASID-only or 4906 * flush-last-level-only. 4907 */ 4908 CPUState *cs = env_cpu(env); 4909 int mask = vae1_tlbmask(env); 4910 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4911 int bits = vae1_tlbbits(env, pageaddr); 4912 4913 if (tlb_force_broadcast(env)) { 4914 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4915 } else { 4916 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4917 } 4918 } 4919 4920 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4921 uint64_t value) 4922 { 4923 CPUState *cs = env_cpu(env); 4924 int mask = vae2_tlbmask(env); 4925 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4926 int bits = vae2_tlbbits(env, pageaddr); 4927 4928 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4929 } 4930 4931 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4932 uint64_t value) 4933 { 4934 CPUState *cs = env_cpu(env); 4935 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4936 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4937 4938 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4939 ARMMMUIdxBit_E3, bits); 4940 } 4941 4942 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4943 { 4944 /* 4945 * The MSB of value is the NS field, which only applies if SEL2 4946 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4947 */ 4948 return (value >= 0 4949 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4950 && arm_is_secure_below_el3(env) 4951 ? ARMMMUIdxBit_Stage2_S 4952 : ARMMMUIdxBit_Stage2); 4953 } 4954 4955 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4956 uint64_t value) 4957 { 4958 CPUState *cs = env_cpu(env); 4959 int mask = ipas2e1_tlbmask(env, value); 4960 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4961 4962 if (tlb_force_broadcast(env)) { 4963 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4964 } else { 4965 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4966 } 4967 } 4968 4969 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4970 uint64_t value) 4971 { 4972 CPUState *cs = env_cpu(env); 4973 int mask = ipas2e1_tlbmask(env, value); 4974 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4975 4976 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4977 } 4978 4979 #ifdef TARGET_AARCH64 4980 typedef struct { 4981 uint64_t base; 4982 uint64_t length; 4983 } TLBIRange; 4984 4985 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4986 { 4987 /* 4988 * Note that the TLBI range TG field encoding differs from both 4989 * TG0 and TG1 encodings. 4990 */ 4991 switch (tg) { 4992 case 1: 4993 return Gran4K; 4994 case 2: 4995 return Gran16K; 4996 case 3: 4997 return Gran64K; 4998 default: 4999 return GranInvalid; 5000 } 5001 } 5002 5003 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 5004 uint64_t value) 5005 { 5006 unsigned int page_size_granule, page_shift, num, scale, exponent; 5007 /* Extract one bit to represent the va selector in use. */ 5008 uint64_t select = sextract64(value, 36, 1); 5009 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 5010 TLBIRange ret = { }; 5011 ARMGranuleSize gran; 5012 5013 page_size_granule = extract64(value, 46, 2); 5014 gran = tlbi_range_tg_to_gran_size(page_size_granule); 5015 5016 /* The granule encoded in value must match the granule in use. */ 5017 if (gran != param.gran) { 5018 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 5019 page_size_granule); 5020 return ret; 5021 } 5022 5023 page_shift = arm_granule_bits(gran); 5024 num = extract64(value, 39, 5); 5025 scale = extract64(value, 44, 2); 5026 exponent = (5 * scale) + 1; 5027 5028 ret.length = (num + 1) << (exponent + page_shift); 5029 5030 if (param.select) { 5031 ret.base = sextract64(value, 0, 37); 5032 } else { 5033 ret.base = extract64(value, 0, 37); 5034 } 5035 if (param.ds) { 5036 /* 5037 * With DS=1, BaseADDR is always shifted 16 so that it is able 5038 * to address all 52 va bits. The input address is perforce 5039 * aligned on a 64k boundary regardless of translation granule. 5040 */ 5041 page_shift = 16; 5042 } 5043 ret.base <<= page_shift; 5044 5045 return ret; 5046 } 5047 5048 static void do_rvae_write(CPUARMState *env, uint64_t value, 5049 int idxmap, bool synced) 5050 { 5051 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 5052 TLBIRange range; 5053 int bits; 5054 5055 range = tlbi_aa64_get_range(env, one_idx, value); 5056 bits = tlbbits_for_regime(env, one_idx, range.base); 5057 5058 if (synced) { 5059 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 5060 range.base, 5061 range.length, 5062 idxmap, 5063 bits); 5064 } else { 5065 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 5066 range.length, idxmap, bits); 5067 } 5068 } 5069 5070 static void tlbi_aa64_rvae1_write(CPUARMState *env, 5071 const ARMCPRegInfo *ri, 5072 uint64_t value) 5073 { 5074 /* 5075 * Invalidate by VA range, EL1&0. 5076 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 5077 * since we don't support flush-for-specific-ASID-only or 5078 * flush-last-level-only. 5079 */ 5080 5081 do_rvae_write(env, value, vae1_tlbmask(env), 5082 tlb_force_broadcast(env)); 5083 } 5084 5085 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 5086 const ARMCPRegInfo *ri, 5087 uint64_t value) 5088 { 5089 /* 5090 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 5091 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 5092 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 5093 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 5094 * shareable specific flushes. 5095 */ 5096 5097 do_rvae_write(env, value, vae1_tlbmask(env), true); 5098 } 5099 5100 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5101 const ARMCPRegInfo *ri, 5102 uint64_t value) 5103 { 5104 /* 5105 * Invalidate by VA range, EL2. 5106 * Currently handles all of RVAE2 and RVALE2, 5107 * since we don't support flush-for-specific-ASID-only or 5108 * flush-last-level-only. 5109 */ 5110 5111 do_rvae_write(env, value, vae2_tlbmask(env), 5112 tlb_force_broadcast(env)); 5113 5114 5115 } 5116 5117 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5118 const ARMCPRegInfo *ri, 5119 uint64_t value) 5120 { 5121 /* 5122 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5123 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5124 * since we don't support flush-for-specific-ASID-only, 5125 * flush-last-level-only or inner/outer shareable specific flushes. 5126 */ 5127 5128 do_rvae_write(env, value, vae2_tlbmask(env), true); 5129 5130 } 5131 5132 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5133 const ARMCPRegInfo *ri, 5134 uint64_t value) 5135 { 5136 /* 5137 * Invalidate by VA range, EL3. 5138 * Currently handles all of RVAE3 and RVALE3, 5139 * since we don't support flush-for-specific-ASID-only or 5140 * flush-last-level-only. 5141 */ 5142 5143 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5144 } 5145 5146 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5147 const ARMCPRegInfo *ri, 5148 uint64_t value) 5149 { 5150 /* 5151 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5152 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5153 * since we don't support flush-for-specific-ASID-only, 5154 * flush-last-level-only or inner/outer specific flushes. 5155 */ 5156 5157 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5158 } 5159 5160 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5161 uint64_t value) 5162 { 5163 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5164 tlb_force_broadcast(env)); 5165 } 5166 5167 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5168 const ARMCPRegInfo *ri, 5169 uint64_t value) 5170 { 5171 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5172 } 5173 #endif 5174 5175 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5176 bool isread) 5177 { 5178 int cur_el = arm_current_el(env); 5179 5180 if (cur_el < 2) { 5181 uint64_t hcr = arm_hcr_el2_eff(env); 5182 5183 if (cur_el == 0) { 5184 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5185 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5186 return CP_ACCESS_TRAP_EL2; 5187 } 5188 } else { 5189 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5190 return CP_ACCESS_TRAP; 5191 } 5192 if (hcr & HCR_TDZ) { 5193 return CP_ACCESS_TRAP_EL2; 5194 } 5195 } 5196 } else if (hcr & HCR_TDZ) { 5197 return CP_ACCESS_TRAP_EL2; 5198 } 5199 } 5200 return CP_ACCESS_OK; 5201 } 5202 5203 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5204 { 5205 ARMCPU *cpu = env_archcpu(env); 5206 int dzp_bit = 1 << 4; 5207 5208 /* DZP indicates whether DC ZVA access is allowed */ 5209 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5210 dzp_bit = 0; 5211 } 5212 return cpu->dcz_blocksize | dzp_bit; 5213 } 5214 5215 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5216 bool isread) 5217 { 5218 if (!(env->pstate & PSTATE_SP)) { 5219 /* 5220 * Access to SP_EL0 is undefined if it's being used as 5221 * the stack pointer. 5222 */ 5223 return CP_ACCESS_TRAP_UNCATEGORIZED; 5224 } 5225 return CP_ACCESS_OK; 5226 } 5227 5228 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5229 { 5230 return env->pstate & PSTATE_SP; 5231 } 5232 5233 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5234 { 5235 update_spsel(env, val); 5236 } 5237 5238 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5239 uint64_t value) 5240 { 5241 ARMCPU *cpu = env_archcpu(env); 5242 5243 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5244 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5245 value &= ~SCTLR_M; 5246 } 5247 5248 /* ??? Lots of these bits are not implemented. */ 5249 5250 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5251 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5252 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5253 } else { 5254 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5255 SCTLR_ATA0 | SCTLR_ATA); 5256 } 5257 } 5258 5259 if (raw_read(env, ri) == value) { 5260 /* 5261 * Skip the TLB flush if nothing actually changed; Linux likes 5262 * to do a lot of pointless SCTLR writes. 5263 */ 5264 return; 5265 } 5266 5267 raw_write(env, ri, value); 5268 5269 /* This may enable/disable the MMU, so do a TLB flush. */ 5270 tlb_flush(CPU(cpu)); 5271 5272 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5273 /* 5274 * Normally we would always end the TB on an SCTLR write; see the 5275 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5276 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5277 * of hflags from the translator, so do it here. 5278 */ 5279 arm_rebuild_hflags(env); 5280 } 5281 } 5282 5283 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5284 uint64_t value) 5285 { 5286 /* 5287 * Some MDCR_EL3 bits affect whether PMU counters are running: 5288 * if we are trying to change any of those then we must 5289 * bracket this update with PMU start/finish calls. 5290 */ 5291 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5292 5293 if (pmu_op) { 5294 pmu_op_start(env); 5295 } 5296 env->cp15.mdcr_el3 = value; 5297 if (pmu_op) { 5298 pmu_op_finish(env); 5299 } 5300 } 5301 5302 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5303 uint64_t value) 5304 { 5305 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5306 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5307 } 5308 5309 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5310 uint64_t value) 5311 { 5312 /* 5313 * Some MDCR_EL2 bits affect whether PMU counters are running: 5314 * if we are trying to change any of those then we must 5315 * bracket this update with PMU start/finish calls. 5316 */ 5317 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5318 5319 if (pmu_op) { 5320 pmu_op_start(env); 5321 } 5322 env->cp15.mdcr_el2 = value; 5323 if (pmu_op) { 5324 pmu_op_finish(env); 5325 } 5326 } 5327 5328 #ifdef CONFIG_USER_ONLY 5329 /* 5330 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 5331 * code to get around W^X restrictions, where one region is writable and the 5332 * other is executable. 5333 * 5334 * Since the executable region is never written to we cannot detect code 5335 * changes when running in user mode, and rely on the emulated JIT telling us 5336 * that the code has changed by executing this instruction. 5337 */ 5338 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 5339 uint64_t value) 5340 { 5341 uint64_t icache_line_mask, start_address, end_address; 5342 const ARMCPU *cpu; 5343 5344 cpu = env_archcpu(env); 5345 5346 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 5347 start_address = value & ~icache_line_mask; 5348 end_address = value | icache_line_mask; 5349 5350 mmap_lock(); 5351 5352 tb_invalidate_phys_range(start_address, end_address); 5353 5354 mmap_unlock(); 5355 } 5356 #endif 5357 5358 static const ARMCPRegInfo v8_cp_reginfo[] = { 5359 /* 5360 * Minimal set of EL0-visible registers. This will need to be expanded 5361 * significantly for system emulation of AArch64 CPUs. 5362 */ 5363 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5364 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5365 .access = PL0_RW, .type = ARM_CP_NZCV }, 5366 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5367 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5368 .type = ARM_CP_NO_RAW, 5369 .access = PL0_RW, .accessfn = aa64_daif_access, 5370 .fieldoffset = offsetof(CPUARMState, daif), 5371 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5372 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5373 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5374 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5375 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5376 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5377 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5378 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5379 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5380 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5381 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5382 .access = PL0_R, .type = ARM_CP_NO_RAW, 5383 .fgt = FGT_DCZID_EL0, 5384 .readfn = aa64_dczid_read }, 5385 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5386 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5387 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5388 #ifndef CONFIG_USER_ONLY 5389 /* Avoid overhead of an access check that always passes in user-mode */ 5390 .accessfn = aa64_zva_access, 5391 .fgt = FGT_DCZVA, 5392 #endif 5393 }, 5394 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5395 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5396 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5397 /* 5398 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5399 * don't emulate caches. 5400 */ 5401 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5402 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5403 .access = PL1_W, .type = ARM_CP_NOP, 5404 .fgt = FGT_ICIALLUIS, 5405 .accessfn = access_ticab }, 5406 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5407 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5408 .access = PL1_W, .type = ARM_CP_NOP, 5409 .fgt = FGT_ICIALLU, 5410 .accessfn = access_tocu }, 5411 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5412 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5413 .access = PL0_W, 5414 .fgt = FGT_ICIVAU, 5415 .accessfn = access_tocu, 5416 #ifdef CONFIG_USER_ONLY 5417 .type = ARM_CP_NO_RAW, 5418 .writefn = ic_ivau_write 5419 #else 5420 .type = ARM_CP_NOP 5421 #endif 5422 }, 5423 /* Cache ops: all NOPs since we don't emulate caches */ 5424 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5425 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5426 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5427 .fgt = FGT_DCIVAC, 5428 .type = ARM_CP_NOP }, 5429 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5430 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5431 .fgt = FGT_DCISW, 5432 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5433 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5434 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5435 .access = PL0_W, .type = ARM_CP_NOP, 5436 .fgt = FGT_DCCVAC, 5437 .accessfn = aa64_cacheop_poc_access }, 5438 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5439 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5440 .fgt = FGT_DCCSW, 5441 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5442 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5443 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5444 .access = PL0_W, .type = ARM_CP_NOP, 5445 .fgt = FGT_DCCVAU, 5446 .accessfn = access_tocu }, 5447 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5448 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5449 .access = PL0_W, .type = ARM_CP_NOP, 5450 .fgt = FGT_DCCIVAC, 5451 .accessfn = aa64_cacheop_poc_access }, 5452 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5453 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5454 .fgt = FGT_DCCISW, 5455 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5456 /* TLBI operations */ 5457 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5458 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5459 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5460 .fgt = FGT_TLBIVMALLE1IS, 5461 .writefn = tlbi_aa64_vmalle1is_write }, 5462 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5463 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5464 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5465 .fgt = FGT_TLBIVAE1IS, 5466 .writefn = tlbi_aa64_vae1is_write }, 5467 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5468 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5469 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5470 .fgt = FGT_TLBIASIDE1IS, 5471 .writefn = tlbi_aa64_vmalle1is_write }, 5472 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5473 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5474 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5475 .fgt = FGT_TLBIVAAE1IS, 5476 .writefn = tlbi_aa64_vae1is_write }, 5477 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5478 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5479 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5480 .fgt = FGT_TLBIVALE1IS, 5481 .writefn = tlbi_aa64_vae1is_write }, 5482 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5483 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5484 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5485 .fgt = FGT_TLBIVAALE1IS, 5486 .writefn = tlbi_aa64_vae1is_write }, 5487 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5488 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5489 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5490 .fgt = FGT_TLBIVMALLE1, 5491 .writefn = tlbi_aa64_vmalle1_write }, 5492 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5493 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5494 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5495 .fgt = FGT_TLBIVAE1, 5496 .writefn = tlbi_aa64_vae1_write }, 5497 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5498 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5499 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5500 .fgt = FGT_TLBIASIDE1, 5501 .writefn = tlbi_aa64_vmalle1_write }, 5502 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5503 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5504 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5505 .fgt = FGT_TLBIVAAE1, 5506 .writefn = tlbi_aa64_vae1_write }, 5507 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5508 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5509 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5510 .fgt = FGT_TLBIVALE1, 5511 .writefn = tlbi_aa64_vae1_write }, 5512 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5513 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5514 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5515 .fgt = FGT_TLBIVAALE1, 5516 .writefn = tlbi_aa64_vae1_write }, 5517 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5518 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5519 .access = PL2_W, .type = ARM_CP_NO_RAW, 5520 .writefn = tlbi_aa64_ipas2e1is_write }, 5521 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5522 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5523 .access = PL2_W, .type = ARM_CP_NO_RAW, 5524 .writefn = tlbi_aa64_ipas2e1is_write }, 5525 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5526 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5527 .access = PL2_W, .type = ARM_CP_NO_RAW, 5528 .writefn = tlbi_aa64_alle1is_write }, 5529 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5530 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5531 .access = PL2_W, .type = ARM_CP_NO_RAW, 5532 .writefn = tlbi_aa64_alle1is_write }, 5533 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5534 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5535 .access = PL2_W, .type = ARM_CP_NO_RAW, 5536 .writefn = tlbi_aa64_ipas2e1_write }, 5537 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5538 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5539 .access = PL2_W, .type = ARM_CP_NO_RAW, 5540 .writefn = tlbi_aa64_ipas2e1_write }, 5541 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5542 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5543 .access = PL2_W, .type = ARM_CP_NO_RAW, 5544 .writefn = tlbi_aa64_alle1_write }, 5545 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5546 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5547 .access = PL2_W, .type = ARM_CP_NO_RAW, 5548 .writefn = tlbi_aa64_alle1is_write }, 5549 #ifndef CONFIG_USER_ONLY 5550 /* 64 bit address translation operations */ 5551 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5552 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5553 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5554 .fgt = FGT_ATS1E1R, 5555 .accessfn = at_e012_access, .writefn = ats_write64 }, 5556 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5557 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5558 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5559 .fgt = FGT_ATS1E1W, 5560 .accessfn = at_e012_access, .writefn = ats_write64 }, 5561 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5562 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5563 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5564 .fgt = FGT_ATS1E0R, 5565 .accessfn = at_e012_access, .writefn = ats_write64 }, 5566 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5567 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5568 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5569 .fgt = FGT_ATS1E0W, 5570 .accessfn = at_e012_access, .writefn = ats_write64 }, 5571 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5572 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5573 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5574 .accessfn = at_e012_access, .writefn = ats_write64 }, 5575 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5576 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5577 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5578 .accessfn = at_e012_access, .writefn = ats_write64 }, 5579 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5580 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5581 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5582 .accessfn = at_e012_access, .writefn = ats_write64 }, 5583 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5584 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5585 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5586 .accessfn = at_e012_access, .writefn = ats_write64 }, 5587 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5588 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5589 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5590 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5591 .writefn = ats_write64 }, 5592 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5593 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5594 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5595 .writefn = ats_write64 }, 5596 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5597 .type = ARM_CP_ALIAS, 5598 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5599 .access = PL1_RW, .resetvalue = 0, 5600 .fgt = FGT_PAR_EL1, 5601 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5602 .writefn = par_write }, 5603 #endif 5604 /* TLB invalidate last level of translation table walk */ 5605 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5606 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5607 .writefn = tlbimva_is_write }, 5608 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5609 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5610 .writefn = tlbimvaa_is_write }, 5611 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5612 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5613 .writefn = tlbimva_write }, 5614 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5615 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5616 .writefn = tlbimvaa_write }, 5617 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5618 .type = ARM_CP_NO_RAW, .access = PL2_W, 5619 .writefn = tlbimva_hyp_write }, 5620 { .name = "TLBIMVALHIS", 5621 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5622 .type = ARM_CP_NO_RAW, .access = PL2_W, 5623 .writefn = tlbimva_hyp_is_write }, 5624 { .name = "TLBIIPAS2", 5625 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5626 .type = ARM_CP_NO_RAW, .access = PL2_W, 5627 .writefn = tlbiipas2_hyp_write }, 5628 { .name = "TLBIIPAS2IS", 5629 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5630 .type = ARM_CP_NO_RAW, .access = PL2_W, 5631 .writefn = tlbiipas2is_hyp_write }, 5632 { .name = "TLBIIPAS2L", 5633 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5634 .type = ARM_CP_NO_RAW, .access = PL2_W, 5635 .writefn = tlbiipas2_hyp_write }, 5636 { .name = "TLBIIPAS2LIS", 5637 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5638 .type = ARM_CP_NO_RAW, .access = PL2_W, 5639 .writefn = tlbiipas2is_hyp_write }, 5640 /* 32 bit cache operations */ 5641 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5642 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5643 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5644 .type = ARM_CP_NOP, .access = PL1_W }, 5645 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5646 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5647 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5648 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5649 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5650 .type = ARM_CP_NOP, .access = PL1_W }, 5651 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5652 .type = ARM_CP_NOP, .access = PL1_W }, 5653 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5654 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5655 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5656 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5657 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5658 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5659 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5660 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5661 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5662 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5663 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5664 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5665 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5666 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5667 /* MMU Domain access control / MPU write buffer control */ 5668 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5669 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5670 .writefn = dacr_write, .raw_writefn = raw_write, 5671 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5672 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5673 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5674 .type = ARM_CP_ALIAS, 5675 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5676 .access = PL1_RW, 5677 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5678 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5679 .type = ARM_CP_ALIAS, 5680 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5681 .access = PL1_RW, 5682 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5683 /* 5684 * We rely on the access checks not allowing the guest to write to the 5685 * state field when SPSel indicates that it's being used as the stack 5686 * pointer. 5687 */ 5688 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5689 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5690 .access = PL1_RW, .accessfn = sp_el0_access, 5691 .type = ARM_CP_ALIAS, 5692 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5693 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5694 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5695 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5696 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5697 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5698 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5699 .type = ARM_CP_NO_RAW, 5700 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5701 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5702 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5703 .access = PL2_RW, 5704 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5705 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5706 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5707 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5708 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5709 .writefn = dacr_write, .raw_writefn = raw_write, 5710 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5711 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5712 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5713 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5714 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5715 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5716 .type = ARM_CP_ALIAS, 5717 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5718 .access = PL2_RW, 5719 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5720 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5721 .type = ARM_CP_ALIAS, 5722 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5723 .access = PL2_RW, 5724 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5725 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5726 .type = ARM_CP_ALIAS, 5727 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5728 .access = PL2_RW, 5729 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5730 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5731 .type = ARM_CP_ALIAS, 5732 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5733 .access = PL2_RW, 5734 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5735 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5736 .type = ARM_CP_IO, 5737 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5738 .resetvalue = 0, 5739 .access = PL3_RW, 5740 .writefn = mdcr_el3_write, 5741 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5742 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5743 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5744 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5745 .writefn = sdcr_write, 5746 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5747 }; 5748 5749 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5750 { 5751 ARMCPU *cpu = env_archcpu(env); 5752 5753 if (arm_feature(env, ARM_FEATURE_V8)) { 5754 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5755 } else { 5756 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5757 } 5758 5759 if (arm_feature(env, ARM_FEATURE_EL3)) { 5760 valid_mask &= ~HCR_HCD; 5761 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5762 /* 5763 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5764 * However, if we're using the SMC PSCI conduit then QEMU is 5765 * effectively acting like EL3 firmware and so the guest at 5766 * EL2 should retain the ability to prevent EL1 from being 5767 * able to make SMC calls into the ersatz firmware, so in 5768 * that case HCR.TSC should be read/write. 5769 */ 5770 valid_mask &= ~HCR_TSC; 5771 } 5772 5773 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5774 if (cpu_isar_feature(aa64_vh, cpu)) { 5775 valid_mask |= HCR_E2H; 5776 } 5777 if (cpu_isar_feature(aa64_ras, cpu)) { 5778 valid_mask |= HCR_TERR | HCR_TEA; 5779 } 5780 if (cpu_isar_feature(aa64_lor, cpu)) { 5781 valid_mask |= HCR_TLOR; 5782 } 5783 if (cpu_isar_feature(aa64_pauth, cpu)) { 5784 valid_mask |= HCR_API | HCR_APK; 5785 } 5786 if (cpu_isar_feature(aa64_mte, cpu)) { 5787 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5788 } 5789 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5790 valid_mask |= HCR_ENSCXT; 5791 } 5792 if (cpu_isar_feature(aa64_fwb, cpu)) { 5793 valid_mask |= HCR_FWB; 5794 } 5795 if (cpu_isar_feature(aa64_rme, cpu)) { 5796 valid_mask |= HCR_GPF; 5797 } 5798 } 5799 5800 if (cpu_isar_feature(any_evt, cpu)) { 5801 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5802 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5803 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5804 } 5805 5806 /* Clear RES0 bits. */ 5807 value &= valid_mask; 5808 5809 /* 5810 * These bits change the MMU setup: 5811 * HCR_VM enables stage 2 translation 5812 * HCR_PTW forbids certain page-table setups 5813 * HCR_DC disables stage1 and enables stage2 translation 5814 * HCR_DCT enables tagging on (disabled) stage1 translation 5815 * HCR_FWB changes the interpretation of stage2 descriptor bits 5816 */ 5817 if ((env->cp15.hcr_el2 ^ value) & 5818 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5819 tlb_flush(CPU(cpu)); 5820 } 5821 env->cp15.hcr_el2 = value; 5822 5823 /* 5824 * Updates to VI and VF require us to update the status of 5825 * virtual interrupts, which are the logical OR of these bits 5826 * and the state of the input lines from the GIC. (This requires 5827 * that we have the iothread lock, which is done by marking the 5828 * reginfo structs as ARM_CP_IO.) 5829 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5830 * possible for it to be taken immediately, because VIRQ and 5831 * VFIQ are masked unless running at EL0 or EL1, and HCR 5832 * can only be written at EL2. 5833 */ 5834 g_assert(qemu_mutex_iothread_locked()); 5835 arm_cpu_update_virq(cpu); 5836 arm_cpu_update_vfiq(cpu); 5837 arm_cpu_update_vserr(cpu); 5838 } 5839 5840 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5841 { 5842 do_hcr_write(env, value, 0); 5843 } 5844 5845 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5846 uint64_t value) 5847 { 5848 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5849 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5850 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5851 } 5852 5853 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5854 uint64_t value) 5855 { 5856 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5857 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5858 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5859 } 5860 5861 /* 5862 * Return the effective value of HCR_EL2, at the given security state. 5863 * Bits that are not included here: 5864 * RW (read from SCR_EL3.RW as needed) 5865 */ 5866 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 5867 { 5868 uint64_t ret = env->cp15.hcr_el2; 5869 5870 assert(space != ARMSS_Root); 5871 5872 if (!arm_is_el2_enabled_secstate(env, space)) { 5873 /* 5874 * "This register has no effect if EL2 is not enabled in the 5875 * current Security state". This is ARMv8.4-SecEL2 speak for 5876 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5877 * 5878 * Prior to that, the language was "In an implementation that 5879 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5880 * as if this field is 0 for all purposes other than a direct 5881 * read or write access of HCR_EL2". With lots of enumeration 5882 * on a per-field basis. In current QEMU, this is condition 5883 * is arm_is_secure_below_el3. 5884 * 5885 * Since the v8.4 language applies to the entire register, and 5886 * appears to be backward compatible, use that. 5887 */ 5888 return 0; 5889 } 5890 5891 /* 5892 * For a cpu that supports both aarch64 and aarch32, we can set bits 5893 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5894 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5895 */ 5896 if (!arm_el_is_aa64(env, 2)) { 5897 uint64_t aa32_valid; 5898 5899 /* 5900 * These bits are up-to-date as of ARMv8.6. 5901 * For HCR, it's easiest to list just the 2 bits that are invalid. 5902 * For HCR2, list those that are valid. 5903 */ 5904 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5905 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5906 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5907 ret &= aa32_valid; 5908 } 5909 5910 if (ret & HCR_TGE) { 5911 /* These bits are up-to-date as of ARMv8.6. */ 5912 if (ret & HCR_E2H) { 5913 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5914 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5915 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5916 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5917 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5918 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5919 } else { 5920 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5921 } 5922 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5923 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5924 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5925 HCR_TLOR); 5926 } 5927 5928 return ret; 5929 } 5930 5931 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5932 { 5933 if (arm_feature(env, ARM_FEATURE_M)) { 5934 return 0; 5935 } 5936 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 5937 } 5938 5939 /* 5940 * Corresponds to ARM pseudocode function ELIsInHost(). 5941 */ 5942 bool el_is_in_host(CPUARMState *env, int el) 5943 { 5944 uint64_t mask; 5945 5946 /* 5947 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5948 * Perform the simplest bit tests first, and validate EL2 afterward. 5949 */ 5950 if (el & 1) { 5951 return false; /* EL1 or EL3 */ 5952 } 5953 5954 /* 5955 * Note that hcr_write() checks isar_feature_aa64_vh(), 5956 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5957 */ 5958 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5959 if ((env->cp15.hcr_el2 & mask) != mask) { 5960 return false; 5961 } 5962 5963 /* TGE and/or E2H set: double check those bits are currently legal. */ 5964 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5965 } 5966 5967 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5968 uint64_t value) 5969 { 5970 uint64_t valid_mask = 0; 5971 5972 /* FEAT_MOPS adds MSCEn and MCE2 */ 5973 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 5974 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 5975 } 5976 5977 /* Clear RES0 bits. */ 5978 env->cp15.hcrx_el2 = value & valid_mask; 5979 } 5980 5981 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5982 bool isread) 5983 { 5984 if (arm_current_el(env) < 3 5985 && arm_feature(env, ARM_FEATURE_EL3) 5986 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5987 return CP_ACCESS_TRAP_EL3; 5988 } 5989 return CP_ACCESS_OK; 5990 } 5991 5992 static const ARMCPRegInfo hcrx_el2_reginfo = { 5993 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5994 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5995 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5996 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5997 }; 5998 5999 /* Return the effective value of HCRX_EL2. */ 6000 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 6001 { 6002 /* 6003 * The bits in this register behave as 0 for all purposes other than 6004 * direct reads of the register if SCR_EL3.HXEn is 0. 6005 * If EL2 is not enabled in the current security state, then the 6006 * bit may behave as if 0, or as if 1, depending on the bit. 6007 * For the moment, we treat the EL2-disabled case as taking 6008 * priority over the HXEn-disabled case. This is true for the only 6009 * bit for a feature which we implement where the answer is different 6010 * for the two cases (MSCEn for FEAT_MOPS). 6011 * This may need to be revisited for future bits. 6012 */ 6013 if (!arm_is_el2_enabled(env)) { 6014 uint64_t hcrx = 0; 6015 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 6016 /* MSCEn behaves as 1 if EL2 is not enabled */ 6017 hcrx |= HCRX_MSCEN; 6018 } 6019 return hcrx; 6020 } 6021 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 6022 return 0; 6023 } 6024 return env->cp15.hcrx_el2; 6025 } 6026 6027 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 6028 uint64_t value) 6029 { 6030 /* 6031 * For A-profile AArch32 EL3, if NSACR.CP10 6032 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6033 */ 6034 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6035 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6036 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6037 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 6038 } 6039 env->cp15.cptr_el[2] = value; 6040 } 6041 6042 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6043 { 6044 /* 6045 * For A-profile AArch32 EL3, if NSACR.CP10 6046 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6047 */ 6048 uint64_t value = env->cp15.cptr_el[2]; 6049 6050 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6051 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6052 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6053 } 6054 return value; 6055 } 6056 6057 static const ARMCPRegInfo el2_cp_reginfo[] = { 6058 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 6059 .type = ARM_CP_IO, 6060 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6061 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6062 .writefn = hcr_write, .raw_writefn = raw_write }, 6063 { .name = "HCR", .state = ARM_CP_STATE_AA32, 6064 .type = ARM_CP_ALIAS | ARM_CP_IO, 6065 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6066 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6067 .writefn = hcr_writelow }, 6068 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 6069 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 6070 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6071 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 6072 .type = ARM_CP_ALIAS, 6073 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 6074 .access = PL2_RW, 6075 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 6076 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 6077 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 6078 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 6079 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 6080 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 6081 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 6082 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 6083 .type = ARM_CP_ALIAS, 6084 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 6085 .access = PL2_RW, 6086 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 6087 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 6088 .type = ARM_CP_ALIAS, 6089 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 6090 .access = PL2_RW, 6091 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 6092 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 6093 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 6094 .access = PL2_RW, .writefn = vbar_write, 6095 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 6096 .resetvalue = 0 }, 6097 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 6098 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 6099 .access = PL3_RW, .type = ARM_CP_ALIAS, 6100 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 6101 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 6102 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 6103 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 6104 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 6105 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 6106 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 6107 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 6108 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 6109 .resetvalue = 0 }, 6110 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 6111 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 6112 .access = PL2_RW, .type = ARM_CP_ALIAS, 6113 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 6114 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 6115 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 6116 .access = PL2_RW, .type = ARM_CP_CONST, 6117 .resetvalue = 0 }, 6118 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 6119 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 6120 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 6121 .access = PL2_RW, .type = ARM_CP_CONST, 6122 .resetvalue = 0 }, 6123 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 6124 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 6125 .access = PL2_RW, .type = ARM_CP_CONST, 6126 .resetvalue = 0 }, 6127 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 6128 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 6129 .access = PL2_RW, .type = ARM_CP_CONST, 6130 .resetvalue = 0 }, 6131 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 6132 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 6133 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 6134 .raw_writefn = raw_write, 6135 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 6136 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 6137 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6138 .type = ARM_CP_ALIAS, 6139 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6140 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 6141 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 6142 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6143 .access = PL2_RW, 6144 /* no .writefn needed as this can't cause an ASID change */ 6145 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 6146 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 6147 .cp = 15, .opc1 = 6, .crm = 2, 6148 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6149 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6150 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 6151 .writefn = vttbr_write, .raw_writefn = raw_write }, 6152 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 6153 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 6154 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 6155 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 6156 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 6157 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6158 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6159 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6160 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6161 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6162 .access = PL2_RW, .resetvalue = 0, 6163 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6164 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6165 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6166 .access = PL2_RW, .resetvalue = 0, 6167 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 6168 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6169 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6170 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6171 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6172 { .name = "TLBIALLNSNH", 6173 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6174 .type = ARM_CP_NO_RAW, .access = PL2_W, 6175 .writefn = tlbiall_nsnh_write }, 6176 { .name = "TLBIALLNSNHIS", 6177 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6178 .type = ARM_CP_NO_RAW, .access = PL2_W, 6179 .writefn = tlbiall_nsnh_is_write }, 6180 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6181 .type = ARM_CP_NO_RAW, .access = PL2_W, 6182 .writefn = tlbiall_hyp_write }, 6183 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6184 .type = ARM_CP_NO_RAW, .access = PL2_W, 6185 .writefn = tlbiall_hyp_is_write }, 6186 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6187 .type = ARM_CP_NO_RAW, .access = PL2_W, 6188 .writefn = tlbimva_hyp_write }, 6189 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6190 .type = ARM_CP_NO_RAW, .access = PL2_W, 6191 .writefn = tlbimva_hyp_is_write }, 6192 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6193 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6194 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6195 .writefn = tlbi_aa64_alle2_write }, 6196 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6197 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6198 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6199 .writefn = tlbi_aa64_vae2_write }, 6200 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6201 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6202 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6203 .writefn = tlbi_aa64_vae2_write }, 6204 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6205 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6206 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6207 .writefn = tlbi_aa64_alle2is_write }, 6208 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6209 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6210 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6211 .writefn = tlbi_aa64_vae2is_write }, 6212 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6213 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6214 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6215 .writefn = tlbi_aa64_vae2is_write }, 6216 #ifndef CONFIG_USER_ONLY 6217 /* 6218 * Unlike the other EL2-related AT operations, these must 6219 * UNDEF from EL3 if EL2 is not implemented, which is why we 6220 * define them here rather than with the rest of the AT ops. 6221 */ 6222 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6223 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6224 .access = PL2_W, .accessfn = at_s1e2_access, 6225 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6226 .writefn = ats_write64 }, 6227 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6228 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6229 .access = PL2_W, .accessfn = at_s1e2_access, 6230 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6231 .writefn = ats_write64 }, 6232 /* 6233 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6234 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6235 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6236 * to behave as if SCR.NS was 1. 6237 */ 6238 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6239 .access = PL2_W, 6240 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6241 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6242 .access = PL2_W, 6243 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6244 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6245 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6246 /* 6247 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6248 * reset values as IMPDEF. We choose to reset to 3 to comply with 6249 * both ARMv7 and ARMv8. 6250 */ 6251 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 6252 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 6253 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6254 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6255 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6256 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6257 .writefn = gt_cntvoff_write, 6258 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6259 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6260 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6261 .writefn = gt_cntvoff_write, 6262 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6263 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6264 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6265 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6266 .type = ARM_CP_IO, .access = PL2_RW, 6267 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6268 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6269 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6270 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6271 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6272 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6273 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6274 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6275 .resetfn = gt_hyp_timer_reset, 6276 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6277 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6278 .type = ARM_CP_IO, 6279 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6280 .access = PL2_RW, 6281 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6282 .resetvalue = 0, 6283 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6284 #endif 6285 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6286 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6287 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6288 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6289 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6290 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6291 .access = PL2_RW, 6292 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6293 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6294 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6295 .access = PL2_RW, 6296 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6297 }; 6298 6299 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6300 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6301 .type = ARM_CP_ALIAS | ARM_CP_IO, 6302 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6303 .access = PL2_RW, 6304 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6305 .writefn = hcr_writehigh }, 6306 }; 6307 6308 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6309 bool isread) 6310 { 6311 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6312 return CP_ACCESS_OK; 6313 } 6314 return CP_ACCESS_TRAP_UNCATEGORIZED; 6315 } 6316 6317 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6318 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6319 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6320 .access = PL2_RW, .accessfn = sel2_access, 6321 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6322 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6323 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6324 .access = PL2_RW, .accessfn = sel2_access, 6325 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6326 }; 6327 6328 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6329 bool isread) 6330 { 6331 /* 6332 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6333 * At Secure EL1 it traps to EL3 or EL2. 6334 */ 6335 if (arm_current_el(env) == 3) { 6336 return CP_ACCESS_OK; 6337 } 6338 if (arm_is_secure_below_el3(env)) { 6339 if (env->cp15.scr_el3 & SCR_EEL2) { 6340 return CP_ACCESS_TRAP_EL2; 6341 } 6342 return CP_ACCESS_TRAP_EL3; 6343 } 6344 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6345 if (isread) { 6346 return CP_ACCESS_OK; 6347 } 6348 return CP_ACCESS_TRAP_UNCATEGORIZED; 6349 } 6350 6351 static const ARMCPRegInfo el3_cp_reginfo[] = { 6352 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6353 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6354 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6355 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 6356 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6357 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6358 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6359 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6360 .writefn = scr_write, .raw_writefn = raw_write }, 6361 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6362 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6363 .access = PL3_RW, .resetvalue = 0, 6364 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6365 { .name = "SDER", 6366 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6367 .access = PL3_RW, .resetvalue = 0, 6368 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6369 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6370 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6371 .writefn = vbar_write, .resetvalue = 0, 6372 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6373 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6374 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6375 .access = PL3_RW, .resetvalue = 0, 6376 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6377 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6378 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6379 .access = PL3_RW, 6380 /* no .writefn needed as this can't cause an ASID change */ 6381 .resetvalue = 0, 6382 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6383 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6384 .type = ARM_CP_ALIAS, 6385 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6386 .access = PL3_RW, 6387 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6388 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6389 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6390 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6391 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6392 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6393 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6394 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6395 .type = ARM_CP_ALIAS, 6396 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6397 .access = PL3_RW, 6398 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6399 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6400 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6401 .access = PL3_RW, .writefn = vbar_write, 6402 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6403 .resetvalue = 0 }, 6404 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6405 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6406 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6407 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6408 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6409 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6410 .access = PL3_RW, .resetvalue = 0, 6411 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6412 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6413 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6414 .access = PL3_RW, .type = ARM_CP_CONST, 6415 .resetvalue = 0 }, 6416 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6417 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6418 .access = PL3_RW, .type = ARM_CP_CONST, 6419 .resetvalue = 0 }, 6420 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6421 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6422 .access = PL3_RW, .type = ARM_CP_CONST, 6423 .resetvalue = 0 }, 6424 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6425 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6426 .access = PL3_W, .type = ARM_CP_NO_RAW, 6427 .writefn = tlbi_aa64_alle3is_write }, 6428 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6429 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6430 .access = PL3_W, .type = ARM_CP_NO_RAW, 6431 .writefn = tlbi_aa64_vae3is_write }, 6432 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6433 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6434 .access = PL3_W, .type = ARM_CP_NO_RAW, 6435 .writefn = tlbi_aa64_vae3is_write }, 6436 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6437 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6438 .access = PL3_W, .type = ARM_CP_NO_RAW, 6439 .writefn = tlbi_aa64_alle3_write }, 6440 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6441 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6442 .access = PL3_W, .type = ARM_CP_NO_RAW, 6443 .writefn = tlbi_aa64_vae3_write }, 6444 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6445 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6446 .access = PL3_W, .type = ARM_CP_NO_RAW, 6447 .writefn = tlbi_aa64_vae3_write }, 6448 }; 6449 6450 #ifndef CONFIG_USER_ONLY 6451 /* Test if system register redirection is to occur in the current state. */ 6452 static bool redirect_for_e2h(CPUARMState *env) 6453 { 6454 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6455 } 6456 6457 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6458 { 6459 CPReadFn *readfn; 6460 6461 if (redirect_for_e2h(env)) { 6462 /* Switch to the saved EL2 version of the register. */ 6463 ri = ri->opaque; 6464 readfn = ri->readfn; 6465 } else { 6466 readfn = ri->orig_readfn; 6467 } 6468 if (readfn == NULL) { 6469 readfn = raw_read; 6470 } 6471 return readfn(env, ri); 6472 } 6473 6474 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6475 uint64_t value) 6476 { 6477 CPWriteFn *writefn; 6478 6479 if (redirect_for_e2h(env)) { 6480 /* Switch to the saved EL2 version of the register. */ 6481 ri = ri->opaque; 6482 writefn = ri->writefn; 6483 } else { 6484 writefn = ri->orig_writefn; 6485 } 6486 if (writefn == NULL) { 6487 writefn = raw_write; 6488 } 6489 writefn(env, ri, value); 6490 } 6491 6492 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6493 { 6494 struct E2HAlias { 6495 uint32_t src_key, dst_key, new_key; 6496 const char *src_name, *dst_name, *new_name; 6497 bool (*feature)(const ARMISARegisters *id); 6498 }; 6499 6500 #define K(op0, op1, crn, crm, op2) \ 6501 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6502 6503 static const struct E2HAlias aliases[] = { 6504 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6505 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6506 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6507 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6508 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6509 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6510 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6511 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6512 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6513 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6514 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6515 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6516 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6517 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6518 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6519 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6520 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6521 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6522 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6523 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6524 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6525 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6526 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6527 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6528 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6529 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6530 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6531 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6532 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6533 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6534 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6535 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6536 6537 /* 6538 * Note that redirection of ZCR is mentioned in the description 6539 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6540 * not in the summary table. 6541 */ 6542 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6543 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6544 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6545 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6546 6547 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6548 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6549 6550 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6551 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6552 isar_feature_aa64_scxtnum }, 6553 6554 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6555 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6556 }; 6557 #undef K 6558 6559 size_t i; 6560 6561 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6562 const struct E2HAlias *a = &aliases[i]; 6563 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6564 bool ok; 6565 6566 if (a->feature && !a->feature(&cpu->isar)) { 6567 continue; 6568 } 6569 6570 src_reg = g_hash_table_lookup(cpu->cp_regs, 6571 (gpointer)(uintptr_t)a->src_key); 6572 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6573 (gpointer)(uintptr_t)a->dst_key); 6574 g_assert(src_reg != NULL); 6575 g_assert(dst_reg != NULL); 6576 6577 /* Cross-compare names to detect typos in the keys. */ 6578 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6579 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6580 6581 /* None of the core system registers use opaque; we will. */ 6582 g_assert(src_reg->opaque == NULL); 6583 6584 /* Create alias before redirection so we dup the right data. */ 6585 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6586 6587 new_reg->name = a->new_name; 6588 new_reg->type |= ARM_CP_ALIAS; 6589 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6590 new_reg->access &= PL2_RW | PL3_RW; 6591 6592 ok = g_hash_table_insert(cpu->cp_regs, 6593 (gpointer)(uintptr_t)a->new_key, new_reg); 6594 g_assert(ok); 6595 6596 src_reg->opaque = dst_reg; 6597 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6598 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6599 if (!src_reg->raw_readfn) { 6600 src_reg->raw_readfn = raw_read; 6601 } 6602 if (!src_reg->raw_writefn) { 6603 src_reg->raw_writefn = raw_write; 6604 } 6605 src_reg->readfn = el2_e2h_read; 6606 src_reg->writefn = el2_e2h_write; 6607 } 6608 } 6609 #endif 6610 6611 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6612 bool isread) 6613 { 6614 int cur_el = arm_current_el(env); 6615 6616 if (cur_el < 2) { 6617 uint64_t hcr = arm_hcr_el2_eff(env); 6618 6619 if (cur_el == 0) { 6620 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6621 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6622 return CP_ACCESS_TRAP_EL2; 6623 } 6624 } else { 6625 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6626 return CP_ACCESS_TRAP; 6627 } 6628 if (hcr & HCR_TID2) { 6629 return CP_ACCESS_TRAP_EL2; 6630 } 6631 } 6632 } else if (hcr & HCR_TID2) { 6633 return CP_ACCESS_TRAP_EL2; 6634 } 6635 } 6636 6637 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6638 return CP_ACCESS_TRAP_EL2; 6639 } 6640 6641 return CP_ACCESS_OK; 6642 } 6643 6644 /* 6645 * Check for traps to RAS registers, which are controlled 6646 * by HCR_EL2.TERR and SCR_EL3.TERR. 6647 */ 6648 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6649 bool isread) 6650 { 6651 int el = arm_current_el(env); 6652 6653 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6654 return CP_ACCESS_TRAP_EL2; 6655 } 6656 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6657 return CP_ACCESS_TRAP_EL3; 6658 } 6659 return CP_ACCESS_OK; 6660 } 6661 6662 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6663 { 6664 int el = arm_current_el(env); 6665 6666 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6667 return env->cp15.vdisr_el2; 6668 } 6669 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6670 return 0; /* RAZ/WI */ 6671 } 6672 return env->cp15.disr_el1; 6673 } 6674 6675 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6676 { 6677 int el = arm_current_el(env); 6678 6679 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6680 env->cp15.vdisr_el2 = val; 6681 return; 6682 } 6683 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6684 return; /* RAZ/WI */ 6685 } 6686 env->cp15.disr_el1 = val; 6687 } 6688 6689 /* 6690 * Minimal RAS implementation with no Error Records. 6691 * Which means that all of the Error Record registers: 6692 * ERXADDR_EL1 6693 * ERXCTLR_EL1 6694 * ERXFR_EL1 6695 * ERXMISC0_EL1 6696 * ERXMISC1_EL1 6697 * ERXMISC2_EL1 6698 * ERXMISC3_EL1 6699 * ERXPFGCDN_EL1 (RASv1p1) 6700 * ERXPFGCTL_EL1 (RASv1p1) 6701 * ERXPFGF_EL1 (RASv1p1) 6702 * ERXSTATUS_EL1 6703 * and 6704 * ERRSELR_EL1 6705 * may generate UNDEFINED, which is the effect we get by not 6706 * listing them at all. 6707 * 6708 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6709 * is higher priority than FGT-to-EL2 so we do not need to list them 6710 * in order to check for an FGT. 6711 */ 6712 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6713 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6714 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6715 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6716 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6717 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6718 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6719 .access = PL1_R, .accessfn = access_terr, 6720 .fgt = FGT_ERRIDR_EL1, 6721 .type = ARM_CP_CONST, .resetvalue = 0 }, 6722 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6723 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6724 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6725 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6726 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6727 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6728 }; 6729 6730 /* 6731 * Return the exception level to which exceptions should be taken 6732 * via SVEAccessTrap. This excludes the check for whether the exception 6733 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6734 * be found by testing 0 < fp_exception_el < sve_exception_el. 6735 * 6736 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6737 * pseudocode does *not* separate out the FP trap checks, but has them 6738 * all in one function. 6739 */ 6740 int sve_exception_el(CPUARMState *env, int el) 6741 { 6742 #ifndef CONFIG_USER_ONLY 6743 if (el <= 1 && !el_is_in_host(env, el)) { 6744 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6745 case 1: 6746 if (el != 0) { 6747 break; 6748 } 6749 /* fall through */ 6750 case 0: 6751 case 2: 6752 return 1; 6753 } 6754 } 6755 6756 if (el <= 2 && arm_is_el2_enabled(env)) { 6757 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6758 if (env->cp15.hcr_el2 & HCR_E2H) { 6759 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6760 case 1: 6761 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6762 break; 6763 } 6764 /* fall through */ 6765 case 0: 6766 case 2: 6767 return 2; 6768 } 6769 } else { 6770 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6771 return 2; 6772 } 6773 } 6774 } 6775 6776 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6777 if (arm_feature(env, ARM_FEATURE_EL3) 6778 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6779 return 3; 6780 } 6781 #endif 6782 return 0; 6783 } 6784 6785 /* 6786 * Return the exception level to which exceptions should be taken for SME. 6787 * C.f. the ARM pseudocode function CheckSMEAccess. 6788 */ 6789 int sme_exception_el(CPUARMState *env, int el) 6790 { 6791 #ifndef CONFIG_USER_ONLY 6792 if (el <= 1 && !el_is_in_host(env, el)) { 6793 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6794 case 1: 6795 if (el != 0) { 6796 break; 6797 } 6798 /* fall through */ 6799 case 0: 6800 case 2: 6801 return 1; 6802 } 6803 } 6804 6805 if (el <= 2 && arm_is_el2_enabled(env)) { 6806 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6807 if (env->cp15.hcr_el2 & HCR_E2H) { 6808 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6809 case 1: 6810 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6811 break; 6812 } 6813 /* fall through */ 6814 case 0: 6815 case 2: 6816 return 2; 6817 } 6818 } else { 6819 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6820 return 2; 6821 } 6822 } 6823 } 6824 6825 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6826 if (arm_feature(env, ARM_FEATURE_EL3) 6827 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6828 return 3; 6829 } 6830 #endif 6831 return 0; 6832 } 6833 6834 /* 6835 * Given that SVE is enabled, return the vector length for EL. 6836 */ 6837 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6838 { 6839 ARMCPU *cpu = env_archcpu(env); 6840 uint64_t *cr = env->vfp.zcr_el; 6841 uint32_t map = cpu->sve_vq.map; 6842 uint32_t len = ARM_MAX_VQ - 1; 6843 6844 if (sm) { 6845 cr = env->vfp.smcr_el; 6846 map = cpu->sme_vq.map; 6847 } 6848 6849 if (el <= 1 && !el_is_in_host(env, el)) { 6850 len = MIN(len, 0xf & (uint32_t)cr[1]); 6851 } 6852 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6853 len = MIN(len, 0xf & (uint32_t)cr[2]); 6854 } 6855 if (arm_feature(env, ARM_FEATURE_EL3)) { 6856 len = MIN(len, 0xf & (uint32_t)cr[3]); 6857 } 6858 6859 map &= MAKE_64BIT_MASK(0, len + 1); 6860 if (map != 0) { 6861 return 31 - clz32(map); 6862 } 6863 6864 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6865 assert(sm); 6866 return ctz32(cpu->sme_vq.map); 6867 } 6868 6869 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6870 { 6871 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6872 } 6873 6874 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6875 uint64_t value) 6876 { 6877 int cur_el = arm_current_el(env); 6878 int old_len = sve_vqm1_for_el(env, cur_el); 6879 int new_len; 6880 6881 /* Bits other than [3:0] are RAZ/WI. */ 6882 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6883 raw_write(env, ri, value & 0xf); 6884 6885 /* 6886 * Because we arrived here, we know both FP and SVE are enabled; 6887 * otherwise we would have trapped access to the ZCR_ELn register. 6888 */ 6889 new_len = sve_vqm1_for_el(env, cur_el); 6890 if (new_len < old_len) { 6891 aarch64_sve_narrow_vq(env, new_len + 1); 6892 } 6893 } 6894 6895 static const ARMCPRegInfo zcr_reginfo[] = { 6896 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6897 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6898 .access = PL1_RW, .type = ARM_CP_SVE, 6899 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6900 .writefn = zcr_write, .raw_writefn = raw_write }, 6901 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6902 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6903 .access = PL2_RW, .type = ARM_CP_SVE, 6904 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6905 .writefn = zcr_write, .raw_writefn = raw_write }, 6906 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6907 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6908 .access = PL3_RW, .type = ARM_CP_SVE, 6909 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6910 .writefn = zcr_write, .raw_writefn = raw_write }, 6911 }; 6912 6913 #ifdef TARGET_AARCH64 6914 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6915 bool isread) 6916 { 6917 int el = arm_current_el(env); 6918 6919 if (el == 0) { 6920 uint64_t sctlr = arm_sctlr(env, el); 6921 if (!(sctlr & SCTLR_EnTP2)) { 6922 return CP_ACCESS_TRAP; 6923 } 6924 } 6925 /* TODO: FEAT_FGT */ 6926 if (el < 3 6927 && arm_feature(env, ARM_FEATURE_EL3) 6928 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6929 return CP_ACCESS_TRAP_EL3; 6930 } 6931 return CP_ACCESS_OK; 6932 } 6933 6934 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6935 bool isread) 6936 { 6937 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6938 if (arm_current_el(env) < 3 6939 && arm_feature(env, ARM_FEATURE_EL3) 6940 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6941 return CP_ACCESS_TRAP_EL3; 6942 } 6943 return CP_ACCESS_OK; 6944 } 6945 6946 /* ResetSVEState */ 6947 static void arm_reset_sve_state(CPUARMState *env) 6948 { 6949 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6950 /* Recall that FFR is stored as pregs[16]. */ 6951 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6952 vfp_set_fpcr(env, 0x0800009f); 6953 } 6954 6955 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6956 { 6957 uint64_t change = (env->svcr ^ new) & mask; 6958 6959 if (change == 0) { 6960 return; 6961 } 6962 env->svcr ^= change; 6963 6964 if (change & R_SVCR_SM_MASK) { 6965 arm_reset_sve_state(env); 6966 } 6967 6968 /* 6969 * ResetSMEState. 6970 * 6971 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6972 * on enable: while disabled, the storage is inaccessible and the 6973 * value does not matter. We're not saving the storage in vmstate 6974 * when disabled either. 6975 */ 6976 if (change & new & R_SVCR_ZA_MASK) { 6977 memset(env->zarray, 0, sizeof(env->zarray)); 6978 } 6979 6980 if (tcg_enabled()) { 6981 arm_rebuild_hflags(env); 6982 } 6983 } 6984 6985 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6986 uint64_t value) 6987 { 6988 aarch64_set_svcr(env, value, -1); 6989 } 6990 6991 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6992 uint64_t value) 6993 { 6994 int cur_el = arm_current_el(env); 6995 int old_len = sve_vqm1_for_el(env, cur_el); 6996 int new_len; 6997 6998 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6999 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 7000 raw_write(env, ri, value); 7001 7002 /* 7003 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 7004 * when SVL is widened (old values kept, or zeros). Choose to keep the 7005 * current values for simplicity. But for QEMU internals, we must still 7006 * apply the narrower SVL to the Zregs and Pregs -- see the comment 7007 * above aarch64_sve_narrow_vq. 7008 */ 7009 new_len = sve_vqm1_for_el(env, cur_el); 7010 if (new_len < old_len) { 7011 aarch64_sve_narrow_vq(env, new_len + 1); 7012 } 7013 } 7014 7015 static const ARMCPRegInfo sme_reginfo[] = { 7016 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 7017 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 7018 .access = PL0_RW, .accessfn = access_tpidr2, 7019 .fgt = FGT_NTPIDR2_EL0, 7020 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 7021 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 7022 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 7023 .access = PL0_RW, .type = ARM_CP_SME, 7024 .fieldoffset = offsetof(CPUARMState, svcr), 7025 .writefn = svcr_write, .raw_writefn = raw_write }, 7026 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 7027 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 7028 .access = PL1_RW, .type = ARM_CP_SME, 7029 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 7030 .writefn = smcr_write, .raw_writefn = raw_write }, 7031 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 7032 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 7033 .access = PL2_RW, .type = ARM_CP_SME, 7034 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 7035 .writefn = smcr_write, .raw_writefn = raw_write }, 7036 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 7037 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 7038 .access = PL3_RW, .type = ARM_CP_SME, 7039 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 7040 .writefn = smcr_write, .raw_writefn = raw_write }, 7041 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 7042 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 7043 .access = PL1_R, .accessfn = access_aa64_tid1, 7044 /* 7045 * IMPLEMENTOR = 0 (software) 7046 * REVISION = 0 (implementation defined) 7047 * SMPS = 0 (no streaming execution priority in QEMU) 7048 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 7049 */ 7050 .type = ARM_CP_CONST, .resetvalue = 0, }, 7051 /* 7052 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 7053 */ 7054 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 7055 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 7056 .access = PL1_RW, .accessfn = access_esm, 7057 .fgt = FGT_NSMPRI_EL1, 7058 .type = ARM_CP_CONST, .resetvalue = 0 }, 7059 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 7060 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 7061 .access = PL2_RW, .accessfn = access_esm, 7062 .type = ARM_CP_CONST, .resetvalue = 0 }, 7063 }; 7064 7065 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri, 7066 uint64_t value) 7067 { 7068 CPUState *cs = env_cpu(env); 7069 7070 tlb_flush(cs); 7071 } 7072 7073 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7074 uint64_t value) 7075 { 7076 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 7077 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 7078 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 7079 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 7080 7081 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 7082 } 7083 7084 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 7085 { 7086 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 7087 env_archcpu(env)->reset_l0gptsz); 7088 } 7089 7090 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri, 7091 uint64_t value) 7092 { 7093 CPUState *cs = env_cpu(env); 7094 7095 tlb_flush_all_cpus_synced(cs); 7096 } 7097 7098 static const ARMCPRegInfo rme_reginfo[] = { 7099 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 7100 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 7101 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 7102 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 7103 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 7104 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 7105 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 7106 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 7107 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 7108 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 7109 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64, 7110 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4, 7111 .access = PL3_W, .type = ARM_CP_NO_RAW, 7112 .writefn = tlbi_aa64_paall_write }, 7113 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64, 7114 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4, 7115 .access = PL3_W, .type = ARM_CP_NO_RAW, 7116 .writefn = tlbi_aa64_paallos_write }, 7117 /* 7118 * QEMU does not have a way to invalidate by physical address, thus 7119 * invalidating a range of physical addresses is accomplished by 7120 * flushing all tlb entries in the outer shareable domain, 7121 * just like PAALLOS. 7122 */ 7123 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64, 7124 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7, 7125 .access = PL3_W, .type = ARM_CP_NO_RAW, 7126 .writefn = tlbi_aa64_paallos_write }, 7127 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64, 7128 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3, 7129 .access = PL3_W, .type = ARM_CP_NO_RAW, 7130 .writefn = tlbi_aa64_paallos_write }, 7131 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 7132 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 7133 .access = PL3_W, .type = ARM_CP_NOP }, 7134 }; 7135 7136 static const ARMCPRegInfo rme_mte_reginfo[] = { 7137 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 7138 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 7139 .access = PL3_W, .type = ARM_CP_NOP }, 7140 }; 7141 #endif /* TARGET_AARCH64 */ 7142 7143 static void define_pmu_regs(ARMCPU *cpu) 7144 { 7145 /* 7146 * v7 performance monitor control register: same implementor 7147 * field as main ID register, and we implement four counters in 7148 * addition to the cycle count register. 7149 */ 7150 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 7151 ARMCPRegInfo pmcr = { 7152 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 7153 .access = PL0_RW, 7154 .fgt = FGT_PMCR_EL0, 7155 .type = ARM_CP_IO | ARM_CP_ALIAS, 7156 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 7157 .accessfn = pmreg_access, .writefn = pmcr_write, 7158 .raw_writefn = raw_write, 7159 }; 7160 ARMCPRegInfo pmcr64 = { 7161 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 7162 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 7163 .access = PL0_RW, .accessfn = pmreg_access, 7164 .fgt = FGT_PMCR_EL0, 7165 .type = ARM_CP_IO, 7166 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 7167 .resetvalue = cpu->isar.reset_pmcr_el0, 7168 .writefn = pmcr_write, .raw_writefn = raw_write, 7169 }; 7170 7171 define_one_arm_cp_reg(cpu, &pmcr); 7172 define_one_arm_cp_reg(cpu, &pmcr64); 7173 for (i = 0; i < pmcrn; i++) { 7174 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 7175 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 7176 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 7177 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 7178 ARMCPRegInfo pmev_regs[] = { 7179 { .name = pmevcntr_name, .cp = 15, .crn = 14, 7180 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7181 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7182 .fgt = FGT_PMEVCNTRN_EL0, 7183 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7184 .accessfn = pmreg_access_xevcntr }, 7185 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 7186 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 7187 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 7188 .type = ARM_CP_IO, 7189 .fgt = FGT_PMEVCNTRN_EL0, 7190 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7191 .raw_readfn = pmevcntr_rawread, 7192 .raw_writefn = pmevcntr_rawwrite }, 7193 { .name = pmevtyper_name, .cp = 15, .crn = 14, 7194 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7195 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7196 .fgt = FGT_PMEVTYPERN_EL0, 7197 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7198 .accessfn = pmreg_access }, 7199 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 7200 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 7201 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 7202 .fgt = FGT_PMEVTYPERN_EL0, 7203 .type = ARM_CP_IO, 7204 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7205 .raw_writefn = pmevtyper_rawwrite }, 7206 }; 7207 define_arm_cp_regs(cpu, pmev_regs); 7208 g_free(pmevcntr_name); 7209 g_free(pmevcntr_el0_name); 7210 g_free(pmevtyper_name); 7211 g_free(pmevtyper_el0_name); 7212 } 7213 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7214 ARMCPRegInfo v81_pmu_regs[] = { 7215 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7216 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7217 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7218 .fgt = FGT_PMCEIDN_EL0, 7219 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7220 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7221 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7222 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7223 .fgt = FGT_PMCEIDN_EL0, 7224 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7225 }; 7226 define_arm_cp_regs(cpu, v81_pmu_regs); 7227 } 7228 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7229 static const ARMCPRegInfo v84_pmmir = { 7230 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7231 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7232 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7233 .fgt = FGT_PMMIR_EL1, 7234 .resetvalue = 0 7235 }; 7236 define_one_arm_cp_reg(cpu, &v84_pmmir); 7237 } 7238 } 7239 7240 #ifndef CONFIG_USER_ONLY 7241 /* 7242 * We don't know until after realize whether there's a GICv3 7243 * attached, and that is what registers the gicv3 sysregs. 7244 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7245 * at runtime. 7246 */ 7247 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7248 { 7249 ARMCPU *cpu = env_archcpu(env); 7250 uint64_t pfr1 = cpu->isar.id_pfr1; 7251 7252 if (env->gicv3state) { 7253 pfr1 |= 1 << 28; 7254 } 7255 return pfr1; 7256 } 7257 7258 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7259 { 7260 ARMCPU *cpu = env_archcpu(env); 7261 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7262 7263 if (env->gicv3state) { 7264 pfr0 |= 1 << 24; 7265 } 7266 return pfr0; 7267 } 7268 #endif 7269 7270 /* 7271 * Shared logic between LORID and the rest of the LOR* registers. 7272 * Secure state exclusion has already been dealt with. 7273 */ 7274 static CPAccessResult access_lor_ns(CPUARMState *env, 7275 const ARMCPRegInfo *ri, bool isread) 7276 { 7277 int el = arm_current_el(env); 7278 7279 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7280 return CP_ACCESS_TRAP_EL2; 7281 } 7282 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7283 return CP_ACCESS_TRAP_EL3; 7284 } 7285 return CP_ACCESS_OK; 7286 } 7287 7288 static CPAccessResult access_lor_other(CPUARMState *env, 7289 const ARMCPRegInfo *ri, bool isread) 7290 { 7291 if (arm_is_secure_below_el3(env)) { 7292 /* Access denied in secure mode. */ 7293 return CP_ACCESS_TRAP; 7294 } 7295 return access_lor_ns(env, ri, isread); 7296 } 7297 7298 /* 7299 * A trivial implementation of ARMv8.1-LOR leaves all of these 7300 * registers fixed at 0, which indicates that there are zero 7301 * supported Limited Ordering regions. 7302 */ 7303 static const ARMCPRegInfo lor_reginfo[] = { 7304 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7305 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7306 .access = PL1_RW, .accessfn = access_lor_other, 7307 .fgt = FGT_LORSA_EL1, 7308 .type = ARM_CP_CONST, .resetvalue = 0 }, 7309 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7310 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7311 .access = PL1_RW, .accessfn = access_lor_other, 7312 .fgt = FGT_LOREA_EL1, 7313 .type = ARM_CP_CONST, .resetvalue = 0 }, 7314 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7315 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7316 .access = PL1_RW, .accessfn = access_lor_other, 7317 .fgt = FGT_LORN_EL1, 7318 .type = ARM_CP_CONST, .resetvalue = 0 }, 7319 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7320 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7321 .access = PL1_RW, .accessfn = access_lor_other, 7322 .fgt = FGT_LORC_EL1, 7323 .type = ARM_CP_CONST, .resetvalue = 0 }, 7324 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7325 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7326 .access = PL1_R, .accessfn = access_lor_ns, 7327 .fgt = FGT_LORID_EL1, 7328 .type = ARM_CP_CONST, .resetvalue = 0 }, 7329 }; 7330 7331 #ifdef TARGET_AARCH64 7332 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7333 bool isread) 7334 { 7335 int el = arm_current_el(env); 7336 7337 if (el < 2 && 7338 arm_is_el2_enabled(env) && 7339 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7340 return CP_ACCESS_TRAP_EL2; 7341 } 7342 if (el < 3 && 7343 arm_feature(env, ARM_FEATURE_EL3) && 7344 !(env->cp15.scr_el3 & SCR_APK)) { 7345 return CP_ACCESS_TRAP_EL3; 7346 } 7347 return CP_ACCESS_OK; 7348 } 7349 7350 static const ARMCPRegInfo pauth_reginfo[] = { 7351 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7352 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7353 .access = PL1_RW, .accessfn = access_pauth, 7354 .fgt = FGT_APDAKEY, 7355 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7356 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7357 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7358 .access = PL1_RW, .accessfn = access_pauth, 7359 .fgt = FGT_APDAKEY, 7360 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7361 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7362 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7363 .access = PL1_RW, .accessfn = access_pauth, 7364 .fgt = FGT_APDBKEY, 7365 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7366 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7367 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7368 .access = PL1_RW, .accessfn = access_pauth, 7369 .fgt = FGT_APDBKEY, 7370 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7371 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7372 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7373 .access = PL1_RW, .accessfn = access_pauth, 7374 .fgt = FGT_APGAKEY, 7375 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7376 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7377 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7378 .access = PL1_RW, .accessfn = access_pauth, 7379 .fgt = FGT_APGAKEY, 7380 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7381 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7382 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7383 .access = PL1_RW, .accessfn = access_pauth, 7384 .fgt = FGT_APIAKEY, 7385 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7386 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7387 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7388 .access = PL1_RW, .accessfn = access_pauth, 7389 .fgt = FGT_APIAKEY, 7390 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7391 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7392 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7393 .access = PL1_RW, .accessfn = access_pauth, 7394 .fgt = FGT_APIBKEY, 7395 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7396 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7397 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7398 .access = PL1_RW, .accessfn = access_pauth, 7399 .fgt = FGT_APIBKEY, 7400 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7401 }; 7402 7403 static const ARMCPRegInfo tlbirange_reginfo[] = { 7404 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7405 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7406 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7407 .fgt = FGT_TLBIRVAE1IS, 7408 .writefn = tlbi_aa64_rvae1is_write }, 7409 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7410 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7411 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7412 .fgt = FGT_TLBIRVAAE1IS, 7413 .writefn = tlbi_aa64_rvae1is_write }, 7414 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7415 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7416 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7417 .fgt = FGT_TLBIRVALE1IS, 7418 .writefn = tlbi_aa64_rvae1is_write }, 7419 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7420 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7421 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7422 .fgt = FGT_TLBIRVAALE1IS, 7423 .writefn = tlbi_aa64_rvae1is_write }, 7424 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7425 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7426 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7427 .fgt = FGT_TLBIRVAE1OS, 7428 .writefn = tlbi_aa64_rvae1is_write }, 7429 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7430 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7431 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7432 .fgt = FGT_TLBIRVAAE1OS, 7433 .writefn = tlbi_aa64_rvae1is_write }, 7434 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7435 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7436 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7437 .fgt = FGT_TLBIRVALE1OS, 7438 .writefn = tlbi_aa64_rvae1is_write }, 7439 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7440 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7441 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7442 .fgt = FGT_TLBIRVAALE1OS, 7443 .writefn = tlbi_aa64_rvae1is_write }, 7444 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7445 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7446 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7447 .fgt = FGT_TLBIRVAE1, 7448 .writefn = tlbi_aa64_rvae1_write }, 7449 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7450 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7451 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7452 .fgt = FGT_TLBIRVAAE1, 7453 .writefn = tlbi_aa64_rvae1_write }, 7454 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7455 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7456 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7457 .fgt = FGT_TLBIRVALE1, 7458 .writefn = tlbi_aa64_rvae1_write }, 7459 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7460 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7461 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7462 .fgt = FGT_TLBIRVAALE1, 7463 .writefn = tlbi_aa64_rvae1_write }, 7464 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7465 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7466 .access = PL2_W, .type = ARM_CP_NO_RAW, 7467 .writefn = tlbi_aa64_ripas2e1is_write }, 7468 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7469 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7470 .access = PL2_W, .type = ARM_CP_NO_RAW, 7471 .writefn = tlbi_aa64_ripas2e1is_write }, 7472 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7473 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7474 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7475 .writefn = tlbi_aa64_rvae2is_write }, 7476 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7477 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7478 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7479 .writefn = tlbi_aa64_rvae2is_write }, 7480 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7481 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7482 .access = PL2_W, .type = ARM_CP_NO_RAW, 7483 .writefn = tlbi_aa64_ripas2e1_write }, 7484 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7485 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7486 .access = PL2_W, .type = ARM_CP_NO_RAW, 7487 .writefn = tlbi_aa64_ripas2e1_write }, 7488 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7489 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7490 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7491 .writefn = tlbi_aa64_rvae2is_write }, 7492 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7493 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7494 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7495 .writefn = tlbi_aa64_rvae2is_write }, 7496 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7497 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7498 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7499 .writefn = tlbi_aa64_rvae2_write }, 7500 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7501 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7502 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7503 .writefn = tlbi_aa64_rvae2_write }, 7504 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7505 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7506 .access = PL3_W, .type = ARM_CP_NO_RAW, 7507 .writefn = tlbi_aa64_rvae3is_write }, 7508 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7509 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7510 .access = PL3_W, .type = ARM_CP_NO_RAW, 7511 .writefn = tlbi_aa64_rvae3is_write }, 7512 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7513 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7514 .access = PL3_W, .type = ARM_CP_NO_RAW, 7515 .writefn = tlbi_aa64_rvae3is_write }, 7516 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7517 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7518 .access = PL3_W, .type = ARM_CP_NO_RAW, 7519 .writefn = tlbi_aa64_rvae3is_write }, 7520 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7521 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7522 .access = PL3_W, .type = ARM_CP_NO_RAW, 7523 .writefn = tlbi_aa64_rvae3_write }, 7524 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7525 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7526 .access = PL3_W, .type = ARM_CP_NO_RAW, 7527 .writefn = tlbi_aa64_rvae3_write }, 7528 }; 7529 7530 static const ARMCPRegInfo tlbios_reginfo[] = { 7531 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7532 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7533 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7534 .fgt = FGT_TLBIVMALLE1OS, 7535 .writefn = tlbi_aa64_vmalle1is_write }, 7536 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7537 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7538 .fgt = FGT_TLBIVAE1OS, 7539 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7540 .writefn = tlbi_aa64_vae1is_write }, 7541 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7542 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7543 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7544 .fgt = FGT_TLBIASIDE1OS, 7545 .writefn = tlbi_aa64_vmalle1is_write }, 7546 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7547 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7548 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7549 .fgt = FGT_TLBIVAAE1OS, 7550 .writefn = tlbi_aa64_vae1is_write }, 7551 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7552 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7553 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7554 .fgt = FGT_TLBIVALE1OS, 7555 .writefn = tlbi_aa64_vae1is_write }, 7556 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7557 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7558 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7559 .fgt = FGT_TLBIVAALE1OS, 7560 .writefn = tlbi_aa64_vae1is_write }, 7561 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7562 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7563 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7564 .writefn = tlbi_aa64_alle2is_write }, 7565 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7566 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7567 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7568 .writefn = tlbi_aa64_vae2is_write }, 7569 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7570 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7571 .access = PL2_W, .type = ARM_CP_NO_RAW, 7572 .writefn = tlbi_aa64_alle1is_write }, 7573 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7574 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7575 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7576 .writefn = tlbi_aa64_vae2is_write }, 7577 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7578 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7579 .access = PL2_W, .type = ARM_CP_NO_RAW, 7580 .writefn = tlbi_aa64_alle1is_write }, 7581 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7582 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7583 .access = PL2_W, .type = ARM_CP_NOP }, 7584 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7585 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7586 .access = PL2_W, .type = ARM_CP_NOP }, 7587 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7588 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7589 .access = PL2_W, .type = ARM_CP_NOP }, 7590 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7591 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7592 .access = PL2_W, .type = ARM_CP_NOP }, 7593 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7594 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7595 .access = PL3_W, .type = ARM_CP_NO_RAW, 7596 .writefn = tlbi_aa64_alle3is_write }, 7597 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7598 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7599 .access = PL3_W, .type = ARM_CP_NO_RAW, 7600 .writefn = tlbi_aa64_vae3is_write }, 7601 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7602 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7603 .access = PL3_W, .type = ARM_CP_NO_RAW, 7604 .writefn = tlbi_aa64_vae3is_write }, 7605 }; 7606 7607 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7608 { 7609 Error *err = NULL; 7610 uint64_t ret; 7611 7612 /* Success sets NZCV = 0000. */ 7613 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7614 7615 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7616 /* 7617 * ??? Failed, for unknown reasons in the crypto subsystem. 7618 * The best we can do is log the reason and return the 7619 * timed-out indication to the guest. There is no reason 7620 * we know to expect this failure to be transitory, so the 7621 * guest may well hang retrying the operation. 7622 */ 7623 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7624 ri->name, error_get_pretty(err)); 7625 error_free(err); 7626 7627 env->ZF = 0; /* NZCF = 0100 */ 7628 return 0; 7629 } 7630 return ret; 7631 } 7632 7633 /* We do not support re-seeding, so the two registers operate the same. */ 7634 static const ARMCPRegInfo rndr_reginfo[] = { 7635 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7636 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7637 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7638 .access = PL0_R, .readfn = rndr_readfn }, 7639 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7640 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7641 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7642 .access = PL0_R, .readfn = rndr_readfn }, 7643 }; 7644 7645 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7646 uint64_t value) 7647 { 7648 ARMCPU *cpu = env_archcpu(env); 7649 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7650 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7651 uint64_t vaddr_in = (uint64_t) value; 7652 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7653 void *haddr; 7654 int mem_idx = cpu_mmu_index(env, false); 7655 7656 /* This won't be crossing page boundaries */ 7657 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7658 if (haddr) { 7659 #ifndef CONFIG_USER_ONLY 7660 7661 ram_addr_t offset; 7662 MemoryRegion *mr; 7663 7664 /* RCU lock is already being held */ 7665 mr = memory_region_from_host(haddr, &offset); 7666 7667 if (mr) { 7668 memory_region_writeback(mr, offset, dline_size); 7669 } 7670 #endif /*CONFIG_USER_ONLY*/ 7671 } 7672 } 7673 7674 static const ARMCPRegInfo dcpop_reg[] = { 7675 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7676 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7677 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7678 .fgt = FGT_DCCVAP, 7679 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7680 }; 7681 7682 static const ARMCPRegInfo dcpodp_reg[] = { 7683 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7684 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7685 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7686 .fgt = FGT_DCCVADP, 7687 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7688 }; 7689 7690 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7691 bool isread) 7692 { 7693 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7694 return CP_ACCESS_TRAP_EL2; 7695 } 7696 7697 return CP_ACCESS_OK; 7698 } 7699 7700 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7701 bool isread) 7702 { 7703 int el = arm_current_el(env); 7704 7705 if (el < 2 && arm_is_el2_enabled(env)) { 7706 uint64_t hcr = arm_hcr_el2_eff(env); 7707 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7708 return CP_ACCESS_TRAP_EL2; 7709 } 7710 } 7711 if (el < 3 && 7712 arm_feature(env, ARM_FEATURE_EL3) && 7713 !(env->cp15.scr_el3 & SCR_ATA)) { 7714 return CP_ACCESS_TRAP_EL3; 7715 } 7716 return CP_ACCESS_OK; 7717 } 7718 7719 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7720 { 7721 return env->pstate & PSTATE_TCO; 7722 } 7723 7724 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7725 { 7726 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7727 } 7728 7729 static const ARMCPRegInfo mte_reginfo[] = { 7730 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7731 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7732 .access = PL1_RW, .accessfn = access_mte, 7733 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7734 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7735 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7736 .access = PL1_RW, .accessfn = access_mte, 7737 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7738 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7739 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7740 .access = PL2_RW, .accessfn = access_mte, 7741 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7742 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7743 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7744 .access = PL3_RW, 7745 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7746 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7747 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7748 .access = PL1_RW, .accessfn = access_mte, 7749 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7750 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7751 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7752 .access = PL1_RW, .accessfn = access_mte, 7753 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7754 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7755 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7756 .type = ARM_CP_NO_RAW, 7757 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7758 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7759 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7760 .type = ARM_CP_NOP, .access = PL1_W, 7761 .fgt = FGT_DCIVAC, 7762 .accessfn = aa64_cacheop_poc_access }, 7763 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7764 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7765 .fgt = FGT_DCISW, 7766 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7767 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7768 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7769 .type = ARM_CP_NOP, .access = PL1_W, 7770 .fgt = FGT_DCIVAC, 7771 .accessfn = aa64_cacheop_poc_access }, 7772 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7773 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7774 .fgt = FGT_DCISW, 7775 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7776 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7777 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7778 .fgt = FGT_DCCSW, 7779 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7780 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7781 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7782 .fgt = FGT_DCCSW, 7783 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7784 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7785 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7786 .fgt = FGT_DCCISW, 7787 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7788 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7789 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7790 .fgt = FGT_DCCISW, 7791 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7792 }; 7793 7794 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7795 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7796 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7797 .type = ARM_CP_CONST, .access = PL0_RW, }, 7798 }; 7799 7800 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7801 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7802 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7803 .type = ARM_CP_NOP, .access = PL0_W, 7804 .fgt = FGT_DCCVAC, 7805 .accessfn = aa64_cacheop_poc_access }, 7806 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7807 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7808 .type = ARM_CP_NOP, .access = PL0_W, 7809 .fgt = FGT_DCCVAC, 7810 .accessfn = aa64_cacheop_poc_access }, 7811 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7812 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7813 .type = ARM_CP_NOP, .access = PL0_W, 7814 .fgt = FGT_DCCVAP, 7815 .accessfn = aa64_cacheop_poc_access }, 7816 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7817 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7818 .type = ARM_CP_NOP, .access = PL0_W, 7819 .fgt = FGT_DCCVAP, 7820 .accessfn = aa64_cacheop_poc_access }, 7821 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7822 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7823 .type = ARM_CP_NOP, .access = PL0_W, 7824 .fgt = FGT_DCCVADP, 7825 .accessfn = aa64_cacheop_poc_access }, 7826 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7827 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7828 .type = ARM_CP_NOP, .access = PL0_W, 7829 .fgt = FGT_DCCVADP, 7830 .accessfn = aa64_cacheop_poc_access }, 7831 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7832 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7833 .type = ARM_CP_NOP, .access = PL0_W, 7834 .fgt = FGT_DCCIVAC, 7835 .accessfn = aa64_cacheop_poc_access }, 7836 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7837 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7838 .type = ARM_CP_NOP, .access = PL0_W, 7839 .fgt = FGT_DCCIVAC, 7840 .accessfn = aa64_cacheop_poc_access }, 7841 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7842 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7843 .access = PL0_W, .type = ARM_CP_DC_GVA, 7844 #ifndef CONFIG_USER_ONLY 7845 /* Avoid overhead of an access check that always passes in user-mode */ 7846 .accessfn = aa64_zva_access, 7847 .fgt = FGT_DCZVA, 7848 #endif 7849 }, 7850 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7851 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7852 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7853 #ifndef CONFIG_USER_ONLY 7854 /* Avoid overhead of an access check that always passes in user-mode */ 7855 .accessfn = aa64_zva_access, 7856 .fgt = FGT_DCZVA, 7857 #endif 7858 }, 7859 }; 7860 7861 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7862 bool isread) 7863 { 7864 uint64_t hcr = arm_hcr_el2_eff(env); 7865 int el = arm_current_el(env); 7866 7867 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7868 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7869 if (hcr & HCR_TGE) { 7870 return CP_ACCESS_TRAP_EL2; 7871 } 7872 return CP_ACCESS_TRAP; 7873 } 7874 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7875 return CP_ACCESS_TRAP_EL2; 7876 } 7877 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7878 return CP_ACCESS_TRAP_EL2; 7879 } 7880 if (el < 3 7881 && arm_feature(env, ARM_FEATURE_EL3) 7882 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7883 return CP_ACCESS_TRAP_EL3; 7884 } 7885 return CP_ACCESS_OK; 7886 } 7887 7888 static const ARMCPRegInfo scxtnum_reginfo[] = { 7889 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7890 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7891 .access = PL0_RW, .accessfn = access_scxtnum, 7892 .fgt = FGT_SCXTNUM_EL0, 7893 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7894 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7895 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7896 .access = PL1_RW, .accessfn = access_scxtnum, 7897 .fgt = FGT_SCXTNUM_EL1, 7898 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7899 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7900 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7901 .access = PL2_RW, .accessfn = access_scxtnum, 7902 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7903 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7904 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7905 .access = PL3_RW, 7906 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7907 }; 7908 7909 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7910 bool isread) 7911 { 7912 if (arm_current_el(env) == 2 && 7913 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7914 return CP_ACCESS_TRAP_EL3; 7915 } 7916 return CP_ACCESS_OK; 7917 } 7918 7919 static const ARMCPRegInfo fgt_reginfo[] = { 7920 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7921 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7922 .access = PL2_RW, .accessfn = access_fgt, 7923 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7924 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7925 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7926 .access = PL2_RW, .accessfn = access_fgt, 7927 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7928 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7929 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7930 .access = PL2_RW, .accessfn = access_fgt, 7931 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7932 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7933 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7934 .access = PL2_RW, .accessfn = access_fgt, 7935 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7936 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7937 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7938 .access = PL2_RW, .accessfn = access_fgt, 7939 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7940 }; 7941 #endif /* TARGET_AARCH64 */ 7942 7943 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7944 bool isread) 7945 { 7946 int el = arm_current_el(env); 7947 7948 if (el == 0) { 7949 uint64_t sctlr = arm_sctlr(env, el); 7950 if (!(sctlr & SCTLR_EnRCTX)) { 7951 return CP_ACCESS_TRAP; 7952 } 7953 } else if (el == 1) { 7954 uint64_t hcr = arm_hcr_el2_eff(env); 7955 if (hcr & HCR_NV) { 7956 return CP_ACCESS_TRAP_EL2; 7957 } 7958 } 7959 return CP_ACCESS_OK; 7960 } 7961 7962 static const ARMCPRegInfo predinv_reginfo[] = { 7963 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7964 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7965 .fgt = FGT_CFPRCTX, 7966 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7967 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7968 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7969 .fgt = FGT_DVPRCTX, 7970 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7971 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7972 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7973 .fgt = FGT_CPPRCTX, 7974 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7975 /* 7976 * Note the AArch32 opcodes have a different OPC1. 7977 */ 7978 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7979 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7980 .fgt = FGT_CFPRCTX, 7981 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7982 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7983 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7984 .fgt = FGT_DVPRCTX, 7985 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7986 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7987 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7988 .fgt = FGT_CPPRCTX, 7989 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7990 }; 7991 7992 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7993 { 7994 /* Read the high 32 bits of the current CCSIDR */ 7995 return extract64(ccsidr_read(env, ri), 32, 32); 7996 } 7997 7998 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7999 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 8000 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 8001 .access = PL1_R, 8002 .accessfn = access_tid4, 8003 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 8004 }; 8005 8006 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8007 bool isread) 8008 { 8009 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 8010 return CP_ACCESS_TRAP_EL2; 8011 } 8012 8013 return CP_ACCESS_OK; 8014 } 8015 8016 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8017 bool isread) 8018 { 8019 if (arm_feature(env, ARM_FEATURE_V8)) { 8020 return access_aa64_tid3(env, ri, isread); 8021 } 8022 8023 return CP_ACCESS_OK; 8024 } 8025 8026 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 8027 bool isread) 8028 { 8029 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 8030 return CP_ACCESS_TRAP_EL2; 8031 } 8032 8033 return CP_ACCESS_OK; 8034 } 8035 8036 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 8037 const ARMCPRegInfo *ri, bool isread) 8038 { 8039 /* 8040 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 8041 * in v7A, not in v8A. 8042 */ 8043 if (!arm_feature(env, ARM_FEATURE_V8) && 8044 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 8045 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 8046 return CP_ACCESS_TRAP_EL2; 8047 } 8048 return CP_ACCESS_OK; 8049 } 8050 8051 static const ARMCPRegInfo jazelle_regs[] = { 8052 { .name = "JIDR", 8053 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 8054 .access = PL1_R, .accessfn = access_jazelle, 8055 .type = ARM_CP_CONST, .resetvalue = 0 }, 8056 { .name = "JOSCR", 8057 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 8058 .accessfn = access_joscr_jmcr, 8059 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8060 { .name = "JMCR", 8061 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 8062 .accessfn = access_joscr_jmcr, 8063 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8064 }; 8065 8066 static const ARMCPRegInfo contextidr_el2 = { 8067 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 8068 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 8069 .access = PL2_RW, 8070 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 8071 }; 8072 8073 static const ARMCPRegInfo vhe_reginfo[] = { 8074 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 8075 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 8076 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 8077 .raw_writefn = raw_write, 8078 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 8079 #ifndef CONFIG_USER_ONLY 8080 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 8081 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 8082 .fieldoffset = 8083 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 8084 .type = ARM_CP_IO, .access = PL2_RW, 8085 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 8086 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 8087 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 8088 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 8089 .resetfn = gt_hv_timer_reset, 8090 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 8091 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 8092 .type = ARM_CP_IO, 8093 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 8094 .access = PL2_RW, 8095 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 8096 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 8097 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 8098 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 8099 .type = ARM_CP_IO | ARM_CP_ALIAS, 8100 .access = PL2_RW, .accessfn = e2h_access, 8101 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 8102 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 8103 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 8104 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 8105 .type = ARM_CP_IO | ARM_CP_ALIAS, 8106 .access = PL2_RW, .accessfn = e2h_access, 8107 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 8108 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 8109 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8110 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 8111 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8112 .access = PL2_RW, .accessfn = e2h_access, 8113 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 8114 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8115 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 8116 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8117 .access = PL2_RW, .accessfn = e2h_access, 8118 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 8119 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8120 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 8121 .type = ARM_CP_IO | ARM_CP_ALIAS, 8122 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 8123 .access = PL2_RW, .accessfn = e2h_access, 8124 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 8125 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8126 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 8127 .type = ARM_CP_IO | ARM_CP_ALIAS, 8128 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 8129 .access = PL2_RW, .accessfn = e2h_access, 8130 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 8131 #endif 8132 }; 8133 8134 #ifndef CONFIG_USER_ONLY 8135 static const ARMCPRegInfo ats1e1_reginfo[] = { 8136 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 8137 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8138 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8139 .fgt = FGT_ATS1E1RP, 8140 .accessfn = at_e012_access, .writefn = ats_write64 }, 8141 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 8142 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8143 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8144 .fgt = FGT_ATS1E1WP, 8145 .accessfn = at_e012_access, .writefn = ats_write64 }, 8146 }; 8147 8148 static const ARMCPRegInfo ats1cp_reginfo[] = { 8149 { .name = "ATS1CPRP", 8150 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8151 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8152 .writefn = ats_write }, 8153 { .name = "ATS1CPWP", 8154 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8155 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8156 .writefn = ats_write }, 8157 }; 8158 #endif 8159 8160 /* 8161 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 8162 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 8163 * is non-zero, which is never for ARMv7, optionally in ARMv8 8164 * and mandatorily for ARMv8.2 and up. 8165 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 8166 * implementation is RAZ/WI we can ignore this detail, as we 8167 * do for ACTLR. 8168 */ 8169 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 8170 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 8171 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 8172 .access = PL1_RW, .accessfn = access_tacr, 8173 .type = ARM_CP_CONST, .resetvalue = 0 }, 8174 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 8175 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 8176 .access = PL2_RW, .type = ARM_CP_CONST, 8177 .resetvalue = 0 }, 8178 }; 8179 8180 void register_cp_regs_for_features(ARMCPU *cpu) 8181 { 8182 /* Register all the coprocessor registers based on feature bits */ 8183 CPUARMState *env = &cpu->env; 8184 if (arm_feature(env, ARM_FEATURE_M)) { 8185 /* M profile has no coprocessor registers */ 8186 return; 8187 } 8188 8189 define_arm_cp_regs(cpu, cp_reginfo); 8190 if (!arm_feature(env, ARM_FEATURE_V8)) { 8191 /* 8192 * Must go early as it is full of wildcards that may be 8193 * overridden by later definitions. 8194 */ 8195 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 8196 } 8197 8198 if (arm_feature(env, ARM_FEATURE_V6)) { 8199 /* The ID registers all have impdef reset values */ 8200 ARMCPRegInfo v6_idregs[] = { 8201 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 8202 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 8203 .access = PL1_R, .type = ARM_CP_CONST, 8204 .accessfn = access_aa32_tid3, 8205 .resetvalue = cpu->isar.id_pfr0 }, 8206 /* 8207 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 8208 * the value of the GIC field until after we define these regs. 8209 */ 8210 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8211 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8212 .access = PL1_R, .type = ARM_CP_NO_RAW, 8213 .accessfn = access_aa32_tid3, 8214 #ifdef CONFIG_USER_ONLY 8215 .type = ARM_CP_CONST, 8216 .resetvalue = cpu->isar.id_pfr1, 8217 #else 8218 .type = ARM_CP_NO_RAW, 8219 .accessfn = access_aa32_tid3, 8220 .readfn = id_pfr1_read, 8221 .writefn = arm_cp_write_ignore 8222 #endif 8223 }, 8224 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8225 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8226 .access = PL1_R, .type = ARM_CP_CONST, 8227 .accessfn = access_aa32_tid3, 8228 .resetvalue = cpu->isar.id_dfr0 }, 8229 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8230 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8231 .access = PL1_R, .type = ARM_CP_CONST, 8232 .accessfn = access_aa32_tid3, 8233 .resetvalue = cpu->id_afr0 }, 8234 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8235 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8236 .access = PL1_R, .type = ARM_CP_CONST, 8237 .accessfn = access_aa32_tid3, 8238 .resetvalue = cpu->isar.id_mmfr0 }, 8239 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8240 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8241 .access = PL1_R, .type = ARM_CP_CONST, 8242 .accessfn = access_aa32_tid3, 8243 .resetvalue = cpu->isar.id_mmfr1 }, 8244 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8245 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8246 .access = PL1_R, .type = ARM_CP_CONST, 8247 .accessfn = access_aa32_tid3, 8248 .resetvalue = cpu->isar.id_mmfr2 }, 8249 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8250 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8251 .access = PL1_R, .type = ARM_CP_CONST, 8252 .accessfn = access_aa32_tid3, 8253 .resetvalue = cpu->isar.id_mmfr3 }, 8254 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8255 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8256 .access = PL1_R, .type = ARM_CP_CONST, 8257 .accessfn = access_aa32_tid3, 8258 .resetvalue = cpu->isar.id_isar0 }, 8259 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8260 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8261 .access = PL1_R, .type = ARM_CP_CONST, 8262 .accessfn = access_aa32_tid3, 8263 .resetvalue = cpu->isar.id_isar1 }, 8264 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8265 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8266 .access = PL1_R, .type = ARM_CP_CONST, 8267 .accessfn = access_aa32_tid3, 8268 .resetvalue = cpu->isar.id_isar2 }, 8269 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8270 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8271 .access = PL1_R, .type = ARM_CP_CONST, 8272 .accessfn = access_aa32_tid3, 8273 .resetvalue = cpu->isar.id_isar3 }, 8274 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8275 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8276 .access = PL1_R, .type = ARM_CP_CONST, 8277 .accessfn = access_aa32_tid3, 8278 .resetvalue = cpu->isar.id_isar4 }, 8279 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8280 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8281 .access = PL1_R, .type = ARM_CP_CONST, 8282 .accessfn = access_aa32_tid3, 8283 .resetvalue = cpu->isar.id_isar5 }, 8284 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8285 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8286 .access = PL1_R, .type = ARM_CP_CONST, 8287 .accessfn = access_aa32_tid3, 8288 .resetvalue = cpu->isar.id_mmfr4 }, 8289 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8290 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8291 .access = PL1_R, .type = ARM_CP_CONST, 8292 .accessfn = access_aa32_tid3, 8293 .resetvalue = cpu->isar.id_isar6 }, 8294 }; 8295 define_arm_cp_regs(cpu, v6_idregs); 8296 define_arm_cp_regs(cpu, v6_cp_reginfo); 8297 } else { 8298 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8299 } 8300 if (arm_feature(env, ARM_FEATURE_V6K)) { 8301 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8302 } 8303 if (arm_feature(env, ARM_FEATURE_V7MP) && 8304 !arm_feature(env, ARM_FEATURE_PMSA)) { 8305 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8306 } 8307 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8308 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8309 } 8310 if (arm_feature(env, ARM_FEATURE_V7)) { 8311 ARMCPRegInfo clidr = { 8312 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8313 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8314 .access = PL1_R, .type = ARM_CP_CONST, 8315 .accessfn = access_tid4, 8316 .fgt = FGT_CLIDR_EL1, 8317 .resetvalue = cpu->clidr 8318 }; 8319 define_one_arm_cp_reg(cpu, &clidr); 8320 define_arm_cp_regs(cpu, v7_cp_reginfo); 8321 define_debug_regs(cpu); 8322 define_pmu_regs(cpu); 8323 } else { 8324 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8325 } 8326 if (arm_feature(env, ARM_FEATURE_V8)) { 8327 /* 8328 * v8 ID registers, which all have impdef reset values. 8329 * Note that within the ID register ranges the unused slots 8330 * must all RAZ, not UNDEF; future architecture versions may 8331 * define new registers here. 8332 * ID registers which are AArch64 views of the AArch32 ID registers 8333 * which already existed in v6 and v7 are handled elsewhere, 8334 * in v6_idregs[]. 8335 */ 8336 int i; 8337 ARMCPRegInfo v8_idregs[] = { 8338 /* 8339 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8340 * emulation because we don't know the right value for the 8341 * GIC field until after we define these regs. 8342 */ 8343 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8344 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8345 .access = PL1_R, 8346 #ifdef CONFIG_USER_ONLY 8347 .type = ARM_CP_CONST, 8348 .resetvalue = cpu->isar.id_aa64pfr0 8349 #else 8350 .type = ARM_CP_NO_RAW, 8351 .accessfn = access_aa64_tid3, 8352 .readfn = id_aa64pfr0_read, 8353 .writefn = arm_cp_write_ignore 8354 #endif 8355 }, 8356 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8357 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8358 .access = PL1_R, .type = ARM_CP_CONST, 8359 .accessfn = access_aa64_tid3, 8360 .resetvalue = cpu->isar.id_aa64pfr1}, 8361 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8362 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8363 .access = PL1_R, .type = ARM_CP_CONST, 8364 .accessfn = access_aa64_tid3, 8365 .resetvalue = 0 }, 8366 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8367 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8368 .access = PL1_R, .type = ARM_CP_CONST, 8369 .accessfn = access_aa64_tid3, 8370 .resetvalue = 0 }, 8371 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8372 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8373 .access = PL1_R, .type = ARM_CP_CONST, 8374 .accessfn = access_aa64_tid3, 8375 .resetvalue = cpu->isar.id_aa64zfr0 }, 8376 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8377 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8378 .access = PL1_R, .type = ARM_CP_CONST, 8379 .accessfn = access_aa64_tid3, 8380 .resetvalue = cpu->isar.id_aa64smfr0 }, 8381 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8382 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8383 .access = PL1_R, .type = ARM_CP_CONST, 8384 .accessfn = access_aa64_tid3, 8385 .resetvalue = 0 }, 8386 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8387 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8388 .access = PL1_R, .type = ARM_CP_CONST, 8389 .accessfn = access_aa64_tid3, 8390 .resetvalue = 0 }, 8391 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8392 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8393 .access = PL1_R, .type = ARM_CP_CONST, 8394 .accessfn = access_aa64_tid3, 8395 .resetvalue = cpu->isar.id_aa64dfr0 }, 8396 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8397 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8398 .access = PL1_R, .type = ARM_CP_CONST, 8399 .accessfn = access_aa64_tid3, 8400 .resetvalue = cpu->isar.id_aa64dfr1 }, 8401 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8402 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8403 .access = PL1_R, .type = ARM_CP_CONST, 8404 .accessfn = access_aa64_tid3, 8405 .resetvalue = 0 }, 8406 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8407 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8408 .access = PL1_R, .type = ARM_CP_CONST, 8409 .accessfn = access_aa64_tid3, 8410 .resetvalue = 0 }, 8411 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8412 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8413 .access = PL1_R, .type = ARM_CP_CONST, 8414 .accessfn = access_aa64_tid3, 8415 .resetvalue = cpu->id_aa64afr0 }, 8416 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8417 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8418 .access = PL1_R, .type = ARM_CP_CONST, 8419 .accessfn = access_aa64_tid3, 8420 .resetvalue = cpu->id_aa64afr1 }, 8421 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8422 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8423 .access = PL1_R, .type = ARM_CP_CONST, 8424 .accessfn = access_aa64_tid3, 8425 .resetvalue = 0 }, 8426 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8427 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8428 .access = PL1_R, .type = ARM_CP_CONST, 8429 .accessfn = access_aa64_tid3, 8430 .resetvalue = 0 }, 8431 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8432 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8433 .access = PL1_R, .type = ARM_CP_CONST, 8434 .accessfn = access_aa64_tid3, 8435 .resetvalue = cpu->isar.id_aa64isar0 }, 8436 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8437 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8438 .access = PL1_R, .type = ARM_CP_CONST, 8439 .accessfn = access_aa64_tid3, 8440 .resetvalue = cpu->isar.id_aa64isar1 }, 8441 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 8442 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8443 .access = PL1_R, .type = ARM_CP_CONST, 8444 .accessfn = access_aa64_tid3, 8445 .resetvalue = cpu->isar.id_aa64isar2 }, 8446 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8447 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8448 .access = PL1_R, .type = ARM_CP_CONST, 8449 .accessfn = access_aa64_tid3, 8450 .resetvalue = 0 }, 8451 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8452 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8453 .access = PL1_R, .type = ARM_CP_CONST, 8454 .accessfn = access_aa64_tid3, 8455 .resetvalue = 0 }, 8456 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8457 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8458 .access = PL1_R, .type = ARM_CP_CONST, 8459 .accessfn = access_aa64_tid3, 8460 .resetvalue = 0 }, 8461 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8462 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8463 .access = PL1_R, .type = ARM_CP_CONST, 8464 .accessfn = access_aa64_tid3, 8465 .resetvalue = 0 }, 8466 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8467 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8468 .access = PL1_R, .type = ARM_CP_CONST, 8469 .accessfn = access_aa64_tid3, 8470 .resetvalue = 0 }, 8471 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8472 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8473 .access = PL1_R, .type = ARM_CP_CONST, 8474 .accessfn = access_aa64_tid3, 8475 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8476 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8477 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8478 .access = PL1_R, .type = ARM_CP_CONST, 8479 .accessfn = access_aa64_tid3, 8480 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8481 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8482 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8483 .access = PL1_R, .type = ARM_CP_CONST, 8484 .accessfn = access_aa64_tid3, 8485 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8486 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8487 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8488 .access = PL1_R, .type = ARM_CP_CONST, 8489 .accessfn = access_aa64_tid3, 8490 .resetvalue = 0 }, 8491 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8492 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8493 .access = PL1_R, .type = ARM_CP_CONST, 8494 .accessfn = access_aa64_tid3, 8495 .resetvalue = 0 }, 8496 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8497 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8498 .access = PL1_R, .type = ARM_CP_CONST, 8499 .accessfn = access_aa64_tid3, 8500 .resetvalue = 0 }, 8501 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8502 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8503 .access = PL1_R, .type = ARM_CP_CONST, 8504 .accessfn = access_aa64_tid3, 8505 .resetvalue = 0 }, 8506 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8507 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8508 .access = PL1_R, .type = ARM_CP_CONST, 8509 .accessfn = access_aa64_tid3, 8510 .resetvalue = 0 }, 8511 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8512 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8513 .access = PL1_R, .type = ARM_CP_CONST, 8514 .accessfn = access_aa64_tid3, 8515 .resetvalue = cpu->isar.mvfr0 }, 8516 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8517 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8518 .access = PL1_R, .type = ARM_CP_CONST, 8519 .accessfn = access_aa64_tid3, 8520 .resetvalue = cpu->isar.mvfr1 }, 8521 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8522 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8523 .access = PL1_R, .type = ARM_CP_CONST, 8524 .accessfn = access_aa64_tid3, 8525 .resetvalue = cpu->isar.mvfr2 }, 8526 /* 8527 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8528 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8529 * as RAZ, since it is in the "reserved for future ID 8530 * registers, RAZ" part of the AArch32 encoding space. 8531 */ 8532 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8533 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8534 .access = PL1_R, .type = ARM_CP_CONST, 8535 .accessfn = access_aa64_tid3, 8536 .resetvalue = 0 }, 8537 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8538 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8539 .access = PL1_R, .type = ARM_CP_CONST, 8540 .accessfn = access_aa64_tid3, 8541 .resetvalue = 0 }, 8542 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8543 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8544 .access = PL1_R, .type = ARM_CP_CONST, 8545 .accessfn = access_aa64_tid3, 8546 .resetvalue = 0 }, 8547 /* 8548 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8549 * they're also RAZ for AArch64, and in v8 are gradually 8550 * being filled with AArch64-view-of-AArch32-ID-register 8551 * for new ID registers. 8552 */ 8553 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8554 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8555 .access = PL1_R, .type = ARM_CP_CONST, 8556 .accessfn = access_aa64_tid3, 8557 .resetvalue = 0 }, 8558 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8559 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8560 .access = PL1_R, .type = ARM_CP_CONST, 8561 .accessfn = access_aa64_tid3, 8562 .resetvalue = cpu->isar.id_pfr2 }, 8563 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8564 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8565 .access = PL1_R, .type = ARM_CP_CONST, 8566 .accessfn = access_aa64_tid3, 8567 .resetvalue = cpu->isar.id_dfr1 }, 8568 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8569 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8570 .access = PL1_R, .type = ARM_CP_CONST, 8571 .accessfn = access_aa64_tid3, 8572 .resetvalue = cpu->isar.id_mmfr5 }, 8573 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8574 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8575 .access = PL1_R, .type = ARM_CP_CONST, 8576 .accessfn = access_aa64_tid3, 8577 .resetvalue = 0 }, 8578 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8579 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8580 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8581 .fgt = FGT_PMCEIDN_EL0, 8582 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8583 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8584 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8585 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8586 .fgt = FGT_PMCEIDN_EL0, 8587 .resetvalue = cpu->pmceid0 }, 8588 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8589 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8590 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8591 .fgt = FGT_PMCEIDN_EL0, 8592 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8593 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8594 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8595 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8596 .fgt = FGT_PMCEIDN_EL0, 8597 .resetvalue = cpu->pmceid1 }, 8598 }; 8599 #ifdef CONFIG_USER_ONLY 8600 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8601 { .name = "ID_AA64PFR0_EL1", 8602 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8603 R_ID_AA64PFR0_ADVSIMD_MASK | 8604 R_ID_AA64PFR0_SVE_MASK | 8605 R_ID_AA64PFR0_DIT_MASK, 8606 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8607 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8608 { .name = "ID_AA64PFR1_EL1", 8609 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8610 R_ID_AA64PFR1_SSBS_MASK | 8611 R_ID_AA64PFR1_MTE_MASK | 8612 R_ID_AA64PFR1_SME_MASK }, 8613 { .name = "ID_AA64PFR*_EL1_RESERVED", 8614 .is_glob = true }, 8615 { .name = "ID_AA64ZFR0_EL1", 8616 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8617 R_ID_AA64ZFR0_AES_MASK | 8618 R_ID_AA64ZFR0_BITPERM_MASK | 8619 R_ID_AA64ZFR0_BFLOAT16_MASK | 8620 R_ID_AA64ZFR0_SHA3_MASK | 8621 R_ID_AA64ZFR0_SM4_MASK | 8622 R_ID_AA64ZFR0_I8MM_MASK | 8623 R_ID_AA64ZFR0_F32MM_MASK | 8624 R_ID_AA64ZFR0_F64MM_MASK }, 8625 { .name = "ID_AA64SMFR0_EL1", 8626 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8627 R_ID_AA64SMFR0_BI32I32_MASK | 8628 R_ID_AA64SMFR0_B16F32_MASK | 8629 R_ID_AA64SMFR0_F16F32_MASK | 8630 R_ID_AA64SMFR0_I8I32_MASK | 8631 R_ID_AA64SMFR0_F16F16_MASK | 8632 R_ID_AA64SMFR0_B16B16_MASK | 8633 R_ID_AA64SMFR0_I16I32_MASK | 8634 R_ID_AA64SMFR0_F64F64_MASK | 8635 R_ID_AA64SMFR0_I16I64_MASK | 8636 R_ID_AA64SMFR0_SMEVER_MASK | 8637 R_ID_AA64SMFR0_FA64_MASK }, 8638 { .name = "ID_AA64MMFR0_EL1", 8639 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8640 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8641 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8642 { .name = "ID_AA64MMFR1_EL1", 8643 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8644 { .name = "ID_AA64MMFR2_EL1", 8645 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8646 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8647 .is_glob = true }, 8648 { .name = "ID_AA64DFR0_EL1", 8649 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8650 { .name = "ID_AA64DFR1_EL1" }, 8651 { .name = "ID_AA64DFR*_EL1_RESERVED", 8652 .is_glob = true }, 8653 { .name = "ID_AA64AFR*", 8654 .is_glob = true }, 8655 { .name = "ID_AA64ISAR0_EL1", 8656 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8657 R_ID_AA64ISAR0_SHA1_MASK | 8658 R_ID_AA64ISAR0_SHA2_MASK | 8659 R_ID_AA64ISAR0_CRC32_MASK | 8660 R_ID_AA64ISAR0_ATOMIC_MASK | 8661 R_ID_AA64ISAR0_RDM_MASK | 8662 R_ID_AA64ISAR0_SHA3_MASK | 8663 R_ID_AA64ISAR0_SM3_MASK | 8664 R_ID_AA64ISAR0_SM4_MASK | 8665 R_ID_AA64ISAR0_DP_MASK | 8666 R_ID_AA64ISAR0_FHM_MASK | 8667 R_ID_AA64ISAR0_TS_MASK | 8668 R_ID_AA64ISAR0_RNDR_MASK }, 8669 { .name = "ID_AA64ISAR1_EL1", 8670 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8671 R_ID_AA64ISAR1_APA_MASK | 8672 R_ID_AA64ISAR1_API_MASK | 8673 R_ID_AA64ISAR1_JSCVT_MASK | 8674 R_ID_AA64ISAR1_FCMA_MASK | 8675 R_ID_AA64ISAR1_LRCPC_MASK | 8676 R_ID_AA64ISAR1_GPA_MASK | 8677 R_ID_AA64ISAR1_GPI_MASK | 8678 R_ID_AA64ISAR1_FRINTTS_MASK | 8679 R_ID_AA64ISAR1_SB_MASK | 8680 R_ID_AA64ISAR1_BF16_MASK | 8681 R_ID_AA64ISAR1_DGH_MASK | 8682 R_ID_AA64ISAR1_I8MM_MASK }, 8683 { .name = "ID_AA64ISAR2_EL1", 8684 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8685 R_ID_AA64ISAR2_RPRES_MASK | 8686 R_ID_AA64ISAR2_GPA3_MASK | 8687 R_ID_AA64ISAR2_APA3_MASK | 8688 R_ID_AA64ISAR2_MOPS_MASK | 8689 R_ID_AA64ISAR2_BC_MASK | 8690 R_ID_AA64ISAR2_RPRFM_MASK | 8691 R_ID_AA64ISAR2_CSSC_MASK }, 8692 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8693 .is_glob = true }, 8694 }; 8695 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8696 #endif 8697 /* 8698 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 8699 * TODO: For RMR, a write with bit 1 set should do something with 8700 * cpu_reset(). In the meantime, "the bit is strictly a request", 8701 * so we are in spec just ignoring writes. 8702 */ 8703 if (!arm_feature(env, ARM_FEATURE_EL3) && 8704 !arm_feature(env, ARM_FEATURE_EL2)) { 8705 ARMCPRegInfo el1_reset_regs[] = { 8706 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8707 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8708 .access = PL1_R, 8709 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8710 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 8711 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8712 .access = PL1_RW, .type = ARM_CP_CONST, 8713 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 8714 }; 8715 define_arm_cp_regs(cpu, el1_reset_regs); 8716 } 8717 define_arm_cp_regs(cpu, v8_idregs); 8718 define_arm_cp_regs(cpu, v8_cp_reginfo); 8719 8720 for (i = 4; i < 16; i++) { 8721 /* 8722 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8723 * For pre-v8 cores there are RAZ patterns for these in 8724 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8725 * v8 extends the "must RAZ" part of the ID register space 8726 * to also cover c0, 0, c{8-15}, {0-7}. 8727 * These are STATE_AA32 because in the AArch64 sysreg space 8728 * c4-c7 is where the AArch64 ID registers live (and we've 8729 * already defined those in v8_idregs[]), and c8-c15 are not 8730 * "must RAZ" for AArch64. 8731 */ 8732 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8733 ARMCPRegInfo v8_aa32_raz_idregs = { 8734 .name = name, 8735 .state = ARM_CP_STATE_AA32, 8736 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8737 .access = PL1_R, .type = ARM_CP_CONST, 8738 .accessfn = access_aa64_tid3, 8739 .resetvalue = 0 }; 8740 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8741 } 8742 } 8743 8744 /* 8745 * Register the base EL2 cpregs. 8746 * Pre v8, these registers are implemented only as part of the 8747 * Virtualization Extensions (EL2 present). Beginning with v8, 8748 * if EL2 is missing but EL3 is enabled, mostly these become 8749 * RES0 from EL3, with some specific exceptions. 8750 */ 8751 if (arm_feature(env, ARM_FEATURE_EL2) 8752 || (arm_feature(env, ARM_FEATURE_EL3) 8753 && arm_feature(env, ARM_FEATURE_V8))) { 8754 uint64_t vmpidr_def = mpidr_read_val(env); 8755 ARMCPRegInfo vpidr_regs[] = { 8756 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8757 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8758 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8759 .resetvalue = cpu->midr, 8760 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8761 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8762 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8763 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8764 .access = PL2_RW, .resetvalue = cpu->midr, 8765 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8766 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8767 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8768 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8769 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8770 .resetvalue = vmpidr_def, 8771 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8772 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8773 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8774 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8775 .access = PL2_RW, .resetvalue = vmpidr_def, 8776 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8777 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8778 }; 8779 /* 8780 * The only field of MDCR_EL2 that has a defined architectural reset 8781 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8782 */ 8783 ARMCPRegInfo mdcr_el2 = { 8784 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8785 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8786 .writefn = mdcr_el2_write, 8787 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8788 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8789 }; 8790 define_one_arm_cp_reg(cpu, &mdcr_el2); 8791 define_arm_cp_regs(cpu, vpidr_regs); 8792 define_arm_cp_regs(cpu, el2_cp_reginfo); 8793 if (arm_feature(env, ARM_FEATURE_V8)) { 8794 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8795 } 8796 if (cpu_isar_feature(aa64_sel2, cpu)) { 8797 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8798 } 8799 /* 8800 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 8801 * See commentary near RMR_EL1. 8802 */ 8803 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8804 static const ARMCPRegInfo el2_reset_regs[] = { 8805 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8806 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8807 .access = PL2_R, 8808 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8809 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8810 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8811 .access = PL2_R, 8812 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8813 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 8814 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 8815 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8816 }; 8817 define_arm_cp_regs(cpu, el2_reset_regs); 8818 } 8819 } 8820 8821 /* Register the base EL3 cpregs. */ 8822 if (arm_feature(env, ARM_FEATURE_EL3)) { 8823 define_arm_cp_regs(cpu, el3_cp_reginfo); 8824 ARMCPRegInfo el3_regs[] = { 8825 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8826 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8827 .access = PL3_R, 8828 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 8829 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 8830 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 8831 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8832 { .name = "RMR", .state = ARM_CP_STATE_AA32, 8833 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8834 .access = PL3_RW, .type = ARM_CP_CONST, 8835 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 8836 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8837 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8838 .access = PL3_RW, 8839 .raw_writefn = raw_write, .writefn = sctlr_write, 8840 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8841 .resetvalue = cpu->reset_sctlr }, 8842 }; 8843 8844 define_arm_cp_regs(cpu, el3_regs); 8845 } 8846 /* 8847 * The behaviour of NSACR is sufficiently various that we don't 8848 * try to describe it in a single reginfo: 8849 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8850 * reads as constant 0xc00 from NS EL1 and NS EL2 8851 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8852 * if v7 without EL3, register doesn't exist 8853 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8854 */ 8855 if (arm_feature(env, ARM_FEATURE_EL3)) { 8856 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8857 static const ARMCPRegInfo nsacr = { 8858 .name = "NSACR", .type = ARM_CP_CONST, 8859 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8860 .access = PL1_RW, .accessfn = nsacr_access, 8861 .resetvalue = 0xc00 8862 }; 8863 define_one_arm_cp_reg(cpu, &nsacr); 8864 } else { 8865 static const ARMCPRegInfo nsacr = { 8866 .name = "NSACR", 8867 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8868 .access = PL3_RW | PL1_R, 8869 .resetvalue = 0, 8870 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8871 }; 8872 define_one_arm_cp_reg(cpu, &nsacr); 8873 } 8874 } else { 8875 if (arm_feature(env, ARM_FEATURE_V8)) { 8876 static const ARMCPRegInfo nsacr = { 8877 .name = "NSACR", .type = ARM_CP_CONST, 8878 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8879 .access = PL1_R, 8880 .resetvalue = 0xc00 8881 }; 8882 define_one_arm_cp_reg(cpu, &nsacr); 8883 } 8884 } 8885 8886 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8887 if (arm_feature(env, ARM_FEATURE_V6)) { 8888 /* PMSAv6 not implemented */ 8889 assert(arm_feature(env, ARM_FEATURE_V7)); 8890 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8891 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8892 } else { 8893 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8894 } 8895 } else { 8896 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8897 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8898 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8899 if (cpu_isar_feature(aa32_hpd, cpu)) { 8900 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8901 } 8902 } 8903 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8904 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8905 } 8906 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8907 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8908 } 8909 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8910 ARMCPRegInfo vapa_cp_reginfo[] = { 8911 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 8912 .access = PL1_RW, .resetvalue = 0, 8913 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 8914 offsetoflow32(CPUARMState, cp15.par_ns) }, 8915 .writefn = par_write}, 8916 #ifndef CONFIG_USER_ONLY 8917 /* This underdecoding is safe because the reginfo is NO_RAW. */ 8918 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 8919 .access = PL1_W, .accessfn = ats_access, 8920 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 8921 #endif 8922 }; 8923 8924 /* 8925 * When LPAE exists this 32-bit PAR register is an alias of the 8926 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[] 8927 */ 8928 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8929 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB; 8930 } 8931 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8932 } 8933 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8934 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8935 } 8936 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8937 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8938 } 8939 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8940 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8941 } 8942 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8943 define_arm_cp_regs(cpu, omap_cp_reginfo); 8944 } 8945 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8946 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8947 } 8948 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8949 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8950 } 8951 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8952 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8953 } 8954 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8955 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8956 } 8957 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8958 define_arm_cp_regs(cpu, jazelle_regs); 8959 } 8960 /* 8961 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8962 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8963 * be read-only (ie write causes UNDEF exception). 8964 */ 8965 { 8966 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8967 /* 8968 * Pre-v8 MIDR space. 8969 * Note that the MIDR isn't a simple constant register because 8970 * of the TI925 behaviour where writes to another register can 8971 * cause the MIDR value to change. 8972 * 8973 * Unimplemented registers in the c15 0 0 0 space default to 8974 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8975 * and friends override accordingly. 8976 */ 8977 { .name = "MIDR", 8978 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8979 .access = PL1_R, .resetvalue = cpu->midr, 8980 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8981 .readfn = midr_read, 8982 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8983 .type = ARM_CP_OVERRIDE }, 8984 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8985 { .name = "DUMMY", 8986 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8987 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8988 { .name = "DUMMY", 8989 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8990 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8991 { .name = "DUMMY", 8992 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8993 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8994 { .name = "DUMMY", 8995 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8996 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8997 { .name = "DUMMY", 8998 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8999 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9000 }; 9001 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 9002 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 9003 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 9004 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 9005 .fgt = FGT_MIDR_EL1, 9006 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9007 .readfn = midr_read }, 9008 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 9009 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 9010 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 9011 .access = PL1_R, .resetvalue = cpu->midr }, 9012 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 9013 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 9014 .access = PL1_R, 9015 .accessfn = access_aa64_tid1, 9016 .fgt = FGT_REVIDR_EL1, 9017 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 9018 }; 9019 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 9020 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB, 9021 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9022 .access = PL1_R, .resetvalue = cpu->midr 9023 }; 9024 ARMCPRegInfo id_cp_reginfo[] = { 9025 /* These are common to v8 and pre-v8 */ 9026 { .name = "CTR", 9027 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 9028 .access = PL1_R, .accessfn = ctr_el0_access, 9029 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9030 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 9031 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 9032 .access = PL0_R, .accessfn = ctr_el0_access, 9033 .fgt = FGT_CTR_EL0, 9034 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9035 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 9036 { .name = "TCMTR", 9037 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 9038 .access = PL1_R, 9039 .accessfn = access_aa32_tid1, 9040 .type = ARM_CP_CONST, .resetvalue = 0 }, 9041 }; 9042 /* TLBTR is specific to VMSA */ 9043 ARMCPRegInfo id_tlbtr_reginfo = { 9044 .name = "TLBTR", 9045 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 9046 .access = PL1_R, 9047 .accessfn = access_aa32_tid1, 9048 .type = ARM_CP_CONST, .resetvalue = 0, 9049 }; 9050 /* MPUIR is specific to PMSA V6+ */ 9051 ARMCPRegInfo id_mpuir_reginfo = { 9052 .name = "MPUIR", 9053 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9054 .access = PL1_R, .type = ARM_CP_CONST, 9055 .resetvalue = cpu->pmsav7_dregion << 8 9056 }; 9057 /* HMPUIR is specific to PMSA V8 */ 9058 ARMCPRegInfo id_hmpuir_reginfo = { 9059 .name = "HMPUIR", 9060 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 9061 .access = PL2_R, .type = ARM_CP_CONST, 9062 .resetvalue = cpu->pmsav8r_hdregion 9063 }; 9064 static const ARMCPRegInfo crn0_wi_reginfo = { 9065 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 9066 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 9067 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 9068 }; 9069 #ifdef CONFIG_USER_ONLY 9070 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 9071 { .name = "MIDR_EL1", 9072 .exported_bits = R_MIDR_EL1_REVISION_MASK | 9073 R_MIDR_EL1_PARTNUM_MASK | 9074 R_MIDR_EL1_ARCHITECTURE_MASK | 9075 R_MIDR_EL1_VARIANT_MASK | 9076 R_MIDR_EL1_IMPLEMENTER_MASK }, 9077 { .name = "REVIDR_EL1" }, 9078 }; 9079 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 9080 #endif 9081 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 9082 arm_feature(env, ARM_FEATURE_STRONGARM)) { 9083 size_t i; 9084 /* 9085 * Register the blanket "writes ignored" value first to cover the 9086 * whole space. Then update the specific ID registers to allow write 9087 * access, so that they ignore writes rather than causing them to 9088 * UNDEF. 9089 */ 9090 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 9091 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 9092 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 9093 } 9094 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 9095 id_cp_reginfo[i].access = PL1_RW; 9096 } 9097 id_mpuir_reginfo.access = PL1_RW; 9098 id_tlbtr_reginfo.access = PL1_RW; 9099 } 9100 if (arm_feature(env, ARM_FEATURE_V8)) { 9101 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 9102 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9103 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 9104 } 9105 } else { 9106 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 9107 } 9108 define_arm_cp_regs(cpu, id_cp_reginfo); 9109 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9110 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 9111 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 9112 arm_feature(env, ARM_FEATURE_V8)) { 9113 uint32_t i = 0; 9114 char *tmp_string; 9115 9116 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9117 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 9118 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 9119 9120 /* Register alias is only valid for first 32 indexes */ 9121 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 9122 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9123 uint8_t opc1 = extract32(i, 4, 1); 9124 uint8_t opc2 = extract32(i, 0, 1) << 2; 9125 9126 tmp_string = g_strdup_printf("PRBAR%u", i); 9127 ARMCPRegInfo tmp_prbarn_reginfo = { 9128 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9129 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9130 .access = PL1_RW, .resetvalue = 0, 9131 .accessfn = access_tvm_trvm, 9132 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9133 }; 9134 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 9135 g_free(tmp_string); 9136 9137 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9138 tmp_string = g_strdup_printf("PRLAR%u", i); 9139 ARMCPRegInfo tmp_prlarn_reginfo = { 9140 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9141 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9142 .access = PL1_RW, .resetvalue = 0, 9143 .accessfn = access_tvm_trvm, 9144 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9145 }; 9146 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 9147 g_free(tmp_string); 9148 } 9149 9150 /* Register alias is only valid for first 32 indexes */ 9151 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 9152 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9153 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 9154 uint8_t opc2 = extract32(i, 0, 1) << 2; 9155 9156 tmp_string = g_strdup_printf("HPRBAR%u", i); 9157 ARMCPRegInfo tmp_hprbarn_reginfo = { 9158 .name = tmp_string, 9159 .type = ARM_CP_NO_RAW, 9160 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9161 .access = PL2_RW, .resetvalue = 0, 9162 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9163 }; 9164 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 9165 g_free(tmp_string); 9166 9167 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9168 tmp_string = g_strdup_printf("HPRLAR%u", i); 9169 ARMCPRegInfo tmp_hprlarn_reginfo = { 9170 .name = tmp_string, 9171 .type = ARM_CP_NO_RAW, 9172 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9173 .access = PL2_RW, .resetvalue = 0, 9174 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9175 }; 9176 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 9177 g_free(tmp_string); 9178 } 9179 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9180 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9181 } 9182 } 9183 9184 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 9185 ARMCPRegInfo mpidr_cp_reginfo[] = { 9186 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 9187 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 9188 .fgt = FGT_MPIDR_EL1, 9189 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 9190 }; 9191 #ifdef CONFIG_USER_ONLY 9192 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 9193 { .name = "MPIDR_EL1", 9194 .fixed_bits = 0x0000000080000000 }, 9195 }; 9196 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 9197 #endif 9198 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 9199 } 9200 9201 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 9202 ARMCPRegInfo auxcr_reginfo[] = { 9203 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 9204 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 9205 .access = PL1_RW, .accessfn = access_tacr, 9206 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 9207 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 9208 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 9209 .access = PL2_RW, .type = ARM_CP_CONST, 9210 .resetvalue = 0 }, 9211 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 9212 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 9213 .access = PL3_RW, .type = ARM_CP_CONST, 9214 .resetvalue = 0 }, 9215 }; 9216 define_arm_cp_regs(cpu, auxcr_reginfo); 9217 if (cpu_isar_feature(aa32_ac2, cpu)) { 9218 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 9219 } 9220 } 9221 9222 if (arm_feature(env, ARM_FEATURE_CBAR)) { 9223 /* 9224 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 9225 * There are two flavours: 9226 * (1) older 32-bit only cores have a simple 32-bit CBAR 9227 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 9228 * 32-bit register visible to AArch32 at a different encoding 9229 * to the "flavour 1" register and with the bits rearranged to 9230 * be able to squash a 64-bit address into the 32-bit view. 9231 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 9232 * in future if we support AArch32-only configs of some of the 9233 * AArch64 cores we might need to add a specific feature flag 9234 * to indicate cores with "flavour 2" CBAR. 9235 */ 9236 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9237 /* 32 bit view is [31:18] 0...0 [43:32]. */ 9238 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 9239 | extract64(cpu->reset_cbar, 32, 12); 9240 ARMCPRegInfo cbar_reginfo[] = { 9241 { .name = "CBAR", 9242 .type = ARM_CP_CONST, 9243 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 9244 .access = PL1_R, .resetvalue = cbar32 }, 9245 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 9246 .type = ARM_CP_CONST, 9247 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 9248 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 9249 }; 9250 /* We don't implement a r/w 64 bit CBAR currently */ 9251 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 9252 define_arm_cp_regs(cpu, cbar_reginfo); 9253 } else { 9254 ARMCPRegInfo cbar = { 9255 .name = "CBAR", 9256 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 9257 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9258 .fieldoffset = offsetof(CPUARMState, 9259 cp15.c15_config_base_address) 9260 }; 9261 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9262 cbar.access = PL1_R; 9263 cbar.fieldoffset = 0; 9264 cbar.type = ARM_CP_CONST; 9265 } 9266 define_one_arm_cp_reg(cpu, &cbar); 9267 } 9268 } 9269 9270 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9271 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9272 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9273 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9274 .access = PL1_RW, .writefn = vbar_write, 9275 .fgt = FGT_VBAR_EL1, 9276 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9277 offsetof(CPUARMState, cp15.vbar_ns) }, 9278 .resetvalue = 0 }, 9279 }; 9280 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9281 } 9282 9283 /* Generic registers whose values depend on the implementation */ 9284 { 9285 ARMCPRegInfo sctlr = { 9286 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9287 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9288 .access = PL1_RW, .accessfn = access_tvm_trvm, 9289 .fgt = FGT_SCTLR_EL1, 9290 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9291 offsetof(CPUARMState, cp15.sctlr_ns) }, 9292 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9293 .raw_writefn = raw_write, 9294 }; 9295 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9296 /* 9297 * Normally we would always end the TB on an SCTLR write, but Linux 9298 * arch/arm/mach-pxa/sleep.S expects two instructions following 9299 * an MMU enable to execute from cache. Imitate this behaviour. 9300 */ 9301 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9302 } 9303 define_one_arm_cp_reg(cpu, &sctlr); 9304 9305 if (arm_feature(env, ARM_FEATURE_PMSA) && 9306 arm_feature(env, ARM_FEATURE_V8)) { 9307 ARMCPRegInfo vsctlr = { 9308 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9309 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9310 .access = PL2_RW, .resetvalue = 0x0, 9311 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9312 }; 9313 define_one_arm_cp_reg(cpu, &vsctlr); 9314 } 9315 } 9316 9317 if (cpu_isar_feature(aa64_lor, cpu)) { 9318 define_arm_cp_regs(cpu, lor_reginfo); 9319 } 9320 if (cpu_isar_feature(aa64_pan, cpu)) { 9321 define_one_arm_cp_reg(cpu, &pan_reginfo); 9322 } 9323 #ifndef CONFIG_USER_ONLY 9324 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9325 define_arm_cp_regs(cpu, ats1e1_reginfo); 9326 } 9327 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9328 define_arm_cp_regs(cpu, ats1cp_reginfo); 9329 } 9330 #endif 9331 if (cpu_isar_feature(aa64_uao, cpu)) { 9332 define_one_arm_cp_reg(cpu, &uao_reginfo); 9333 } 9334 9335 if (cpu_isar_feature(aa64_dit, cpu)) { 9336 define_one_arm_cp_reg(cpu, &dit_reginfo); 9337 } 9338 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9339 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9340 } 9341 if (cpu_isar_feature(any_ras, cpu)) { 9342 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9343 } 9344 9345 if (cpu_isar_feature(aa64_vh, cpu) || 9346 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9347 define_one_arm_cp_reg(cpu, &contextidr_el2); 9348 } 9349 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9350 define_arm_cp_regs(cpu, vhe_reginfo); 9351 } 9352 9353 if (cpu_isar_feature(aa64_sve, cpu)) { 9354 define_arm_cp_regs(cpu, zcr_reginfo); 9355 } 9356 9357 if (cpu_isar_feature(aa64_hcx, cpu)) { 9358 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9359 } 9360 9361 #ifdef TARGET_AARCH64 9362 if (cpu_isar_feature(aa64_sme, cpu)) { 9363 define_arm_cp_regs(cpu, sme_reginfo); 9364 } 9365 if (cpu_isar_feature(aa64_pauth, cpu)) { 9366 define_arm_cp_regs(cpu, pauth_reginfo); 9367 } 9368 if (cpu_isar_feature(aa64_rndr, cpu)) { 9369 define_arm_cp_regs(cpu, rndr_reginfo); 9370 } 9371 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9372 define_arm_cp_regs(cpu, tlbirange_reginfo); 9373 } 9374 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9375 define_arm_cp_regs(cpu, tlbios_reginfo); 9376 } 9377 /* Data Cache clean instructions up to PoP */ 9378 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9379 define_one_arm_cp_reg(cpu, dcpop_reg); 9380 9381 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9382 define_one_arm_cp_reg(cpu, dcpodp_reg); 9383 } 9384 } 9385 9386 /* 9387 * If full MTE is enabled, add all of the system registers. 9388 * If only "instructions available at EL0" are enabled, 9389 * then define only a RAZ/WI version of PSTATE.TCO. 9390 */ 9391 if (cpu_isar_feature(aa64_mte, cpu)) { 9392 ARMCPRegInfo gmid_reginfo = { 9393 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 9394 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 9395 .access = PL1_R, .accessfn = access_aa64_tid5, 9396 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 9397 }; 9398 define_one_arm_cp_reg(cpu, &gmid_reginfo); 9399 define_arm_cp_regs(cpu, mte_reginfo); 9400 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9401 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9402 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9403 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9404 } 9405 9406 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9407 define_arm_cp_regs(cpu, scxtnum_reginfo); 9408 } 9409 9410 if (cpu_isar_feature(aa64_fgt, cpu)) { 9411 define_arm_cp_regs(cpu, fgt_reginfo); 9412 } 9413 9414 if (cpu_isar_feature(aa64_rme, cpu)) { 9415 define_arm_cp_regs(cpu, rme_reginfo); 9416 if (cpu_isar_feature(aa64_mte, cpu)) { 9417 define_arm_cp_regs(cpu, rme_mte_reginfo); 9418 } 9419 } 9420 #endif 9421 9422 if (cpu_isar_feature(any_predinv, cpu)) { 9423 define_arm_cp_regs(cpu, predinv_reginfo); 9424 } 9425 9426 if (cpu_isar_feature(any_ccidx, cpu)) { 9427 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9428 } 9429 9430 #ifndef CONFIG_USER_ONLY 9431 /* 9432 * Register redirections and aliases must be done last, 9433 * after the registers from the other extensions have been defined. 9434 */ 9435 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9436 define_arm_vh_e2h_redirects_aliases(cpu); 9437 } 9438 #endif 9439 } 9440 9441 /* Sort alphabetically by type name, except for "any". */ 9442 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 9443 { 9444 ObjectClass *class_a = (ObjectClass *)a; 9445 ObjectClass *class_b = (ObjectClass *)b; 9446 const char *name_a, *name_b; 9447 9448 name_a = object_class_get_name(class_a); 9449 name_b = object_class_get_name(class_b); 9450 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 9451 return 1; 9452 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 9453 return -1; 9454 } else { 9455 return strcmp(name_a, name_b); 9456 } 9457 } 9458 9459 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 9460 { 9461 ObjectClass *oc = data; 9462 CPUClass *cc = CPU_CLASS(oc); 9463 const char *typename; 9464 char *name; 9465 9466 typename = object_class_get_name(oc); 9467 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9468 if (cc->deprecation_note) { 9469 qemu_printf(" %s (deprecated)\n", name); 9470 } else { 9471 qemu_printf(" %s\n", name); 9472 } 9473 g_free(name); 9474 } 9475 9476 void arm_cpu_list(void) 9477 { 9478 GSList *list; 9479 9480 list = object_class_get_list(TYPE_ARM_CPU, false); 9481 list = g_slist_sort(list, arm_cpu_list_compare); 9482 qemu_printf("Available CPUs:\n"); 9483 g_slist_foreach(list, arm_cpu_list_entry, NULL); 9484 g_slist_free(list); 9485 } 9486 9487 /* 9488 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9489 * add a single reginfo struct to the hash table. 9490 */ 9491 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9492 void *opaque, CPState state, 9493 CPSecureState secstate, 9494 int crm, int opc1, int opc2, 9495 const char *name) 9496 { 9497 CPUARMState *env = &cpu->env; 9498 uint32_t key; 9499 ARMCPRegInfo *r2; 9500 bool is64 = r->type & ARM_CP_64BIT; 9501 bool ns = secstate & ARM_CP_SECSTATE_NS; 9502 int cp = r->cp; 9503 size_t name_len; 9504 bool make_const; 9505 9506 switch (state) { 9507 case ARM_CP_STATE_AA32: 9508 /* We assume it is a cp15 register if the .cp field is left unset. */ 9509 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9510 cp = 15; 9511 } 9512 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9513 break; 9514 case ARM_CP_STATE_AA64: 9515 /* 9516 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9517 * cp == 0 as equivalent to the value for "standard guest-visible 9518 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9519 * in their AArch64 view (the .cp value may be non-zero for the 9520 * benefit of the AArch32 view). 9521 */ 9522 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9523 cp = CP_REG_ARM64_SYSREG_CP; 9524 } 9525 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9526 break; 9527 default: 9528 g_assert_not_reached(); 9529 } 9530 9531 /* Overriding of an existing definition must be explicitly requested. */ 9532 if (!(r->type & ARM_CP_OVERRIDE)) { 9533 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9534 if (oldreg) { 9535 assert(oldreg->type & ARM_CP_OVERRIDE); 9536 } 9537 } 9538 9539 /* 9540 * Eliminate registers that are not present because the EL is missing. 9541 * Doing this here makes it easier to put all registers for a given 9542 * feature into the same ARMCPRegInfo array and define them all at once. 9543 */ 9544 make_const = false; 9545 if (arm_feature(env, ARM_FEATURE_EL3)) { 9546 /* 9547 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9548 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9549 */ 9550 int min_el = ctz32(r->access) / 2; 9551 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9552 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9553 return; 9554 } 9555 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9556 } 9557 } else { 9558 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9559 ? PL2_RW : PL1_RW); 9560 if ((r->access & max_el) == 0) { 9561 return; 9562 } 9563 } 9564 9565 /* Combine cpreg and name into one allocation. */ 9566 name_len = strlen(name) + 1; 9567 r2 = g_malloc(sizeof(*r2) + name_len); 9568 *r2 = *r; 9569 r2->name = memcpy(r2 + 1, name, name_len); 9570 9571 /* 9572 * Update fields to match the instantiation, overwiting wildcards 9573 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9574 */ 9575 r2->cp = cp; 9576 r2->crm = crm; 9577 r2->opc1 = opc1; 9578 r2->opc2 = opc2; 9579 r2->state = state; 9580 r2->secure = secstate; 9581 if (opaque) { 9582 r2->opaque = opaque; 9583 } 9584 9585 if (make_const) { 9586 /* This should not have been a very special register to begin. */ 9587 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9588 assert(old_special == 0 || old_special == ARM_CP_NOP); 9589 /* 9590 * Set the special function to CONST, retaining the other flags. 9591 * This is important for e.g. ARM_CP_SVE so that we still 9592 * take the SVE trap if CPTR_EL3.EZ == 0. 9593 */ 9594 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9595 /* 9596 * Usually, these registers become RES0, but there are a few 9597 * special cases like VPIDR_EL2 which have a constant non-zero 9598 * value with writes ignored. 9599 */ 9600 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9601 r2->resetvalue = 0; 9602 } 9603 /* 9604 * ARM_CP_CONST has precedence, so removing the callbacks and 9605 * offsets are not strictly necessary, but it is potentially 9606 * less confusing to debug later. 9607 */ 9608 r2->readfn = NULL; 9609 r2->writefn = NULL; 9610 r2->raw_readfn = NULL; 9611 r2->raw_writefn = NULL; 9612 r2->resetfn = NULL; 9613 r2->fieldoffset = 0; 9614 r2->bank_fieldoffsets[0] = 0; 9615 r2->bank_fieldoffsets[1] = 0; 9616 } else { 9617 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9618 9619 if (isbanked) { 9620 /* 9621 * Register is banked (using both entries in array). 9622 * Overwriting fieldoffset as the array is only used to define 9623 * banked registers but later only fieldoffset is used. 9624 */ 9625 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9626 } 9627 if (state == ARM_CP_STATE_AA32) { 9628 if (isbanked) { 9629 /* 9630 * If the register is banked then we don't need to migrate or 9631 * reset the 32-bit instance in certain cases: 9632 * 9633 * 1) If the register has both 32-bit and 64-bit instances 9634 * then we can count on the 64-bit instance taking care 9635 * of the non-secure bank. 9636 * 2) If ARMv8 is enabled then we can count on a 64-bit 9637 * version taking care of the secure bank. This requires 9638 * that separate 32 and 64-bit definitions are provided. 9639 */ 9640 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9641 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9642 r2->type |= ARM_CP_ALIAS; 9643 } 9644 } else if ((secstate != r->secure) && !ns) { 9645 /* 9646 * The register is not banked so we only want to allow 9647 * migration of the non-secure instance. 9648 */ 9649 r2->type |= ARM_CP_ALIAS; 9650 } 9651 9652 if (HOST_BIG_ENDIAN && 9653 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9654 r2->fieldoffset += sizeof(uint32_t); 9655 } 9656 } 9657 } 9658 9659 /* 9660 * By convention, for wildcarded registers only the first 9661 * entry is used for migration; the others are marked as 9662 * ALIAS so we don't try to transfer the register 9663 * multiple times. Special registers (ie NOP/WFI) are 9664 * never migratable and not even raw-accessible. 9665 */ 9666 if (r2->type & ARM_CP_SPECIAL_MASK) { 9667 r2->type |= ARM_CP_NO_RAW; 9668 } 9669 if (((r->crm == CP_ANY) && crm != 0) || 9670 ((r->opc1 == CP_ANY) && opc1 != 0) || 9671 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9672 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9673 } 9674 9675 /* 9676 * Check that raw accesses are either forbidden or handled. Note that 9677 * we can't assert this earlier because the setup of fieldoffset for 9678 * banked registers has to be done first. 9679 */ 9680 if (!(r2->type & ARM_CP_NO_RAW)) { 9681 assert(!raw_accessors_invalid(r2)); 9682 } 9683 9684 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9685 } 9686 9687 9688 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9689 const ARMCPRegInfo *r, void *opaque) 9690 { 9691 /* 9692 * Define implementations of coprocessor registers. 9693 * We store these in a hashtable because typically 9694 * there are less than 150 registers in a space which 9695 * is 16*16*16*8*8 = 262144 in size. 9696 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9697 * If a register is defined twice then the second definition is 9698 * used, so this can be used to define some generic registers and 9699 * then override them with implementation specific variations. 9700 * At least one of the original and the second definition should 9701 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9702 * against accidental use. 9703 * 9704 * The state field defines whether the register is to be 9705 * visible in the AArch32 or AArch64 execution state. If the 9706 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9707 * reginfo structure for the AArch32 view, which sees the lower 9708 * 32 bits of the 64 bit register. 9709 * 9710 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9711 * be wildcarded. AArch64 registers are always considered to be 64 9712 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9713 * the register, if any. 9714 */ 9715 int crm, opc1, opc2; 9716 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9717 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9718 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9719 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9720 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9721 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9722 CPState state; 9723 9724 /* 64 bit registers have only CRm and Opc1 fields */ 9725 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9726 /* op0 only exists in the AArch64 encodings */ 9727 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9728 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9729 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9730 /* 9731 * This API is only for Arm's system coprocessors (14 and 15) or 9732 * (M-profile or v7A-and-earlier only) for implementation defined 9733 * coprocessors in the range 0..7. Our decode assumes this, since 9734 * 8..13 can be used for other insns including VFP and Neon. See 9735 * valid_cp() in translate.c. Assert here that we haven't tried 9736 * to use an invalid coprocessor number. 9737 */ 9738 switch (r->state) { 9739 case ARM_CP_STATE_BOTH: 9740 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9741 if (r->cp == 0) { 9742 break; 9743 } 9744 /* fall through */ 9745 case ARM_CP_STATE_AA32: 9746 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9747 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9748 assert(r->cp >= 14 && r->cp <= 15); 9749 } else { 9750 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9751 } 9752 break; 9753 case ARM_CP_STATE_AA64: 9754 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9755 break; 9756 default: 9757 g_assert_not_reached(); 9758 } 9759 /* 9760 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9761 * encodes a minimum access level for the register. We roll this 9762 * runtime check into our general permission check code, so check 9763 * here that the reginfo's specified permissions are strict enough 9764 * to encompass the generic architectural permission check. 9765 */ 9766 if (r->state != ARM_CP_STATE_AA32) { 9767 CPAccessRights mask; 9768 switch (r->opc1) { 9769 case 0: 9770 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9771 mask = PL0U_R | PL1_RW; 9772 break; 9773 case 1: case 2: 9774 /* min_EL EL1 */ 9775 mask = PL1_RW; 9776 break; 9777 case 3: 9778 /* min_EL EL0 */ 9779 mask = PL0_RW; 9780 break; 9781 case 4: 9782 case 5: 9783 /* min_EL EL2 */ 9784 mask = PL2_RW; 9785 break; 9786 case 6: 9787 /* min_EL EL3 */ 9788 mask = PL3_RW; 9789 break; 9790 case 7: 9791 /* min_EL EL1, secure mode only (we don't check the latter) */ 9792 mask = PL1_RW; 9793 break; 9794 default: 9795 /* broken reginfo with out-of-range opc1 */ 9796 g_assert_not_reached(); 9797 } 9798 /* assert our permissions are not too lax (stricter is fine) */ 9799 assert((r->access & ~mask) == 0); 9800 } 9801 9802 /* 9803 * Check that the register definition has enough info to handle 9804 * reads and writes if they are permitted. 9805 */ 9806 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9807 if (r->access & PL3_R) { 9808 assert((r->fieldoffset || 9809 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9810 r->readfn); 9811 } 9812 if (r->access & PL3_W) { 9813 assert((r->fieldoffset || 9814 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9815 r->writefn); 9816 } 9817 } 9818 9819 for (crm = crmmin; crm <= crmmax; crm++) { 9820 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9821 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9822 for (state = ARM_CP_STATE_AA32; 9823 state <= ARM_CP_STATE_AA64; state++) { 9824 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9825 continue; 9826 } 9827 if (state == ARM_CP_STATE_AA32) { 9828 /* 9829 * Under AArch32 CP registers can be common 9830 * (same for secure and non-secure world) or banked. 9831 */ 9832 char *name; 9833 9834 switch (r->secure) { 9835 case ARM_CP_SECSTATE_S: 9836 case ARM_CP_SECSTATE_NS: 9837 add_cpreg_to_hashtable(cpu, r, opaque, state, 9838 r->secure, crm, opc1, opc2, 9839 r->name); 9840 break; 9841 case ARM_CP_SECSTATE_BOTH: 9842 name = g_strdup_printf("%s_S", r->name); 9843 add_cpreg_to_hashtable(cpu, r, opaque, state, 9844 ARM_CP_SECSTATE_S, 9845 crm, opc1, opc2, name); 9846 g_free(name); 9847 add_cpreg_to_hashtable(cpu, r, opaque, state, 9848 ARM_CP_SECSTATE_NS, 9849 crm, opc1, opc2, r->name); 9850 break; 9851 default: 9852 g_assert_not_reached(); 9853 } 9854 } else { 9855 /* 9856 * AArch64 registers get mapped to non-secure instance 9857 * of AArch32 9858 */ 9859 add_cpreg_to_hashtable(cpu, r, opaque, state, 9860 ARM_CP_SECSTATE_NS, 9861 crm, opc1, opc2, r->name); 9862 } 9863 } 9864 } 9865 } 9866 } 9867 } 9868 9869 /* Define a whole list of registers */ 9870 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9871 void *opaque, size_t len) 9872 { 9873 size_t i; 9874 for (i = 0; i < len; ++i) { 9875 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9876 } 9877 } 9878 9879 /* 9880 * Modify ARMCPRegInfo for access from userspace. 9881 * 9882 * This is a data driven modification directed by 9883 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9884 * user-space cannot alter any values and dynamic values pertaining to 9885 * execution state are hidden from user space view anyway. 9886 */ 9887 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9888 const ARMCPRegUserSpaceInfo *mods, 9889 size_t mods_len) 9890 { 9891 for (size_t mi = 0; mi < mods_len; ++mi) { 9892 const ARMCPRegUserSpaceInfo *m = mods + mi; 9893 GPatternSpec *pat = NULL; 9894 9895 if (m->is_glob) { 9896 pat = g_pattern_spec_new(m->name); 9897 } 9898 for (size_t ri = 0; ri < regs_len; ++ri) { 9899 ARMCPRegInfo *r = regs + ri; 9900 9901 if (pat && g_pattern_match_string(pat, r->name)) { 9902 r->type = ARM_CP_CONST; 9903 r->access = PL0U_R; 9904 r->resetvalue = 0; 9905 /* continue */ 9906 } else if (strcmp(r->name, m->name) == 0) { 9907 r->type = ARM_CP_CONST; 9908 r->access = PL0U_R; 9909 r->resetvalue &= m->exported_bits; 9910 r->resetvalue |= m->fixed_bits; 9911 break; 9912 } 9913 } 9914 if (pat) { 9915 g_pattern_spec_free(pat); 9916 } 9917 } 9918 } 9919 9920 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9921 { 9922 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9923 } 9924 9925 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9926 uint64_t value) 9927 { 9928 /* Helper coprocessor write function for write-ignore registers */ 9929 } 9930 9931 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9932 { 9933 /* Helper coprocessor write function for read-as-zero registers */ 9934 return 0; 9935 } 9936 9937 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9938 { 9939 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9940 } 9941 9942 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9943 { 9944 /* 9945 * Return true if it is not valid for us to switch to 9946 * this CPU mode (ie all the UNPREDICTABLE cases in 9947 * the ARM ARM CPSRWriteByInstr pseudocode). 9948 */ 9949 9950 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9951 if (write_type == CPSRWriteByInstr && 9952 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9953 mode == ARM_CPU_MODE_HYP)) { 9954 return 1; 9955 } 9956 9957 switch (mode) { 9958 case ARM_CPU_MODE_USR: 9959 return 0; 9960 case ARM_CPU_MODE_SYS: 9961 case ARM_CPU_MODE_SVC: 9962 case ARM_CPU_MODE_ABT: 9963 case ARM_CPU_MODE_UND: 9964 case ARM_CPU_MODE_IRQ: 9965 case ARM_CPU_MODE_FIQ: 9966 /* 9967 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9968 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9969 */ 9970 /* 9971 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9972 * and CPS are treated as illegal mode changes. 9973 */ 9974 if (write_type == CPSRWriteByInstr && 9975 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9976 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9977 return 1; 9978 } 9979 return 0; 9980 case ARM_CPU_MODE_HYP: 9981 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9982 case ARM_CPU_MODE_MON: 9983 return arm_current_el(env) < 3; 9984 default: 9985 return 1; 9986 } 9987 } 9988 9989 uint32_t cpsr_read(CPUARMState *env) 9990 { 9991 int ZF; 9992 ZF = (env->ZF == 0); 9993 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9994 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9995 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9996 | ((env->condexec_bits & 0xfc) << 8) 9997 | (env->GE << 16) | (env->daif & CPSR_AIF); 9998 } 9999 10000 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 10001 CPSRWriteType write_type) 10002 { 10003 uint32_t changed_daif; 10004 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 10005 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 10006 10007 if (mask & CPSR_NZCV) { 10008 env->ZF = (~val) & CPSR_Z; 10009 env->NF = val; 10010 env->CF = (val >> 29) & 1; 10011 env->VF = (val << 3) & 0x80000000; 10012 } 10013 if (mask & CPSR_Q) { 10014 env->QF = ((val & CPSR_Q) != 0); 10015 } 10016 if (mask & CPSR_T) { 10017 env->thumb = ((val & CPSR_T) != 0); 10018 } 10019 if (mask & CPSR_IT_0_1) { 10020 env->condexec_bits &= ~3; 10021 env->condexec_bits |= (val >> 25) & 3; 10022 } 10023 if (mask & CPSR_IT_2_7) { 10024 env->condexec_bits &= 3; 10025 env->condexec_bits |= (val >> 8) & 0xfc; 10026 } 10027 if (mask & CPSR_GE) { 10028 env->GE = (val >> 16) & 0xf; 10029 } 10030 10031 /* 10032 * In a V7 implementation that includes the security extensions but does 10033 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 10034 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 10035 * bits respectively. 10036 * 10037 * In a V8 implementation, it is permitted for privileged software to 10038 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 10039 */ 10040 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 10041 arm_feature(env, ARM_FEATURE_EL3) && 10042 !arm_feature(env, ARM_FEATURE_EL2) && 10043 !arm_is_secure(env)) { 10044 10045 changed_daif = (env->daif ^ val) & mask; 10046 10047 if (changed_daif & CPSR_A) { 10048 /* 10049 * Check to see if we are allowed to change the masking of async 10050 * abort exceptions from a non-secure state. 10051 */ 10052 if (!(env->cp15.scr_el3 & SCR_AW)) { 10053 qemu_log_mask(LOG_GUEST_ERROR, 10054 "Ignoring attempt to switch CPSR_A flag from " 10055 "non-secure world with SCR.AW bit clear\n"); 10056 mask &= ~CPSR_A; 10057 } 10058 } 10059 10060 if (changed_daif & CPSR_F) { 10061 /* 10062 * Check to see if we are allowed to change the masking of FIQ 10063 * exceptions from a non-secure state. 10064 */ 10065 if (!(env->cp15.scr_el3 & SCR_FW)) { 10066 qemu_log_mask(LOG_GUEST_ERROR, 10067 "Ignoring attempt to switch CPSR_F flag from " 10068 "non-secure world with SCR.FW bit clear\n"); 10069 mask &= ~CPSR_F; 10070 } 10071 10072 /* 10073 * Check whether non-maskable FIQ (NMFI) support is enabled. 10074 * If this bit is set software is not allowed to mask 10075 * FIQs, but is allowed to set CPSR_F to 0. 10076 */ 10077 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 10078 (val & CPSR_F)) { 10079 qemu_log_mask(LOG_GUEST_ERROR, 10080 "Ignoring attempt to enable CPSR_F flag " 10081 "(non-maskable FIQ [NMFI] support enabled)\n"); 10082 mask &= ~CPSR_F; 10083 } 10084 } 10085 } 10086 10087 env->daif &= ~(CPSR_AIF & mask); 10088 env->daif |= val & CPSR_AIF & mask; 10089 10090 if (write_type != CPSRWriteRaw && 10091 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 10092 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 10093 /* 10094 * Note that we can only get here in USR mode if this is a 10095 * gdb stub write; for this case we follow the architectural 10096 * behaviour for guest writes in USR mode of ignoring an attempt 10097 * to switch mode. (Those are caught by translate.c for writes 10098 * triggered by guest instructions.) 10099 */ 10100 mask &= ~CPSR_M; 10101 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 10102 /* 10103 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 10104 * v7, and has defined behaviour in v8: 10105 * + leave CPSR.M untouched 10106 * + allow changes to the other CPSR fields 10107 * + set PSTATE.IL 10108 * For user changes via the GDB stub, we don't set PSTATE.IL, 10109 * as this would be unnecessarily harsh for a user error. 10110 */ 10111 mask &= ~CPSR_M; 10112 if (write_type != CPSRWriteByGDBStub && 10113 arm_feature(env, ARM_FEATURE_V8)) { 10114 mask |= CPSR_IL; 10115 val |= CPSR_IL; 10116 } 10117 qemu_log_mask(LOG_GUEST_ERROR, 10118 "Illegal AArch32 mode switch attempt from %s to %s\n", 10119 aarch32_mode_name(env->uncached_cpsr), 10120 aarch32_mode_name(val)); 10121 } else { 10122 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 10123 write_type == CPSRWriteExceptionReturn ? 10124 "Exception return from AArch32" : 10125 "AArch32 mode switch from", 10126 aarch32_mode_name(env->uncached_cpsr), 10127 aarch32_mode_name(val), env->regs[15]); 10128 switch_mode(env, val & CPSR_M); 10129 } 10130 } 10131 mask &= ~CACHED_CPSR_BITS; 10132 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 10133 if (tcg_enabled() && rebuild_hflags) { 10134 arm_rebuild_hflags(env); 10135 } 10136 } 10137 10138 /* Sign/zero extend */ 10139 uint32_t HELPER(sxtb16)(uint32_t x) 10140 { 10141 uint32_t res; 10142 res = (uint16_t)(int8_t)x; 10143 res |= (uint32_t)(int8_t)(x >> 16) << 16; 10144 return res; 10145 } 10146 10147 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 10148 { 10149 /* 10150 * Take a division-by-zero exception if necessary; otherwise return 10151 * to get the usual non-trapping division behaviour (result of 0) 10152 */ 10153 if (arm_feature(env, ARM_FEATURE_M) 10154 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 10155 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 10156 } 10157 } 10158 10159 uint32_t HELPER(uxtb16)(uint32_t x) 10160 { 10161 uint32_t res; 10162 res = (uint16_t)(uint8_t)x; 10163 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 10164 return res; 10165 } 10166 10167 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 10168 { 10169 if (den == 0) { 10170 handle_possible_div0_trap(env, GETPC()); 10171 return 0; 10172 } 10173 if (num == INT_MIN && den == -1) { 10174 return INT_MIN; 10175 } 10176 return num / den; 10177 } 10178 10179 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 10180 { 10181 if (den == 0) { 10182 handle_possible_div0_trap(env, GETPC()); 10183 return 0; 10184 } 10185 return num / den; 10186 } 10187 10188 uint32_t HELPER(rbit)(uint32_t x) 10189 { 10190 return revbit32(x); 10191 } 10192 10193 #ifdef CONFIG_USER_ONLY 10194 10195 static void switch_mode(CPUARMState *env, int mode) 10196 { 10197 ARMCPU *cpu = env_archcpu(env); 10198 10199 if (mode != ARM_CPU_MODE_USR) { 10200 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 10201 } 10202 } 10203 10204 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10205 uint32_t cur_el, bool secure) 10206 { 10207 return 1; 10208 } 10209 10210 void aarch64_sync_64_to_32(CPUARMState *env) 10211 { 10212 g_assert_not_reached(); 10213 } 10214 10215 #else 10216 10217 static void switch_mode(CPUARMState *env, int mode) 10218 { 10219 int old_mode; 10220 int i; 10221 10222 old_mode = env->uncached_cpsr & CPSR_M; 10223 if (mode == old_mode) { 10224 return; 10225 } 10226 10227 if (old_mode == ARM_CPU_MODE_FIQ) { 10228 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10229 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 10230 } else if (mode == ARM_CPU_MODE_FIQ) { 10231 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10232 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 10233 } 10234 10235 i = bank_number(old_mode); 10236 env->banked_r13[i] = env->regs[13]; 10237 env->banked_spsr[i] = env->spsr; 10238 10239 i = bank_number(mode); 10240 env->regs[13] = env->banked_r13[i]; 10241 env->spsr = env->banked_spsr[i]; 10242 10243 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10244 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10245 } 10246 10247 /* 10248 * Physical Interrupt Target EL Lookup Table 10249 * 10250 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10251 * 10252 * The below multi-dimensional table is used for looking up the target 10253 * exception level given numerous condition criteria. Specifically, the 10254 * target EL is based on SCR and HCR routing controls as well as the 10255 * currently executing EL and secure state. 10256 * 10257 * Dimensions: 10258 * target_el_table[2][2][2][2][2][4] 10259 * | | | | | +--- Current EL 10260 * | | | | +------ Non-secure(0)/Secure(1) 10261 * | | | +--------- HCR mask override 10262 * | | +------------ SCR exec state control 10263 * | +--------------- SCR mask override 10264 * +------------------ 32-bit(0)/64-bit(1) EL3 10265 * 10266 * The table values are as such: 10267 * 0-3 = EL0-EL3 10268 * -1 = Cannot occur 10269 * 10270 * The ARM ARM target EL table includes entries indicating that an "exception 10271 * is not taken". The two cases where this is applicable are: 10272 * 1) An exception is taken from EL3 but the SCR does not have the exception 10273 * routed to EL3. 10274 * 2) An exception is taken from EL2 but the HCR does not have the exception 10275 * routed to EL2. 10276 * In these two cases, the below table contain a target of EL1. This value is 10277 * returned as it is expected that the consumer of the table data will check 10278 * for "target EL >= current EL" to ensure the exception is not taken. 10279 * 10280 * SCR HCR 10281 * 64 EA AMO From 10282 * BIT IRQ IMO Non-secure Secure 10283 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10284 */ 10285 static const int8_t target_el_table[2][2][2][2][2][4] = { 10286 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10287 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10288 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10289 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10290 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10291 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10292 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10293 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10294 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10295 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10296 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10297 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10298 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10299 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10300 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10301 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10302 }; 10303 10304 /* 10305 * Determine the target EL for physical exceptions 10306 */ 10307 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10308 uint32_t cur_el, bool secure) 10309 { 10310 CPUARMState *env = cpu_env(cs); 10311 bool rw; 10312 bool scr; 10313 bool hcr; 10314 int target_el; 10315 /* Is the highest EL AArch64? */ 10316 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10317 uint64_t hcr_el2; 10318 10319 if (arm_feature(env, ARM_FEATURE_EL3)) { 10320 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10321 } else { 10322 /* 10323 * Either EL2 is the highest EL (and so the EL2 register width 10324 * is given by is64); or there is no EL2 or EL3, in which case 10325 * the value of 'rw' does not affect the table lookup anyway. 10326 */ 10327 rw = is64; 10328 } 10329 10330 hcr_el2 = arm_hcr_el2_eff(env); 10331 switch (excp_idx) { 10332 case EXCP_IRQ: 10333 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10334 hcr = hcr_el2 & HCR_IMO; 10335 break; 10336 case EXCP_FIQ: 10337 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10338 hcr = hcr_el2 & HCR_FMO; 10339 break; 10340 default: 10341 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10342 hcr = hcr_el2 & HCR_AMO; 10343 break; 10344 }; 10345 10346 /* 10347 * For these purposes, TGE and AMO/IMO/FMO both force the 10348 * interrupt to EL2. Fold TGE into the bit extracted above. 10349 */ 10350 hcr |= (hcr_el2 & HCR_TGE) != 0; 10351 10352 /* Perform a table-lookup for the target EL given the current state */ 10353 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10354 10355 assert(target_el > 0); 10356 10357 return target_el; 10358 } 10359 10360 void arm_log_exception(CPUState *cs) 10361 { 10362 int idx = cs->exception_index; 10363 10364 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10365 const char *exc = NULL; 10366 static const char * const excnames[] = { 10367 [EXCP_UDEF] = "Undefined Instruction", 10368 [EXCP_SWI] = "SVC", 10369 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10370 [EXCP_DATA_ABORT] = "Data Abort", 10371 [EXCP_IRQ] = "IRQ", 10372 [EXCP_FIQ] = "FIQ", 10373 [EXCP_BKPT] = "Breakpoint", 10374 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10375 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10376 [EXCP_HVC] = "Hypervisor Call", 10377 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10378 [EXCP_SMC] = "Secure Monitor Call", 10379 [EXCP_VIRQ] = "Virtual IRQ", 10380 [EXCP_VFIQ] = "Virtual FIQ", 10381 [EXCP_SEMIHOST] = "Semihosting call", 10382 [EXCP_NOCP] = "v7M NOCP UsageFault", 10383 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10384 [EXCP_STKOF] = "v8M STKOF UsageFault", 10385 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10386 [EXCP_LSERR] = "v8M LSERR UsageFault", 10387 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10388 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10389 [EXCP_VSERR] = "Virtual SERR", 10390 [EXCP_GPC] = "Granule Protection Check", 10391 }; 10392 10393 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10394 exc = excnames[idx]; 10395 } 10396 if (!exc) { 10397 exc = "unknown"; 10398 } 10399 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10400 idx, exc, cs->cpu_index); 10401 } 10402 } 10403 10404 /* 10405 * Function used to synchronize QEMU's AArch64 register set with AArch32 10406 * register set. This is necessary when switching between AArch32 and AArch64 10407 * execution state. 10408 */ 10409 void aarch64_sync_32_to_64(CPUARMState *env) 10410 { 10411 int i; 10412 uint32_t mode = env->uncached_cpsr & CPSR_M; 10413 10414 /* We can blanket copy R[0:7] to X[0:7] */ 10415 for (i = 0; i < 8; i++) { 10416 env->xregs[i] = env->regs[i]; 10417 } 10418 10419 /* 10420 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10421 * Otherwise, they come from the banked user regs. 10422 */ 10423 if (mode == ARM_CPU_MODE_FIQ) { 10424 for (i = 8; i < 13; i++) { 10425 env->xregs[i] = env->usr_regs[i - 8]; 10426 } 10427 } else { 10428 for (i = 8; i < 13; i++) { 10429 env->xregs[i] = env->regs[i]; 10430 } 10431 } 10432 10433 /* 10434 * Registers x13-x23 are the various mode SP and FP registers. Registers 10435 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10436 * from the mode banked register. 10437 */ 10438 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10439 env->xregs[13] = env->regs[13]; 10440 env->xregs[14] = env->regs[14]; 10441 } else { 10442 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10443 /* HYP is an exception in that it is copied from r14 */ 10444 if (mode == ARM_CPU_MODE_HYP) { 10445 env->xregs[14] = env->regs[14]; 10446 } else { 10447 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10448 } 10449 } 10450 10451 if (mode == ARM_CPU_MODE_HYP) { 10452 env->xregs[15] = env->regs[13]; 10453 } else { 10454 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10455 } 10456 10457 if (mode == ARM_CPU_MODE_IRQ) { 10458 env->xregs[16] = env->regs[14]; 10459 env->xregs[17] = env->regs[13]; 10460 } else { 10461 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10462 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10463 } 10464 10465 if (mode == ARM_CPU_MODE_SVC) { 10466 env->xregs[18] = env->regs[14]; 10467 env->xregs[19] = env->regs[13]; 10468 } else { 10469 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10470 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10471 } 10472 10473 if (mode == ARM_CPU_MODE_ABT) { 10474 env->xregs[20] = env->regs[14]; 10475 env->xregs[21] = env->regs[13]; 10476 } else { 10477 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10478 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10479 } 10480 10481 if (mode == ARM_CPU_MODE_UND) { 10482 env->xregs[22] = env->regs[14]; 10483 env->xregs[23] = env->regs[13]; 10484 } else { 10485 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10486 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10487 } 10488 10489 /* 10490 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10491 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10492 * FIQ bank for r8-r14. 10493 */ 10494 if (mode == ARM_CPU_MODE_FIQ) { 10495 for (i = 24; i < 31; i++) { 10496 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10497 } 10498 } else { 10499 for (i = 24; i < 29; i++) { 10500 env->xregs[i] = env->fiq_regs[i - 24]; 10501 } 10502 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10503 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10504 } 10505 10506 env->pc = env->regs[15]; 10507 } 10508 10509 /* 10510 * Function used to synchronize QEMU's AArch32 register set with AArch64 10511 * register set. This is necessary when switching between AArch32 and AArch64 10512 * execution state. 10513 */ 10514 void aarch64_sync_64_to_32(CPUARMState *env) 10515 { 10516 int i; 10517 uint32_t mode = env->uncached_cpsr & CPSR_M; 10518 10519 /* We can blanket copy X[0:7] to R[0:7] */ 10520 for (i = 0; i < 8; i++) { 10521 env->regs[i] = env->xregs[i]; 10522 } 10523 10524 /* 10525 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10526 * Otherwise, we copy x8-x12 into the banked user regs. 10527 */ 10528 if (mode == ARM_CPU_MODE_FIQ) { 10529 for (i = 8; i < 13; i++) { 10530 env->usr_regs[i - 8] = env->xregs[i]; 10531 } 10532 } else { 10533 for (i = 8; i < 13; i++) { 10534 env->regs[i] = env->xregs[i]; 10535 } 10536 } 10537 10538 /* 10539 * Registers r13 & r14 depend on the current mode. 10540 * If we are in a given mode, we copy the corresponding x registers to r13 10541 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10542 * for the mode. 10543 */ 10544 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10545 env->regs[13] = env->xregs[13]; 10546 env->regs[14] = env->xregs[14]; 10547 } else { 10548 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10549 10550 /* 10551 * HYP is an exception in that it does not have its own banked r14 but 10552 * shares the USR r14 10553 */ 10554 if (mode == ARM_CPU_MODE_HYP) { 10555 env->regs[14] = env->xregs[14]; 10556 } else { 10557 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10558 } 10559 } 10560 10561 if (mode == ARM_CPU_MODE_HYP) { 10562 env->regs[13] = env->xregs[15]; 10563 } else { 10564 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10565 } 10566 10567 if (mode == ARM_CPU_MODE_IRQ) { 10568 env->regs[14] = env->xregs[16]; 10569 env->regs[13] = env->xregs[17]; 10570 } else { 10571 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10572 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10573 } 10574 10575 if (mode == ARM_CPU_MODE_SVC) { 10576 env->regs[14] = env->xregs[18]; 10577 env->regs[13] = env->xregs[19]; 10578 } else { 10579 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10580 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10581 } 10582 10583 if (mode == ARM_CPU_MODE_ABT) { 10584 env->regs[14] = env->xregs[20]; 10585 env->regs[13] = env->xregs[21]; 10586 } else { 10587 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10588 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10589 } 10590 10591 if (mode == ARM_CPU_MODE_UND) { 10592 env->regs[14] = env->xregs[22]; 10593 env->regs[13] = env->xregs[23]; 10594 } else { 10595 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10596 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10597 } 10598 10599 /* 10600 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10601 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10602 * FIQ bank for r8-r14. 10603 */ 10604 if (mode == ARM_CPU_MODE_FIQ) { 10605 for (i = 24; i < 31; i++) { 10606 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10607 } 10608 } else { 10609 for (i = 24; i < 29; i++) { 10610 env->fiq_regs[i - 24] = env->xregs[i]; 10611 } 10612 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10613 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10614 } 10615 10616 env->regs[15] = env->pc; 10617 } 10618 10619 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10620 uint32_t mask, uint32_t offset, 10621 uint32_t newpc) 10622 { 10623 int new_el; 10624 10625 /* Change the CPU state so as to actually take the exception. */ 10626 switch_mode(env, new_mode); 10627 10628 /* 10629 * For exceptions taken to AArch32 we must clear the SS bit in both 10630 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10631 */ 10632 env->pstate &= ~PSTATE_SS; 10633 env->spsr = cpsr_read(env); 10634 /* Clear IT bits. */ 10635 env->condexec_bits = 0; 10636 /* Switch to the new mode, and to the correct instruction set. */ 10637 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10638 10639 /* This must be after mode switching. */ 10640 new_el = arm_current_el(env); 10641 10642 /* Set new mode endianness */ 10643 env->uncached_cpsr &= ~CPSR_E; 10644 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10645 env->uncached_cpsr |= CPSR_E; 10646 } 10647 /* J and IL must always be cleared for exception entry */ 10648 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10649 env->daif |= mask; 10650 10651 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10652 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10653 env->uncached_cpsr |= CPSR_SSBS; 10654 } else { 10655 env->uncached_cpsr &= ~CPSR_SSBS; 10656 } 10657 } 10658 10659 if (new_mode == ARM_CPU_MODE_HYP) { 10660 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10661 env->elr_el[2] = env->regs[15]; 10662 } else { 10663 /* CPSR.PAN is normally preserved preserved unless... */ 10664 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10665 switch (new_el) { 10666 case 3: 10667 if (!arm_is_secure_below_el3(env)) { 10668 /* ... the target is EL3, from non-secure state. */ 10669 env->uncached_cpsr &= ~CPSR_PAN; 10670 break; 10671 } 10672 /* ... the target is EL3, from secure state ... */ 10673 /* fall through */ 10674 case 1: 10675 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10676 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10677 env->uncached_cpsr |= CPSR_PAN; 10678 } 10679 break; 10680 } 10681 } 10682 /* 10683 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10684 * and we should just guard the thumb mode on V4 10685 */ 10686 if (arm_feature(env, ARM_FEATURE_V4T)) { 10687 env->thumb = 10688 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10689 } 10690 env->regs[14] = env->regs[15] + offset; 10691 } 10692 env->regs[15] = newpc; 10693 10694 if (tcg_enabled()) { 10695 arm_rebuild_hflags(env); 10696 } 10697 } 10698 10699 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10700 { 10701 /* 10702 * Handle exception entry to Hyp mode; this is sufficiently 10703 * different to entry to other AArch32 modes that we handle it 10704 * separately here. 10705 * 10706 * The vector table entry used is always the 0x14 Hyp mode entry point, 10707 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10708 * The offset applied to the preferred return address is always zero 10709 * (see DDI0487C.a section G1.12.3). 10710 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10711 */ 10712 uint32_t addr, mask; 10713 ARMCPU *cpu = ARM_CPU(cs); 10714 CPUARMState *env = &cpu->env; 10715 10716 switch (cs->exception_index) { 10717 case EXCP_UDEF: 10718 addr = 0x04; 10719 break; 10720 case EXCP_SWI: 10721 addr = 0x08; 10722 break; 10723 case EXCP_BKPT: 10724 /* Fall through to prefetch abort. */ 10725 case EXCP_PREFETCH_ABORT: 10726 env->cp15.ifar_s = env->exception.vaddress; 10727 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10728 (uint32_t)env->exception.vaddress); 10729 addr = 0x0c; 10730 break; 10731 case EXCP_DATA_ABORT: 10732 env->cp15.dfar_s = env->exception.vaddress; 10733 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10734 (uint32_t)env->exception.vaddress); 10735 addr = 0x10; 10736 break; 10737 case EXCP_IRQ: 10738 addr = 0x18; 10739 break; 10740 case EXCP_FIQ: 10741 addr = 0x1c; 10742 break; 10743 case EXCP_HVC: 10744 addr = 0x08; 10745 break; 10746 case EXCP_HYP_TRAP: 10747 addr = 0x14; 10748 break; 10749 default: 10750 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10751 } 10752 10753 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10754 if (!arm_feature(env, ARM_FEATURE_V8)) { 10755 /* 10756 * QEMU syndrome values are v8-style. v7 has the IL bit 10757 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10758 * If this is a v7 CPU, squash the IL bit in those cases. 10759 */ 10760 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10761 (cs->exception_index == EXCP_DATA_ABORT && 10762 !(env->exception.syndrome & ARM_EL_ISV)) || 10763 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10764 env->exception.syndrome &= ~ARM_EL_IL; 10765 } 10766 } 10767 env->cp15.esr_el[2] = env->exception.syndrome; 10768 } 10769 10770 if (arm_current_el(env) != 2 && addr < 0x14) { 10771 addr = 0x14; 10772 } 10773 10774 mask = 0; 10775 if (!(env->cp15.scr_el3 & SCR_EA)) { 10776 mask |= CPSR_A; 10777 } 10778 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10779 mask |= CPSR_I; 10780 } 10781 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10782 mask |= CPSR_F; 10783 } 10784 10785 addr += env->cp15.hvbar; 10786 10787 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10788 } 10789 10790 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10791 { 10792 ARMCPU *cpu = ARM_CPU(cs); 10793 CPUARMState *env = &cpu->env; 10794 uint32_t addr; 10795 uint32_t mask; 10796 int new_mode; 10797 uint32_t offset; 10798 uint32_t moe; 10799 10800 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10801 switch (syn_get_ec(env->exception.syndrome)) { 10802 case EC_BREAKPOINT: 10803 case EC_BREAKPOINT_SAME_EL: 10804 moe = 1; 10805 break; 10806 case EC_WATCHPOINT: 10807 case EC_WATCHPOINT_SAME_EL: 10808 moe = 10; 10809 break; 10810 case EC_AA32_BKPT: 10811 moe = 3; 10812 break; 10813 case EC_VECTORCATCH: 10814 moe = 5; 10815 break; 10816 default: 10817 moe = 0; 10818 break; 10819 } 10820 10821 if (moe) { 10822 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10823 } 10824 10825 if (env->exception.target_el == 2) { 10826 arm_cpu_do_interrupt_aarch32_hyp(cs); 10827 return; 10828 } 10829 10830 switch (cs->exception_index) { 10831 case EXCP_UDEF: 10832 new_mode = ARM_CPU_MODE_UND; 10833 addr = 0x04; 10834 mask = CPSR_I; 10835 if (env->thumb) { 10836 offset = 2; 10837 } else { 10838 offset = 4; 10839 } 10840 break; 10841 case EXCP_SWI: 10842 new_mode = ARM_CPU_MODE_SVC; 10843 addr = 0x08; 10844 mask = CPSR_I; 10845 /* The PC already points to the next instruction. */ 10846 offset = 0; 10847 break; 10848 case EXCP_BKPT: 10849 /* Fall through to prefetch abort. */ 10850 case EXCP_PREFETCH_ABORT: 10851 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10852 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10853 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10854 env->exception.fsr, (uint32_t)env->exception.vaddress); 10855 new_mode = ARM_CPU_MODE_ABT; 10856 addr = 0x0c; 10857 mask = CPSR_A | CPSR_I; 10858 offset = 4; 10859 break; 10860 case EXCP_DATA_ABORT: 10861 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10862 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10863 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10864 env->exception.fsr, 10865 (uint32_t)env->exception.vaddress); 10866 new_mode = ARM_CPU_MODE_ABT; 10867 addr = 0x10; 10868 mask = CPSR_A | CPSR_I; 10869 offset = 8; 10870 break; 10871 case EXCP_IRQ: 10872 new_mode = ARM_CPU_MODE_IRQ; 10873 addr = 0x18; 10874 /* Disable IRQ and imprecise data aborts. */ 10875 mask = CPSR_A | CPSR_I; 10876 offset = 4; 10877 if (env->cp15.scr_el3 & SCR_IRQ) { 10878 /* IRQ routed to monitor mode */ 10879 new_mode = ARM_CPU_MODE_MON; 10880 mask |= CPSR_F; 10881 } 10882 break; 10883 case EXCP_FIQ: 10884 new_mode = ARM_CPU_MODE_FIQ; 10885 addr = 0x1c; 10886 /* Disable FIQ, IRQ and imprecise data aborts. */ 10887 mask = CPSR_A | CPSR_I | CPSR_F; 10888 if (env->cp15.scr_el3 & SCR_FIQ) { 10889 /* FIQ routed to monitor mode */ 10890 new_mode = ARM_CPU_MODE_MON; 10891 } 10892 offset = 4; 10893 break; 10894 case EXCP_VIRQ: 10895 new_mode = ARM_CPU_MODE_IRQ; 10896 addr = 0x18; 10897 /* Disable IRQ and imprecise data aborts. */ 10898 mask = CPSR_A | CPSR_I; 10899 offset = 4; 10900 break; 10901 case EXCP_VFIQ: 10902 new_mode = ARM_CPU_MODE_FIQ; 10903 addr = 0x1c; 10904 /* Disable FIQ, IRQ and imprecise data aborts. */ 10905 mask = CPSR_A | CPSR_I | CPSR_F; 10906 offset = 4; 10907 break; 10908 case EXCP_VSERR: 10909 { 10910 /* 10911 * Note that this is reported as a data abort, but the DFAR 10912 * has an UNKNOWN value. Construct the SError syndrome from 10913 * AET and ExT fields. 10914 */ 10915 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10916 10917 if (extended_addresses_enabled(env)) { 10918 env->exception.fsr = arm_fi_to_lfsc(&fi); 10919 } else { 10920 env->exception.fsr = arm_fi_to_sfsc(&fi); 10921 } 10922 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10923 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10924 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10925 env->exception.fsr); 10926 10927 new_mode = ARM_CPU_MODE_ABT; 10928 addr = 0x10; 10929 mask = CPSR_A | CPSR_I; 10930 offset = 8; 10931 } 10932 break; 10933 case EXCP_SMC: 10934 new_mode = ARM_CPU_MODE_MON; 10935 addr = 0x08; 10936 mask = CPSR_A | CPSR_I | CPSR_F; 10937 offset = 0; 10938 break; 10939 default: 10940 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10941 return; /* Never happens. Keep compiler happy. */ 10942 } 10943 10944 if (new_mode == ARM_CPU_MODE_MON) { 10945 addr += env->cp15.mvbar; 10946 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10947 /* High vectors. When enabled, base address cannot be remapped. */ 10948 addr += 0xffff0000; 10949 } else { 10950 /* 10951 * ARM v7 architectures provide a vector base address register to remap 10952 * the interrupt vector table. 10953 * This register is only followed in non-monitor mode, and is banked. 10954 * Note: only bits 31:5 are valid. 10955 */ 10956 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10957 } 10958 10959 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10960 env->cp15.scr_el3 &= ~SCR_NS; 10961 } 10962 10963 take_aarch32_exception(env, new_mode, mask, offset, addr); 10964 } 10965 10966 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10967 { 10968 /* 10969 * Return the register number of the AArch64 view of the AArch32 10970 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10971 * be that of the AArch32 mode the exception came from. 10972 */ 10973 int mode = env->uncached_cpsr & CPSR_M; 10974 10975 switch (aarch32_reg) { 10976 case 0 ... 7: 10977 return aarch32_reg; 10978 case 8 ... 12: 10979 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10980 case 13: 10981 switch (mode) { 10982 case ARM_CPU_MODE_USR: 10983 case ARM_CPU_MODE_SYS: 10984 return 13; 10985 case ARM_CPU_MODE_HYP: 10986 return 15; 10987 case ARM_CPU_MODE_IRQ: 10988 return 17; 10989 case ARM_CPU_MODE_SVC: 10990 return 19; 10991 case ARM_CPU_MODE_ABT: 10992 return 21; 10993 case ARM_CPU_MODE_UND: 10994 return 23; 10995 case ARM_CPU_MODE_FIQ: 10996 return 29; 10997 default: 10998 g_assert_not_reached(); 10999 } 11000 case 14: 11001 switch (mode) { 11002 case ARM_CPU_MODE_USR: 11003 case ARM_CPU_MODE_SYS: 11004 case ARM_CPU_MODE_HYP: 11005 return 14; 11006 case ARM_CPU_MODE_IRQ: 11007 return 16; 11008 case ARM_CPU_MODE_SVC: 11009 return 18; 11010 case ARM_CPU_MODE_ABT: 11011 return 20; 11012 case ARM_CPU_MODE_UND: 11013 return 22; 11014 case ARM_CPU_MODE_FIQ: 11015 return 30; 11016 default: 11017 g_assert_not_reached(); 11018 } 11019 case 15: 11020 return 31; 11021 default: 11022 g_assert_not_reached(); 11023 } 11024 } 11025 11026 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 11027 { 11028 uint32_t ret = cpsr_read(env); 11029 11030 /* Move DIT to the correct location for SPSR_ELx */ 11031 if (ret & CPSR_DIT) { 11032 ret &= ~CPSR_DIT; 11033 ret |= PSTATE_DIT; 11034 } 11035 /* Merge PSTATE.SS into SPSR_ELx */ 11036 ret |= env->pstate & PSTATE_SS; 11037 11038 return ret; 11039 } 11040 11041 static bool syndrome_is_sync_extabt(uint32_t syndrome) 11042 { 11043 /* Return true if this syndrome value is a synchronous external abort */ 11044 switch (syn_get_ec(syndrome)) { 11045 case EC_INSNABORT: 11046 case EC_INSNABORT_SAME_EL: 11047 case EC_DATAABORT: 11048 case EC_DATAABORT_SAME_EL: 11049 /* Look at fault status code for all the synchronous ext abort cases */ 11050 switch (syndrome & 0x3f) { 11051 case 0x10: 11052 case 0x13: 11053 case 0x14: 11054 case 0x15: 11055 case 0x16: 11056 case 0x17: 11057 return true; 11058 default: 11059 return false; 11060 } 11061 default: 11062 return false; 11063 } 11064 } 11065 11066 /* Handle exception entry to a target EL which is using AArch64 */ 11067 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 11068 { 11069 ARMCPU *cpu = ARM_CPU(cs); 11070 CPUARMState *env = &cpu->env; 11071 unsigned int new_el = env->exception.target_el; 11072 target_ulong addr = env->cp15.vbar_el[new_el]; 11073 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 11074 unsigned int old_mode; 11075 unsigned int cur_el = arm_current_el(env); 11076 int rt; 11077 11078 if (tcg_enabled()) { 11079 /* 11080 * Note that new_el can never be 0. If cur_el is 0, then 11081 * el0_a64 is is_a64(), else el0_a64 is ignored. 11082 */ 11083 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 11084 } 11085 11086 if (cur_el < new_el) { 11087 /* 11088 * Entry vector offset depends on whether the implemented EL 11089 * immediately lower than the target level is using AArch32 or AArch64 11090 */ 11091 bool is_aa64; 11092 uint64_t hcr; 11093 11094 switch (new_el) { 11095 case 3: 11096 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 11097 break; 11098 case 2: 11099 hcr = arm_hcr_el2_eff(env); 11100 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11101 is_aa64 = (hcr & HCR_RW) != 0; 11102 break; 11103 } 11104 /* fall through */ 11105 case 1: 11106 is_aa64 = is_a64(env); 11107 break; 11108 default: 11109 g_assert_not_reached(); 11110 } 11111 11112 if (is_aa64) { 11113 addr += 0x400; 11114 } else { 11115 addr += 0x600; 11116 } 11117 } else if (pstate_read(env) & PSTATE_SP) { 11118 addr += 0x200; 11119 } 11120 11121 switch (cs->exception_index) { 11122 case EXCP_GPC: 11123 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 11124 env->cp15.mfar_el3); 11125 /* fall through */ 11126 case EXCP_PREFETCH_ABORT: 11127 case EXCP_DATA_ABORT: 11128 /* 11129 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 11130 * to be taken to the SError vector entrypoint. 11131 */ 11132 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 11133 syndrome_is_sync_extabt(env->exception.syndrome)) { 11134 addr += 0x180; 11135 } 11136 env->cp15.far_el[new_el] = env->exception.vaddress; 11137 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 11138 env->cp15.far_el[new_el]); 11139 /* fall through */ 11140 case EXCP_BKPT: 11141 case EXCP_UDEF: 11142 case EXCP_SWI: 11143 case EXCP_HVC: 11144 case EXCP_HYP_TRAP: 11145 case EXCP_SMC: 11146 switch (syn_get_ec(env->exception.syndrome)) { 11147 case EC_ADVSIMDFPACCESSTRAP: 11148 /* 11149 * QEMU internal FP/SIMD syndromes from AArch32 include the 11150 * TA and coproc fields which are only exposed if the exception 11151 * is taken to AArch32 Hyp mode. Mask them out to get a valid 11152 * AArch64 format syndrome. 11153 */ 11154 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 11155 break; 11156 case EC_CP14RTTRAP: 11157 case EC_CP15RTTRAP: 11158 case EC_CP14DTTRAP: 11159 /* 11160 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 11161 * the raw register field from the insn; when taking this to 11162 * AArch64 we must convert it to the AArch64 view of the register 11163 * number. Notice that we read a 4-bit AArch32 register number and 11164 * write back a 5-bit AArch64 one. 11165 */ 11166 rt = extract32(env->exception.syndrome, 5, 4); 11167 rt = aarch64_regnum(env, rt); 11168 env->exception.syndrome = deposit32(env->exception.syndrome, 11169 5, 5, rt); 11170 break; 11171 case EC_CP15RRTTRAP: 11172 case EC_CP14RRTTRAP: 11173 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 11174 rt = extract32(env->exception.syndrome, 5, 4); 11175 rt = aarch64_regnum(env, rt); 11176 env->exception.syndrome = deposit32(env->exception.syndrome, 11177 5, 5, rt); 11178 rt = extract32(env->exception.syndrome, 10, 4); 11179 rt = aarch64_regnum(env, rt); 11180 env->exception.syndrome = deposit32(env->exception.syndrome, 11181 10, 5, rt); 11182 break; 11183 } 11184 env->cp15.esr_el[new_el] = env->exception.syndrome; 11185 break; 11186 case EXCP_IRQ: 11187 case EXCP_VIRQ: 11188 addr += 0x80; 11189 break; 11190 case EXCP_FIQ: 11191 case EXCP_VFIQ: 11192 addr += 0x100; 11193 break; 11194 case EXCP_VSERR: 11195 addr += 0x180; 11196 /* Construct the SError syndrome from IDS and ISS fields. */ 11197 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 11198 env->cp15.esr_el[new_el] = env->exception.syndrome; 11199 break; 11200 default: 11201 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11202 } 11203 11204 if (is_a64(env)) { 11205 old_mode = pstate_read(env); 11206 aarch64_save_sp(env, arm_current_el(env)); 11207 env->elr_el[new_el] = env->pc; 11208 } else { 11209 old_mode = cpsr_read_for_spsr_elx(env); 11210 env->elr_el[new_el] = env->regs[15]; 11211 11212 aarch64_sync_32_to_64(env); 11213 11214 env->condexec_bits = 0; 11215 } 11216 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 11217 11218 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 11219 env->elr_el[new_el]); 11220 11221 if (cpu_isar_feature(aa64_pan, cpu)) { 11222 /* The value of PSTATE.PAN is normally preserved, except when ... */ 11223 new_mode |= old_mode & PSTATE_PAN; 11224 switch (new_el) { 11225 case 2: 11226 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 11227 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 11228 != (HCR_E2H | HCR_TGE)) { 11229 break; 11230 } 11231 /* fall through */ 11232 case 1: 11233 /* ... the target is EL1 ... */ 11234 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 11235 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 11236 new_mode |= PSTATE_PAN; 11237 } 11238 break; 11239 } 11240 } 11241 if (cpu_isar_feature(aa64_mte, cpu)) { 11242 new_mode |= PSTATE_TCO; 11243 } 11244 11245 if (cpu_isar_feature(aa64_ssbs, cpu)) { 11246 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11247 new_mode |= PSTATE_SSBS; 11248 } else { 11249 new_mode &= ~PSTATE_SSBS; 11250 } 11251 } 11252 11253 pstate_write(env, PSTATE_DAIF | new_mode); 11254 env->aarch64 = true; 11255 aarch64_restore_sp(env, new_el); 11256 11257 if (tcg_enabled()) { 11258 helper_rebuild_hflags_a64(env, new_el); 11259 } 11260 11261 env->pc = addr; 11262 11263 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11264 new_el, env->pc, pstate_read(env)); 11265 } 11266 11267 /* 11268 * Do semihosting call and set the appropriate return value. All the 11269 * permission and validity checks have been done at translate time. 11270 * 11271 * We only see semihosting exceptions in TCG only as they are not 11272 * trapped to the hypervisor in KVM. 11273 */ 11274 #ifdef CONFIG_TCG 11275 static void tcg_handle_semihosting(CPUState *cs) 11276 { 11277 ARMCPU *cpu = ARM_CPU(cs); 11278 CPUARMState *env = &cpu->env; 11279 11280 if (is_a64(env)) { 11281 qemu_log_mask(CPU_LOG_INT, 11282 "...handling as semihosting call 0x%" PRIx64 "\n", 11283 env->xregs[0]); 11284 do_common_semihosting(cs); 11285 env->pc += 4; 11286 } else { 11287 qemu_log_mask(CPU_LOG_INT, 11288 "...handling as semihosting call 0x%x\n", 11289 env->regs[0]); 11290 do_common_semihosting(cs); 11291 env->regs[15] += env->thumb ? 2 : 4; 11292 } 11293 } 11294 #endif 11295 11296 /* 11297 * Handle a CPU exception for A and R profile CPUs. 11298 * Do any appropriate logging, handle PSCI calls, and then hand off 11299 * to the AArch64-entry or AArch32-entry function depending on the 11300 * target exception level's register width. 11301 * 11302 * Note: this is used for both TCG (as the do_interrupt tcg op), 11303 * and KVM to re-inject guest debug exceptions, and to 11304 * inject a Synchronous-External-Abort. 11305 */ 11306 void arm_cpu_do_interrupt(CPUState *cs) 11307 { 11308 ARMCPU *cpu = ARM_CPU(cs); 11309 CPUARMState *env = &cpu->env; 11310 unsigned int new_el = env->exception.target_el; 11311 11312 assert(!arm_feature(env, ARM_FEATURE_M)); 11313 11314 arm_log_exception(cs); 11315 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11316 new_el); 11317 if (qemu_loglevel_mask(CPU_LOG_INT) 11318 && !excp_is_internal(cs->exception_index)) { 11319 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11320 syn_get_ec(env->exception.syndrome), 11321 env->exception.syndrome); 11322 } 11323 11324 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11325 arm_handle_psci_call(cpu); 11326 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11327 return; 11328 } 11329 11330 /* 11331 * Semihosting semantics depend on the register width of the code 11332 * that caused the exception, not the target exception level, so 11333 * must be handled here. 11334 */ 11335 #ifdef CONFIG_TCG 11336 if (cs->exception_index == EXCP_SEMIHOST) { 11337 tcg_handle_semihosting(cs); 11338 return; 11339 } 11340 #endif 11341 11342 /* 11343 * Hooks may change global state so BQL should be held, also the 11344 * BQL needs to be held for any modification of 11345 * cs->interrupt_request. 11346 */ 11347 g_assert(qemu_mutex_iothread_locked()); 11348 11349 arm_call_pre_el_change_hook(cpu); 11350 11351 assert(!excp_is_internal(cs->exception_index)); 11352 if (arm_el_is_aa64(env, new_el)) { 11353 arm_cpu_do_interrupt_aarch64(cs); 11354 } else { 11355 arm_cpu_do_interrupt_aarch32(cs); 11356 } 11357 11358 arm_call_el_change_hook(cpu); 11359 11360 if (!kvm_enabled()) { 11361 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11362 } 11363 } 11364 #endif /* !CONFIG_USER_ONLY */ 11365 11366 uint64_t arm_sctlr(CPUARMState *env, int el) 11367 { 11368 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11369 if (el == 0) { 11370 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11371 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11372 } 11373 return env->cp15.sctlr_el[el]; 11374 } 11375 11376 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11377 { 11378 if (regime_has_2_ranges(mmu_idx)) { 11379 return extract64(tcr, 37, 2); 11380 } else if (regime_is_stage2(mmu_idx)) { 11381 return 0; /* VTCR_EL2 */ 11382 } else { 11383 /* Replicate the single TBI bit so we always have 2 bits. */ 11384 return extract32(tcr, 20, 1) * 3; 11385 } 11386 } 11387 11388 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11389 { 11390 if (regime_has_2_ranges(mmu_idx)) { 11391 return extract64(tcr, 51, 2); 11392 } else if (regime_is_stage2(mmu_idx)) { 11393 return 0; /* VTCR_EL2 */ 11394 } else { 11395 /* Replicate the single TBID bit so we always have 2 bits. */ 11396 return extract32(tcr, 29, 1) * 3; 11397 } 11398 } 11399 11400 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11401 { 11402 if (regime_has_2_ranges(mmu_idx)) { 11403 return extract64(tcr, 57, 2); 11404 } else { 11405 /* Replicate the single TCMA bit so we always have 2 bits. */ 11406 return extract32(tcr, 30, 1) * 3; 11407 } 11408 } 11409 11410 static ARMGranuleSize tg0_to_gran_size(int tg) 11411 { 11412 switch (tg) { 11413 case 0: 11414 return Gran4K; 11415 case 1: 11416 return Gran64K; 11417 case 2: 11418 return Gran16K; 11419 default: 11420 return GranInvalid; 11421 } 11422 } 11423 11424 static ARMGranuleSize tg1_to_gran_size(int tg) 11425 { 11426 switch (tg) { 11427 case 1: 11428 return Gran16K; 11429 case 2: 11430 return Gran4K; 11431 case 3: 11432 return Gran64K; 11433 default: 11434 return GranInvalid; 11435 } 11436 } 11437 11438 static inline bool have4k(ARMCPU *cpu, bool stage2) 11439 { 11440 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11441 : cpu_isar_feature(aa64_tgran4, cpu); 11442 } 11443 11444 static inline bool have16k(ARMCPU *cpu, bool stage2) 11445 { 11446 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11447 : cpu_isar_feature(aa64_tgran16, cpu); 11448 } 11449 11450 static inline bool have64k(ARMCPU *cpu, bool stage2) 11451 { 11452 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11453 : cpu_isar_feature(aa64_tgran64, cpu); 11454 } 11455 11456 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11457 bool stage2) 11458 { 11459 switch (gran) { 11460 case Gran4K: 11461 if (have4k(cpu, stage2)) { 11462 return gran; 11463 } 11464 break; 11465 case Gran16K: 11466 if (have16k(cpu, stage2)) { 11467 return gran; 11468 } 11469 break; 11470 case Gran64K: 11471 if (have64k(cpu, stage2)) { 11472 return gran; 11473 } 11474 break; 11475 case GranInvalid: 11476 break; 11477 } 11478 /* 11479 * If the guest selects a granule size that isn't implemented, 11480 * the architecture requires that we behave as if it selected one 11481 * that is (with an IMPDEF choice of which one to pick). We choose 11482 * to implement the smallest supported granule size. 11483 */ 11484 if (have4k(cpu, stage2)) { 11485 return Gran4K; 11486 } 11487 if (have16k(cpu, stage2)) { 11488 return Gran16K; 11489 } 11490 assert(have64k(cpu, stage2)); 11491 return Gran64K; 11492 } 11493 11494 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11495 ARMMMUIdx mmu_idx, bool data, 11496 bool el1_is_aa32) 11497 { 11498 uint64_t tcr = regime_tcr(env, mmu_idx); 11499 bool epd, hpd, tsz_oob, ds, ha, hd; 11500 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11501 ARMGranuleSize gran; 11502 ARMCPU *cpu = env_archcpu(env); 11503 bool stage2 = regime_is_stage2(mmu_idx); 11504 11505 if (!regime_has_2_ranges(mmu_idx)) { 11506 select = 0; 11507 tsz = extract32(tcr, 0, 6); 11508 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11509 if (stage2) { 11510 /* VTCR_EL2 */ 11511 hpd = false; 11512 } else { 11513 hpd = extract32(tcr, 24, 1); 11514 } 11515 epd = false; 11516 sh = extract32(tcr, 12, 2); 11517 ps = extract32(tcr, 16, 3); 11518 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11519 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11520 ds = extract64(tcr, 32, 1); 11521 } else { 11522 bool e0pd; 11523 11524 /* 11525 * Bit 55 is always between the two regions, and is canonical for 11526 * determining if address tagging is enabled. 11527 */ 11528 select = extract64(va, 55, 1); 11529 if (!select) { 11530 tsz = extract32(tcr, 0, 6); 11531 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11532 epd = extract32(tcr, 7, 1); 11533 sh = extract32(tcr, 12, 2); 11534 hpd = extract64(tcr, 41, 1); 11535 e0pd = extract64(tcr, 55, 1); 11536 } else { 11537 tsz = extract32(tcr, 16, 6); 11538 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11539 epd = extract32(tcr, 23, 1); 11540 sh = extract32(tcr, 28, 2); 11541 hpd = extract64(tcr, 42, 1); 11542 e0pd = extract64(tcr, 56, 1); 11543 } 11544 ps = extract64(tcr, 32, 3); 11545 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11546 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11547 ds = extract64(tcr, 59, 1); 11548 11549 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11550 regime_is_user(env, mmu_idx)) { 11551 epd = true; 11552 } 11553 } 11554 11555 gran = sanitize_gran_size(cpu, gran, stage2); 11556 11557 if (cpu_isar_feature(aa64_st, cpu)) { 11558 max_tsz = 48 - (gran == Gran64K); 11559 } else { 11560 max_tsz = 39; 11561 } 11562 11563 /* 11564 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11565 * adjust the effective value of DS, as documented. 11566 */ 11567 min_tsz = 16; 11568 if (gran == Gran64K) { 11569 if (cpu_isar_feature(aa64_lva, cpu)) { 11570 min_tsz = 12; 11571 } 11572 ds = false; 11573 } else if (ds) { 11574 if (regime_is_stage2(mmu_idx)) { 11575 if (gran == Gran16K) { 11576 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11577 } else { 11578 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11579 } 11580 } else { 11581 if (gran == Gran16K) { 11582 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11583 } else { 11584 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11585 } 11586 } 11587 if (ds) { 11588 min_tsz = 12; 11589 } 11590 } 11591 11592 if (stage2 && el1_is_aa32) { 11593 /* 11594 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11595 * are loosened: a configured IPA of 40 bits is permitted even if 11596 * the implemented PA is less than that (and so a 40 bit IPA would 11597 * fault for an AArch64 EL1). See R_DTLMN. 11598 */ 11599 min_tsz = MIN(min_tsz, 24); 11600 } 11601 11602 if (tsz > max_tsz) { 11603 tsz = max_tsz; 11604 tsz_oob = true; 11605 } else if (tsz < min_tsz) { 11606 tsz = min_tsz; 11607 tsz_oob = true; 11608 } else { 11609 tsz_oob = false; 11610 } 11611 11612 /* Present TBI as a composite with TBID. */ 11613 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11614 if (!data) { 11615 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11616 } 11617 tbi = (tbi >> select) & 1; 11618 11619 return (ARMVAParameters) { 11620 .tsz = tsz, 11621 .ps = ps, 11622 .sh = sh, 11623 .select = select, 11624 .tbi = tbi, 11625 .epd = epd, 11626 .hpd = hpd, 11627 .tsz_oob = tsz_oob, 11628 .ds = ds, 11629 .ha = ha, 11630 .hd = ha && hd, 11631 .gran = gran, 11632 }; 11633 } 11634 11635 /* 11636 * Note that signed overflow is undefined in C. The following routines are 11637 * careful to use unsigned types where modulo arithmetic is required. 11638 * Failure to do so _will_ break on newer gcc. 11639 */ 11640 11641 /* Signed saturating arithmetic. */ 11642 11643 /* Perform 16-bit signed saturating addition. */ 11644 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11645 { 11646 uint16_t res; 11647 11648 res = a + b; 11649 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11650 if (a & 0x8000) { 11651 res = 0x8000; 11652 } else { 11653 res = 0x7fff; 11654 } 11655 } 11656 return res; 11657 } 11658 11659 /* Perform 8-bit signed saturating addition. */ 11660 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11661 { 11662 uint8_t res; 11663 11664 res = a + b; 11665 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11666 if (a & 0x80) { 11667 res = 0x80; 11668 } else { 11669 res = 0x7f; 11670 } 11671 } 11672 return res; 11673 } 11674 11675 /* Perform 16-bit signed saturating subtraction. */ 11676 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11677 { 11678 uint16_t res; 11679 11680 res = a - b; 11681 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11682 if (a & 0x8000) { 11683 res = 0x8000; 11684 } else { 11685 res = 0x7fff; 11686 } 11687 } 11688 return res; 11689 } 11690 11691 /* Perform 8-bit signed saturating subtraction. */ 11692 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11693 { 11694 uint8_t res; 11695 11696 res = a - b; 11697 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11698 if (a & 0x80) { 11699 res = 0x80; 11700 } else { 11701 res = 0x7f; 11702 } 11703 } 11704 return res; 11705 } 11706 11707 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11708 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11709 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11710 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11711 #define PFX q 11712 11713 #include "op_addsub.h" 11714 11715 /* Unsigned saturating arithmetic. */ 11716 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11717 { 11718 uint16_t res; 11719 res = a + b; 11720 if (res < a) { 11721 res = 0xffff; 11722 } 11723 return res; 11724 } 11725 11726 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11727 { 11728 if (a > b) { 11729 return a - b; 11730 } else { 11731 return 0; 11732 } 11733 } 11734 11735 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11736 { 11737 uint8_t res; 11738 res = a + b; 11739 if (res < a) { 11740 res = 0xff; 11741 } 11742 return res; 11743 } 11744 11745 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11746 { 11747 if (a > b) { 11748 return a - b; 11749 } else { 11750 return 0; 11751 } 11752 } 11753 11754 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11755 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11756 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11757 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11758 #define PFX uq 11759 11760 #include "op_addsub.h" 11761 11762 /* Signed modulo arithmetic. */ 11763 #define SARITH16(a, b, n, op) do { \ 11764 int32_t sum; \ 11765 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11766 RESULT(sum, n, 16); \ 11767 if (sum >= 0) \ 11768 ge |= 3 << (n * 2); \ 11769 } while (0) 11770 11771 #define SARITH8(a, b, n, op) do { \ 11772 int32_t sum; \ 11773 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11774 RESULT(sum, n, 8); \ 11775 if (sum >= 0) \ 11776 ge |= 1 << n; \ 11777 } while (0) 11778 11779 11780 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11781 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11782 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11783 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11784 #define PFX s 11785 #define ARITH_GE 11786 11787 #include "op_addsub.h" 11788 11789 /* Unsigned modulo arithmetic. */ 11790 #define ADD16(a, b, n) do { \ 11791 uint32_t sum; \ 11792 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11793 RESULT(sum, n, 16); \ 11794 if ((sum >> 16) == 1) \ 11795 ge |= 3 << (n * 2); \ 11796 } while (0) 11797 11798 #define ADD8(a, b, n) do { \ 11799 uint32_t sum; \ 11800 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11801 RESULT(sum, n, 8); \ 11802 if ((sum >> 8) == 1) \ 11803 ge |= 1 << n; \ 11804 } while (0) 11805 11806 #define SUB16(a, b, n) do { \ 11807 uint32_t sum; \ 11808 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11809 RESULT(sum, n, 16); \ 11810 if ((sum >> 16) == 0) \ 11811 ge |= 3 << (n * 2); \ 11812 } while (0) 11813 11814 #define SUB8(a, b, n) do { \ 11815 uint32_t sum; \ 11816 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11817 RESULT(sum, n, 8); \ 11818 if ((sum >> 8) == 0) \ 11819 ge |= 1 << n; \ 11820 } while (0) 11821 11822 #define PFX u 11823 #define ARITH_GE 11824 11825 #include "op_addsub.h" 11826 11827 /* Halved signed arithmetic. */ 11828 #define ADD16(a, b, n) \ 11829 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11830 #define SUB16(a, b, n) \ 11831 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11832 #define ADD8(a, b, n) \ 11833 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11834 #define SUB8(a, b, n) \ 11835 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11836 #define PFX sh 11837 11838 #include "op_addsub.h" 11839 11840 /* Halved unsigned arithmetic. */ 11841 #define ADD16(a, b, n) \ 11842 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11843 #define SUB16(a, b, n) \ 11844 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11845 #define ADD8(a, b, n) \ 11846 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11847 #define SUB8(a, b, n) \ 11848 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11849 #define PFX uh 11850 11851 #include "op_addsub.h" 11852 11853 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11854 { 11855 if (a > b) { 11856 return a - b; 11857 } else { 11858 return b - a; 11859 } 11860 } 11861 11862 /* Unsigned sum of absolute byte differences. */ 11863 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11864 { 11865 uint32_t sum; 11866 sum = do_usad(a, b); 11867 sum += do_usad(a >> 8, b >> 8); 11868 sum += do_usad(a >> 16, b >> 16); 11869 sum += do_usad(a >> 24, b >> 24); 11870 return sum; 11871 } 11872 11873 /* For ARMv6 SEL instruction. */ 11874 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11875 { 11876 uint32_t mask; 11877 11878 mask = 0; 11879 if (flags & 1) { 11880 mask |= 0xff; 11881 } 11882 if (flags & 2) { 11883 mask |= 0xff00; 11884 } 11885 if (flags & 4) { 11886 mask |= 0xff0000; 11887 } 11888 if (flags & 8) { 11889 mask |= 0xff000000; 11890 } 11891 return (a & mask) | (b & ~mask); 11892 } 11893 11894 /* 11895 * CRC helpers. 11896 * The upper bytes of val (above the number specified by 'bytes') must have 11897 * been zeroed out by the caller. 11898 */ 11899 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11900 { 11901 uint8_t buf[4]; 11902 11903 stl_le_p(buf, val); 11904 11905 /* zlib crc32 converts the accumulator and output to one's complement. */ 11906 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11907 } 11908 11909 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11910 { 11911 uint8_t buf[4]; 11912 11913 stl_le_p(buf, val); 11914 11915 /* Linux crc32c converts the output to one's complement. */ 11916 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11917 } 11918 11919 /* 11920 * Return the exception level to which FP-disabled exceptions should 11921 * be taken, or 0 if FP is enabled. 11922 */ 11923 int fp_exception_el(CPUARMState *env, int cur_el) 11924 { 11925 #ifndef CONFIG_USER_ONLY 11926 uint64_t hcr_el2; 11927 11928 /* 11929 * CPACR and the CPTR registers don't exist before v6, so FP is 11930 * always accessible 11931 */ 11932 if (!arm_feature(env, ARM_FEATURE_V6)) { 11933 return 0; 11934 } 11935 11936 if (arm_feature(env, ARM_FEATURE_M)) { 11937 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11938 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11939 return 1; 11940 } 11941 11942 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11943 if (!extract32(env->v7m.nsacr, 10, 1)) { 11944 /* FP insns cause a NOCP UsageFault taken to Secure */ 11945 return 3; 11946 } 11947 } 11948 11949 return 0; 11950 } 11951 11952 hcr_el2 = arm_hcr_el2_eff(env); 11953 11954 /* 11955 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11956 * 0, 2 : trap EL0 and EL1/PL1 accesses 11957 * 1 : trap only EL0 accesses 11958 * 3 : trap no accesses 11959 * This register is ignored if E2H+TGE are both set. 11960 */ 11961 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11962 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11963 11964 switch (fpen) { 11965 case 1: 11966 if (cur_el != 0) { 11967 break; 11968 } 11969 /* fall through */ 11970 case 0: 11971 case 2: 11972 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11973 if (!arm_el_is_aa64(env, 3) 11974 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11975 return 3; 11976 } 11977 if (cur_el <= 1) { 11978 return 1; 11979 } 11980 break; 11981 } 11982 } 11983 11984 /* 11985 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11986 * to control non-secure access to the FPU. It doesn't have any 11987 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11988 */ 11989 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11990 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11991 if (!extract32(env->cp15.nsacr, 10, 1)) { 11992 /* FP insns act as UNDEF */ 11993 return cur_el == 2 ? 2 : 1; 11994 } 11995 } 11996 11997 /* 11998 * CPTR_EL2 is present in v7VE or v8, and changes format 11999 * with HCR_EL2.E2H (regardless of TGE). 12000 */ 12001 if (cur_el <= 2) { 12002 if (hcr_el2 & HCR_E2H) { 12003 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 12004 case 1: 12005 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 12006 break; 12007 } 12008 /* fall through */ 12009 case 0: 12010 case 2: 12011 return 2; 12012 } 12013 } else if (arm_is_el2_enabled(env)) { 12014 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 12015 return 2; 12016 } 12017 } 12018 } 12019 12020 /* CPTR_EL3 : present in v8 */ 12021 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 12022 /* Trap all FP ops to EL3 */ 12023 return 3; 12024 } 12025 #endif 12026 return 0; 12027 } 12028 12029 /* Return the exception level we're running at if this is our mmu_idx */ 12030 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12031 { 12032 if (mmu_idx & ARM_MMU_IDX_M) { 12033 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12034 } 12035 12036 switch (mmu_idx) { 12037 case ARMMMUIdx_E10_0: 12038 case ARMMMUIdx_E20_0: 12039 return 0; 12040 case ARMMMUIdx_E10_1: 12041 case ARMMMUIdx_E10_1_PAN: 12042 return 1; 12043 case ARMMMUIdx_E2: 12044 case ARMMMUIdx_E20_2: 12045 case ARMMMUIdx_E20_2_PAN: 12046 return 2; 12047 case ARMMMUIdx_E3: 12048 return 3; 12049 default: 12050 g_assert_not_reached(); 12051 } 12052 } 12053 12054 #ifndef CONFIG_TCG 12055 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12056 { 12057 g_assert_not_reached(); 12058 } 12059 #endif 12060 12061 static bool arm_pan_enabled(CPUARMState *env) 12062 { 12063 if (is_a64(env)) { 12064 return env->pstate & PSTATE_PAN; 12065 } else { 12066 return env->uncached_cpsr & CPSR_PAN; 12067 } 12068 } 12069 12070 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12071 { 12072 ARMMMUIdx idx; 12073 uint64_t hcr; 12074 12075 if (arm_feature(env, ARM_FEATURE_M)) { 12076 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12077 } 12078 12079 /* See ARM pseudo-function ELIsInHost. */ 12080 switch (el) { 12081 case 0: 12082 hcr = arm_hcr_el2_eff(env); 12083 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12084 idx = ARMMMUIdx_E20_0; 12085 } else { 12086 idx = ARMMMUIdx_E10_0; 12087 } 12088 break; 12089 case 1: 12090 if (arm_pan_enabled(env)) { 12091 idx = ARMMMUIdx_E10_1_PAN; 12092 } else { 12093 idx = ARMMMUIdx_E10_1; 12094 } 12095 break; 12096 case 2: 12097 /* Note that TGE does not apply at EL2. */ 12098 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12099 if (arm_pan_enabled(env)) { 12100 idx = ARMMMUIdx_E20_2_PAN; 12101 } else { 12102 idx = ARMMMUIdx_E20_2; 12103 } 12104 } else { 12105 idx = ARMMMUIdx_E2; 12106 } 12107 break; 12108 case 3: 12109 return ARMMMUIdx_E3; 12110 default: 12111 g_assert_not_reached(); 12112 } 12113 12114 return idx; 12115 } 12116 12117 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12118 { 12119 return arm_mmu_idx_el(env, arm_current_el(env)); 12120 } 12121 12122 static bool mve_no_pred(CPUARMState *env) 12123 { 12124 /* 12125 * Return true if there is definitely no predication of MVE 12126 * instructions by VPR or LTPSIZE. (Returning false even if there 12127 * isn't any predication is OK; generated code will just be 12128 * a little worse.) 12129 * If the CPU does not implement MVE then this TB flag is always 0. 12130 * 12131 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12132 * logic in gen_update_fp_context() needs to be updated to match. 12133 * 12134 * We do not include the effect of the ECI bits here -- they are 12135 * tracked in other TB flags. This simplifies the logic for 12136 * "when did we emit code that changes the MVE_NO_PRED TB flag 12137 * and thus need to end the TB?". 12138 */ 12139 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12140 return false; 12141 } 12142 if (env->v7m.vpr) { 12143 return false; 12144 } 12145 if (env->v7m.ltpsize < 4) { 12146 return false; 12147 } 12148 return true; 12149 } 12150 12151 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 12152 uint64_t *cs_base, uint32_t *pflags) 12153 { 12154 CPUARMTBFlags flags; 12155 12156 assert_hflags_rebuild_correctly(env); 12157 flags = env->hflags; 12158 12159 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12160 *pc = env->pc; 12161 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12162 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12163 } 12164 } else { 12165 *pc = env->regs[15]; 12166 12167 if (arm_feature(env, ARM_FEATURE_M)) { 12168 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12169 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12170 != env->v7m.secure) { 12171 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12172 } 12173 12174 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12175 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12176 (env->v7m.secure && 12177 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12178 /* 12179 * ASPEN is set, but FPCA/SFPA indicate that there is no 12180 * active FP context; we must create a new FP context before 12181 * executing any FP insn. 12182 */ 12183 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12184 } 12185 12186 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12187 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12188 DP_TBFLAG_M32(flags, LSPACT, 1); 12189 } 12190 12191 if (mve_no_pred(env)) { 12192 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12193 } 12194 } else { 12195 /* 12196 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12197 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12198 */ 12199 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12200 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12201 } else { 12202 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12203 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12204 } 12205 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12206 DP_TBFLAG_A32(flags, VFPEN, 1); 12207 } 12208 } 12209 12210 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12211 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12212 } 12213 12214 /* 12215 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12216 * states defined in the ARM ARM for software singlestep: 12217 * SS_ACTIVE PSTATE.SS State 12218 * 0 x Inactive (the TB flag for SS is always 0) 12219 * 1 0 Active-pending 12220 * 1 1 Active-not-pending 12221 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12222 */ 12223 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12224 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12225 } 12226 12227 *pflags = flags.flags; 12228 *cs_base = flags.flags2; 12229 } 12230 12231 #ifdef TARGET_AARCH64 12232 /* 12233 * The manual says that when SVE is enabled and VQ is widened the 12234 * implementation is allowed to zero the previously inaccessible 12235 * portion of the registers. The corollary to that is that when 12236 * SVE is enabled and VQ is narrowed we are also allowed to zero 12237 * the now inaccessible portion of the registers. 12238 * 12239 * The intent of this is that no predicate bit beyond VQ is ever set. 12240 * Which means that some operations on predicate registers themselves 12241 * may operate on full uint64_t or even unrolled across the maximum 12242 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12243 * may well be cheaper than conditionals to restrict the operation 12244 * to the relevant portion of a uint16_t[16]. 12245 */ 12246 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12247 { 12248 int i, j; 12249 uint64_t pmask; 12250 12251 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12252 assert(vq <= env_archcpu(env)->sve_max_vq); 12253 12254 /* Zap the high bits of the zregs. */ 12255 for (i = 0; i < 32; i++) { 12256 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12257 } 12258 12259 /* Zap the high bits of the pregs and ffr. */ 12260 pmask = 0; 12261 if (vq & 3) { 12262 pmask = ~(-1ULL << (16 * (vq & 3))); 12263 } 12264 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12265 for (i = 0; i < 17; ++i) { 12266 env->vfp.pregs[i].p[j] &= pmask; 12267 } 12268 pmask = 0; 12269 } 12270 } 12271 12272 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12273 { 12274 int exc_el; 12275 12276 if (sm) { 12277 exc_el = sme_exception_el(env, el); 12278 } else { 12279 exc_el = sve_exception_el(env, el); 12280 } 12281 if (exc_el) { 12282 return 0; /* disabled */ 12283 } 12284 return sve_vqm1_for_el_sm(env, el, sm); 12285 } 12286 12287 /* 12288 * Notice a change in SVE vector size when changing EL. 12289 */ 12290 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12291 int new_el, bool el0_a64) 12292 { 12293 ARMCPU *cpu = env_archcpu(env); 12294 int old_len, new_len; 12295 bool old_a64, new_a64, sm; 12296 12297 /* Nothing to do if no SVE. */ 12298 if (!cpu_isar_feature(aa64_sve, cpu)) { 12299 return; 12300 } 12301 12302 /* Nothing to do if FP is disabled in either EL. */ 12303 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12304 return; 12305 } 12306 12307 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12308 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12309 12310 /* 12311 * Both AArch64.TakeException and AArch64.ExceptionReturn 12312 * invoke ResetSVEState when taking an exception from, or 12313 * returning to, AArch32 state when PSTATE.SM is enabled. 12314 */ 12315 sm = FIELD_EX64(env->svcr, SVCR, SM); 12316 if (old_a64 != new_a64 && sm) { 12317 arm_reset_sve_state(env); 12318 return; 12319 } 12320 12321 /* 12322 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12323 * at ELx, or not available because the EL is in AArch32 state, then 12324 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12325 * has an effective value of 0". 12326 * 12327 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12328 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12329 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12330 * we already have the correct register contents when encountering the 12331 * vq0->vq0 transition between EL0->EL1. 12332 */ 12333 old_len = new_len = 0; 12334 if (old_a64) { 12335 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12336 } 12337 if (new_a64) { 12338 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12339 } 12340 12341 /* When changing vector length, clear inaccessible state. */ 12342 if (new_len < old_len) { 12343 aarch64_sve_narrow_vq(env, new_len + 1); 12344 } 12345 } 12346 #endif 12347 12348 #ifndef CONFIG_USER_ONLY 12349 ARMSecuritySpace arm_security_space(CPUARMState *env) 12350 { 12351 if (arm_feature(env, ARM_FEATURE_M)) { 12352 return arm_secure_to_space(env->v7m.secure); 12353 } 12354 12355 /* 12356 * If EL3 is not supported then the secure state is implementation 12357 * defined, in which case QEMU defaults to non-secure. 12358 */ 12359 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12360 return ARMSS_NonSecure; 12361 } 12362 12363 /* Check for AArch64 EL3 or AArch32 Mon. */ 12364 if (is_a64(env)) { 12365 if (extract32(env->pstate, 2, 2) == 3) { 12366 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 12367 return ARMSS_Root; 12368 } else { 12369 return ARMSS_Secure; 12370 } 12371 } 12372 } else { 12373 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 12374 return ARMSS_Secure; 12375 } 12376 } 12377 12378 return arm_security_space_below_el3(env); 12379 } 12380 12381 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 12382 { 12383 assert(!arm_feature(env, ARM_FEATURE_M)); 12384 12385 /* 12386 * If EL3 is not supported then the secure state is implementation 12387 * defined, in which case QEMU defaults to non-secure. 12388 */ 12389 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12390 return ARMSS_NonSecure; 12391 } 12392 12393 /* 12394 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 12395 * Ignoring NSE when !NS retains consistency without having to 12396 * modify other predicates. 12397 */ 12398 if (!(env->cp15.scr_el3 & SCR_NS)) { 12399 return ARMSS_Secure; 12400 } else if (env->cp15.scr_el3 & SCR_NSE) { 12401 return ARMSS_Realm; 12402 } else { 12403 return ARMSS_NonSecure; 12404 } 12405 } 12406 #endif /* !CONFIG_USER_ONLY */ 12407